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Abstract 

 
Electrically conducting and nonconducting particles and bubbles 
experience additional forcing in a liquid which carries electric 
current. These so called electro-magnetophoretic forces are well 
known in metallurgical applications, like metal purification in 
vacuum-arc remelting, electro-slag processes, impurity removal or 
concentration change in special castings. However, the effect of 
electro-magnetophoretic forces has never been considered for  
aluminium cells where the gas bubbles evolving in the liquid 
electrolyte are surrounded by an electric current and significant 
magnetic fields. We present models to estimate the effect of electric 
current flow in the vicinity of the bubbles and the additional 
pressure distribution resulting from the magnetic forces in the 
surrounding liquid electrolyte. According to the estimates, this 
force becomes important for  bubbles exceeding 2 mm in size, and 
could be sufficient to overcome the typical drag force associated 
with electrolyte flow thereby  opposing  motion of the bubble along 
the base of the anode when it is inclined at a slight angle. The effect 
could explain certain features of the anode effect onset. 
Mathematical models and numerical results are presented and a 
further implementation in the general MHD code for the aluminium 
cell design is discussed. 

Introduction 

The presence of gas bubbles is an inherent feature of the 
electrolytic aluminium production cells. Typically CO2 gas bubbles 
are produced at a rate proportional to the electric current magnitude 
yielding approximately 2.5 m3 of gas per kg of aluminium 
produced. A detailed description of the bubble creation, 
detachment and transport is given in many publications ([1-5] are 
recent examples). The detached bubbles during the aluminium 
reduction are typically of 3-5 mm in size [1] and can grow due to 
collision and coalescence. On extreme occasions their volume can 
reach 100 ml. The presence of bubbles contributes significantly to 
the overall voltage loss of an individual cell (about 0.25 V from the 
total of 4 - 4.5 V) [2]. The usual assumption is that the bubbles are 
transported due to the buoyancy driven flow originating from the 
bubble escape into the side channels at the edges of the anodes [3-
5]. The shape of the anode bottom is recognized as an important 
factor to facilitate the initial buoyancy force moving the bubbles 
[3]. In addition to this the electromagnetically driven flow exerts an 
additional drag force which contributes to the bubble transport 
along the flow streamlines, and could change the drag coefficient 
due to local nonuniformity of the electrical current around the 
bubble [9]. 

However a less recognized but significant contribution to the force 
balance on a moving bubble arises from the so called electro- 
magnetophoretic forces which were first theoretically analyzed by 
Leenov and Kolin in 1954 [6]. They derived expressions for 
electrically conducting and nonconducting particles (or bubbles) in 
the presence of an electric current and magnetic field in the 
surrounding liquid. They suggested possible applications like 
separation of particles and opposing the gravity effects. Since then 
metallurgists were keenly exploiting the electro-magnetophoretic 
force for a variety of applications, such as removal of inclusions 
from steel melt [7], concentrating the insulating bubbles and 
inclusions [8], and for many other purposes [9]. It is important to 
note that not only the electrically conducting particles experience 
the effect of the electromagnetic force due to the current passing 
through them and interacting with the overall magnetic field. The 
electrically nonconducting particles in an electric current carrying 
fluid will experience significant force due to the pressure 
distribution gradient arising with the electromagnetic force action 
in the surrounding fluid. The physical effect is very similar to the 
buoyancy force created by the vertical pressure stratification in the 
fluid in the presence of gravity. With the electromagnetic force the 
pressure gradient can be created in any direction in the fluid 
carrying electric current.  

In this paper we attempt to derive a very simple mathematical 
model for a bubble of hemispherical shape attached at the bottom 
of the anode in an aluminium electrolysis cell. The mathematical 
expression for the electro-magnetophoretic force is used to estimate 
a possible effect on the bubble transport and compared to the 
viscous drag force from the integral large scale bubble driven and 
electromagnetically driven flow . By comparing the buoyancy force 
at the bottom of a sloped anode with the electro-magnetoforetic 
force it is possible to find conditions when a bubble of larger size 
could be trapped in a stationary position for some time. This 
observation can yield further insight to the anode effect 
mechanisms and the conditions triggering the onset of the anode 
effect [10]. 

The inclusion of the electro-magnetophoretic effect with the bubble 
distribution models is a possible development for the wave model 
and the dynamic interaction with the electromagnetic field as 
implemented in the MHD numerical code [11]. 
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The setup for a mathematical model  

Before considering the local bubble model it is important to have a 
view to an integral picture of the whole aluminium cell. For this 
purpose we will use the results obtained from our previous coupled 
MHD models for the whole cell [11]. The interface between the 
liquid metal and electrolyte forms a nearly stationary dome like 
shape, as shown in Figure 1 for the case of a 500 kA cell. The 
interface shape can be variable if the cell is close to the stability 
limit when the waves start appearing. For a stable cell the time 
average deformation of the aluminium-bath interface causes 
redistribution of the electric current, which accelerates 
consumption of the anode bottom in areas where the anode-cathode 
distance (ACD) is reduced. The time average shape of the anode 
block above the metal interface shown in Figure 1 will eventually 
assume a shape similar to that computed in Figure 2. Note that the 
bottom shape is shown with an exaggerated scaling in the z-axis 
direction (about 15 times).  

Figure 1. The interface shape of a 500 kA cell. 

Figure 2. The view to the bottom of all anode blocks (without 
divisions between individual anodes) as computed for the electric 
current adjustment to the constant ACD condition. 

The electric current distribution in the electrolyte layer below the 
anodes is approximately uniform at the density 0.7 A/cm2. The 
magnetic field computed for the 500 kA cell is shown in Figure 3. 
From the direction of the arrows and the colour flooding of the 
contours it is evident that the Bx component (along the long side of 
the cell) is the dominant contribution to the total magnetic field. 
This could be generalized for various other cells we have 
considered modelling. The Bx field is unavoidably present, it is the 
dominant component, and it can not be affected significantly by 
rearranging the cell bus bar network supplying the electric current. 
The Bx field is mainly produced by the vertical current in the whole 
cell and the horizontal currents in the liquid metal and the cathode 
collector bars. Typically the Bx field has a nearly linear gradient in 
the y-axis direction, increasing in magnitude away from the cell 
central axis. 

Figure 3. The computed magnetic field in the electrolyte layer for 
the 500 kA cell. 

A simple model for a hemi-spherical bubble 

In order to obtain a quantitative description of the electro-
magnetophoretic force acting on a gas bubble attached or slowly 
moving along the anode bottom, let us consider an idealized 
situation shown in the Figure 4. A hemispherical shape bubble is 
positioned somewhere in the middle of a mildly sloped carbon 
anode, from which the electric current flows uniformly downwards. 
The actual current distribution is obtained using the commercial 3d 
electromagnetics module in the package COMSOL. 

Figure 4. The hemi-spherical bubble at the bottom of carbon anode 
with the computed electric current lines. 

For the analytical derivation we can use the problem setup shown 
in the Figure 5. The electric current J = - J0z ez  has only the vertical 
component of constant value J0z. The magnetic field is assumed to 
have only the Bx component given as B = B0x y/Ly ex , where B0x is 
the magnitude of the field at the external edge of the anode whose 
width is Ly. The Lorentz force acting in the fluid (electrolyte) has 
only a single y-directed component given by 

        0 0 .x z
y

y

B y J
F

L
= −                                          (1) 

�
�

��

��
�

Figure 5. Setup for the analytical model with the uniform electric 
current Jz and linearly growing magnetic field Bx. 
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Figure 6. The model for obtaining the pressure p(y)  - created by 
the uniform electric current Jz and linearly growing magnetic field 
Bx. 

The electromagnetic force (1) acting in the fluid will create a 
pressure p(y) distribution according to the boundary conditions 
chosen to represent the situation under the anodes. Figure 6 is 
representative of one half of the cell with the symmetry axis at y = 
0, where the appropriate symmetry condition of zero normal 
derivative is imposed. At the left edge of the electrode we assume a 
constant hydrostatic pressure under the given depth of the 
electrolyte. Since mathematically the pressure is defined to the 
accuracy of an arbitrary constant, we can choose p(y=Ly) =0. To 
find the pressure distribution we need to solve the hydrostatic 
equation 

     ( ) ( ),p∇ ⋅ ∇ = ∇ ⋅ ×J B                          (2) 

which implies that 
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The solution of  (3) with the given boundary conditions is 

20 0
0 0

1
.

2 2
x z

x z y
y

B J
p y B J L

L
= − +                   (4) 

Suppose that the centre of the bubble is at y = yb . The total force 
acting on the bubble from the fluid is the surface integral over the 
hemi-spherical surface: 

,pd= −∫∫p RF S                              (5) 

where the minus sign appears because the normal vector to the fluid 
facing the bubble is opposite to the eR direction in a  spherical co-
ordinate system with the origin at the bubble centre. To compute 
the integral (5) we first shift the origin to the bubble centre by 
transformation ' by y y= − :  
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1
( ' ) .

2 2
x z

b x z y
y

B J
p y y B J L

L
= − + +             (6) 

Then by replacing ' sin sinby r θ ϕ=  in local spherical co-

ordinates after the transformation, we can express the y-component 
of the force as: 

2 2sin sin .

y y
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∫∫

p RF e S e
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The expression (6) for ( ')p y  contains even and odd terms in 

powers of  ' sin siny r θ ϕ= , of which only the odd powers 

(linear in this case) will contribute to the total integral over the 
symmetrical bubble surface. This means that the total force in the 
y-direction is 
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where Vb is the volume of the hemi-spherical bubble. It is easy to 
make more general conclusions, remarking that the expression (8) 
coincides with that derived by Leenov-Kolin in the case of uniform 
current and uniform field, in fact, 

   ( )  .fluid bV= − ×pF J B                                (9) 

The expression (9) shows that there will be a force acting on a non-
conducting bubble which is equal to that computed over the fluid 
volume in the absence of the bubble, but with the minus sign. Some 
authors [8]  introduce form factors to represent different shapes of 
particles or bubbles compared to the spherical volume expression.  
The expression in (9), however, is more general.  

Returning to the electrolysis cell situation, it is instructive to 
analyze the expression (8). We can see that the force increases 
linearly with the bubble distance yb from the cell centre. The force 
grows as the third power of the size of the bubble. It will increase 
proportionally to the magnitudes of the current density Jz and the 
maximum magnetic field B0x . 

Let us estimate the relative values of the electro-magnetophoretic 
force and the drag force acting on a bubble in a large scale flow 
driven by either the total effect of bubbles escaping at anode edges 
(bubble driven flow) or the electromagnetic force-driven large scale 
horizontal flow. Suppose that, for simplicity, the bubble is of 
spherical shape. The drag force on a small spherical bubble is given 
by Stokes formula, modified for the slip boundary condition: 

4 ,d brπη= −F v                                  (10) 

where η is fluid viscosity. When the electro-magnetophoretic force 
is equal in magnitude to the drag force, the bubble is trapped in the 
flow or deviates from the fluid flow line direction (if the forces are 
not aligned). The condition for a spherical bubble can be expressed 
by multiplying expression (8) by a factor of 2:  
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Assuming typical values for the electrolyte circulation velocity |v| 
equal to 0.1 m/s, fluid viscosity 0.002 kg/(s.m), the maximum 
magnetic field B0x = 0.02 T, the electric current density 

0 zJ = 7000 

A/m2,  and the position of the bubble close to the edge yb = Ly , the 
minimum possible size for a bubble, stopped by the action of the 
electro-magnetophoretic force opposing the drag from the flow,  is  

32.07 10  ( )  2 .br m mm−= ⋅ ≈                             (12) 

This estimate is well within the range of typical bubble sizes (3 – 5 
mm) after detachment  in the electrolysis process [1]. For a 4 mm 
bubble the magnetic pressure force will be 4 times larger than the 
drag force under the assumed  conditions, and the bubble will start 
moving against the incoming flow.  

Figure 7. Schematic representation of a possible force balance for a 
bubble positioned at the bottom of a mildly sloped anode.  

Figure 7 indicates another situation when the bubble at the bottom 
of a mildly sloped anode is trapped in a stationary position due to 
the balance of the buoyancy force Fg and the magnetic pressure 
force Fp: 

0 0

           ,

sin ,
p g

x z b e bB J V g Vρ α

=

⋅ ≈ ⋅

F F
,                     (13) 

where sine gρ α  is the effective buoyancy force driving the 

bubble upwards along a gently inclined slope of angle α  to the 
horizontal. A simple calculation, using similar data as in the 
previous example (assuming an electrolyte density of 2100 kg/m3) 
would suggest  that when the anode bottom is sloped at about 0.45 
degrees the bubble motion could be stopped. This is a very mild 
slope, but nevertheless quite realistic in operating conditions. 

Numerical results for the local hydrodynamics   

In this section we investigate the effect of the flow which 
could arise due to the pressure distribution obtained from the 
expression (4), which can affect the validity of the pressure 

distribution. The original derivation by Leenov-Kolin [6] 
assumed an infinite volume of fluid, and the authors proved 
analytically that the arising viscous flow due to the pressure 
distribution does not affect the resultant force. We have set 
up an idealized fluid dynamic model using COMSOL to 
investigate possible flow effects on the resulting pressure 
distribution. The fluid flow field shown in Fig. 8 was 
computed using the boundary conditions for pressure in 
Figure 6 and the previous distribution of  electric current and 
magnetic field which yielded the  force distribution (1) in the 
liquid electrolyte. This flow has no similarity to a real 
aluminium cell where multiple anodes are present and the 
flow results from the integral effect of  all electromagnetic 
interactions. The purpose of this simple model is to compute  
possible variation in the pressure field with velocity present.  

Figure 8. The computed pressure and the flow driven from the side 
channel along the anode bottom to the central channel of the cell. 

   

Figure 9. The computed pressure distribution on the surface of the 
hemi-spherical bubble when fluid flow is present.. 

Figure 8 demonstrates the pressure distribution in the whole bottom 
space, showing a similar pressure gradient to that obtained 
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analytically (4). Locally at the hemi-spherical bubble surface the 
computed pressure distribution is shown in the Figure 9.   
Figure 10 presents the computed pressure as a function of position 
along a line in the electrolyte just below the bubble (solid blue 
line);  the dotted black line represents a fitted quadratic function.  
The fitted quadratic function has the equation 

235.597 14.752 0.1694p y y= − + + ,                 (14) 

Encouragingly the pressure is well-described by a quadratic 
function.  We may compare the coefficient of the quadratic 
term with the analytical expression derived earlier (4), 
substituting B0x = 0.02 T:

20
0

0.01
0.01z

z y
y

J
p y J L

L

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
.                     (15) 

The 3D model has end effects associated with the flow which 
would explain why the fitted curve has a linear term in y which is 
not present in the analytical expression.  Additionally, since only 
the  gradient of pressure drives  the flow there is a constant offset 
associated with the gauge. If we assume that the current density  in 
the 3D model is 3 2

0
7 10  A/m  

z
J = ⋅ , then the analytical coefficient 

of the quadratic term approximately matches the value in (14), 
which would suggest that the 3D simulation is producing numbers 
of the correct order of magnitude.   

Figure 10. The computed pressure distribution at the mid-plane of 
the electrolyte passing through the position of the bubble as 
computed for the flow in Figure 8. 

    Numerical results for the electric current distribution   

It is of certain interest to compare the electric current distribution 
on the anode when a bubble or cluster of bubbles are attached to 
the bottom of the anode. For this purpose we used the simple 3D 
model shown schematically in Figure 11.  

Figure 11. Schematic 3D geometry for the anode and the 
electrolyte. 

Figure 12. Streamlines of electric current around a large bubble 
(r=20 cm) attached at the bottom of the anode. 

Initially the current was computed in the absence of any bubbles at 
the bottom. Fig. 13 (blue curve) shows the percentage of the total  
current exiting the anode on the side surfaces as a function of the 
ACD distance.  Also shown in Fig. 13 are, for comparison, results 
for the case when a large bubble of radius 20 cm is present. The 
local distribution of electric streamlines around the bubble is 
shown in Figure 12. The results indicate that the presence of the 
bubble adjusts the effective ACD distance and makes the current 
path through the side faces of the anode more favorable. The 
nonlinear resistance due to the electrochemical voltage drop was 
not accounted for as this is not the subject of the present study.  
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Figure 13. The computed ACD dependence of the electric current 
percentage exiting the side wall when the large bubble is present 
compared to the situation without the bubble. 
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Conclusions 

Analysis of the electro-magnetophoretic forces acting on bubbles in 
the aluminium reduction cells suggests that their presence could 
significantly affect bubble transport, concentration and detachment. 
The models presented give numerical estimates of the effect of 
electric current flow in the vicinity of the bubbles including the 
additional pressure distribution resulting from the magnetic forces 
in the surrounding liquid electrolyte. According to these estimates, 
this force becomes important for bubbles exceeding 2 mm in size.  
The force is sufficient to overcome the typical drag force due to 
electrolyte flow, and could potentially prevent translational 
displacement of the bubble along the base of the anode when it is 
inclined at a gentle gradient. The effect could explain certain 
features of the anode effect onset. A further implementation in the 
general MHD code for the aluminium cell design is considered for 
future work. 
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