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ABSTRACT

This research concerns the development of a risk analysis and mitigation methodology
for assessing the impact of uncertainties and complexity of the design requirements
arising in new process and product devel opments in micro and nano manufacturing. The
risk analysis methodology integrates different computational approaches for process and
product analysis, including the reduced order modelling using design of experiments,
risk analysis using sampling-based and analytical methods and optimisation techniques.
The integrated risk analysis and optimisation methodology is applied to two
applications: (1) the FIB sputtering process control, and (2) a flip chip design. Three
different FIB processes using different ion sources were investigated in order to
evaluate their process performance with respects to different process parameter
uncertainties. A critical comparison of the process capability against the specification
limits of different processes was studied.

As parts of the research, a new modified computational model is developed for a
material sputtering process using focused ion beam (FIB). This model alows the
analysis of micro- and nano-structures shape with the FIB machine controlled through
multiple beam scans and different beam overlapping. The FIB model related studies
also address the modelling requirements for including material re-deposition effects that
occur during FIB milling. The model has been validated using an experimental test case.
Good agreement is observed between the analytical shape using the model and the
actual experiment. The validated model enhances the accuracy of the dwell time
prediction. This approach overcomes the dependence of atrial-and-error approach of the
process control in nano-manufacturing industry.

The proposed methodology is also used to address a design problem of a flip chip
design. A novel method for the evaluation of the environmental impact of the flip chip
design in a multi-disciplinary optimisation problem is proposed. The goal is to address
materials constraints due to environmental regulations and to handle different types of
requirements such as the reliability and cost. An optimal flip chip design reliability
function is identified. The approach alows electronics manufacturers to consider the
environmental impact amongst different design alternatives at an early stage of the
design of the product before any rea prototyping in order to reduce the total
manufacturing life cycle.
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Chapter 1 Introduction

This chapter provides an overview of the research background about trends in micro-
electronics manufacturing industry and miniaturised product manufacturing industry.
The motivations of this research study, the aim and objective of the research of the

work are presented.

1.1. Trends of Manufacturing Technology Development

Electronic products have developed very quickly nowadays especialy in the area of
computers, telecommunications, consumer electronics, cars. Emphasis on product
miniaturisation has been the driving force in the research and development of the
micro- and nano-structures and products. This trend has shifted the whole electronics
industry from micro- scale to nano-scale. This motivates the developments in the field
of avionics, bio-medical devices, heterogeneous systems, micro-fluidics, embedded
test devices as well as in materia sciences industries with the adoption of new
materials. With the development of electronics packaging and production,
manufacturing methods are capable of producing smaller and lighter products. Those
advanced technologies are mainly driven by the market demand i.e. the customers.

Moreover, some electronic products must be miniaturised for their applications in the



intended environment. Those electronic devices applications are subject to size
constraints which have to be manufactured from micro-scale down to the nano-scale
especialy in medical and avionics devices. These demands and restrictions have driven
the emergency of the use of nano-technologies. Therefore, developing the electronic
devices, parts, components, and structures in micro- and nano- scale have become a

huge target across the micro-electronicsindustry.

Miniaturised electronic products have stricter geometric specifications due to a smaller
size. The accuracy to achieve precision has become a critical issue that can affect
product reliability and functionality. New technologies and manufacturing methods
have to be studied and developed to enhance accuracy issues. One of the prominent
revolutions in the industry is the use of three dimensional processing manufacturing
methods instead of planar techniques for the micro- and nano- structure. The use of
micro and nano-scaled materials has aso been investigated in conjunction with the
technologies development. This manufacturing transition also means the old and
sophisticated methods have to be revised, modified and replaced. Unfamiliar new
manufacturing methods raise the challenges in maintaining the reliability and quality

of the fina products.

1.1.1. How Market Demands Motivate Technology Development

Products that can perform multi-functions would be welcome by the market. This is
another driving force motivating the micro-electronics manufacturing industry to
produce smaller products. Electronic products are moving towards an ‘All-in-one’ era.
Printed circuit boards (PCBs) are required to pack more circuits into a product for

more functionality. PCBs are designed as multi-layers which can accommodate up to
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50 layers to embed more circuits. In short, the demands of enhanced functionalities in
consumer electronics increase the complexity of product designs. As a result, product

life cycle becomes more complicated and more value-added activities are necessary.

Consumer electronics are now under a tighter control from government legislation.
Recently, environmental concerns are gaining more awareness in electronics industries.
Sustainability becomes the main issue that governments address through legislations
concerning the electronics production. Government has enforced the sustainability
policy with legislations. Legislations have become a main driver to design for the
environment due to the effect of European Union’s directive on the Waste Electrical
and Electronic Equipment (WEEE) [1] and the directive on the Restriction of
Hazardous Substances (RoHS) [2]. Environmental considerations must be included to
comply with WEEE and RoHS regulations. One of the most influential compliances by
RoHs is that the use of the hazardous element Lead (Pb) has been prohibited by 2007.
It affects the electronic products manufacturing process. Solder is used for
interconnection in electronic packaging. The ban of numerous hazardous substances
for interconnections has forced the industry to undergo an enormous lead-free
evolution. This requires the use of new materials such as copper, gold and silver. Their
associated processing techniques are also explored to meet environmental legislations.
However, technica feasibility, reliability and costs become the subjects of interest for
further study. In order to reduce the production cost, other technologies and materials
are introduced. Adhesives and underfills have been developing with interconnection

and joining effects that can replace the solder.



1.1.2. Key Manufacturing Challenges

The micro electronics manufacturing industry are facing the increasing demands from
customers and government to meet the trend of miniaturisation, multi-functions and
environmental issues. The micro-electronics industries are undergoing a transition
period of manufacturing mode shifting from two-dimensional to three dimensional
integration and product manufacturing. The industries are also facing new technologies,
new product development and adoption of new materials. The electronic
manufacturing technologies are still far from achieving ‘optimum’ among many other
aspects like reliability, costs, environment and quality. Many other challenges arise
including the followings:
Technical feasibility - The new technol ogies demand much know-how knowledge
from the practitioners and new materials require new processing techniques. Some
process approaches can be technically infeasible due to unknown process
behaviour and uncertain materials physical properties.
Mass production and high throughput - Time s required for the manufacturing
systems to switch to modified manufacturing approaches, new materials and
resources for the new design. Thisleads to alower process yield and efficiency.
Time to market - Quicker time-to-market operations require shorter product life
cycles on new product developments. Shorter development time means less time
for intermediate stage and processing during life cycle.
Increased complexity - Multi-functionality leads to the increased product
complexity. Product layout has become more complicated. Interna component
interactions have increased. The reliability testing and maintenance task have

become more challenging.



Environment - Environmenta practice tends to cure and repair problems rather
than impose preventive measures. Introducing quantitative analysis becomes
necessary for environmental impacts estimation. However, the quantitative
analyses concepts are completely new to engineers and researchers.

Reliability - In performing reliability testing, the typical materiads and their
composition are well-tested for optimal process conditions. By contrast, the
handling of new material alternativesis unfamiliar.

Costs - With new technologies and manufacturing methods, new researches and
developments are required. Hence, investments in terms of machines, equipments,
human resources are indispensable. New materials are more costly to meet
environmental standards and maintain product reliability level.

Achieve an optimum — The industry aims to achieve low costs, environmental
friendly and high reliability in order to fulfill the customer specifications. However,
there are adways trade-off among those requirements. Producing environmental
friendly products involve a higher cost. Low cost production approaches cannot
guarantee a reliable product. Electronic designs and manufacturing approaches
must achieve a balance among al aspects called ‘optimum’. To identify an

optimum for multi-objectives task is complicated and can be impractical.

1.1.3. Uncertainties and Risk

The miniaturisation in size, multi-functional requirements and increased complexity in

design are al the factors that result in higher demand of knowledge. However,

knowledge about new materias processing, process and product are very limited at

stages. Facing insufficient knowledge and historical data, practitioners typically know

very little about any new technologies. The adoption of hew materials and processesis
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also associated with a significant decrease in the knowledge about their behaviour,
quality, performance and reliability characteristics. Any random variations and
stochastic behaviour of physical properties, such as manufacturing non-equivalent

unigueness in materials micro-structures and properties can turn out as uncertainty.

The risk described across the electronics manufacturing industries refers to the
technological risk of achieving accuracy from targets in engineering problems. The
target requirements that define the matrices of interests about a product design or a
process performance are in terms of design and process parameters. Design risk refers
to the accuracy to reach a target value of any design requirements under design
variables uncertainties. Process risk means the failure to reach a target level of process
performance. Because of the miniature nature in micro-world, the effect of any
variations in variables can hugely increase the occurrence of product designs
deviations or process performances scattered from targets i.e. output matrices of
interests falling outside the acceptable specification limits causing defeats and failures.
The risks caused by the uncertainties and variations are inherent in al engineering
design problems. Mitigating the technology uncertainties and associated risk becomes

an essential task.

1.2. Computational Analysis Toolsin Design Stage

Computational power grows exponentially in the last century which offers a huge
assistance to any industries. It eases the opportunity to achieve an optimum in product
design, seek optimal process performances, and mitigate risk that are al ultimate

targets in eectronics manufacturing industry. This know-how knowledge must be
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transferable across the whole process development team instead of solely the engineers.
Any issues across the product life cycle involve various types of analysis tools, people
and procedures. Essentially, al data flow and tools applied must be formulated and
systemised into a general design practice allowing anyone to understand easily. The

associated analysis tools are detailed as follows.

1.2.1. Computational Aided Design Tools

Component package design and parts manufacturing process in electronic
manufacturing involved complicated procedures and careful observation.
Computational capabilities coupled with emerging models offer significant advantages.
Computational methods, in particular finite element techniques that represent
engineered product, can forecast process behaviour and predict process responses.
Computer modelling is now being used extensively to assist the area where
experiments are impossible and too costly to perform. It enables examination and
comparison of design alternatives efficiently. For instance, Finite Element Method
(FEM) is a useful method that adopts computational analysis to assess reliability issues
of materials. The use of simulation has aso been proved helpful to study process
behaviour so as to achieve any process and product improvement. Still, they are far

from ideal. There are two limitations of computational models.

Model Errors — Models can facilitate understanding about process performance and
its physics behind. However, models are not perfect to reflect the actual situations. The
natural model discrepancies from reality are highly due to model errors. The errors are
either induced from stochastic process behaviour of process parameters, or lack of

understanding about the state-of-the-art knowledge.
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Computational efforts - Limitations of computational resources and manipulation
time are common in using computational aided design tools. The degree of freedoms of
a design problem increases due to the increased design complexity and interactions.
The underlying physics and mathematical equations applied to identify the solutions

increases exponentially rather than linearly.

Product design, fabrication, packaging and assembly, testing, operational life and
product disposal all need to be addressed in advance, at the early design stage, and in
conjunction. It is understood that the cost of correcting mistakes at the late stages of
product development can be of order of 1000 higher than the one at the early design
stage [3]. Mistakes must therefore be addressed earlier rather than later. The use of
conventional design practice involving in-situ testing and with the use of prototype
should be minimal. Design and simulation tool sets with computational aided design are
proved to be cost effective and helpful. They act as virtual prototype tools to
understand about physics for design planning in the life cycle. Figure 1-1 shows the
interactions between simulation toolsets and a product life cycle of micro-electronic
products. The product life cycle begins from raw materias to end-products through

stages including 3D processing, micro-assembling, packaging, and testing.

Materias

; ; : 3D Processing
Design and simulation ? i
Assembling
T
Testing - Packaging
1
Products

1L

perational Life
LT

Product Disposal

Figure 1-1 Role of design and simulations toolsets in the product life cycle
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1.2.2. Optimisation Analysisfor Engineering Problems

Optimisation is the process of choosing the design parameters which yield the
optimum design. The process of yielding the optima design is known as design
optimisation. Optimisation explores the available limited resources in a manner that
maximise utilities. It substitutes the traditional prototype oriented approaches using
trial-and-errors methods. Optimisation provides quantitative analysis of the product
design problems in terms of the quality and reliability according to customer
specifications. Optimisation methods is utilised as follows. Sructural optimisation can
be applied to design of structure aiming to utilise the shape of products to reduce
weight and usage of materids or improve process performances. Topology
optimisation can be used to optimise material layout for a given set of loads and
boundary conditions in a design space. It can be used in conjunction with finite
element model. Multi-disciplinary design optimisation provides a routine to solve
problems simultaneously which incorporates more than one discipline. Engineers often
assume design problems to be deterministic. Deterministic optimum design allows no
room for tolerances and is therefore associated with high potentia of falure.
Reliability based design optimisation is a probabilistic based approach which addresses

uncertainties in design parameters, includes the evaluation of probabilistic constraints.

1.2.3. Risk Analysis

Risk mitigation involves risk identification and risk analysis which are used to
understand and characteriser risk, and to forecast the risk impact. Risk identification
can help identifying the key design variables, process parameters, process

characteristics and product characteristics. A current study proposed by Thortons [4] is



widely used in avionic industries that focuses on using product reduction approach to
identify the key characteristics of a product. However, Thortons ideas emphasise on
solely product perspective. Engineers and designers are more interested in a
guantitative assessment of risk to evaluate the degree of severity and how frequent do
uncertainty affect the process performance. Risk analysis based on probabilistic
theories has gained recognitions in recent research work. Its purpose is to explore how
variations of a product or process parameters propagate into variations of the quality a
product and process performance. NASA has conceptualised a framework to identify

‘the failure margins’ of a process based on models [5].

1.3. Motivations of Research

1.3.1. Methodology I ntegrates with Computational Tools

The challenges on manufacturing problems, new adoption of materials technologies
have driven a computational framework of this research. Techniques such as
computational modelling, design of experiment, reduced order modelling, risk analysis
and optimisation anaysis are well-established. They are commonly applied
independently to evaluate a problem. These high level analysis are computational
expensive for complex engineering problems which requires probabilistic and iterative
analysis. Therefore, applying these tools interactively and dependently must be well-
formulated in order to obtain problem solutions accurately and efficiently. In this
research, a detailed methodology is proposed which integrates various techniques to
address uncertainty and risk [6]. The methodology is used to address two application
problems: (1) sputtering process with focused ion beam for micro-machining [7], and

(2) aflip chip electronic package. Sophisticated tools established from specific fields
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are brought into electronics and nano-manufacturing industries. The methodology is

also applicable to other novel application problems.

1.3.2. Risk Mitigation Approaches|ntegrateswith Reduced Order Model

The deterministic models have no alowances to deal with stochastic behaviour in most
engineering problems. At the same time, many conventional approaches to address
manufacturing process variations are dependent on historic data. These data are often
impossible to obtain in new products and processes. Probabilistic models are required
that can propagate the effect of uncertainty onto the process output or performances.
Evauation of reliability via probabilistic models are often computational expensive.
Risk mitigation approaches which integrate certain probabilistic methods and reduced
order models are developed to propagate uncertainty accurately and efficiently.
Various types of reduced order models such as non-polynomial types are investigated.
Analytical methods for risk analysis are also proposed to enhance efficiency of running

subsequent optimisation analysis.

1.3.3. Better Focused |on Beam Process Control and Uncertainty Propagations

Process control to estimate materials sputtering process using focused ion beam is
investigated. The sputtering process are analysed in different ion beam scanning
movements. In particular, a beam movement method is proposed that allows ion beam
angle of incidence to be taken into account for sputtered depth variation. Another beam
movement method and its associated number of cycle of scanning required for milling
pre-defined shape are investigated. Beam overlapping which affects the materials

sputtering are numerically formulated into a focused ion beam FIB model.
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Consideration on re-deposition effects is integrated with the FIB model to enhance the

accuracy on sputtered depth prediction.

Uncertainty in materials and process parameters variation can occur due to the
stochastic behaviour and unknown process phenomena in focused ion beam process.
The probability of failure and degree of scattering from target process performance
requirements must be quantified. Appropriate risk mitigation approaches such as
Monte Carlo Sampling methods must be incorporated into the process to propagate the
impact of uncertainties. In order to enhance the process output evaluations in sampling
methods, for instance, Latin Hypercube Sampling can be applied. To propagate the
impact of uncertainties in a more efficient manner, reduced order models are suggested.
For example, Kriging model is generated using interpolation techniques that can

improve the accuracy of polynomial approximated reduced order models.

1.3.4. Environmental Considerations and Optimal Design in Flip Chip Package

As part of this research, the proposed computational methods are also used to evaluate
product design of a flip chip. Bringing environmental issues quantitatively into
consideration during product development has not been researched in literature so far.
An innovated tool, Toxic Index (TI), is introduced to quantify the environmental
hazard of compound materials. It has been used to demonstrate the Sn-Ag-Cu type
(SAC) solder which is one of the essential materials in electronic packaging industries.
The idea of index has been extended not only as an indicator for material
environmental impact, but to qualify a component and the entire product. The Toxic
Index is integrated in optimisation problem as a constraint or an objective. This

proposed approach can help environmental authorities qualify relevant environmenta
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compliances. In industries, the Toxic Index can be used as a standard and can be
applied to identify the optimal to meet any customer environmental requirements. The
guantitative measure can motivate a new evolution to eco-products manufacturing in

conjunction with the widespread qualitative management policies and standards.

Optimisation studies are focused on reliability and even cost analysis. What is lacking
in the literature is a optimisation tool to quantify environmental characteristics of a
product. In the research, an optimisation analysis that incorporates environmenta
evaluation for flip chip is presented to deal with impact of new emerging materials.
Flip chip design optimisation problems in literature are focused on reliability
requirements, costs and environmental impacts individually rather than a unified
manner. A multidisciplinary optimisation problem is required in the early design stage.
This motivates a flip chip design optimisation problem formulation unifying three
aspects: reliability, costs, and environmental issues together. Responses evaluation in
those aspects is obtained through finite element modelling and reduced order
modelling via response surface models. A reliability assessment, an identified cost
model, and an environmental model based on the Toxic Index are constructed. Such

multidisciplinary problem is solved mathematically, to deduce the optimal design.

1.4. Aims and Objective of the Research Work

The aim of my research is to develop a risk analysis methodology and an associated
computational framework which can aid the decision making process for fulfilling
multi-objectives in micro-electronics manufacturing industries and nano-fabrication

industries. The work aims to improve the design of miniaturised electronic products
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and to facilitate the manufacturing process of the electronic products. A mgjor effort is
placed on the demonstration of the proposed methodology to rea life problems and
industrial applications. Two case studies. focused ion beam (FIB) material sputtering
application and a flip chip electronics packaging application are researched and

investigated. The research work has been divided into three main parts:

(1) Risk Analysis M ethodology

Design a methodology based on computationa modelling for predicting physica
behaviours, process performances, and certain response of interests. The focus is
placed on identifying a way to generate response efficiently. Reduced order modelling
is suggested which integrates computational model and other computational
approaches including design of experiment and response surface modelling.
Techniques that alow quantification of the risk of achieving quality requirements and
expected process performances are identified. Using uncertainty analysis and
sengitivity analysis, design and process uncertainties are identified. Their impact on
design quality characteristics and process performances of the fabricated products are
characterised with statistical inferences. The objective of the computational analysisis
to evaluate the capability of the any developed products and process when they expose
to uncertainties. The methodology aims at identifying optimal design and process

performance of advanced electronic products and their associated fabrication processes.

(2) Focused 1on Beam Process Control

Characterise the process control and performance of focused ion beam micro-
machining which can be used to fabricate micro-engineered products. The application
illustrates from process perspective that how the methodology can be applied to predict

process behaviours and performances under the impact of process control uncertainties.
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An investigation is primarily placed on the FIB milling process control by different
modelling approaches in particular the depth variation that characterise the shape of
pre-defined structures. A detailed computational FIB model is identified and integrated
in the research. It provides a better understanding in the control of the advanced micro-
machining process to model the time required to manufacture a shape. The objective is
to validate the final shape produced at the predicted time against the pre-defined shape
of product [8]. Certain important issues such as sputtering rate are also validated. Two
important issues causing such a difference in FIB milling process: sputtering yield and
re-deposition effect are further explained. The process control has been consolidated
providing grounds for the secondary task: risk analysis on FIB process. Risk analysisis
carried out with the introduction of process parameters uncertainties to assess the
process capability and robustness. The computational methods are integrated to help
understand process behaviour, process performance, product quality characteristics,

and optimality of the micro-machining process[9] [10].

(3) Flip Chip Design/ Optimisation (Reliability, Costs and Environmental | mpact)

Characterise the design considerations and identify the optimum of flip chip
technologies to fulfil reliability and environmental requirements. The first application
illustrates from product design perspective that how reliability, environmental and
relevant requirements of a flip chip are assessed by computer modelling and how
optimal design is identified. The key focus are on analysis of design considerations
such as geometry and materials and their associated impacts with regards to reliability,
environmental and the economical aspects of a flip chip package, Most importantly,
this work aims at identification of an optimal design in one single multi-objective
design problem. This helps provide decision support in selection of materials and

design alternative. A new area regarding quantification of environmental impact is
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demonstrated on the flip chip design. This numerical assessment provides a
fundamental basis for optimising environmental impacts which has not been
researched previously. The environmental assessment couples with the reliability and
cost assessment. They formulate a single multi-objective design optimisation problem.
Risk analysisis carried out to evaluate the design specifications with regards to design

variables uncertainties to assess the product robustness.

1.5. Two Application Problems

Two applications problems were investigated. The suggested risk analysis
methodology was demonstrated from two directions: A fabrication process perspective

and a product design perspective providing holistic scenery for industry targets.

1.5.1. Fabrication Process using Focused 1on Beam Sputtering

The methodology and the associated computational tools have been used to
characterise an industrial application where focused ion beam has been used for
micromachining of fine features at nano-scales. This fabrication process has gained
more popularity in micro-electronics manufacturing because of its strength to produce
nano features efficiently for matching the current miniaturisation trends. However, the
big challenges of this application to practitioners and engineers are the difficulties in
controlling process parameters to achieve accuracy in shape. The focus of the work is
to understand how to gain a precise process control and evaluate the risk of achieving

final shape with accuracy when the process is exposed to uncertaintiesin reality.
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Process capability will also be performed for assessing the robustness of the focused
ion beam micro-machining process. In this work, a mathematica model is identified
from the literature and further integrated to simulate the process. In particular, a desire
shape profile in terms of several important process parameters is investigated to
understand the process parameters impacts and the most important parameter towards
the shape. The chalenges for implementing this process that affect the final precise
shapein reality are mainly due to two reasons. First reason is the difficulties to achieve
the specified values in some process parameters due to randomness and other
unpredictable factors. Secondly, relationships between the process parameters and
output are not clearly understood as well as the key process parameters. Possibility and
effect of hidden parameters cannot be ignored such as re-deposition effects in the
process. To tackle these challenges and mimic the process in redlity, uncertainties are
potentially introduced into the process parameters and their associated impacts on
process performance are studied. Sampling methods and analytical methods are carried
out to identify the impacts of uncertainties within the risk analysis framework in our
proposed methodology in forecasting the risk of obtaining the nano-feature pre-defined
shape in terms of accuracy. Apart from evaluating one set of process set-up, different
sources of ion beam like Gallium and Argon beam, and different process parameters
values are used and fit into the model for comparison. Their process capability is
evaluated by probability theories and statistic tools, to account for the stochastic
process behaviour in readlity in order to enhance the process robustness. Optimum
process parameters and conditions among the available beam sources and materials are

identified for the optimal process performances.

Since the mathematical model involves repetitive calculations in manipulating the

sputtered shape, getting process responses from the model are time and
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computationally expensive. Undertaking sampling methods to assess uncertainties
seems impossible. Therefore, reduced order models are suggested in the methodol ogy
which enables fast evaluations of process responses. A limited number of process
responses are first generated from the identified mathematical model. Then, design of
experiment and response surface methodology are undertaken to formulate the reduced
order model. This reduced order model does not only facilitate the sampling methods
in risk analysis, but it has aso been a helpful tool to subsequently perform the iterative
optimisation task. The computer modelling and simulations have been validated
against experimental test case studiesin University of Cranfield. The findings from the

modelling perspective are also well validated.

1.5.2. Flip Chip Design

The methodology and the associated computational tools have been demonstrated in an
industrial application for electronics package assembling where a flip chip design is
investigated for its optimised design. Flip chip design has been well recognised in
particular for the miniaturised electronic products in electronic packaging industries.
Researches and many reference books have covered the application of flip chip.
Severa other works have included the optimisation of aflip chip design. Our work has
focused on two parts, (1) analysis of design considerations such as geometry and
materials selection and their associated impacts with regards to reliability,
environmental and the economical aspects of aflip chip design, (2) identification of an
optimal design in one single multi-objective design problem. These two parts must be
addressed in the early design and planning stage. Regarding reliability issues,
interconnect fatigue (damage) in terms of design parameters geometry and materials

property, subject to thermal loading are addressed.
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Regarding environmental aspects, another area that has not been researched much in
the past is numerical environmental analysis of a product design. The work illustrates
an approach of how to quantify a flip chip design using the available environmental
index for materials in literature, to justify the materia selection decision for
components and their environmental impacts. Simultaneously, costs issues of the flip
chip package investigated above are also assessed. The assessment illustrates how the
selected material affects the economical aspect of the overal design. A multi-
objective task is required to evaluate the feasibility of assembling the investigated
design in terms of costs, environment and reliability aspects. The highlight of this work
isthat all these considerations have been formulated as one design problem instead of a
few single-objective design problems. This design problem is solved using the
optimisation modelling to address the design problem objective, detailing the optimal
design variables and conditions. Tools such as computational modelling, design of
experiment and response surface modelling suggested in the risk analysis methodol ogy

are applied to solve the design optimisation problem.

A flip chip structure normally consists of the following components: a die, substrate,
solder joints and underfills. A computational model which includes geometry
consideration of the above components of a flip chip structure has been created. The
interest of work here is to study the behaviour of the chip interconnects subject to
applied thermal loading. The components react differently to this thermal loading since
the materials property (elasticity) of each material is different. The thermal stress and
strains induced under such thermal loads eventually causes damage/fatigue (mostly
happen at solder joint) in package interconnects. Finite element method has been used

to construct a model in order to ssmulate and predict the solder joint damage and to
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identify how the damage is affected by parameters that define the flip chip geometry.
The main focus is to assess reliability aspects by evaluating the thermal stress causing
the damage with regards to the geometry of different components as well as their

material properties and elasticity.

During the stage of materials selection, the investigated component materials forming
the package do have their associated environmental impact. Fraunhofer IZM [11] have
developed a Toxic Index (T1) to indicate the environmental impact of each material per
unit mass. The toxic index of the component and overall package will change
according to material ingredients as well as their weights which are governed by
design parameters. The intention of the work here is to work out the toxic index of
each component (various ingredients of materials) per package and also the toxic index
for the whole package based on the toxic index of each material. Therefore, materials
selection decisions can be justified using the toxic index of the whole package in terms
of their environmental impact. This quantification approach provides a fundamental

model for the subsequent design optimisation problem.

1.6. Contribution of the Research Findings

The significant contributions of the research findings are:

M ethodoloqy that char acterisesimpacts of product/ process uncertainties

Risk mitigation strategies based on statistics probability theories arein use to tackle
the process parameters uncertainties which leads to model errors and the deviated
target process performances. Deviations are predicted in form of probability

distribution such that process capability can measure how capable the processis.
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Fast physics based reduced order modelling for risk analysis and optimisation

Conventional polynomial-based response surface approximations are used to utilise
response prediction from intensive computational models for risk anaysis and
optimisation. Interpolations techniques are applied to construct reduced order

models that enhance the accuracy of response evaluation.

Validated modéelsfor FIB processes

Computational modelling work about the focused ion beam process is validated
with experimental case studies. Accuracy of FIB models can be enhanced by
experiments Simulation refines experimental setup and improves experimental

result. The work helps the experiment development at Cranfield University.

Multi-disciplinary optimisation of flip chip design

Optimisation methods are applied to identify the optima design and process
performance. Multi-disciplinary optimisation is used to demonstrate how to assess
reliability and cost, in particular a novel way to assess environmental issues which
have not been researched before. The researched environmental tool has entirely

enhanced the efficiency of conducting afull life cycle assessment of a product.

Contributions to a decision support system

Certain theories and mathematical models work from this research work have been

used to develop an in-house design supporting software -ROMARA [12].

Dissemination of research

Four conference papers as first author and five conference papers as the co-author

were published.
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1.7. Thesis Layout

There are eight chapters in this thesis and its structure is summarised by a flow
diagram as shown in

Figure 1-2. In chapter 1, the research background is outlined about the challenges and
the trends in the electronics and micro/ nano-manufacturing industries. The
motivations in researching the application of focused ion beam for nano-structures

fabrication and optimal design for e ectronics packaging are outlined.

In chapter 2, the researches for quantitative and qualitative risk assessment approaches
in different fields in the literature are given. The developments and applications of
associated computational modelling techniques and methods are reviewed. The
overviews include (1) computation modelling, reduced order modelling, (2) risk
mitigation and (3) optimisation analysis across application problems in different fields.
Product design development and process control in the two industrial applications: (1)

nano-structures fabrication process and (2) electronics design analysis are reviewed.

In chapter 3, the computational modelling and reduced order modelling, are firstly
explained. The theory of finite element methods (FEM) and methods to construct a
finite element model is briefly overviewed. The approaches to generate reduced order

model through design of experiment and response surface methods are explained.

In chapter 4, the second part of the methodology- the risk mitigation framework is
discussed. It alows to address parameter uncertainties and to evaluate the risk of not
achieving pre-specified requirements. Risk mitigation comprises of sensitivity analysis
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and risk analysis. Risk analysis is undertaken with the aid of statistical inferences and

probability theories to propagate uncertainties during design and process devel opment.

In chapter 5, a computational focused ion beam (FIB) model is identified and
integrated to provide a better understanding to the control of the advanced FIB micro-
machining process. The model has been used to predict the required time for
manufacturing micro-structures using FIB. The model result is validated against
experimental measurements from actual runs of a FIB system. Numerous important
process parameters and their associated effects on the sputtered shape are identified,

and further explained to improve a better process control.

In chapter 6, process parameter uncertainties are introduced into the validated FIB
model of the FIB fabrication application. Uncertainties are propagated through the
reduced order model. Risk analysis is executed based on the probabilistic evaluations.
Results are used to mitigate the risk of not achieving the pre-defined shape. Findly,
process capability indices are applied to characterise the robustness of this fabrication

process with respect to customer requirements.

In chapter 7, aflip chip design application is demonstrated using the methodology. A
procedural flow down illustrates how the optimal design can be identified. The
emphasis here is on the numerical assessment of its environmental impacts to evaluate

different design alternatives and select among various materials available.

Finally, a conclusion is given as a summary of the research work. Future work is

discussed to extend and modify the current work as a holistic approach.
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Figure 1-2 A flow diagram details the flow and structure of the thesis

Closure

In summary, this chapter has detailed the research background of the micro-electronics
manufacturing industry and miniaturised product manufacturing industry. The
overview includes the technologies trend and industry challenges. Different analysis
tools and approaches were outlined. A methodology is required that can provide a
procedural flows and computational analysis. From research prospective, the novelties
are also outlined. Two applications problems are defined (1) aflip chip package design,

and (2) materials micro-machining of focused ion beam sputtering process.
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Chapter 2 A Review of Risk Mitigation Techniques and

Micro/ Nano-Manufacturing

This chapter reviews risk assessment approach for product design development and
process control. An overview of associated computational modelling approaches and
optimal design identification are outlined. The current state of fabrication techniques
using focused ion beam sputtering process for micro- and nano- products are also
reviewed. The computational approach to design electronics products and to control
process of fabricating miniature products is reviewed. The following areas were

reviewed:

(1) the advances and development in risk mitigation techniques for uncertainties
management and the associated application problems

(2) the role of computational modelling, response surface modelling, and
optimisation techniques for the miniaturised products and fabrication processes

(3) the current statues of nano-fabrication technologies, the modelling work and
studies in materials sputtering process using focused ion beam

(4) the advances in electronics packaging industries and how computational

models are applied to evaluate the flip chip embedded IC packages

25



2.1. Concepts and Development of Risk Mitigation Techniques

2.1.1. Some Risk Management Concepts

Nowadays, risk-related issues become an important topic in every industry because of
its inherent nature and influential impact. Risk was first considered and studied in the
early 1980s. Kaplan and Garrick introduced a conceptual framework which defines
risk into a ‘set of triplets idea” and any risk assessment approach aims in addressing
three basic questions. (1) What can go wrong? (2) How likely isit? and (3) What are
the losses (consequences)? [13]. Modarres [14] had given his definitions on uncertainty:
‘Uncertainty is a measure of the “goodness” of an estimate, uncertainty arises from
insufficient knowledge’. The most suitable definitions of risk in this work closely link
to NASA [15] contains three basic components around the triplet ideas proposed by
Kaplan and Garrick. The three basic components and their definitions are as follows:
(1) Scenarios, (2) Probability, and (3) Consequences. Risk is a function of both the
uncertainty and damage [13]. i.e. Risk = Uncertainty + Damage. Risk is an integrated
attribute from uncertainty and its consequences. Modarres expressed the view that Risk
Analysis is the process of characterising, managing, and informing others about
existence, nature, magnitude, prevalence, contributing factors, and uncertainties of the
potential losses [14]. He also believes that risk assessment is a formal and systematic
analysis to identify or quantify frequencies or probabilities and magnitude of losses to
recipients. Uncertainty can generally be classified into two types. (1). Aleatory

uncertainty and (2). Epistemic uncertainty [16] [17] [18] [5].

Aleatory uncertainty - This type of uncertainty is the physicaly variability which is

inherent in a process. Uncertainties are induced due to the random variations and
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stochastic behaviour in physical properties such as the manufacturing non-equivalent
uniqueness in the materials or materials properties. Epistemic uncertainty-
Uncertainties are induced when the understanding of the practitioners and decision
makers about an approach or process is out of their boundary state of knowledge. No
one can precisely predict what the outcome subject to scarce knowledge. This type of
uncertainty is divided into three streams. (1) Parameter uncertainties, (2) Model

uncertainties, and (3) Completeness uncertainty [19] [20].

2.1.2. Risk Analysis Approachesfor Existing Industrial Processes

Risk analysis approaches have been developed for well established processes. To
identify process and system failure due to the hidden uncertainty which could prompt
into potential risk, Failure Mode of Effect Analysis (FMEA) has been used by the US
Armed Forces since late 1940s [21]. It is commonly applied in current manufacturing
processes and activities as an effective approach. FMEA is a traditional and powerful
tool to investigate the probability, detectability, severity of failure for risk mitigation.
The idea was based on collecting useful data by systematic documents and records
through actual manufacturing activities. The entire or partial process flow can be fully
captured such that defeats and process failures are identified [22]. After data and
sample collections, statistical controls are applied for process control providing insight
about process variahility, failure and hidden problems due to (random) the common
cause of failure. However, the shortcoming of using FMEA is that the whole process
reguires enormous data and sample collections through day-to-day observation. FMEA
is limited to new developed technologies and processes which historic data is not
available. Unknown knowledge on the process input, response, procedures and

behaviour can hinder any data requisition about the process.
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Quality Function Deployment (QFD) is another systematic method to identify
system/design/ process weaknesses and strengths based on the voice of the customer
[23]. It trandates the customer’s requirements, part characteristics, manufacturing
operation, and production requirements into engineering languages aiming to eliminate
failures, identify risk of not meeting customer requirements and improve process and
design. QFD has to be implemented as a planning tool before a system FMEA is used

as aquality improvement tool.

2.1.3. Risk Analysis Approachesfor New Industrial Processes

Recently, researches have been focused on risk management in particular to handle
risk of new processes/ products which are in development stage. Mitigation of risk for
new processes is in the direction of developing both qualitative methods and
guantitative techniques to ensure process robustness. Qualitative methods provide
assistance to categorise risk related issues and group them into smooth flow down
procedures. This helps the subsequent quantitative risk analysis to take place

simultaneoudly.

2.1.3.1. Qualitative Risk Mitigation Methods

In recent years, significant work in the field of risk management has been carried out.
Major risk management activities are well-suggested and documented by NASA.
NASA ideas of Continuous Risk Management (CRM) and risk matrices [15] [24] are
widely applied across different research institutions, companies and even government

authorities for health and safety. A conceptual ring is used emphasising the flow of risk
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management strategies. Risk Matrices are used as a tool to categorise, prioritise and
assist risk communication activities. NASA emphasised on identifying the hazards
having adverse consequences and estimating the probability of the occurrences, and
evaluating the severity of consequences. Risk matrices are introduced to characterise
such probability and severity of consequences of risk into different levels [24]. The
levels are indicated by a Risk Assessment Code (RAC). RAC involves the assignment
of anumber from one to seven where number ‘one’ means the hazard |eads to the most
serious consequences and immediate action is required while ‘seven’ means the hazard
has the lowest priority to be addressed. Similar concepts on the NASA matrices have
also been examined elsewhere. For example, Maturity Capability Readiness Level
(MCRL) indicator has been proposed based on a numeric indicator Technology
Readiness Level (TRL) [25] [26] to evaluate how mature is the process. Similarity
number is developed to characterise the risk level [27]. These tools aim to quantify the

risk level of aparticular technology.

Some other risk identification techniques are used to identify the ‘key characteristics’
(KC) during product development. Key characteristics are defined as ‘a feature whose
variation has the greatest impact on the fit, performance, or service life of the finished
product from the perspective of the customer.” A more complete KC methodology was
done by Lee and Thornton [4] aiming at breaking down a whole product into parts,
sub-assemblies and components by flow down approaches. This method has been
implemented by industrial leaders such as GM, Ford, Rolls Royce and Boeing to
analyse car assemblies and aircraft manufacturing and maintenance [28]. The key
characteristics about the whole product and the corresponding process are identified.
Then the risk of failure to reach target performances and manufacturing specifications

in critical parts due to variations can be identified. However, key characteristics
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analysis requires a comprehensive analysis across every part and assembling procedure
which is time and resources costly. For example, applying anaysis on an aircraft

assembly which includes many procedural interactionsis difficult in reality.

2.1.3.2. Quantitative Risk Mitigation Methods

Another approach, Probabilistic Risk Analysis (PRA) is introduced as a risk
guantification tool based on probability concepts. There are two mgor interpretations
of probability: (1) Classical which is based on a limit of relative frequencies and (2)
Bayesian which is based on a measure of degree of belief [5]. These concepts are
employed based on statistical evidence in the PRA models that are constructed to
reflect the random nature of the constituent basic events such as component failures.
PRA is capable of characterising both the aeatory uncertainty and also epistermic

uncertainty.

To capture the effect of uncertainty and variations, probabilistic models are used to
describe the randomness of process observations instead of deterministic models in
most engineering design problems. The challenges lie on how to propagate the effect
of uncertainty into the process output or performances in an efficient manner.
Uncertainty is presented in the form of probability distributions. Various methods can
be used to identify the uncertainty impacts on process output. The commonly used
method includes worst case analysis [29]. Regarding worst case analysis, variations on
the variables on all assumed occurring at the worst scenarios in order to generate the
most extreme value on process output. Such value can be found by first order Taylor

series expansion. However, this approach tends to be too conservative. Using Taylor
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series expansion is not accurate to estimate extreme conditions such as minimum and

maximum of the performance.

Probabilistic distribution or process output can be generated through sampling method
and anaytical method. Monte Carlo Simulation (MCS) is a more comprehensive
method which can improve the shortcoming of the approximation based method. Risk
analysis is carried out based on MCS direct sampling method. The feasibility risk on
construction cost of airports was evaluated by assigning probability distribution to
input parameters [30]. However, running Monte Carlo Simulation on computational
model like FE model is computationaly expensive. The scatter ranges of input
variables and their impacts on stress- strain values for lifetime estimation of a Chip
Scale Package was investigated in [31]. This analysis combines the use of MCS with
the Finite Element (FE) model demanding too much computational resources. Some
modified Monte Carlo Simulation methods like stratified sampling methods have been
proposed to improve the computational efficiency. Examples include Latin Hypercube
sampling (LHS) [32] and orthogonal array sampling approaches [33]. These two work
explains how samples are extracted in a reduced design space such that less samples
are required to generate the output probability distribution. Even with these enhanced

methods, sampling method is not affordable for complex design problems.

Running sampling based method on response surface model is an aternative method to
replace taking direct sampling data on the full computational models. A LHS method
was carried out to evaluate effect of variations of design parameters on its shape using
a multi-quadric radial basis function [34]. LHS reduced the design space where
samples are extracted to facilitate the identification of an optimal design in this study.

In another study, response surface and MCS were used to investigate the stress
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distribution in different material layers and sensitivity relationship between the major
wire bonding parameters and the related stress value [35]. The approach greatly
enhanced the efficiency of evaluating responses rather than analyses on finite element
model. The cost to generate response surface model from its original model have to be

considered. Obtaining accurate response surface models is another main challenge.

Analytical method involves calculation of the probabilistic distribution theoretically
instead of extracting samples. One typical analytical method is the First Order Second
Moment (FOSM) which calculates the mean and standard deviation of probabilistic
distribution [36]. In this work, FOSM, Latin Sampling and Monte Carlo methods were
used to propagate the uncertainty of a 3D vibration micro-probe [37]. The first order
moment (mean) and the second order moment (standard deviation) are obtained to
construct the output distributions. However, they are approximation based in which
higher moments are truncated. For highly non-linear engineering problems, only taking
lower moments are not sufficiently accurate to approximate the process outputs. Point

Estimation Method further derives the skewness of probabilistic distribution [36].

Reliability based analysis is an analytical approach to perform uncertainty analysis
which is widely used. In this type of analysis, a point in design space is identified
relating to the probability of system failure which is defined by a limit state function.
This point is called the Most Probable Point (MPP) or Reliability Index [38]. The limit
state function of failure in atransformed co-ordinate system can then be approximated
by first-order approximation. By assuming linearity, first or second order of Taylor
seriesis used to estimate the probability at the MPP. These methods are known as first
order reliability methods (FORM) and second order reliability methods (SORM) [39]

[40]. Typicad methods used to calculate the MPP include Performance Measure
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Approach and Reliability Index Approach [41]. These analytical methods enhance the
computational efficiency to obtain the probability of failure comparing to the sampling

based methods. However, accuracy declines for addressing problems with nonlinearity.

During the last two decades, another reliability analysis method — Artificial Neural
Network (ANN) algorithms are developed [42]. ANN requires no known relationship
among variables. It can be used to construct a mapping from one multi-dimensiona
gpace to another multi-dimension space by learning through training examples. A
vibration reliability analysis of turbine blade was investigated using combination of
finite element method, artificial neural network, Monte Carlo simulation method and
Latin Hypercube sampling method [43]. The study showed that ANN is more flexible
and adaptable to access any continuous nonlinear function when compares to the

sampling based methods through polynomials and analytical based methods.

These methods evaluating the process output probabilistic distributions can provide a
good support for Reliability-Based Design Optimisation (RBDO) and quality
engineering practices like Six Sigma Design. The optimal design and solution from
RBDO can be assessed using process capability tool. Such design can be compared to
the reliability requirements to verify whether it meets Six Sigma standard or not. There
IS an increase interest about non-probabilistic uncertainty modelling which can
potentially overcome some of the limitations of the probabilistic approach and can
handle in a better way “subjective” uncertainty (e.g. lack of knowledge about the
modelling process). Examples are the evidence theory [44], fuzzy sets and possibility

theory [45] and interval-based approaches [46].
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2.1.4. Process Capability Modelling

After obtaining the probabilistic distribution, process capability ratio can be applied to
guantify the process capability under the assumption that the probabilistic distribution
is normally distributed. The objective of these indices is to reflect the standard
deviations between the specification limits and their mean. For non-normal distribution,
data is transformed with transformation matrices such as Box-Cox transformation [47]
before calculating process capability ratios. A normalisation can be performed to check
whether a normal distribution has achieved or not. By the Central Limit Theorem,
increasing the sampling size can convert the non-distributed data in order to follow a
normal distribution [48]. Another common way is to identify a well-known distribution
which provides good fit to the obtained output data to assess the process capability. It
is due to their simplicity and well established form allowing calculation of mean and
standard deviation. For examples, Weibull distribution, is commonly used in accessing

reliability of life time prediction in engineering problems[31].

2.2. The Computational Techniquesin the Risk Analysis M ethodology

2.2.1. Response Surface Modelling

Response surface modelling involves combination of mathematical and statistical
techniques that are useful for developing, improving, and optimising processes. The
objective of response surface modelling is to construct an explicit function (also
regarded as response surface) which can closaly fit known data points. Response

surface can be constructed through two approaches. approximations and interpol ation.
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2.2.1.1. Approximations techniques. Regression analysis

Regression analysis has been used in many applications. Its objective is to identify the
relationship between the dependent variables and one or more independent variables.

There are three types of regression, linear, nonlinear parametric, and non-parametric.

Parametric (Linear Regression) - To address problems follows linearity, linear
regression method such as ordinary least squares method, generalised least squares
method, iteratively reweighted least squares, total least squares [49]. Least squares
method is used to formulate a regression function in which the sum of the squared
residuals is minimised. Ordinary least squares method is extended for different nature
of problems and regression assumptions [50]. The regression approximations are not
robust when outliers appear in the response variable (observations that do not follow
the pattern of other observations) occur due to violations of these assumptions.
Maximum likelihood estimation, least absolute deviation method and robust regression
method are used in the presence of outliers [51]. Quantile regression, linear mixed
models are other common techniques as the alternatives for linear type of engineering
problems. Linear regression is useful for studying problems where data points are
easily available from experiment or simulation. The limitation is that demand of data
points increases enormously when the number of independent variable increases.
Linear regression accuracy declines and the result is sometimes misleading when non-

linearity relationships exist or are hidden in system.

Parametric (Nonlinear Regression) - Another parametric type of regression method —
nonlinear regression can be used for problems with nonlinearity nature in responses.
Nonlinearity is quite commonly seen in many reliability engineering problems that
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lifetime can be well-fit with a Weibull distribution [52]. In parametric analysis,
computing time of regression function is short as it possesses a known form. For
instance, a second order polynomial consists of three terms such that only three
regression coefficients are required. However, too many terms in a regression function
may be weak or redundant to describe the relationship between the actual response and
independent variables. To address the problems, (both forward and backward) stepwise
regression can be used to extract the significant terms of describing the relationship
[53]. Forward regression deals with additional significant terms through a repetitive
term selection process until a good fit regression function is found. Backward
regression is the opposite which refers to elimination of existing terms from a full

model that contains all possible terms backwardly.

Non-parametric Regression - In non-parametric regression, a smooth function is
usually developed with specifying a mathematical function and this smooth function is
driven by the data themselves in the absence of any algebraic form function. Kernel
regression, smoothing splines and LOESS regression are common non-parametric
approaches to tackle problems with nonlinearity [54]. The non-parametric regression is
able to dea with system with many independent variables. It does not require the
specification of afunction to fit all of the datain the sample. Thus it allows flexibility
to complex process which theoretical model does not exist. However, non-parametric

regression anaysis demands large sampled data set in order to produce good models.

2.2.1.2. Interpolation and Extrapolation

Interpolation is a method of constructing new data points within the range of adiscrete

set of known data points. Linear and polynomia interpolation, piecewise constant
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interpolation (nearest-neighbour interpolation) and spline interpolation are the widely
used interpolation techniques because of their speed and simplicity. Neural network
interpolation and radial basis interpolation [55] are added in the interpolation family.
Radia basis functions interpolation is an interpolation method in which N set of basic
functions are introduced for N data points. Each basic function is assigned with a
weight representing each data points. The ultimate output function is a linear
combination of all basic functions requiring each function passes through its data point
exactly. Kriging interpolation has also gained a widespread use in spatia data

prediction in the areas of mining and other geographic-related problems [56].

2.2.2. Applications of Response Surface Models and Applications of Optimisation

Problems

Regression analysis has gained a widespread recognition in different industries because
generating fast evaluation save the time and computationa resources. A risk analysis
methodology was suggested to evaluate the variations of process uncertainties through
reduced order model included Kriging, polynomia and radia basis techniques. The
methodology was adopted to illustrate a novel 3D vibrating micro-probe [57].
Regression models have been used for abstraction of finite element model to prediction
stress, warpage, thermal strain in order to assess reliability [58]. In this work, a second
order polynomial was adopted to evaluate the Focused ion beam micro-machining
sputtering problems. Optimising the uncertainty of the process parameters was
performed through the response surface model to characterise the deviation from target
performances [9]. Response surface model can provide support to enhance efficiency

of running optimisation which requires huge amount of response evaluations [59].
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However, polynomid is restricted in its own form which may not reflect an accurate

approximation especially on problems showing strong nonlinearity.

Kriging model commonly acts as a response surface model or reduced order model
(synonymously called surrogate model) to predict process response for performing
optimisation analysis. Its strength is to characterise data correl ation distributed in spatial
fields with limited number of observations. Kriging techniques can overcome
shortcomings of polynomial-based response surface model for many complicated
engineering problems which possess non-linearity and correlation between parameters.

You [60] has adopted Kriging method on predicting integrated circuit performance.
Hawe [61] investigated an optimisation using Kriging interpolation which was applied
to an electromagnetic design problem. The accuracy of the Kriging model was
discussed. Simpson [62] has compared Kriging methods against polynomial regression
models for the multidisciplinary design optimization of an aero spike nozzle. Bang [63]
optimised a jaw structure using the Kriging interpolation method. Husain [64]
performed a shape optimisation of micro-channel heat sink through polynomial, Kriging

and radial basis neural network methods.

2.3. Current Status of Nano-Fabrication Patter ning Technologies

Nano-technology was first provided in 1959 by Richard Feyman [65]. The term
"nanotechnology” was later defined by Norio Taniguchi in 1974 and developed
extensively into engineering and academic fields for the last 20 years. The idea of
nanotechnology is to control matters at a 1-100nm in at least one dimension and the

creation of materials, devices and structures around this dimension. The significance of
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this scale has been useful in a vast range of applications such as biomaterials,
electronics and medicine especially to deal with the increasing demands for
miniaturised products. Nanofabrication becomes a key to manufacture functional nano-

devices and systems down.

In microelectronics industry, IC feature size is reducing at a rapid rate to couple with
the trend of product miniaturisation. The semiconductor and microelectronics industry
has been the main driver to push fabrication technologies to their dimensional limit.
Nano-fabrication is aready being applied in semiconductor manufacturing to enable IC
with a minimum circuit feature of 32nm in 2007 [66]. Moreover, this kind of tiny IC
chip must be produced in mass volume to satisfy huge demands in all kinds of

electronics product in parallel with huge investment in production tools.

Optical lithography is the only technology capable of patterning over a hundred wafers
per hour at this dimension. However, optical lithography incurred a high cost owing to
its expensive tooling and equipments. In mid-1990s, nano-imprinting lithography was
developed with same patterning capability but at a lower cost than the optica
techniques. X-ray lithography is also a good alternative patterning technique because
of its shorter wavelength than optical. Still, there exists difficulties to make X-ray
masks and related manufacturing reliability issue for X-ray techniques remains a
challenging part apart from cost and yield issues. Other nanofabrication technologies
arise such as scanning probe system and molecular self-assembly. Scanning probe is
simple to use and with low cost. However, the pattern area is small and speed is
relatively low. Molecular self-assembly is targeted as a main future trend but it
requires a guided control for useful patterning. Recently, photon-based lithography,

electron beam and ion beam-based lithography, and reactive-ion etching have al been
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studied and researched in contribution to next generation of nano-world. Electron beam
and ion beam lithography has its strengths of high resolution and high flexibility.
Focused ion beam has a widespread application in nanofabrication such as nano-
features micro-machining, simple structures fabrication and ion lithography in

semiconductor industry [66].

2.3.1. Moddlling the Focused 1 on Beam Sputtering Process

As part of the nano-fabrication, this part provides review of capability of micro-
machining focused ion beam sputtering process, associated modelling work and
experimental work. Research in the area of nano-fabrications using focused ion beam
for micromachining of fine features and cavities at nano-scales are reviewed. This
fabrication process has gained more popularity in micro-electronics manufacturing
because of its strength to produce nano-features efficiently with high resolution when

compared with the traditional chemical etching techniques.

The key and challenges of using this technique remain in shape accuracy of desired
product its process control. Main researches and studies are focused on identifying a
process control with regards to its process parameters to achieve accuracy in shape.
Modelling work and experimental work have been carrying out in parallel. Numerous
studies have been dedicated to modelling the FIB process behaviour in terms of depth
variation control [67] [68] [69]. Other interests of process performances control from
modelling perspective such as surface smoothness [70] and etching rate are aso
studied. Depth variation is the focus of interest as a process performance characterising

the final shape corresponding to the pre-defined shape. Vasile et al. had modelled a
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parabolic trough circular, a rotationally symmetric sine pattern, a sinusoidal pattern,
and a dome convex shape on silicon Si(100)-type substrate in micrometers scale as
shown at scanning electron microscopy viewing angles in Figure 2-1 [68]. Figure 2-1
shows. (@) a parabolic trough ion milled in Si(100), using a 10 mmx35 mm pixel
pattern, (b) rotationally symmetric sine pattern ion milled in Si(100), (c) sinusoidal
pattern ion milled in Si(100) on a 60 mMmx330 mm pixel pattern, (d) convex dome

based on a 15 mm diameter circular pattern.

(c) (d)

Figure 2-1 Different nano-patterns achieved by focused ion beam [68]

These shapes were modelled in the interests of depth profile and the final shapes
shown above were then verified against predicted shape. A pixel scheme was
introduced to define the geometry and characterise the beam movement. Analysis of
process parameters were given by Vasile et al. [68] accounting for the effect of dwell
time, pixel size and beam diameter on the depth variation. Experimental result has

shown that the longer the dwell time, the deeper depth resulted. Correlation of pixel
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size and beam diameter was also found to affect the ion dose at a pixel due to
‘overlapping effect’ in the ion distribution tail region between two adjacent pixels.
However, in his work, overlapping were not addressed which showed an impact on
depth variation. Re-deposition effect of sputtered materials was not considered which

has an influential impact on the sputtered shape.

The mathematical model that relates the etched shape and the dwell times required to
achieve a predefined shape using a numerous process parameters are initialy
investigated by Vasile et al (see Equation (2.1)) in[71] [72].

Y \F Xl
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In his model, a square pixel matrix is assumed which placed over the target surface.

The sputtering model is discretised over each element of the pixel matrix so that

ultimately a system of linear equations that relates the dwell times t, ~with the

sputtered milling depth Z;; at any pixel (i, j) is constructed. This system of equation

then can be solved numerically. Vasile et al provided a well constructed structural
approach to account for geometrical details of the pixels as a fundamental step to

evauate all pixel dwell time.

A similar depth model is developed by Fu [73]. Depth variation is expressed as a
function of ion dose, dwell time and sputtering yield denoted by Equation (2.2).
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where D(X,Y) is the ion dose distribution, n is the number of scans, | is the beam

current, t isthe beam dwell time, e isthe electron charge, s isthe standard deviation
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of the Gaussian distributions. X, and Yy, are the coordinates of the beam position
stepped in x and y directions with a step size of dx and dy throughout the etching area.

Z(%,y) =ri' D(x.y)" Y 23)

The depth profile of the shape Z(XY) is governed by ion does distribution as mentioned

in Equation (2.3), atomic density of target material denoted by r as well as the
sputtering yield Y which depends on parameters that affects ion-surface mechanical
interaction like ion beam energy. The models capture all associated parameters in
simulating the real process as a whole profile. This work provided an important
understanding and a fundamental way to account for depth variation during the focused

ion beam micromachining process.

Depth profile have been formulated as a function of process parameters such as
sputtering yield, beam intensity profile, geometric pixel scheme, materials property
and numerous process parameters. The key challenges for modelling FIB are how to
control those process parameters to achieve a critical precision of the objective in the
‘nano-scale’ process. Many studies had investigated carefully on the sensitivity of
these parameters individually. For instances, the relationship of sputtering yield and
determined incident angle was identified in simulation and experimental test case for
2D structures fabrication in [74]. Long dwell time leads to deeper sputtered depth due
to reduction of scanning number on pixels [75]. Aperture size, ion dose and flux
distribution are included in a model by Fu et al [73]. System voltage, pixel spacing,
scanning sequence are discussed in [76]. It reported that material removal rate increased
when high voltage, large aperture size, short pixel spacing, and long dwell time. Some

optimal conditions for FIB were also discussed [77]. A more complete study covered
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the overlapping and re-deposition has been done which implement a two-Gaussian

function to describe the intensity profile of ion distribution [78].

2.3.2. Moddlling Various Beam M ovements

One of the main differences between the methods of Vasile [71], and Fu [67] is the
beam movement simulation. Shape is either achieved by milling ‘vertical” block or
‘horizontal’ block that as depicted in Figure 2-2 (a) and Figure 2-2 (b). A parabolic
shape is defined when numerous blocks are formed by two different beam movements
over the surface pixels. Vasile adopted a single passing scheme, i.e. the ion beam
would only pass each pixel once and stay long enough to make sufficient sputtering. In
this way, the dwell time is varied among pixels to produce the fina shape. Fu
suggested a layer-by-layer approach where the ion beam moves repetitively across the
pixels and remove materials through multiple passes. Layers are milled in sequence
from top to bottom with multiple scans as shown in Figure 2-2(b). Dwell time are fixed
and kept steady for each pixel throughout the entire process. Once the expected depth
of the first dlice (block) is complete, the beam restarting position moves inwards to the
centre in order to allow milling of the second dlice until the pre-defined geometry is

obtained.

Vasile method is implemented under the assumption that pixel size must be small
enough such that aflat line representation is used for a curve segment of parabolic wall
with asmall slope. However, varying the dwell time is practically not preferable due to
limitation of the equipment control. Instead, Fu method is more preferable in red
experiment. The angle of incidence of ion beam hitting the substrate is not captured as

a plain surface is aways obtained after each scan by the beam movement with fixed
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dwell time. However, a small angle is aways resulted when the ion beam move from
one pixel to another. This small angle is proven as influential factor which affects the
sputtering yield and hence the rate of materials removal. Similar work has been
suggested by Kim [79], adlice by slice method with a helix path in order to reduce the
re-deposition effect having the beam milled away the re-deposited materias
immediately after they deposited instantly on the surface. Figure 2-3 illustrates the

beam scanning path in top view for Vasile and Kim methods.

(c) Slope-by-dope

(a) Vasile’s (b) Fu’s method
method

Final shape

*Dash line indicates the intermediate shape

Figure 2-2 Shape achieved by different beam movement

Beam m0\|£|ement and path from top view
N

Substrate
Vasile, Fu and suggested Kim’s method

Figure 2-3 Top view of two different beam scanning paths
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The FIB model in terms of beam movements is indicated by Figure 2-2(c). It is a
modified method of Fu and Vasile method. A normal horizontal and vertical sequential
path is used instead of the helix path. The initial dwell time is adjusted to create a
slope/dlice alowing ion beam angle of incidence to be taken into account for depth
variation. Figure 2-4 shows how the angle of incidence is formed during the ion beam

movement between pixel 1 and 2.
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Figure 2-4 Incident of Angleisformed between pixels across the beam direction

2.3.3. Studies on Re-Deposition Effect

Another crucia issue which affects the accuracy in predicting the final shapesis effect
of re-deposition. Some early work has described the occurrence and impacts of the re-
deposition. It was found that re-deposition is most likely to occur on the sidewall near
the root of the shape [80]. In the same study he found that re-deposited material will
adhere to the sidewall of a 3D structure with an aspect ratio higher than 1, and
deposited on the bottom causing a variation of milling depth for a structure with alow
aspect ratio (normally smaller than 1) [80]. He then reported low ion energy and a
smaller ion spot size can reduce the re-deposition effect on the sidewall in his other
study [73]. Tseng [81] worked out a model to account for the volume of the actual re-
deposition which has been taking into consideration during FIB model implementation

in this work. Ishitani and Ohnishi [82] further modelled the sputtering and re-
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deposition fluxes under assumption that the sputtered atoms are emitted according to a
cosine distribution with regard to surface normal. Modelling for re-deposition and

sputtering fluxesis also givenin [83].

2.4. Trends and Development in Electronics Packaging I ndustries

Integrated circuit packaging technology has been advanced rapidly to further reduces
the package thickness accommodate the miniaturisation trend of e ectronics products.
There have been breakthrough and developments in electronic products in terms of

product size. The flip chip application was a remarkable outcome of miniaturisation.
2.4.1. Integrated Circuit Assembly Technologies

Integrated circuit (1C) assembly is the first processing step after wafer fabrication. IC
assembly is defined as the process of electrically connecting 1/0 bond pads on the IC
the corresponding bond pads on the package [84]. Four interconnection IC assembly
technologies: wirebonding, tape automated bonding (TAB), flip chip are explained in
Figure 2-5. Flip chip advances were reviewed.

Wirebond Tape Automated Bonding Flip chip

Epoxy Inner Lead Bond
Encapsulation

Adhesive Bumps
TAB beam lead Underfill

CHIP CHIP < CHIP
A

W ire

CHIP CARRIER

Figure 2-5 Four interconnection I1C assembly technologies
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Flip chip is one of the most remarkable breakthroughs in IC assembling technologies
which achieves big improvementsin reliability, productivity and cost reduction. It isan
interconnection method between the IC and a chip carrier or substrate with the active
face of the chip facing toward the substrate. Flip chip packaging involves four steps:
past printing, chip bonding, reflowing, and underfilling and the process isillustrated in
Figure 2-6. Solder are deposited onto the chip bumps in the final step of wafer
processing of IC preparation and are flipped over to face towards the substrate. The
bumps are aligned and stacked onto the corresponding metallised pads of substrate
precisely. Solder bumps are liquefied during reflowing process to mount the IC and

substrate together. Finally underfill isinjected to encapsulate the flip chip [84].

[ 1 [ 1 [ 1
Past printing ‘ ‘
4
[ |
Die atgnment —
4
| (D) () D] ‘
Reflow ‘ ‘
4
/ C (G >

Underfilling ‘

Figure 2-6 Flip chip assembling process with solder alloy

Flip chip is well-recognised and widely adopted which can be a replacement of
wirebonding and TAB technology because it provides the shortest lead wire, that
greatly reduces inductance, allows higher speed signals. Flip chip is much smaller than
the carrier both in area and height which also allows higher density, greater number of
I/Os. The merits of high 1/Os, high electrical performance, high reliability makes flip

chip as the most dominant |C assembly technologies in the 2000s.
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2.4.2. Computational Modelling for Flip Chip Assembling

Computational modelling such as computational fluid dynamics (CFD), finite element
method (FE) and finite volume (FV) method can provide valuable analysis to obtain
solutions of engineering problems especialy in eectronics manufacturing industry.
CFD has been employed to understand how air, water and fluidic flows and behaves.
For example, CFD is used to analyse the behaviour of underfill. Underfill is dispensed
to sed the chip and substrate at the final step of flip chip assembling process. Void,
caused by unwanted air in the liquid, is acommon of defeat that easily occurs when the
underfill fills the space between chip and substrate. Flow of underfill injection process
has been modelled [85]. It showed that underfill movement controlled by process
parameters such as dispense head velocity, together with geometric parameters like
stand-off height and solder mask thickness were the factors affecting void formation.
Khor [86] has studied the void formation in terms of viscosity and pressure distribution

of underfill with various injection methods using finite volume based CFD simulation.

Finite element method (FEM) is a numerical technique for obtaining solutions to
different engineering problems. Engineering problems are often expressed as partial
differentia equations (PDE) or integral equations with boundary and/or initial
conditions. However, analytical solutions to these equations may not always exist due
to non-differentiable and non-integrable equations. Different numerical methods such
as finite element, finite difference, finite volume, boundary element and particle
method, can be used to address the problems. Computations of finite element analysis
(FEA) enable evaluation of response in a physical system to certain imposed condition
(loading) in engineering problems including structural, thermal, fluidic flow,

electromagnetic or coupled multi-physics problems. Associated interests of responses
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in electronics packaging industry include structural strength, structural distortion,
effect of temperature changes on stress, fatigue and dynamic behaviour (vibration).
Process performances during soldering process of different types of lead-free solder
joints and underfill were reviewed. Fatigue formation is one of the important issues for
product reliability improvement. Finite element model aso plays an important role in
material selection and determining the optimal process during the transition period
from tin-lead solder to lead-free solder. However, the emergency of lead free solder
like SAC solder demands careful investigations on the temperature control during
reflow soldering process. Reflow temperature are required to adjust to 210°C (melting
point of SAC solder) to turn solder into ‘liquidus’ state. This temperature can cause
damage to the substrate and die as the substrate CTE is much lower than that of SAC
solder. Crack formation and defeat of SAC solder were studied by experimentally
validated FEA model [87]. It was found that crack or flip chip warpage occurred due to
the CTE mismatch between the substrate and solder joints. To reduce the effect of this
CTE difference, underfill can be used as a buffer agent to compensate this difference
[88]. Furthermore, FE model was constructed to investigate the relationship between
crack formation and geometry parameters (standoff height, lower/upper contact angles
of solder joints and materials) as well as materia parameters (CTE, and Elastic
Modulus). Thermal loading and their associated impact on therma deformation was
then identified among different lead-free solders and underfills [89]. This work [90]

detailed the effect of shear parameters on shear strength at solder jointsin the flip chip.

2.4.3. Rdiability Assessment and Design Optimisation

Finite element (FE) method is a helpful tool to assist reliability study. Reliability is

defined as the ability that an item can perform its required function under stated
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conditions for a specified period of time [91]. Reliability testing has its importance in
the study of fatigue formation and in the prediction of the life time of electronics
products. Different reliability tests such as thermal, mechanical and moisture tests may
be performed. The key consideration in design and manufacture is to ensure that the
expected lifetime of the components is adequate for the application. Dynamics
(transient) type of FE analysis is applied when loading is continuously applied for a
certain period of time for electronic devices. Reliability testing have been performed
on flip chip with the assistance of FE model such as drop-off and vibration test [92],

humidity tests, and thermal-mechanical test to investigate devices.

In flip chip package involving the use of solder joints (or solder balls), fatigue damage
is probably the most critical topic. Continuous cycle thermal loading were applied to
investigate fatigue formation which shortens the life time of the package. This transient
type of FE analysis was carried out both numerically and experimentally. It helped
understand the solder joint crack and fatigue formation to deduce the life time of the
package [93]. Accelerated thermal-cycle testing was mentioned to understand the
dynamics behaviour [94]. Earlier work has identified that underfill follows a nonlinear
material property and Sn-Ag-Cu solder possess a visco-plasticity material property. A
hyperbolic sine law constitutive equation [95] denoted by Equation (2.4) for Sn-Ag-Cu
has been employed. It detailed the inelastic strain rate in modelling fatigue formation
under thermal cycle loading due to the visco-plasticity material properties. The

constitutive equation (see Equation (2.4)) for the lead-free solder inelastic strain rate:

6" = Asinn(as I exp 22 (2.4

where s is the stress vector, R is the universal gas constant, Tis the temperature

Equation (2.4) involves the following empirical values A=277984s" , n=6.41,
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a=0.02447" 10°Pa*and Q=6500R. The values of the coefficients are given in [96]

[97]. The work illustrated that the life (number of cycles to failure) of a single solder
joint is predicted based on the accumulated creep strain and accumulated creep strain
energy density. On the other hand, the effects of different design parameters and
materials parameters on the thermo-mechanical reliability performance of solder joint

flip chip are evaluated [98].

2.4.4. Environmental | mpact Assessment

By July 2006, all manufacturers of electronic and electrical equipment sold in Europe
must comply with the Directive 2002/95/EC of the European Parliament and the
Council on the Restriction of the use of Hazardous Substances (RoHs) mandating the
reduction of six hazardous substances [2], so as to protect human headth and
environment from the disposa of waste electrica and electronic equipment.
Electronics manufacturing industry must incorporate environment management policy
- ‘Design for Environment’ (DfE) in order to couple with worldwide trends towards
‘Green Electronics’. Quantification of the environmental impact of design alternatives
must be implemented. Two environmental impact assessments are commonly used in
industry: Life cycle assessment and Toxic Potential Indicator. Different packaging
technologies, through hole technology (THT), surface mount technology (SMT), chip
size package (CSP) have been examined for their material content and have been
evaluated with the toxic potential indicator [99]. The environmental prospects of solder

material used on PCB during reflowing process are also evaluated [100].
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Life Cycle assessment - Life Cycle assessment (LCA) is awidely accepted approach
for detail environmental impact assessment for electronic products [101]. Environment
standard such as 1SO 14040 was published in 1997 to standardise life cycle assessment
[102]. The chalenges of using life cycle assessment arise as LCA does take a long
time to perform a full analysis on electronic products due to many sub-assemblies
involved, complexity of materials interactions and their proceeding process. Moreover,
due to the lack of LCA software database, industry intended not to undertake LCA but

use some simpler non-LCA method to assess environmental impact.

The Toxic Potential Indicator (TPI) - The Toxic Potential Indicator (TPI) published
by Fraunhofer IZM in Germany is one of the non-LCA oriented assessment methods
[11]. TPI is a numeric indicator which identifies the toxicity of materials by means of
the Material Safety Data Sheet (MSDSs) [103]. The sources to determine this indicator
is EU and Germany based according to the three areas. (1) Hazardous Substance
Declaration (R-phrases), (2) Allowable Workplace Concentration (MAK) and (3)
Water Pollution Classification (WGK). Item (1) depends on hazardous identification,
stability, reactivity and toxicological information. Item (2) depends on exposure
control and personal protection. Item (3) refers to Ecological information and disposal
information. The information are gathered and extracted from MSDS. The final TPl
value is derived by logarithmic aggregation calculation and modification of a scaling
factor. TPI also covers indicator like energy demand during usage and production and
recyclability. TPI is simple and cost effective to use. Most significantly, environmental
impacts of materials for the entire electronic product are evaluated and analysed in

early design planning stage rather than eval uation throughout the product life cycle.
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Toxic Potential Indicator (TPI) has been introduced to assess the environmental impact
of raw materials and only a few electronics and electrical products. For example, TPI
has been computed for motorcycle [104] and personal digital assistant (PDA) [105] to
evaluate the fina product environmental impact. However, TPl is not widely applied to
new emerging materials. Similar numerical index can be calculated for nano-materials-
polymer in nano-technologies, and even for more complicated materias such as

composite, alloy in electronics.

2.4.5. Cost Evaluation of Flip Chip Package

Environment laws prohibited the usage of traditional lead solder joint which gives rise
to the lead-free solder such as Sn-Ag-Cu type (SAC) solder. The different materials
incurred different costs and reliability requirements. These requirements on new
materials such as SAC solder and adhesives are studied with the aid of constructing FE
model. For instance, cost analysis is carried out to study the cost of the package
assembly involving solder bump flip chip against wire bonding technologies [106]
[107]. Cost analysis is only studied independently for the manufacturing costs of
specific packaging technol ogies. However, studies on optimising costs of raw materias

in maintaining certain reliability level for flip chip are not provided.

2.4.6. Multidisciplinary Optimisation

Flip chip package design considerations and packaging techniques have been
researched for many years. Optimisation analysis has been carried out on flip chip
design and manufacturing process in terms of reliability and costs. Design parameters

are usually chosen and an optimum value is identified to minimise or maximise any
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reliability and cost aspects subject to constraints according to customer requirements.
Design evauations and analysis such as thermal, electrical, structura and
electromagnetic analysis are carried out independently. Optimisation is used to be
performed with problem having a single objective. However, the current electronics
packaging trends involves multiple disciplines. Multi-disciplinary optimisation is the
key to manufacture a competitive new product. It alows designers to incorporate al
relevant disciplines simultaneously since it can exploit the interactions between the
disciplines. One example of multi-disciplinary optimisation work isillustrated by [108]
which optimises criteria includes thermal, thermal strain, electrical, electromagnetic

leakage, and cost, on a Ball Grid Array package design.

Closure

This chapter provides an overview of the methodology used in two industries:
miniature product fabrication industries and electronics manufacturing industries. The
following areas were reviewed:
Concepts and devel opment of risk mitigation techniques
The latest researches of approachesin risk analysis methodology
An exposition of current trend and development of nano-fabrication technol ogy,
an overview of the development and modelling studies in focused ion beam
micromachining process

Advances and developments in el ectronics packaging industries
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Chapter 3 Reduced Order Modelling

This chapter details the development of risk analysis and mitigation methodology. The
application of computational modelling is presented. A specific type of model using
finite element method is outlined and how it helps understand the theory of solid
mechanics. Material behaviour and its governing mathematical equations for elasticity
and plasticity are discussed. The techniques of creating reduced order model through

conducting the design of experiments and generating response surface are presented.

3.1. Risk Analysis Methodology and Reduced Order Modelling

The increased complexity of new miniaturised products and processes often makes real
prototyping and testing difficult or expensive. Computationa modelling can provide
valuable insights into performance and reliability of products and generate knowledge
on the optimal process control. These tools also play an important role in predicting
process uncertainties, help achieving accurate target process performance and

identifying optimal product design specifications.

The methodology objective is to integrate the latest advances in computational
modelling, reduced order modelling, risk mitigation and optimisation modelling, using
a detailed step-by-step approach. Engineer often assumes deterministic design and
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process alowing no room for engineering tolerances and performances variations.
However, in redlity, these optimal specifications and design, from deterministic point
of view, may not account for the risk of deviation from target requirements.
Uncertainty and variation exist due to inherent uncertain nature in the design or
process. They become more significant when we model the new processes and designs,
and when adopting new materials. It is difficult and often impossible to control the
existing variations in the micro-world. Therefore, design, process control and any
associate computational modelling, require careful handling of uncertainty and
respectively risk of not meeting defined requirements. To address these challenges, a
methodology replying on certain techniques for analysis is required. The key concept
of the methodology is in the integration of different techniques to provide a structured
risk analysis and optimisation flow steps as shown in Figure 3-1. The methodology can
be divided into three main building blocks: (1) Reduced order modelling, (2) Risk
mitigation, and (3) Optimisation modelling. Three approaches can feed forward and
backward data between as shown in Figure 3-1. It means data can be feed back to the
other approaches to transfer of relevant data and results and to improve accuracy of the

techniques and approaches.

(1) Reduced order modelling

Reduced order modelling comprises of two approaches: (1) Computational modelling
and (2) response surfaces modelling. Design of Experiment is the required method
which establishes the transfer of data between the two approaches. In a design (or
process), design parameters and conditions must be first defined. Computational
models can predict physical behaviour of micro- and nano- scale designs and the

manufacturing processes. Experiments are used where possible to verify the
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computational models and also can be used to enhance the model accuracy. Both
computational models and experiments are time expensive to develop especialy the
case of complicated engineering problems. It is worthwhile to have a trade off between
the fidelity and time. Therefore, response surface modelling can be applied to construct
a reduced order model. Two methods are commonly used: (1) approximation method
by regression analysis of response data and (2) interpolation for example by Kriging.
Design of experiments must be carried out to provide limited number of design points
to be evaluated with the computational models and used in the subsequent response
surface generation. Additional DoE points may be added if necessary to improve the
accuracy of the reduce order models. Their theories and application techniques are

explained in chapter 3. The corresponding advantages and limitations will be discussed.

(2) Risk mitigation

Risk mitigation of two approaches includes. (1) Risk anaysis and (2) Process
capability modelling. These are explained in chapter 4. To understand any uncertainty
and high risk-oriented issues in a process, sensitivity is often performed to identify the
significant and critical design (or process) parameters during the process. After that,
uncertainty data and distribution are specified and the developed reduced order model
to characterise the process robustness by performing risk analysis. Both sampling and
analytical methods can be employed to run the risk analysis. Since knowledge and
historical data are very limited in new process which involves new materials, statistic
inferences and theories are used to identify the probable failure region from the
probabilistic perspective point of view. The ultimate aim is to identify the process

capability when a design or process is exposed to uncertainties.
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(3) Optimisation Modelling

The fina building block of the methodology in Figure 3-1 is the optimisation
modelling approach. In engineering problems, customer specifications are defined as
objectives in terms of costs, process performances and quality characteristics. Any
environment limitations or design limits are specified as constraints in order to
formulate a design optimisation problem. Optimisation analysisis carried out using the
constructed reduced model of the responses of interest. The formulated design
optimisation problem is then solved mathematically to identify the ‘optimum’ design
parameters or process conditions. In the presence of uncertainties, optimisation can

also be used to identify optimal designs and processes.

In managing uncertainties, sampling methods, such as Monte Carlo simulation are
undertaken to generate large number of response evaluations. Even with the assistance
of computational tools, using high fidelity models such as finite element modelsin a
Monte Carlo simulation become impractica and even impossible. Reduced order
models are therefore developed in order to reduce the computational and time efforts.
This methodology has been designed as a generic computational tool which can be
implemented for both new advanced fabrications of new generated miniaturised
integrated products as well as in novel micro- or nano-fabrication processes. It can be
used for making assessment for other industrial processes and products to identify

improvements and to increase the level of maturity of these technologies.
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Figure 3-1 A risk analysis methodology for electronic products and fabrication process
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3.2. Computational Modelling

Computational modelling is usually applied to problems with very high degrees of
correlation between the physical and the mathematical aspects of a process with the aid
of computers. The models explicitly realise most of the details and relationships on the
design and process. Based on the degree of detail and the method selected, this could be
a compute intense approach capable of predicting the responses of interest. Finite
Element Analysis (FEA), Finite Volume Analysis (FVA) and Computational Fluidics
Dynamics (CFD), are common techniques to build models for high fidelity analysis of a
problem. Advantage of this type of model is the ability to characterise most of the
details and relationships on the design and process input and output clearly and
thoroughly. These models are able to compile millions analysis (handle by
computational resources) which are unachievable by human hands processing. However,
high fidelity analysis is computationaly and time costly. In the following part, finite
element models are constructed to demonstrate its capability and how finite element

methods are used can help evaluate application problems.

3.2.1. Finite Element Method

Finite element method (FEM) is a numerical technique for obtaining solutions to
different engineering problems. The finite element method first started in the 1960s
which was applied on plane elasticity problems. The ideas behind the method was
developed by Hrennikoff [109] and McHenry [110] who applied the method solving
stresses in solids using one-dimensional elements. In particular, finite element model
are constructed to gain knowledge and understanding in many aspects such as process

behaviour and performances with respects to different materials physical property

61



subject to external loading like force and temperature change. The method is applicable

to the problems of structural analysis, heat transfer, electromagnetic and fluid flow.

3.2.1.1. Procedures of applying finite element method

The finite element method always follows a standard step-by-step procedure.

(1) Under stand the problem and make assumptions - It is essentia to understand the
physical nature of an engineering problem to presume analytical solutions do not exist
that finite element method is required to derive a solution. Users must identify the
geometry and degree of freedom, loading (static or dynamic type of thermo and
structural loading), material model (linear elasticity or non-linear time dependent
plasticity), and boundary condition of the problem. This helps identify appropriate
mathematical model (such as truss model, plane stress model in 2-D, and axisymmetric

3-D stress and strain model) and making required assumptions.

(2) Discretise the continuum or solution domain into a mesh called finite element -
The continuum of a problem is aso called solution domain. The solution domain is
discretised into many ‘mesh’ or finite elements. Interpolation functions are used to
approximate the variation of the variables over each element. Polynomials are usually

selected to approximate the shape function of the solution domain.

(3) Form element matrix equations — To form the matrix equation that represents each
element after the finite element is defined. Each matrix equation expresses the

properties of each individual element. One of the methodsis Galerkin’s method [111].

62



(4) Assemble all of the element matrices into a global problem matrix - The fourth
step is to combine the matrices expressing the behaviour of the elements and form the
matrix equations expressing the behaviour of the entire region. The global matrix is an
expanded matrix by putting the individual matrix of each element together. The global

matrix contains all nodes making up the computational mesh.

(5) Solve the global matrix system - The last step is to solve the above global matrix
system which are formed by sets of simultaneous equations. The unknown nodal values
of the variables are solved with the sets of simultaneous equations in the globa matrix.
Direct and iterative solvers such as Gaussin Elimination and Conjugate Gradient can be

used. Newton-Raphson method can be applied to solve non-linear problems.

3.2.2. Structural Analysis on Solid Mechanics Problem

The method is applicable to structural analysis, heat transfer, electromagnetic and fluid

flow. In particular, how finite element method is used to perform structural analysis a

solid mechanics problem is discussed below.

3.2.2.1. Material behaviours

One of the important issues of structural analysis problems in solid mechanics is

material behaviour characterised by elasticity, plasticity and rate dependent material

behaviour. Material behaviour can be classified as. materia linearity, rate independent

material non-linearity and rate dependent material non-linearity.
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Elasticity - The elastic material structure recovers and returnsto its original shape when
the load that deformed it is removed. The material can be classified as linear and non-
linear. In linear situation, the stress is proportional to the strain that obeys the Hooke’s
law. Elastic materials do not dissipate energy when aload is applied and then removed.
The following constitute equation (see Equation (3.1)) describes alinear material:

Stress=E” Strain (3.1

where E is the proportionality constant called Young’s modulus or the modulus of
elasticity of the material. In non-linear elastic material, the stress is not linearly related

to the strain. The material deformation can still be recoverable after the load is removed.

Plasticity - Plasticity is defined as the materia deforms and does not return to its
original shape when the forces are removed. The deformation is permanent and energy
in terms of heat islost in the system. The term ‘yield point” of a material is the stress at
which plastic deformation begin. Prior to the yield point the material deforms elastically.

Beyond this point a combination of elastic and plastic deformation occurs.

Rate dependent material behaviour - Timeistaken into account to anayse the stress-
strain behaviour of material during both elastic and plastic deformation. A visco-elastic
material is said to follow rate dependent material behaviour which exhibits both elastic
and viscous behaviour such that the material strain rate is dependent on time. It loses
some energy when a load is applied and then removed. Visco-elastic constitutive laws
describe the rate dependent behaviour of linear or non-linear elastic materials such as
polymers, foams and rubber. Visco-plastic constitutive laws describe the rate dependent

behaviour of linear or non-linear plastic materials such as metals. Materials exhibiting



visco-plastic behaviour are assumed to be rate independent below the yield point and

rate dependent when the yield point is exceeded.
3.2.2.2. Equilibrium Equations

Figure 3-2 shows the stress and the body forces acting on each face of the cube in x, y
and z directions. The body deforms due to the load. The deformation of any point at the

body and the displacement vector isin Equation (3.2).

{U=luvw’ (3.2)

where {u} is the displacement vector in x, y and z directions

Figure 3-2 Stress and body forces acting on each face of the cubein x, y, z directions

The equilibrium equations that govern the conservation of force for a time independent
static analysis are expressed as Equation (3.3):

ﬂsxx+ﬂsxy+ﬂs"z=fx
X Ty 1z
ﬂsxx+1Tsxy+ﬂsxzzf
x v 1z 7
1TSXX+‘nsxy+ﬂs"z=fZ
X Ty 1z

(3.3)

where S; and f. are the components of stress and the body forces acting in the

direction represented by 1.

65



On a three dimensional body, stresses and elastic strain on the body is given by

Equation (3.4) and Equation (3.5):
T

S =8 .Sy Satyt,t,H (3.4)

T

e=g, e, e, 04,0, 9,4 (3.5

The strain to the displacement relationships can be represented via Equation (3.6):

, T
gix Ty 1z Ty ix 9z My Ix 9Tzg

Stress relates to strain for linear elastic material (Hooke’s law) in matrix (Equation (3.7))
{s}=[DKe} 3.7

where the material matrix [D] in three dimensions are given by Equation (3.8):
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where E and u arethe Y oung’s modulus and Poisson’s ratio

For a solid mechanics problem, typical interest of using finite element method is to
solve for the displacements of the mesh at the nodal points. This displacement result
will be used to carry out further analysis during deformation such as calculation of

different types of stressand strain at points within each mesh element.

3.2.2.2. Discretisation of solution domain

The geometric domain isfirst divided into many small sub-regions regarded as elements

or mesh. The fixed points in the element defining their vertices are called nodes. All
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elements are connected by these node points in the domain and on the boundaries. From

Equation (3.2), the displacement of the entire solution domain for a3-D solid is:
{u=fuvw

The displacement within the element is then assumed by polynomial interpolation using

the displacements at its nodes (nodal displacement) as Equation (3.9):

u®(u,v,w) :g_ N. (u,v,w)d. = N(u,v,w)d, (3.9

i=1

where the superscript a stands for approximation, Iy isthe number of nodes forming the

element, and d. is the nodal displacement at the i-th node, which is the unknown need
to be compute and expressed in ageneral form of (Equation (3.10)):

d =§d, d, K d, § (3.10)

where N, isthe number of degree of freedom (DOF) at anode, for 3-D solidsn, =3,

and d, d, K d, arethe displacement component 1.2 K,n,

The vector form of nodal displacement isgiven in Equation (3.11):

d =[u v w]' (3.12)

where u, v and w are the displacement in the x, y and z direction

The vector d, isthe displacement vector for the entire element as Equation (3.12):

d,=gd, d, K d,_§ (3.12)

where d, d, K d, are the displacements at node 1 to node
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N isamatrix of shape functions for the nodes in the element to assume the shapes of
the displacement variations with respect to the coordinates. It has a general form of

Equation (3.13):

N(u,v,w) =[Ny (u,v,w) N,(u,v,w) L N, (u,v,w)] (3.13)

N is a sub-matrix of shape functions for displacement components at the ith node

which is expressed as Equation (3.14):
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where N, is the shape function for the k-th displacement component (DOF) at the i-th

node. The mesh eement with various kinds of node can be used such as triangles,
tetrahedral, and any other shape functions [112]. The above process describes how the
solution domain is discretised. The displacement profile for each element is formed
using polynomial interpolation with global coordinates of the element transformed into
local coordinates. Element equations are then setup whilst satisfying the equilibrium
equations. The equations obtained for each element are assembled with adjoining
elements to form the global finite element equation for the entire solution domain. The

global equation is solved for the entire displacement field.

3.2.2.3. Discretisation of Equilibrium Equation

Displacements are integrated with the equilibrium equations from (3.3) by (3.15)

s,

=f 3.15
™ (3.15)
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Numerous approximation methods such as Galerkin weighted residual procedure [111],
can be applied to approximate the above equilibrium equations which expresses
physical properties over each elements into a set of algebraic equations. The algebraic

equations are then solved using matrix solvers and computer.

3.2.2.4. Solution procedures

In FEM, x in Equation (3.16) is obtained by assembling contributions from all the
elements that are derived from the finite element discretisation of the equilibrium
equations. Load and boundary conditions of the problem are specified. The linear
system is then solved by matrix solvers and computers. The contributions of each nodal

displacement nodes (u,v,w) from each mesh element and its adjoining mesh element

are merged into a global matrix system for the entire solution domain as Equation (3.16):

[A]x=[B] (3.16)

where [A] is a banded systems matrix, containing the coefficients relating each degree

of freedom, x isthe vector containing all degrees of freedom, [B] is the source terms
The objective in structural analysis problems is to solve displacement matrix in

Equation (3.17) from forces F and coefficients K

F =KU (3.17)

where F is the source term represents forces, K is the coefficients, and U represents

displacement. The variable solved at this stage is displacement from the set of algebraic
equations. Possible calculation can be different types of stress and strain at points within

each mesh element during deformation.
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3.3. Design of Experiments

The Design of Experiments (DoE) method is a useful tool to improve the products
quality characteristics and process performances. It can be applied to understand the
relationships between process variables and process output in characterising new or
existing processes. DoE is usually implemented with other quality management tools
that are associated with statistical process control to address the reliability and quality
issues in product and process development. It is an efficient approach to achieve robust
design and process, and to improve experimentation efficiency. Experiments are
normally performed to explore some issues about a particular process or system. An
experiment can be regarded as a test. The design of experiments is a test or a series of
tests that the user can change the specific process variables to observe and study the

underlying reasons for changes in the process performances.

Suppose a new unknown process is investigated which can be described by afunctionin
the form of Y = f (x,z) , where x and z are process variables [design variables] (also
known as the independent variables or input factors or input parameters) that affect
process output [product feature]. Y (is also called dependent variable or response
variable or output parameter) is the process output that measures process performances
[quality characteristics]. The term inside the bracket is related to the terminologies from
the product perspective instead of a process. Level is used to describe a process variable
value used or tested in the experiment. Common synonyms are setting or test value. For
example, experiment of a two-level design indicates each process variable is set to
either a low level (represented by “-’) or a high level (represented by ‘+’). A design
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point is a point (data) which presents one set of combinations of the test value for each
process variable and the corresponding process output. Common synonyms are known
as sample point and observation. A design space refers to the possible options where
multi-dimensional combination and interactions of design or process variables are found
to fulfil design or process objective of a problem. Common synonyms are sample space
(in the case of sampling) and design domain. A design limit refers to the boundary of
the design space, aso regarded as the minimum or maximum test value of a design or
process variable. The term un-scaled is used to describe the true value of process
variable with their units. The term scaled is used when a process variable domain is
normalised within a particular region that unify each process variable unit. All process

variables possess a common scale.

3.3.1. Application of Design of Experiments

In general, design of experiment is widely used in addressing engineering problems to
reduce the overall costs of developing the products. Analyses using design of
experiment are carried out to evaluate aternative designs and possibility of different
materials. The reasons and advantages to perform a DoE are explained as follows:
Process performances and product characteristics of product are improved via
determining key design and process variables that influence the most to the quality
characteristics and process performances.
Unknown relationship and dependencies between process variables and output can
be uncovered during the design development stage.

Risk is quantified to improve manufacturability, reliability and robustness.
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In engineering fields, the system and the relationships between the process variables and
the process performances are often investigated. Considering a manufacturing process
possessing two process variables x and z where n values on x and z are possible. Its
process performance is denoted by Y. For example, a relationship between x and Yis
governed by acurvein Figure 3-3 (a) and arelationship Y = f(x,z) among x , z and Y
isindicated by Figure 3-3 (b) respectively.

Y An example graph with x and z against Y

Y2 | & L ]
l |
Y3 | |
N — e i~
| ' |
| 1
__|.____ _1_____
- X 71/{_ _______ J | |
Z3 z ] - z
x1 Xz Xn z /7 v -
. X1 X X2 X3
Y against x
(a (b)

Figure 3-3(a) and (b) An example curve that summarise the relationship between x and

Y, and the relationship Y = f (x,z) among x , z and Y respectively

Let us assume the individual effect of process variable x on v follows the curve shown

in Figure 3-3(a). DoE can be used to achieve the following aims:
Determine the value of Ywhen x is set to x,x,,x, or similarly, find what value x
would result in adefined nominal value of Y

Determine the range of x where Y is sensitive to variationsin x

By Figure 3-3(b), identify the most significant process variable that affects Y most

During a new process development, any unknown relationship between the process
variables and process performances can be identified by graphs shown in Figure 3-3.

However, manufacturing systems are complicated which associated with numerous
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process variables and process outputs. For instance, the engineer may want to know
how to set the value of x and z in order to achieve the desired nominal value of Y.
There could be thousands of x value and zvaue combinations al providing different
process output. It is costly, time consuming and impractical to run every combination as
experimental test. Another huge challenge is which combination of x and z would be

the best among all combinations in terms of cost, reliability and feasibility issues.

The effect of each process variable on the process output can be studied by undertaking
DoE. Changes in the process variables may increase/decrease the process output and
may have no effect. The effect of change in process output caused by the change in
levels of asingle process variable is called the main effect. DoE is applied to understand
how each process variable x and z individually affecting the Y (regarded as main
effect) as well as the interactions effect that x and z impose on Y in the above case.
This can be done by undertaking a four trials experimental run. The objective is to

observe the reactions on Y subject to change on x and zthat is detailed as follows:

Trial |x |z |x Xz
1 |-1-1 +
2 |+ - -
3 |-+ -
4 |+ |+ +

In this design, the main effect of x is calculated by taking the average output of the runs
with x at the plus (+) setting (runs 2 and 4) and subtracting the average output of the
runs with x at the minus (-) setting (runs 1 and 3), Similarly, the main effect of Yis the
average output for runs 3 and 4 - average output for runs 1 and 2. The interaction (joint)
effect of two process variables is calculated by forming the product of the columns for
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those two process variables, and then taking the average output of the runs with a plus
setting in the interaction column and subtracting the average output of the runs with a
minus setting in the interaction column. The interaction of x and z is calculated as the
average output of the runs with x- z at the plus setting (runs 1 and 4) and subtracting
the average output of the runs with x z at the minus setting (runs 2 and 3). These
details and results from the above three tests are also useful to derive what the most
dominating process variables are that affect the response Y — individual effect of x,
individual effect of z, and interaction effect of x* z. Understanding the variability of
Y with regard to variations on x and z is a fundamental step in improving process

performances through adjustments of relevant process variables.

When dealing with experimental designs, it is required to scale the process variables
with respect to their upper and lower limits (i.e. the maximum and the minimum values).

One of the common waysto do the scaling is as follows:

, oA (madzlemina])/2 o
(mex{z]- min[z])/2

(3.18)

where z isthe normal (un-scaled) process variable, x isthe scaled process variable, and
N is the total number of design points in the experimental design. The Equation (3.18)
converts any process variables values from maximum to minimum into values between

1and -1.

3.3.2. Different Types of Experimental Designs

Selection of DoE design refers to how to the method of choosing the representative
process variable values so as to generate its process response. Process/design variable

and response is specificaly named as ‘input and output factor’ respectively. Many
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different designs are available such as Full and Fractional Factorial Design, Central
Composite Design, Latin Hypercube Design, D-optima Design and Plakett-Burman
Design. Each design has strengths and weaknesses [113]. Detailed description about
different design can be found in [114]. Selection of any experimental designs is
dependent on their capability to identify main and interaction effects of process
variables on the process output according to resources constraints of running the
experiment such as cost and time. A few typical and common designs will be described.
The diagram presented by Figure 3-4 and Figure 3-5 are the examples to demonstrate

experimental design with three process variables.

Nominal Design - A single point design referring to the central point in design space.

Plackett-Burman Design (Screening Analysis) - This design is particular useful and
applied when experimental runs are very expensive. It is suitable for process variables
with no interaction effects on process output. 2" set of runs of experiments are required
for atwo-levels process where n is the number of process variables. The nominal design
isused as a starting point, and for each process variable, two design points are generated:

nominal design with lower limit and nominal design with upper limit.

Full Factorial Design - Full factorial experimental design is normally used when
process variable interaction effects are presence and known. It is conducted after
screening analysis tests and fractional factorial experimental design are carried out. This
design isideal for small number of process variables. For a two-level process, 2" set of
trial runs are required where n is the number of process variables. Figure 3-4 shows a
three-variable full factorial design with a central point. Other points are taken from all

the corners called factorial points. These factorial points are usually the upper limit and
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lower limit of the variable domain. Process variables are varied simultaneously with
two-levels at various combinations of their high and low levels. These designs allow us

to estimate linear and two-level interaction effects of the process variables.

® Factorial point

m Central point

Figure 3-4 Full factoria design with the factorial points and central point

Fractional Factorial Design - Fractional factorial design is usually used as the first
step to test the sources of variability of a process when only little knowledge is available
and many process variables exist. It is a subset run of a full factoria experimenta
design. Fractional factorial designs offer a reduction in number of experiments without
losing a lot of information. Fractional and full factorial designs are used when there is

prior information about which process variables are important.

Central Composite Design - Central composite design uses the orthogonal table to
perform the experimentation to determine the sample points of selected variables. It
contains a fractional factorial design 2" (levels are 1 and n is the number of input
process variables) with a group of 2n axia points that allow for the estimation of
curvature. In Figure 3-5, the first is a centra composite design (CCD), where
experiments are added to the factorial design after nonlinear behaviour is detected. The
second is a modified CCD, called a face-centred cube design, where the added
experiments lie on the faces of the space formed by the factorial design. In this

experimental design, the treatment combinations are at the factorial points (upper and
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lower limit) and the axial points. i.e. two of the variables are perturbed at a time and the

third stays at the nominal value.

* ®Factorial point

% Axial point

m Central point

Figure 3-5 A typical central composite design & a modified face-centred cube design

A CCD is only effective for a rather small number of design variables. For practical
purposes, especially with more than very few design variables, it could be useful to
replace the factorial portion of a CCD with afractional factorial design. The advantages
of this design is, designs are rotatable (or nearly rotatable) and require only three levels
of each process variable which is easy and simple to perform. These are three-level
designs that allow us to estimate linear, two variables interaction and nonlinear effects
of al process variables under study. They are used when there is prior indication of
nonlinear behaviour or when a factorial experiment reveals the presence of nonlinear
behaviour. They provide precise prediction of responses within the experimental region
and are useful in identifying optimum conditions. It is worth mentioning that when a
guadratic response surface model isfit to a composite design, the factorial pointsaim to
estimating the linear terms and two factor interactions. In fact, the factorial points are
the only points that contribute to the estimation of the interaction terms. The axial points
contribute to estimating the quadratic terms. Without the axial points, only the sum of

the quadratic terms can be estimated. The axia points do not contribute to the
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estimation of interaction terms. The central point also contributes to the estimation of

guadratic terms.

Latin Hypercube Design - The agorithm consists of two loops. For each of the n
process variables, the range of the process variable is divided into m non-overlapping
intervals on the basis of equal probability. From each interval one value is selected
randomly with respect to the probability density in the interval. User has to specify the
number of points (m). Random numbers are generated for each design variable between
lower and upper bound user specified times. The specified number of pointsis selected

from n- m number of points by permutation, where n equals number of variables.

In summary, undertaking design of experiments can provide understanding about the
trends and dependencies between process variables and process outputs involved in the

experiment. DoOE aso helps to study process and improve design robustness.

3.4. Response Surface Modelling

The approach was first introduced by Box and Wilson in 1951 [115]. The theme of
response surface modelling (RSM) is to extract selected data points from a series of
design of experiment to create an explicit approximation functions. Typicaly,
approximations are constructed using lower-order polynomials. Other techniques for
constructing response surface models are based on interpolation methods. For example,
Kriging models are used and discussed. In this work, interpolation methods are
generally more precise than the approximation ones as the response surfaces pass

through all the data point. Evaluations of the response of interests (analyses) can be
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obtained through either experiments or using computational models. The number of
analyses in the design space undertaken depends on the approximation model. For
instance, a first-order linear model requires the use of a factorial experiment or a
fractional factorial design. Response surface modelling is used to characterise a product
design or process where severa input variables potentialy influence the performance
measure or quality characteristic (regarded as response). The input variables are caled

independent variables. The system or functional response is called dependent variables.

3.4.1. Approximation Method using Linear Regression Analysis

Regression analysis helps us understand how the value of the dependent variable
changes when any one of the independent variables is changed, with the other
independent variables remained changed. Regression function is constructed based on
limited observed data points to approximate the true relationship between the response

and independent variables.

3.4.1.1. Response surface generation using linear regression analysis

Regression model is a type of response surface approximation. It is an explicit function
in the form of Y(X,b) which contains a vector of p regression coefficients. The
objective of response surface model is to obtain estimatorsb , a vector of regression
coefficients of the explicit function from N observations whereN 3 p. Approximation
errors must be taken into account between the actual and predicted responses at each
data point. The approximation model can be represented by Equation (3.19):

y=y+e=Xb +e (3.19)
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where e is the vector of the difference between the actual and the predicted responses,
X is the Model Matrix that based on the polynomia chosen, b is the vector of
regression coefficients, y is the vector of true response function values, and V is the
vector of predicted responses. The approximation errors e usualy are in two types (1)
random sampling errors, and (2) modelling bias errors that results prediction deviations
from the actual responses. The Equation (3.19) hereis valid under the errors assumption
that observation is independently normally distributed with mean nm and known
variance s ° [116]. All errors must have equal variance and the observations identically
equal mean plus error. In reality, this assumption may not be true but it practically
allows statistical evaluations on the approximation model. Consider a second order
polynomia model (quadratic response surface model) in one independent variable, it is
denoted by Equation (3.20) where estimators b, b,, b, are assigned as the three
unknown regression coefficients and x is the independent variable.

y=b,+b,x+b,x*+e (3.20)

3.4.1.2. Determinethe estimator of regression model by least square method

The number of available data points should be more than the number of the unknown

regression coefficients in general (i.e. N 3 p). Suppose that N 3 p observations are
available, a system of equations can be formulated from Equation (3.19) into a matrix-

vector equation by Equation (3.21):

y=Xb +e (3.21)

where yis a (N~ 1) vector of the real responses, X is a (N” p) matrix of the
regression parameters, b isa (N~ 1) vector of the regression coefficients, and e is a

(N” 1) vector of approximation errors. Consider an example of a quadratic response
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surface model in one independent variable and N possible observations can fit to the
model. A term called residue e where is defined as the difference between the actual
and the predicted response value. Equation (3.19) may be rewritten in the matrix

notation form as Equation (3.22) for a quadratic response surface model where

, N 2 ~ , < , <
éy, U € x5 X U, éb,u: ée, U
é u € , u _é_u é U
y =20 & % % ab=ahig o_e%a 5y
el u % v gy U eb,H e u
g, U e U e
e U € , U e U
eyn u @_ XN XN H e“Nn u

The least square method is used to estimate optimum value of regression coefficientsb

such that sum of the squared residuals ( SSE ) shown in (3.23) is minimised.

N
SE =3 € (3.23)

i=1

N

SE=g e =ek=(y- Xb)¢y- Xb)
i=1

= Y- bX G- y&b +b X Kb (324)

=yl- 2bXK9+b K Kb

From Equation (3.24), since bX¢ is a1l 1 matrix, or a scaar, and its transpose
(bX§)(=yXb is also the same scalar. To minimise the sum of squared residuals, the

first derivative of SSE isset to zeroin (3.25).

%E:- 2X9+2X%b =0 (3:25)

Then, from Equation (3.25) we have

XXb = X¢ (3.26)

Finaly, the least squares estimator of b is obtained by multiplying the inverse of XX

on both sides of (3.26), and we get
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b =(XX)'X¢ (3.27)

Equation (3.27) is a solution of the least squares problem that is applicable to problems
with the number of observations N and the p regression parameters in a response
surface model where N 3 p.

Consider a problem with response F(x,b) and m design variables. The general form of

a second order polynomial reduced order model is expressed by Equation (3.28):

F(X,D)=F (X, %0 X, Doy 01, 1) = b0+é b.x + é bi']xxj (3.28)

i=1 ij=1

% (I=LK,m),x (j =LK, m) arethe design variablesand b, isthe vector of the model
coefficients, b, (i =1,K,m) is a m-dimensional vector, and b, (i,j=1K,m) is a

symmetric m-dimensional matrix, which have to be determined.
3.4.1.3. Pros and cons of polynomials and goodness-of-fit

Polynomial models are the most common empirical models for response surface
methodology. Lower-order polynomial such as linear models and quadratic models have
well-understood properties. They can flexibly cover certain number of design shapes.
Moreover, they have a simple form such that they can be easily compiled
computationally to perform quantitative analysis tasks such as optimisation. However,
polynomial does have its limitations. The polynomia is constructed depending on the
data points within the design space. It may provide a good fit if and only if the data
points are bounded by the design space. It has a poor ability to predict response where
the data points are beyond the design space boundary. Another limitation is that when

polynomial models a more complicated problem in the redlity, higher order polynomial
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must be required which involves more number of variables. It demanded extensive

amount of datafor the increased number of variables which isimpractical in redlity.

The response surface is only an explicit approximation of a true response function.
Using the response surface will inevitably lose some details of the true response
function. The accuracy is hugely depending on the availability of data input and output
and the how well-representing enough of the data points in the design space. There are
numerical indicators to evaluate the goodness-or-fit of the approximated polynomials.

Some common indicators are Standardised residual, Studentised residual, R-student

residual and coefficient of variation. R-student residuals R2 (O<FE £1), also known as

coefficient of determination, is commonly used to judge how accurate the
approximation model is. The higher the R? value, the better fit the approximation
model to the data points. In general, the approximation can be considered as fairly good
if R? isachieved over 0.9. Another indicator adjusted R-student residuals (adjusted RZ)
is generally considered to be a more accurate goodness-of-fit measure than R* [117].
After checking the relevant statistical (RZ) test, the effect of the regression equation is

significant and highly relevant.

3.4.2. Interpolation Method using Kriging

Interpolation is a method of constructing new data points within the range of a discrete
set of known data points which requires the predicted model passes through all the data
points exactly. Interpolation using Kriging model is widely used to predict process
response for performing optimisation analysis. Kriging originates from the field of

geostatistics to predict responses for correlated data from a limited number of
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experimental data in mining industry. The theory of Kriging was developed from the
semina work of its inventor, Danie G. Krige and further developed by Matheron [56].
Kriging is regarded as optima interpolation that generates the best linear unbiased
estimate at each location. It is applied to interpolate the value of a random field at an
unobserved location from observations of its value at nearby locations to characterise
spatia correlation. From Figure 3-6, spatia data distribution are observed at two points,
point A and point B with known lag distance h between and known location vector s
and vector st+h. Kriging is a geostatistics technique to interpolate any points at an
unobserved location on the same spatia space based on the known observations at such
as point A and point B and its correlation. A variogram g(h) is first appeared and
suggested by Matheron in 1962 in literature [118]. The variogram here is used for
spatia prediction with respect to the lag distance h. In plotting the variogram against lag
distance at some known locations by sample collections, we can understand how the
variogram qualifies spatial correlations. Figure 3-6 shows variability is presence at
those observations when variogram increases/ decreases with h. The variogram remains

steady implies there is no correlation between the locations at such a distance h.

,,,,,,,,,,,,,,,,,,,,,, e—e-°-*__  Nocorrelation

Increasing
variability

Variogram, g (h)
]
-

Lag distance (h)

Figure 3-6 Spatial data distribution are observed at point A and point B, the right graphs

relates the variogram plot to lag distance h between two points

The variogram 2y(¥ for distance h is defined by Equation (3.29) as:

29(h =H[Z(9)- Z(s+h)['} (3.29)
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g(} has been regarded as a semivariogram. The variogram for lag distance h is defined

as the mean squared difference of values by h in Equation (3.30):

1 o )
2g(h) :WN%)[Z(S)_ Z(s+h)] (3.30)

where N(h) is the number of pairsfor lag distance h

3.4.3. SimpleKriging, Ordinary Kriging and Universal Kriging

Kriging refersto optimally predicting. Kriging interpolates the value Z(%) of arandom
field Z(9) at an unobserved location $ from observations Z =Z(S), 1 =LK,n of the

random field at nearby locations $,K,S,. Let {Z(9):sl DI A% be a random function
or process where D is a fixed subset of A © with positive d-dimensional volume, from

which n data (Z(9),Z(S,),K, Z(S,)) are collected at known spatial locations{S,K,S,} .

(1) Ordinary Kriging

Ordinary Kriging refers to spatial prediction under the two assumptions on mean and
correlation error process.

Model assumption (see Equation (3.31))

Z(s)=m+d(s) sl D,mi A,and munknown (3.31)

where m°® E(Z(¥)is the deterministic mean structure and being unknown, and d(s)is
the correlated error process.

Predictor assumption (see Equation (3.32))

Qo

Il
[y

$s)=2(s)=4a1,2(s)

i=1

=1 (3.32)
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where %(%)is the Kriging estimator at unobserved location §, the coefficients of the

linear predictor sum to 1 guarantees uniform unbiasedness. E(Z(s))) = E(Z(s)) =m.

(2) SmpleKriging

Smple Kriging is one kind of Kriging where i is known, n(s) =0 and the coefficients

are not constrained to sum to 1.The optimal predictor %(%) will minimise the mean-

squared prediction error in Equation (3.33):

s 0 E(Z(s)- 2(s))° (3.33)

over the class of linear predictors § 1,Z(s) that satisfy g |, =1.

i=1 i=1
(3) Universal Kriging
Universal Kriging assumes an unknown mean model in Z(s) =m+d(s) si D,mi A,
i.e. mis unknown and d(s) is a zero mean intrinsically stationary random process with
variogram 29(¥. In Universal Kriging, a general linear trend model m(s) = é I P(s)is
j=0

assumed and the correlation error d(s) can be quantified by a variogram. Hence, the

Universal Kriging model can be defined as Equation (3.34)):
G(X)=a!,P(xX)+agt, (3.34)
j=0 i=1

where G(X)is the universal Kriging prediction model, X is the vector of the m design

variables, X=(,K;x) , I} for(j =0,K,m) are the coefficients of the polynomials
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P(X) for(j =0,K,m) and g for(i =LK,n) are the coefficients of the basic functions
t, for(i =LK,n). The polynomials P (X) for(j =0,K,m) in this study are linear, i.e.
P(X)=x for(j=LK,m) and R(X)=1. The basis function t; =] (| X- X ) is

called avariogram and has the absol ute distance between point X and point X; .

3.4.4. Determine Variogram Models

In geostatistics, the variogram t; =] (| X- X [)is afunction characterising the degree of
spatial continuity of a data set or dependence of a random function. It is defined as the
expected squared increment of the values difference between locations point X and
point X, . Instead of getting variogram through experimentations, many types of
variogram models are widely used in Kriging. A few common types of variogram

models are namely linear (Equation (3.35)), exponential (Equation (3.36)), spherical

(Equation (3.37)), Gaussian (Equation (3.38)) and power model (Equation (3.39)).

Linear model
ol 0 h=0
Jg(i)_’:‘C1+C2||h|| hi10 (335)
Exponential model (validinR?,d?3 1)
| 0 h=0
! Il &
-t e .o
j () :Clgl-eczi hio (3.36)
P& 5
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Spherical model (validinR*,33 d 3 1)

i 0
i
A.5h
f.(n)=lc, &Nl oglh LT 0<h £C,

i § C C: 5

1 Cl hi>C2
Gaussian model (validinR?, d31)

0 h=0

Power model (validinR?, d31)

l 0 h=0

j 4(h)=
Vel e nio

(3.37)

(3.38)

(3.39)

where N =X- X, G and G, are the variogram coefficients, G 3 Oand C,% 0, and

O£1 <2 in the power model. The unknown coefficients in Kriging ROMS,

1, (J=0Km, g (=LKn), and G and C, are computed so that the error of

variation of the predicted values in terms of linear combination of observed data is

minimised [119]. The objective of Kriging interpolation is to predict unknown values

from known data observed and minimises the errors at the predicted values that are

estimated by distribution of observed data with fitting an appropriate variogram models.

3.4.5. Cross Validation to Compute Model Accuracy

Error estimation in Kriging is calculated by a process called cross-validation. Cross-

validation is leaving one known response value out and estimating the prediction of that
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response value by Kriging and we do this process to all known response values. The

Kriging variance is also calculated for each Kriging prediction estimation. Let y(X)be

the observations from the real function and ¥(X) for (i =LK,m) be the Kriging

predicted vaues at points X,K, X. Four error estimators: mean deviation or mean

error (Equation (3.40)), mean squared deviation or mean sgquared error (Equation (3.41)),
mean sguared deviation ration (Equation (3.42)), and relative mean error (Equation
(3.43)), are calculated to evaluate the adequacy of the Kriging model.

(1) The mean deviation or mean error, ME is given by

ME ==& B(0)- v(x)2 (3.40)

i=1

(2) The mean squared deviation or mean squared error, MSE, given by

S(9)- 3(@%’2 (3.41)

148
MSE=—
-a

i=1
(3) The mean squared deviation ration, MSDR, computed from the squared errors and

Kriging variances S *(X)

Bix)- y(x)2
1%}

18 (3.42)
MSDR = —
mE s 700)
(4) The relative mean error is given by
U .
o QY06) - ¥(x)2
v = L4 € o (343)
miz y(x)

Since Kriging is an unbiased prediction method, ME should be close to 0. MSE should
be as small as possible. If the model is accurate then the MSDR should be closeto 1. In
summary, Kriging interpolation is a more precise method than that of regression

approximation. Polynomial, one of the most popular methods is still widely used
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because of its well known form and simplicity. The accuracy of both models should be

evaluated before carrying out further task such asrisk analysis and optimisation.

Closure

A specific type of computational model using finite e ement method is outlined and how
it helps understand the theory of solid mechanics. The techniques to create reduced
order model through conducting design of experiments and generating response surface
are presented. Two response surface methodologies. approximation by regression

analysis and Kriging interpolation are introduced.
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Chapter 4 Risk Analysis Methodology: Risk Mitigation

This chapter demonstrates a modelling-driven risk analysis approach. The novelty is
about its integration with other associated computational tools such as reduced order
models and optimisation tools, in handling uncertainties involved in design and process
parameters. In the analysis using Probabilistic Risk Analysis (PRA) approach, sampling
and analytical method have both been adopted to propagate the uncertainties of quality/
performance metric of interests. Traditional statistics techniques can then be applied to

evaluate the process performance and capability.

4.1. Risk Mitigation

Computational modelling can provide vauable insights into performance and reliability
of products and generate knowledge on the optimal process control. However, in reality,
these optimal specifications, from deterministic point of view, may not account for the
risk of deviation from target requirements due to uncertainties in the design or process.
Due to the emerging of risk, a deterministic optimal design is no longer suitable for
modern industrial processes.. Mitigation the technology risk under limited knowledge
becomes a major requirement to secure a successful development and insertion of the

new technologies. A risk analysis methodology incorporates quantitative analysis is
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introduced in this chapter: Probabilistic Risk Analysis (PRA) [5] , that are constructed
to reflect the random nature of the constituent basic events such as component failures.
A structured approach constitutes a conceptual flow and associated methods to
characterise risk. Its main purpose is to quantify frequencies (probabilities) and the
magnitude of losses. Risk management strategies, their break down and the integrated
tools and methods is illustrated in Figure 4-1. The risk mitigation can be classified into
three blocks. The first block includes sensitivity analysis which is used to identify the
key process variables and the impact of variation of process variable. The second block
includes risk analysis which accounts for the probability of failure when uncertainty is
included in the process variables. Two methods are included namely sampling and
analytical method. The third block uses process capability indice to characterise the

output distribution from risk analysis. The objective of each block is depicted below.

\/ Risk Mitigation \\

- -

e ¢ . . Mg Process
\SenSItIVIty anaIySIS/H\ Risk analysis H capabability
. | )
W N
[ Sampling ‘ ‘ Analytical
4 ‘\\ N » 4,/‘
‘ Identify critical ‘ ‘ Propagate ‘ ‘ Predict process

variables uncertainty robustness

Figure 4-1 A hierarchy illustrates the risk mitigation framework

4.1.1. Understanding Variability and Uncertainty Using Sensitive Analysis

Variability of a process refers to the diversity in a well-recognised population.
Uncertainty occurs in a poorly characterised population due to lack of knowledge about

the process physical phenomenon. The process can possess either controllable variations
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or uncontrollable variations due to common causes and specia causes respectively.
Variation due to common cause is often called ‘natural behaviour’ or ‘randomness’ of
the process, caused by inherent variability in people, materials and environment. Natural
variation induced from common cause and it affects all the process output. Unnatural or
non-random variation is caused by specia or assignable causes which are not part of the
system. It does not affect all process outputs. Variations can be described by maximum
and minimum value (i.e. tolerances) or described with a probability distribution through
sample collections. Uncertainty and variability can both be described by a probability

distribution which consists of mean, standard deviation and skewness.

Sensitivity analysis is used to study the impact of any variations of model input
variables variations on the model output. Generally, a product/process metric of interest
is defined to represent certain model behaviour. The model input variables are then
varied such that the resultant changes on the model output can be observed. Sensitivity
analysis is usually carried out based on an explicit function which represents the
relationship between the model input variables and model output responses. Readlisation
of such function could be made through response surface generation. Therefore, DoE
are necessary before sensitivity anaysis and fit perfectly into the risk analysis

methodology.

4.2. Risk Analysis

In most current manufacturing processes, variations can be observed and variability of a
process is evaluated through sample collections on actual run of the system. During new

design and process development, uncertainty exists due to the lack of knowledge about
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the process. Engineers get more awareness on tackling uncertainty as well as dealing
with variations. One of the common approaches to address the impact of uncertainty on
the process output is propagation of uncertainty. Uncertainty distributions are
programmed into a model to carry out risk anaysis deriving the probabilistic
distribution of process output uncertainty. The procedure is presented in Figure 4-2.
Consider a process containing three process variables x, , x, and x,. The process
performances are characterised by ywhich is expressed as a function of x,, x, and x,,
l.e. y=f(x,%,X%,) . This function can be a response surface model or a full

computational model.

e O\ A

X4 X5 X3

Model
y = f(Xl, X2, X3)

4

PDF Frequency

Figure 4-2 Uncertainty distribution are programmed into the constructed model

In reality, each of the process variables possesses a specified distribution of uncertainty.

For example, x, hasauniform distribution, x, has a Gaussian distribution and x, has a

Weibull distribution. These probability distributions are used as input for the model

y = f(x,%,,%,). The model output yis then generated as a probability distribution

through two methods: sampling method and analytical method.
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For sampling method, a random value is taken from each distribution of x,, x, and x,
respectively to form a test value. The corresponding value of y for this test value is
computed viathe model creating a sample point. Likewise, another test value is selected
randomly to generate another sample point. The process is repetitive in order to generate
thousands or millions of sample points. As a result, al sample points in terms of the
frequency can be depicted as a histogram or a probability density function (PDF) as

shown in Figure 4-2. The mean and deviation of this distribution can be calculated

which propagates the interaction impact of any uncertainty in x, , x, and x, .
Subsequently, process capability analysis is carried out based on the PDF that provides
confidence level (also regarded as confidence interval, Cl) with respect to customer
specifications denoted by the region between two red lines. The confidence level does
not give a value of the output variable y but it gives a percentage such that the process
output is confidently comply with specifications. The passed samples can be described
as conformance while the failed samples are described as non-conformance. For
analytical method, no sampling is carried out. The probability density function of y is
obtained by analytical calculation based on distinctive information of distribution x, ,

X, and x, such as mean, standard deviation and skewness.

Sampling is a data collection process in which only a portion of data that is available
(from the whole population) is collected. Sampling is often used to understand process
variability since it is more cost, time and resources-effective than collecting all data
from the whole population. Using statistical inference, conclusions can be drawn about
variability of the sample data and other process output phenomena. Histogram, Pareto
chart, control chart and scatter diagram, are graphical representation which helps
presenting the data collected visually. Histogram is an estimate of the probability

distribution of a variable. If the variable is discrete, the sample data is represented by
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probability mass function while probability density function (PDF) is used for
continuous data. The central tendency of PDF can be described by mean. Standard
deviation measures how the sample data spread away the mean. For any symmetric

distribution, the shape of PDF can be described by m, +cs ¢l A where ¢ describes

the width of the distribution.
4.2.1. Analysis of Process Variability and Probability Distribution
4.2.1.1. Terminologies and definitions

Mean — The central tendency is usually measured by taking Mean and Median. The
mean measures how and where the probability distribution is ‘centred’. Mean is
regarded as the average values of the populations or distributions. Median is defined as
the ‘middles’ value that separates the lower and upper half of the population. Median is
used instead of mean to describe the trend of distribution if the distribution is strongly
skewed (distribution having a longer tail to the right than to the left or vice versa). Let
X be arandom variable which is continuous with a probability density function f(X).

The mean, or expected value of X, denoted m_ is:

¥
m = E[X] =@, xf (x)dx (4.1)
where E[X] is caled expectation which is defined as a sum of al possible values of

random variables weighted by the probability of each value occurrence, X can be a

function and presented as g(X) where g(x)isafunction of X.
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Variance - Variability is measured by the quantity variance which tells us how ‘wide’

is the distribution spread out. Let X be a random variable with probability density

function f, (x) and mean ux. The variance s ? of X isdefined by Equation (4.2):

s, =Var[X]=E[(X - m)’]

¥ X (4.2
=g, (X~ m)? £, (e
Variance is sometimes computed as in Equation (4.3):
s’ = E[X?]- E’[X]=E[X?*]- m? (4.3)

Standard deviation - Standard deviation and the square root of variance is denoted as

s . in Equation (4.4)
s, =ys,7 = Var[X] (4.4)

A dimensionless indicator, coefficient of variation (u ) is used to measure variability and

theratio of the standard deviation over the mean as shown in Equation (4.5):
u=— (4.5)

Covariance - In some circumstances, if more than one random variable exists and they
influence each other, the quantity covariance is used to understand how strongly they
are related to each other. Covariance depends on the units of the random variables
involved and their variability. Let X and Ybe random variables with joint probability
distribution f,, (x, y) . The covariance between X and Y is defined by Equation (4.6):

Cov[X,Y]= E[(X - m)(Y - m)]

Y, O 46
=0, 0, (x- M)(y- M), (x, y)dxdy (4.6)
Covariance may aso be computed as Equation (4.7):
Co(X,Y] =E[X,Y]- E[X]E]Y]
(4.7)

=EXY]- mm
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Correlation coefficient - A dimensionless indicator correlation coefficient is
commonly used to measure correlation between two variables. Correlation coefficient,

R, -1£ RE1 isdefined as Equation (4.8):

R COLX.Y]

4.8
s .S, (4.8)

The correlation coefficient is a useful tool to measure the linear dependence between X
and Y. R will either be-1 or +1 if two variables are perfectly linearly related. If RisO,
it implies two variables are uncorrelated. Still X and Ycan be dependent with each other

on higher order of relationship. Note that R?, O£ R? £1 is regarded as coefficient of

determination that is used to measure the goodness of fit in regression analysis.
4.2.1.2. Probability distribution

Discrete probability distribution - Let X be a discrete random variable. The set of

probabilities assigned to each possible value of Xi.e. (x, f, (x))is called a probability
distribution. The sum of these probabilities over al possible values equal 1 where
f. (x) is called the probability mass function of X . The subscript is to indicate what
random variable is governed by the distribution. The followings (see Equation (4.9))
must be agreed.

O£ f, (X £1
é fe(¥) =1 (4.9)

all x

PX =x] = f, (¥)

Continuous probability distribution - Let X be random variable whose values are

taken from real number A . We cannot characterise the probabilities of X values

98



straight away (since they are al essentialy zero). The probability that X lies in the
small interval between x and x+dx is equal f,(x)dx where f, (x) is caled the
probability density function PDF of the random variable X . The term ‘density’ is used
because ‘density” must be multiplied by alength measure in order to get a ‘mass’. In the

continuous case, f, (x)is not a probability since it has units of probability per unit
length. Probability is defined as the areas under the PDF, as the sum value of f, (x)dx.

The followings (see Equation (4.10)) must be agreed if it is a continuous distribution.
0L f, (X E¥ forall - ¥ <x<¥

(‘i f.(X)dx=1 i.e impliesareaunder pdf is1 (4.10)

Pla< X <b] = (5 f, (X)dx

4.2.2. Propagation of Uncertainty

In an engineering problem the inherent uncertainty of the process variables in the
problem can be described by a probability density function (PDF) in a continuous case.
The PDF can either be specified by user’s assumption or generated through data
observations/ samplings. Consider an example here. There is one process variable X
with the process output Y in an engineering problem. Given that a random continuous
process variable X with a known distribution (PDF) composed of many pairs of values
(x, f, (x)). The objective is to derive the probability density function from the known
distribution of X . The relationship between X and Y is governed by a function
Y =g(X). This means that if a specific value xI X is taken, the value of Y, i.e.
Y =y=g(x), can be generated. In Figure 4-3, the probability X lies in the shown
neighbourhood of x, isthearea A . Y must liein acorresponding neighbourhood of y;

to have identical area (probability) as A . In the neighbourhood of x,, the height of the

99



distribution of Y near y, depends not only A, , but also the slope of the function
y =g(x) at the point x, . As the slope of y=g(Xx) at x, decreases, the height of
distribution of Y must increase to maintain the equivalent area A, . In this way, the
height of distribution of Y can be defined from the area bounded by x and f, (x) .
Eventually, the distribution of process output Y can be constructed if the user specifies

or assumes the PDF of process variable that characterise its uncertainty.

y=9()

\
x

A\
x

Figure 4-3 Probability density function of Y is derived from a known distribution x

The above example as shown in Figure 4-3 only illustrates visually how propagation of
uncertainty with one single process variable to one process output using a simple graph
presentation. However, a manufacturing process is much more complicated which
contains more than one variable and each of the variable may possess its own
uncertainty. In order to understand the propagation of the uncertainty and its impact on
the process output, the PDF of process output can be generated through two methods: (1)

sampling and (2) analytical methods.
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4.2.3. Proceduresto Perform Uncertainty Propagation

The procedure for risk analysis from the design and manufacturing process point of
view using Monte Carlo simulation are detailed as follows. The procedures of
undertaking risk analysis with sampling method can be described by the flow chart

below in Figure 4-4.

Specify the design or process variable limits

!

Specity the probability distribution that
characterises the variables uncertainty

l

Generate set of random points with the design
limit using the distribution

¥
Compile the set of points into the model to
predict the design or process performances as
the output characteristic

No Generate new set of
random point

Points enough?

Yes
Aggregate all individual outcomes to
propagate a probability density function which
represents the output

Evaluate the output uncertainty

Figure 4-4 Procedure of undertaking risk analysis using sampling method

1. Specify the design limits of possible process variables (design points) in the
sample space.

2. Generate design point randomly from the specified sample space using defined
probability distribution. The spread and type of uncertainty distribution can be
characterised by the specified mean values, and standard deviations.

3. Compute each deterministic design point into the model/ objective function for
the design/ process performance prediction.
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4. Aggregate the results of al the individual computation to propagate the process
output distribution using any one of the suggested method, Monte Carlos or Latin
Hypercube Sampling. The generated PDF should be with the response mean
value and standard deviation

5. Evauate with output uncertainty with capability assessment of the process

behaviour with regards to the specification limits (customer requirements).

4.2.4. Sampling M ethod-M onte Carlo Sampling and L atin Hyper cube Sampling

(1) Monte Carlo Sampling

The Monte Carlo sampling technique involves the random sampling of each input
parameter’s probability distribution within the model to produce many thousands of
trials or scenarios. Variations are introduced into input parameter randomly to produce
the distribution shape. Compiling the objective function using the random input
parameters will give an outcome. Essentially, this process can be repeated by taking a
new set of random input parameters. By running this process thousands time, a
distribution of outcome can be obtained which does not only show the most likely
outcome but a range of possible outcomes can be obtained. The most likely outcome is
then given by a distribution curve known as the probability density function. The main
advantage the techniques is correlations and other interdependencies between input
parameters can be modelled. Also, the prediction of an outcome range rather than a

deterministic value would enhance the capability of the system under input uncertainties.

(2) Latin Hypercube Sampling
The Latin Hypercube sampling selects M different values form each N random variables
by following method. The probability distribution of each N random variable is split

into M intervals on the basis of equa probability. One random value is selected from
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each M interval based on the probability density function of the particular random
variable. The selected M values from each random variable are paired to form an M by
N tuplets. The next step involves the generation of M samples from M by N tuplets. The
response function is computed from M randomly permuted variables in each interval
provided no two samples have any input corresponding to the same interval. The
advantage of this method is that random samples are generated from all the ranges of
possible values, thus giving insight into the tails of the probability distributions of the

response function.

4.2.5. Analytical method - First Order Second Moment Method (FOSM)

Analytica method can replace sampling method when data sampling is infeasible,
however the mean and the standard deviation of distribution defining the uncertainties
are known. Analytical can be used to construct the process output distribution based on
the mean and the standard deviation. It provides an effective way to propagate the
uncertainty of process parameters. One typical method is First Order Second Moment

Method. FOSM is based on the first order Taylor expansion of the response surface
functionY = f (X), where X ={X1,X2, L, Xn} , at the mean values of random variable X .

By taking the first and second terms of the Taylor expansion, Y is truncated after the
linear term and approximated as a linear function (hence “first order””). The modified
expansion Y is used along with first two moments of the random variable X , to

determine the values of the first two moments of Y (hence “second moment”).
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(1) First Order Second Moment Method (FOSM) for function of one variable

Letg is a function of one variable X, Y =g(X), consider a Taylor’s series expansion

of g(X)aboutm, (Equation (4.11)),

_ _ dg 1 ,d?g
Y = g(X) = X-m)=2| +=(X-
g(X)=g(m) +( mx)dxmx+2( m, ) dzxmx

+L (411)

In first-order approximation, the first two terms in the Taylor’s series are used, truncate
the term after the linear terms, the mean (Equation (4.12)) and the variance (Equation

(4.13)) are:

ELY] » E[g(m,) +(X - rm% 1= g(m) 412)
my

)? (4.13)

my

Var[Y]»Var[g(m, )+ (X - n&)%‘mx] :Var[X](%

This approximation regarded as first-order second-moment (FOSM) method is only
accurate for small variability and small nonlinearity, because the nonlinear terms are
truncated after the linear term. In second-order approximation, the first three terms of
Taylor’s series expansion are used, the mean (Equation (4.14)) and variance (Equation
(4.15)) are:

d%g
dx?
my

ELY] » g(m )+ 2VarX1(G 2| ) (4.14)

dg d*g

49 ey gr(x - my®@
my

dx? )
™ (4.15)

Var[Y] »Var[X](%

dx d?x

1
)?- (5 Var[X]
e 2
)2

m

1 4,40
+ZE[(X w)](dzx
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The second-order approximation to the variance of Y requires the third and fourth
moments of X while the second-order estimate of the mean is used along with the first-

order estimate of the variance.

(2) First Order Second Moment Method for function of morethan onevariable

Let Y is afunction of severa variables X, i.e.Y = g(X,, X,,K, X,), a Taylor’s series
expansion of g(X) about the vector of mean m=[m, m, K, m, ]: (Equation (4.16))

2

9 +L (4.10)

dg d
= +
d dxdx; |

Y=g(mK,m )+a (X -m) .

i=1 m

18 ¢
S8 06 -m)0K - my)
i

In first-order approximation, mean (Equation (4.17)) and variance (4.18) of Yare:

E[Y]» g(m) (4.17)
Var[Y] »é én Cov X;, Xi][g_zx:% ] (4.18)
i i I lm,

If the variables are uncorrelated, the general form is expressed in Equation (4.19):

Var[f (X, X,.K, X,)] » & (j—;)ZVar[xi] (4.19)

i=1

where the first derivatives are evaluated at the mean values (m,m, K, m, ).

Consider a function of two variables X and Y, truncating after first-order terms from
Equation (4.20) of the Taylor series expansion about the mean values (m,, m) will give:

a

X F(m, m)+(X- m) S+~ m) 5

(4.20)
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For afirst order, the expected value (Equation (4.21)) is:

E[f(X,Y)] » f(E[X],E[Y]) (4.21)

and the variance is given by Equation (4.22):

Var[ f (X,Y)] »Var[(X - m()%ﬂY- m)g—;]

df df df df (4-22)
» (—)*Var[ X] + (—)*Var[Y]+ 2——CoV[ X, Y]
dx dx dx dx
Since X and Y are uncorrelated, variance is given by Equation (4.23):
df |, df ,,
Var[ f (X,Y)] » (d—) Var[ X] +(d—) Var[Y] (4.23)
X X

Recall Figure 4-2, the uncertainty of x, x,, x, is specified with their individua mean
m, m,, m,, variancevar[ X,],Var[ X,],Var[ X,], as well as any correlation relationship

indicated by co-variance. Using first-order second moment method, the distribution of

Y with m, and Vvar[Y,] can be generated.

The advantage of using this method is that FOSM is rather efficient and simple for
computation to account the effects of uncertainty of process variables. The drawback of
the method is that the accuracy of the method deteriorates if second or higher order
derivates of Y are significant since it uses only the first two moments of random
variables instead of complete distribution information. Unlike sampling method, the
method calculates anaytically the mean and standard deviation which does not include
the knowledge about the form of probability density function that describe the random
variable. The skewness (third moment) and higher moments are ignored which are
normally essential to describe a complex engineering process. Another limitation is, the

method is applicable only under assumption that Y is normally distributed.
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4.3. Process Capability Modelling

The two main purposes of process capability are: (1) measure the output variability of a
process, (2) compare that variability with a user-defined specification or tolerant with
respect to a stable process containing no unnatural variation. Output variability of a
process in terms of process control can be determined by certain control charts [120]
that usually presented as a histogram. This assistance statistics tools can be used only if
process is ‘in statistical control” which means the process has only random variation

caused by common cause but not special cause [121].

4.3.1. Process capability Indices

Capability ratio ¢, or c, is asimple arithmetic to compare the capability of a stable

process to specification limits from the probabilistic distribution of process output. The
purpose is to determine if the process is capable of providing performances or product
‘well within’ the customer specification. An acceptable region is a specified range by
customers which is the difference between the upper specification limit (USL) and the
lower specification limit (LSL). Process range is defined as the total performances or
product variation that characterise process variability. These terms and related statistical

terms to describe the details of process output distribution in Figure 4-5.

Mean, u 4 Standard deviation
S +S

28 1> +2s

+ 3s

Lower

Upper Specification ‘

Specification Limit | Limit (USL)

(LSL)

1] D

Specified Range

Process Range

Figure 4-5 Terminologies and definition to describe a process output distribution
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The ratio c ; measures the variability of the process relative to its specification limit

and c, is represented by Equation (4.24). Assuming the process is relatively normal

distributed, the process range can be approximately to six standard deviations, i.e.6” s .

The higher the c |, the sharper the distribution, the more capable the processis.

Upper specification limit (USL) -Lower specification limit (LSL) }

C, ={
Process range

(4.24)
_UsL- L,
6s

C, is similar to ¢, while ¢, accounts also how centering the process is. C, is

represented by Equation (4.25). ¢, is defined as the minimum distance between the

process center (average output values) and either one of the specification divided by

half of the process range. Higher c , implies a more centered distribution relative to

average performance.

Distanceto the nearer specifiction limit

C,={

pk

}
1
> xProcess range (4.25)

USL- m m- LSL

3s 3 J

= Min{

In practical, the minimum requirement by most manufacturers is about ¢ =1.33. A

process with c >1.5 is considered as capable. Any process with C , >1.33 is

considered as highly capable. A six-sigma process is considered as an industry
benchmark which demands high reliability requirement. It can be characterised by
c,=20rc, =1.5. Before carrying out any capability assessment, the normality of

the PDF must be checked first since assessment for normal and non-normal distribution

are different. Some tests can be used to check assumptions of output distributions such
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as stability test to study stability by I-MR chart, assumptions tests to study shape of
distribution by normal probability plot, variance test to study the spread of distribution
by Bartlett’s Test or Levene’s Test, and median or mean test to study centring of
distribution by one-way ANOVA. To evaluate process capability with non-normal
distribution, some methods like data transformation or identify a possible well

established model which provides good fit to the data can be used.

Closure

Probabilistic risk analysis methods such as Monte Carlo Sampling, Latin Hypercube
Sampling and First Order Second Moment method are presented to propagate the
uncertainties of quality or performance metric of interests via the generated reduced
order model. The probabilistic distribution is presented by histogram and is quantified

by traditional capability tools to evaluate the process robustness and capability.
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Chapter 5 Modelling of Focused |on Beam Sputtering Process

for Nano-structur e Fabrication

This chapter details the micro-machining capabilities in the application of focused ion
beam technol ogies and the computational modelling of the associated sputtering process.
A computational focused ion beam (FIB) model that can be used for the control of
different process parameters is presented. To improve the depth accuracy of a pre-
defined shape, a modified form of model that includes additional process parameters -
beam overlapping is experimented. Re-deposition effects are also discussed with the use
of are-deposition model. The FIB model is demonstrated by using atest case study. The
optimal process parameters of athree dimensional micro-trench are accurately predicted
using the FIB model. Model predictions are required to mill a micro trench using FEI-
200 FIB system. Process parameters such as sputtering yield, beam overlapping and

their associated effects are explained.

5.1. Applications of Focused 1on Beam Nano-Fabrications

Focused lon Beam (FIB) has gained a widespread recognition in materials science. It is
used as a tool/process to cut away and mill material from defined area or to deposit

material onto it at micro and nano scale. Applications such as transmission electron
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microscopy (TEM) for sample preparation, micro-structural analysis and cross
sectioning offer high-resolution imaging in scanning ion microscopy. Other applications
of the FIB technology aso includes failure analysis and design modification for
integration circuit fabrication [122] [123] [124], semiconductor doping or ion
implantation, and lithography. Gas-assisted deposition to repair optica and Xx-ray
lithography masks and modify integrated circuits is well developed over the last 25
years [125] [126] [127]. In this research, the main focuses are placed on the FIB milling
capabilities. FIB milling possesses the attributes of direct, non-contact material removal,
maskless, and high resolution nano- fabrication. Unlike the traditional etching processes
with the use of masks that involves lengthy procedures, FIB allows the microscopic
structure to be manufactured in mass volume and in a speedy way. The most attractive
feature of the FIB is the ability of machining solid materials of any hardness with
amost no materials restriction in the same time having no tool wearing. FIB high
resolution potential offers processing capability of producing miniaturised prototype
down to micro- and nano-dimension. Feature sizes are potentialy as small as 0.1um.
Industrial examples such as micro-surgical device, probe tips [69], and micro-mould are
widely seen. Thus this potential has initiates a rapid development on ion beam

fabrication and prototyping.

The main challenging in FIB applications relates to the control of the process
parameters integrated with the surface morphology in materials science. The process
involves ion-solid interaction such that the use of ion beam and its associated
parameters must be well understood in order to create the precise shape. Previous FIB
treatment are essentially a prediction of the geometry resulted from a given time. The

time required can be predicted to mill a pre-defined geometry given a particular mode of
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beam operation approach. The requirements for the FIB process at present are much
more demanding than its original ion milling abilities. In particular, one of the critical
controls required for FIB milling is the depth variation. This is an essentia capability
for the nanofabrication of 3D nano features, miniaturised objects, and masks and

moulds for various Microsystems.

The main objective of thiswork isto further develop a computational model that can be
used to simulate the milling of predefined shapes using focused ion beam (FIB) micro-
machining process. A FIB mathematical model that relates beam milling dwell times to
pre-defined shape using a pixel scheme for geometry charactisation is used. From
process control point of view, the aim is to understand in advance the milling time at
each pixel required to obtain the overal pre-defined shape of the micro feature. The
effect of process parameters and their possible variations on the accuracy of achieving
fabricated micro features are also studied. It is well documented that re-deposition of
some material takes place during FIB milling. This will affect the milling shape and the
targeted sputtered depth. A re-deposition model is aso included in the modelling
procedure in order to predict and understand the simultaneous effect of sputtering and
re-deposition of material. The depth profile prediction (the process behaviour prediction)
which includes the consideration of overlapping effect and re-deposition effect is based
on Vasile et al. model. The re-deposition model is discussed so that more accurate
predictions for pixel dwell time and milling depth are offered. Different modelling
approaches are applied to various test cases study. The overlapping is considered to be
one of the important parameters for process control. A modified modelling approach is

proposed which implements the beam overlapping ratio into the FIB model.
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Current implementation of the sputtering model alows the analysis of true three-
dimensional shapes. A mgor aspect of the undertaken work is the FIB computational
model (for material removal). A test case study of milling a micro trench with parabolic
shape is investigated. In order to evaluate the accuracy of the model, model predictions
for this test case are validated experimentally using a FEI-200 FIB system. Relevant
results are presented and the differences between the predicted and actual shape are
discussed. In addition to above FIB models, techniques and tools that are capable of
providing evaluation of the influence of process parameters, process performance,
product quality characteristics, and any risks associated with the sputtered depth as a

result of parameter variations are also researched and implemented in the next chapter.

5.2. Simulation of Focused |on Beam Micro-Machining Process

5.2.1. Principle and Fundamental Operations

Figure 5-1 illustrates the principle of operation for FIB as a bombardment of a target
surface through high energy gallium Ga+ (or other) ions. As a result, small amount of
material sputters in the form of secondary ions, natural atoms and secondary electrons.
During the bombardment, gallium atoms are implanted in the first few nanometres of
the sample surface. Beam current must be applied correspondingly. The typical
simulation time ranges from seconds to few mintues for a nano-structure depending on
its size. Low ion beam current requires longer time to produce a cut and to sputter the
material. Therefore, reducing the time for FIB is a major issue. A possible strategy is a
two-step milling process: (1) short time milling at high ion current, and then (2) fine and

focussed beam with low current ion etching.
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Figure 5-1 Particles sputtering

5.2.2. Pixel Scheme and Sputtering

In focused ion beam (FIB) milling, the ion beam sweeps across the surface of the target
material, often in an iterative manner, and sputters small amount of material producing
the desired shape of the feature. The sample surface is divided into a number of pixels
(i,j) based on the size and shape of the final structure. Figure 5-2 details the location of a
pixel layout over the target surface during beam movement. Two typical focused ion
beam scanning sequences are illustrated in Figure 5-3(a) and Figure 5-3(b). Figure 5-3(a)
shows the beam raster the target surface along the +i-direction. It moves up the j-
direction, carries on another scan along —i- direction and so on. Figure 5-3(b) shows
beam raster using a helix path. The advantage of this helix path is to reduce the re-
deposition effect [128] by milling away the re-deposited materials immediately after

they deposited on the surface.

Figure 5-2 lon beam on sample surface layout represented by pixels (i, j)
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@ (b)

Figure 5-3 Two typical beam scanning sequences from top view

The time for which the beam stays on each pixel is known as the pixel dwell time.
Longer dwell time corresponds to greater milling depth at that pixel. The milling depth
(also considered as sputtered depth) of a pixel is defined as the vertical distance from
the pixel’s initia (previous) geometry to its final geometry as shown in Figure 5-4.
Pixel size is among the number of the process control parameters specified through the
actual FIB machine and can be changed according to the ion beam discrete movement
steps. Each pixel has an associated milling depth. It is controlled by severa parameters
such as the ion dose, beam current, beam angle of incidence and pixel dwell time. A
critical parameter for FIB isthe sputtering yield. It indicates the rate of material removal

and is primarily dependent on the beam angle of incidents and the beam energy.

Initial pixel geometry
Milling Depth

Final pixel geometry

Figure 5-4 Pixel milling depth definitions on the target shape

The pixel milling depth of a small feature using FIB is usually performed by a number
of scans. An repetitive processing provides better control and can achieve an accurate

shape. It is necessary to include the actual angle of incidence of ion beam after each
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scan which affects the sputtering yield. An example of a parabolic shape progression is
given in Figure 5-5. For each scan, the pixel depths are estimated by using the specified
pixel milling time. The total number of scans can be derived by the pre-determined
milling depth. The associated total milling time required to produce the pre-defined

parabolic shape can then be cal cul ated.

Figure 5-5 Repetitive process to obtain a parabolic shape

5.2.3. Beam Operations

Beam operation determines the pixel dwell time. Dwell time is defined as the amount of
time that the ion beam stays at a given pixel. It isacrucial parameter which determines
the way how an initial shape progresses to the pre-defined shape. To fabricate 3D
structures, the FIB users must decide a profile control in order to control the beam
movement. In this thesis, the milling of a circular conical shape with its side view as

shown in Figure 5-6 is considered.

Three methods are suggested by Vasile et al [71], Fu [67] and Kim et al [79].
Figure 5-6(a) shows the sequence of how the final shape is achieved by beam milling of
the block one after another. One of the main differences between the modelling methods
of Vasile, and Fu is the beam movement simulation. Shape is either achieved by milling
vertical block or horizontal block as depicted in Figure 5-6(a) and Figure 5-6(b). A

parabolic shape is defined when numerous blocks are formed by two different beam
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movements over the surface pixels. Vasile adopted a single passing scheme, i.e. the ion
beam would only pass each pixel once and stay long enough to make sufficient
sputtering. In this way, the dwell time needed to produce the sputtered depth at each
pixel is caculated as a function of sputtering yield, angle of incidence, beam energy,
and intensity contributions from all other pixels through the use of the FIB model. Fu
suggested a layer-by-layer method where the ion beam moves repetitively across the
pixels and remove materials through multiple passes. In Figure 5-6(b), layers are milled
in sequence from top to bottom with multiple scans. The dwell time are fixed and
remains steady for each pixel throughout the entire process. Once the expected depth of
the first dlice is complete, the beam restarting position will be moved inwards to the
centre in order to allow milling of the second slice and so on until the predefined
geometry is achieved. Kim has modified Fu’s method with a continuous slicing method.
The ion beam raster the surface with a spiral scan with a vector path such as the one
shown in Figure 5-3. It is noted that the FIB model compiled in this work demonstrates
examples that refine a precise positional control over the pixel scheme does not cope

well with the helix vector path in Kim’s method.

(c) Slope-by-slope
(a) Vasile’s method (b) Fu’s method method

*Dash line indicates the intermediate shape

Figure 5-6 Different beam operations for milling a parabolic shape
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In this research, a modified slope-by-slope method as shown in Figure 5-6(c) combines
Vasile and Fu methods is investigated. It is a repetitive sweeping approach in which the
dwell time is set in a constant increment step forming a set of dwell times aong the
pixels at i-direction. Then the same series of dwell time are applied on the same pixels
along i-direction again after each scan. As aresult, an initial slope can be produced in
one scan and intermediate slopes are created in the next scan until the predefined
geometry is achieved. The sputtering is carried out on the sputtered surface which is
approximated as a stepwise slope with a gradient angle. This method can enhance the
estimation of sputtering yield compared to a more inclined sidewall angle with a steep

slope after scans.

5.2.4. Control of Milling Process Parameters

Process parameters or variables used to control the milling process includes material
properties, beam diameter and beam intensity profile, beam current, ion flux,
overlapping, pixel dwell time, and angle dependent sputtering yield. These variables are

explained as follows.

(1) Material properties - The ion bombardment takes place between the ion and the
target surface. Physical quantities such as the weight of the ion and atomic density of
the target surface are influential factors affecting the collision cascades and hence the
sputtering yield. Gallium (Ga), Argon (Ar), Xenon (Xe) ions are common ions amongst
other metals ion sources. Gabased is widely used because of its low melting
temperature, low volatility and low vapour pressure with stable properties that it does

not react with the material defining the ion g ection probe of the FIB apparatus [129].
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(2) The beam diameter and the beam intensity profile— The beam intensity profileis
another important factor that needs to be understood and addressed in order to obtain an
accurate sputter depth in a milling process. Determining the beam profile is necessary
since the pattern geometry is determined by many individual beams. Beam profile is
basically governed by the basic parameter-beam diameter. Figure 5-7 shows a typical
beam profile and the beam diameter in al experimental studies in this thesis is
described by using the Full Width at Half Maximum (FWHM). Each beam ray has a

beam intensity profile consists a distribution of ions instead of a uniform ray over the

target surface.
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Figure 5-7 Beam diameter described by the Full Width at Half Maximum (FWHM)

A ray of ion beam with diameter equals FWHM can affect numerous adjacent pixelsin
the neighbourhood of the pixel. The beam profile usually overlaps in the tails of two
neighbourhood distributions. The intensity distribution in this work is assumed to be a
Gaussian bi-variate density function gives by (Equation (5.1)).

fry (X, Y)) = (\/%S )’e =° (5.1)

is the standard deviation of the distribution

FWHM

221n2

To predict the precise expected shape, the beam intensity profile was measured by

where s =

experiments in the past. Many researchers have selected a Gaussian distribution which
is only a good fit for the centre of the distribution [130]. An exponential distribution

profile is a better fit for the tails of the distribution. Some advanced studies by Assayag
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[78] involve a two-Gaussian function may be used to describe the intensity profile, one

for the centre region and another for the tails of the distribution.

(3) The beam current — The beam current is defined as the number of ions delivered to
the target per unit time and can be controlled by the aperture position in the focused ion
beam system. It is closely relates to the beam diameter and their relationships (with

reference to a FEI 200 FIB system) can be checked from Table 5-1.

Table 5-1 Currents and the corresponding beam diameters for a FEI 200 machine

lon beam current (pA) | 1| 4 | 11| 70| 150 | 350 | 1000 | 2700 | 6600 | 11500

lon beam diameter (nm) |8 |12 | 15|25| 35 | 55 | 80 | 120 | 270 | 500

(4) lon flux - lon flux refers to the total number of ions that hit on the target area per
unit time. The ion flux delivered from the beam to the target area is determined by the
beam diameter and current. If the beam projected on the target area is exactly equal to
the beam surface area, theion flux delivered by the beam is given by Equation (5.2):

!
Fo= oK (5.2)

where F, is the ion flux that the beam carries, Ris the radius of the beam, Kis the
number of chargesin one ampere, and | isthe milling current. If theion flux projects on
a pixel, the ion flux distributed over the pixel area will not be identical to the ion flux

carried by the beam F . Let F (X,y)be the ion flux distributed across the pixel (iong's
cm?) with pixel area A Theion flux delivered on a pixel with area A can be found by

Equation (5.3).

(5.3)
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(5) Pixel size - Pixel exists purely for geometric characterisation of the target surface.
The pixel geometry is not fixed and changes according to the ion beam position. The
pixel area A refers to the area formed by the rectangle of size u” v as shown in
Figure 5-8. The pixel areais defined in away that it depends on the beam overlapping.
Therefore, u is dependent on the overlapping ratio while v equals the beam diameter D .
For example, uequals half of the diameter in 50% overlapping, uequals (1-33%) i.e.
two third of the diameter in 33% overlapping. During repetitive scanning process, pixel
size increases dlightly due to the surfaces becoming an incline slope. However, this
increase can be negligible such that pixel size is assumed to be fixed throughout the

repetitive scanning process.

(6) Overlapping - The beam overlapping is determined by the beam diameter and the
overlap distance. It is assumed that overlapping occurs only in x direction and not in y

direction during beam movement. The beam overlapping denoted by O, istheratio of

atio

the overlapped distance w between two pixels to the beam diameter D

, W
overlapdistance , ; o o =2 For example, an overlapped distance
beam diameter D

(overlapping=

equals to the beam radius between two adjacent beam spots (centre to centre) are
depicted in Figure 5-8. This example has a 50% overlapping. Here, a pixel contains part
of its beam spot plus two half beam spots from the neighbouring beam spots. Therefore,
the ion flux on one pixel with 50% overlapping is nearly double compares to the
scenario of no beam overlap. The ion flux changes due to overlapping must be correctly

captured for accurate sputtered depth prediction.
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Figure 5-8 Beam spots having 50% overlapping between pixels and geometries

(7) Capturing ion flux for various overlapping scenarios - The ion flux that a pixe
received is affected by the overlapping. It is different from the ion flux that the ion
beam carries. An overlapping constant is developed which reflects theion flux projected

on a pixel due to overlapping from two adjacent pixels. Let A be the area of the pixél.

If we take the area for no overlapping (overlapping equals 0%) as a reference area,

A,, =D’ D is shown in Figure 5-9(a). Figure 5-9(b) shows overlapping equals 33%

where w=0,,,,” D i.e % D . The pixel area shrinks into a smaller area due to
overlapping equals %Ab% . Figure 5-9(c) shows that overlapping equals 50% where

Ay, :%Ab% . The relationship between overlapping ratio and pixel area is given by

Equation (5.4).
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(a) k= 0%

(b) k=33%

(©) k=50%

Figure 5-9 Beam spots having 0%, 33%, 50% overlapping between pixels
Abvalap = (1_ Oratio)pb% (54)

From Equation (5.3), the ion flux delivers to a smaller pixel area due to overlap can be
expressed by Equation (5.5).
F 0ver|ap(X1 y) = kOV ’ F O%(X1 y) (55)

where F (x, y) denotes the ion flux delivered from the beam to the pixel area due to

overlap

the effect of beam overlapping, k,, = IS regarded as the overlapping constant.

ratio

ko, isaoverlapping related constant which governsion flux delivered onto a pixel and
defined by Equation (5.6). k., for some common overlapping scenarios are
koy =1,1.33,1.5, 2, 4 for 0, 25%, 33%, 50%, 75% overlapping respectively.

1
(1- O

ratio)

Kov (5.6)

(8) Pixel dwell time - Pixel dwell time is the time that the ion beam stays in one pixel
and mills that specific pixel. The FIB moddl is capable of predicting the pixel dwell
time. The next section (motivated example) will show how this can be done. However,
generaly, the pixel dwell time is dependent on the beam operation approach and can be

adjusted (either constant or varied) during the milling processin a FIB system.
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(9) Angle-dependant sputtering yield - With the use of the focused ion beam, the term
-sputtering yield measures the efficiency of target material removal by the high energy
beam. The data are essentially important to compile the depth variation during FIB
process. Sputtering yield could be generated using experiments data, empirical formula
compilation. One classical example is given by Equation (5.7) which is originaly

proposed by Y amamura[131].

f[1- i]msaom
e cosa
Y(Eo,a) =Y(EO,O)W (57)

where Y (E,,a ) isthe sputtering yield at ion energy E, and nominal angle of incidence

a. The quantities f and a ,, are parameters to fit the experimental data. In addition,

t

a .. 1S the nomina incidence angle at maximum sputtering yield. Another way to

opt
obtain sputtering yield is to use Monte Carlo simulation software package such as SRIM
(the stopping and range of ions in matter) [132] and TRIDYN (TRIM.SP Dynamical)
[133]. SRIM has been widely used for predicting the sputtering yield for many different
ionsin awide range of energies. TRIDY N is used to simulate the dynamical changes of
the target composition during sputtering. Those data are well validated which shows
good estimation of sputtering yield at low incident angles for the most of the common

ion sources and targets such as Gallium-Silicon system. Sputtering yield is a function of
the two parameters, incident angle &, , of the ion beam at point (x,y,) and the ion

beam energy E, as well as the type of ion source and target material. An intermediate

incline surface is formed during the FIB iterative process. This incline surface varies the
ion incidence angle and so as the corresponding sputtering yield. In order to get fast

sputtering yield evaluations along the iterative milling process, the approximation and
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interpolation techniques suggested in can also be applied to account for sputtering yield

variation. It approximates sputtering yield as a function of beam angle and energy.

5.3. Mathematical Modd's

A FIB model ideally should capture various aspects of the nano-scale milling process
such as sputtering yield, beam intensity profile, geometric pixel scheme, materials
property and control of numerous process parameters. In the literature, numerous
studies have been done in modelling the FIB process behaviour such as depth variation
[67] [68] [69], surface smoothness [70], etching rate and sputtering with re-deposition
[134]. Most of the work has been validated against experimenta results. These
theoretical models provide a profile to embed al the associated parameters in simulating
the actual process. The model output is evaluated and improved based on the adjustment
of these key process parameters in a process setup. The key challenge for modelling FIB
is the controlling of parameters to achieve a critical precision of the ‘nano-scale’

Process.

The mathematical model relating the etched shape and the dwell times required to
achieve a predefined shape using a set of pre-defined process parameters was initialy

investigated by Vasileet al in[71] [72]. The model as given by Equation (2.1) is

(%
Zij = #fxy(x ’ yj )Y(EO’a)q,yj )tx,dedy

The Vasile model uses a square pixel matrix which placed over the target surface. The

sputtering model is discretised over each element of the pixel matrix resulting to a

system of linear equations that relates the dwell times t, with the sputtered milling
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depth Z;; at any pixel (i,]) is constructed. This system of equations can be solved

numerically. Vasile et al provided a structured approach to account for the geometrical
details of the pixels. Thisis afundamental step for the evaluation of the total pixel dwell
time required to achieve a pre-defined structure. The work particularly suits the FIB
simulation in which the ion beam is operated with a single scan pathway. The main
theme of the single scan pathway is to caculate the required pixel dwell time at
different pixel in order to obtain the pre-determined sputter depth using the specified

Process parameters.

5.3.1. Computational Model Developed for Dwell time Prediction

As amajor part of this research impact, a new process variable - beam overlap related

constant k,, T is specified. This new constant accounts for the beam overlapping
behaviour which has not been included in the model studiesin the past. Another process

variable n, , number of scans required for a complete milling, is added into the model.

It provides a novel way allowing model to match with the multiple beam movementsin
an actual operation of a FIB machine. Another important contribution of the FIB work
in the thesis is that the accuracy of process control is further enhanced by integrating an
established re-deposition model [81]. This model leads to a more accurate prediction for
sputtered amount of materials at each pixel due to the re-deposition. The impacts of two
important aspects, (1) beam overlapping ratio and (2) re-deposition, on the process
output depth variation are explained theoretically in literature but not numerically. The
mathematical model is discussed with regard to three different beam operation

approachesin the following sections.
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5.3.1.1. Modd for ion beam operation with a single scan

If (x,y,) denotesthe centre of the pixel (i, ), then the sputtering at this pixel in terms

of depth due to milling depth sputtered away (material removal) at that pixel can be

expressed as Equation (5.8).

2, =02 Py VB, oy 69
where Z; is the sputtering depth at the point (x,, y;)» F(Xy) is theion flux for zero
percent ion beam overlap at point (X, yj) (cm?s™h, ko, IS abeam overlap percentage
related constant, h is the atomic density of the target materia (atoms/cmd),
Y(Eo,awj) is the sputtered yield (atoms per incident ion at point (x,y,)). t,, isthe
dwell time of the ion beam at point (x,y,) in seconds, f  (x,y,) is the ion beam
density distribution function in two dimensions. The ion beam geometry is not uniform,
however, is in terms of a density distribution f, (x,y,) . Generdly, a Gaussian bi-
variate density function is assumed for ion distribution and f, (x,y,) is given by

Equation (5.1).

The sputtered yield Y(Ey,a, , )isafunction of theincident angle &, ,, of theion beam

%Y
a point (x,y,) and the ion energy E, as well as the type of ion source and target
material. Generally, the yield increases from perpendicular ion beam incidence to a
maximum at angle 60° to 85°, and then rapidly decreases due to the strong reflection at

grazing incidence [135]. The sputtering yield values can be computed through an

empirical formula. The sputtering yield values can also be measured from experiment or
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generated using software such as SRIM for particular ion source and target material

under specified energy conditions by Monte Carlo binary collision simulation.

The double integral in the Equation (5.8) considers ion projected on al pixels at the

surface. Let x, and y, i.e. (x,Y,) represents the mid-point of the pixel where the ion
beam focused at. To calculate the dwell time ¢, at every pixel for z, , the surface is

discretised into nn, pixels where n, and n, represents the number of subintervals on

the x and Yy directions. The sputtering depth can be found by Equation (5.9).

3 & .
Z; = a_ a_~ M f><k,y| (%, Yi )Y(Eo’awi )t Dx.Dy, (5.9)

where x,  and 'y, ae the mid-point of the periphery pixels.

(iLbk=12K,n; j,1=1,2,K,n,) and A_ (i, j) isdefined as Equation (5.10).

A7) =8 &KW ¢y IvEa, DDy (510

The sputtering FIB models is discretised over each element of the pixel layout so that a
system of linear equations is constructed as Equation (5.11) that relates the dwell times
with the sputtering depth at any pixel (i, j).

[A G, DIt T = [Zij] (5.11)

where [ A (i, j)] is acoefficient n* n matrix , [t,,] iIsan” 1 vector of dwell times and
[z,] is a n” 1vector of pixel milling depths. Equation (5.11) will give a set of

n=n" n, linear equation in n unknowns. [t ] can be solved in this matrix system
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when desired [z, ] is specified using aknown ion beam sources. The model presented in

Equation (5.9) can be applied to calculate time vector when milling depth is specified.
5.3.1.2. Modd for ion beam operation with multiple scansin various dwell time

To further improve the process control of predicting the total milling time for achieving
amore accurate shape, the changes of angle of incidence during multiple scans must be
considered. The model considering multiple scans in various dwell time will be applied
if the beam is operated under a slope-by-slope approach. Sputtering yield can be
updated after each scan according to the current pixel geometries. The specified shapeis

then produced with multiple beam scans in the form of a slope rather than aflat dlice.
Y(Eo,awj) changes accordingly to the updated pixel geometries. The updated pixe
geometries after each scan can affect the beam angle of incidence and thus a new
sputtering yield value must be evaluated. The FIB model from Equation (5.8) is

modified. The number of scans as a new process parameter will be included to account

for the milling depth and the milling depth is expressed as Equation (5.12):

Z — :‘ :‘kOVF(X! y).I:

ij h x,y()g ’ yj )Y(Eoiax WYj )tx,y >ﬂ><,dedy (512)

where n,  is the number of scans required at pixel (x,y,)and t, is the pixel dwell
time which is a user-predefined parameter.

5.3.1.3. Model for ion beam operation with multiple scansin constant dwell time

To improve control of sputtering depth, the FIB model from Equation (5.8) is modified.

Pixel dwell time t,, from Equation (5.12) is set constant for all pixels as a user-
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predefined parameter in a FEI-200 FIB station. The required number of ion beam scans
to sputter each pixel milling depth using a predefined dwell time. The model
considering constant-dwell time will be applied if the beam is operated under a slice-by-
slice approach. Number of scansisincluded in the explicit model. This modified model
can be used to predict the number of scans required to achieve a predefined shape at a

given (user-defined) constant dwell time.

5.3.2. Re-Deposition M odel

The re-deposition proposed by Tseng [81] is limited to the complex shapes which
contains irregular contour as accurate re-deposition amount is estimated according to
pixel geometry location. However, this model is still worthwhile to be applied in order

to calculate the re-deposited amount for some simple shapes.

In this sputtering process, part of the scattered atoms would re-deposit back into the
sample surface. The effect of this re-deposition was proven an influential factor for
depth variation prediction. A computational model for the volume of the re-deposited
material across all pixels is investigated and integrated with the computational FIB
model. Any model for depth prediction model would estimate a less depth than
expected owing to this re-deposition effect. Fu [80] provided an analysis on scenarios
where and how this effect happened and found re-deposition are likely to happen on the
side wall of the fabrication structure. While the amount of ion flux that avoiding hitting
the side wall was worked out in [136]. Tseng [81] later on worked out a model to
account for the volume of the actual re-deposition which has been taken into
consideration during FIB model implementation. Itoh [137], Ishitani and Ohnishi [82]

further modelled the sputtering and re-deposition fluxes under assumption that the
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sputtered atoms are emitted according to a cosine distribution with regard to surface

normal. Modelling for re-deposition and sputtering fluxesis also givenin [83].

Re-deposition happens when focused ion beam performs milling of high aspect ratio
features where the milling depth is function of both sputtering and re-deposition
phenomena. Another model that accounts for the re-deposition effects during FIB
sputtering should be considered. A mathematical model accounts for the volume of the
re-deposited material across al pixelsin addition to the sputtering model outlined above.
Both models are integrated. It is assumed that the amount of the sputtered atoms or ions
from a source pixel cell (i, ) and then re-deposited onto another target pixel cell (k, 1)
is dependent on the relative locations between the two pixels and their own orientations.
The re-deposited volume of material R;; as function of the sputtered volume S;; can be
calculated from Equation (5.13) [137].

3

_F(b)- F(9) _pri. s
R, _Wsj where F(x)—?[cos X- 3cost 2] (5.13)

In Equation (5.13), b and g are the minimum and maximum angles that are measured
from the centre of the source pixel cell (i, j) to any possible locations within the target
unit pixel cel (k1) respectively. For a cdl (k,l) the re-repositioned volume can be
found as the summation of contribution from all other source cells (i, j). This model

assumes that the total re-deposited volume of material after the re-deposition is normal
to the surface of the unit cell. The sputtered volume s, is calculated from the FIB
sputtering model in Equation (5.8) from the sputtered depth and dimensions of pixelsi.e.
Zij " dx” dy. The sputtering direction of materials in the source pixel follows a cosine

distribution. Figure 5-10 shows interpretation of sputtering and re-deposition as

formulated through Equation (5.13). Note that an assumption is made that al particles
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or ions are all energetic enough to re-deposit on the target pixel. The re-deposition
model outlined above can be implemented and integrated into modelling procedure in

particular for milling low aspect ratio features.
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Figure 5-10 Sputtering direction of atom when the ion beam hits the target surface

5.4. Case Study One: The Milling a Two Dimensional Parabola

5.4.1. The Case Study

The aim of this case study is to apply the proposed model to predict the dwell times
needed to mill a pre-defined parabola in a planar dimension. The study consists of
moving an ion beam in a straight line producing a parabola with a given shape as
depicted in Figure 5-11. The ion beam has a FWHM diameter of 55nmwas swept
across a 10" 1 pixel array containing 10 pixels each of which has a pixel area

55nm”~ 55nm.
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Figure 5-11 A two-dimensional pre-defined parabola obtained by the ion beam

(1) Geometrical Scheme of the Parabola

With the specified 10" 1pixel array which contains 10 pixels each with dimension
55nm” 55nm, the width and length of the parabola is 0.55 pm and 0.055 pm
respectively. The target milling depth at the centre point equals the deepest milling

depth of the parabola (denoted by z ) is 0.2 um. The target milling depths of all the

centre

pixel centres along the parabola are listed in Table 5-2. Let Z[arget be the target milling

depth defined by Equation (5.14) for atwo dimensional parabola:

X2

Ztaga = Zcentre - 4_p (514)

where p isaconstant governed by the width and target milling depth of the parabola. In

this case study, p=0.0945"10"° andz___ =0.2mm at the centre point of parabola.

centre

Table 5-2 Target milling depths at the pixel centres of the case study

Pixel 1 2 3 4 5 6 7 8 9 10

Z[aga(mn) 0.038 | 0.102 | 0.150 | 0.182 | 0.198 | 0.198 | 0.182 | 0.150 | 0.102 | 0.038

133




(2) Implementation of Beam Operations

The pixel milling depth of this parabola feature was performed using a slope-by-slope
multiple scans approach as shown in Figure 5-12(a). The milling depth which defines
the shape is given by Equation (5.12). Dwell time was set with fixed increment and then
decrement time steps among neighbouring pixels in one scan. The same set of pixel
dwell time within one scan was used in the next scan to achieve the same slope surface.
This repetitive approach provides better control and can achieve a more accurate shape
because the approach accounts for the actua angle of incidence of ion beam after each
scan that affects the sputtering yield. Figure 5-12(b) shows that the target surface before
and after one scan and how the slope produced creates an angle of incidencea . The
pixel geometry on the target surface changes after each scan and the ion beam induces a

dlight angle a with the updated pixel geometry.

lon beam

*._ Intermediate .-’

~
~
~ -,
~o _-

Find

Initial pixel
geometry

Target surface
BEFORE the first scan

Updated pixel ~
geometry ~ Target surface
~ AFTER the first scan

@ (b)
Figure 5-12 (a) A slope-by-slope multiple scans approach, (b) the target surface profile

before and after one scan

In this case study, the ion beam was positioned initially at the first outermost pixel of
the parabola central line xand that the dwell time at that pixel wast = 0.05 ms. The ion

beam moves along the x direction asindicated in Figure 5-13 to the next adjacent pixel,
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and so on. At every movement to a new pixel the dwell time was increased by an
increment time steps of At = 0.005 ms until the centre pixel of the 2D parabola. The
dwell time for the symmetric pixels with respect to the trench centre line is equal.
Table 5-3 details the pixel dwell time used in the numerical calculations. Note that the

pixel time of each pixel may be set to a different constant value.

Time 0.05 0.055 0.06 0.065 0.07 0.07 0.065 0.06 0.055 0.05
(msec)

Figure 5-13 Pixel dwell time presentation on pixel 1 to pixel 10

Table 5-3 Pixel dwell time (msec) for each pixel in the 2D parabola representation

Pixel 1 2 3 4 5 6 7 8 9 10

Time t
"M%y 10,05 | 0055 | 0.06 | 0.065| 0.07 | 0.07 |0.065| 0.06 |0.055 | 0.05

(msec)

In the first scan of the milling the material removed after taken the above dwell time
results to an intermediate parabola over a single row of pixels in the matrix. In the
second scan, the intermediate slope is subjected to milling using the same set of pixel
dwell times as that in first scan. This is repeated until the final desired milling depth is
achieved. During the iterative procedure if the depth at a particular pixel has reached or
exceeded the final depth required by the shape, this pixel will not be visited by the ion
beam anymore in the remaining mill scanning. The ion beam continues to sputter

material of those pixels only where the target milling depth has not been achieved yet.
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The model predicts the number of FIB scans required The total milling time is

controlled based on the fixed dwell timesin Table 5-3.

5.4.2. Control of Process Parameters

The aim of this study case is to apply the proposed models to predict the dwell times

needed to mill a pre-defined parabola. The interest of this FIB mode is to translate the

pre-defined geometry (depth Zij against the x, y-coordinate) into ion beam control

coordinates (known as the pixel scheme). Zij is expressed as a function of time and

other associated parameters defined by Equation (5.12). For the beam operation, a

multiple scan with the mentioned dwell time listed in Table 5-3 is used with the model.

The input of the model is the pre-defined geometric shape characterised by z, and

other model process parameters such as ion flux denoted by F(X,y), beam intensity

distribution profileby f,_ (x,y,) . angleand energy dependent sputtering yield function
by Y(Eoﬂ)q,yj) and mentioned dwell timet,.,, a point (x,,y,) . The model output will

be the number of scans N, , .

The FIB materia removal depends on a number of control parameters such as the ion
dose, beam current, angle of incidence, pixel time and sputtering yield. The parameters
explicitly observed are the angle of incidence, ion beam energy and pixel dwell times.
The angle of incidence refers to the angle between the ion beam and the sample surface
normal. The calculations presented here assume that the initial angle of incidence is 0
degrees (i.e. parale to surface normal). After the first FIB sweep which causes some
partia formation of the shape that needs to be formed, the ion beam will not hit

anymore perpendicularly the target surface at the location of the individual pixels. The
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angle of incidence on the target surface will change automaticaly (based on the
geometry of the pixels which form the slope of the shape surface). It is taken in the
model calculations for the subsequent FIB sweep. The ion beam energy assumed in the
test case study is constant at 30 keV. The sputtering yield data for various angles of
incident values and ion energy 30 keV for Ga ion beam is generated using SRIM
software. Pixel dwell time varies from pixel to pixel as outlined above and illustrated in
Figure 5-13. Pixel dwell time of first pixel = 0.05ms and pixel dwell time increment
along the x direction is 0.005 ms. Overlapping for 0% is used i.e. k,, =1. The two
dimensional parabola Equation (5.14) is used in the modelling procedure to check if the
final depth of the parabola at any pixel is aready achieved at the current scan, i.e. if itis
at or exceeds the target values in Table 5-2. A summary of simulation parameters is
shown in Table 5-4 below.

Table 5-4 Specification of the focused ion beam micro-machining simulations

Target materia atomic density Silicon (atomic density h =5 x 10%* atoms/cm®)
lon beam Gallium (Ga’)
Beam spot diameter 55 nm (Full Width at Half Maximum, FWHM)
lon beam flux F(x,y) = 0.72216e*ions/ pm?® sec
Beam overlapping 0% (dx =55.5 nm, dy =55 nm)
koy for 0% beam overlap 1
lon beam distribution Gaussian bi-normal, with standard deviation 28.054 nm
Sputtering yield Y(E, =30,a =0") =2.3982 atonrs/ ions
lon beam current 350 pA
Initial ion beam angle 0 degree
lon energy 30 keV
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5.4.3. Simulation Results

The number of scan of the beam required to complete milling the target milling depth is
described by Equation (5.12). The predicted output can be used to compute the tota
milling time of all the pixels. The fina shape is eventualy achieved at the two centre
pixel (pixel 5 and 6) after the 328™ FIB scan which is the closest to our pre-defined

shape tabulated in Table 5-5. Table 5-5 details the model predictions for the number of
scans N, , required to mill the pre-defined shape of a parabola.

Table 5-5 Number of scans required until the pixel target milling depth is reached

Pixel 1 2 3 4 5 6 7 8 9 10

Number of
98 226 294 325 328 328 325 294 226 98

scans N, |

Table 5-6 and Figure 5-14 summarise the total milling time in second required to mill

2

the pre-defined target milling depth (Z, e = Zeenye - :—p) at each pixel of the 2D pixel

dlice. The overall evaluation of the required milling time needed to produce the entire
parabola is calculated as the multiple of the number of scans at that pixel and its

associated pixel dwell time.

Table 5-6 Total milling time required to mill the target milling depth

Pixel 1 2 3 4 5 6 7 8 9 10

Millin
) J 0.0049 | 0.0124 | 0.0176 | 0.0211 | 0.023 | 0.023 | 0.0211 | 0.0176 | 0.0124 | 0.0049
time(sec)
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milling
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Figure 5-14 The total milling times (sec) required to mill the pre-defined shape

5.4.4. Discussion

The simulations result is generated from the FIB computational model. The
development of the surface during intermediate scans. 1, 50, 98, 200 and 328 (final)
scans are shown in Figure 5-15. The milling depth of the ten pixels centre after the first

scan are indicated by “* °, while the final shape, as shown by the solid line with <’ in
Figure 5-15. The other lines also details the intermediate milling depth (Zij ) developed
during various scans. For example, a 98" scan, the current milling depth is
Z; =0.0384mm which has just exceeded the target milling depth Z,,, =0.038mm.
From 98" scan onwards, the beam will not visit this pixel. It can be checked from
Figure 5-15 that Z”- of the first pixel centre does not increase anymore. The beam will

then carry on milling the second pixel until target milling depth of all pixels are reached.
For any discrete amounts of material removed, the depth at a pixel also changes in a

discrete manner and exact value would be difficult to achievein the general case.
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Figure 5-15 Milling depth developed in multiple scans at the pixel

Table 5-7 shows the model evaluation for the milling depth at each pixel (denoted by
Zij ) after the target milling depth is achieved. As evident from the table results, there

are some small differences between the exact target depth values reported in

Table 5-2 and the pixel depths achieved as a result of iterative FIB sputtering. The ion
beam stops milling a a pixel in the reaming scans once it is detected that the target
depth at the present scan is achieved or exceeded. The milling depth will not be exactly

the same as specified requirements (i.e. dightly smaller or bigger than the specified

depth).

Table 5-7 The milling depth at the final scan obtained from the FIB model

Pixel 1 2 3 4 5 6 7 8 9 10

Z\'J (mn) 0.0384 | 0.1021 | 0.1502 | 0.1825 | 0.1985 | 0.1985 | 0.1825 | 0.1502 | 0.1021 | 0.0384
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5.4.5. Contributions of the M odelling Work

The novel part of the model work is that prediction of number of scans required is
considered in the model. This further improves the origina FIB model developed by
Vasile. The milling depth which defines the shape is captured within the mathematical
model given by Equation (5.12) using a pre-defined constant set of pixel dwell time by
controlling the number of ion beam scans. This repetitive scanning approach provides a
better process control and can help obtaining a more accurate shape because the updated
pixel geometry after each scan is used to calculate the actual angle of incidence of ion

beam which affects the sputtering yield.

The mathematical model of FIB given by Equation (5.12) can be used as part of the
proposed risk analysis methodology. It helps gaining knowledge about the importance
of FIB process control parameters on process output parameters. It aso helps make
predictions for the process capability and forecast how uncertainties may affect the
quality of the fabricated shapes. The mathematical models are compiled to build
reduced order models together with design of experiments and response surface
methodology. These approximated models are particularly useful for saving
computational resources. They can be utilised for uncertainty analysis where large
number of process evauations are typically required. Existing uncertainties, e.g. the
level of stability of the ion source with the stated energy, directly affect the performance
or the process behaviour. They must be characterised and their effect must be taken into
consideration. Methodology for risk analysis is proposed and demonstrated using the

FIB milling process using assumed uncertainty data in the next chapter. Sensitivity

141



analysis can be carried out to understand the significance of the process parameters.
Optimisation can aso be undertaken to find out the optimal process conditions and

product specifications to fulfill specified constraints for the FIB sputtering process.

5.5. Sputtering Yield Validation Experiment: Milling a Rectangular Block

After demonstration of the model approach, the model predictions are validated against
the experimental work carried out in Cranfield University. The model predictions are
validated with the experiments using a FEI 200 FIB machine as shown in Figure 5-16.
The interaction and significance of this verification have facilitated the development of

FIB surface geometry morphology for micro- and nano-structures fabrication.

Figure 5-16 The FEI 200 FIB system

Obtaining areliable sputtering yield value is important in order to predict the dwell time
for milling the pre-defined shape precisely. The objective of experiments here is mainly
to validate one of the crucial parametersin FIB process. the sputtering yield, used (as a
function of beam angle and energy) at the specified angle and energy in the experiment
against the SRIM software. Sputtering yield for the initial models relies on sources such
as FIB machine library and literature. Variation and uncertainties in the process

parameters may cause a deviated sputtering yield value from expected. . Therefore, this
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value should be verified using a separate experiment so that the validated value can be
applied in subsequent experiment. Numerous experiments were performed using atrial-
and-error approach to identify the relevant ranges and nominal values of certain process
parameters leading to the basic shape such as a basic straight line and a volume block
(the investigated case study here). The ranges of values were input back into the FIB
model given by Equation (5.12). The preliminary results from models would also be
useful to improve the experiments and vice visa. Few simple experiments can aso be
carried out to explore the uncertainties of some process parameters, like the current and

beam energy.

5.5.1. Case Study for Sputtering Yield Investigation

The FEI 200 FIB system is used to set the milling of a simple boxed shaped feature. The
purpose is to estimate the amount of sputtered material and understand the process
parameters to obtain experimentally a value for the sputtering yield under a particular
set of FIB process conditions. The sputtering yield vaues reported in the previous
section is obtained from sources such as SRIM software, literature, and FIB machines’
library. The sputtering yield value at a given beam angle and energy is calibrated priory
to any experiments because it is one of the crucia parameters which affected the milling
depth obtained. Experiments are carried out on target material (100-orientation) p-type
Silicon, B doped wafer substrate using the FEI 200 FIB system. A rectangular block
with dimension 10mm” 5nm is specified to be milled as show by Figure 5-17. In the
experiment, a 30 keV focused Ga+ ion beam is used to accelerate the incident ions. The
beam diameter and current used is 55nm and 350 pA respectively. The dwell timeis set

to one microsecond. A 50 % beam overlap is used.
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Figure 5-17 An AFM image of the milled structure

5.5.2. Experimental Results

Using the above process set-up, the ion beam raster across the surface and produced a
rectangular block. Its dimensions and milling depth are measured to calculate the
volume of sputtered materials. The sputtering yield is determined experimentally.
Figure 5-18(a) shows an AFM image of the milled structure in top view. The three lines
with arrows indicated the analysed sections. Figure 5-18(b) shows AFM image of the
section anaysis. The couple of arrows show the positions of the measured sputtered
depth. From cross sections measurements it is observed that the actual milled feature is
not very accurate box-shape but rather have linearly increasing depth along the long
side of the box. The depth is measured as 1.03 pm. This depth variation ranges from
0.883 um to 1.09 um. This is most likely caused by not very accurate placing of the
sample inside the FIB station priory to undertaking the experiment. The sputtered
volume is 48.176 pm3 (note: This calculation is from the cross section profile area

9.9537 um? and average width of the box of 4.84 um).
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Figure 5-18 (@) showed an AFM image of the milled structure in top view and (b)

showed AFM image of the section analysis.

5.5.3. Discussion

It is recorded that 460 seconds are required for milling the above volume. With time
equals to 460 seconds and ion beam current equals to 350pA, the total amount of ions
delivered to the sample is calculated to be 1.00488 x 10 jons (this can be calculated by
|~ K" T where | is the current, K is the number of ions in one unit current which

equals 6.24150948" 10", and Tis the recorded time). The atomic density of the target

material is5” 10"°atoms/ mm?®. The sputtering yield from experiment can be calculated
by Equation (5.15). The experimentally derived sputtering yield is found to be 2.397

atoms/ion. The process parameters and output are recorded by Table 5-8.

Atomic density~ sputtered volume
total amount of ions

Souttering yield [atoms/ion] = (5.15)

145



Table 5-8 Summary of parameters recorded and derived in the experiment

Gat ions delivered at given time | 1.00488 x 10" ions
Recorded depth 1.03 um
Total time of milling 460 sec
Volume of sputtered material 48.176 um®

With ion beam angle of O degree and ion energy of 30 keV, the sputtering rate in the
model is reported to be 0.3 um3/nC in the FEI 200 FIB machine library. The
corresponding sputtering yield is 2.3982 atoms/ion. While the respective sputtering
yield extracted from SRIM is 2.39 atoms/ion and the experimental value is 2.397
atoms/ion. It has verified that the experimental sputtering yield value agrees well with

the mentioned value in SRIM software and the FIB machine library.

5.6. Case Study Two: A Three Dimensional Parabolic Trench

Focused ion beam micro-machining emerges as a crucial technology in producing
different shapes in micro- and nano- scale in fabrication industries such as the micro-
mould for injection moulding, and probe tips. Quite a few models and simulations
(mentioned in chapter 5.3) have been developed recently trying to predict an accurate
shape in the real manufacturing process such as Nassar and Vasile [71] work. Their
modelling for dwell time prediction in one single scan is used in our FIB model which
can establish a fundamenta base for accounting re-deposition effect as a further step.
Re-deposition effect modelling is discussed but not implemented at this stage. However,

the FIB models given by Equation (5.12) have been validated against the experimental
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work performed at Cranfield University. This FIB model can allow simulations in the
early design stage to fabricate a micro-probe. The FIB model is applied to illustrate a
parabolic trench fabrication as an example. The verified sputtering yield values i.e.
2.397 atoms/ion can aso be applied in this section. The whole study aims at
understanding how to gain a control on process parameters to predict the scans required
and give the corresponding milling depth. Its principles have been outlined and
explained in chapter 5.1-5.3. Motivated examples using this FIB mathematical model by
Equation (5.12) to predict the total time required for milling different shapes such as a
2D parabolic shape in chapter 5.4. In this case study, a micro-parabolic trench is

investigated.

5.6.1. Computational Modelling

The am of the test case study is to apply the developed computational modelling
procedure to predict the dwell times needed to mill a pre-defined micro-channel.
Equation (5.8) is first applied to calculate the required time theoretically assuming the
ion beam is operated under a single scan approach. However, a FEI 200 FIB machineis
operated with a multiple scans approach. Predicting number of beam scans required for
milling the defined feature is more preferable than pixel time prediction. Therefore, the
FIB model outlined by Equation (5.12) is used which is capable to predict number of
beam scans. The focus is to trandate the pre-defined geometry (depth vs x, y-coordinate)
into ion beam control coordinates (known as the pixel scheme) as afunction of time and

other associated parameters. The input of the model is the pre-defined geometric shape

characterised by z, . Other model process parameters such as ion flux is denoted by
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F(X y), beam intensity distribution profile by f_ (x,y,),angle and energy dependent

sputtering yield function by Y(E;,a, ¥ ). The mode! output is the number of scans n_ .

5.6.2. The Case Study

(1). Geometrical Details of the Parabolic Trench and Pixel Layout

This study has focused on the case of producing a trench with a known size and using
pixel layout where an ion beam sweeps over a surface. Its isometric view, top view and
cross section is shown in Figure 5-19(b) and (c). The pixel layout details over the target

surface are listed in Figure 5-19(a).

(a) Isometric view and pixel array

-0.96 | 1 J

-1.33 | |

-1.62 |
-1.81 |
2194 L e l

. 5 0 5
(b) Top view and pattern numbers (c) Front view/ Cross section of the trench

Figure 5-19 The isometric, top and cross section view of a micro-trench
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The pre-defined sputtered shapeis a 3D stepwise parabolic micro-trench which has both
width and length of 10 um. The milled shape can be divided into five ‘Patterns’, or can
be expressed as five ‘Parts’ i.e. Pattern or Part 1 to 5. ‘Pattern’ refers to the horizontal
divisons while ‘Part’ refers to vertical divisions, across the trench cross section

presented in Figure 5-20.
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! | 1 > m
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Figure 5-20 Terminologies of ‘Pattern’ and ‘Part’ across the shape

Each pattern has an expected total milling depth as illustrated by the y-axis of the front
view in Figure 5-19. The total milling depth at any pattern is the incremental milling
depth from the previous milling depth. For example, pattern ‘1’ has a dimension of
10nm” 10nm and milling depth of 0.96 um. Pattern ‘2° has a dimension of
8mm’” 10mm, a total milling depth of 1.33 pm or a milling depth increment by 1.33 -
0.96 = 0.37 um from the milling depth of pattern 1. Pattern ‘5’ has a milling depth of
1.94um. Every single pixel shown in Figure 5-21 possesses same dimension of
55nm” 27.5nm. There are 182" 364,146" 364,110" 364, 72" 364 and 36" 364 pixels
in pattern 1, 2, 3, 4 and 5 respectively. The pixels on patterns are listed in Figure 5-21.
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size: 10mm” 10mm
pixels: 182 364
total pixels: 66,248

275nm | apixel

size: 8mm’” 10mm
pixels: 146" 364
total pixels: 53,144

sizee 6rm” 10mMm
pixels: 110" 364
total pixels: 40.040

size 2mrm” 10mMm
pixels. 36" 364
total pixels: 13.104

size: 4mm” 10mm
pixels. 72" 364
total pixels: 26.208

Figure 5-21 Pixel schemes details and pixel size across the surface in top view

5.6.3. Process Set-up and Parameters Control

In this study, a 30 keV focused Gat+ ion beam with diameter 55 nm (Full Width at Half
Maximum) is used to accelerate the incident ions and raster across a silicon surface. The

beam diameter and current used was 55nm and 350 pA respectively. A pixel area is

27.5mm’” 55mm. 50% beam overlapping is used. k,,, for 50% beam overlapping is 2.

Sputtering yield is 2.3982 atoms/ion, the same as the calibrated yield in chapter 5.5.3.

(1) Determination of beam profile and ion flux - 50% beam overlapping is used. Due
to this overlaps, the pixel size is adjusted to be 27.5 nm by 55 nm. An ion beam

distribution with Gaussian bi-variate distribution with a standard distribution equals
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27.86 nm is adopted. The above beam diameter will give a corresponding current of 350
pA (referring to Table 5.3-1). With current equals 350 pA and diameter equals 55nm,

theion flux of the beam F can be obtained by Equation (5.2), i.e.

([
F,.=— K
prz

where F, istheion flux (ions/s cm?), K isthe number of chargesin one ampere current,

R is the Beam radius (meters), | isthe milling current. With | =350pA, R=27.5nm,
and K =6.24150048" 10, F , is calculated as 0.9195074" 10” (ions/s cm?). When the

ion beam carrying ion flux 0.9195074” 10” (ions/s cm?) sweeps across a pixel, the
associated ion flux delivered on a square pixel with an area A=55nm" 55nm is

calculated by using Equation (5.3), i.e.

which gives F (x,y) = 0.722" 10% (ions/s cm?). The flux of ions receives at the surface

of the target material depends on the beam overlapping. k., =2 for a50% beam overlap

meansion flux that a pixel received isdoublei.e. F gy, (X Y) =144 10” (iong/s cm?).

(2) Determination of sputtering yield from sputtering rate - The beam angle and
beam energy to start the milling process in the model is O degree and 30 keV
respectively. Sputtering rate (micrometer cubic per nano Columb) is found in the FEI
200 FIB system library at these parameter values for Ga + ion and silicon surface
combination equals 0.3 pm*/nC. This sputtering rate ¥, can be translated into sputtering
yield by Equation (5.16). [138]

roy,

Y(Ea,,)=96.4" (5.16)
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where Y(Ey,a, ) isthe sputtered yield (atoms per incident ion at point (x,,y,)), &,
is the incident angle of the ion beam at point (x,y,) and E, is the ion beam energy,

and where m is the mass in AMU, Y, is sputtering rate in cubic microns nano

Coulomb, r is the density of silicon. Witha, , =0, E, =30keV , m=28.0855,

r =2329g/cm®, Y, =0.3mm/n, therefore sputtering yield Y(E, =30a, , =0% is

calculated to be 2.3982 atomg/ion.

5.6.4. Mode Result of Dwell Time Prediction

All process parameters and geometric details are compiled into the FIB model by

Equation (5.8) to predict the time required for each pixel to achieve its pre-defined total

milling depth. This predicted time represents the pixel dwell time ¢, that the ion beam

stays on each pixel. Table 5-9 and Figure 5-22 summarises the pixel dwell time
prediction on each ‘Part’ to produce its expected total milling depth. For instance, pixel
time 13706 psec is required to mill any single pixel inside part 1 for a total milling
depth 0.96 um. Part 5 has the most depth, it takes 27905 usec to achieve the 1.94 um

total milling depth. In Table 5-9, the pixel dwell time on part 1-5 is mentioned.

Table 5-9 Dwell time prediction for each pixel across part 1-5

Part # 1 2 3 4 5

Dwell time t,  (usec) 13706 | 19257 | 23403 | 26227 | 27905
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Plxel dwell dme (sccond) 00137 00231 00270
v each part

Figure 5-22 Pixel dwell time t,  required on each pixel to mill its expected depth

5.6.5. Dwdl Time Transformation

The model and experimental work adopted two different beam operation approaches:. (1)
a single scan with different dwell time and, (2) multiple scan with constant dwell time
on all pixels. Theion beam raster across the target surface in a single passing schemein
model. The experimental work has adopted a multiple scan with constant dwell time
due to the FEI-200 FIB system operation routine. A transformation on model output
(pixel dwell time) is required such that the transformed dwell time becomes a feasible

input for the FIB machine. Different milling depth is sputtered when pixels receive

different number of scans over its respective pattern. The number of beam scans N, ,, at

any one pixel equals the model dwell time prediction t, on each pixel (from Table 5-9)
divided by the fixed pixel dwell time t_. A fixed dwell time, t. = 1msec on each pixel

are defined in FIB system. The calculated N, , required over each pattern, and the
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number of pixels over the pattern area, are used to compute the incremental time T,

incre

required over each pattern area by Equation (5.17).

Tincre = nx,ytcN pixels (517)

where T

incre

is the incremental time for milling a pattern area, N, , is the number of

y

beam scans over respective pattern. t_ is the fixed dwell time defined in FIB system.

N isthe number of pixels over the pattern areathat are listed in the third column of

pixels

Table 5-10. Theincrementa time arelisted in the last column of Table 5-10.

Table 5-10 Number of pixels on pattern and the corresponding incremental time

Pattern | Dimensions | Number of pixels Theincremental time
area# (mMm” mm) N s over pattern T, . (sec)
1 10" 10 182" 364 908
2 810 146" 364 295
3 6" 10 110" 364 166
4 4" 10 72° 364 74
5 2°10 36" 364 22

The incremental time is then summed up to get the total (cumulative) milling time for
scanning the pattern area. The predicted dwell time from the model is transformed into
an equivalent FIB set up for total milling time at each pattern as shown in the last
column of Table 5-11. The last column in Table 5-11 specifies the cumulative time for
milling the respective pattern area. Therefore, the total scanning time at any pattern is

the incremental time from the previous milling time. For example, 908 sec is required to
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mill the area of pattern 1; then milling the area corresponding to pattern 2 is 295 sec (the

incremental time from the time set for milling over pattern 1).

Table 5-11 Number of beam scans from model and the FIB pre-set total milling time

Model prediction: FIB system set-up:
Pattern
orea Number of beam scans over Total (cumulative) time for scanning the
respective pattern n, , pattern area (second)
1 13706 908
2 19257 1203
3 23403 1369
4 26227 1443
5 27905 1465

5.6.6. Discussions

The modé first predicts the dwell time on each pixel, then number of scans required for
achieving the pre-defined geometry. In this experimental study, the dwell time predicted
from the model (known as the given time) are transformed as an input to set the dwell
time for the FIB machine, as well as other process parameters listed below in chapter
5.6. At the mentioned number of scans over each pattern set into the FIB machine, the
final shape (observed shape) obtained in the experiment is measured. The milling depth
of each pixel is measured in each pattern. This measured milling depth will then be
compared against our predefined milling depth of the parabolic trench in the model. The
ams of experiments here are mainly to verify (1) the deviation of the predefined

geometry against the final experimental geometry, and (2) sputtering yield used at the
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specified angle and energy in the experiment against the values from SRIM software/

FIB machines library. The experiments will further be explained in chapter 5.7.

5.7. Experiment to Validate the Computational Model

The time prediction and the corresponding number of scans required are obtained to
obtain a three dimensional trench with a pre-defined geometry from model by Equation
(5.12). The predicted number of scans from the model is specified as a process input in
FEI-200 FIB machine to obtain a final geometry. The experimental geometry was
obtained at Cranfield University to validate the predefined shape of the model. However,

re-deposition effect that affects the final shape is not included in this study.

5.7.1. Experimental Set-up

Experiments are performed on p-type Silicon, B doped wafer substrate to verify the FIB
modelling result using a FEI 200 FIB system. A 30 keV focused Gat ion beam is used
to accelerate the incident ions. The beam diameter and current used is 55nm and 350 pA
respectively. This amount of current with beam diameter 55nm possesses an ion flux of
F(x,y)=0.722" 10%° ionscm?sec. A pixel area is 27.5mm” 55nm . 50% beam
overlapping is used. k,, for 50% beam overlap is 2. Other process parameters are all
equivaent to the model set-up and summarised by Table 5-12. The beam scanning path

in the FIB experiment is presented by Figure 5-23.
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Figure 5-23 FIB beam scanning sequence for producing the trench feature

A multiple scan approach is adopted with pre-defined constant pixel dwell times that

pixels are scanned in a controllable number of times. The defined patterns are subjected

to different number of scans by controlling the total times of scanning the defined areas

of the patterns.

Table 5-12 Pre-defined set of process parameters in the experiment

Target material atomic density

Silicon (atomic density h =5 x 102 atloms/cm?®)

lon beam

Gallium (Ga’)

Beam spot diameter

55 nm (Full Width at Half Maximum, FWHM)

lon beam flux

F (x,y) =0.722" 10% ions/ cm? sec

Beam overlapping

50% (dx = 27.5 nm, dy = 55 nm)

koy for 50% beam overlap

2

lon beam distribution

Gaussian bi-normal, with standard deviation 28.054 nm

Sputtering rate 0.3 um*nC
Sputtering yield 2.3982 atoms/ion
lon beam current 350 pA

lon beam angle 0 degree

lon energy 30 keVv
Dwell time t. =1msec
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5.7.2. Experimental Results

Milling depth of pixels on each pattern is measured and observed. A trench is produced
using the FIB system from the experiment. Figure 5-24 shows the AFM image in the
top view and the output data. The cross section of the milled structure is also examined.

Figure 5.25 and Figure 5.26 show the output data and graphs from a cross-section
analysis undertaken to obtain information for the actual shape that is produced in the
experiment, and to evaluate the milling depths of the trench. The actual depth of the
milled structured is measured. In Figure 5.25, the three sets of arrows from top to
bottom on the upper graph show the positions of the measured sputtered depth and its
cross sectional depth of pattern 5, 1 and 2. Their corresponding sputter depths are
shown in the lower (cross section) graph and reported to be 1.959 nm, 1.017 mm and
1.32 mm respectively. Figure 5.26 shows the cross sectional depth of pattern 4 and 3
indicated by the first set and the second set of arrows from the upper graph as well as
the output data and graphs. The measured depths are presented in the cross section
graph and are reported to be 1.831 nm and 1.619 mm respectively. The accuracy of the

measurement is+0.03 nm.

Figure 5-24 AFM image of the fabricated structure in the top view

158



1500
1

0
I

-1500
[

surface distance
Heriz distancedl)
wert distance
angle

Heriz distance

surface distance
Horiz distance
vert distance
angle

Sp=ctral pericd
spectral freaq
Spactral RMS amo

= R B
. <
[ a)
(=]
T
3

Figure 5-25 Cross sectional analysis of the sputtered trench on pattern 5, 1, and 2

nm

1500
I

AA

0
|

-1500
I

==

Surface distance
Horiz distance(L)
wert distance
Aangle

T

Surface distance
Horiz distance
wvert distance
Angle

Spectral period
Spectral freqg
Spectral RMS amp

3.935 pm
3.027 pm
1.619 pm
28.144 =

12.786 pam

10.938 pm
2.764 rnm
Q. 0L4 =
(b

O Fam

458,22 rm

Figure 5-26 Cross sectional analysis of the sputtered trench on pattern 4 and 3
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5.7.3. Discussion

Table 5-13 summarises the (1) the pre-defined shape used in the computational model,
and (2) the measured cross sectiona depth from the shape produced in the experiment
using FIB set up based on the model predictions. The cross sectional depths across five
patterns obtained from FIB model are verified against that the measured values from the
experiment. The percentage errors between the model and experimental values are

derived and listed in the table.

Table 5-13 Comparison between model and experimental data for depth variation

Pattern 1 2 3 4 5

Set Z values from FIB model (nm) 09 | 133 | 162 | 1.81 | 194

Z measured (nm) + 0.03 from sectional
101 | 132 | 161 | 1.80 | 1.96
analysis

Difference in model and experimental
cross-sectional depths (%)

5.0 0.8 0.6 0.5 1.0

The data in Table 5-13 shows that there is a very good agreement between the intended
shape as analysed with the model and the actual experiment (see also Figure 5-27). Only
at the level of the first topmost step the difference in depth between the model and the
experiment is larger (5%). This can be possibly due to a measurement related error and
possibly deviations from the expected milling parameters at the topmost layer of the
target materia in terms of material composition. The errors may arise due to the
inaccuracy to capture precise process parameters values due to parameters uncertainties.
The depth at all other subsequent steps defining the cross-sectional profile is extremely

well predicted. The percentage errors are less than one percent. At the centre line of the



trench the mode predictions associated with depth 1.94 nmm compare with the
measurement of 1.96 mmfor the actual obtained shape experimentally. The model
validation study has demonstrated that the FIB computational model can be used as a
powerful tool to predict how to set the FIB system in order to accurately achieve the
desired shape without using a trial-and-error approach. It is critical to use accurate
model input data related to the process parameters as variations do aways exists, and in
particular in relation to the sputtering yield value. The impact of re-deposition is not
prominent and influential for affecting the final shape obtained here due to the high
aspect ratios of the shape feature [80]. Additional computations accounting for re-

deposition effect must be considered in the scenarios of low aspect ratios product shape.

LUT 4
0+

Experiment

-0.96 +

-1.33 +

-1.62 +
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-1.94 4 \

T

Figure 5-27 Model vs. experimental cross-sectional profiles
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Closure

A few mathematical model that can be used to predict pixel dwell times, or number of
FIB scans required to mill predefined shapes have been developed. Important process
parameters are explored and explained through the explicit model. Accuracy of the
model is also enhanced by addressing the accuracy of process parameters such as
obtaining a validated sputtering yield. The models are then applied on predicting shape
of a 2D parabola, a rectangular block and a 3D parabolic trench with different beam
operation approaches. Finaly, the procedure has been implemented and tested
successfully on the test case study of milling a micro-trench with parabolic cross-
section. There is a very good agreement between the intended shape as analysed with
the model and the actual experiment. In most of the pattern area over the parabolic
trench, the model prediction for depth is having less than 1% deviation from the
experiments. For example, in the test case, the centre line of the trench the model
predictions associated with a depth 1.94 nmcompared with the measurement of 1.96
mmfor the actual experimentally obtained shape. The work does not only help how to
gain a precise process control, but it also helps evaluate the risk of achieving fina shape
with accuracy when the process is exposed to uncertainties in reality (as a future work).
As a result, research and study on focused ion beam application can move towards
robustness. Optimisation can be undertaken to minimise the deviations of shape

prediction, and maximise process capability.
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Chapter 6 Risk Analysison Focused |on Beam Sputtering

Process

In this chapter, the simulation-driven methodology is demonstrated using the validated
focused ion beam model from the previous chapter. Uncertainty propagation of two
process variables: angle and energy on process output- milling depth are demonstrated
by means of the response surface model. An optimisation problem is aso outlined and

identification of the optimal process performance is presented.

6.1. Risk Mitigation for Variability and Uncertainty in Manufacturing Processes

The risk analysis methodology development mainly addresses the risk of achieving
process performance and design specifications. The novel aspects include:
Conventional statistical analysis approaches for risk analysis based on Monte
Carlo simulations enhanced with approximate but more efficient analytical
methods such as First Order Second Moment method,;
Risk analysis integrated with reduced order models for product/ process analysis;
Adopting non-polynomia reduced order models within the response surface

approach for generating reduced order models.
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In order to illustrate the process capability of the FIB materials sputtering process, arisk
analysis methodology integrated with other computational methods is proposed in this
thesis. Risk analysis of the FIB process is a new area which has not been studied much
before. Integration of the computational tools as the proposed methodology is an
important novel outcome of this research study. The risk mitigation can provide a novel
strategic way to help understand the impact of uncertainties involves in the use of FIB

related technologies.

Focused ion beam (FIB) sputtering capability is widely used to mill fine structures with
pre-defined shape at micro- and nano-scales. The challenge of achieving the pre-defined
shapes depends on whether process parameters can be well controlled to predict the
response precisely. However, uncertainties aways come along with the process
variables and have significant effects on the process performance and reliability. In this
chapter, process variable uncertainties are introduced and their impact on performances
are quantified their impact on performance. Recalling the risk analysis methodology as
shown in Figure 3-1 such that computational modelling characterises sputtering yield
and milling depth in terms of two investigated process variables. beam angle and energy
and other process variables. A reduced order model is constructed using various
response surface techniques. The analysis of the design and performance in terms of risk
of fallure, capability of satisfying specification limits are examined for three FIB
processes with three various ion sources. The FIB process scenarios are demonstrated
with the risk analysis methodology comprising reduced order modelling and risk
analysis. Kriging interpolation is used to investigate the focused ion beam sputtering

process explained asin Figure 6-1.
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(Formulate problem)
Define objective function and design variables

)

(Design of experiments)

A

Select design points

'

(Computational analysis)
Determine the values of objective function at each experimental
point by simulations/ experiments

(Construction of reduced order model)
Generate response surface model -regression approximation,
Kriging interpolation, etc.

(Risk Analysis)
Unccrtainty propagation and gcencratce the proccss output
distribution, followed by process capability evaluations

)

(Search for optimal point)
Scarch for optimal point from gencrated reduccd order modcl
using different optimisation algorithm

v

Is optimal point within design space?

Yes

Optimal design

Figure 6-1 A procedural flow representation of the risk analysis methodology

(1) Identify process setup, process inputs (i.e. process variables we can vary to achieve
different objective function), and process output (process performance metrics).
(2) Use Design of Experiments (DoE) to define different sets of process inputs.

(3) For each DoE point in step 2 above asses the process output response values (model

or real experiment can be used)

(4) Use DoE process response values to build reduced order model (ROM) by fitting the

DoE data with different numerical techniques.

(5) Perform statistical risk analysis and calculate process capability using defined

specification limits.

(6) Undertake numerical process optimisation.
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6.1.1. Application of the M ethodology

This chapter consists of two main sections. The first section is to characterise the
relationship of sputtering yield, angle and energy by reduced order model. The
constructed reduced order model (ROM) can facilitate the sputtering yield extraction
avoiding SRIM and experiment and it also be used for sensitivity analysis to identify
significant process variables (presented in chapter 6.1-6.3). The second section is to
explore the risk analysis and optimisation modelling (presented in chapter 6.4-6.7)
based on the identified validated FIB model. To understand the physical behaviour of
focused ion beam milling process, computational modelling followed by design of
experiments are undertaken according to the risk analysis methodology which is shown
in Figure 3-1. Two separate design of experiments (DoE) were considered in order, i.e.
(1) relating the angle and energy — sputtering yield and (2) relating the angle and

energy — milling depth.

In the first DoOE, sputtering yield values can be extracted through empirical formula or
experiments. Here, the details are obtained via simulation-based software SRIM which
is well validated by means of experiments and literature. In the second DoE, milling
depth is manipulated through the validated FIB model governed by Equation (5.12). To
account for the variability of the sputtering process, regression models that relate angle,
energy and sputtering yield are used to identify the main effect, and the interaction
effect of the process variables on the process performances. Sensitivity analysis were
carried out based on the regression model, as an important step for subsequent milling

depth analysis and understanding the FIB process behaviour.
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In the second DoE, another response surface model: Kriging model is used to
characterise the relationship between angle, energy and milling depth. Kriging
interpolation methods are applied to enhance the accuracy of reduced order model to
predict the milling depth. In order to account for the parameter uncertainties and their
impact on the process milling depth during the FIB process, risk analysis is carried out.
Sampling method and analytical method are applied via the developed reduced order
models (ROM) instead of the FIB computational model in order to generate many
evaluations of milling depth in the sample space. Three ion beam sources, Argon,
Xenon and Gallium ions, have been used to compare and quantify the process variable
uncertainties that can be observed during the milling process. The evauations of the
milling depth take the uncertainties and variations of angle and energy into account and
are used to identify their impact on the reliability and quality of the fabricated structure.
Finally, an optimisation based design task is formulated to identify the optimal process
conditions, by varying the process variables, so that certain quality objectives and

reguirements are achieved and imposed constraints are satisfied.

6.2. A Reduced Order Modd for the Sputtering Yield

6.2.1. Design of Experiments

Severa experiments concerning for the ion bombardment process were designed. It is

used to establish the relationship between the yield value with respects to angle and

energy. Let x, be the continuous process variable angle of incidence, x, be the

continuous process variable beam energy, v, be the process output which characterises
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the process performances sputtering yield. Values of x, and values of x, generate a

vaue of v_ . A few representative design points are selected in the design space

depending on the chosen experimental design. The design points are scaled from -1 to 1
and their corresponding design limit is x, 1 [0°,80°]and x,1 [10keV,50keV]. A Central
Composite Design (CCD) Experimental design is chosen. It requires at least nine design
points for a ‘two-process variable’ problem. The design points are selected at the

boundary and midpoint of the design limit in the design space as shown in Figure 6-2.

Energy (keV)
A
50 [~ - ®
30" > 9
10 [7% ¢ ¢
L ' L» Angle (degrees)
0 40 80

Figure 6-2 Design point selection using Central Composite Design

Materias, physical properties and process variables values x, and x, for one set-up are
specified in the software SRIM (the stopping and range of ions in matter) to generate a
value of sputtering yield [132]. Then a few representative design points are chosen to
formulate a design of experiment table. One example of experimental setup is detailed
in Table 6-1. It demonstrates an ion bombardment process using Xenon ion beam.
Table 6-2 is the design of experiment tables for Central Composite design. It
summarises the sputtering yield generated using Xenon ion beam in SRIM.

Table 6-1 Materials, physical properties and process variables values
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SRIM simulation

lon used Xenonion
lon Weight Mass (amu) 131.904
Silicon (Massin amu: 28.08,
Sample surface
Atomic density: 5~ 10 atoms/cm®)

Incidence angle x; 60 degree

Beam energy x, 20 keV

Sputtering yield Ys,,, 7.66 atoms/ion
Number of runs 1000

Table 6-2 DoE summarises the sputtering yield using Central Composite Design

_ Incident | Beam | Incident | Beam | Sputtering
DoE tria )
angle | energy | angle | energy yield
run number )
(degree) | (keV) | (atoms/ion)
1 -1 -1 0 10 2.04
2 -1 0 0 30 3.16
3 -1 1 0 50 3.34
4 0 -1 40 10 5.17
5 0 0 40 30 711
6 0 40 50 7.53
7 1 -1 80 10 24.08
8 1 0 80 30 39.08
9 1 1 80 50 46.64

6.2.2. A Polynomial Reduced Order Model

. Is expressed as a function of the process

The Process response-sputtering yield v,

variables x;, and x,. A scaled second order polynomia model is constructed using DoE

(CCD) table in Table 6-2 by linear regression. The regression model is given by
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Equation (6.1) where the regression coefficients are detailed in Table 6-3. For example,

b,x, becomes the linear term whereb, describes a linear effect of the variable x, .

b,,x x, iscalled theinteractionterm and b, x,?> becomes a quadratic term.

Y,iaa (%, %) =By +byx +0,%, +b,%%, +by,3% +by,x,° (6.2)

Table 6-3 Regression coefficients for the polynomial response surface models

Regression Coefficient | Central Composite Design
b, 7.7
b, 16.88
b, 4.37
by, 5.315
by, 13.12
b,, -1.65

The coefficient to determination R*of the above approximation is found to be 0.98499
while the adjusted R’ is reported to be 0.93996. The coefficient of variation is

0.2220127. From the statistical tests, the constructed polynomial has indicated a good

approximation, i.e. both R* and the adjusted R? are above 0.9.

6.3. Sensitivity Analysis of the lon Bombardment Process

The effect of each variable, namely the linear, interaction and quadratic effects, on the
process output can be determined by the regression coefficient of the approximation
polynomial. Sensitivity analysis is another way to identify the significance of angle and
energy on the sputtering yield. It is performed on the reduced order polynomia in order

to identify which process variable can cause a higher degree of variations on the process
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performance. The effects of any algebraic terms in Equation (6.1) can be deduced by
extracting the average sputtering yield of the associated terms with the scaled level
being set at -1’, a ‘0’, and at ‘1’. Table 6-4 details the level setting of linear terms,
interaction term and quadratic term. The main effect of the variable angle is the
differences of average sputtering yield values between the level setting of x, at *-1’ and
a ‘0’. These differences are denoted by the slope of graph presented in Figure 6-3. The
slope indicates the significance of the associated effect of process variables. The higher
the slope, the more significanceit is.

Table 6-4 The scaled level setting of terms showing effects of angle and energy

N

2

DoE trial number | X, | X, | X" X, | x* | X,
1 -1]-1 1 1 1
2 -1 0 0 1 0
3 1)1 -1 1 1
4 0|-1 0 1
5 00 0] 0
6 01 0 0 1
7 1|-1 -1 1 1
8 10 0 1 0
9 1|1 1 1 1

Main effect of angle x, is determined by extracting the average of sputtering yield with
scaled angle at “-1’ level setting (i.e. the average of sputtering valuesin trial run 1, 2 and
3), a ‘0 (tria run 4, 5 and 6), and a ‘1’ (trial run 7, 8 and 9), the corresponding
average yield against angle is plotted in Figure 6-3(a). Similarly, main effect of energy
can be deduced from the graph in Figure 6-3(b). To identify interaction effect of the

term x, ” x,, the multiple of their level settings can be checked from the fourth column

in Table 6-4. Interaction effect of angle and energy is determined by the average
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sputtering yield between trial 1 and 9 (term level setting at ‘1°), the average sputtering
yield among DOE tria 2, 4, 5, 6 and 8 (term level setting at ‘0’) and the average
sputtering yield between trial 3 and 7 (term level setting at ‘-1’). The slope of the

interaction term is plotted in Figure 6-3(c).
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Figure 6-3 Relationships of single and interaction process variable against the process

response - sputtering yield

To summarise from Figure 6-3, sputtering yield is more sensitive to change when
variations impose on main effect of angle. Quadratic term cannot be estimated here. The
term level setting of at *-1’. x> and x,? cannot be determined from Table 6-4 due to the
reason that x,? and x,? are always positive. There does not exist a slope between the
high level ‘1’ and low level ‘-1’ setting. However, the quadratic term effect can be

determined by evaluating the regression coefficient (in Table 6-3).

The degree of each process variable impact on the process output is quantified by the

regression coefficient of each term (linear, interaction and quadratic term). The
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regression coefficients are compared directly in a scaled design space which possesses a
common scale. For any unit change of a variable, the effect of the related terms will be
magnified by their regression coefficients. The regression coefficient effect on the
process output value with respect to the constant term is presented in Figure 6-4. The x-
axis denotes term number 0,1, K,5 which refers to regression coefficient of polynomial

reduced order model with respect to the constant term. The y-axis denotes the

corresponding sputtering yield v, . The significance of each term can be determined by

the absolute length of the bar which refers to the regression coefficient in Table 6-3. A
negative bar means that increasing the process variable results a decrease in the process

output. From Figure 6-4, linear term x_has the highest impact on v_,.

Regression coefficient

25

20

15

10 —‘
T T T T T —
1 2 3 a 5

(0]

Sputtering yield Ysp

Term number

Figure 6-4 The regression coefficient effect to the constant term

6.4. Risk mitigation —Risk Analysis

6.4.1. Process Problem Definitions

The objective of this study is propagate the uncertainties in the focused ion beam
process using the validated FIB model as described in section 5.6 by using the
probabilistic based risk analysis detailed in chapter 4. Uncertainties are introduced into

the two process parameters. beam angle of incidence and beam energy to forecast the
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uncertainties of milling depth in terms of probabilistic distribution. Those small
variations can cause process performance and quality characteristics deviations- milling

depth from specification — predefined shape.

6.4.2. Computational Modelling

A modelling procedure is introduced in chapter 5.7 to predict and number of scans
needed to mill pre-defined micro-structures at a given pixel dwell times. This can be
used to derive the total milling time of scanning the pattern area. The input of the model
in Equation (5.12) is the pre-defined geometric shape characterised by Z;;. The model
predicts the number of beam scans on each pixel for achieving the pre-defined geometry.
The corresponding total milling time is then computed on each pixel. This total pixel
time predicted from the model (known as the given time) are used as a process input,
along other process parameters. The pre-defined sputtered shape investigated here is the
same to Figure 5-19: a 3D stepwise parabolic micro-trench which has both width and

length of 10 um.

6.4.3. Process Set-up and Design of Experiments

In this study, three focused ion beam of Gallium, Argon and Xenon cation beam with
diameter 55 nm (Full Width at Half Maximum) were used to accelerate the incident ions
and raster across a silicon surface. Two process variables are examined: (1) beam angle
with anominal value 35 degrees and (2) beam energy with anominal value 30 keV. The
defined trench geometry is used as a process input. The process variables are the same
as the experimental setup in section 5.7.1. Pixel dwell time (ty,) for producing such 3D

trench are predicted at the nominal values for the beam angle (35 degrees) and energy
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(30 keV) from FIB model. tyy, predicted a the nominal value from part 1 to part 5 are
listed in Table 6-5. Sputtering yield Y(E, =30 keV,awj =35") expressed as afunction

of beam angle and energy is 4.08 at the sixth row in Table 6-7.

Table 6-5 The model prediction for pixel dwell timety, inthethree FIB processes

Pixel on Part # 1 2 3 4 5
Gallium FIB
_ _ 0.008359 | 0.011494 | 0.014106 | 0.015760 | 0.016892
Pixel dwell time (sec)
Argon FIB
_ _ 0.012787 | 0.017715 | 0.021578 | 0.024108 | 0.025840
Pixel dwell time (sec)
Xenon FIB

_ _ 0.005874 | 0.008137 | 0.09911 | 0.011074 | 0.011869
Pixel dwell time (sec)

These dwell time in Table 6-5 are now specified as the process inputs. At these given
dwell time, altering the two process variables will change milling depth Z;; (defined as
the process performance metric of interest) at each part or pixel of the produced trench.
Sputtering yield varies accordingly and dwell time are kept the same to Table 6-5. On
each of the pixel over the pattern area, we can obtain a deviated milling depth by
varying the two process variables. For ssimplicity, the centre pixel of pattern 5 is
focused to illustrate how to obtain the deviated milling depth by varying the two process

variables at the given time 0.011869 sec for Xeon ion. The process will be repeated to

identify the deviated milling depth for Gallium ion and Argon ion as well. Let x be

process inputs beam angle, and x, bethe beam energy. Let v, , bethe process outputs

epth
characterised by milling depth. DoE can be carried out using a limited identified design
point (a series of combination values of two process variables- angle and energy here) in

a two dimensional design space. Centra composite design (CCD) is used to generate
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nine design points for Argon, Xenon and Gallium FIB process while four additional
design points are added in the Gallium FIB process based on a factorial design applied

to a reduced, in terms of variable's range, inner design sub-space. The process

performance, milling depth v, , on these design specifications or points are computed

through our FIB model. The design points are scaled from -1to 1i.e.ang,E1 [- 1] and
their corresponding design limit is x, 1 [10°,60°] and x,1 [20keV,40keV]. All process
variables are required to be transformed to scaled values in any type of DoE and ROM
generation. The DoE points, associated sputtering yield and other process variables are
compiled into FIB model to obtain the milling depth prediction. Let us illustrate the

milling depth v, . on the centre bottom pixel of the trench as a demonstration in

epth
Table 6-6 for the Argon FIB), Xenon FIB and Table 6-7 for Gallium FIB. The same
milling depth calculation can also be done on other pixel to get the deviated milling
depth for the whole structure.

Table 6-6 The DoE - sputtering yield and milling depth using Argon and Xenon FIB

_ Argon Xenon

Design
. X%

point Y,, (atomsfion) | v, (um) | v,, (atomsfion) | v, (um)
1 -1(-1 1.68 1.066 2.43 0.856
2 -110 15 1.070 2.94 0.954
3 111 1.35 1.086 3.1 0.994
4 0-1 2.68 1911 5.18 1.624
5 00 2.52 1.940 5.82 1.940
6 0|1 2.48 1.980 6.4 2.197
7 1/-1 8.14 5.990 14.46 4.827
8 10 7.8 6.044 16.17 5.361
9 11 8.46 6.110 17.76 5.836
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Table 6-7 The 13 DoE points, sputtering yield and milling depth using Gallium FIB

Designpoint | % % Y,, (aoms/ion) Yyeprn (M)
1 -1 -1 1.97 0.925
2 -1 0 2.15 0.967
3 -1 1 2.22 1.001
4 0 -1 3.63 1.660
5 0 0 4.08 1.940
6 0 1 4.22 2.022
7 1 -1 11.84 5.634
8 1 0 12.99 6.056
9 1 1 133 6.280
10 -0.5 -0.5 2.16 1.017
11 -0.5 0.5 2.39 1.126
12 0.5 -0.5 7.30 3.443
13 0.5 0.5 7.84 3.694

6.4.4. Reduced Order Modelling

Reduced order models (ROMs) are generated with explicit approximate function or

interpolated function to characterise the relationship between process variables and FIB

process performance metric- milling depth. Let v, . be the milling depth in microns.

Although it can be obtained through full detailed FIB model, response surface
modelling is a more efficient approach to generate fast FIB evaluations which facilitate

the risk analysis and optimisation. Two types of ROMS (1) polynomial reduced order
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model and (2) Kriging reduced order model are illustrated for Argon, Xenon FIB and

Gallium FIB respectively.

6.4.4.1. Polynomial ROM

For a quadratic respond surface, the coefficients of such a model are computed using
least square approach to provide the best fit of the DoE data to evaluate the process
performance metric. The generated polynomia reduced order models of the FIB
response- Milling depth using the nine DoE points listed in Table 6-6 for Argon FIB
(see Equation (6.2)) and Xenon FIB (see Equation (6.3)) are defined as follows. The

Gallium FIB ROM in Table 6-7 is also derived in Equation (6.4).
Ydepth(Ar) =1.94+2.487x, +0.0348x%, +0.025x %, "'1-617)(12 +0.006)<22 (6.2
Y(mh(Xe) =1.94+2.203x, +0.2864%, +0.2177% %, +1.217)<12 - 0.0293><22 (6.3)

Y, (GR) =1.94+2.497, +0.1807x, +0.1426%x, +1.619%2 - 0.09897%,2 (6.4)

where vy

o = Milling depth, x, =angle, x, = energy

It is essential to carry out the goodness of fit test which summarise the discrepancy
between observed values and the values obtained through the model. Two indicators
Coefficient of variation (CV) and the adjusted Coefficient of Determinations (Adjusted
R?) are used to measure the accuracy of the above polynomials reduced order mode
and how well they fit the DoE data. Table 6-8 details the coefficient of variation (CV)
and Adjusted R?of the above polynomial ROM for the milling depth prediction in FIB
process. The measure shows the coefficient of variation is at atiny order and Adjusted
R? equals one which is very accurate for the milling depth prediction.
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Table 6-8 Coefficient of variation and Adjusted R? of ROM of three processes

Argon FIB Xenon FIB Galium FIB
Coefficient of variation (CV) | 4.95x 10" | 2.647156 x 10™® | 3.893878 x 10
Adjusted R? 1 1 1

6.4.4.2. Kriging Reduced Order Model

Kriging is a method of interpolation. It predicts unknown values from data observed at
known points and minimises the error at the predicted values that are estimated by
distribution of observed data. The generated Kriging reduced order models for milling

depth prediction in Gallium FIB using the thirteen DoE points listed in Table 6-7 are

defined as follows (Equation (6.5)):

Yoo = 3.040 + 2.497x,0.1897x, +1.382" g g,

i=1

£ &5 h

05 h°6

€1.743 1743 4

(6.5)

where h :\/(x1 ()(1)i)2+(X2' (%), )2 and =1 |y (0 =13, number of DoE points)

and g, issummarised in Table 6-9.

Ydepth
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Table 6-9 Kriging model coefficients for y;

i (x, )il scaled] (X, )il scaled] 9,

1 -1 -1 -0.6628
2 0 -1 -0.5898
3 1 -1 -0.4271
4 -1 0 0.7924
5 0 0 0.09855
6 1 0 0.7924
7 -1 1 -0.4271
8 0 1 -0.5898
9 1 1 -0.6628
10 -0.5 -0.5 0.4557
11 -0.5 05 0.3825
12 05 -0.5 0.3825
13 05 05 0.4557

6.5. Uncertainty Propagation of Milling Depth

In FIB manufacturing process, uncertainties can exist due to (1) lack of understanding
about the process such as re-deposition effect, and (2) random variations and stochastic
behaviour in physical and parametric properties. For example, the random variations to
deliver specified process parameters such as beam angle and current. The uncertainties
like types (2) — uncertainties in process inputs would propagate to affect our process
outputs. Failure of predicting these uncertainties and variations could lead to product
characteristics, process performance and behaviour faling beyond the tolerable
specification limits. Therefore, risk analysis is employed to assess uncertainty in

performance/quality characteristics and associated product or manufacturing capability.
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There are two common types of risk anaysis techniques: (1) sampling method and (2)
analytical method. Monte Carlo and Latin Hypercube methods are used in the study.
The analytical method presented is the Mean Vaue First Order Second Moment
(FOSM). In Figure 6-5, it shows how input uncertainty distributions are programmed
into the constructed model to generate a probabilistic distribution for evaluation
uncertainty in performance. x, and x, are the two process inputs in terms of uncertainty
distribution. The process performances are characterised by ywhich is expressed as a

functionof x, and x,,i.e.y= f(x,Xx,).
B I 4

Polynomial model
Kriging model
Ydepth = f (X1,X2)

ﬂ Sampling or analytical method

-
z 7l I
@ LSL USL
a5 —
>% Process Capability
= c
a7 |:> @Evaluate process performance
Qo
o
a JReflect process robustness with
P m\ respect to customer specification

Ydepth
Figure 6-5 Input uncertainty distribution are programmed into the constructed model to

generate a probabilistic distribution for evaluation of uncertainty in performance

Let x, and x, be the two process variables angle and energy. Let v, be process

output which characterises the process performances milling depth in the FIB process.

x, and x, both have their own defined uncertainties following Gaussian distribution

respectively. Many design points (sample points) from the specified distribution are
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selected and compiled into the realised ROM, i.e. v, = f(x,x,) 0 generate v,

epth epth

where v

o 1S the process performance. After performing the risk analysis using any one
of the methods, a probability density function (PDF)/ histogram can be obtained that

characterises the uncertainties of v

depth *

Then process capability concepts can be used to

evaluate such a PDF to determine the actual process capability with respect to the

customer requirements.

The model can actually be either the polynomial ROM or Kriging ROM to characterise

f(x.,x,) . Note that x,, x, and v, are now no longer a deterministic value. They

become a distribution. According to the procedures explained in Figure 6-5, the steps

and appropriate input and procedural flow are outlined as follows:

(1) Specify design limit for x, and x, , process variables [imit are as follows:

Variablelimit | Scaled limit

Beam angle x | 10 to 60 degrees -1tol

Beam energy x, 20 to 40 keV -1tol

(2) Specify uncertainties distribution on x, and x,. Uncertainty distribution is assumed

to be normally distributed with mean and standard deviation listed as below.

Mean [unscaled value] | Standard Deviation [unscaled value]
Beam angle x 0[35 degrees] 0.015[0.375 degrees]

Beam energy x, 0[30keV] 0.01[1keV]
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(3) Sampling points generation to produce the specified distribution in step 2. Those
sample points can be compiled into any of one ROM for the milling prediction. Kriging

ROM as Equation (6.5) is applied here.

(4) Aggregate the results of all the computations (1000000 manipulations are set for
Monte Carlo Sampling and 1000 manipulations are set for Latin Hypercube Sampling)
to propagate the process output distribution using any methods. MCS and LHS.
Analytica method - FOSM based on pure mean and standard deviation calculations to

construct the distribution are also illustrated.

(5) Evauate with output uncertainty with capability assessment of the process

behaviour with regards to the specification limits (customer reguirements). Process
cagpability index ¢ and c , can be used in the case showing output distribution

normality. Upper specification limit (USL) and lower specification limit (LSL) should

be defined by user.

(6) User defined USL and LSL for sputtering yield in this test case
Upper specification limit (USL) | Lower specification limit (LSL)
Milling depth 1.85 2.03

6.5.1. Probabilistic Distribution of Milling Depth

Risk analysis results are presented in forms of process output probabilistic distribution.
To demonstrate the calculation procedure for risk anaysis in Gallium FIB, the
following uncertainty of the FIB input process variables is assumed. Uncertainty
distribution is assumed to be Gaussian distributed for beam angle and energy with
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standard deviations 0.375 degrees and 0.1 keV, mean value 35 degrees and 30 keV
respectively. The milling depth at the centre pixel is the performance metric of interest.
Process output evaluation is undertaken at the nominal or mean values of the process
input variables. Kriging reduced order model are now involved in undertaking risk
analysis methods comprising of Monte Carlo Sampling methods, Latin Hypercube
Sampling methods and Mean Vaue First Order Second Moment (FOSM) analytica
methods. Any beam angle and energy samples from their defined distributions are
compiled into the Kriging ROM to generate milling depth distribution (PDF). The
milling depth distribution predictions with regard to each estimation method are shown
in Figure 6-6 (a), (b) & (c), respectively. The graphs show the shape, the centre and the
spread of the distribution. For example, a Gaussian distribution is formed from 1000000
samples resulting a mean value 1.942 and standard deviation 0.03757. This represents
how much variations of milling depth are deviated from mean value (see Figure 6-6(a)).
In Figure 6-6(b), the graph is obtained by taking 1000 samples using the Latin
Hypercube Sampling method, while Figure 6-6(c) is obtained from analytical method
FOSM. The statistics regarding the mean and standard deviation of the milling depth
distributions from all methods are listed in Table 6-10. The mean and standard deviation
from al methods are of atiny difference for this case. When a customer specification
limit is defined, process capability ratio can quantify how ‘well’ the output variable falls

to the target or the process tol erances.
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A Monte Carlo Mean = 1.942
Sampling
. Standard deviation = 0.03757
Q
g LSL USL
= Cp=0.7986
: ¥ !
= Cpk=0.7777
Points (%) within target
range: 98.24%
1.8 1.85 1.9 2.0 2.05 2.1
Milling depth (um)
(a) Milling depth distribution estimated by Monte Carlo Sampling method
1 Latin Hypercube Mean = 1.942
Sampling
o Standard deviation = 0.03756
Q
5 LSL USL
= Cp=10.7986
: ¥ p
k- Cpk = 0.7784
Points (%) within target
range: 98.2%
1.8 1.85 1.9 2.0 2.05 2.1
Milling depth (um)
(b) Milling depth distribution estimated by Latin Hypercube Sampling method
A First Order Mean = 1.94
Second Moment
o Standard deviation = 0.0375
Q
=}
2 LSL USL Cp=0.8001
2 ¥
=3
Cpk =0.7996
Points (%) within target
range: 98.36%

1.8 1.85 1.9 2.0 2.05 2.1
Milling depth (um)

(c) Milling depth distribution estimated by FOSM anal ytical method

Figure 6-6 Galium FIB: Comparison of the three milling depth distributions via

Kriging ROM
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Table 6-10 Details (the mean and standard deviation) of milling depth distribution

Monte Carlo | Latin Hypercube | FOSM

Mean [Milling depth in pm] 1.942 1.942 194

Standard Deviation 0.03757 0.03756 0.0375

In general, sampling based methods tend to provide better output estimations than the
analytical FOSM method, but sampling methods are more computationally expensive.
In this study al methods provide similar estimates for milling depth distribution.
Therefore, in the following optimisation analysis under uncertainty (chapter 6.7), the
probabilistic design quantities can be evaluated with FOSM instead of Monte Carlo to

speed up the iterative optimisation process.

6.6. Process Capability Evaluation

Capability ratio ¢ and c , are used to compare the capability of a process to the
specification limits. It evaluates the probabilistic distribution of the performance metric
(milling depth). ¢ has been defined by Equation (4.24) and c , has been defined by

Equation (4.25). Let us look at the risk analysis result where milling distribution are
estimated from Monte Carlo method via Kriging reduced order model for Gallium FIB.
LSL= 1.85 um and USL= 2.03um are assumed. From the graphs and associated

statistics beneath in Figure 6-6(a), we can observe that under the specification

assumptions being made, the Gallium FIB has a process capability c = 0.7986 and

C, =0.7777. The regions below the lower specification limit and above the upper
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specification limit indicate the amount of non-conforming samples. These samples

should be rgjected as they exceed the system or process tolerances. Another conclusion

can be drawn from the c | value that this process is considered as not capable enough

with ¢ below 1.5 or ¢, below 1. From the graph, only over 98.24% of the milling

depth values predicted fall within the specification limits with the Gallium FIB.

i
Monte Carlo Mean = 1.942
Sampling
o Standard deviation =0.03757
Q
§ UsL Cp=0.7986
: 4 -
=
Cpk =0.7777
Points (%) within target
range: 98.24%

1.8 1.85 1.9 20 205 2.1

Milling depth (um)

Figure 6.6(a) Galium FIB: Milling depth distribution estimated by Monte Carlo

sampling method through Kriging ROM using 1000000 samples

The significance of the certainty percentage tells the engineer how capable your process
Is in comparison to specified limits. 98.24% points within target range is far from
meeting a typical engineering goa of industry ‘design for six sigma’ which requires
long-term production defect levels below 3.4 defects per million opportunities (DPMO).
I.e. A six sigma process is one in which 99.99966% of the products manufactured are
statistically expected to be free of defects. The preferred sigmalevel for industriesis 4.8
and is considered ideal for any industry. The usua standard sigmalevel used is 3.5. The

percentage of points within target range and the DPMO are detailed in Table 6-11 [139].
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Table 6-11 Process conforming percentage and DPMO level

Sigma evel Pe_rce_”tage of points I\/Iaximu.m.allowable d?f.ects in Defects
within target range per million opportunities (DPMO)
1 31% 697632
2 69.20% 308537
3 93.320% 66807
4 99.3790% 6210
5 99.977% 33
6 99.99966% 34

6.6.1. Case Study 1- Addressing Uncertainty for Argon and Xenon Beam

Using the ¢, and c, indicator/tool, two other FIB processes Argon FIB and Xenon

FIB under different degree of process variable uncertainties are investigated. The key
objective in this test case is to illustrate their process capability comparison under
various degrees of uncertainties. Argon FIB is possessed a lower uncertainty in angle
but a higher uncertainty in energy than those of Xeon FIB. One would interest what the
process capability be which is superficially unpredictable for these scenarios. Again, the
following uncertainty of the FIB input process variables is assumed: (1) Argon FIB:
Gaussian distribution for incidence angle and energy with standard deviations 0.375
degrees and 0.1 keV respectively. (2) Xenon FIB: Gaussian distribution for incidence

angle and energy with standard deviations 0.5 degrees and 0.05 keV respectively.

Risk analysis using Monte Carlo Sampling method is carried out via the polynomial
reduced order model representing Argon FIB (Equation (6.2)) and Xenon FIB (Equation
(6.3)). LSL= 1.85um and USL= 2.03um are assumed. From the graphs and associated

statistics beneath in Figure 6-7(a) & (b), under the data assumptions being made, the
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Argon FIB has higher process capability (¢, = 0.8032) compared with the Xenon FIB

(c, =0.6797). Over 98.38% of the milling depth values predicted with the Argon FIB

fall within the specification limits while for Xenon FIB process, only 95.84% will meet

the specification requirements. The difference of c is due to the assumption made that

uncertainties in process variables angle of Xenon FIB is higher than Argon FIB. Any
real data from reality about the actual uncertainties for the two processes could fit back

into this process capability determination approach.

Monte Carlo Mean = 1.94
Sampling

Standard deviation = 0.0373

USL
Cp=0.8032

¥

Frequency

Cpk = 0.7992

Points (%) within target
range: 98.38%

1.8 1.85 19 2.0 2.05 2.1

Milling depth (pum)

(a) Argon FIB: Milling depth distribution estimated via polynomial ROM

Monte Carlo Mean = 1.941
Sampling
Standard deviation = 0.04414

LSL USL

Cp=0.6797

¥

Frequency

Cpk = 0.6752

Points (%) within target
range: 95.84%

1.8 1.85 1.9 20 205 21

Milling depth (um)
(b) Xenon FIB: Milling depth distribution estimated via polynomia ROM

Figure 6-7 Comparison of Risk analysis results for Argon FIB and Xenon FIB

6.6.2. Case Study 2- Comparing Polynomial and Kriging Models

The aim of this case study is analysing any differences on risk analysis result of using

Polynomial ROMs against Kriging ROMS. Take Gallium FIB as a demonstration, the
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same process variables uncertainties distributions are defined. The same specification
limits, LSL= 1.85um and USL= 2.03um, are assumed. Risk analysisis performed based
on Monte Carlo method using both polynomial ROMs (Equation (6.4)) and Kriging
ROMs (Equation (6.5)). Their results are shown by Figure 6-8(a) and (b) respectively.
However, the sigma (standard deviation) of the milling depth distribution and the

process capability ratios obtained are different between two runs. The process capability

ratios c obtained from polynomial ROMs result (¢, = 0.7952) are higher than
Kriging ROMs (c = 0.7777). Process capability is overestimated in polynomial ROMs.

Monte Carlo Mean = 1.94
Sampling

Standard deviation = 0.0373

USL Cp=10.7992

¥

Frequency

Cpk =0.7952

Points (%) within target
range: 98.33%

1.8 1.85 1.9 2.0 2.05 2.1

Milling depth (um)

(a) Gallium FIB: Milling depth distribution estimated via polynomial ROM

Monte Carlo Mean = 1.942
Sampling
Standard deviation = 0.03757

USL
Cp = 0.7986

s

Frequency

Cpk=0.7777

Points (%) within target
S range: 98.24%
1.8 1.85 1.9 2.0 2.05 2.1

Milling depth (um)

(b) Gallium FIB: Milling depth distribution estimated via Kriging ROM

Figure 6-8 Gallium FIB: Comparison of results via Polynomial and Kriging ROM

From the above two graphs, it is difficult to judge polynomial ROMs or Kriging ROMs
provides better result. However, in terms of both models physical definitions,

polynomial model is only a response surface approximation to fit the DoE/observed
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data which includes errors. Kriging is an interpolation method which the response
surface model absolutely passes all the DoE or observed data point. Kriging model is
more reliable over the polynomial model. This test case aso illustrates the significance
of ROM accuracy and how well it represents the real high fidelity process. High
discrepancy between the ROM and full high fidelity model can affect the accuracy of

subsequent risk analysis and optimisation result.

6.6.3. Case Study 3- Investigating the | mpact of Uncertainty in the Design Space

From the sengitivity analysis result, beam angle is a more dominant variable to beam
energy. The main objective here is to uncover how uncertainties/ variations of the key
process variables taken at various regions within the design boundary, exert different
degree of impacts on the process performance metric. Since milling depth is dependant
and directly proportional to sputtering yield, the relationship of milling depth against
beam angle should aso follow the one between the beam angle and sputtering yield.
Their relationships between the beam angle and sputtering yield can be represented by
Figure 6-9 [131]. It is observed that angle value moving from 10 degrees towards 60
degrees would result a sharp sputtering yield increase.

A

20 keV Ga+ on
Si(100)

Sputtering yield

T T T T
20 40 60 80

Angle of incidence

Figure 6-9 Sputtering yield is plotted against incident angle for Gallium FIB

Take Gallium FIB as an example, uncertainty distribution is assumed to be Gaussian

distributed for beam angle and energy with standard deviations 0.375 degrees and 0.1
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keV respectively. Three discrete set of risk analysis are undertaken separately about
three design points. Design point (1): angle = 10 degrees, energy = 30 keV, design point
(2): angle = 35 degrees, energy = 30 keV, and design point (3): angle = 60 degrees,
energy = 30 keV. Risk analysis is then undertaken based on Monte Carlo method using
via Kriging ROMs (Equation (6.5)). Three individual milling depth probabilistic
distributions are obtained. Table 6-12 detailed the distribution statistics regarding mean
and standard deviations of distributions. Standard deviations of the milling depth
distribution are the highest at angle mean value 60 degrees. It is found that standard
deviation increases when risk analysis takes place continuously from angle mean value
10 to 60 degrees in the design space. It implies that the predicted milling depth values
will fall further apart from the central values and hence aless capable processis resulted.
The resultant milling depth obtained has a higher deviation when sampling takes place
at higher angle mean values. This is because angle increases nonlinearly with sputter
yield i.e. slope of the sputtering yield curve increases as shown in Figure 6-9. In
conclusion, same degree of input uncertainties exerts various impacts at different design
regions on the dominating process/design variables. Some regions tend to be more
sensitive to variations. Uncertainties will propagate more impact on process
performance inducing a bigger failure margin or deviation from the desired values.

Table 6-12 Mean and standard deviations from risk analysis result

DoE point 1 DoE point 2 DoE point 3
[angle= 10 degrees, | [angle= 35 degrees, | [angle= 60 degrees,
energy= 30keV] energy= 30keV] energy= 30keV]
Mean [Milling
_ 1.051 1.942 6.045
depth in um]
Standard
o 0.01921 0.03757 0.05728
Deviation

192




6.7. Optimisation the Deviation of Milling Depth under Process Uncertainties

To understand the impact of risks may not be enough for engineers to achieve a robust
design. It is necessary to exploit an optimal product design, performance and process
condition to fulfill the objectives of a manufacturing system. These objectives may be
across different disciplines such as reliability, accuracy, cost, aswell as environment. At
the same time it is important to satisfy the requirements specified by customers without

violating any criteriaand constraints.

In this section, the design problem is aimed to identify a combination of beam angle and
beam energy for the Gallium FIB process such that the standard deviation of the milling
depth representing product characteristics/ process performance is minimised. In this

task the process variables is assumed to follow Gaussian uncertainty distributions, i.e.
defined with mean values of angle x, and energy x, denoted by m_and m_while n,.
represents the mean value of milling depth uncertainty distribution with respective
standard deviations. An order pair (x,,x,) forms a sample point within their specified
uncertainty design space with standard deviation 0.375 degree and 0.1 keV respectively
(see 7(c) and 7(d)). Sample points are propagated via the objective function i.e. the

reduced order model, to obtain a surface which contains the milling depth values with

variations.

An optimisation problem is formulated for this FIB process. Its objective (see 7(a)) isto

find the values of m, and m, so that they minimise the milling depth variations s Ve

(see 7(b)), characterised by the standard deviation, subject to the constraint that the
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mean value of milling depth m, . cannot exceed 2.02 um (see 7(€)). Both m_and m,_

are bounded by their design space limit (see 7(c) and 7(d)).

Find m_and m_st. (@)
Minimises, == [E[Y’1- m, > 7(b)
Subject to:

10°£m, £60°, wheres, =0.375° 7(c)
20keV £m_ £ 40keV, wheres, =0.1keV 7(d)
m, , £202mm 7(e)

The task is solved using optimisation routines, particle swarm optimisation agorithm
[140]. During optimisation, the objective value (milling depth standard deviation) is
evaluated through the FOSM method via the Kriging ROMs by Equation (6.5). Monte
Carlo could also be used, but the process is more computational expensive and time
consuming. The minimum standard deviation of the milling depth in the case of the
Gallium FIB is found to be 0.0378748 um. At the optimum, the beam angle and the
beam energy are 32.698 degrees and 29.68 keV respectively. This result, which here is
obtained purely by mathematical means using the developed modelling methodology, is

adesign rule for FIB micromachining.

From Figure 6-9, sample points taken from the regions x, 1 [30°,60°] tend to be more

sensitive to those uncertainties or variations when compare to the region of

x, 1 [10°,30°] . The uncertainties will propagate higher standard deviation on process

performance/ product characteristics resulting a bigger failure margin from the desired
milling depth. Taking asmaller X, mean value would lead to a minimised milling depth
deviation. However, the advantage of taking a higher X, mean value can speed up the

process to obtain the specified milling depth. At the same time, this would lead to a
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higher deviation from expected shape. A constraint isimposed here that the mean value

of milling depth cannot exceed a specified requirement. The solution to the objective:

find X and X, to minimise the standard deviation of milling depth is no longer obvious.

Process parameters uncertainties do affect failure margin of the process performances.
In fact, the risk of achieving accuracy in milling depth under imposed constraints
requirements are solved by optimisation routines. Similar study can be done such as
maximising the process capability. The test case provides knowledge to achieve
robustness FIB process rather than the deterministic optimal process identification

which shows a weakness under certaintiesin real world.

Closure

The chapter has outlined the how to quantify the process variability and uncertainty in
terms of focused ion beam technologies control for predicting shape of pre-defined
structures in nano-scale. Sputtering yield values with respect to two process variables,
angle and energy, are extracted from SRIM forming representative design points.
Design of experiment is then performed based on these design points to formulate a
response surface model through techniques like Kriging interpolation. Evaluation of
sputtering are made easier to specify into the realised FIB computational model as a
process variable, to characterise the depth variation. This type of reduced order model is
significant for allowing fast evaluation of process output without losing much accuracy
of the original model. This strengthens the efficiency of undertaking Monte Carlo type
risk analysis. Uncertainties in two variables are introduced in form of probability
distribution. Risk mitigation methods suggested like sampling and analytical method are

used to propagate the uncertainty distribution of the milling depth. Process capability

195



indices are used to quantify this distribution to determine the process robustness due to
process uncertainty and variability with respect to specification requirement. The
procedures have been applied on FIB problems with various sources for comparison.
The optimisation task has helped identified the optimal values in angle and energy such

that the predicted shape has the least variations under certain specified constraints.
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Chapter 7 An Optimal Design of Flip Chip

The chapter details an electronics packaging application - flip chip design in micro-
electronics industry. The risk analysis methodology and the associated computational
tools are demonstrated to derive an optimal package design in terms of product
environmental evaluation during the design stage. An innovative way of using an
environmental indicator, the Toxic Index, to perform a quantitative assessment of the
product design on the environmental impact is aso developed. Risk mitigation

evaluation on the design is aso provided.

7.1. Flip Chip Design Requirements

In the flip chip packaging process and in general, cost is normally regarded as the most
important aspect for micro-electronics manufacturing industry. The actual design of the
products is also extremely important issue. Engineers try to reduce their costs while in
the same time ensuring the reliability of the product will not be compromised.
Environmental considerations must be included to comply with their regulations.
Legidations and customers are the main drivers to design for environment as the

environmental performance of the electronic product is gaining more awareness. A
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green product may require new technology which can result in increased cost of the
products. At the same time, reliability cannot be neglected in the industry. Reliability
modelling which helps to maximise life span of products plays an important role. Finite
Element Modelling and Analysis can be used to predict deformations, strain and stress
in the modelled system. Simulation predictions can be used to assess the reliability by

observing damage in materials and to relate to life-time.

Having faced such a multi-dimensional task, a multi-disciplinary optimisation problem
is established to aid optimal decisions with respect to various types of criteria as oppose
to a single objective. With this tool a design engineer can simultaneously account for
product or process performance (e.g. reliability and life time), design, cost (fabrication,
materials, labour, shipping and disposal) and environmental requirements (eco-friendly

designs and easy to dispose).

7.1.1. Optimisation Modelling

In this chapter, the approach described above is illustrated with a traditional product
fabrication-Flip Chip Packaging. The key here is to understand the cost, environment
impact, reliability aspects and also their combined effect in order to derive an optimal
product design in an optimal process conditions. Objectives and constraints on cost,
environment and reliability must be set up and included into a single design problem.
Optimisation modelling enables us to find the solution to this problem which is regarded
as the optimal design. The theme here is optimisation interacts amongst cost,

environment and reliability as presented in Figure 7-1.

198



Figure 7-1 Optimisation matrix regarding reliability, environment and cost aspects

The methodology integrating various computational tools has been applied to help
understanding the new advances technology in micro-electronics manufacturing
industry. In particular, an electronics product life cycle is often complicated that
demands quick and absolute solutions to any problems. The computational tools in the
risk analysis methodology can assist deriving such a solution especialy in the early
design stage of the product. The optimisation anaysis would provide sufficient
quantification analysis of the product for product design problems in terms of the

quality and reliability, according to customer specifications.

7.1.2. Materials Concernsin Flip Chip Technology

During flip chip assembly process, underfill materials are applied to protect the bumps
from moisture of other environmental hazards, and provide additional mechanical
strength to the assembly. Another issues dealing with solder bumps connections on adie
stacked onto organic substrate is, underfill can compensate the thermal expansion
differences between the chip and the substrates. Most of the substrates possess a large
coefficient of therma expansion (CTE) around 20-30 ppm/°C) while silicon chip is
about 3ppm/°C. Such CTE mismatch can induce a large shear strain in solder balls that
can cause fatigue and reduce the package life time. Thus, underfill can be served as a

buffer by coupling the thermal mismatch into bending of substrate [88]. A typica flip
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chip consists of three parts: an IC chip, a substrate and materials connecting the chip
bumps with the substrate pads. IC ship is made of silicon wafer. A substrate is a
combination of flex, glass, ceramic, epoxy, and organics like FR4. Two general types of
materials joining the IC and substrate are either in form of solder alloy or electrical
conductive adhesives. The following explains the latest trend of materials in aflip chip

package.

Lead based solder - Tin- lead solder has been used in the eectronics packaging
industry for more than 50 years. Tin-lead solder is widely applied in electronics
packaging industry because of its low costs and its low melting point physical property
facilitating solder reflow process to take place. There are many types of tin lead solder
in which two common types are Sn63/Pb37 and Sn60/Pb40 widely applied in
interconnection process. The traditional tin-lead solders Sn63-Pb37 is the most popular
solder dueto its low melting point around 183°C which is very preferable during reflow
process. It has ‘eutectic’ property allowing direct transformation from solid to liquid

without an intermediate state

L ead-free solder - Lead-free solder project was initiated in United States and followed
by European Unions, Japan from 1900-1997. Mass product production firstly began in
Japan from 1998 by Panasonic MD Compact player using lead free solder in reflow and
wave soldering process [141]. Common type of lead free solder alloys based on tin,
silver, and copper (SAC aloys). Many alternate tin lead solder arises such as Sn-Ag-Cu
(SAC) solder alloy and Sn-Cu solder. All solder concentrations are by weight
percentage. The melting point of SAC based solders are around 210°C to 230°C which
are higher than that of traditional eutectic tin lead solder - 63Sn37Pb (melting point is

183°C). Due to higher melting point of SAC based solder alloys, extra temperature and
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pressure are required in the reflow process and wave soldering process which could
increase the costs and cause damage to substrate. Tin silver indium and tin-zinc aloy
posses a lower melting point but incurred a higher material costs. Tin-copper alloys
have a lower cost but it possesses high melting point 221°C. Apart from costs
considerations and manufacturing control of using lead free solder aloys, reliability
issues have been studying in gaining more understandings about the use of lead free

solder materials.

7.1.3. Computational Modelling in Reliability Assessment

Virtual prototyping based on design optimisation is a powerful approach to maximise
the reliability of eectronic packages and products [142]. The life cycle of the electronic
products is usualy very complex and with the continuing miniaturisation of the
electronic packages and utilisation of new materias there is a real danger how reliable
are the developed products. Computational mechanics has become very important in
analysing the response of the electronic packages and systems. Finite Element
Modelling and Analysis can be used to predict deformations, strain and stress in the
modelled system. Simulation predictions can be used to assess the reliability by
observing damage in materials and to relate to life-time. The devel oped decision support
system in this study uses software modules for FEA (ANSYS [143]) to make

predictions for reliability of different flip chip designs.

With the continuing trend for further miniaturisation of the electronic components and
devices and the utilisation of new materials (Iead-free solders, underfills, encapsulates),
there are real concerns about the reliability level of the products. A major aspect of

concern is the reliability of solder joints. In particular, the CTE miss-match between

201



substrate and die in flip chip packages combined with the small joint dimensions makes
the interconnects quite vulnerable under thermal cycling. The failure mode of interest is
the thermal fatigue of solder joints. A careful design of such packages is critical to

ensure minimised fatigue damage in solder interconnects.

Virtual qualification of the electronic packages and products is practiced nowadays
widely to provide knowledge on the behaviour and response of the designed systems.
Finite Element Analyses are conducted in this study to characterise the thermo-
mechanical response of the flip chip package under thermal cycling. The technology
provides fast and efficient approach to investigate different design options. Inelastic
transient simulations are required to capture the time dependent creep deformations of
solder joints. The modelling steps which also combine the usage of statistical and

approximation techniques are explained in the following sub-sections.

7.2. Test Case Investigation on a Flip Chip Package: Reliability Assessment

This work investigates the design of a flip chip package where two design parameters
are alowed to vary. The design variables are the underfill which can be chosen among
severa available materials and the flip chip stand-off height SOH (respectively solder
joint volume). Changes in the design variables have impact on reliability of solder joints
under thermal cycling, cost of materias used to assemble the package and also have
effect on the level of environmental impact. Having particular cost and environmental
impact requirements, the design task is to identify the optimal flip chip specification so

that the requirements are met and the reliability of the package is maximised. The
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assessment procedures and calculations of the flip chip package with respect reliability,

cost and environmental impact are presented in the next sections.
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Figure 7-2 Schematic outline of the flip chip

Figure 7-2 shows the schematic outline of the flip chip package. The flip chip assembly
has 48 solder bumps arranged peripherally and the bump pitch is the same on all sides,
equal to approximately to 457 um. The space between the chip and substrate is filled
with underfill encapsulant. Some important geometric dimensions of the nominal
package (initial geometric design) are listed in Table 7-1. The stand-off height (distance
between chip and substrate) for the nominal flip chip design is 160 microns. This design
parameter will be subject to investigation here and will vary as aresult of changesin the
solder joint volume used to assembl e the package.

Table 7-1 Geometry parameters of theinitial flip chip model

Model

Die dimensions (mm) 6.3x 6.3x 0.6
Stand-off height (10 mm) 160
Substrate thickness (mm) 15
Pad diameter (10° mm) 150
Cu-Ni pad thickness (10 mm) 35
Bump pitch (10 mm) 457
Number of bumps 48
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7.2.1. Flip Chip Modédl using Finite Element M ethod

The detailed procedures of constructing a model using finite element method could be
tracked back in chapter 3. In the test case, the objective is to identify the damage of flip
chip interna structures subject to thermal cyclic changes using a damage model. To
investigate a flip chip package, a high fidelity type model using finite element analysis
was first constructed. It aims to identify how the design variables namely, solder joints
stand-off height (SOH), Young’s Modulus and the Coefficient of Thermo Expansion

impact on the reliability of solder joint in aflip chip package under thermal cycling.

The first step in the modelling procedure is to have representation of the package in
terms of finite element model. In this study a two-dimensional (2D) model of the
package is used. The planar model captures a cross section of the package along the
diagonal; hence, the solder joint at the corner of the package is represented in the model.
The existing symmetry in that plane is with respect to the centre of the package (i.e. half
of the diagonal plane is modelled). The planar model is developed in this way based on
existing knowledge that the critical (most damaged with respect thermal cycling fatigue)
solder joint of this package is the one at the corner. Figure 7-2 illustrates the flip chip
component and the bold line indicates the modelled part from centre of the package to
the corner point. The 2D finite element model is shown in Figure 7-3. Detailed view of
the corner solder joint captured in the model and corresponding mesh is also provided.
The pad on the substrate consists of two layers, copper and nickel, and the pad on the

diesideisnickd. This detail has been included in the model.
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Figure 7-3 Finite element model of solder ball flip chip package

The solder used in this package is lead-free Sn-3.5Ag-0.7Cu (SAC) solder. In this
analysis the solder material is assumed to behave as a visco-plastic material. All other
materials used in the package are modelled as elastic materials. Solder is also modelled
with temperature dependent properties. The material properties are listed in Table 7-2.
Note that the underfill in this table refers to the nominal design of the flip chip package.

Table 7-2 Fip chip material properties

CTE (10°°C) | Young'sModulus, E (GPa) | Poisson ratio, n

Substrate 16 24 0.2

Cu pad 17.3 115 0.31

Nickel 13 207 0.31

Sn3.5Ag0.7Cu 22 at -25C 58 at -25C 0.40
(SAC) 25at 125C 30 at 125C

Si (Dig) 3 113 0.29

Underfill
(Nominl design) 45 45 0.25
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7.2.2. Analysis and Results from the Damage M odel

Thermo-mechanical analysis of the flip chip package using finite element method
predicts package deformation and stress under imposed thermal cycling conditions. The
thermal cycle lasts for 1 hour and consists of four stages: ramp up from -25°C to 125°C
for 15 minutes; hold at the higher temperature for 15 minutes; ramp down to -25°C for
15 minutes; and finally hold at -25°C for 15 minutes. The analysis output response of
interest is the accumulated inelastic (or creep) energy density in the solder material per
thermal cycle. This quantity is used as a reliability measure for solder joints and will
refer to it as the damage. The maximum value of damage in the solder ball is denoted by

D. The higher the damage D, the less reliable the flip chip is, and vice versa.

The following constitutive equation for the lead-free solder inelastic strain rate as given
by Equation (2.3) is used in this study,

aeQ?

@“*® = Alsinh(as )]" engﬁé

where s is the stress vector, R is the universal gas constant, T is the temperature;
Equation (2.3) has the following empirical values A=277984S’ | n=6.41 ,
a=0.02447" 10°Pa *and Q=6800R. The values of coefficients are given in [96] [97].
The general calculation procedure for solder joint damage using accumulated inelastic

energy density per thermal cycle W, , is based on the following formula from [97]

5 (De”*)dv
LV 5 (7.1)
a gv

i=1 v

Qo=

Wp=3
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In Equation (7.1), the outer sum is taken over the time steps At that cover afull thermal

cycle, N is the number of elements used to calculate the creep energy density in the so-

called critical volume, V. isthe volume of the i-th element, s is the stress tensor and

De“is the tensor of visco-plastic strain increment for At. Usually a critical volumeis

afairly thin layer of most affected elements for the critical (most damaged) solder joint,
I.e., those with the highest values of the damage. In this study calculation is simplified
and a criterion is used for solder joint damage D, the maximum element value of
accumulated energy density in the solder ball per thermal cycle instead of Equation
(7.1). For simplicity, in order to obtain a stabilised (constant) prediction from analyse
for accumulated energy density, three thermal cycles are simulated. The damage value
D isthen obtained for the third cycle. The highest damage in solder joint is predicted at
the interface with the die. Figure 7-4 shows the damage levels across solder ball at the

end of athermal cycle for the nominal flip chip package.

L326E6
L204E6
.261E6
.220E6
.196E6
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L653ES
L326E5

Figure 7-4 Accumulated creep energy density at the corner solder ball after three cycles
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7.2.2. Design of Experiments (DoE)

The outlined above computational modelling is in essence approach for virtua
gualification of a system. In this study the computational model is used to qualify the
reliability of the package with respect to thermal fatigue of solder joints [144]. The
output analysis value, the solder joint damage D, can be used to observe reliability of
solder joints (higher value — lower reliability and vice versa). In general, the damage can
be used subsequently into life time models. The optimisation of the investigated flip
chip package is investigated with respect to variations of solder joint stand-off height
(i.e. volume of the solder balls) and the applied underfill material. In this case the
underfill properties which would be required are the Young’s modulus (E) and the
coefficient of thermal expansion (CTE) of the underfill. The constant Position’s ratio for
the selection of the available underfills are assumed. The focusisto predict the flip chip
reliability as function of three design parameters. Solder joint stand-off height (SOH),

Underfill Young’s Modulus (E), and Underfill Coefficient of Therma Expansion (CTE).

The experimental design used in this study is the Central Composite Design (CCD). For
the three parameter design space (SOH, E, CTE) the number of design pointsis 15. The

design space is defined in the following ranges: (1) Solder joint stand-off height
SOH T [100, 220)nm, Underfill ET [2,7]GPa, and Underfill CTET [25,65) ppmy/c. At

each of the 15 DoE points finite element analysis is undertaken and the relevant
prediction for solder joint damage D is obtained. Table 7-3 shows the 15 DoE points

and the prediction for damage D.
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Table 7-3 DoE data and the prediction for damage D

Z?r?tn OH (um) | E (GPa) | CTE (ppm/C) | Solder Damage D (MPa)
1 100 2 25 0.474
2 220 7 65 0.681
3 100 7 65 0.831
4 220 2 25 0.274
5 100 7 25 0.150
6 220 7 25 0.142
7 100 2 65 1.069
8 220 2 65 0.744
9 100 4.5 45 0.466
10 220 4.5 45 0.381
11 160 4.5 25 0.165
12 160 4.5 65 0.844
13 160 2 45 0.481
14 160 7 45 0.424
15 160 4.5 45 0.440

The information from DoOE simulations is used to construct a response surface to the
predicted data. A full quadratic polynomial is used to fit by least squares method the
solder damage predictions at the 15 design pointsin this study. The polynomial is based
on scaled values of the three design variablesin the range [-1,1] (see Table 7-4

).

Table 7-4 Scaling of design variables limits

SOH Young's Modulus, E CTE

Un-scaled limits [[100, 220] um|  [2,7] GPa  |[25, 65] 10°/°C
Scaled limits [-1, 1] [-1, 1] [-1, 1]
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7.2.3. Response Surface Modelling

Let X, be the design variable SOH, X, be the design variable E, and X, be the design
variable CTE and m =3. From Equation (3.28), the polynomial which can be used to
assess the damage D(SOH, E,CTE) of the flip chip solder joints (as a function of the

normalised values of the three design variables SOH, E and CTE) in the form of

Equation (7.2). Table 7-5 detailed the reliability model coefficient of Equation (7.2).

D(SOH, E,CTE)
= D%, %, %) (7.2)
= by + X +0,%, + DX + DX X, + DX X + DX X; + by X D% +bhgx,

Table 7-5 Reliability model coefficients of Equation (7.2)

Coefficient | b, | b, b, b, b, | by | by | by | by | by

Value (10°) | 424 | -76.8 | -81.4 | 296.4 | 45.9 | -33.4 | 194 | 36 | 32.6 | 846

The mathematical model by Equation (7.2) for reliability assessment of the flip chip
package will be exploited in chapter 7.5 to solve the flip chip design optimisation
problem. The goodness-of-fit tests shows that the R* is 0.986, and adjusted R? is

0.952. It proves that the second order polynomia model provides a good fit to

approximate of the 15 data points as RF3 09 is considered as good approximation.

The generated Kriging reduced order models are defined as follows (see Equation (7.3)):

¥ @5 h 05 h’0
Y, ( 10°%) = 0.56- 0.086%, - 0.096x, +0.28x, +0.017" § g, . L 2(7.3)
o 2 3 A€ 3464 3464 4

where h :\/(x1 (xl)i)2 +(x2 - (%) )2 and j =1 K py (n =15, number of DoE points)

and g, issummarised in Table 7-6. Y

depth

= milling depth, X, =angle, X,=energy
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Table 7-6 Kriging model coefficients for y;

| (X)i[scaled] | (X;)i[scaled] 9

1 -1 -1 -11420
2 0 -1 -596.8
3 1 -1 -1857.9
4 -1 0 -6187.7
5 0 0 3361.4
6 1 0 -6762.9
7 -1 1 -9703.5
8 0 1 5055.1
9 1 1 15596.6
10 -0.5 -0.5 4767.9
11 -0.5 05 49715
12 05 -0.5 -8635

13 05 05 14231

14 05 05 -2469.6
15 05 05 -649

For cross validation, Mean Error is found to be 0.036 and Mean Squared Error is 0.08.

7.2.4. Risk Analysison the Flip Chip Package

Let X, X,and X, be the three design variables SOH, E and CTE. Let Y be design

Damage

responses which characterises the reliability solder joint damage D in the flip chip

package problem. X, X, and X, all have their own defined uncertainties following

Gaussian distribution respectively. Many design points (sample points) from the
specified distribution are selected and compiled into the realised ROM, i.e

Yoamage = T (X, %, %;) tO generate Y, . where Y, . is the process performance.
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After performing the risk analysis, a probability density function (PDF)/ histogram can

be obtained that characterises the uncertainties of Y . Then process capability

Damage

concepts can be used to evaluate such a PDF to determine the actual process capability

with respect to the customer requirements. The model is Kriging ROM to characterise

f (X, %, %) . Note that X, X,and X; and Y, are now a distribution. According to

Damage

the procedures explained in Figure 6-5, the input and procedural flow are as follows:

(1) Specify design limit for X, and X, , process variables limit are as follows:

Variablelimit | Scaled limit

SOH X | 100 to 220 um -1to1l

E X 2to 7 GPa -lto1l

CTE X | 25t0 65 ppm/C -1to1l

(2) Specify uncertainties distribution on X, , X, and X;. Uncertainty distribution is

assumed to be normally distributed with mean and standard deviation listed as below.

Mean [unscaled value] | Standard Deviation [unscaled value]
SOH X 0[160 pum] 0.1[6 um]
E X, 0[4.5GPq] 0.05[0.125 GP4]
CTE X, 0 [45 ppm/C] 0.05[1 ppm/C]

(3) Sampling points generation to produce the specified distribution in step 2. Those

sample points can be compiled into Kriging ROM for the Damage prediction

(4) Aggregate the results of al the computations (10000000 manipulations and 10000

manipulations are set for Monte Carlo Sampling (MCS) and Latin Hypercube Sampling
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(LHS)) to propagate the process output distribution using any one of the suggested
method or both: MCS and LHS. Analytical method - FOSM and point estimation based
on pure mean, standard deviation and skewness calculations to construct the distribution

are aso illustrated.

An example of risk analysis result for distribution of Damage (D) estimated by LHS

method is indicated by Figure 7-5. Based on the assumed uncertainties data on design

variables, the C and C, are found to be 0.9682 and 0.8919 respectively. Any higher

degree of uncertainty values in CTE would decrease the C | values sharply as CTE is

the most dominant design variables in the study. 3.2% of samples fell outside the
tolerances limit that should be rejected. Again, any uncertainty data from industry can
fit into the risk analysis approach to evauate the distribution of Damage. Table 7-7
details the statistics of mean and standard deviation obtained from the histogram for
other risk analysis methods. The point estimation method further calculates the
skewness of distribution. Both set of results from sampling and anaytical method are
very close to each other.

Latin Hypercube

Samplin
4 P\ lean = 0.4961

Standard deviation = 0.01721

LSL Cp =0.9682

Frequency

Cpk=0.8919

Points (%) within target
range: 96.76%

T
042

Solder joint Damage D (MPa)

Figure 7-5 Distribution of Damage D estimated by LHS method through Kriging ROM

using 10000 samples
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Table 7-7 Details of the statistics generated different methods

Monte Latin Point
FOSM o
Carlo Hypercube Estimation
Solder joint Damage D
0.4961 0.4961 0.496 0.4961
[nm]
Standard Deviation [um] 0.01729 0.01721 0.01729 0.01729

7.3. Environmental Assessment

The objective of this environmental assessment is to quantify the degree of materid
environmental impact. The emphasise has been placed on constructing an approach to
optimise the flip chip package in terms of environmental constraints which can derive a
design rule for material selections in the industries. Due to the imminent effect of
legidations by WEEE and RoHS, several hazardous substances are prohibited.
Environment laws prohibited the usage of traditional solder joint giving rise to the lead-
free solder such as Sn-Ag-Cu type (SAC) solder. Subsequent influential changes have
been brought into the manufacturing process. Those changes have induced a big deal of
technical issues owing to the modified methods as well as the use of new materias. The
emergency of new advanced technologies is an inevitable result of accounting for

environmental issues during the manufacturing process and product devel opment.

Environment performance with new materials of the flip chip package is also one of the
key aspects in the design process. Environmental optimisation strategies must be used
for the robust developing flip chip packaging technology. Environmental constraints are
one important criterion which must be satisfied. Since the whole life cycle anaysis of
electronic products is so complex, the environmental performance of each process is
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evaluated by individual environmental modular approach [145]. Environmental aspects
are arising from toxic potential of raw materias, energy profile of raw materias,
manufacturing processes and products, and recycling potential. The modules of
materials toxic potential will be demonstrated. This work illustrates how the toxic
potential of two types of materials, SAC solder and underfill in the flip chip package is
accessed by the Toxic Index (Tl). The evauation result is then manipulated in the

optimisation model.

7.3.1. Toxic Index

Undergoing the whole life cycle assessment of electronic product is time consuming
and complicated. Therefore, a simpler environmental assessment tool - Toxic Index (TI),
for each material is used to indicate its potential threat to the environment. A numerical
indicator is assigned to each material according to its ecologica impacts on a scale from
0 to 100. ‘O’ is the least harmful to the environment whereas ‘100’ has the maximum
impact on environment. The rating for the materias in this study are interpreted based
on the research findings by the Fraunhofer Institute for Reliability and Microintegration
(IZM) for Toxic Potentia Indicator (IZM-TPI) [146] [147]. The Toxic Index (TI) using
the literature values of the IZM-TPI can be applied to investigate the environmental

properties of the materials used in the products.

7.3.2. Toxic Index of Flip Chip Materials per Unit Mass

The Toxic Index TI for underfill and solder material in the flip chip package is a
function of both Tl of the material itself and the mass of each material used in the

package (more material causes higher damage to environment). The amount of materia
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in the package is afunction of solder joint stand-off height SOH in the flip chip package.
Note that the data in Table 7-8 details the physical property SAC solder and underfills
for the nominal flip chip package with SOH = 160 um. In the design problem SOH can
vary from 100 to 220 um, for each particular design the actual amount of materia is
different and is a function of SOH. Higher SOH is equivalent to bigger solder balls and
more solder material per package. Also, higher SOH results in bigger gap between

substrate and die, such design requires more underfill material.

The volume of a single solder joint is calculated using the solder joint SOH. For

example, for nominal design solder ball stand-off height of 160 um, the volume is
6.08" 10 n7. With SAC density = 7380 kg/m®, by Mass=V" r whaeV=S0H" A,
where r denotes the density, V denotes the volume, A denotes the surface area of
solder and Mass denotes and mass of each SAC solder. The mass of each solder joint

for nominal design SOH is calculated as see Equation (7.4). Since there are 48 solder

joints in the package, the total mass of 48 SAC solder joints in the nominal flip chip

packageis 2.15" 10 °kg .

— . -12 37 3
Mass=6.08" 10"“m°" 7380kg / m (7.4)
=4.49" 10 *kg

Table 7-8 Solder and underfill material for nominal package.

_ Nominal values of Volume Density Mass
Material 0.3 3 5
SOH (um) (107 m?) | (kg/m’) | (107kg)
48 SAC solders 160 2.92 7380 2.15
Underfill (1to 9) 160 127 1200 15.6

After working out the mass of the 48 SAC solder joints as function of solder joint stand-
off height SOH, the Tl for all amount of SAC materia in flip chip is calculated. The
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SAC composition used in this package is based on 95.8% tin (Sn), 3.5% silver (Ag) and
0.7% copper (Cu). The Tl for Tin, Silver and Copper material per kilogram is taken
from literature and detailed in the second column in Table 7-9 [145]. Therefore, the TI
for the solder material can be calculated on these compositions and the Tl for each of

these materials by simple multiplication.

Table 7-9 Toxic Index (TI) for nominal flip chip design (SOH=160um)

Tl (L/kg) | TI (per flip chip package)
Material
T ( per unit mass) T ( per package)

Tin (Sn) 1200000
Silver (Ag) 37800000 -
Copper (Cu) 16000000
SAC solder

(S1-35AG-0.7C1) 2483800 5.35

Underfill 1 500000 7.8
Underfill 2 700000 10.92
Underfill 3 1500000 234
Underfill 4 1200000 18.72
Underfill 5 1000000 15.6
Underfill 6 800000 12.48
Underfill 7 930000 14.46
Underfill 8 1100000 17.11
Underfill 9 1350000 21.00

Multiplying the Tl of Sn per unit mass (kg) from Table 7-9 with its mass fraction in the

SAC solder will give the Tl contribution of Sn denoted as Tl g, g, inthe SAC solder.
Similarly, the Tl of Ag and Cu as contributionsto the overall Tl of SAC Tl ,; 5, and

Tle, om aredso caculated in Equation (7.5) respectively.
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Tl a5 =1200000° 0.958

=1149600

Tl 5 35 = 37800000" 0.035 75
=1323000

Tley o =1600000" 0.007
=11200

Summing these three Tl contributions in Equation (7.6) will give us the Tl for SAC
solder joint as composition. Tl for SAC is 2483800 per kg (listed in second column of

Table 7-9. In the calculations, the TI unit for the material is one per kilogram.

Tl =TI +TI % T T .
SAC S_95.8% Ag_35% Cu_0.7% (7 6)
= 2483800
The Tl per kilogram for the nine underfills is aso listed in the second column of
Table 7-9. Once the Tl per kilogram’ of SAC solder and underfills are obtained, their

Tl per package’ can be calculated based on the amount of solder and underfills (which

Is expressed as a function of SOH) used in the package.

7.3.3. Toxic Index of Flip Chip Material per Package

For any particular flip chip design, the actua Tl for SAC per package is derived based
on the solder amount used in terms of mass which is aso expressed as a function of
SOH. The Tl of each material per package (the third column TI per package in Table 7-9)
Is equal to its total mass (the last column in Table 7-8) multiplied by the Tl of each
material per unit mass (the second column in Table 7-9). The calculation of Tl per

package’is given by Equation (7.7).

Tl(perpackage) = Maﬁotal ’ Tl (per unit mass) (77)
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where Tl ,isthe Tl per package, Tl ,isthe Tl per unit mass and Mass,,,

per package per unit mass

is the total mass of the material. The Tl of SAC material per package is detailed in

Equation (7.8). For example, for the nominal flip chip design (solder ball SOH=160
microns), the volume of the 48 SAC solder joints =2.92° 10°°n7, density = 7380 kg/

m® and the mass of the 48 SAC solder joints is 2.15" 10 °kg. Using the Tl data for

SAC (TI = 2483800 per kg), the Tl of SAC materia per packageis calculated to be 5.35.

TI SAC( per package) = 48, Ma$s&c(total) ’ TI SAC ( per unit mass)
=2.15" 10 °kg” 2483800 kg™ (7.8)
=5.35

The TI of underfills material per package is detailed in Equation (7.9). Similarly, for the
nominal design solder ball SOH = 160 pum, the volume of underfill is found to be
127" 10 7. The density of underfill is 1200 kg/m®, hence the mass of the undefill in

the nominal package is 15.6” 10 °kg . Again, knowing the Tl for underfill (e.g. Tl =

500000 per kg), the TI of the underfill for the package is calculated to be 7.8.

TI underfills( per package) = Ma‘$tmderfill ’ Tlunderfills( per unit mass)
=15.6" 10 °kg” 500000 kg™ (7.9)
=78

Other material properties for SAC solder and nine underfill materials is summarised in
Table 7-10. The last two columns of the table provide information on the material
properties of the underfill, the Young’s Modulus E and the coefficient of thermal

expansion CTE.
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Table 7-10 Materials properties of nine underfills materials

Material Young’s Modulus E (GPa) CTE (ppm/C)
Sn-3.5Ag-0.7Cu

Tin (Sn)
Silver (Ag) o
Copper (Cu) Defined in Table 7-2
SAC solder
Underfill 1 3.0 35
Underfill 2 15 =
Underfill 3 2.0 50
Underfill 4 o5 =
Underfill 5 7.0 8
Underfill 6 50 20
Underfill 7 55 6
Underfill 8 6.5 o
Underfill 9 6.5 8

7.4. Cost Assessment of Flip Chip Package

Factors that affect the costs in micro-electronics manufacturing industry have to be
identified. Cost can be related to cost of raw materials, processing, assembly, labours
and equipments. In this study the cost of materials is considered only but any other cost
can be considered in the same manner. The cost of solder and underfill is assessed only
because the amount/cost of these two materials vary as a result of variations in the
design variables (SOH and underfill choice). The amount per package of rest of the

materials is constant, hence the cost is fixed and will not be influenced by package
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design changes. The cost aspect for the investigated package materials form specific

requirements that are incorporated into the design problem.

The mass of solder and underfill material is afunction of the design variable solder joint
stand-off height SOH. Higher solder joint SOH corresponds to bigger solder joints and
bigger gap between the silicon die and the substrate. Hence, more SAC solder materials
and underfill would be required. Nine underfill materials are available for selection.
Material cost is different for each material. Therefore, the cost for underfill material per
package depends simultaneously on (1) design geometry - solder joint SOH (cost is
directly affected by the amount of used materia), and (2) selection of the underfill
material (actual cost of different underfill materials). Equation (7.10) describes how

material cost is calcul ated.

C($ per package) = Ma$otal ’ C($per unit mass) (7 10)

where C is the material cost per package, C is the cost per unit mass

($ per package) ($ per unit mass)

and M is the total mass of the materials

For example, material cost of 48 SAC solders is $0.00402. It is calculated from unit cost
of SAC $18.7/kg multiplied by the total mass of SAC per package i.e. 2.15" 10 °kg.

Similarly, the cost of underfill is also obtained. Mass of the solder joint and underfill
can be found in the last column of Table 7-8. The cost of solder and underfill materia

for aflip chip package with stand-off height 160 micronsis demonstrated in Table 7-11.

CSAC(SB per package)

=$18.7/kg = 215 10‘6kg
=$0.0402" 103 (7.11)
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Table 7-11 Material cost for solder and material per kilogram and per package

_ Materia cost per package
Material cost _ o
Material (nomina flip chip, SOH=160pm)
C($ per unit mass) ($/kg) _3
C($ per package) ($ 10 )
Solder SAC $18.7 0.0402
Underfill 1 $132 2.06
Underfill 2 $97 1.51
Underfill 3 $388 1.37
Undefill 4 $120 1.87
Underfill 5 $105 1.64
Underfill 6 $124 1.93
Underfill 7 $103 1.60
Underfill 8 $99 1.54
Underfill 9 $93 1.45

7.5. Optimisation Problem

Engineers try to reduce the costs while in the same time ensuring the reliability of the
product cannot be compromised. There is aways some trade-off between cost and eco-
friendly aspect of the product. Green products usually require higher cost of materias
and processes. Less cost production does not guarantee reliable product. To identify the
optimal design in each aspect in individual study is possible but entirely inefficient.
Therefore, Multi-disciplinary optimisation is employed to investigate this complicated
design problem involving numerous objectives area. Multi-disciplinary optimisation
provides a routine to solve problems simultaneously which incorporates more than one

discipline in amore efficient way.
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This study investigates the design of a flip chip package where two design parameters
are alowed to vary. The design variables are the underfill which can be chosen among
severa available materials and the flip chip stand-off height SOH (respectively solder
joint volume). Changes in the design variables have impact on reliability of solder joints
under thermal cycling, cost of materias used to assemble the package and also have
effect on the level of environmental impact. For example, mass of solder joint and mass
of underfill employed in the flip chip package are dependent on solder joints SOH
(respectively the gap between substrate and die). Changes in solder joints SOH would
directly affect the amount of solder and underfill material (i.e. the mass) used in a
package. Subsequently, the changes in the amount of materias required to assemble a

single flip chip has direct effect on the package cost and level of environmental impact.

From chapter 7.2, 7.3 & 7.4, three models have been developed to assess reliability,
environment and costs issues in terms of design variables and other design
consideration including a mathematical model which is capable to predict the damagein
solder joints. The damage D is obtained as a function of the package design variables,

the SOH and underfill material.

7.5.1. Formulations of the Design Problem

Having particular cost and environmental impact requirements, the design task is to
identify the optimal flip chip specification so that the requirements are met (see (7c) to
7(g)) and the reliability of the package is maximised. The design problem for this flip
chip requires identifying optimal solder joints stand-off height (SOH) (see (7a)) and
selection of underfill among nine available materials (see (7h)). The objective is to
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minimise the solder joint damage D (see (7b)). The two design variables are factors that

have impact on reliability, cost and environment impact associated with the flip chip.

Theflip chip design problem is defined as follows:
Find SOH and select a suitable underfill from the set of available underfills s.t. (78

Minimise D(SOH, E,CTE) (7b)
where
D(%, %, %)
= by + DX + D, + DX +D1,%X + 01X + DX X+ byyX by %" + b
Subject to:
Tl SAC(per package) < 6.5 (7c)

where Tl sac(per package) = 48" TI SAC( per unit mass) "SOH" Ay r
Tl <16 (7d)

Underfill (per package)
where Tl underfill ( per package) =TI underfill ( per unit mass) SOH Ajnderfill r

CSAC($ per package) < $5, 10 ° (78)

where CSAC($per package) =48 C($perunitma$) SOH ASAC r

C <$2°10°° (7f)

underfill ($ per package)
where Cunderfill ($ per package) — Cunderfill ($ per unit mass) SOH AJnderfiII r

100mm< SOH <220mm (79)
Underfill T [1,2,34,5,6,7,8,9 asgivenin Table 7-10 (7h)

where Tl packagey @D C denotes the toxic index and cost per package

($ per package)

respectively, Tl o yitmasy @d C denotes the toxic index and cost per unit mass

($ per unitmass)
respectively, r denotes the density of materials, A denotes the surface area, D denotes

the damage, CTE denotes the coefficient of thermal expansions, E denotes the Young’s

Modulus and SOH denotes the stand-off height.
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Note that the solution of this problem is not trivial. For example, an underfill might be
environmental friendly (low TI) but expensive, and vice versa. There could be a trade-
off between material environmental impact and cost. The decision is even more
complicated because solder joint stand-off height has impact on reliability and at the
same time it affects the amount of material used in the package, hence affect the
package Tl and cost. Underfills affect on the other side the reliability of the package

through their material properties.

7.5.2. Optimal Design Evaluation through Design Optimisation

To account for all existing interactions between the factors of interest in the design
process, all requirements for reliability, environmental impact and cost are formulated
as an optimisation problem. This problem can be solved using optimisation methods,
and the solution will account for all imposed constraints and objectives. Note that there
could be many more requirements than those used in this problem, hence the
complexity of the interactions may be much more extreme. Any additional requirements

can be added in the design problem formulation without any limitation.

VisualDOC [116] optimisation software package is used to solve the problem. The
stand-off height is defined as a continuous design variable while the underfill variable is
discrete and can take value from 1 to 9 (corresponding to the underfill number in the
selection set). Visua DOC performs the assessment of the specified flip chip design and
provides the required values for objective (damage of solder joints), constraint functions
(cost, TI), the design specification for assessment, (the values of the design variables

SOH and underfill choice) and the associated values for solder damage (i.e. reliability),
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cost and Tl associated with that particular design are calculated. The calculations
undertaken exploit the equations and data explained in characterised by the reliability

reduced order moddl, Tl environmental model, and the cost modd!.

7.5.3. Discussions

The design optimisation problem has been solved using non-gradient optimisation
technique because the design problem includes a discrete variable, selection of an
underfill among nine available choices. Non-gradient techniques are applied to identify
the global minimum.
The following optimal solution of the problem has been derived and identified:

SOH = 164 microns,

Underfill 5
The optimised objective (solder damage) for this optimal flip chip design is 0.168 MPa,
and the imposed requirements are satisfied. From those constraints the requirement for
underfill Tl per package is the one becoming active at the optimal design solution (i.e.
has value at the imposed limit, TI = 16). Therefore, any further reduction of the damage
in solder joint which can be achieved by further increasing the SOH above 164 microns
will involve the violation of that constraint (Tl will exceed the limit of 16 as a result of

more underfill material corresponding to the increased SOH).

The optimal solution shows that the best solution of the design problem is not based on
extreme values of SOH (i.e. at the specified limits) and does not involve the underfills
with lowest cost or Tl. This is because those underfills are not good for reliability.
Underfill 5 is the one which can minimise the damage in solder joint to greatest extend

while providing the required eco-design specification and fits into the cost restriction.
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Closure

This study has focused on how requirements on three different design aspects - for
reliability, cost and environmental damage can be formulated into a design problem
which then can be solved using multidisciplinary design optimisation techniques.
Demonstration of how reliability of aflip chip package solder joints can be assessed has
been described. The package evaluation with respect to environmental impact using
Toxic Index definitions and cost of materials has been also presented. The design of a
flip chip package has been successfully optimised by varying two design variables:
solder joint stand-off height SOH and Underfill material (nine choices). At the optimal
design the damage of the solder joints has been minimised while requirements for eco-
design and cost have been satisfied. The risk analysis methodology investigated in this
application study is generic and can be used for range of design problems in
microelectronics packaging and product development. There is virtually no restriction
on what and how many requirements that define environmental impact and cost are
specified in the design task. Reliability of the product is aso part of the design problem.
Defining and solving the design problem as an optimisation problem provides the
opportunity to use efficient and powerful optimisation techniques to find the solution of
the design task. It allows us to account for complex interactions that may exist between
key product aspects. This environmental is convenient and cost effective when
compared to full life cycle assessment for evaluation of environmental impacts of
materials and components. This novel multi-disciplinary approach addressing
environmental issues can also assist decisions on new materials selection among all
design configuration alternatives. It provides an effective and efficient way when

comparing to the trial-and-errors approach.
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Chapter 8 Conclusion and Future Work

8.1. Conclusion

A risk analysis and mitigation methodology is developed to assess the impact of
uncertainties and complex design requirements for new processes and product
development in micro/nano manufacturing. The novel methodology integrates
computational modelling of the industrial process, reduced order modelling through the
design of experiments and response surface modelling, risk analysis, process capability
and optimisation techniques. The associated tools have been applied and demonstrated
for the following two applications: (1) Control of the focused ion beam (FIB) sputtering
process, and (2) Reliability, cost and the material requirements of electronics package
design. In the first application, risk mitigation has been successfully applied to address
the impacts of the process parameters variations on the process performances. The
statistical analysis provides a useful tool to accurately estimate material removal in the
FIB sputtering process. The proposed method can be applied to any other new
manufacturing process where accuracy of process control is important and when

uncertainties are defined.
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A computational model for estimating FIB milling dwell times to achieve pre-defined
shape was validated with an experimental test case. Different influential factors such as
re-deposition effect and ion flux distribution across geometric pixel layout were
discussed. This study includes a control profile, which relates the materials sputtering
rate to the depth variation, in terms of several process parameters, including dwell time,
sputtering yields, angle and energy, and the desired shape geometrical details. A
modified FIB model is derived taking account of the beam overlapping ratio on the
material sputtered depth, the required number of beam scans across the target surface to
achieve the pre-defined shape through fixed dwell time operations for real FIB stations.
The theoretical milling depth prediction is shown to be below 5 % deviations from the
experimental results for the micro-trench test case. The number of scans from the model
also agrees well with the experiment. The model shows good accuracy and was applied

to two problemsin risk analysis and optimisation analysis.

The risk analysis methodology is applied to the FIB sputtering process. Three different
FIB process were evaluated using different ion source, Gallium, Argon and Xeon ion
that the process parameters- beam angle and beam energy have different degrees of
variations. The uncertainties on these sample points were propagated into the proposed
reduced order model. As aresult, the degree of impacts on process performance on the
associated sample points were captured and presented by histograms. Statistical process
control tools such as process capability ratio have been applied to evaluate the process
performance with respects to the defined specification limits. The risk of not achieving
process targets was identified. Different reduced order model were also investigated in
the risk analysis methodology. Interpolation Kriging reduced order model was presented
in FIB process to replace the conventional polynomial approximation reduced order

model. The accuracy of process performance evaluation can be improved.
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In the second application, the focusis placed on the reduced order modelling to generate
fast analysis of responses for the optimisation task. The risk of fulfilling certain
specifications is presented in a multi-disciplinary design optimisation problem. A flip
chip design model was constructed using finite element methods. The deformations,
strain and stress of the solder balls were evaluated subject to thermal cyclic changes.
This example illustrates the reliability of materials to its life-time by observing the
damage of materials. The materials were then assessed with its environmental impacts.
A toxic index was used to rank the hazardous impact of the materials by massin theflip
chip package. The toxic index of unleaded type of solder such as Sn-Ag-Cu solder and

various underfills were calcul ated to assess the degree of their environmenta impacts.

With reliability requirements, environmental constraints required by the government on
materials together with the consideration of package costs, a multi-dimensiona design
task was formulated. A multi-disciplinary optimisation problem was established to aid
optimal decisions with respect to various types of criteria as oppose to a single objective.
An optima value of design variable solder joint stand-off-height was identified such
that the life span of solder joint was maximised and fulfilled cost requirements. The best
underfills were aso identified among al available types without violating the
constraints i.e. an environmental standard. Optimisation techniques were applied in this
study. The approach can act as a tool that helps design engineer account for product
design simultaneously in terms of reliability (e.g. damage and life time), cost (e.g.
fabrication, materials, labour, shipping and disposal) and environmental requirements
(eco-friendly designs and easy to dispose). The study on flip chip has helped select the

best design among aternatives before any real prototyping and reduces time to market.
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To sum up, the proposed methodology and its associated techniques are integrated in a
systematic approach suitable for different industrial processes. It is designed as generic
as possible to provide convincing decisions support based on strong underlying physics
and theories. The methodology provides a design routine in handling uncertainties
issues for miniaturised products manufacturing in order to meet certain system
objectives such as reliability requirements and environmental compliances. The
methodology also enhances the understanding of engineers, researchers, and decision
makers about their system and researching fields. It can provide a useful tool that can

assist decision making and may betailored to industrial user needs.

8.2. Research Findings and Its I mpact

The research work has been developed to provide decision makers a decision support
tool with the aid of computational approaches for micro/ nano manufacturing.
Achievements in this research work can be organised into three main categories:

(1) Methodology development for risk analysisin micro and nano manufacturing;

(2) Optimal process control of focused ion beam for micro-machining of nano features;
(3) Simulation driven approaches for risk analysis and optimal electronics package
design with reliability, cost and material related specifications.

In the application of focused ion beam, a modified computationa model is developed
for the material sputtering using focused ion beam. Process control including adjusting
process parameters to predict product shape overcomes the dependence on trial-and-
error method. The magjor achievements in the research work with regards to optimal

process control of focused ion beam are:
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The model alows analysis of sputtered nano features with FIB machines
controlled through multiple beam scans and different beam overlapping;
Integration of are-deposition FIB model with the sputtering model

Experimental validation of the FIB model;

A tool that aids FIB users producing nano-features with enhanced accuracy. FIB

manufacturing can be less dependent on the trial-and-error approach.

The novelty of the research work in the area of electronics package design is in the
model driven multi-disciplinary design approach. Optimisation techniques are
introduced to provide design engineers with the ability to account for cost related
constraints and also to assess environmental impact of the design. Main achievements
can be detailed as follows:
Proposed approach to rank the hazardous impact on the environment of different
electronics product materials. This approach has utilised the efficiency of
conducting environmental assessment on design instead of areal end product;
Environmental assessment allows the products design to be evaluated at the
early design stage to compare to the new standards and regulations imposed
against electronic products,
Impacts on product characteristics - damage (as an reliability requirement) arises
due to design variables uncertainties are quantified;
Optimisation problem formulations for package design that includes reliability
requirements, the cost aspects and the environmental impact of the problem;
Demonstration of this approach to the design of a flip chip package. That helps
to select the best design among alternatives before any rea prototyping and

reduces time to market.
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With athorough explanation of the techniques and tools, the risk analysis methodol ogy
was implemented using two innovative industrial applications. The two examples were
carefully selected in order to represent a holistic perspective for both the products
design and process fabrication during their development. The process fabrication
concerns were identified through a focused ion beam (FIB) sputtering process control.
The product design issues were characterised by a flip chip package fabrication. The
importance of the research findings and its impact are summarised as follows:

Better FIB Process Control for Sputtered Shape

In the first applications, an identified computational focused ion beam (FIB) model
provides a better understanding in the control of the advanced micro-machining
process. The original models are modified by adding additional process parameters
in its constitutive equation. The process parameters integrated with re-deposition
effect in smulation has enhanced the accuracy to predict the final shape against the
expected shape. The modelling results are validated and well-agreed with
experiments. The modelling study has also been developed in a way to accounts for
number of beam scans. This approach is completely different to the existing models
in many current studies which only predict time or milling depth variation. The new
model approach utilises the setup control of FIB machines. Adjusting FIB machines
process parameters to obtain a pre-defined shape is no longer following on trial-and-
error method. In summary, the whole simulation work has provided a better process
control for the real FIB machining process to achieve accurate nano-structures
fabrication. It also allows more flexibility to interact with FIB machines since every
FIB machine operation style can be very different.

Robust Flip Chip Design and Enhanced Decision for M aterials Selection

In the second applications, the research work has exploited a novel way to account

for environmental impacts of materials numerically. This method has utilised the
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efficiency of conducting a full products life cycle assessment to evaluate its
environment impacts. This also alows the end products be compared to
environmental standards for meeting the new regulations imposed against electronic
products. The multi-disciplinary optimisation (MDO) design problem with the use
of a computational model by finite element methods addresses the issues of
identifying an optima product from different design aternatives and materia
selections. The MDO design problem provides a holistic and unified design
approach where reliability, environmental impacts and economic aspects used to be

considered in only mono-disciplinary optimisation problem study.

Uncertainty Propagation for Quality | mprovement

The risk mitigation framework has addressed the impacts of uncertainties, the
stochastic behaviour of process. Prediction of a parameter value for optimum design
and process is longer adequate to deal with process randomness or undetectable
errors. The propagation of risk here has accounted for how accurate to obtain such a
deterministic process output due to process variability. The risk anaysis
methodology provided a probabilistic approach for achieving a robust design. It is
crucial to couple with the risk inherent systems especially during the new
technologies development where historic data and fabrication knowledge are very
limited. Certain process capability indices are applied alowing the process to be
compared with the ‘six-sigma’ design practice and relevant standards.

Optimising Process with Uncertainty

Minimising the deviation of process output from target requirements or enhancing
the process capability in an optimisation problem are still lack of depth in current

researches and studies. Optimisation routines using advanced optimisation
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algorithms are illustrated here of how to derive arobust optimal design and process

viathe constructed reduced order mode!.

Fast Reduced Order Modelling for Risk Analysis and Optimisation

The computational model provides a virtua prototyping which hugely reduces the
cost of rea prototype or experiment to generate accurate process responses and to
allow flexible adjustment of process setup efficiency. Reduced order model such as
Kriging model is brought into micro-electronics without much loss of details from
its original full model. It has greatly enhanced the evaluation of process responses
since there are always trade-off between the computationa resources and accuracy.
This virtual prototype using reduced order modelling provides an efficient way to

perform risk analysis and optimisation with enhanced accuracy.

8.3. Recommendations for Future Work

The future works are outlined as follows;

(1) M odel enhancement

Some process parameters in the FIB model needs further adjustment. For example, a
Gaussian bi-variate density function is used to represent the beam intensity profile. In
fact, the centre and the tail part of the ion beam intensity profile can be modelled with a
Gaussian distribution and exponential distribution respectively to improve the accuracy
of ion flux estimation.

(2) Further investigation and validation on other predefined shapes

Re-deposition is not prominent in a shallow shape (small milling depth compared to the

width of the shape). Since the desired milling depth of the investigated test case is not
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deep enough, the re-deposition is not implemented here. However, re-deposition model
can be implemented on other test case to refine the depth variation. Then the re-
deposition model integrated with the developed model can be verified against new
experiment setup. This motivates the need for investigation on any other shape such asa
sine wave and a parabolic shape, and to further validate the process control capability of

the devel oped models.

(3) Extension of risk analysis methodology

Advance techniques for response surface modelling, risk analysis and optimisation can
be embedded into the design modelling as dternative tools. For example, other
interpolations methods such as radial basic interpolations, spline interpolation, or even
extrapolation methods can fit in the framework. Uncertainties propagation can be
achieved through more accurate method such as second order third moment method and
point estimation method that account for skewness of distribution. From optimisation
perspective, reliability based design optimisation by analytical method such as first
order reliability method and second order reliability method can greatly reduced the
computational time using Monte Carlo Sampling based approach during iterative

optimisation process.

(4) Softwar e development

The framework is being established in parallel with our research group software -
ROMARA (Reduced Order Modelling And Risk Analysis software). It captures the
development of micro-integrated products and processing activities from design
perspective. The underlying mathematical models and theories can aso be programmed

into this software as a decision support tool.
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Appendix

Experimentsfor the focused ion beam sputtering process

Schematic of the FIB patterns

«  7lines ( Experiments1-7)
*  2trenches(Experiments8and9)

Experiment 1
| Experiment 2

Experiment 3

Experiment 4

Experiment5

Marks Experiment 6

Experiment 7

- Experiment 8
- Experiment 9

Schematicof thereativelocation of milled lines and trencheswith respect alargecircle mark and an accurate+ mark

Specification of undertaken experiment

Experiment  Pattern Size Setdepth  Current  Overlap Dwell Total Sputtering
(mm) Z (mm) (pA) %) time Time Yield
(ms) (mm:ss) (um3nC)
1 Line 100 2 70 0 1 6:58 0.15
2 Line 100 2 70 0 1 3:32 0.3
(nominal)

3 Line 100 2 70 0 2 3:32 0.3

4 Line 100 2 70 50 1 3:32 0.3

5 Line 100 2 150 0 1 2:35 0.3

6 Line 100 2 350 0 1 1:42 0.3

7 Line 100 4 70 0 1 7:03 0.3

8 Trench 10x5 1 350 0 1 7:19 0.3

9 Trench 10x5 1 350 50 1 7:40 0.3
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Confocal microscope image of the milled structure. The red line depicts the analysed cross section.
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