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ABSTRACT

In this research adaptive algorithms were developed for multiuser detection and sig-

nal combining in cooperative wireless networks. Some of the key contributions and

works of this research thesis are:1. A computationally simple Adaptive Minimum

Mean Square Error Multiuser Detection scheme was proposed to eliminate multiple

access interference in uplink communication of an asynchronous cooperative CDMA

wireless network, where users cooperate in a relaying mode while they exchange data

and channel information with the destination node. The proposed scheme provides

better interference resistance than optimum multiuser detection Maximum Likeli-

hood Sequence Estimation in cooperative wireless networks. The performance was

examined under Amplify-and-Forward and Decode-and-Forward cooperative proto-

cols in flat fading Rayleigh wireless channels.2. Adaptive signal combining was

proposed for cooperative wireless networks and its performance was analysed by us-

ing Least Mean Square and Recursive Least Square algorithms. The other classical

non-adaptive techniques Maximal Ratio Combining and Wiener were also exam-

ined. It was also shown that adaptive signal combining achieves Wiener’s solution in

cooperative wireless networks with added benefit of computational simplicity over

classical combining schemes.3. Weighted Least Square Error Method of signal

combining was proposed for wireless signal combining, where estimates of inverse

of the channel noise variance was used as weight of the combiner. The proposed

method was a receiver with noise estimation filters at each received branch for the
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noise estimation. The reciprocal of the estimate of the channels noise variance were

used as weights of combiner to achieve Wiener’s solution of signal combining. The

proposed algorithm was used in cooperative, non cooperative wireless networks and

multiple antennas system. It was also shown that un weighted least square error

method is equivalent to equal gain combining scheme. The performance of the pro-

posed mathematical algorithms were examined with computer simulations in various

wireless channel models.
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ABBREVIATIONS

AMUD Adaptive Multiuser Detection

A-MMSE-MUD Adaptive Minimum Mean Square Error Multiuser Dectection

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CDMA Code Division Multiple Access

i.i.d Independent Identically Distributed

LMS Least Mean Square

RLS Recursive Least Square

MAI Multiple Access Interference

MF Matched Filter

MIMO Multiple Input Multiple Output

RS-MIMO Random Signature Multiple Input Multiple Output

MLSE Maximum Likelihood Sequence Estimator

MMSE Minimum Mean Square Error

MSE Mean Square Error
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MUD Multiuser Detection

OFDMA Orthogonal frequency Division Multiplexing Acess

SINR Signal to Interference Noise Ratio

SISO Single Input Single Output

SNR Signal to Noise Ratio

STBC Space-Time Block Coding

ZMCSCG Zero Mean Circular Symmetric Complex Gaussian
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NOTATIONS

S1, S2, ..., SK Users/Sources

R1, R2, ..., RL Users/Relays

x(n) BPSK data symbols transmitted by sources

PSk
Power transmitted bykth sourceSk

sk(t) Spreading waveform(signature)ofSk

yI(t) Received signal at receiver for Phase I

τk Transmission delay of thekth user

h Complex time invariable channels co-efficient

v(t) Additive White Gaussian noise of channels

yII(t) Received signal at receiver for Phase II

X̂`(n) Detected symbol matrix at̀th relay

t`(n) Re-encoded symbol matrix at`th relay

y(n) Received signal at input of filters of network node

γ Amplification factor for Amplify-and-Forward protocol

Tc Chip interval

a m dimensional complex valued weight vector

aopt m dimensional complex valued optimum weight vector

E(.) Probabilistic expectation

Ja Minimum mean square error

e(n) Error between the reference signal and the output of adaptive filter

em(n) Error signal vector
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H Channel’s Matrix

z Cross-correlation matrix vector

R Correlation matrix

∇ Gradient

µ Step size constant of least mean square algorithm

ym(n) Received baseband signal atmth antenna

I Interference

n Time interval

%(m,m) Coefficient of Correlation Matrix
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INTRODUCTION
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Multiuser Detection in Cooperative Wireless Networks

1.1 Multiuser Detection in Cooperative Wireless Net-

works

The evolution of wireless starts in the days when Nicola Tesla demonstrates the trans-

mission of electrical energy in free space with an experiment controlling a model

submarine. Later, Marconi used radio waves for transatlantic analogue transmission,

from Great Britain to the east coast of Canada in 1902. Gradually, developments

have been made in the field of wireless technology, and it transformed from ana-

logue to digital wireless communication. The information theory was formulated

by Shannon who proposed his famous information capacity formula in [1], which is

still a fundamental principle in designing communication systems. Various systems

have been proposed to improve the information capacity, so that data can be sent to

the destination and detect with least communication errors within a specific avail-

able bandwidth spectrum. Multiple input multiple output antenna (MIMO) system

was one of the schemes, which was applied to the wireless systems to improve the

system capacity. MIMO was presented by Telatar in [2][3], where he had derived

his popular mathematical formulas for the information capacities of MIMO chan-

nels and described computational methods to examine performance in Gaussian and

Rayleigh MIMO channels. Some of the other information capacity analyses derived

from the fundamental principles of Shannon and Telatar were presented in [4-8].

In last few decades the demands of wireless technology for commercial purposes

were increased exponentially. Communication related industries had played impor-

tant role by actively financing and participating in research and development. In

the process of evolution and expansion of various communication applications, new

wireless standards are developed. Figure 1.1 [9], shows the trends in the usage of
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spectrum, future predictions and demands. Today’s wireless systems challenges are

to meet the unprecedented demand for wireless technology of various engineering

applications. Most of the wireless applications operations are under strict limitation

of bandwidth by the government authorities and wireless communication standardis-

ing organizations. It is therefore, required to fully exploit the available and precious

bandwidth resources by developing methods of error free wireless communication.

More precisely, there is a need to design systems to improve information capacity of

the wireless systems to fully utilize available frequency bandwidth spectrum.

Various techniques were developed by the researchers to improve informa-

tion capacity. One of them is cooperative wireless networks, which are next gen-

eration wireless networks that emerged on the principle of virtual MIMO networks,

where methods were employed in distributed antenna systems to improve informa-

tion capacity of the wireless networks. In cooperative wireless networks each node

of the network acts as an antenna element of virtual MIMO to transfer data to other

nodes. They are cost effective systems that utilise the benefit of spatial diversity.

They enhance degrees of freedom to improve the bit error rate performance (BER).

A commonly used cooperative wireless networks is shown in figure 1.2 and figure

1.3, where users in a cluster transmit data signals to the relays of another cluster for

onward transmission towards destination. At relays cluster usually adaptive beam-

forming, transmit beamforming and space time block code signalling techniques

have been used to improve reliability, quality and speed of the network. In the last

few decades various advances in signal processing techniques for MIMO system are

implemented successfully, where multiple transmit and receive antennas on trans-

receivers of wireless networks are used. MIMO considerably improves the system’s

reliability and throughput, consequently the information capacity of the wireless net-

works is increased. These techniques are very effective to improve the weaker com-

munication link, which is due to a strict power control to reduce interference in wire-

less networks. However, due to size, cost and hardware constraints, the use of MIMO
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techniques in cooperative networks may not always be feasible, particularly in small

wireless/mobile devices due to antenna correlation among multiple antennas. This

has created interest to develop many-to-many or cluster-to-cluster communication,

which involves single antenna network nodes that cooperatively transmit and receive

by forming virtual antenna arrays. This method is broadly named as cooperative

communication. The idea is to make these virtual multiple antenna arrays to mimic

as MIMO systems therefore, most of the theoretical principles of MIMO are equally

applicable to these systems and hence derive better performance. Multiplexing, de-

tection, channel coding, modulation scheme and spatial diversity are other important

techniques that are usually designed and implemented in these networks to improve

the information capacity of the wireless networks.

Signal Multiplexing is a technique to provide communication access over the

specific channels to multiple users. Among multiplexing techniques, code division

multiple access (CDMA) is the backbone of existing third generation (3G) wire-

less and mobile systems. It allows multiple users to share limited time and band-

width resources. Signal detection in CDMA systems is very important to achieve

high speed communication with reasonable information capacity performance. By

using various multiuser detection schemes we can detect the signals in non coop-

erative (2G)(3G)(4G) and cooperative wireless networks (5G). The multiuser detec-

tion (MUD) schemes were well investigated in past literature, some of the popular

techniques were presented in [10-22] for non cooperative CDMA wireless networks.

Adaptive Minimum Mean Square Multiuser Detection (A-MMSE-MUD) in cooper-

ative wireless networks is one of the focus areas of this research Thesis. The pioneer

research work in modern cooperative wireless networks was presented by Cover and

Elgamal, where they investigated the information theoretic study on the relay chan-

nels under additive white Gaussian channel noise [23]. They described the channel

capacity lower bounds of physically degraded relay channels for different random

coding schemes.
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Figure 1.1: Wireless radio spectrum usage trends:

• Figure shows the trends in Wireless Technology. Researchers are investigat-
ing the various methods to improve performance up to 100 Mb/sec data com-
munication rate for all types of wireless users. Present systems provide only
the data communication rate of 5 Mb/sec, for stationary and walking wireless
users. And this data communication rate is even lower as 1 Mb/sec for wireless
users in moving vehicles.
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The multiuser detection schemes with different protocols in cooperative CDMA

wireless networks were presented in [23-35]. Some of the other literature related to

the different aspects including system description, implementation aspects, perfor-

mance analyses and multi-hop cooperative communication were discussed in [36-

52]. Some of the important research theses related to cooperative wireless net-

works were presented in [53-55], where various cooperative protocols, strategies,

signal power and modulation schemes were proposed. Existing multiuser detection

schemes for cooperative and non cooperative wireless networks are; match filter,

decorrelator, minimum mean square error, optimum technique maximum likelihood

sequence estimation and relay assisted decorrelator [56][57].

Extensive literature review revealed that adaptive implementation in cooper-

ative wireless networks is overlooked and therefore, adaptive multiuser detection by

using MMSE for cooperative CDMA wireless networks is one of the key areas of this

research thesis. In this research adaptive multiuser detection is proposed by using

A-MMSE-MUD in cooperative wireless networks, which uses the bank of adaptive

filter to detect the signals. Whereas, in other MUD techniques, usually fractionally

spaced linear transversal bank of filters are used to detect the signals. The aim of this

research work is to develop a simple, low complexity, efficient and reliable adaptive

algorithm for detection in cooperative CDMA wireless networks. CDMA multiuser

detection (MUD) receivers are supposed to be capable of estimating the system pa-

rameters by a coordinated training routine from the transmitter. The communication

parameters to be estimated are signal delay, signal phase, signal amplitude, CDMA

signatures, multi-path channel profile and the number of users. Moreover, CDMA

MUD are useful to mitigate multi access interference (MAI) in non-cooperative and

cooperative CDMA networks. Different cooperative network models were used in

past literature. The popular previous research works in cooperative communication

was assuming that there is a single source in the network and others are relays, or

considering orthogonality of spreading codes from multiple sources that transmits
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over an orthogonal channel. In this research, a realistic scenario is considered, where

each relay may cooperate with multiple users simultaneously with approximately

orthogonal spreading codes. However, keeping the orthogonality is very complex in

classical multiuser detection schemes, but CDMA wireless with proposed A-MMSE-

MUD has the capability to overcome the problem of non orthogonality of spreading

codes. The research of A-MMSE-MUD is performed in a network where messages

received from multiple sources are amplified by existing signal processing techniques

or decoded by using purposed A-MMSE-MUD at the relays and are jointly processed

by adaptive MMSE filter before being retransmitted to the base station. At base sta-

tion the A-MMSE MUD performed after combining the beams of direct transmission

of signals and the beams of the signals from relays. Network model of the proposed

network is same as shown in the figure 1.2. In A-MMSE-MUD receiver, bank of

MF for maximum likelihood computation is replaced by a bank of adaptive MMSE

filters by using LMS or RLS algorithm. It is in contrast to the conventional approach

for the detecting the signals, to use a matched filter for each user’s signal by ignor-

ing the cross-correlation among user’s transmission. The parameters of the adaptive

filters continuously adjusted by receiving the training sequences from the transmitter

to adjust the parameter of filters for matching the desired signal at specific period of

time. Some of the strategies presented in past literature are based on relaying tech-

niques are amplify-and-forward (AF), decode-and-forward (DF), coded cooperation,

quantize and forward etc.. In this research work the focus is remained on the use of

AF and DF scheme where relay decode or amplify before forwarding to destination

node. An overview of these protocols is presented in the next chapter.
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Figure 1.2: General model of cooperative wireless network:

• Multiple users clusterS1, S2, ..., SK transmit the signals directly to destination
in (Phase I), and via relaysR1, R2, ..., RL to the destinationD in (Phase II)
through wireless Rayleigh channel. On destination node two beams are com-
bined and signal detection are performed.
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1.2 Signal Combining in Cooperative Wireless Net-

works

In past literature, extensive research work were performed on signal combining al-

gorithms. The detailed literature related to the adaptive systems were presented in

[58-92]. In the previous research work, classical schemes of adaptive equalisation

and combining were discussed in [58-61]. In particular, B.Widrow [62] and Jack H

Winters in [64] presented signal combining in various wireless channels, where they

had shown that the BER performance of LMS and RLS algorithms arbitrarily close

to the Wiener solution (optimum solution). Later adaptive combining was presented

for various applications in [64-86]. Most of the research work for the theory of adap-

tive filters are summarised in the books of S Haykin [87] and Ali H Sayed [88]. In

the previous known research work, it was assumed that channel noise variance is

Gaussian with zero mean and unit variance. Which is very un realistic situation in

practical implementation, therefore, the assumption made throughout this research

work is un equal channel noise variance. Further, it is assumed that the reception of

the signals is at low signal to noise ratio regions. Because, wireless communications

usually operate under low signal to noise/interference ratio(SNIR). The level of the

noise/interference is usually very high in practical wireless system, if it is compared

with received signal’s power. The typical received power is as low as -125 dBm at

base station of 2G/3G Nokia Siemens mobile communication system. Adaptive al-

gorithms for signal combining are a powerful tool to perform in such an environment.

A typical structure of an adaptive combining system is shown in figure 1.3.

Signal combining is very important aspect of the communication. It is very

important to obtain full benefit of the space diversity by selecting suitable combin-

ing technique. As mentioned earlier, to increase the information capacity, we have

to efficiently utilize available bandwidth resources by various techniques. One of

the techniques, that fully utilize the available bandwidth resources is receive diver-
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sity, which can be fully achieved with signal combining. Space diversity provides

an attractive method for the bit error rate (BER) performance improvement in wire-

less communication networks. For example, the typical Nokia Smart antenna system

for (2G)(3G)(4G) mobile communication provides improvement in wireless chan-

nel information capacity by 50 percent. Receive spatial diversity can be achieved

with the use of multiple antennas by receiving different versions of the transmitted

signal. In other words, various received signal sequences are subjected to different

level of statistical corruption that may be additive and/or multiplicative due to ther-

mal noise/impulsive noise (Gaussian noise due to multiple electronic circuitry) and

signal fading. In this research, it is considered that the corruptions of received signals

are due to random additive Gaussian distribution of noise. It is also considered that

the corruption can be multiplicative channel distortion due to multipath propagation,

Doppler’s phase shift, diffraction and interference etc. Moreover, in modern wireless

systems we are using multiple input and multiple output antenna systems, coopera-

tive wireless networks, orthogonal frequency division multiplexing access schemes,

higher modulation schemes other than binary phase shift keying. We also experience

the poor quality of signal due to fast moving vehicles and dense urban city environ-

ments. All these factors somehow cause channel interference in the received signal.

The channel interference itself can be statistically treated as additive Gaussian ther-

mal noise. It means these all factor increase the effects of Gaussian channel noise

variance and signal usually received at very low signal to noise ratio at destination

node or base station.

In wireless Communication, transmit and receive diversity is important to

achieve optimum channel information capacity, for this purpose, MIMO antenna

system is a useful technique where sets of antenna arrays achieve space diversity.

Cooperative wireless networks not only utilize the benefit of MIMO space diversity

in distributed manner using relays but also by an un-distributed manner with use of

multiple antenna at destination node or base station, which provides an attractive
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method for the bit error rate (BER) performance improvement in wireless networks.

Moreover, there is also great current research interests on the topic of multiple anten-

nas at mobile station. Transmitted wireless signals disperse in space due to wireless

communication channel environments and propagate in the form of multiple version

of same signal. Receiving multiple versions of the same original transmit signal, in

other words, received signal sequences are subjected to different statistical corrup-

tion that may be additive and/or multiplicative due to thermal noise/impulsive noise,

signal fading and interference, as mentioned earlier. In cooperative communication,

each node (Source/Mobile Station and Destination/Base Station) of the system act

like an antenna element of a virtual MIMO system, this is very useful to achieve

the required diversity and optimum capacity of channels at low cost. These relays

serve as virtual MIMO antenna elements to form beams of transmission through

direct transmission and indirect transmission from the relays. At destination node

two beams impinge on multiple antennas, where signal combining is performed to

acquire the full benefit of diversity. Hence, the information capacity of wireless net-

work improved considerably. Cooperative communication is a promising technique

that can overcome the problem of fading by combining multiple replicas of the trans-

mitted signal for mobile communication systems. Moreover, signal combining is not

only an important aspect of cooperative communication but also essential in of other

data communication systems, like: satellite communication, optical fibre communi-

cation and radar.

An advanced wireless/mobile network operates in a licensed band, consisting

of a wireless receiver with MIMO system, transmitting and receiving digital infor-

mation over a wireless Rayleigh channel. The mobile station communicate with each

other through a trans-receiver, which is responsible for maintaining a wireless con-

nection. In general, a wireless trans-receiver ensures that the communicating mobile

devices are always connected with sufficient power in an uplink and downlink device,

so that the information exchange is uninterrupted. But as we increase the power of a
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system, inter cell interference also increases particularly in uplink communication. In

the down link, if we increased the power, the intra cell interference cause signal dis-

tortion. Therefore, typical commonly used Nokia equipment only operated at about

50 percent of the transmitting power (40 Watt). Strict power control has been used in

practical systems to reduce interference which causes low receive power compared to

channel noise at receiver. On destination node multiple antennas receive the signals

through various communication paths and combined by using one of the available

signal combining methods. However, the levels of noise/interference on various re-

ceive components are different, especially in the case of wireless communication.

The effect of these unequal noise variance more prominent in signals that operate

under low to noise ratio in wireless systems. The strength of the signal envelopes

varies as they reaches the wireless receiver where unequal noise of the channels are

added to the signals from the communication channel. The signal strength depends

upon the travel distance to the receiver, the interference experienced in the multipath

channels, Gaussian noise and the Doppler shift of the signal envelope. All these fac-

tors cause signals to reach the receiver at different instants of time, that also make

the communication asynchronous. The usefulness of the information symbols at the

receiver depends on how much of transmitted data is recovered based on a receiver

combining and detection algorithms. Usually combiner performance is evaluated in

a Gaussian, flat fading Rayleigh and frequency selective Rayleigh wireless commu-

nication channels. In non adaptive algorithms, MRC and its driven form are used and

practically implemented in most the present mobile communication systems. For the

adaptive implementation of signal combining, two adaptive algorithms on a linear

transversal filter commonly have been used in past literature and for practical appli-

cation: least mean square (LMS) and recursive least square algorithm (RLS). Many

researchers proposed a different derived forms of these algorithms in the past liter-

ature to improve the performance and most of the work on the problem of unequal

channel noise variance was never addressed by the researchers. And it is commonly
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considered that the communication channels are with Additive White Gaussian Noise

(ADWGN) with zero mean and unit variance. Therefore, environment un equal chan-

nel noise variance is assumed throughout this research.

The benefit of adaptive implementation is computational simplicity, which

is less than maximal ratio combining and optimum combining (Wiener). Specifi-

cally, the LMS adaptive algorithm is simplest in computational complexity. This

research reveals that the performance of combining of signal fully depend upon the

correct noise estimation, therefore, respective channel noise variances are used for

the proposed algorithm weighted least square (WLS) error method of signal com-

bining. Based on the result of variance dependence on accurate signal combining,

the literature has been reviewed and it is discovered that WLS error method uses

the factor of noise variance for estimation in different practical applications. The

least square methods (LSM) were commonly used in past and useful techniques of

estimation. There are many reasons which make it favourite for various estimation

techniques. First, the common estimators like adaptive filter, MMSE and Wiener can

be implemented within this framework. Second, using squares makes LSM compu-

tation simple and mathematically tractable, because the Pythagorean Theorem shows

that when the mean square error is independent of an estimated quantity, one can add

the square of error and square of the estimated quantity. Third, the mathematical

derivatives, eigen decomposition and singular value decomposition have been well

investigated from about a century ago. LSM probably is one of the oldest techniques

of advanced estimation theory, and even its advent is dated back to Greek mathe-

matics, the first modern scientist who used this method was probably Galileo. The

modern approach was first reported in 1805 by the French mathematician Legendre.

Gauss was another famous German mathematician who competed with Legendre’s

work and published a research work, in which he mentioned that he has discovered

LSM and used it as early as 1795 in estimating the orbit of an asteroid. The use of

LSM in a modern statistical framework can be traced to Galton in 1886, who used it
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in his work on the heritability of size, which laid down the foundations of correlation

and named it as ’regression analysis’. Two scientists that had presented a brilliant

work in statistics, were Pearson and Fisher. They used and developed it in differ-

ent contexts in factor analysis for Pearson and experimental design. Nowadays, the

LSM is widely used to estimate the numerical values of the parameters to fit a func-

tion to a set of data and to characterize the statistical properties of estimates. It exists

with several variations. Its simpler version is called ordinary least squares (OLS).

Throughout this thesis, it is named as un weighted least squares error method. More

accurate version of OLS is called weighted least squares (WLS), which often per-

forms better than un weighted least squares because it uses variance factors of error

for each observation. The other suboptimum variations of the least square meth-

ods are alternating least squares and partial least squares. WLS has been used for

fitting the curves in econometrics [93-100] and for mathematics [101-105]. Some

researchers used this method for focusing of the beam [105][106] in various appli-

cations without knowing the importance, upper bound of the system performance

and its application for signal combining. Weighted Least Squares Image Matching

based tracking algorithm was given [107]. In [108][109], researchers had proposed a

simple recursive solution to passive tracking of manoeuvring targets using time dif-

ference of arrival measurements. The FIR and IIR filter design on the basis of this

method were given in the literature [110-123]. During the research investigation, it

is observed that WLS error method of signal combining never used previously for

signal combining. Therefore, a research related to WLS error method of signal com-

bining is carried out in the context of unequal channel noise variance. Chapter-6 of

this research thesis presents WLS error method of signal combining and the investi-

gation of its performance upper bound in various wireless channel models. It is also

shown that for the better combining of signal WLS error method is superior than all

other signal combining methods. It is computationally simple and only require the

estimates of channel noise variance at each branch of the combiner.
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Figure 1.3: Existing (classical) system of transmitter and adaptive combiner:

• Transmitter sends modulated information signals through wireless channel,
where signals disperse into multiple paths.

• Receiver collect the disperse energy of the signals with multiple antennas and
combine them by using different adaptive algorithms.

• Classical systems assume that the Gaussian channel noise is with zero mean
and unit variance.
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1.3 Problem Statement

The importance of research and development is vital for the progress of science and

engineering. The growth of wireless communication technologies has been excep-

tional in the last decade and it is predicted that the demand for these technologies

will increase dramatically in coming years. Therefore, it is required to broaden the

vision of wireless engineering by developing advance techniques at all layers of the

wireless network, particularly at physical layer of wireless networks, where accu-

rate and correct algorithms must be used. A little improvement in performance at

the physical layer dramatically improves overall output of the wireless networks. To

meet increasing demand, many efforts have been made in past research literature by

using various techniques, as mentioned in the start of this chapter. The aim of the all

schemes is to reduce the communication bit error rate, so that information capacity

can be fully achieved during the communication. The computational complexity is

also very important factor in designing algorithms for signal processing. The com-

plexity further increases in cooperative wireless networks, particulary when network

size grows and feasibility of implementation becomes very difficult. Most of the

proposed signal combining and multiuser detection schemes presented in past litera-

ture are too complex to implement in cooperative wireless networks. Therefore, it is

required to present combining and multiuser detection that are not only effective in

all conditions of a communication channel but also computationally simple. More-

over, most of the performed work by the researchers was designed for synchronous

systems, whereas in reality, signal arrived on antenna device incoherent in time and

space. Therefore, it is required to design systems which can effectively combine and

detect in the asynchronous communication systems.

Another important problem in wireless systems is the unequal channel noise

variance, which exist in cooperative and non-cooperative wireless networks. Dur-

ing the detailed literature review it is observed that this problem is never addressed
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properly and overlooked, particularly when combining the signals were performed.

Therefore, it is also required to develop algorithms (adaptive or non adaptive) for

detection and combining of the signals, according to their respective channel noise

variance. There were many technique previously used in past literature and practi-

cally implemented in a multi cellular environment both in cooperative and non coop-

erative wireless networks, but still there is a need of developing cooperative wireless

networks with adaptive signal combining and detection. Adaptive signal combining,

weighted least square method and A-MMSE-MUD in cooperative wireless networks

are some possible research directions that can combine and detect the received sig-

nals to provide diversity and remove multiple access interference (MAI) in cooper-

ative wireless networks. The outcomes of this research would bring optimization in

existing wireless communication systems (2G and 3G). Also, they would be useful

for next generation (4G and 5G) of wireless networks.

1.4 Key Contribution of the Thesis

In this research a number of innovative contribution are presented, some of the im-

portant contributions of this thesis are as follows:

• In this research A-MUD technique adaptive minimum mean square multiuser

detection (A-MMSE MUD) is developed in cooperative networks, which is

used for non cooperative wireless networks in past literature and wireless sys-

tems. The presented scheme is a computationally simple mathematical algo-

rithm for signal detection which reduces the complexity, whereas previous ver-

sions proposed by other researchers are computationally complex and not fea-

sible for practical implementation in cooperative wireless networks. Basically,

an asynchronous cooperative CDMA wireless network uplink transmission

with A-MMSE-MUD is developed and analysed. Two protocols of cooperative

communication wireless networks are used, (i) Amplify-and-Forward (AF) at
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relays of the network and A-MMSE-MUD at destination (ii) A-MMSE-MUD

at the relays and destination in a Decode-and-Forward (DF) operation. Two

performance measures: System’s information capacity and bit error rate (BER)

are used to assess the improvement in communication system. The comparison

of the information capacity and BER performance of the proposed detection

method with other multiuser detection schemes under the same conditions are

presented and basically: AF strategy is used at the relays and A-MMSE-MUD

at the destination, in an asynchronous cooperative communication networks.

The system’s BER performance, in terms of improved SNR is better by sev-

eral dB at the BER10−3 to 10−5 . The information capacity benefit is about

1.5 bit/sec/Hz, from 5dB to 30dB SNRs. These results provide significant im-

provement in comparison to existing multiuser detection techniques in such

wireless networks. This research has also dealt with a realistic scenario of

asynchronous transmission in uplink of CDMA wireless communication sys-

tem, whereas, most of the previous work was for a synchronous system. The

developed A-MMSE-MUD can provide high speed communication by fully

utilizing existing bandwidth spectrum. This technology can be used for next

generation(4G and 5G) wireless networks. The analysis and results were pub-

lished as peer referenced conference papers [123][124].

• In second major contribution of this research thesis, adaptive signal combining

with LMS and RLS algorithms in cooperative wireless networks in presence

of equal and unequal noise variance is presented. It is shown that significant

gain can be achieved by using the adaptive algorithm with additional benefit of

computational simplicity. The direct consequence of this gain is improvement

in information capacity and BER improvement in comparison to conventional

methods of signal combining. The information capacity and BER benefit is

more significant when there is a difference of signal to noise ratio of com-
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bining signals which is very common in cooperative communication wireless

networks. Adaptive LMS and RLS algorithm are used and their performance

analysed with computer simulation in different wireless channels in terms of

ensemble average mean square error and BER. It is expected that this research

result will be used to provide ultra high speed communication facilities in the

4G and 5G wireless devices [125][126].

• In the third major contribution, an innovative Weighted Least Square Method

of signal combining for wireless communication is proposed and analysed,

which can be used for cooperative and noncooperative wireless networks. The

algorithm of the proposed method of signal combining was used for target

tracking and curve fitting in previous research literature and related practical

implementations. The proposed method has better performance than all other

signal combining schemes and applicable in the realistic wireless networks,

where we have unequal channel noise variance. It is the simplest in computa-

tional complexity and achieved the Wiener’s solution (optimum) performance

of signal combining. Whereas the maximal ratio combining is unable to pro-

vide the required performance, due to unequal channel noise variance presence

in the receiver systems. A mathematical algorithm is developed for the pro-

posed method and computer simulations are used to verify the performance

in various channel models. The research work were also published as peer

referenced journal paper [127].

1.5 Thesis Outline

This thesis constituted of the following parts: Chapter-1 describes a brief introduc-

tion, chapter-2 represents some of the fundamental cooperative diversity concepts,

cooperative protocols and methods. Chapter-3 presents an adaptive multiuser de-
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tection technique by using A-MMSE-MUD in cooperative wireless networks. The

mathematical derivation and computer simulation performance of Information Ca-

pacity/BER is also presented in chapter-3. Chapter-4 presents interference resis-

tance of the A-MMSE-MUD scheme in cooperative relaying networks and its com-

puter simulation performance. Chapter-5 presents the performance of various classi-

cal combining schemes including adaptive signal combining in cooperative wireless

networks. Chapter-6 presents weighted least square algorithm for signal combin-

ing, which is equally useful for cooperative and non cooperative wireless networks.

Chapter-7 summarises the conclusions and points to the areas for possible future

research. In appendices the developed system’s MATLAB code are given.
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COOPERATIVE DIVERSITY
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2.1 Relaying Methods in Cooperative Wireless Net-

works

The relaying methods are the most important aspects of cooperative wireless net-

works. In relaying methods every node of the wireless network supports to forward

communication data towards destination nodes by using the antenna of the relays.

The function of the relays is to remove the channel distortion, noise effects and re-

construction of the signal by amplification or by decoding before further transmis-

sion. In this section, commonly used methods for relaying in cooperative wireless

networks are described that commonly available in previous literature. As mentioned

earlier, combining and detection are two fundamental techniques to improve the per-

formance but there are some other factors that also affects the system performance.

One of these factors is the use of relaying protocols at relays to obtain full benefit

of diversity. Many relaying protocols/methods are used for cooperation in past lit-

erature, but here only two of them are described as they have been used throughout

this research. They were wildly analysed and used by previous researches. All of the

relaying method are complex and increase computational complexity. Therefore, we

have to select them carefully when implementing in cooperative wireless networks

with common multiuser detection techniques. With the use adaptive combining and

detection schemes, we can fully obtain the benefit of the relaying scheme to improve

communication performance. Typical cooperative relaying network model is shown

in figure 1.4.
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Figure 2.1: A cooperative relaying wireless network model:

• Source cluster of wireless users transmit signals to relays cluster for onward
transmission to the destination node. There is also a direct transmission of the
signals from source cluster to the destination.
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2.1.1 Decode-and-forward (DF) Protocol

In DF relaying method/protocol, a cooperating node (relay) first decodes signals re-

ceived from a source and then relay/retransmit them. The receiver at the destination

node receive the signal beam from multiple relays (relays link) and a signal beam

directly from sources (direct link) to combine and detect. This type of cooperative

protocol is ideally useful when the channels from source to relays are Gaussian,

which is most probable in urban cellular mobile and wireless line of sight communi-

cation. For other channel environments, it is greatly possible that cooperating node

decode symbols with too many errors, resulting in error propagation at ’sources to re-

lays’ link. Perfect regeneration at the relays may require retransmission of symbols,

the use of forward error correction or other error correction algorithms depends upon

the quality of the channels between the source-to-relay links and selection of new

relay cluster by sources. This protocol is not suitable for delay limited networks. In

this method, which is also used in this research, a single mobile user transmits data

symbols to multiple relaying nodes to obtain the benefit of virtual multiple antenna

system. And then decoding is performed at relays. The number of errors in received

symbols are completely dependent upon the channel quality.

2.1.2 Amplify and Forward (AF)Protocol

In this relaying method/protocol each cooperating node receives the signals transmit-

ted by the source nodes and transmits the same envelope of signal with an amplifica-

tion of the signal by using advance signal processing techniques instead of decoding.

Signals in their noisy form are amplified to compensate for the attenuation suffered

between the source-to-relay links and retransmitted with unequal noise variance. The

destination requires knowledge of the channel state between source-to-relay links to

correctly decode the symbols sent from the source, which is coordinated by typical

training sequence (pilots) from the transmitter. If the adaptive implementation is per-
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formed then the channel state information is not required at transmitter or receiver.

This relaying method required complex signal processing such as sampling, ampli-

fying and retransmitting analogue values, which has been successfully performed by

various advanced signal processing methods. This protocol avoids error propagation

and retransmission at relays, but produces unequal noise amplification in signals.

This protocol is also used in this research.

2.2 Signalling Techniques in Cooperative Wireless Net-

works

In this section some of the most common signalling techniques available in previ-

ous literature are described, which have been used at relays of cooperative wireless

networks. Signalling technique is also an important factor for the quality of the com-

munication in wireless networks, particularly, when we use non adaptive systems for

detection and combining. These techniques have been used for MIMO and com-

monly available in past literature. In this research transmit beamforming is used for

non adaptive detection techniques for performance comparison with adaptive tech-

niques due to its common use in previous literature and simplicity of implementa-

tion. For proposed A-MMSE-MUD, channel estimation is coordinated by a training

sequence. Therefore, the signalling is performed by training sequence and it does

not require any other method for signalling at relays. Based on fundamental relaying

methods/protocols (AF and DF), architectures (multiple sources and multiple relays)

and signalling strategies (STBC and transmit beamforming) most of the research on

cooperative communication has been focused on the performance improvements over

traditional methods of multi-hop communication in the asymptotic regime.
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2.2.1 Distributed Space-Time Coding

This type of signalling is similar to the space-time block coding (STBC) technique

commonly used in MIMO antenna systems. In this scheme cooperative nodes en-

code the signal using STBC, such that each node transmits a column of the block

code. Extensive research work has been performed in previous literature to explore

the benefit of these coding schemes [128-134]. The advantage of using space-time

coding is to fully obtain the benefit of spatial diversity available in cooperative wire-

less network in a bandwidth efficient manner by sending signals in sequences of

particular code (called space time block code). This processing is usually performed

on the high cost of computational complexity of systems and complexity grows with

network size growth. Many authors in the past also presented the derived form of

this type of transmission strategy by fundamentally following the same principles.

Early techniques were consisted of scalar coded methods like repetition diversity

over orthogonal frequency bands and bandwidth conserving schemes such as time

shifting and phase sweeping diversity. Later developments in this area saw the emer-

gence of vector coding for multi-antenna systems presented by Alamouti [134] on

the simplest block codes that achieve full diversity and were relatively computation-

ally simple. In general this type of coding is very useful not only for MIMO systems

but also for cooperative wireless networks (virtual MIMO). However, it increases the

wireless network’s complexity, particularly when wireless network size grows with

the increase of cooperative nodes. The practical implementation of this system is not

feasible for cooperative wireless networks (5G), as recently reported in [135][29],

where channel estimation base cooperation was preferred for practical implemen-

tation. In this research adaptive signalling is used, which is one of the method of

channel estimation base cooperation, which provide the same performance as STBC

signalling, while computational complexity of proposed adaptive processing is much

lesser than STBC signalling.
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2.2.2 Distributed Transmit Beamforming

Distributed transmit beamforming scheme has been used for wireless sensor net-

works. In transmit beamforming, the channel state information is assumed to be

available at the transmitter. It use the routine training signals during the transmis-

sion. This scheme is particularly useful to increase average SNR at receiver in the

environments, where spatial diversity gains are limited, for example air-to-ground

communication. However, to implement beamforming in cooperative wireless net-

work, a continuous feedback of channel state information (CSI) at each of the coop-

erating nodes is required. In practice, obtaining channel state information on relays

is extremely complex. Therefore, an adaptive version of transmit beamforming [136]

is a better approach, where channel estimation performed by a training sequence. We

can use adaptive beamforming at the transmitter to produce the same performance as

classical technique of beamforming. Another option is to use adaptive combining at

the receiver of destination node. Therefore, throughout this research adaptive com-

bining is used, which does not require any channel state information and signaling

technique at relays . This research has also observed that adaptive signal combining

is better than received MRC. Therefore, one can easily predict that adaptive beam-

forming at the relays is better than transmit beamforming. This topic of research is

beyond the scope of this work, but it can be explored in future research.

2.3 Channel Models

Following are some of the channel models that have been used in past research for

non-cooperative and cooperative wireless networks. This research has used them to

examine the performance of various the presently available and the proposed algo-

rithms.
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2.3.1 Gaussian Channel

In this channel model the fading of the communication signal at the receiver is only

caused by Gaussian distribution of noise, which is due to various factors including

air/atmosphere, receiver and transmitter circuits. This noise causes additive impair-

ment in the received signal. Most of the previous works assume this noise was equal

in all channels with zero mean and unit variance, but in reality it is unequal and dif-

ferent at each receive branch of a multiple antenna system. Therefore, it is more

realistic to assume unequal noise variance for additive white Gaussian noise. In pre-

vious section the sources of Gaussian noise were discussed in detail. Chapter 6 of

this research particularly addressed a realistic scenario of unequal channel noise vari-

ance, where signal combining and detection at low signal to noise (SNR) region are

examined. In this research the channel model for the fading of the signal-symbol at

the receiver is taken as Gaussian distribution. The discrete Gaussian channel model

is used to describe the fundamental information capacity of a digital wireless system.

The transmitted communication signal is assumed to fade across the entire frequency

spectrum, linearly. Since the interference is assumed to span across the bandwidth

of the entire spectrum in use for the communication channel, the receiver is assumed

to recover base-band information, leaving only unequal AWGN in channels. The

pass band analysis resulted in a complex variable, but at base band however, only

the one sided real component of the power spectrum is considered to save energy

to meet the energy or power constraint. This is the most common limitation on the

input of energy or power. In a coded system over a Gaussian channel, a symbol is

assumed to have an average power constraint. In a Gaussian channel the additive

noise is caused by variety of factors, but by the central limit theorem, the cumulative

effect of a large number of small random effects will be approximately normal, thus

a Gaussian assumption is valid. In cooperative wireless networks the Gaussian chan-

nel can be established with any two communicating line of sight nodes. The whole
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network management by using protocols on all layers of cooperative transmission

is to ensure availability of the maximum number of Gaussian (line of sight) chan-

nels within the networks. Wireless channels are usually Gaussian in short range, line

of sight and satellite communication. The cellular mobile phone systems in dense

urban areas have a great probability of obtaining a Gaussian channel from neigh-

bouring mobile phones for relaying. Wireless sensors systems can be embedded in a

sensing environment on the same principle to obtain Gaussian channels. The degra-

dation in performance of a system is usually due to multipath propagation which can

be removed by setting proper network protocols at all layers of cooperative wireless

networks to obtain communication through Gaussian channels. The choice of pro-

tocol for cooperative wireless network is very important to obtain Gaussian channel

for the communication.

2.3.2 Flat Fading Raleigh Channel

Wireless signals propagate through extremely unfavourable random channels, which

does not allow the simple AWGN channel assumption. Therefore, we have to analyse

the system performance in a Rayleigh channel before the practical implementation of

the system. A Gaussian channel with zero mean and unit variance provides us with

the theoretical achievable upper bound of the information capacity. The research aim

is to design systems that obtain the performance close to the upper bound. Radio

signals propagate by means of reflection, diffraction, and scattering, which result

in three effects: attenuation, large-scale shadowing, and small-scale fading. It is as-

sumed that all three effects are independent of each other. Signal attenuation depends

upon the distance between the transmitter and the receiver. It is inversely proportional

to distance, which can be predicted by a deterministic model. Large-scale shadowing

of a signal is mainly caused by multiple reflections and/or diffractions of the signal

during transmission. These characteristics can be modelled as a log-normal distri-
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bution. Multiple versions of a transmitted signal with different delays, such that it

has time and location varying property, cause small-size fading. One of the type of

channel with the fading phenomenon is due to multi-path time delay spread called a

flat fading channel. In which the period of the transmitted signal is greater than the

multi-path delay spread. In simple terms channel can be termed as flat fading when

multi path channel has only one tap. And the convolution operation reduces to a sim-

ple multiplication due to this assumption. The received wireless signal power varies

significantly in a flat fading channel, it is very important to accurately capture the

distribution of the channel gain in designing a wireless system. The most common

used signal amplitude distribution in flat fading channels is the Rayleigh distribution,

which is used to test various presented and proposed systems of this research.

2.4 MIMO System Capacity

The capacity of a digital communication system is defined by its ability to reliably

transfer digital information bits over the communication channel. It is known as

the Shannon-Hartley theorem of information capacity. In Gaussian channels, it was

shown that information capacityC is represented by the following equation:

C = B log2(1 +
S
N

) (2.1)

WhereB is the bandwidth of the communication channel, the signalS and

noise powersN measured in watts. It can be observed from the above definition that

the upper bound of digital information capacity is intrinsically tied to the communi-

cation channel over which reliable information transmission is being attempted. The

signal and noise associated with a received information bit cannot be separated and

hence is referred to as the signal to noise ratio (SNR). The channel capacity is defined

as the upper bound on the amount of information can be transmitted over communi-

cation channel. The popular formula for the Shannon capacity expressed in bps/Hz
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is given by:

C = log2(1 + ρ · |H|2) (2.2)

Where|H|2 is the normalized channel power transfer characteristic. Hereρ repre-

sents SNR. From this formula it is obvious that for high SNRs a 3 dB increase inρ

gives another bit/cycle capacity. Information capacity of a system is a very important

measure in designing wireless communication systems. Using multiple antennas at

the transmitter and the receiver is one of the techniques which improve information

capacity dramatically. The information capacity formula for a MIMO channel with

random signatures establishes a missing link between the classical Shannon channel

capacity formula for a point to point communication system and the cellular mo-

bile communications scenario. In addition to Telatar and other research work, the

random signature MIMO (RS-MIMO) channel capacity analysis was presented in

[137], where a set of implicit system design rules could be drawn leading to the

cellular mobile system design achieving Shannon capacity of the point to point com-

munication. If the number of independent antennas in the receiver arem, then the

capacity is increasedm times in comparison with a single antenna system even in the

presence of mutual interference. A study of the multi-antenna system, specifically

the adaptive antenna array systems provides useful insights into capacity achieving

MIMO systems compared to other MIMO systems, such as beamforming or multi-

sector receive antenna systems. Therefore, the use of MIMO is justified by adaptive

antenna array systems in wireless communication systems. To examine the perfor-

mance, simulated Bit Error Rate (BER) performance usually computed, which can

be measured by applying hard decision decoding to the received data stream at the

output of the various types of filters. The capacity performance in computer simu-

lation of the system in terms of the output minimum mean square error (MMSE) is

given by the following equation [19].

C =
1

2
log

1

ε0
(2.3)
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The fundamental relationship between information capacity and MMSE forms a

base-line in understanding the context of MMSE estimation. The information ca-

pacity of an MMSE receiver with output is given by the above equation whereεo is

the output MMSE and information capacityC is the maximum data rate achievable

with an increasingly small probability of error. To examine the information capacity

in term of MMSE estimate, the analyses and computer simulations were presented

for the performance of various filters in [138], the detail of the presented analysis are

beyond the scope of this research thesis.
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3.1 Introduction

Multiplexing techniques provide multiusers to share the resources of channels in

time and frequency domain. Wireless and mobile Code division multiplexing ac-

cess (CDMA) systems are most popular schemes among existing 2G and 3G wire-

less/mobile systems. 3G wireless systems are based on CDMA technology. Propa-

gating CDMA signals face various destructive factors during the transmission. Fad-

ing is one of the problems, which occurs in the communication due to multipath

propagation of waves and severe signal attenuation. MIMO antenna configuration

has been used for decades to overcome fading problems by sending multiple ver-

sions of the original signal. As it was described in previous chapter that cooperative

communication wireless network is a virtual MIMO scheme. In that scheme each

node of the wireless network acts as an antenna element of a virtual MIMO system.

Cooperative Wireless systems basically use three fundamental ideas (i) use relays

(single or multiple hop) to provide spatial diversity to overcome fading environment,

(ii) set a protocol at relay to sends information to a specific node of network and

form a virtual MIMO antenna array, where each user act as an element of antenna

array and (iii) on destination node use of multiple antennas to combine signal beams

received from different paths. This chapter presents the research work of coopera-

tive CDMA wireless network with A-MMSE-MUD algorithm, which was examined

with two cooperative protocols DF and AF. CDMA Multiuser detection (MUD) tech-

niques can deal with the de-modulation of digitally modulated signals in the presence

of multiuser access (MAI) interference. Early MUD schemes was presented for non

cooperative CDMA networks by [10-12] [19] and later for cooperative communi-

cation wireless networks in [22][24][56] MUDs to mitigate MAI. A-MMSE-MUD

was proposed in [19][20][28] for non cooperative. The motivation of this research

is to develop a cooperative CDMA wireless network by using A-MMSE-MUD to

eliminate MAI, when cooperative protocols AF and DF are applied.
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A-MMSE-MUD receivers are very capable of estimating and detecting the

system parameters such as signal delay/timing, signal phase, signal amplitude, sig-

natures, multi-path channel profile and the number of users. In CDMA system, usual

training routine is operated by the transmitter for estimation and detection. For low

numbers of users, classical detection schemes using matched filters are very effective

but as the CDMA wireless networks size grows the performance decreased exponen-

tially, whereas the performance of the A-MMSE-MUD technique is linear and its

computational complexity increase with the increase of the user, linearly. The linear

performance of A-MMSE-MUD means that the performance of the scheme decreases

linearly with the increasing the number of wireless/mobile users in CDMA systems.

It was also found that A-MMSE-MUD technique is also useful in interference miti-

gating aspects, which will be covered in next chapters. The cooperative schemes are

shown and analysed in this research are:

• A simple A-MUD technique A-MMSE-MUD is developed and its simula-

tion performance is examined for eliminating MAI in a cooperative wireless

CDMA network.

• An AF strategy is used at the relays and A-MMSE-MUD detection at the des-

tination node in an asynchronous cooperative wireless CDMA network. This

system’s BER performance is about10−3 at a SNR of10dB while the channel

information capacity performance is nearly4bits/s/Hz at the same SNR. This

system’s BER performance is about10−5 at a SNR of20dB while the channel

information capacity performance is nearly8bits/s/Hz at the same SNR.

• An A-MMSE-MUD DF strategy is used at the relays and an A-MMSE-MUD

decode at the destination, in an asynchronous cooperative wireless network.

This system’s BER performance is about10−4 at a SNR of10dB while the

channel information capacity performance is nearly6bits/s/Hz at the same

SNR. This system’s BER performance is about10−5 at a SNR region of17dB
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while the channel information capacity performance is nearly9bits/s/Hz at

the same SNR.

The rest of the chapter is organized as follows: The presented model for a cooper-

ative wireless CDMA system used in the research is given in section 3.2. Proposed

A-MMSE-MUD for the networks is in section 3.3. Performed computer simulation

experiments and performance comparisons are shown in section 3.4. Finally, con-

cluding remarks for the research are described in section 3.5.

3.2 System Model

To understand about the performed research work of A-MMSE-MUD techniques in

cooperative wireless, consider a wireless network whereK wireless/mobile users,

denoted byS1, S2, ..., SK , serve as sources andL wireless/mobile users, denoted

by R1, R2, ..., RL serve as relays. All sources broadcast data to the relays, where

further processing is performed by amplification to boost the signal power or MUD

is performed to detect the signal. Relays further transmit signals to the destination

node or base station for MUD as shown in figure 3.2. A typical cooperation strategy

is modelled with two orthogonal phases, to avoid interference between the two phases

[57].
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Figure 3.1: General system model of a presented cooperative wireless CDMA net-
work:

• Source clusterS1, S2, ..., SK transmit data to relay clusterR1, R2, ..., RL. Re-
lay cluster further transmits the same data to the destinationD. Source cluster
also transmits directly to the destination. On the destination two beams from
Relay Link and Direct Path Link are combined. And further signal detection is
performed by A-MMSE-MUD.
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3.2.1 Phase I (a): Transmission from Sources to Destination

In Phase′Direct − Path − Link′ I (a), each source ’K’ transmits a message with

N data symbols to the destination ’D’. Letx(n) = [x1(n), x2(n)..., xK(n)]† be the

BPSK data symbols transmitted by sourcesS1, S2, ..., SK during thenth symbol pe-

riod, wherexk(n) = {−1, 1} for kth user and:

E [x(n)x(p)†] = I (K×K), if n = p

= O(K×K), otherwise

Herep is time interval other thann. I represents the identity matrix andO represents

null matrix of the order ofK×K. LetPSk
be the power transmitted bykthsourceSk

and letsk(t) be the spreading waveform(signature) ofSk. Under the asynchronous

CDMA signal assumption, the CDMA signal received at the destination node in the

presence of additive white Gaussian noise may be expressed as

yI(t) =
N∑

n=1

K∑
k=1

hSkD(
√
PSk

)xk(n)sk(t− nT − τk) + vI(t) (3.1)

WhereT is symbol period,hSkD is the complex channel co-efficient fromSk to

D and τk is the transmission delay of thekth user. This research has assumed a

block fading environment, where channels coefficient remain constant for N-symbol

block and are independent and identically distributed (i.i.d) from block to block. The

channels coefficienthSkD is assumed to be zero mean circularly symmetric complex

Gaussian (ZMCSCG) and varianceσ2
SkD , i.e.,hSkD ∼ CN (0, σ2

SkD), and is assumed

to be independent among sources. AndvI(t) is the additive white Gaussian noise

(AWGN) with distributionCN (OK×1, σ
2
vR). If s is the spreading gain, the spreading

gain waveform forsk is given by:

sk(t) = 1/
√
s

s∑
i=1

ck(t)ψ(t− iTc), k = 1, 2..., K (3.2)
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whereck(i) is theith element of the±1 spreading sequence assigned toSk, andψ(t)

is the normalized chip wave form with unit energy and durationTc = T/s . HereT

is the symbol duration.

The digital baseband signal received by first branch of signal combiner (Direct

Link) of the destination node, is given byyI(n). On the destination node, proposed

A-MMSE-MUD is used to detect data symbols. The detail of A-MMSE-MUD is

described in section 3.3. This research has proposed to useK adaptive MMSE filters

instead of matched filters to detect the received signals. The A-MMSE-MUD used

on each node of the wireless CDMA network. Also matched filter, decorrelator,

MMSE and relay assisted decorrelator are examined by the computer simulation for

the comparison.

3.2.2 Phase I (b) Transmission from Sources to Relays

Each source broadcasts the message withN data symbols to the relaysR1, R2, ..., RL

is called′Source−Relay−Link′. The signal is also observed at the adaptive MMSE

or filters bank at̀ th relay during thenth symbol period. It is given by

yI′(t) =
N∑

n=1

K∑
k=1

hSkR`
(
√
PSk

)xk(n)sk(t− nT − τk`) + vI′(t) (3.3)

WhereT is symbol period,hSkR`
is the complex channel co-efficient fromSk to

R` andτk` is the transmission delay assumed for thekth user at thè th relay. The

channel coefficienthSkR`
is assumed to be ZMCSCG and varianceσ2

SkR`
, i:e, hSkR`

∼ CN (0, σ2
SkR`

), and is assumed to be independent among sources. AndvI′(t) is

AWGN with distributionCN (OK×1, σ
2
vR). The digital baseband signal received at

relay node is given byyI′(n), where A-MMSE-MUD performed. The detected sym-

bols are given bŷx`(n). Symbols are transmitted again towards destination node with

same spreading sequence. On destination node proposed A-MMSE-MUD is used to

detect data symbols. The detail of A-MMSE-MUD is describe in section 3.3. Where,
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this research proposed to useK adaptive MMSE filters instead of matched filters to

detect the received signals. The MUD techniques; A-MMSE-MUD, matched fil-

ter, decorrelator, MMSE and relay assisted decorrelator examined by the computer

simulation for the comparison.

3.2.3 Phase II Transmission from Relays to Destination

In this phase (Relay Destination Link),`th relays forward the detected data symbols

with the same spreading sequence of respective sources to the destination by transmit

beamforming at relays. Let us assume that the detected symbolsx̂`(n) in the previous

section may be re-encoded into a symbol matrix

f(x̂`) = t`(n) (3.4)

Wheref represents the function which is the use of signalling/coding scheme at re-

lay as discuss in chapter 1. This research has used transmit beamforming for the

match filter, decorrelator, MMSE and relay assisted decorrelator and a routine train-

ing sequence signalling for the A-MMSE-MUD. This research also assumed for the

scheme that each relay transmits with the same spreading codes of users in timen:

t`(n) = [t`,1(n), t`,2(n)..., t`,K(n)]† (3.5)

The term in above equation is the symbol vector transmitted byR` during thenth

symbol period. One of the advantages of the A-MMSE-MUD technique is that it

does not require the any signalling technique at relays like transmit beamforming or

distributed space time block coding [56], the function of signalling being performed

by a training sequence for the bank of adaptive filter at receiver. Therefore, the

proposed system provides significant simplicity in a wireless network. Heret`(n)

entirely depends on the detected symbols.x̂`(n) are detected symbols re-encoded

and further sent towards the destination ast`(n). The observation signal on second
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branch (Relay Link) of combiner is given by:

yII(t) =
N∑

n=1

K∑
k=1

L∑
`=1

hR`D(
√
PR`

)t`,k(n)sk(t− nT − τ`) + vII(t) (3.6)

WhereT is the symbol period,hR`D is the complex channel coefficient fromR` to

D and τ` is the transmission delay of thèth relay. The channel coefficienthR`D

is assumed to be ZMCSCG and varianceσ2
R`D

, i.e., hR`D ∼ CN (0, σ2
R`D

), and is

assumed to be independent among relays.vII(t) is the AWGN with distribution

CN (OK×1, σ
2
vR). The received digital signal for the indirect transmission is denoted

by yII(n). After the signal combining on the destination node, the signal obtained

after combining at the input of decision device by adaptive filters during thenth

symbol period is given in section 3.3. For amplify and forward, amplification is

performed at each relay to forward the received signals for MUD at the destination.

Therefore, the observation signal of equation 3.7 is multiplied by amplification factor

Amplify-and-Forward protocolγ, which is given in following by Laneman [24] in

his famous research work:

γ ≤

√
PSk

hSkR`
PSk

+ vI′(t)
(3.7)

Thus the transmission equation from relays to destination in the case of AF is given

by:

yII(t) = γyI′(t) = γ[
N∑

n=1

K∑
k=1

hSkR`
(
√
PSk

)xk(n)sk(t− nT − τk) + vI′(t)] (3.8)

The direct received signal beamyI(t) and received beam through relaysyII(t) are

combined before detection at the destination by different combining techniques. In

coming chapter 5 and chapter 6 of this research thesis describes about the used and

proposed various methods of signal combining.
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3.3 A-MMSE-MUD in Cooperative Communication Net-

works

A simple mathematical algorithm is also developed which provide very very low

computational complexity to detect receive data by A-MMSE-MUD. Different types

of signal processing mathematical analyses were presented for channel pre-coding

in [56], where a whitening filters at relays are used but with very high and nonlinear

computational complexity.

In A-MMSE-MUD research investigation bank of matched filters are replaced

by A-MMSE filters for channel estimation and detection. The research has adopted

an alternative approach instead of the conventional approach for the detecting the

signal by using a matched filter for each signal by ignoring the correlation between

signals of different users. In single user detection every matched filters receiver

is equivalent to an A-MMSE receiver [20][19], but for the multiple user bank of

matched filters performance degrades non linearly. The term linear means that, when

the mobile users increase the performance of detection degrade in a linear curve. To

understand A-MMSE-MUD consideryI(t) or yII(t) is received analogue symbol of

durationT at the input of a receiver on anyBth node (relay or destination) andyI(n)

or yII(n) digital form of the signal from the output of analogue to digital convertor.

Considery(n) to be the received digital signal at any node of the network in respec-

tive received digital output of the symbol from the output in chip intervalTc. In a

wireless communication environment, non-orthogonal transmitted signals from inde-

pendent users arrive asynchronously at the receivers [28]. The delay causes further

increase in non orthogonality of the spreading codes and the correlation due to non-

orthogonality of spreading sequences further increases at receiver. The coefficient of

correlation matrixR is given by:

E [y(n)y∗(n)] = %(s, s)
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The digital output for thenth symbol period on relays or destination nodes is given

by:

y(n) = Rhx(n) + v(n) (3.9)

HereR correlation matrix is given by:

R =


%(1, 1) %(1, 2) ... %(1, s)

%(2, 1) %(2, 2) ... %(2, s)

... ... ... ...

%(s, 1) %(s, 2) ... %(s, s)

 (3.10)

The received signal at each node received by bank of MF or adaptive filters for mul-

tiuser detection, therefore:

y(n) = x̂(n) = [x̂1(n), x̂2(n)..., x̂K(n)]† (3.11)

Is the received signal matrix as given byy(n) = [y1(n), y2(n), ....yK(n)]. The matrix

R is Hermitian and can be uniquely defined by specifying the values of the corre-

lation co-efficient%(s, s). The error between the reference signal(training sequence

at receiverx(n) and the output ofnth symbol of an adaptive filter at the bank of

adaptive filter is given by:

e(n) = (x(n)− x̂(n)) (3.12)

wherex̂(n) is the signal estimated at the receiver and is given by

x̂(n) = aH(n) · y(n) (3.13)

HereaH(n)is α dimensional complex valued weight vector ofnth symbol.

a(n) = [a1, a2......., as](n) (3.14)

The superscripts represent the tap of filter, which is equal to spreading gain. During

the adaptation mode the weight parameters are adjusted such that mean square error

Ja is minimized innth symbol time. For simplicity,n is with every term but this
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research are not mentioning it in the following equations for sake of simplicity. Mean

square error is given by:

Ja = E[e · e∗] (3.15)

Ja = E[(x− aH · y)][(x− aH · y)∗] (3.16)

Ja = E[x · x∗] + aHE[y · yH ]a− aHE[y · x∗]− E[x · yH ]a (3.17)

The first termE[x·x∗] in above equation, represents the variance of the desired

signal. The expectationE[y · yH ] represents thes × s correlation matrixR, earlier

mentioned in equation 3.10. Let the third term is given byz = E[y ·x∗]. It is thes×1

cross-correlation matrix vector between the received components and the reference

sequence. And the forth term is given byE[x · yH ] = zH

WherezH = [z∗1 , z
∗
2 , .......z

∗
N ]. The coefficientszi are given byzi = E[y(n) ·

x∗(n)]. For stationary input and reference signals the surface obtained by plotting the

mean square errorJa versus the weight coefficient has a fixed shape and curvature

ith a unique minimum point. The adaptive process seeks that minimum point, where

the weight vector is optimal. Differentiating the mean squared error functionJa with

respect to each coefficient of the weight vectora yields the gradient∇.

∇ = ∂Ja/∂a =


∂Ja/∂a1

∂Ja/∂a2

.....

∂Ja/∂as

 (3.18)

Differentiating the mean squared error functionJa with respect to each coefficient

of the weight vectora yields the gradient∇. The optimal weight vectoraopt can be

determined by setting the gradient∇ equal to zero:

∇ = −2z + 2R · a = 0 (3.19)

Where0 is anm by 1 null vector at the minimum point of the error surface, the A-

MMSE-MUD is optimum in the mean squared error sense, and the equation can be
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simplified in the form

R · aopt = z (3.20)

Which is a Wiener-Hopf or normal equation, where the vector representing the esti-

mation error is normal to the vector output of the filter. One possible solution of this

equation is matrix inversion as follows:

aopt = R−1 · z (3.21)

Another simple solution that does not require matrix inversion or explicit calculations

of the correlation coefficient is the steepest decent method (SDM). The SDM is a

recursive procedure which can be used to calculate the optimal weight vectoraopt.

Let a and∇ denote the values of the weight vector and the gradient vector within

thenth symbol period, respectively. Then succeeding values of the weight vector are

obtained by the recursive relation. After each symbol period numbern the weight

of the filter is updated until the optimum coefficient is obtained. After obtaining

the optimum coefficient adaptive filter hard decision decoding applied. The criterion

for applying hard decision decoding is usually by setting a threshold on mean square

error or on cross-correlation value. The updated co-efficient of adaptive filter is given

by:

a(n+ 1) = a(n)− µ · ∇ (3.22)

Whereµ is step size constant that controls stability and the rate of adaptation. If′∇′

express in terms of instantaneous estimatesẑ = y · x∗ and R̂ = y · yH Then the

equation can be simplified as the LMS algorithm:

a(n+ 1) = a(n) + 2µ.y(n) · x∗(n)− y(n)H · a(n) (3.23)

which can be expressed in term ofe(n) as,

a(n+ 1) = a(n) + 2µ · y(n) · e(n) (3.24)

Wheren = 1, 2, 3........
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This equation tells about the updated weight vector, which is computed from

the current weight vector by adding the input vector scaled by the complex conjugate

value of the error and byµ which control the size of correction. This is the process

that obtains the approximate optimum weight of the filter. The signal at the input

of the decision device after minimization of error throughnth adaptive filters during

thenth symbol period is given for any phase denoted byx̂(n). The received symbol

vector in timen is given by:

x̂(n) = [x̂1(n), x̂2(n)....., x̂K(n)] (3.25)

3.4 Performance Comparison and Numerical Simula-

tions

3.4.1 Simulation Conditions

In first simulation results in figure 3.2 for non cooperative CDMA wireless net-

work, four users sends 200 training BPSK data and105 data bits through flat fad-

ing Rayleigh channels to the destination, where bank of adaptive filters used for A-

MMSE-MUD and bank of match filters are used for matched filter multiuser detec-

tion (MF-MUD). Basically, LMS algorithm are used for the adaptive filter. However,

any adaptive algorithm can be used. The simulation experiments of the A-MMSE-

MUD and MF-MUD carried out by using MATLAB programing. The BER results

are averaged through 200 channel realizations.

In other computer simulation experiments in figure 3.3, the simulations are

aimed at determining the BER performance of A-MMSE-MUD for DF and AF

schemes in multi-user Rayleigh flat fading environment against various SNRS. MF-

MUD and Channel Pre-coding are performed at relays and MF-MUD performed at

destination in one the case of decode-and-forward scheme. The mathematical formu-
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Figure 3.2: BER performance for four sources non cooperative communication:

1. Non Cooperative Wireless System with Multiuser Detection using a Matched
Filter.

2. Non Cooperative Wireless System with A-MMSE-MUD using an Adaptive
Filter.
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Figure 3.3: BER performance for four sources and four relays:

1. Two Cooperative Nodes; Precoding at Relay and MF at Destination.

2. Two Cooperative Nodes; AF at Relay and MF at Destination.

3. Two Cooperative Nodes; MF at Relay and Destination Node.

4. Two Cooperative Nodes; AF at A-MMSE-MUD at Destination.

5. Two Cooperative Nodes; A-MMSE-MUD at Relay and Destination Node.
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Figure 3.4: Information Capacity achievable rate for four sources and four relays:

1. Two Cooperative Nodes; Precoding at Relay and MF at Destination.

2. Two Cooperative Nodes; AF at Relay and MF at Destination.

3. Two Cooperative Nodes; MF at Relay and Destination Node.

4. Two Cooperative Nodes; AF at A-MMSE-MUD at Destination.

5. Two Cooperative Nodes; A-MMSE-MUD at Relay and Destination Node.
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Figure 3.5: Information Capacity achievable rate for two users and two relays:

1. Two Cooperative Nodes; MF at Relay and Destination Node.

2. Two Cooperative Nodes; AF at Relays and A-MMSE-MUD at Destination.

3. Two Cooperative Nodes; DF by A-MMSE-MUD at Relays and Destination.
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Figure 3.6: BER performance for two users and two relays:

1. Two Cooperative Nodes; AF at Relays MF at Destination.

2. Two Cooperative Nodes; DF at Relays by MF and MF at Destination.

3. Two Cooperative Nodes; AF at Relays and A-MMSE-MUD at Destination.

4. Two Cooperative Nodes; DF by A-MMSE-MUD at Relays and Destination.
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las are used for Channel Pre-coding from [56]. It is considered that communication

is established among four source users and four relays cooperative MIMO system

through flat fading Rayleigh channels, where the relays decode or amplify the sig-

nals of multiple users. The transmitted105 randomly generated bits and the BER

results are averaged through 200 channel realizations. 200 bits of BPSK signal are

used for the training of adaptive filters at relays and destination. Transmit beam-

forming is used at relays to send data bits to destination. The following conditions

exist in all simulations of cooperative wireless network; a) un-coded coherent BPSK

is used for modulation, b) non Cooperative CDMA wireless network is considered

with four users and a destination node and Cooperative CDMA wireless network is

consider with two/four users and two/four relays, c) independent fading character-

istics are on each channel and it is assumed that channels are un-correlated, d) the

training sequences are generated independently using uniformly distributed pseudo-

random number generators, e) the noise on each channel is additive Gaussian random

variable with zero mean and a varianceσ, f) these simulations use bank of adaptive

transversal finite impulse response filters for the A-MMSE-MUD and also uses LMS

algorithm for minimization of error, g) spreading gain is 16 both at relay and des-

tination, h) it is assumed that channel state information not available at relays or

destination for A-MMSE-MUD, i) equal gain combining is used for combining the

direct path link and relay destination link transmission. The used MATLAB codes

are given in Appendix I.

In figure 3.4 Shannon capacity formula is used to obtained the Information

capacity results, where the capacity performance in simulation of the system is taken

in terms of the output minimum mean square error (MMSE) is given by equation 2.1.

The simulation graph is ploted against various SNRs. The MATLAB code for this

experiment is used in same manner as mentioned above. In figure 3.5 information

capacity examined with respect to various SNRs for 2 users and 2 relays by using

equation 2.1. Whereas, in figure 3.6 BER is calculated against various SNRs for 2
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users and 2 relays.

3.4.2 Simulation Results

Figure 3.2 shows the BER performance of Classical MF-MUD and A-MMSE-MUD,

BER performance for four users. It is clearly seen that the performance of A-MMSE-

MUD significantly better than the performance of MF-MUD. Figure 3.3 demon-

strates the capacity performance results of a two sources and two relays cooperative

system, where the bank of matched filters approach in contrast to the A-MMSE-

MUD approach is simulated. It is observed that the A-MMSE-MUD at relay and

destination achieves a channel information capacity of about 8 bits/s/Hz at 15dB

of signal to noise ratio (SNR), whereas amplify and forward matched filtering and

matched filtering with precoding approach provided 4 bits/s/Hz at the same SNR. It

is clearly observed that amplify and forward with A-MMSE-MUD at the destination

node and decode and forward and matched filtering have the same performance on

different SNR. Therefore, A-MMSE-MUD is a effective technique, even the ampli-

fication being performed at relays.

This research obtained consistent results for the capacity of the system, demon-

strated in figure 3.4, where the BER performance results of two sources and two

relays cooperative systems are analyzed. The bank of matched filters approach is

in contrast to the A-MMSE-MUD, which clearly shows the non linear performance.

It is observed that the A-MMSE-MUD at relay and destination approach achieves

BER performance of about10−4 at 15dB of SNR, where as amplify and forward

matched filtering and matched filtering with precoding approach provide10−2 at the

same SNR. It is observed that amplify and forward with A-MMSE-MUD at destina-

tion node and decode and forward and matched filtering have the same performance

on different SNR. Therefore, A-MMSE-MUD is the best technique when amplifica-

tion is perform at relays. Figure 3.4 only presents BER performance of the classical
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match filtering and adaptive multiuser detection in the cooperative communication

wireless network.

3.5 Conclusions

This chapter presented a decentralized approach of asynchronous cooperative CDMA

wireless networks with an A-MMSE-MUD technique to eliminate MAI. Two proto-

cols of cooperative communication, AF and DF are examined in use with A-MMSE-

MUD. The computer experiments show that DF outperform all other schemes to

mitigate the MAI on each node of the wireless network, whereas Amplify and For-

ward in use with A-MMSE-MUD performance is better than other multiuser detec-

tion schemes, even amplification has been performed on relay nodes. With presented

A-MMSE-MUD we can improve the performance of cooperative CDMA wireless

networks considerably. Further investigation is required for the interference mitiga-

tion of proposed schemes which will be presented in the next chapter.

3.6 Summary

Asynchronous cooperative CDMA wireless network uplink transmission was exam-

ined in this chapter, where users cooperate in a relaying mode while they exchange

data and channel information with the base station to achieve diversity gains. MAI

occurs at both the relays and destination due to asynchronous transmission and non

orthogonality of the spreading waveforms. In order to deal MAI, A-MMSE-MUD

was used by a bank of linear adaptive filters. Two protocols of cooperative communi-

cation wireless networks were used, (i) amplify and forward at relays and A-MMSE-

MUD at destination, (ii) A-MMSE-MUD at the relays and destination in a decode

and forward operation. This research compared the result with other multiuser de-

tection schemes under the same conditions in a cooperative CDMA wireless network
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and found that the amplify and forward scheme in use of A-MMSE-MUD removes

the MAI even amplification was performed on the relays nodes. Whereas, decode

and forward scheme outperform all other multiuser detection scheme. Simulation

experiments has shown that both schemes amplify and forward and decode and for-

ward with A-MMSE-MUD provide significant improvement in the bit error rate and

capacity performance of the cooperative communication CDMA networks.
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4.1 Introduction

CDMA wireless networks are playing a central role in modern wireless and mobile

communication systems, since they allow multiple users to share limited time and

bandwidth resources. In case of severe signal attenuation and fast channel variation

commonly known as fading, BER increases and channel information capacity drops

significantly. Signal interference caused by external sources and co-channel users

is another deteriorating factor in communication performance. To overcome fading

problems multiple copies of the original signal is transmitted by MIMO configu-

ration. As mentioned in previous chapter, the main principle in cooperative CDMA

wireless networks is the benefit utilization from each node (relay) of the wireless net-

work. Cooperative systems are cost effective and utilize the benefit of space diversity

by enhanced degrees of freedom. Several methods to tackle the interference prob-

lems in various multiuser detection schemes were proposed in past literature. MF

technique is an optimum technique when single user communication is performed

through Gaussian channel but as the number of users grows and multiplexing access

is used in communication, the performance of MF degrade exponentially, which is

undesirable for the use in wireless CDMA networks. Multiplexing schemes were

formulated for interference cancelation independent of whether the channels were

line-of-sight or fading. In cooperative communication, due to further complexity of

the system, MF nearly failed to perform, hence, not feasible to implement. MLSE

is an optimum multiuser detection technique which provides the best performance

of multiuser detection but as the number of users increases in wireless network the

complexity and cost of processing also increases. Moreover, it also need channel

state information, therefore, it is not always viable to implement. A-MMSE-MUD is

a technique, where the computational complexity increases linearly with the increase

of users. It does not require the channel state information. It is also very effec-

tive in interference mitigation. Various performance analyses have been presented
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in past literature for cooperative relaying networks but interference tolerance (re-

sistance) analysis are required to analyse in cooperative CDMA wireless networks.

Therefore, the main purpose of this chapter is to investigate interference resistance

of A-MMSE-MUD [20] for the DF relaying operation within a cooperative CDMA

wireless network. Apart from the channel estimation and detection responsibility, A-

MMSE-MUD is being used for the mitigation of MAI. A-MMSE-MUD receivers are

capable of estimating the system parameters such as signal delay, signal phase, signal

amplitude, CDMA signatures, multi-path channel profile and the number of users in a

CDMA system by using a training routine coordinated by the transmitter. This chap-

ter shows that A-MMSE-MUD achieved a BER performance arbitrarily close to that

of an MLSE filter but with linear computational complexity. A-MMSE-MUD pro-

vides robustness and mobility in time variable frequency selective multi-path fading

channel, improves the BER performance and therefore, enhances channel informa-

tion capacity of a multi-cellular environment. The main principles were used in the

system shown in this chapter drawn from [22-24], where each node of the system

acts as a relay part of a cooperative network. In practical implementation of wire-

less networks, strict signal power control are used to avoid unnecessary interference

in the networks. However, reducing power of the signals increase the bit error rate.

Therefore, it is required to develop a multiuser detection scheme which provide in-

terference resistance capabilities. By using various multiuser detection schemes, we

can detect the signals on a base station from MAI. In the previous chapter A-MMSE-

MUD was used in cooperative CDMA wireless networks. Cooperative systems are

cost effective, utilise the benefit of space diversity by enhanced degrees of freedom

and provide small bit error rate. Detailed literature related to the performance of

cooperative wireless networks was mentioned earlier in the chapter 1 and chapter 2.

A-MUD schemes were presented and used from many years [19] [20].Various

performance analyses were presented in past literature for cooperative relaying net-

works with multiuser detection techniques: BER, information capacity, outage prob-

58



Introduction

ability and interference tolerance analysis for cooperative communication wireless

networks. The main purpose of this chapter is to investigate interference resistance

(tolerance) of A-MMSE-MUD for the DF relaying operation within a cooperative

CDMA wireless network. Apart from the channel estimation and detection responsi-

bility, A-MMSE-MUD has been used for the mitigation of Multiple Access Interfer-

ence (MAI). A-MMSE-MUD receivers are capable of estimating system parameters

such as signal delay, signal phase, signal amplitude, CDMA signatures, multi-path

channel profile and the number of users in a CDMA system by making use of a

training routine coordinated by the transmitter. A-MMSE-MUD provides robustness

and mobility in a time variable frequency selective multi-path fading channel, im-

proves the BER performance and therefore, enhances channel information capacity

in a multi-cellular environment. This chapter shows with mathematical analysis and

computer simulation that A-MMSE-MUD achieves a BER performance arbitrarily

close to MLSE MUD with an added benefit of linear computational complexity in

cooperative CDMA wireless networks. The comparison of the performance of MF

and A-MMSE-MUD in cooperative CDMA wireless network are also presented. For

the A-MMSE-MUD implementation, fractionally space linear transversal bank of fil-

ters are used in this research. Wireless relaying with A-MMSE-MUD scheme used

in the research:

• operates under partial or no knowledge of the channel state information (CSI)

at any stage of the communication.

• capable of mitigating MAI.

• fully capable of operating in both synchronous and asynchronous transmis-

sions.

• provides performance of about10−3 at a SNR of22dB, while the channel

information capacity performance of the system is nearly27bits/s/Hz at the
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same SNR.

• provides interference resistance (tolerance/mitigation) better than MLSE mul-

tiuser detection (theoretical upper bound of Multiuser detection), when number

of users are increased.

• provides interference resistance better than MF multiuser detection, when num-

ber of users are increased.

The rest of the chapter is organized as follows: The general system model is shown

in section 4.2. The simulation system model is described in detail in section 4.3 and

the simulation results are shown and discussed in section 4.4. Earlier, the A-MMSE-

MUD scheme used at relays and base station is analytically presented in section 3.3.

Finally, concluding remarks are given in section 4.5.
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Figure 4.1: A cooperative relaying CDMA wireless network:

• Here mobile users cluster send signals to relays cluster. On relay cluster A-
MMSE-MUD is used. Relay cluster transmit the detected data to destination
node/base station, where A-MMSE-MUD is used.

Figure 4.2: Protocol flow diagram of the cooperative relaying CDMA networks:

• BPSK signal send to relay through Rayleigh wireless channel. At relays A-
MMSE-MUD used to detect data. The data is further transmitted to destina-
tion, where A-MMSE-MUD used to detect data.
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4.2 System Model

In a similar manner to the previous chapter and as presented in [22][56], let us con-

sider again thatK users are denoted byS1, S2, ..., SK , serving as source communi-

cation terminals located in the Source Cluster (SC) andL relaying communication

nodes are denoted byR1, R2, ..., RL located in the Relaying Cluster (RC) as shown

in figure 4.1. The nodes in relay cluster can be mobile users or fixed relays. The

source communication nodes transmit data packets to all the relays in the RC and are

then forwarded to the Base Station (BS). A-MMSE-MUD is used at the RC and the

BS for signal detection.

4.2.1 Protocol Description

The concept demonstrated in this chapter is shown in figure 4.2. Individual data sig-

nal packets are generated by the transmitting communication terminals in the SC.

Data is spread by unique CDMA spreading signature codes, that individually allo-

cated to each communication terminal of the SC. Data signal is then fed into a flat

fading Rayleigh wireless channel, which is affected by additive Gaussian noise. This

phase of communication is described in details in the subsection 4.2.2.

The communication terminals at the RC receive packets from all transmitting

communication nodes and by means of A-MMSE-MUD, they are Despread and De-

tect. Each of the relay of wireless communication nodes will re-encode and spread

data before they forward it to BS. The wireless channel is assumed here as a flat

fading Rayleigh channel affected by additive Gaussian noise. This type of the com-

munication is described in details in subsection 4.2.3. BS uses A-MMSE-MUD to

Despread and Detect the incoming signals from all relay nodes. By using A-MMSE-

MUD technique, BS remains tolerant to MAI, while it is capable in asynchronous

reception at wireless communication terminals. Also the constant hand-off operation

provided by A-MMSE-MUD enables the mobility. The signal detection is mathe-
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matically shown in section 3.3.

4.2.2 Phase I: Source Cluster to Relay Cluster Operation

Each source of the ’K’ transmits communication terminals propagates a M-long data

symbol to all communication nodes of the RC. Letx(n) = [x1(n), x2(n), ..., xK(n)]†

be the BPSK data symbols transmitted by sourcesS1, S2, ..., SK during thenth sym-

bol period, wherexk(n) = {−1, 1} and:

E [x(n)x[p]†] = I (K×K), if n = p

= O(K×K), otherwise

WhereI represents an identity matrix andO represents a null matrix ofK×K matrix

dimensions. Each communication terminal (Sk) in the SC propagates with a transmit

signal power ofPSk
while sk(t) is the spreading waveform (signature) ofSk. The

spreading gain of spreading waveformsk of the CDMA system is given by:

sk(t) = 1/
√
s

s∑
n=1

ck(n)ψ(t− nTc), k = 1, 2..., K (4.1)

whereck[n] is thenth element of the±1 spreading sequence assigned toSk, andψ(t).

Under the asynchronous CDMA signal assumption, the signal received at the relay

cluster in the presence of additive white Gaussian noise (AWGN)vI(t) is expressed

as:

yI(t) =
N∑

n=1

K∑
k=1

hSkR`
(
√
PSk

)xk(n)sk(t− nT − τk) + vI(t) (4.2)

whereT is symbol period,τk is the transmission delay assumed for thekth user at

`th relay. It is assumed that there is a block fading environment, where channel co-

efficients (hSkR`
) are time invariable, independent and identically distributed (i.i.d).

The channel coefficientshSkR`
are assumed to be Zero Mean(µSk

= 0) Circularly

Symmetric Complex Gaussian (ZMCSCG) with varianceσ2
SkR`

random variables ,
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i:e, hSkR`
∼ CN (0, σ2

SkR`
), and is assumed to be independent among sources. The

digital signal obtained at the input of decision device after error minimization by

using the A-MMSE-MUD filter during thenth symbol period is denoted asyI(n).

Further operation and analysis are demonstrated in section 4.3.

4.2.3 Phase II: Relay Cluster to Base Station Operation

In this phase all relays detect and forward the incoming data signals by the use of

the same spreading sequence signatures of the respective communication terminals

of the SC. It is assumed that the symbols detected(x̂`) in Phase Imay be encoded

into a single symbol matrix of dimensionsK ×N :

t`(n) = [t`,1(n), t`,2(n)..., t`,K(n)]† (4.3)

It is the transmit symbol vector by thèth relay communication node(R`) of thenth

symbol,t`(n) depends on the detected symbolX̂`. The symbol fed into the bank of

adaptive filters is given by:

yII(t) =
N∑

m=1

K∑
k=1

L∑
`=1

hS`D(
√
PR`

)t`,k(n)sk(t−mT − τ`) + vII(t) (4.4)

WhereT is symbol period,τ` is the transmission delay assumed for the`th user at

the BS. It is assumed that there is a block fading environment where channel coeffi-

cients (hR`BS) are time invariable, independent and identically distributed (i.i.d). The

channel coefficientshR`BS) are assumed to be ZMCSCG with varianceσ2
R`BS ran-

dom variable, i.e,hR`BS ∼ CN (0, σ2
R`BS), and is assumed to be independent among

sources.
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4.3 Adaptive Multiuser Detection for the Relaying Com-

munication Networks

Matched Filters with Maximum Likelihood computation were commonly used in

past literature [22][23][24]. In A-MMSE-MUD the bank of MF is replaced by a

bank of Adaptive MMSE matched filters as shown in [20]. In MF multiuser detec-

tion approach, a sufficient knowledge of the channel statistics at the BS terminal is

achieved by neglecting the correlation between signals originated by different trans-

mit communication terminals. The main cause of correlation is non-orthogonality of

spreading codes of CDMA wireless systems. This orthogonality further destroyed by

asynchronous communication, where signal arrived at different instants at receiver.

Therefore, the performance of MF dropped significantly with the increase of users

and correlation of the signals. The A-MMSE multiuser detection use the parameters

of adaptive filters that continuously changed by received training sequences from

the transmitter to adjust the adaptive filters for matching the desired signal. After

the training operation, the adaptive filter operates in decision directed mode. There-

fore, in a single user environment every matched filter receiver plays the role of an

Adaptive MMSE (A-MMSE). A-MMSE filter minimizes the error by the adaptive

algorithms. This research used LMS algorithm which is actually the steepest decent

algorithm (SDM) to minimize the mean square error of the incoming signals. It used

a fractionally spaced adaptive linear transversal filter for A-MMSE-MUD, which is

insensitive to the time differences in the signal arrival of different users, thus the re-

ceiver timing recovery is extremely simplified. The adaptive filter is in contrast to

the multiuser receiver where the observation vector is not the output from the bank

of matched filters, but the sampled signal itself. Adaptive multiuser technique also

provides a tool to obtain instantaneous estimates of the channels. In past research of

[29], cooperative communication was presented with a protocol based on channel es-

timation, which was realistic approach in cooperative communication. This research
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has also adopted the same approach.

Let yn(t) be the general form ofnth received analogue signal of symbol du-

rationT at the input of the analogue to digital convertor. Andy(n) is the received

digital output of respective symbol from the output of the convertor device. In multi-

cellular environment SC communication nodes transmit information independently.

Therefore, non-orthogonal transmitted signals from independent users arrive asyn-

chronously at the receivers as shown in [28] where, the delay can not neglected. Due

to non orthogonality and the latency of the spreading codes signal correlation ex-

ists among the communication terminals of the RC and BS respectively. The digital

output of thenth symbol period on RC or BS is given by:

y(n) = Rhx(n) + v(n) + I (4.5)

HereI represents interference caused by MAI and external source interference. The

MSE between the reference signal and the output of thenth symbol of the adaptive

filter is given in previous chapter under section 3.3, which leads to derivation of

A-MMSE-MUD. The error is given by following equation:

e(n) = (x(n)− x̂(n)) (4.6)

4.4 Simulation System Model

Uncoded coherent BPSK modulated signals are transmitted with normalized powers

(unit energy) over a flat fading Rayleigh communication channels composed of two

user terminals at the SC and two relays terminal at RC. Communication channels

follow independent fading characteristics on each channel with unequal and inde-

pendent ZMCSCG. MLSE, MF and A-MMSE-MUD approaches are spread by a

spreading factor of 16, for the performance examinations. The length of training

sequence is 500 bits as the data sequence is105. The term SNR used in this the-

sis indicates the signal to thermal noise power ratio. The CDMA independent and
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uniformly distributed pseudo-random training sequences send from each user of SC

to RC and from RC to destination node for MLSE and A-MMSE MUD. After the

channel estimation the CDMA data sequence send and the BER calculated against

the various SNR. A plot is drawn between SNR and BER with computer simulation.

Interference is also added to the signal at destination node as given in the equation

4.5. The interference is of same length as training sequence of data signal. The ex-

periments carried out with two and three interferer as shown in figure 4.3 and figure

4.4. In second experiment MF and A-MMSE-MUD used for MUD with four users

and four relays at SC and RC respectively. And 3 and 5 interferer added in the re-

ceived signals at destination node as shown in figure 4. LMS algorithm used for the

convergence of adaptive filters for A-MMSE-MUD at relays and destination. MF

and MLSE algorithm is used for MLSE MUD. It is assumed, that the channel noise

is additive Gaussian Noise with zero mean and with unit variance. The information

capacity performance in simulation of system in terms of the output minimum mean

square error (MMSE) is obtained by well known equation of capacity in equation

4.3. The used computer simulation code are presented in Appendix I.

4.5 Simulation Resutls

Figure 4.3 demonstrates the information capacity performance results of the upper

bound MLSE with a bank of matched filters approach. Whereas, A-MMSE-MUD

approach use bank of adaptive filters with LMS algorithm. It is shown that MLSE

approach achieves a channel capacity of about 39 bits/s/Hz at 30dB of SNR when

the A-MMSE-MUD technique achieves a 38 bits/s/Hz at the same SNR. It is clearly

shown that the MLSE bank of matched filters approach outperforms A-MMSE-MUD

approach in a perfect MAI free environment. However, in the presence of a single

channel interferer, MLSE approach saturates at about 22 dB of SNR at a channel

information capacity of about 19 bits/s/Hz to 30 dB of SNR. For the same SNR, in
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the presence of a channel interferer, A-MMSE-MUD approach achieves a channel

capacity of about 36 bits/s/Hz. Figure 4.4 shows the BER performance results of

MLSE bank of matched filters approach in contrast to the proposed A-MMSE-MUD

technique. It is shown that in a MAI free operation the theoretical upper bound MLSE

technique achieves a BER or10−3 at a SNR of about 19dB while in the presence of

channel interference the same performance is achieved at a SNR of 30dB. In other

words, the SNR loss due to channel interference is almost 11dB. On the other hand

in a MAI free operation, the A-MMSE-MUD approaches a BER of10−5 at a SNR

of 24dB while in the presence of channel interference it achieves the same BER at a

SNR of 27dB. In other words the SNR loss due to MAI is about 3dB.

Figure 4.5 and figure 4.6 show the performance of MF and A-MMSE mul-

tiuser detection with three and five interferers respectively. This research analysed

the performance of direct transmission with MF and A-MMSE. And MF and A-

MMSE with relays cooperation. The results confirm the better performance of A-

MMSE with relaying cooperation. In figure 4.5, the proposed scheme provides10−3

BER at 18 dB SNR, that is 7 dB gain with respect to the performance without coop-

eration, while the performance of MF remained in the range of10−1 to 10−1.5 even

with cooperation. In figure 4.6, the proposed scheme provide10−3 BER at 21 dB

SNR, that is significant gain with respect to the performance without cooperation,

while the performance of MF remained in the range of10−1 to 10−1.2 even with a

cooperation.

4.6 Conclusions

This chapter presents an asynchronous uplink relaying communication CDMA net-

work where A-MMSE-MUD is utilized to eliminate MAI, enable asynchronous op-

eration, secure mobility and while all this happens when computational complexity

remains linear. The technique demonstrated in this paper achieves a channel spectral
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Figure 4.3: BER performance for for two users in SC without interferers and with
two interferers:

1. MLSE Approach - No MAI

2. MLSE Approach - Single Channel Interferer

3. A-MMSE-MUD Approach - No MAI

4. A-MMSE-MUD Approach - Single Channel Interferer
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Figure 4.4: Achievable Information Capacity Rate for two users in SC without and
with two interferers:

1. MLSE Approach - No MAI

2. MLSE Approach - Single Channel Interferer

3. A-MMSE-MUD Approach - No MAI

4. A-MMSE-MUD Approach - Single Channel Interferer
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Figure 4.5: Probability of bit error for four users with three interferers:

1. MF No Cooperation

2. MF With Cooperation

3. A-MMSE-MUD: No Cooperation

4. A-MMSE-MUD: With Cooperation
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Figure 4.6: Probability of Bit Error for four users with five interferers:

1. MF No Cooperation

2. MF With Cooperation

3. A-MMSE-MUD: No Cooperation

4. A-MMSE-MUD: With Cooperation
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efficiency arbitrarily close to the theoretical upper bound in a MAI free operation.

In the presence of channel interference it achieves almost same information capacity

performance as without interference. It is shown that in the presence of interfer-

ence the proposed technique achieves a channel information capacity of about 38

bits/s/Hz at a SNR of 30 dB. In a similar manner to information capacity results,

BER results show that the A-MMSE-MUD Detect and Forward relaying technique

remain tolerant to channel interference while the MAI free operation achieves a BER

performance arbitrarily close to the theoretical upper bound (MLSE). It is necessary

to point out the fact that MLSE results make the assumption of full channel state in-

formation at every communication terminal. Whereas, the proposed A-MMSE-MUD

for cooperative CDMA does not require any channel state information at transmitter

or receiver.

4.7 Summary

The uplink of an asynchronous DF CDMA wireless network interference tolerance

was investigated in this chapter, where relays and base station use A-MMSE-MUD

to detect incoming signals. Relays exchange data and channel information with the

base station to achieve diversity gains. Due to non orthogonality of random spreading

waveforms, Multiple Access Interference occurs, at both the relays and base station.

In order to mitigate Multiple Access Interference, A-MMSE-MUD was used by frac-

tionally spaced linear transversal bank of filters.

It was shown that A-MMSE-MUD enables asynchronous cooperative com-

munications and extremely effective in mitigating channel interference. It was also

shown that the BER and Capacity performance of the scheme were arbitrarily close

to non linear MLSE theoretical upper bound results in a channel interference free op-

eration. However, in the presence of channel interference, the scheme outperforms

the theoretical upper bound approach by nearly 9 dB at a BER of10−3 and by 17
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bits/s/Hz in information capacity at a SNR of 30dB. The figure 4.7 chart shows var-

ious MUD techniques in cooperative CDMA wireless networks. A-MMSE-MUD

presented in cooperative CDMA wireless networks of chapter 3 and chapter 4 is

claimed as contribution of this thesis.
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Figure 4.7: Multiuser detection algorithms in cooperative CDMA wireless networks:

• MUD in Cooperative CDMA Wireless Networks classified as Optimal MLSE
and Suboptimal algorithms. The Optimal MLSE algorithm is very complex,
where Viterbi decoding has been used. Viterbi decoding requires large com-
putations and practically not feasible for practical situation of CDMA wireless
detection. However, it provides the theoretical upper bound for the multiuser
detection. Therefore, Suboptimal algorithms has been used in all practical
situations. The Suboptimal algorithms further classified into Linear and Non
Linear categories. Linear algorithm having the computational complexity di-
rectly proportional to the number of user, whereas, in non Linear algorithm the
computational complexity increase exponentially with the increase of the num-
ber of user. The research contribution A-MMSE-MUD falls in linear algorithm
category.
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5.1 Introduction

When discussing reception of signals we use the resources of antenna arrays or dis-

tributed virtual MIMO systems (called cooperative wireless networks), to provide

service multiple users simultaneously. Diversity combining devotes the entire re-

sources of the arrays and virtual MIMO systems to service multiple users in fad-

ing channels. Specifically, diversity schemes enhance reliability by minimizing the

channel fluctuations due to fading by sending multiple replicas of identical data over

multiple channels. The central idea in diversity is to send the same data signals at

multiple antennas with reasonable separation to each other. The statistical probabil-

ity of all these signal version being in a deep fade becomes lower. Multiple antenna

arrays at destination nodes and distributed virtual MIMO systems, therefore, provide

maximum benefit when the fading is independent from element to element. Usually

independent fading would arise in a moderately dense and highly dense urban en-

vironment, where the several multipath components add up very differently at each

element through different relays. Classically, it is observed that fading has three

components: path loss, large-scale and small-scale fading. Over fairly long periods

the first two components are approximately invariant and can deal with using strict

power control. Diversity combining is particularly use to tackle small scale fading.

Therefore, this research work has used slow, flat and Rayleigh fading as channel

model for the signal fluctuations.

The Rayleigh channel model assumes that the fading remains independent

from one element to the next and identically distributed. Each element, therefore, acts

as an independent sample of the random Rayleigh fading process and each antenna

of the array receives unique copy of the transmitted signal. The goal of combining

is to increase the SNR and reduce the BER. Various methods were used in previous

research for signal combining purpose with that aim. If we havem elements in the

receiving antenna array,m independent copies of the same signal impinge on the
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antenna array. It is unlikely that allm elements are of received copies communicate

through deep fades. At least one copy will have reasonable power and able to ad-

equately process the signal. Antenna diversity is also known as space diversity. It

is one of the many wireless diversity schemes that uses MIMO systems to increase

communication channel information capacity in order to improve the quality and

reliability of a wireless link.

There are two types of signal distortion in wireless networks; additive and

multiplicative. The causes of these distortion are Gaussian noise and flat fades or

frequency selective fades (depending upon the channel environment). Cooperative

communication is a promising technique that can overcome this weakness by re-

ducing the fading effects by combining multiple replicas of the transmitted signal.

Cooperative communication networks presented and explained in previous chapters.

Usually two cooperative protocols incorporated at relays: amplify-and-forward (AF)

and decode-and-forward (DF) [25] with a maximal ratio combining (MRC) scheme

at destination. The cooperative relays strategies were explained in past literature

by [56][29], where they implicitly or explicitly describe the importance of channel

estimation to get benefit from cooperation. Throughout this research the concepts

of this research literature have been used. This research used AF and DF relaying

protocols at relays for forwarding data with adaptive signal combining at the desti-

nation [62]. Most of the relaying schemes currently known, assume a DF relaying

scheme under the assumption of a theoretical perfect decoding scheme applied in the

relays. This research has used the same assumption with an additional assumption of

a Gaussian channel from source to relays to examine the maximum benefit of coop-

eration. Usually, two adaptive algorithms on linear transversal filter have been used

for signal combining: Least mean square (LMS) and recursive least square algorithm

(RLS). These presented scheme, does not require channel estimate, rather it requires

signal itself after channel equalization. Consequently, it reduces the computational

complexity for signal combining. This chapter deals with the signal combining in

78



Introduction

cooperative wireless networks.

In past literature, extensive work is performed on adaptive algorithms for

channel equalization, noise cancellation and signal combining. The brief literature

review of the past research was already discussed in chapter 1. The benefit of adap-

tive implementation is computational complexity which is less than MRC and opti-

mum combining (Wiener). Particularly the LMS adaptive algorithm is simplest in

computational complexity. In recent research publications [125][126], a Newton’s

recursive formula base LMS algorithm is proposed for adaptive signal combining,

which is effective for Gaussian channels with unequal noise. RLS and LMS algo-

rithms presented and used for some applications were presented in [138-142]. The

contributions of this chapters are as follows:

• This chapter presents the cooperative wireless networks with adaptive signal

combining on destination node with LMS, MRC, Wiener and RLS algorithms.

• The computer simulation results in a wireless flat fading Rayleigh channel has

shown the performance of the proposed adaptive LMS algorithm provide10−3

BER at 10dB and10−5 BER at 20dB with both AF and DF protocols equal to

MRC and optimum combining.

• A cooperative channel model is proposed for wireless network, where source

to relays node communicate in Gaussian channel and relays to destination node

in Rayleigh channel.

The rest of the chapter is divided into the following sections; section 5.2 presents

the cooperative wireless network model, section 5.3 presents optimum combining

(Wiener) and section 5.4 is related to MRC technique. Section 5.5 deals with pre-

sented adaptive signal combining with classical LMS and classical RLS algorithm

in a cooperative wireless network. Section 5.6 presents computer simulation results

and section 5.7 is for the conclusions.
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Figure 5.1: A cooperative wireless network with one source, two relays and a desti-
nation node:

1. Source nodeS transmits signal to relays and destination node. The channel
from source to relay is taken as the Gaussian channel and from source to
destination node as the flat fading Rayleigh channel.

2. Relay nodesR1, R2 transmit signal to destination node through Rayleigh
channels. On relays transmit beamforming signalling is used for non adaptive
methods of signal combining. And training sequence signalling is used for
adaptive signal combining.

3. On destination nodeD, adaptive signal combining is used.
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5.2 Cooperative Wireless Networks Model

Figure 5.1 shows the used cooperative wireless system model. Cooperative wireless

network’s communication is divided into two phases to avoid interference. A training

sequence is operated to setup and maintain the connection between source-relays

and source-destination links to adaptively adjust the weights of adaptive filters. In

past literature a commonly used assumption of perfect error correction at relays was

used with DF protocol. This research has taken the same assumption with a further

addition that ’for AF protocol, there are Gaussian channels from source to relays

communication’. The mentioned assumption is very realistic particularly for a dense

urban network and line of sight communication. The related literature was described

in previous chapters, where usually cooperative communication in time, frequency

or code domain consists of the following phases:

• In phase 1, a source sends information to relays from the Gaussian channels.

And source sends information to destination through Rayleigh channels.

• In phase 2, the relays forward the information to destination after using relay-

ing cooperative protocols AF or DF from the Rayleigh channels.

The signals received at the combiner after analogue to digital conversion for source

to destination communication is given by:

yI(n) = h1.x(n) + v1(n) (5.1)

Communication from source to relays can be written as:

yI′(n) = h0.x(n) + v0(n) (5.2)

DF protocol relays to destination communication is given by:

yII(n) = h2.x(n) + v2(n) (5.3)
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For AF protocol, relays to destination communication of above equation be-

comes:

yII(n) = h2.y0(n) + v2(n) (5.4)

From above equations:

yII(n) = [h2.h0].x(n) + [v0(n) + v2(n)] (5.5)

For the AF protocol, Gaussian channel is assumed between source node to relay

nodes with zero mean and unit variance, therefore one can assumeh0 = 1. At relays

signal amplification performed, hence, the signal received at the destination after

channel equalization is:

yII(n) = γ.x(n) +
[γv0(n) + v2(n)]

h2

(5.6)

The term on the right side of the equation is noise of relay assisted received

signal at destination, which is given by:

A =
[γv0(n) + v2(n)]

h2

(5.7)

Whereas, the signal and noise received by direct transmission after equalization:

B =
v1(n)

h1

(5.8)

Therefore, in coming sections this research will analyses an innovative method of

signal combining with unequal noise variance. The signal power transmitted from

the relay nodes is same as power of the source node. Power analyses of the cooper-

ative network is beyond the scope of this research, it is commonly available in past

literature, particularly in [57].
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5.3 Optimum Combining (Wiener) for Single Chan-

nel Noise Variance

The symbols received after combining are given by:

x̂(n) = aH
m(n)ym(n) (5.9)

whereaH
m(n) is M-dimensional complex value weight vector is given by:

aH
m(n) = [a1, a2.....am] (5.10)

ym(n) is received complex valued vector, which is given by:

yH
m(n) = [y1(n), y2(n).....ym(n))] (5.11)

And the channel noise in each receive signal is given by following matrix:

vm(n) = [v1(n), v2(n).....vm(n))] (5.12)

This research assumed that above mentioned vectors remain constant for whole block

of transmitted data. If the two beam of signals adaptively combine (direct and relay

assisted), then errore(n) between the reference signal and the output of adaptive

filter is for thenth symbol is given by:

e(n) = (x(n)− x̂(n)) (5.13)

Herex(n)is a digital reference training sequence known at receiver filter. From equa-

tion 5.9 and equation 5.15, we can get:

e(n) = (x(n)− aH
m(n) · ym(n)) (5.14)

The mean square error (MSE) is given as:

J(am(n)) = E [e(n).e∗(n)] (5.15)
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From equation 5.16 and equation 5.17:

J(am(n)) = E [(x(n)− aH
m(n).ym(n))(x(n)− aH

m(n).ym(n))∗] (5.16)

Let z is the expectationm by 1 cross-correlation matrix vector between the received

components and the reference sequence, and the expectation:

J(cm(n)) = E [x(n).ym(n)H ] = zH (5.17)

And [am(n)]opt is the optimal weight vector, then:

R[am(n)]opt = z (5.18)

The above equation is the Wiener equation or the normal equation (optimum combin-

ing) [64][76]. One possible solution of this equation is matrix inversion of correlation

matrixR, mathematically:

[am(n)]opt = R−1z (5.19)

Formxm receive antenna system, the correlation matrix of received signal is given

by:

R = E[ym(n)yH
m(n)] =


%(1, 1) %(1, 2) ..... %(1,m)

%(2, 1) %(2, 2) ..... %(2,m)

........ .......... ...... ..........

%(m, 1) %(m, 2) ..... %(m,m)

 (5.20)

The matrixR is Hermitian and can be uniquely defined by specifying the values of

the correlation coefficients%(1, 1), %(1, 2), ....., %(1,m). Where%(i, j) = %∗(j, i).

The above matrix equation was mentioned for signal combining by S A Hanna in

[76]. The inverse of the matrix can be used to find Wiener’s solution of the signal

combining.
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5.4 Maximal Ratio Combining (MRC)

Transmit signal at a particular time instant undergoes through the airlink. The receive

chain can be modeled by a complex multiplicative distortion consist of a magnitude

response and a phase response. The channel between the transmit antenna and the

first receive antenna is denoted byh1 and between the transmit antenna and the sec-

ond receive antenna is denoted byh2 where,

h1 = α1e
jθ1 (5.21)

h2 = α2e
jθ2 (5.22)

The received signal for two antenna system is given by:

y1(n) = h1x(n) + v1(n) (5.23)

y2(n) = h2x(n) + v2(n) (5.24)

Classical MRC for two received signalsy1(n) and y2(n) is given by well known

equation of MRC equalization:

x̂(n) =
h∗1(n).y1(n) + h∗2(n).y2(n)

h∗1(n).h1(n) + h∗2(n).h2(n)
(5.25)

Here(.)∗m(n) represent a complex conjugate. The above mentioned formula is being

used for MRC simulation results in this thesis. MRC weigh the received signal with

considering the equal channel noise variance iny1(n) andy2(n). Actually, MRC

only combine the signal according to signal power.

5.5 Adaptive Signal Combining in Cooperative Wire-

less Networks

Classical adaptive signal combining shown in figure 1.3 and figure 5.1 represents

the classical m-branch adaptive signal combining system, wherem is the number
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of antennas of the receiver communication terminal. The benefit of an adaptive re-

ceiver over MRC and Wiener’s combining is that the computational complexity of

adaptive combining is lesser than MRC. Used adaptive combining schemes are also

near far resistant, therefore, it does not require strict power control. Let the base

band received signal vector isym(n). Adaptive filter combines by adaptive algorithm

with a step size regulated by the signal received power in case of classical normal-

ize least mean square error (NLMS) and according to signal to noise ratio with a

proposed WLS algorithm, where inverse of variance of noise multiplied with signal

itself [125][126], which will be discussed in following chapter. A training operation

coordinated by the transmitter was been used to adjust themth weighing coefficient

am of the adaptive combiner. The reference signal at receiver in a time intervaln

is denoted byx(n), whereaŝx(n) is combined signal. The term(.)∗ represents a

complex conjugate.

5.5.1 Classical Least Mean Square Algorithm (LMS) for Equal

Channel Noise Variance

In this section classical least means square (LMS) algorithm is described. It was

developed by Bernard Widrow in the 1960s. This algorithm is very successful and

wildly used for various signal processing applications; signal combining, channel

equalization, multiuser detection, signal combining and artificial intelligence etc. Its

popularity is due to computational simplicity, ease of implementation and good con-

vergence properties. The purpose of using the LMS algorithm is to build the MMSE

weights for the given environment. The LMS algorithm adaptively produces weights

that minimize the mean-squared error between a desired signal and the arrays out-

put. In the MMSE combining we need information of the communication parameters

by using training signals to determine the optimal weights. We can also say that it

weighs to steer the reception in the direction of the desired signal power and mini-
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mize reception from the noise/interfering or undesirable signals. But classical LMS

only observe the power of signal and neglect the presence of channel noise. This sit-

uation severely effects the reception performance. The WLS error method of signal

combining will be proposed in next chapter, which is the solution of the problem with

a slight disadvantage of computational complexity. Different version of the LMS al-

gorithm were presented in [139][140]. And just as in the MMSE weighting case,

the required information is the desired signal’s direction and power. The direction is

specified via the desired signal’s steering vector and the signal power. Note that these

parameters can vary with time, as the environment is assumed to be changing. The

directions and power can be determined using various direction finding algorithms,

which analyze the received signals at each antenna in order to estimate the directions

and power. The LMS algorithm requires an estimate of the autocorrelation matrix

in order to obtain weights that minimise the mean square error (MSE). The LMS

algorithm estimates the autocorrelation matrix using only the current received signal

at each antenna. The weights are updated iteratively, at discrete instances of time.

The estimate of the autocorrelation matrix at timen, written with a bar overhead.

The adaptive weights are mentioned asam(n), wheren is an index that specifies

time. The LMS weighting algorithm simply updates the weights by a small amount

in the direction of the negative gradient of the MSE function. By moving in the

direction of the negative gradient, the overall MSE is decreased at each time step.

In this manner, the weights iteratively approach to the optimal values that minimise

the MSE. Moreover, since the adaptive algorithm is continuously updating, as the

environment changes the weights adapt as well. The adaptive algorithms are in con-

trast to Wiener’s solution, where solution does not require matrix inversion. Explicit

calculation of the correlation co-efficient is the steepest decent method (SDM). The

SDM is recursive procedure that can be used to calculate the optimal weight vector

[am(n)]opt. Let am(n) and∇m(n) denote the values of the weight vector and the

gradient vector, respectively. Then succeeding values of the weight vector can be ob-
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tained by the recursive relation. After obtaining the optimum weight vector, adaptive

filter operates in decision directed mode. Therefore:

am(n+ 1) = am(n)− µ∇m(n) (5.26)

Whereµ is the step size constant that controls stability and the rate of adaptation.

Putting the value of∇m(n) in above equation:

am(n+ 1) = am(n)− µ(−2z + 2Ram(n)) (5.27)

Further simplification yields:

am(n+ 1) = am(n) + µ(2z− 2Ram(n)) (5.28)

If we expressµ · ∇m(n) in terms of instantaneous estimates:

µ · z = ym(n) · x∗(n) (5.29)

And:

R = ym(n) · ym(n)H (5.30)

Then the equation can be simplified as:

am(n+ 1) = am(n) + 2µym(n) · (x∗(n)− yH
m(n) · am(n)) (5.31)

Here n represents the iteration number/symbol number/time. Which can be ex-

pressed in terms ofe∗(n) as:

am(n+ 1) = am(n) + 2µ · ym(n) · e∗(n) (5.32)

The term2µ · ym(n) · e∗(n) is called the correction factor. The termµ controls the

size of correction. It is usually selected by multiplying the number of taps and the

signal power. Therefore, in classical adaptive combining using LMS algorithm the

adaptive filter converge according to power of signal. For two receive antennas:

a1(n+ 1) = a1(n) + 2µ · y1(n) · e∗(n) (5.33)

a2(n+ 1) = a2(n) + 2µ · y2(n) · e∗(n) (5.34)
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5.5.2 Recursive Least Square Algorithm (RLS)

Several adaptive algorithms have expanded upon ideas used in the original LMS al-

gorithm. Most of these algorithms seek to produce improved convergence properties

at the expense of increased computational complexity. The RLS algorithm seeks to

minimize the MSE just as in the LMS algorithm. However, it uses a more sophisti-

cated updates to find the optimal weights that is based on the matrix inversion lemma.

Adaptive solution does not require matrix inversion. Some of the relevant literature

of RLS algorithm other than the books mentioned in the chapter 1. Basically for RLS

algorithm, Newton’s Recursive Method with regularization is employed in step size

therefore Newton’s Method is replaced by

am(n+ 1) = am(n) + µ[ε0I · R]−1(2z− 2R · am(n)) (5.35)

Whereε0 is a constant called the iteration dependent regularization parameter andI is

an identity matrix of the same dimension asR. By instantaneous approximation of the

above equation and setting parameter of RLS algorithm for initialization. Following

are the sets of equations for RLS algorithm applied for signal combining. Theλ

forgetting factor is taken asλ = 0.99; Initially setP1(n − 1), P2(n − 1) = 0.3 for

two receive signals. These are defined as complex matrices approximately equal to

the inverse of the covariance matrix. The termsφ1 andφ2 are gain terms applied to

the weight update, and are a function ofλ.

x̂(n) = (y1(n)(a1(n)) + (y2(n)(a2(n)) (5.36)

e(n) = (x(n)− x̂(n)) (5.37)

φ1(n) = λφ1(n− 1) + y∗1(n) · y1(n) (5.38)

φ2(n) = λφ2(n− 1) + y∗2(n) · y2(n) (5.39)

P1(n) = φ−1
1 (n) (5.40)
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=
λ−1(P1(n− 1)− ((λ−1P ∗

1 (n− 1)y∗1(n) · y1(n)P1(n− 1))

(1 + λ−1.y1(n)P1(n− 1)y∗1(n)))
(5.41)

P2(n) = φ−1
2 (n) (5.42)

=
λ−1(P2(n− 1)− ((λ−1P ∗

2 (n− 1)y∗2(n) · y2(n)P2(n− 1))

(1 + λ−1y2(n)P2(n− 1).y∗2(n)))
(5.43)

a1(n) = a1(n− 1) + (P1(n)(a∗1(n))(e(n))) (5.44)

a2(n) = a2(n− 1) + (P2(n)(y∗2(n))(e(n))) (5.45)

Same set of equations are used for computer simulation in following section. The

matrix form of the equation 5.43 and equation 5.44 is:

am(n) = am(n− 1) + (Pm(n)(y∗m(n))(e(n))) (5.46)

5.6 Performance Comparison and Numerical Simula-

tions

For the BER analysis, this research has simulated a cooperative communication wire-

less network with an adaptive combiner at the destination node shown in figure 5.1

and figure 5.2. In figure 5.2, the base band signal after channel equalization is fed

into the combiner on the destination node of the cooperative communication wireless

network. A single source transmits BPSK data to two relay nodes where either AF

or DF protocol is employed. The following conditions are present in all simulations:

a) 120 training binary bits are sent and 200000 bits of un-coded coherent BPSK data

signal are sent through a Rayleigh channel from source to destination and than relays

to destination. At relays hard decision decoding was performed for decode-and-

forward (DF) protocol and amplification performed for amplify-and-forward (AF)
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scheme. For AF it is assumed that sources can find line of sight communication with

relays nodes and therefore, transmission from source to relays is through a Gaussian

channel with zero mean and variance one. And for the decode and forward, computer

simulation has the classical assumption of perfect error correction. It is also assumed

that with a suitable error correction scheme and channel selection, the BER is negli-

gible at relays. b) LMS and RLS algorithms are used at the adaptive combiner on the

destination for signal combining. This research also used MRC and Optimum com-

bining scheme at receiver for comparison of simulation results. It is also assumed the

channels between source and destination and from relays to destination are wireless

flat fading Rayleigh c) these computer simulations are taken SNR on the x-axis and

received signal BER on y-axis of plot. The used MATLAB code is given in Appendix

II.

Figure 5.3 shows the performance of AF operation of cooperative networks.

The performance of the proposed system in a wireless flat fading Rayleigh channel

shows that the used technique provides about10−3 BER at 10dB and10−5 BER at

20dB, with both DF protocols equal to MRC and optimum combining. Figure 5.4,

shows the performance of the DF protocol cooperative network in all wireless flat

fading Raleigh channels. The performance of proposed adaptive combining in these

channel environment is about10−3 BER at 10dB and10−5 BER at 20dB with both

DF protocols equal to MRC and optimum combining.
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Figure 5.2: BER performance for AF in wireless flat fading Rayleigh channels:

1. 1x1 BPSK Bench Mark (Direct transmission).

2. Classical LMS Algorithm.

3. Classical RLS Algorithm.

4. Optimum Combining (Wiener).

5. Maximal Ratio Combining (MRC).
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Figure 5.3: BER performance for DF in wireless flat fading Rayleigh channels:

1. 1x1 BPSK Bench Mark (Direct transmission).

2. Classical LMS Algorithm.

3. Classical RLS Algorithm.

4. Optimum Combining (Wiener).

5. Maximal Ratio Combining (MRC).
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5.7 Conclusions

The classical adaptive signal combining schemes with using LMS and RLS algo-

rithms is used for cooperative wireless communication. It is observed that both al-

gorithms provide same performance as of Wiener’s and MRC combining schemes.

The LMS algorithm has benefit of computational simplicity over other schemes. The

combining schemes are tested for cooperative wireless networks with the assumption

of zero mean and unit variance Gaussian channel noise. However, optimum adaptive

algorithms are required to develop for cooperative wireless networks to address the

problem of unequal channel noise variance. A cooperative channel model is also

introduced, when AF cooperative protocol is used. In the used channel model, it

is assumed that source nodes and relays nodes communicate in Gaussian channels.

Whereas, the communication from source to destination and relays to destination are

through wireless flat fading Raleigh channels.

5.8 Summary

The uplink of a cooperative wireless network was examined, where users cooperate

by relaying each other’s messages to the base station. Direct transmission and relays

assisted transmission beams were combined by using multiple antennas at destina-

tion node. The combining of the beams were performed by using LMS and RLS

algorithms to maximize received SNR. The used system weighs the direct transmis-

sion and relay assisted beams and provide equal performance to MRC and optimum

combining (Wiener). Two cooperative protocols AF and DF were employed with

adaptive signal combining in flat fading Rayleigh wireless communication channels.

For single a source node, two relays nodes and a destination node with two receive

antennas, the used combining schemes provide10−3 at 10 dB SNR and10−5 at 20

dB SNR.
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6.1 Introduction

In chapter 1, a brief literature review of Least square method (LSM) was presented.

LSM was commonly used in various applications; target tracking, medical diagno-

sis and computing estimations of parameters and fitting data. It is one of the oldest

techniques of modern statistics. It was first published in 1805 by the French mathe-

matician Legendre. After the publication of Legendres memoir, Gauss, the famous

German mathematician, published another memoir (in 1809) in which he mentioned

that he had previously discovered this method and used it as early as 1795. A some-

what bitter anteriority dispute was followed (a bit reminiscent of the Leibniz-Newton

controversy about the invention of calculus), however, this did not diminish the pop-

ularity of this technique. Galton used it (in 1886) in his work on the heritability of

size which laid down the foundations of correlation and (also gave the name) regres-

sion analysis. Both Pearson and Fisher, who did so much in the early development of

statistics, used and developed it in different contexts (factor analysis for Pearson and

experimental design for Fisher). Nowadays, the least square method is widely used

to find or estimate the numerical values of the parameters to fit a function to a set of

data and to characterize the statistical properties of estimates. It exists with several

variations: its simpler version is called ordinary least squares (OLS) or un-weighted

least squares, a more sophisticated version is called weighted least squares (WLS),

which often performs better than OLS because it can modulate the importance of

each observation in the final solution. In wireless communication networks com-

bining of received signals at the destination node/base station or mobile phone with

multiple antennas is vital. The need for signal combining is increased further with

the advancement of optical fibre communication systems, MIMO, satellite commu-

nication systems and next generation cooperative communication wireless networks.

In cooperative wireless networks each node cooperates in transmitting information

to other nodes, as discussed in previous chapters. Many authors have presented the
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equalization of channels and combining of the signals. Various techniques were used

in past literature for combining of received signals with multiple antennas, they were

mentioned in the previous chapters. In chapter 5, adaptive signal combining [125]

[126] were presented for cooperative wireless networks, where the need of channel

noise variance based algorithm was discovered. The consequence of the research of

chapter 5 leads this research to develop a combining method called weighted least

square error for signal combining.

This research proposes to use a well known method of weighted least square

(WLS) error method for signal combining. The method was used commonly in esti-

mation theory for target tracking, econometrics and medical diagnosis [97-100][109].

The theory of weighted least square method has been well investigated in past liter-

ature, the complex details of the mathematical theory for least squares methods are

beyond the scope of this research. This research restricts the work towards WLS

error of signal combining use, implementation and analysis of the performance. This

research analyses and shows the performance of WLS error method of signal com-

bining by computer simulation. In particular, the performance measure of ensemble

average mean square error [59] and bit error rate (BER) are examined. From math-

ematical analysis and computer simulation, it is observed that an un-weighted least

square error method is equivalent to equal gain combining. And a weighted least

square combining scheme provides performance very close to optimum signal com-

bining (Wiener Solution). This research has also shown with mathematical analyses

and computer simulation that with the classical assumption of zero mean unit vari-

ance, WLS method of combining, equal gain combining, adaptive combining with

LMS and RLS algorithm and optimum combining provide equal performance. And it

is shown that the computational complexity of WLS error method is lowest in the un-

equal channel noise variance conditions. And the used scheme provides performance

close to optimum combining (Wiener solution), even in the realistic situation of un-

equal noise variances at multiple receive branches of the antennas. In this research
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work it is assumed that both channels and noise are uncorrelated, independent and

identically distributed. The least squares criterion has important statistical interpre-

tations. If appropriate probabilistic assumptions about underlying error distributions

are made, least squares produces what is known as the maximum-likelihood esti-

mate of the parameters. Even if the probabilistic assumptions are not satisfied, years

of experience have shown that least squares produces useful results. The computa-

tional techniques for linear least squares problems make use of orthogonal matrix

factorizations. To use the weighted least square error method of signal combining,

the proposed system couples the adaptive filter on each antenna element to estimate

the noise variance of the channels and then the inverse of these estimate are used as

weights of combiner. However, one can also use other filters instead of an adaptive

filter for noise estimation. The original contributions claimed in this chapter are as

follows:

• A signal combining method of weighted least square error method is proposed

for wireless communication networks.

• It is shown by mathematical analysis and computer simulations that un-weighted

least square error actually the method of equal gain combining.

• The performance of the proposed method achieves Wiener solution with un-

equal/different channels noise variance.

• Computer simulated Bit Error Rate (BER) performance is presented for the

system. It is about10−3 bits at 8 dB SNR and about10−4 at 16 dB SNR in a

wireless Rayleigh channel with two receive antennas.

The rest of the chapter is divided into following sections: Section 6.2 describes the

system model and optimum signal combining (Wiener). Section 6.3 presents clas-

sical MRC, section 6.4 presents the WLS error method to find the Wiener solution
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for signal combining, section 6.5 describes performance comparisons and numerical

simulations and finally section 6.6 is reserved for the conclusions.

6.2 System Model and Optimum Signal Combining

(Wiener)

Figure 6.1 represents the baseband representation of the presented m-branch com-

biner. It is considered that at any given time, a signals(t) is sent from the transmitter.

The time invariable channelshm including the effects of the transmit chain, the air-

link, and the receive chain may be modelled by a complex multiplicative distortion

composed of a magnitude response and a phase response. In the presented system

model, the channels between the transmit antenna and the receive antennas are as-

sumed to be wireless flat fading Rayleigh with Gaussian noisevm(t) of varianceσm.

Receive signals arriving from themth antenna were frequency down converted by the

down converter (DC) fed to the low pass filter (LPF), digitalized by the analogue to

digital convertor (ADC) and further sent to the filterfm. Decision and error (D and E)

devices provides interface between the noise estimation filters and weights of com-

biner. A noise estimation filter can be an adaptive or non adaptive. However, in this

research adaptive filters are used for noise estimation. The noise (error) are due to

the multipath propagation of signals that cause interference, additive Gaussian noise

and signal interference which are estimated by the usual training routine. The inverse

of the channel noise variance are used as weights of the combiner. Then the weights

of the combiner multiplied with each respective signal to combine signals according

to SNR. Letym(t) be the general form of themth received analogue signal in symbol

durationT . And letym(n) is digital output of respective symbol from the output of

ADC in time T . Figure 6.1 represents baseband representation of the presented m-

branch combiner. At a given timet, a signals(t) is sent from the transmitter by using
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multiple antennas. The channelshm including the effects of the transmit chain, the

air-link, and the receive chain may be modelled by a complex multiplicative distor-

tion composed of a magnitude response and a phase response. The channels between

the transmit antenna and the receive antennas are taken to be Gaussian, flat fading

Rayleigh and frequency selective Rayleigh channels with Gaussian noisevm of vari-

anceσm, for computer simulation experiments. For the Gaussian channels, we can

takehm = 1 (Identity column matrix), since noise channel distortion are only due

to Gaussian noise with respective channel varianceσm . Receive signals arriving

from mth antennas are frequency down converted by the down converter (DC), fed

to low pass filter (LPF) and digitalized by the analogue to digital convertor (ADC)

and further sent to the filtersfm for noise estimation. In the presented system and

computer experiments, these filters were taken as adaptive filters for the noise es-

timation, however any noise estimation filter can be used. The decision and error

(D and E) device provides interface between the noise estimation filter and weight

of combiner. The noise is the channel’s distortion noise, channel’s interference and

additive Gaussian noise termed as error computed by the usual training sequences.

The inverse of channels noise variance are used as weights of the combiner. The

weights are kept constant for the whole block of received data until the next training

starts. The weights of combiner multiplied with each signal for the singal combining

according to SNR. The estimate of symbolsx̂(n) after combining is given by:

x̂(n) = aH
m(n)ym(n) (6.1)

The mathematical derivation of the above equation is presented in chapter 5 which

leads us to the following Wiener’s equation:

[am(n)]opt = R−1z (6.2)
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Figure 6.1: Signal Combiner Receiver Structure for Weighted Least Square Error
Method:

Figure 6.2: Simulation model for Weighted Least Square Error Method of Signal
combining:
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6.3 Un Weighted Least Square Error Method of Sig-

nal Combining

The Least square error method is a concept of fitting the curve to obtain the best

estimate of the line, to acquire the best solution. Consider the received signals vector

ym(n). The average error vector for the length of training sequence isem between

the reference signal and the output of filter is for amth symbol is given by:

em = [e1, e2.....em] (6.3)

em = (x(n)− ym(n)) (6.4)

In these anlyses, time invariable channel is assumed and variation of channel noise

remained constant for the duration of training and subsequent data transmission. If

there are two receive antennas than the following set of equation evaluate the errors:

e1 = (x(n)− y1(n)) (6.5)

e2 = (x(n)− y2(n)) (6.6)

Herex(n) is reference sequence (training) matrix with all entries equal tox(n). Con-

sider them number of filters for noise estimation. This research used adaptive filters

for that purpose. The least square errore2 is given by:

e2 = eT
m · em = e21 + e22.....e

2
m (6.7)

And for two antennas:

e2 =
(
e1 e2

)T

·
(
e1 e2

)
= e21 + e22 (6.8)

In above equation, the weighing coefficients of the right side of above equation are

unity. The sum of the errors of all signals does not provide minimum error because

it is equally weighing all the errors with unit channel noise variance. The above
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equation clearly indicates that the equal gain combining is equivalent to un-weighted

least square error combining. In the above equation the un-weighted least square

method is weighing equally (unit) to all of the errors signal to minimize the error.

These weights are multiplied with respective signals to obtain equal gain combining.

It provides optimum combining performance with classical assumption of zero mean

and unit variance. In reality to minimize the error, we have to weigh the signals

according to the quality of the signals, particularly when unequal channel noise vari-

ances are at the receive branches. Therefore, the weighted least square error method

is required. The weights of the least square error method are used as weighing coef-

ficients to combine signals as they weigh to minimize the error.

6.4 Weighted Least Square Error Method of Signal

Combining

In practice received signals have different level of corruption, therefore, the error

weighing equally does not provide least square error when channel noise variance

are unequal. To minimize least square errore2 by the theory of WLS estimation, one

has to multiply each signal’s square of errore2m to its respective inverse of channel

noise variance to obtain the WLS error. With WLS estimation method equation (6.8)

becomes:

e2 = eT
m · em = a1 · e21 + a2 · e22 + .......ame

2
m (6.9)

Wheream represents the respective weight to minimize the error. The value ofam,

according to WLS estimation theory is the noise variance of respective channels. We

can write the above equation as a proposed weighted equation presented for three

branches of the combiner receiver:

e2 = εTmεm ==
1

σ2
1

× e21 +
1

σ2
2

× e22 + ......
1

σ2
m

× e2m (6.10)
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The am matrix provides unequal weights for minimizing error in the WLS error

method and can be used for optimum signal combining. These weights are used

for signal combining according to the level of error (noise) of signal. Detailed math-

ematical derivation for WLS error is given in related literature that were mentioned

earlier.

6.5 Performance Comparison and Numerical Simula-

tions

6.5.1 Simulation Model

The simulation model is shown in Figure 6.2. The simulations are aimed at deter-

mining the convergence of error of two combined signals under Gaussian noise with

unequal noise variances in Gaussian, Rayleigh flat fading and frequency selective

wireless channels. The single source transmits signals through multipath communi-

cation channel towards destination, where multiple antennas are used for the recep-

tion of the signal. The received power is normalized at each antenna of the destina-

tion and error is computed between the received signal and the reference sequence

available at destination. The error computed at each antenna. The reciprocal of the

error variance is considered as channel noise variance and used as a weight of the

each antenna element. After multiply each signal with reciprocal of channel noise

variance, the summation is taken, which is termed as combined signal. The errors are

computed and ensemble average mean square error curve plotted by using MATLAB

simulations. Different channel noise variance are taken in the simulation for WLS

error method. For equal gain combining or un-weighted least square error method,

the unit noise variance is taken. Then, BER curve plotted against various SNR in

the various channel environment. The following conditions exist in all simulations;

a) Un-coded coherent BPSK is used for modulation and experiments have taken the
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transmit power as variable b) Independent fading characteristics are present on each

channel when a flat fading Rayleigh channels are used and it is assumed that path

losses are negligible c) The training sequences are generated independently with us-

ing uniformly distributed pseudo-random number generators d) Different levels of

noise variance n(t) are taken on each channel with zero meanN(0, σ) e) The sim-

ulations use adaptive transversal finite impulse response filters on each branch for

channel equalization and noise estimation f) Least mean square algorithm is used to

estimate error for noise estimation. The MATLAB computer simulation steps and

codes are given in Appendix III.

6.5.2 Results

In figure 6.3 computer simulation clearly shows the difference of ensemble aver-

age mean square error curves for two methods, un-weighted and WLS combining in

Gaussian communication channels. This research has kept the unequal channel noise

variance for the computer simulations. As expected from mathematical theory, there

is significant difference in error curves of un-weighed (equal gain combining) and

WLS error for signal combining. In first simulation, the WLS error method provides

about a 4dB gain in minimizing the error. Because, un-weighted equally weighted the

signals with unit variance. The reason for better performance of WLS error method

is the use of inverse of channel noise variance in each branch of combiner. Figure

6.4 represent BER performance for combining of two signals in Gaussian channels

with unequal noise variance. In this specific example when 4dB power is received

at each branch of the combiner receiver. The presented simulated BER performance

is in a Gaussian channels with different/unequal channel noise variance of 1.43 and

9.04 respectively and the signal received on the first branch is:

10log10(
4

1.43
) = 4.46dB (6.11)
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And on second branch is:

10log10(
4

9.04
) = −3.5dB (6.12)

This research aimed to determine the performance of MRC, Optimum (Wiener) and

weighted least square error combining for comparison in the same channel condi-

tions. The proposed scheme and optimum scheme (Wiener) only produce few er-

rors with used inverse of channel noise variance. It is important to note here that

in the computer simulation, signal power is considered on x-axis, instead of SNR.

The MRC scheme is unable to achieve optimum performance, due to channel noise.

From the figure, it is clear that the proposed scheme provide very few errors for all

transmit power from 2.2 dB to 4dB and it is expected that beyond 4dB, we would get

consistent results. It is also important to note that the MRC has linear performance

improvement from10−2 to 10−4 bits, but still far behind from optimum. In figure

6.5, this research simulated the BER performance in a wireless flat fading Rayleigh

channel with different channel noise variance 1.43 and 9.04. This research found the

performance of MRC, Optimum(Wiener) and WLS error combining. The proposed

scheme and optimum scheme almost produced the same performance. The perfor-

mance of the presented scheme is only 0.4 dB less than that the performance of the

optimum combining for all SNRs. Whereas, the MRC method of signal combining

is lagging behind 4dB to 6dB to the optimum combining performance. In figure 6.6

this research carried out the computer simulations for two received signals. In these

experiment BER performance is measured in a wireless frequency selective Rayleigh

channel with channel impairment (tap) of 0.5 and 0.3 respectively. Results show that

the optimum combining failed to combine in such a situation. It is again important

to observe that MRC provides inferior performance than the proposed method and at

6dB the proposed system provide almost zero BER. Both adaptive and non adaptive

implementation of WLS can be implemented, however, in the simulation work of this

research, adaptive filters are used on each branch of combiner for noise estimation.
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Figure 6.3: Learning curves for Un-Weighted and Weighted Least Square Error
Method of Signal Combining:

1. Un-weighted least square error combining or Equal Gain combining.

2. Weighted Least Square Error Combining equivalent to Wiener combining .
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Figure 6.4: BER performance for two users in Gaussian channels:

1. Maximal Ratio Combining.

2. Optimum Signal Combining or Wiener Solution.

3. Proposed Weighted Least Square Error Method of Signal Combining.
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Figure 6.5: BER performance for two users in Flat Fading Rayleigh channel:

1. Maximal Ratio Combining.

2. Optimum Signal Combining or Wiener Solution.

3. Proposed Weighted Least Square Error Method of Signal Combining.
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Figure 6.6: BER performance for two users in frequency selective Rayleigh fading
channel:

1. Maximal Ratio Combining.

2. Optimum Signal Combining or Wiener Solution.

3. Proposed Weighted Least Square Error Method of Signal Combining.
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6.6 Conclusions

Weighted least square error method of signal combining is proposed. The method

is linear and it is the simplest among all other combining schemes, where only error

(channel noise) estimation is required to obtain near optimum performance of signal

combining. The performance of the proposed system depends upon the accuracy of

channel noise estimation. The presented technique is computationally simple and

particularly useful when we have un equal channel noise variance. It is also found

that un-weighted least square error method of signal combining is equivalent to equal

gain combining. This research shows that to design optimum signal combiner, we

only require to design an optimum channel noise estimator. Existing multiple antenna

combiners, Maximal Ratio Combiner or its modified forms was also examined for

the performance comparisons. Computer simulation results were presented to shows

the performance of the existing and proposed methods of signal combining. Further

investigation is needed to find the performance of weighted least square error signal

combining with correlated noise.

6.7 Summary

This chapter was about a weighted least square error method of signal combining

for wireless communication. The method had been commonly used for target track-

ing and in econometrics, applied mathematics and medical diagnosis. The system

presented for signal combining by weighted least square error was a combiner with

filters at each received branch for the error estimation (noise). The inverse of the

channels noise variance was used as the weights of the combiner to achieve Wiener’s

solution. The presented scheme of signal combining was particularly useful when
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Figure 6.7: Signal combining in non cooperative and cooperative wireless networks:

• Signal combining can be classified into two categories, i:e Optimum and Sub-
optimum. Optimum combining is Weiner’s combining. In suboptimum cat-
egories generally adaptive and non adaptive algorithm are commonly used in
various applications. Proposed WLS method of signal combining can be im-
plemented by using adaptive and non adaptive filters.
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wireless communication are subjected to unequal noise variance which is very com-

mon in present wireless communication systems. The performance of the scheme

was shown by computer simulation in Gaussian, flat fading Rayleigh and frequency

selective Rayleigh wireless communication channels. The computer simulation per-

formance of the system was about10−3 bits at 8 dB SNR and about10−4 at 16 dB

SNR in a wireless flat fading Rayleigh channel with two receive antennas. Figure 6.7

shows the research contributions of chapter 5 and chapter 6.
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7.1 Conclusions

Optimum adaptive signal combining and detection methods were developed for co-

operative wireless networks. This research also discussed the specific limitations of

existing techniques designed for cooperative systems. More specifically, the focus

of this thesis was the A-MMSE-MUD techniques for multiuser detection. Explic-

itly, it was pointed out that in the open literature there was a paucity of use of A-

MMSE-MUD in cooperative wireless networks, which are capable of supporting a

higher number of users. A-MMSE-MUD has emerged as a promising solution for

future high rate cooperative communication networks. A historical review of the

20-years of A-MMSE-MUD and cooperative communication literature revealed the

need for channel estimation/signal detection. More specifically, the milestones in

the history of A-MMSE-MUD and cooperative communication wireless networks

were presented in the literature, where the key events and contributions across sev-

eral decades were summarized, where some of the the associated contributions found

in the literature were outlined and acknowledged.

Furthermore, an overview of the advances in combining techniques was pro-

vided, followed by the introduction of adaptive signal combining for wireless net-

works (both cooperative and non-cooperative). This research proposed an optimum

adaptive signal combining method for wireless signals based upon Newton’s recur-

sive formula base least mean square algorithm, where this research proposed to in-

clude the multiplicative factor of inverse of channel noise variance in the step sizes

of LMS algorithm. This research used mathematical algorithms for the adaptive sig-

nal combining in cooperative wireless networks and analyzed the ensemble average

mean square error performance and bit error rate performance of the method, when

this research used unequal step sizes at each branch of combiner to maximise signal

to noise ratio. The used method achieve gains in MSE and BER performance. Hence,

it was shown that optimum adaptive combiner converge according to the SNR. The
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dependence of LMS algorithm was found upon the factor of inverse of variance,

which revealed the importance of noise estimation at each branch for signal combin-

ing. Also an innovative method of weighted least square error of signal combining

was proposed. The mathematical algorithm derived for the proposed method. The

various computer simulations performed to examine the performance in term of MSE

and BER in different wireless communication channel. It was observed that proposed

weighted least square error method of signal combining was optimum and computa-

tionally simpler than all other existing methods of signal combining.

There are a variety of fruitful areas for future research on cooperative diversity

and related topics. Many issues were mentioned in earlier chapters, but some of the

larger and more important ones here.

• Radio and network implementation of proposed A-MMSE-MUD, adaptive sig-

nal combining with unequal channel noise variance and signal combining with

weighted least square method are required.

• There is a need to analyze the performance of A-MMSE-MUD multi hop of

cooperative wireless networks.

• It would be interesting to use higher modulation schemes other than BPSK

in cooperative wireless networks and to use the adaptive decision feed back

equalizer for signal detection.

• Cross layer designs for the cooperative wireless networks are required to de-

sign with the use of proposed adaptive systems.

• Further exploration in the context of cooperative diversity are to investigate

the performance of adaptive signal combining with unequal noise variance and

weighted least square error method of signal combining in the context of cor-

related MIMO system. There is a need to address the issue of antenna correla-

tion, particularly in mobile device.
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• There is also need to analyze the performance upper bound of the proposed

signal combining methods, when we increase the number of antenna elements.

• Research results revealed the importance of noise estimation for signal com-

bining. Instead of developing various version adaptive algorithms for signal

combining, it will be more effective to develop accurate noise estimators for

achieving optimum signal combining.

• This research can be further extended to the development of adaptive multiuser

detection for MIMO systems.
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8.1 Appendix I: MATLAB Codes for Adaptive MMSE

Multiuser Detection in Cooperative Wireless Net-

works

clear;

Initialisation

CAverage = 100; AVERAGE = 100; peMFCnorelay = 0;

peAMUDCnorelay = 0; MSECnorelay = 0; peMFCampfwd = 0;

peAMUDCampfwd = 0; MSECampfwd = 0; peMFCdetfwd = 0;

peAMUDCdetfwd= 0; MSECdetfwd = 0; peMFCdetfwd2 = 0;

peAMUDCdetfwd2 = 0; MSECdetfwd2 = 0; CAMUDnorelay = 0;

CAMUDampfwd = 0; CAMUDdetfwd = 0; CAMUDdetfwd2 =0;

TRain = 6000; Training length.

SNR = 0:4:20; SNR in dB. Np = 100000; Number of symbols.

Nrelay = 4; Number of relay terminals

K = 4; Number of Users

G = 32; Spreading Factor

UserDelays = round(10*rand(1,K));

Asynchronous Transmission

GroupRelayDelay = 4;

User time delays in chips:Mobile-BS

Nscalerly = sqrt(2exp(1-Pexp)); exp represents exponent. Keep noise

same for relays, but now set the rms variable for improved

SNR (Shorter distance).

Mx = max(UserDelays);

FilExpand = 3; Assume Length of Despreading 3 times longer than

spreading factor FG = FilExpand*G;
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L = FilExpand-1; Parameter for determining number of symbols to

prevent overflow in asynchronous detection.

Delay = ceil(FilExpand/2);

Parameter for detection delay in asynchronous detection.

Es = 1; Assume Unit Energy Per User

Nvar = 10*log10(mean(Es)) - SNR;

Noise variance for adjusting different SNR’s.

nvar = sqrt(G)*sqrt(10.exp(Nvar/10));

Convert to linear Units and scale by Spreading Gain.

for chann = 1:CAverage

peMFnorelay = 0; peAMUDnorelay = 0; MSEnorelay = 0;

peMFampfwd = 0; peAMUDampfwd = 0; MSEampfwd = 0;

peAMUDdetfwd = 0; MSEdetfwd = 0;

MENorly = 0; MEAmpFWD = 0; MEDetFWD = 0;

hmiso1 = (1/sqrt(2))*(randn(1,K)+ sqrt(-1)*randn(1,K));

Fading Channel MISO 1

Hmiso1 = diag(hmiso1); Mobile to Base Station

Hmimo = (1/sqrt(2))*(randn(Nrelay,K)+ sqrt(-1)*randn(Nrelay,K));

Mobile to Relay

hmiso2 = (1/sqrt(2))*(randn(1,Nrelay) + sqrt(-1)*randn(1,Nrelay));

Fading Channel MIMO, Relay to Base station

Hmiso2 = diag(hmiso2);

Normalization, i.e. hmiso = hmiso/norm(hmiso)

for av = 1:AVERAGE

for n = 1:K

b(n,:) = (sign(randn(1,Np))+1)/2; Binary Sequence.

bbpsk(n,:) = 2*( b(n,:) - 0.5); BPSK Modulation.

btx(n,:) = sqrt(Es)*bbpsk(n,:); Transmit signal.
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S(:,n) = sign(randn(G,1));

Generate Random Spreading Sequence Mobile - Relay

Srly(:,n) = sign(randn(G,1));

Generate Random Spreading Sequence

Relay - BS, Same spreading sequence

end

SRx = [flipud(S);zeros((FilExpand-1)*G,K)];

Opposite Spreading Sequences to Despread

SRxrly = [flipud(Srly);zeros((FilExpand-1)*G,K)];

TrMat = [];

Generate Spreading Sequences for all users: Mobile - BS

for k = 1:K

for n = 1:Np

st(:,1+G*(n-1):n*G) = S(:,k).’*btx(k,n);

Generate Spreaded Sequences for all users: Mobile - BS

end

TxSequence = [zeros(1,UserDelays(:,k)),st,zeros(1,Mx - UserDelays(:,k))];

TrMat = [TrMat;TxSequence];

end

TXMob2BS = Hmiso1*TrMat;

if K greater than 1 (Use mathematical sign)

RxMob2BS = sum(TXMob2BS);

Received signal at one antenna of BaseStation without noise.

else RxMob2BS = TXMob2BS;

end

RxMob2Rly = Hmimo*(sqrt(1/2)*TrMat);

for g = 1:length(SNR)

nmbs = nvar(:,g)*(randn(1,length(RxMob2BS))
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+ sqrt(-1)*randn(1,length(RxMob2BS)));

nmrly = Nscalerly*nvar(:,g)*(randn(Nrelay,length(RxMob2Rly))

+ sqrt(-1)*randn(Nrelay,length(RxMob2Rly)));

Noise variance at receiver

RTMob2BS = RxMob2BS + nmbs;

Received Sequence Mobile - BS.

RTMob2Rly = RxMob2Rly + nmrly;

Matrix of received multiuser sequences at each relay element.

Xaf = zeros(Nrelay);

for a = 1:Nrelay; exp represents power

Xaf(a,a) = sqrt((1/Nrelay)*(1/(((1/K)*sum(abs(Hmimo(a,:)).exp2))

+ ((2/(K*Es))*((Nscalerly*nvar(:,g))exp2)))));

Xdf(a,a) = sqrt((1/Nrelay)*(1/(((1/K)*sum(abs(Hmimo(a,:)).exp2))

+ ((2/(G*K*Es))*((Nscalerly*nvar(:,g))exp2)))));

end

Xaf = sqrt((1/Nrelay)*(1/((1

+((2/(K*Es))*((Nscalerly*nvar(:,g))exp2)))));

Xdf = sqrt((1/Nrelay)*(1/((1 +

((2/(G*K*Es))*((Nscalerly*nvar(:,g))exp2)))));

RTMob2RlyAMPFWD = Xaf*RTMob2Rly;

for m = 1:Nrelay

D = [];AMUD And Forward: Soft Approach

for k = 1:K

RxRECFWD = RTMob2Rly(m,1+UserDelays(:,k):(Np*G) + UserDelays(:,k));

Normalize RxRDECFWD for AMUD Purpose.

v = sqrt(sum(abs(RxRDECFWD).exp2)/length(RxRDECFWD));

RxRDECFWD = (sqrt(K)/v)*RxRDECFWD;

XRdecfwd = zeros(FG,Np-L);
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Matrix for storing all received samples.

for a = 1:Np-L

XRdecfwd(:,a) = RxRDECFWD(:,FG+(a-1)*G:-1:1+G*(a-1)).’;

end

t = zeros(FG,1);

for f = 1:TRain

if f less than TRain/2

mu = 0.0001;

else mu = 0.0001;

end

e = bbpsk(k,Delay+f-1)- t’*XRdecfwd(:,f);

t = t + 2*mu*conj(e)*XRdecfwd(:,f);

end

E(k,:) = t’*XRdecfwd;

if Delay greater than 1

F(k,:) = [bbpsk(k,1:Delay-1),E(k,:),bbpsk(k,1+Np-(Delay-1):Np)];

Packet in lost BPSK Training symbols.

else F(k,:) = E(k,:);

end

for a = 1:Np

stseq(:,1+G*(a-1):a*G) = Srly(:,k).’*F(k,a);

end

TSeq = stseq; Assume each relay transmits users synchronously.

D =[D;TSeq];

end

if K greater than 1

RTRly(m,:) = [zeros(1,Mx+GroupRelayDelay*G),sum(D)];

Sum All Components at each Relay.
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else RTRly(m,:) = [zeros(1,Mx+GroupRelayDelay*G),D];

end

D = zeros(K,length(XRdecfwd));

end

RTMob2RlyDECFWD = Xdf*RTRly;

TrMatAMPFORWARD = RTMob2RlyAMPFWD;

TrMatDECFORWARD = RTMob2RlyDECFWD;

TXRely2BSAMPFwd =(conj(Hmiso2)*Hmiso2)*TrMatAMPFORWARD;

Transmit beamforming based on Channel Weights. Assumed perfect CSI.

TXRely2BSDECFwd = (conj(Hmiso2)*Hmiso2)*TrMatDECFORWARD;

RxNoRelay = RTMob2BS;

if Nrelay greater than 1

RxAMPFWD = sum(TXRely2BSAMPFwd) + (sqrt(1/2))*RxMob2BS

+ (Nscalerly*nmbs);

RxDECFWD = sum(TXRely2BSDECFwd)

+ [(sqrt(1/2))*RxMob2BS,zeros(1,GroupRelayDelay*G)]

+ [(Nscalerly*nmbs),(Nscalerly*nmbs(:,1:GroupRelayDelay*G))];

else

RxAMPFWD = TXRely2BSAMPFwd

+ (sqrt(1/2))*RxMob2BS + (Nscalerly*nmbs);

RxDECFWD = TXRely2BSDECFwd

+ [(sqrt(1/2))*RxMob2BS,zeros(1,GroupRelayDelay*G)]

+ [(Nscalerly*nmbs),(Nscalerly*nmbs(:,1:GroupRelayDelay*G))];

end

vrxnorly = sqrt(sum(abs(RxNoRelay).exp2)/length(RxNoRelay));

RxNoRelay = (sqrt(K)/vrxnorly)*RxNoRelay;

Normalizing signal energies for detection.

vrxafwd = sqrt(sum(abs(RxAMPFWD).exp2)/length(RxAMPFWD));
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RxAMPFWD = (sqrt(K)/vrxafwd)*RxAMPFWD;

vrxdfwd = sqrt(sum(abs(RxDECFWD).exp2)/length(RxDECFWD));

RxDECFWD = (sqrt(K)/vrxdfwd)*RxDECFWD;

RxSequenceDECFWD

= RxDECFWD(:,1+Mx+GroupRelayDelay*G:length(RxDECFWD));

for k = 1:K

RxSequenceNoRelay

= RxNoRelay(:,1+UserDelays(:,k):(Np*G) + UserDelays(:,k));

RxSequenceAMPFWD

= RxAMPFWD(:,1+UserDelays(:,k):(Np*G) + UserDelays(:,k));

Xnorelay = zeros(FG,Np-L);

Xampfwd = zeros(FG,Np-L);

Xdecfwd = zeros(FG,Np-L);

for a = 1:Np-L

Xnorelay(:,a) = RxSequenceNoRelay(:,FG+(a-1)*G:-1:1+G*(a-1)).’;

Xampfwd(:,a) = RxSequenceAMPFWD(:,FG+(a-1)*G:-1:1+G*(a-1)).’;

Xdecfwd(:,a) = RxSequenceDECFWD(:,FG+(a-1)*G:-1:1+G*(a-1)).’;

end Despread with MF.

dMFnorelay(k,:) = conj(hmiso1(:,k))*(1/G)*SRx(:,k).’*Xnorelay;

dMFampfwd(k,:) = (1/G)*SRx(:,k).’*Xampfwd;Despread = MF.

FOR BPSK - Sign Detection

DHatMFnorelay(k,:) = sign(real(dMFnorelay(k,:)));

FOR BPSK - Sign Detector

DHatMFampfwd(k,:) = sign(real(dMFampfwd(k,:)));

BHatMFnorelay(k,:) = ((DHatMFnorelay(k,:)+1)/2);

pemfnorelay(k,g) = sum(xor(b(k,FilExpand:length(b)),BHatMFnorelay(k,:)))

/length(BHatMFnorelay);

BHatMFampfwd(k,:) = ((DHatMFampfwd(k,:)+1)/2);

125



Appendix I: MATLAB Codes for Adaptive MMSE Multiuser Detection in
Cooperative Wireless Networks

pemfampfwd(k,g) = sum(xor(b(k,FilExpand:length(b)),BHatMFampfwd(k,:)))

/length(BHatMFampfwd);

if pemfampfwd(k,g) greater than 0.5

pemfampfwd(k,g) = 1 - pemfampfwd(k,g);

end

wnorelay = zeros(FG,1);

Adaptive MUD coefficients.

wampfwd = zeros(FG,1);

wdecfwd = zeros(FG,1);

for f = 1:TRain

if f less than TRain/2

mu = 0.0005;

else mu = 0.0001;

end

enorelay(:,f) = bbpsk(k,Delay+f-1)- wnorelay’*Xnorelay(:,f);

eampfwd(:,f) = bbpsk(k,Delay+f-1)- wampfwd’*Xampfwd(:,f);

edecfwd(:,f) = bbpsk(k,Delay+f-1)- wdecfwd’*Xdecfwd(:,f);

wnorelay = wnorelay + 2*mu*conj(enorelay(:,f))*Xnorelay(:,f);

wampfwd = wampfwd + 2*mu*conj(eampfwd(:,f))*Xampfwd(:,f);

wdecfwd = wdecfwd + 2*mu*conj(edecfwd(:,f))*Xdecfwd(:,f);

end

dMUDnorelay(k,:) = wnorelay’*Xnorelay;

dMUDampfwd(k,:) = wampfwd’*Xampfwd;

dMUDdetfwd(k,:) = wdecfwd’*Xdecfwd;

MseNoRLY(k,g) = mean(abs(bbpsk(k,Delay:length(b)-(Delay-1))

- dMUDnorelay(k,:)).exp2);

MseAmpFWD(k,g) = mean(abs(bbpsk(k,Delay:length(b)-(Delay-1))

- dMUDampfwd(k,:)).exp2);
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MseDetFWD(k,g) = mean(abs(bbpsk(k,Delay:length(b)-(Delay-1))

- dMUDdetfwd(k,:)).exp2);

BPSK - Sign Detector

DHatMUDnorelay(k,:) = sign(real(dMUDnorelay(k,:)));

BPSK - Sign Detector

DHatMUDampfwd(k,:) = sign(real(dMUDampfwd(k,:)));

DHatMUDdetfwd(k,:) = sign(real(dMUDdetfwd(k,:)));

BHatMUDnorelay(k,:) = ((DHatMUDnorelay(k,:)+1)/2);

peamudnorelay(k,g) = sum(xor(b(k,Delay:length(b)

-(Delay-1)),BHatMUDnorelay(k,:)))

/length(BHatMUDnorelay);

BHatMUDampfwd(k,:) = ((DHatMUDampfwd(k,:)+1)/2);

peamudampfwd(k,g) = sum(xor(b(k,Delay:length(b)-(Delay-1))

,BHatMUDampfwd(k,:))) /length(BHatMUDampfwd);

BHatMUDdetfwd(k,:) = ((DHatMUDdetfwd(k,:)+1)/2);

peamuddetfwd(k,g) = sum(xor(b(k,Delay:length(b)-(Delay-1))

,BHatMUDdetfwd(k,:)))

/length(BHatMUDdetfwd);

end

end

if K = 1

pemfnorelay = sum(pemfnorelay)/K;

pemfampfwd = sum(pemfampfwd)/K;

peamudnorelay = sum(peamudnorelay)/K;

peamudampfwd = sum(peamudampfwd)/K;

peamuddetfwd = sum(peamuddetfwd)/K;

end

peMFnorelay = peMFnorelay + pemfnorelay;
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peMFampfwd = peMFampfwd + pemfampfwd;

peAMUDnorelay = peAMUDnorelay + peamudnorelay;

peAMUDampfwd = peAMUDampfwd + peamudampfwd;

peAMUDdetfwd = peAMUDdetfwd + peamuddetfwd;

MENorly = MENorly + MseNoRLY;

MEAmpFWD = MEAmpFWD + MseAmpFWD;

MEDetFWD = MEDetFWD + MseDetFWD;

MSEnorelay = MSEnorelay + abs(enorelay).exp2;

MSEampfwd = MSEampfwd + abs(eampfwd).exp2;

MSEdetfwd = MSEdetfwd + abs(edecfwd).exp2;

end

peMFCnorelay = peMFCnorelay + (peMFnorelay/AVERAGE);

peMFCampfwd = peMFCampfwd + (peMFampfwd/AVERAGE);

peAMUDCnorelay = peAMUDCnorelay + (peAMUDnorelay/AVERAGE);

peAMUDCampfwd = peAMUDCampfwd + (peAMUDampfwd/AVERAGE);

peAMUDCdetfwd = peAMUDCdetfwd + (peAMUDdetfwd/AVERAGE);

MENorlyC = MENorly/AVERAGE;

MEAmpFWDC = MEAmpFWD/AVERAGE;

MEDetFWDC = MEDetFWD/AVERAGE;

CAMUDnorelay = CAMUDnorelay + 0.5*log2(2./MENorlyC);

CAMUDampfwd = CAMUDampfwd + 0.5*log2(sqrt(2)./MEAmpFWDC);

CAMUDdetfwd = CAMUDdetfwd + 0.5*log2(sqrt(2)./MEDetFWDC);

MSECnorelay = MSECnorelay + (MSEnorelay/AVERAGE);

MSECampfwd = MSECampfwd + (MSEampfwd/AVERAGE);

MSECdetfwd = MSECdetfwd + (MSEdetfwd/AVERAGE);

end

peMFC1 = peMFCnorelay/CAverage;

peMFC2 =peMFCampfwd/CAverage; peAMUDC1
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= peAMUDCnorelay/CAverage;

peAMUDC2 = peAMUDCampfwd/CAverage; peAMUDC3 =

peAMUDCdetfwd/CAverage;

CAMUDnorelay = CAMUDnorelay/CAverage;

CAMUDampfwd = CAMUDampfwd/CAverage;

CAMUDdetfwd = CAMUDdetfwd/CAverage;

if K greater than 1

C1 = sum(CAMUDnorelay)/K;

C2 = sum(CAMUDampfwd)/K;

C3 = sum(CAMUDdetfwd)/K;

else C1 = CAMUDnorelay;

C2 = CAMUDampfwd;

C3 = CAMUDdetfwd;

end

MSEC1 = MSECnorelay/CAverage; MSEC2 = MSECampfwd/CAverage;

MSEC3 = MSECdetfwd/CAverage;

figure

semilogy(SNR,peMFC1,’-r exp’)

hold

semilogy(SNR,peAMUDC1,’–k exp’)

semilogy(SNR,peAMUDC2,’–ko’)

semilogy(SNR,peAMUDC3,’–ks’) grid xlabel(’SNR (dB)’)

ylabel(’Probability of Error’) yy=legend(’1’, ’2’, ’3’, ’4’, 4);

figure plot(SNR,C1,’–k exp’)

hold

plot(SNR,C2,’–ko’)

plot(SNR,C3,’–ks’)

grid
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xlabel(’SNR (dB)’)

ylabel(’Capacity (Bits/Sec/Hz)’)

yy=legend(’1’, ’2’, ’3’, 4);

figure

plot(MSEC1,’k’)

plot(MSEC2,’k’)

figure plot(MSEC3,’k’)

8.2 Appendix II: MATLAB Codes for Adaptive Signal

combining in Cooperative Wireless Networks

clear

N = 10exp4; Number of bits or symbols

rand(’state’,100); Initializing the rand() function

randn(’state’,200);

Initializing the randn() function from source to relay

We assume channel is gaussian from relay to destination it

is flat fading Rayleigh with one tap for the direct transmission.

it is flat fading Rayleigh with one tap same as in relay to

destination transmission

ip = rand(1,N)greater than 0.5;

generating 0,1 with equal probability

s = 2*ip-1; BPSK modulation 0 -greater than -1; 1 - greater than 0

n = 1/sqrt(2)*[randn(1,N) + j*randn(1,N)];

white gaussian noise, 0dB variance

EbN0dB = [0:20]; multiple Eb/N0 values

h=1; flat fading Rayleigh channel with one tap for ii =
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1:length(EbN0dB)

h1=1; for the relay channel gaussian h2=1; for the relay channel

is gaussian because it is line of sight mobile device that

receive the data.

y = s*h+ 10exp(-EbN0dB(ii)/20)*n;

Additive white Gaussian noise of direct transmission

y=y./h; E1=y-s;

y11 = s*h1+ 10exp(-EbN0dB(ii)/20)*n;

y21 = s*h2 + 10exp(-EbN0dB(ii)/20)*n;

Additive white Gaussian noise of sources to relays

r1=s*h+s*h+10exp(-EbN0dB(ii)/20)*n

Relays to destination

Decode and forward scheme.

r1=r1./(h); Equalisation

V1= sqrt(sum(abs(y11).exp2)/length(y11));

V2=sqrt(sum(abs(y21).exp2)/length(y21));

r2=(sqrt(2)/V1)*y11*h+(sqrt(2)/V2)*y21*h+10exp(-EbN0dB(ii)/20)*n

Relay to Destination

Amplify and forward scheme.

r2=r2./(h); Equalisation

ipHat1 = real(r1)greater than 0; Decode and forward scheme

ipHatA = real(r2)greater than 0; Amplify and forward scheme

ipHat = real(y) greater than 0; Direct transmission

ipHatsr1 = real(y11)greater than 0;

Computing errors for relay transmission. source to relay 1

ipHatsr2 = real(y21)greater than 0; source to relay 2

Decode and forward error computation

nErrsr1(ii) = size(find([ip- ipHatsr1]),2);
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nErrsr2(ii)=size(find([ip- ipHatsr2]),2);

nErrsrT(ii)=nErrsr1(ii)+nErrsr2(ii);

nErr1(ii) = size(find([ip- ipHat1]),2);Counting the errors.

Relays to Destination, decode and forward error computation

nErrsrGT(ii) =nErrsrT(ii)+nErr1(ii)

nErrA(ii) = size(find([ip- ipHatA]),2); Amplify and forward

nErr(ii) = size(find([ip- ipHat]),2); Important direct transmission

Information capacity

C1=1/2*log(1/mean(E1)); end simBer = nErr/N;

simBerA = nErrA/N; simulated BER, Amplify and forward

simBer1 = nErrsrGT/N; simulated BER, Decode and Forward

theoryBer = 0.5*erfc(sqrt(10.exp(EbN0dB/10)));

figure(1)

semilogy(EbN0dB,theoryBer,’b.-’);

hold on

semilogy(EbN0dB,simBer,’–kd’);

hold on

semilogy(EbN0dB,simBerA,’–ks’);

hold on

grid on

semilogy(EbN0dB,simBer1,’-ko’);

hold on

legend(’Direct transmission’,’Amplify and forward’,

’Decode and forward Relay Transmission’);

figure(2)

semilogy(C1,EbN0dB,’-ko’)
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8.3 Appendix III: MATLAB Codes for WLS Error

Method of Signal combining

WLS Error Method of Signal combining, BER Results.

clc;

clear all

Initialisation

nErrMRCT=0;

n00ErrT=0;

n1ErrT=0;

nErrT=0;

n2ErrT=0;

n3ErrT=0;

n4ErrT=0;

n4bErrT=0;

EbN0dB = [2:2:20];

q=2.0; for av=1:1

for ii = 1:length(EbN0dB)

numPoints = 10

No=10exp5; numb=(numPoints+No); training+data

sig2 =EbN0dB(ii)*sign(randn(No,1));

sig1=EbN0dB(ii)*ones(numPoints,1); Training

s=[sig1;sig2];training and decision directed mode

X = s;

x1=X; signal no 1

h1 =.5;

Flat fading Rayleigh Channel with variance 0.5

N1 =-1.2*1/sqrt(2)*(randn(numb,1) + i*randn(numb,1));
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d1 = h1.*x1+ N1; [hints: 10*log10(0.1)=-5.23; SNR=0+5.23=5.23]

Signal channel convolution, plus noise

D1=d1.*conj(h1); Mu1 =0.5;

ip00Hat1 = real(X)greater than 0 ; hard decision decoding

ip00Hat = real(D1)greater than 0

n00Err(ii) = size(find([ip00Hat1- ip00Hat]),1); No of Error

d1 = h1.*x1+ N1; [hints: 10*log10(0.1)=-5.23; SNR=0+5.23=5.23]

D1=d1.*conj(h1); Equalisation

x = X; Signal no 2

h =0.3; Channel 2

N = -3*1/sqrt(2)*(randn(numb,1) + i*randn(numb,1));

Normalized to 0db

d = h.*x + N; [hints: 10*log10(0.6)=-2.22; SNR=0+2.22=2.22]

D=d.*conj(h); meu=0.0000005 meu1=0.0000005

W=0; W1=0; Adaptive Combiner with filtering

MRC=(D1+D)./(h1.*conj(h1)+h.*conj(h));

ip1Hat1 = real(X)greater than =0 ;

ip1HatMRC = real(MRC) greater than 0;

nErrMRC(ii) = size(find([ip1HatMRC-ip1Hat1]),1);

D1=D1/sqrt(sum(D1.exp2))

D=D/sqrt(sum(D.exp2));

CRX1=xcorr(s,D1); CRX2=xcorr(s,D); Wiener Combining

wt=var(CRX2)*1/var(N.*conj(h));

wt1=var(CRX1)*1/var(N1.*conj(h1));

SyR4=((D1)*(wt1)+((D)*(wt))); ip4Hat1 = real(X)greater than 0;

ip4Hat = real(SyR4) greater than 0;

n4Err(ii) = size(find([ip4Hat- ip4Hat1]),1);

wtb=((1/(var((N./h)))));
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wt1b=(1/(var((N1./h1)))); SyR4b=((D1)*(wt1b)+((D)*(wtb)));

ip4bHat1 = real(X)greater than 0;

ip4bHat = real(SyR4b)greater than 0;

n4bErr(ii) = size(find([ip4bHat- ip4bHat1]),1);

end

n00ErrT=n00ErrT+n00Err; Match filter

nErrMRCT=nErrMRCT+nErrMRC ; MRC

n4ErrT=n4ErrT+n4Err; Wiener

n4bErrT=n4bErrT+n4bErr; Weighted

end

n00ErrT=n00ErrT./av;

n1ErrT=n1ErrT./av;

nErrMRCTav=nErrMRCT./av; mrc

n3ErrT=n3ErrT./av;[unweighted]

n4ErrT=n4ErrT./av;

n4bErrT=n4bErrT./av;

simBer = n00ErrT./numb; BER

simBer2 = n1ErrT./numb;

simBerMRC = nErrMRCTav./numb; MRC

simBer4 = n3ErrT./numb;

simBer5 = n4ErrT./numb;

simBer5b = n4bErrT./numb;

EbN0Lin = 10.exp(EbN0dB/10);

theoryBernRx1 = 0.5.*(1-1*(1+1./EbN0Lin).exp(-0.5)); p = 1/2 -

1/2*(1+1./EbN0Lin).exp(-1/2); theoryBernRx2 = p.exp2.*(1+2*(1-p));

figure(2)

semilogy(EbN0dB,simBerMRC,’-k exp’,’LineWidth’,1.2);

MRC
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hold on

semilogy(EbN0dB,simBer5,’-kd’,’LineWidth’,1.2); MRC

hold on

semilogy(EbN0dB,simBer5b,’-ko’,’LineWidth’,1.2); Weighted

hold on

legend(’Maximum Ratio Combining’,’Weiner Solution’,

’Weighted Least Square Error Combining’);

xlabel(’Transmitted Power, dB’);

ylabel(’Bit Error Rate’);

title(’BER for BPSK modulation in Gaussian channel’);

grid on

WLS Error Method of Signal Combining, MSE Results.

clear all

err=0; seperr=0; seperr2=0; error2=0; err1=0; ERRR1=0;

ERROR=0; ERR1=0; seperr2=0; seperr=0; E=0; E1=0; ERR1nf=0; for

av=1:400 numPoints = 150;

numTaps = 10; channel order

Mu1 = 0.015; iteration step size

s=ones(numPoints,1);

X = s

x1=X; signal no 1

choose channel to be random uniform

h1 =1/sqrt(2)*(randn(numTaps, 1) + i*randn(numTaps, 1));

N1 =1/sqrt(2)*(randn(numPoints,1) + i*randn(numPoints,1));

d1 = filter(h1, 1, x1) +0.3* N1;

d1 = d1/max(d1);

initialize variables

w1 = []; y1 = []; in1 = [];
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e1 = [];

w1 = zeros(numTaps+1,1) + i*zeros(numTaps+1,1); Weights

LMS Adaptation

for n = numTaps+1 : numPoints

select part of training input

in1 = x1(n : -1 : n-numTaps) ;

y1(n) = w1’*in1;

e1(n) = d1(n)-y1(n);

e12(n) = (d1(n)-y1(n))exp2;

w1 = w1 + Mu1*( real(e1(n)*conj(in1)) - i*imag(e1(n)*conj(in1)) );

end

Mu = 0.015; Iteration step size

x = X; Signal no 2

h = 1/sqrt(2)*(randn(numTaps, 1) + i*randn(numTaps, 1));

N = 1/sqrt(2)*(randn(numPoints,1) + i*randn(numPoints,1));

d = filter(h, 1, x) + 0.9*N;

d = d/max(d)

w = []; y = []; in = [];

e = [];

w = zeros(numTaps+1,1) + i*zeros(numTaps+1,1);

LMS Adaptation

for n = numTaps+1 : numPoints

select part of training input

in = x(n : -1 : n-numTaps) ;

y(n) = w’*in;

compute error

e(n) = d(n)-y(n);

e2(n) = (d(n)-y(n))exp2
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w = w + Mu*( real(e(n)*conj(in)) - i*imag(e(n)*conj(in)) );

end

y1=y1/max(y1);

y=y/max(y);

sepErr = ((e12))*(1/(var((e1))));WLS weight1

sepErr2=((e2))*(1/(var((e)))); WLS weight2

Error1 = ((e1).exp2)+((e).exp2); Un-weighted LS

Error2 = ((((e1).exp2)*(1/(var((e1))))+((e).exp2)*;

exp represents exponent

(1/(var((e))))))/((1/(var((e1)))+(1/(var((e1)))))); Weighted LS

err1 = err1+e12;

err = err+e2;

seperr=seperr+sepErr;

seperr2=seperr2+sepErr2;

error2=seperr+seperr2;

ERROR=ERROR+Error1;Un-weighted LS

E=E+Error2; Weighted LS

end error=err1./av; Averaging

seperr=seperr./av;

seperr2=seperr2./av;

err1=err1./av; Equaliser of branch 1

err=err./av; Equaliser of branch 2

error2=seperr./av; Weighted LS

ERROR=ERROR/av; Un-weighted LS

E=E/av;

figure(1)

plot(10*log10(abs(ERROR)),’–kd’,’LineWidth’,1.2);Un-weighted LS

hold on
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plot(10*log10(abs(E)),’-ko’,’LineWidth’,1.2); WLS

hold on

title([’ Learning Curve of Combined Signals ’]);

xlabel(’Iteration Number’);

ylabel(’Ensemble Average Mean Square Error ’);

legend(’Combined Signal Unweighted LS’,’Combined Signal Weighted LS’);

grid on

hold on
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