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Abstract

The use of distributional models in forestry is investigated, in terms of their capability of 

modelling distributions of forest mensurational attributes, for modelling and inventory 

purposes. Emphasis is put on: (i) the univariate and bivariate modelling of tree diameters and 

heights for stand-level modelling work, and (ii) heuristic methods for use and analysis of 

distributions which occur in multi-temporal EO imagery, (for the inventory-related tasks of 

land-use mapping, change detection and growth modelling).

In univariate distribution modelling, a new parameterization of the widely-used Johnson's 

SB distribution is given, and new Logit-Logistic, generalized Weibull and the Burr system 

(XII, III, IV) models are introduced into forest modelling. The Logit-Logistic distribution is 

found to be the best among those compared. The use of regression-based methods of 

parameter estimation is also investigated.

In the domain of bivariate distribution modelling of tree diameters and heights the 

Plackett method (a particular form of copula) is used to construct Plackett-based bivariate 

Beta, SB and Logit-Logistic distributions, (the latter two are new), which are compared with 

each other and the SBB distribution. Other copula functions, including the normal copula, are 

further employed (for the first time in forest modelling) to construct bivariate distributional 

models. With the normal copula, the superiority of the Logit-Logistic in the univariate 

domain is extended into the bivariate domain.

To use multi-temporal EO imagery, two pre-processing procedures are necessary: image 

to image co-registration, and radiometric correction. A spectral correlation-based pixel- 

matching method is developed to "refine" manually selected control points to achieve very 

accurate image co-registration. A robust non-parametric method of spectral-distribution 

standardization is used for relative radiometric correction between images. Finally 

possibilities for further research are discussed.
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Chapter 1: Introduction

1.1 Introduction

This thesis reports research on the development and application of distributional modelling 

techniques in Forestry. The application is considered to fall into two main areas.

First, Forest Mensuration and Modelling is concerned with the characterization of the 

distributions of measurements of individual tree attributes, typically measured on sample plots 

within a forest compartment. This form of data is characteristic of all field measurements of 

forest compartments.lt is such a basic component of any forest inventory that plot 

measurements and models and estimates derived from them, are often regarded as an essential 

component of the area of Forest Inventory. Stand volume estimation is an important aspect of 

forest mensuration and inventory, and is usually based on estimates of individual tree volumes 

from a (double, triple, or a multi-phase) sample of tree diameters and heights (and volumes). 

In Section 1.2 we expand on this area, as a rationale/justification for the distributional 

modelling research of this thesis.

The second main application area considered in this thesis is concerned with the use of 

Earth Observation (EO) imagery data in order to support the inventory and modelling of 

forest status, change and growth. The typically available data in this case consist of partial 

image coverage of a land area, obtained at a number of distinct times. In general, the sensing 

instrument could differ between recording times, and hence the pixel size and spectral 

structure of the imagery could differ between recording dates. However, this degree of 

generality has not been considered in the research reported in this thesis, and only multi- 

temporal imagery from the same sensing instrument has been considered. In particular the 

imagery used in this thesis is obtained by Landsat Thematic Mapper (TM). Use of EO 

imagery has been much researched since it has been seen as a means to rapid and cost- 

effective forest inventories of the future. Consequently, the literature on the topic, since the



Landsat satellite was launched in 1972 (Landgrebe 1997), is vast. This area of research is 

also highly complex, since modelling and estimation from complex samples from a spatio- 

temporal process are amongst the most difficult on-going statistical challenges in 

environmental process modelling.

Multi-temporal imagery data may be seen as "distributional data" in spectral space if the 

pixel spatial information is ignored. Use of unsupervised and supervised classification 

techniques in this "feature space" are the standard techniques in this domain of remotely 

sensed imagery analysis. Inclusion of the spatial information into extended clustering and 

classification algorithms has led to object-based classification methods (Kettig and Landgrebe 

1976). The complexity and dimensionality of the data are such that parametric methods of 

analysis likely not be appropriate, and non-parametric methods such as the k-nearest- 

neighbour (KNN) estimator (Tomppo 1991, Hardin 1994, Franco-Lopez et al. 2001, 

Haapanen et al. 2004) and Neural Networks (Lee and Landgrebe 1997) are probably the only 

realistic way in which the full complexity of the data can be addressed. See section 1.3 for 

further general considerations.

Section 1.4 gives an overview of the thesis.

1.2 Distributional Modelling in Forest Mensuration and Modelling

1.2.1 Traditional Approach to Stand Volume Estimation

The traditional procedure to estimate stand volume may consist of three steps. First, a 

sample of rid trees is selected on which diameters are measured: we include the subscript to 

indicate the sample on which the estimate is based. It is assumed here, for simplicity and 

convenience, that a fixed area sample plot is used. Hence, an estimate of the marginal

/\

distribution of diameter, fn (d) , may be obtained. Second, a sample of tree heights (of size



Hh say) is obtained, normally on a sub-sample from the nd diameter-trees. The height on 

diameter regression,

(1.1)11

may be obtained on the HH trees for which both height and diameter are measured, where E 

denotes statistical expectation, h is tree height, d is tree diameter. See section 1.2.4 for further 

discussion following equation (1.1).

Finally, an estimated individual volume (V) equation,

is traditionally used to estimate the mean sample tree volume (v ) in the population as: 

v= J f(d}E(V\d,hnh (d}}dd (1.3)
d>0

where/(J) is the marginal diameter distribution. Then the estimator of mean tree volume ( VT ) 

is given as:

A /v /\

(1.4)
d>0 

A discrete diameter-sample based version ( v'T ) is

1 nd
v (di ,hnh (di » (1.5) 

nd i=i

The individual volume equation (1.2) is usually assumed to be generally applicable, that is, 

independent of stand attributes (age, site quality, density,...). It is often constructed prior to 

the inventory, due to the difficulty in measuring individual tree volume during forestry 

inventory. In contrast, the h-d relationship of equation (1.1) (traditionally termed the "H-D" 

relationship) is usually stand/plot specific since both diameter and height measurement are 

usually practically feasible. Therefore, stand volume estimation is usually made from a 

double sample of tree diameters and heights (Clutter and Allison 1974).



1.2.2 Univariate Distribution Modelling for Stand Volume Estimation

Since stand volume is the primary variable in which forest managers are interested, any 

improvement on the traditional approach would be valuable. One natural improvement, as 

seen in equations (1.3) and (1.4), is to use a more flexible univariate distribution model for 

describing the diameter data. The most frequently used distributional models are the Weibull 

(Bailey and Dell 1973) and Johnson's S B (Johnson 1949a, Hafley and Schreuder 1977).

The diameter distribution model is a key component of many growth and yield models 

(Hyink and Moser 1983, Borders and Patterson 1990). Diameter distribution models are 

intermediate between stand-level models (Tang 1991, Avery and Burkhart 1994) and 

individual tree models (Mitchell 1975, Wykoff et al. 1982, Rennolls and Blackwell 1988).

Diameter-distribution based growth-and-yield models can forecast the range of products 

which might be expected from a stand (Rennolls et al. 1985). Use of flexible models to 

describe the diameter distribution, in conjunction with methods for the construction of 

appropriate bivariate distribution models (particularly by use of the copula method, for details 

see Chapter 6), provides the potential for more accurate estimation of stand volume than the 

traditional techniques. This is further discussed in the next section.

1.2.3 Bivariate Distribution Modelling for Improving Stand Volume Estimation

Stand volume estimation may be improved by modelling the joint distribution of tree 

diameter and height. Bivariate distribution modelling provides an alternative to the traditional 

approach to estimating stand volume.

The mean sample tree volume in the population is given by

£ = ftf(d t h)V(d,h)dddh (1.6)

where f(d, h} is the joint distribution. Re-writing (1.6), we have,



v= \\f(d,h)V(d,h)dddh = ftf(h\d)f(d)V(d,h)dddh
d>0,h>0 d>0,h>0

= f fW\ \f(h\d}V(d,h)dh\dd (1.7) 
j \ j

d>0 U>0 J

= \f(d)E(V\d)dd
d>0

where f(h\d) is the conditional height distribution given diameter d. The traditional approach 

(as in (1.3)) incorrectly assumes (or approximates) E(V\d) is given by the volume of the tree 

with the expected height for the given d. That is,

E(Y | d) = E(Y(d,E(h | d)) (1.8) 

Hence (1.4) or (1.5) follows.

The estimated-height bias effects in (1.4) or (1.5) may be avoided by evaluating E(V\d) in 

(1.7) by using/(/i|d), the conditional distribution of h for given d. That is,

E(V\d) = \f(h\d}V(d,h)dh (1.9) 
h>0

where the conditional distribution is estimated from the height-sample by:

(^)
-7^r (L10) 

n h (<0

Hence an unbiased volume estimator ( V B ), based on the bivariate and marginal densities, f(d,h) 

and/(d) respectively, is 

$B = \f(d)En (V\d)dd
d>0

= \ f(d)\ \^^Vnv (d,h)dh\dd (1.11)
J \ J f ( rl\

d>0 [h>0 Jnh \U ) }

<«i- 
= Jf

d>0,h>0

where the sample dependence has been made explicit. The discrete diameter-sample based 

version (v^) is

5



v 6 =  Z >, I 'r " 'V. (d,,/OdM (1.12)
 M ^mmm \ _f ^ x -. v "v * I

-2./

It is normally assumed that the diameter and height samples may be regarded as independent 

simple random samples of the population of trees in the (infinite) stand, (even when a fixed 

size sample plot is used). Then the estimates of the population conditional distribution (from 

the joint distribution) and marginal distributions may be based on the height-sample and 

diameter-sample respectively, where a double sampling is implemented.

If all the diameters and heights are measured on the sample plot then double sampling 

collapses to a simple random sampling with nh = rid . Hence an unbiased volume estimator can 

be based on the bivariate density f(d,h} alone, and equations (1.11) and (1.12) can be 

simplified to:

VB= \\fnd (d,h)Vn (d,h)dddh (1.13)
rf>0,/i>0

1.2.4 The H-D Regression

^

The height-diameter regression model (1.1) (i.e. E(h d)-hn (d) ) may also be

reformulated in terms of conditional and joint distributions. In fact, this is an underlying 

reason for the early work on bivariate distributions (Schreuder and Hafley 1977). That is,

E(h\d)= \hf(h d)dh
h>0

/<<*)
In contrast, the traditional approach to obtaining (1.1) is by regression methods: ordinary least 

squares (OLS), weighted least squares (WLS), or generalized least squares (GLS).

In this sense, we see that the bivariate distribution modelling of (J, h) provides an 

alternative to the generally used regression method of obtaining the H-D regression model. It



seems that model (1.1) obtained by the "bivariate distribution fitting" is the main justification 

for a number of studies on bivariate distribution modelling (Schreuder and Hafley 1977, 

Tewari and Gadow 1999, Li et al. 2002), in that the resulting H-D models may more 

reasonably express the H-D relationship, and thus may improve the traditional approach to 

volume estimation by estimating more accurately the expected height at a given diameter.

The main advantage of the regression methods lies in that the conditional expectations, i.e., 

£(h|d), are explicitly given by the regression model hnh (d ( ) . The two methods are

complementary (Ord 1972). We may further regard the bivariate distribution modelling as 

another way to accommodate heteroscedasity as does the WLS when the assumptions in using 

OLS are violated.

1.2.5 Multivariate (dimension >2) Distribution Modelling in Forestry

Suppose we adopt a 3-stage sampling of (D, H, V) where V is assumed to be measurable, 

by fitting a trivariate distribution to the sample of (D, H, V), we can subsequently obtain (1.2) 

from the fitted trivariate distribution by analogy with obtaining (1.1) from a fitted bivariate 

distribution as indicated in (1.14). One example was given by Schreuder et al. (1982). Note 

that this trivariate distribution improves the traditional approach to volume estimation by 

modifying the individual volume equation.

More generally, it is clear that for a generic tree, each of its mensurational attributes is just 

one coordinate in the multi-dimensional characterisation of that generic tree. The multivariate 

structure of a multivariate tree dataset may be studied by multivariate statistical methods 

which generally amount to a description of the multidimensional relationships of the attribute 

data. Such purely statistical methods of analysis come in a number of forms, with regression 

analysis possibly being the most widely applied statistical technique. A basic requirement of 

regression is that one variate be the primary measure of interest (the dependent variable) and

7



the others are explanatory variables (the independent variables). This may be not appropriate, 

since we may be more interested in understanding the joint distribution of the multivariate 

data. A by-product of the joint multivariate distribution approach is the conditional 

expectations of the dependent variate.

1.3 Distributional Modelling in the Analysis of Multi-Temporal Imagery

Satellite remote sensing will play an ever increasing role in forest inventory. Especially at 

the large scale, it provides forest information at a lower cost but more quickly than by ground 

survey (Holmgren and Thuresson 1998).

The main methods for extracting forest information from satellite images include 

regression analysis and classification. Regression analysis is the most commonly used 

method to establish the relationship between forest measurements and image properties, and 

therefore to estimate forest variables such as stand volume, age, and species composition 

(Franklin 1986, Ardo 1992, Cohen and Spies 1992, Gemmell 1995, Trotter et al. 1997, Lefsky 

et al. 2001, Lu et al. 2004). Such regression based approaches normally use single-date 

imagery. More recently, Lefsky et al. (2001) showed that multi-date TM is superior to single- 

date TM, ADAR (a hyperspatial sensor), and AVIRIS (a hyperspectral sensor) in its ability to 

predict forest structure variables such as basal area and biomass. They recommended that 

multi-temporal TM should be considered as an alternative to either ADAR or AVIRIS.

Classification can be used in the analysis of single as well as multiple temporal images. 

The maximum likelihood (ML) based classification is probably the most frequently used 

supervised classifier in remote sensing, which is based upon the assumption of the 

multivariate normal distribution. Hence, we see that distributional modelling also plays a 

potential role in using remote sensing imagery as well as in growth and yield modelling. In

8



particular, the distributional modelling in the analysis of multi-temporal imagery may be 

roughly compartmentalized into the following tasks:

(i), (a) Image co-registration (related to the geometric correction) and (b) radiometric 

correction,

(ii) Classification of imagery (pixels) into different land-uses to produce land-use maps, 

(iii) Change detection and mapping from imagery at two or more times, and 

(iv) "Growth" estimation from imagery at more than two times.

In the first task, multi-temporal image co-registration and radiometric correction are two 

outstanding requirements of the pre-processing necessary before change/growth 

detection/estimation can be conducted (Coppin and Bauer 1996).

The second task, the classification of land areas into different land cover types 

(forest/non-forest, forest cover types) has been extensively studied (Horler and Ahern 1986, 

Moore and Bauer 1990, Bolstad and Lillesand 1992, Bauer et al. 1994, Wolter et al. 1995). 

Use of the estimated land-use classes as a basis for stratification in large scale forest inventory 

can increase the precision of inventory estimates (McRoberts et al. 2002).

In the third task, the "change" refers to abrupt or rapid change. Multi-temporal satellite 

imagery has been effectively used to detect and monitor abrupt changes in forests, such as 

human induced clearcuts or thinning (Coppin and Bauer 1994, Olsson 1994, Franklin et al. 

2000, Wilson and Sader 2002), insect and disease damage (Vogelmann and Rock 1988). A 

key review on forest change detection is Coppin and Bauer (1996).

In the fourth task, we purposely use "growth" to represent the gradual change due to the 

normal forest growth. Growth estimation through time-series of satellite imagery is of much 

interest to foresters, but also very challenging (Joyce and Olsson 1999).

We note that most satellite data analysis, regression or classification, is carried out on a 

pixel basis. Taking the spatial information into account, the analysis becomes object/polygon



based (Kettig and Landgrebe 1976). Polygon-based analysis seems more appropriate in 

forestry application, as homogenous polygons represent forest stands/compartments. 

Polygon-related methods have been used in Tomppo (1987), Woodcock and Harward (1992), 

Bauer et al. (1994), Kilpelainen and Tokola (1999), Rennolls (1999), and Wulder and 

Seemann (2003).

The combined use of regression, classification and change detection using satellite 

imagery, possibly together with use of growth and yield models, provides the basis to 

implement an annually updated forest inventory system (Bauer et al. 1994, Czapewski 1999, 

McRoberts 1999). The annual forest inventory system may possibly replace the traditional 

periodic inventory system at a large scale (regional or national).

All these aims, (i)-(iv), were part of the original objectives of the current research. 

However, in this thesis, only the first task is reported (Chapter 7 and 8).

1.4 Overview of this Thesis

This chapter, (Chapter 1: Introduction) provides an analysis of the use of distributional 

models in forestry in Forest Mensuration, Inventory, and Remote Sensing. This material, 

particularly on the Mensuration and Inventory side, contains new material which is not yet 

published.

In Chapter 2, a new parameterization of Johnson's SB is presented.

Chapter 3 introduces the Logit-Logistic distribution, which is similar to Johnson's S B but 

more flexible. Other distributional models are introduced as well, including the generalized 

Weibull and the Burr system (XII, III, IV) models, applied to forest diameter distribution 

modelling. Generally speaking, the Logit-Logistic is found to be the best univariate model 

among those compared.

10



The maximum likelihood method for the estimation of parameters of distribution models is 

the most common method used in this thesis. Regression-based methods for parameter 

estimation are also found to perform well, (Chapter 4).

Chapter 5 uses Plackett's method to obtain a Plackett-bivariate-S B and Plackett-Logit- 

Logistic.

Chapter 6 employs copula functions, in particular the normal copula, to construct bivariate 

distributional models. This chapter includes the normal copula with Logit-Logistic marginals, 

which proves to be superior to SBB-

Chapter 7 reports work on using multi-temporal TM imagery for image co-registration.

Chapter 8 tentatively considers some aspects of radiometric correction (spectral 

standardization). Most of the material in chapter 8 appeared in a joint paper with Professor 

Rennolls, presented at a Digital Forestry Workshop in Beijing in 2004 (unpublished). Many 

of the ideas expressed in Chapter 8 are from Professor Rennolls' contribution to this joint 

paper.

It should be noted that that the research work on this project has been conducted in a 

manner oriented towards facilitating the publication of research results. Accordingly, the 

project has been broken down into sub-problems (these correspond to our main chapters), and 

each has been addressed largely independently from the others, even though there is, of 

course, a (back-ward) sequential dependence. A consequence of this is that the literature 

reviews for each of the sub-problems appears separately in each of the chapters, rather in a 

single "Literature Review" chapter presented early in the thesis.

Much of the material in Chapter 1 and Chapter 8 is open-ended and discursive. Much of 

this material is also either new or with future research challenges. Similarly, each of Chapters 

2-7 contains its own relevant discussion material. Much of this material could have been 

presented within a final "Chapter 9: Discussion". However, the material has been placed in

11



Chapters 1 and 8 and throughout the thesis, in order to provide a rationale, a direction, and a 

start and an end-point for the thesis linked together by the Chapters 2-7 of this thesis. As a 

result there is no "Chapter 9: Discussion" in this thesis.

12



Chapter 2: A New Parameterization of Johnson's SB Distribution

Summary

The SB distribution is widely used in forestry to represent the empirical distributions of 

forest tree variables such as diameter, height and volume. The parametric form of the SB 

model that has invariably been used is the form originally put forward by Johnson, in the 

1949 paper in which he introduced the SB distribution. It is well known that the 

parameterization chosen for a distribution model can have important effects when the 

distribution is fitted to real data. One parameterization may yield parameter estimates that are 

highly correlated, while another 'natural' parameterization could yield parameter estimates 

that are essentially uncorrelated. The feature that makes a parameterization "natural" is that 

the parameter has a natural interpretation in terms of the observed data distribution. A more 

"natural" parameterization of SB is suggested, and the performance of the alternative 

parameterization is compared empirically on a 20 plots dataset of Changbai larch (Larix 

olgensis Henry). It is found that the new parameterization is better than Johnson's original 

parameterization, for the data sets considered here.

2.1 Introduction

Normal L. Johnson is the man of the 20th century in relation to the distributional models in 

the statistics, being famous for his Johnson's system of distributions. Hafley and Schreuder 

(1977) first introduced the four parameter Johnson's S B distribution (Johnson 1949a) into 

forest literature, and since then it has been widely used in forest diameter (and height) 

distribution modelling (Hafley and Buford 1985, Knoebel and Burkhart 1991, Zhou and 

McTague 1996, Kamziah et al. 1999, Li et al. 2002, Scolforo et al. 2003, Zhang et al. 2003). 

Johnson's definition and parameterization of the SB distribution is based upon a 

transformation to normality. However, in his original parameterization, the diagram aimed to

13



help understanding the idea of transformation to normal, is rather difficult to comprehend. In 

this Chapter we consider the inverse transformation from normality to S B : doing so suggests a 

new and more natural parameterization of S B .

A model is considered to be "well-parameterized", with respect to a given dataset, if the 

estimated variance-covariance matrix of the parameter estimates is diagonal. That is, the 

correlations between the estimates are all zero. Well-parameterized models are likely to be 

more stably and speedily estimable than models that are not well-parameterized. Variances of 

the parameter estimates of well- parameterized models are likely to be smaller than for 

models that are not well-parameterized (given other things being equal). Well-parameterized 

models are likely to result if the parameters are chosen to reflect clearly identifiable features 

of the observed dataset (Ross 1990). Models that have parameters relating to underlying 

processes that generate the distribution, can also lead to well-parameterized models. Finally, 

we might expect a "natural" parameterization (for example in terms of canonical parameters 

mean (jo,) and variance (a2) for the Normal distribution, rather than (1/ji) and (a/|i)), to turn 

out to be "better parameterized" than a model that is constructed with no concern for 

parametric form. In fact, the canonical parameterization for a distributional model belonging 

to the exponential family is necessarily "well-parameterized", as is well known for the 

Normal distribution.

Maximum Likelihood is a commonly used method of estimating the parameters of a 

distribution model, and we use this approach to compare the estimates of the alternative SB 

parameterizations, and their statistical properties (i.e. standard errors and correlations).

2.2 Alternative Parameterization of the Johnson SB Distribution

Johnson's SB probability distribution (Johnson 1949a) specifies a bounded pdf (of variate 

jc, say) with the minimum parameter £, range A, and two shape parameters y and 6 as the 

following,
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/(*) = / /g ,  -  ^ (2.1) 
V2tf (£ +A-*)(*-f)

where A > 0 and d > 0. The distribution, as specified by Johnson (1949a), and all subsequent 

users of the distribution in forestry applications, is the result of the following sequence of 

transformations of x to normality. Variate x has the S B distribution if z, as defined in (i), (ii) 

and (iii) below, is a standard Normal distribution, N(0,l), where we: 

(i) Scale x to a unit range:

(2.2)
A 

(ii) Apply a logit transformation to y:

( y ] (2.3)u = In   U-yJ

(iii) Apply an affine/linear transformation to u, to give z, which is N(0,l):

z = y + d u (2.4) 

(Note: a linear transformation to normality would usually be represented as the equivalent

standardisation transformation.) Essentially, the SB distribution is transformed to normality by 

the logit transformation, and by analogy with the log-normal distribution (as the distribution 

transformed to normality by the log transformation) might well have been named the logit- 

normal distribution.

The "inverted" definition of SB given above makes the sequence of transformations rather 

hard to visualise. Certainly, the diagrams presented by Johnson (1949a) are not easy to 

comprehend. Inverting this definitional sequence of transformations gives us a constructive 

definition of the SB distribution, 

(i)' z~N(0, 1). Scale z to M, by:

(2 - 5 )
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So, u~N(-y/S, \l S2 \ It is the parameterization of this scaling transformation (corresponding 

to the affine transformation of (iii) above) that seems rather "unnatural" to us. 

(ii)' Apply a standard logistic transformation to u to give y, in the (0, 1) range:

1 (2.6)? = i — ; — x1 + exp(-w) 

(iii)' Scale y to jc, with range A and minimum £ :

Ay (2.7) 

Though the affine transformation given in (2.4) is a natural choice in mathematics, we see,

when it is re-expressed as a scaling transformation in (2.5), that it is not the form of 

transformation that is statistically 'natural'. The natural scaling transformation would be:

u = / + S'z (2-8) 

so that w~N(y', 5'2) (=N(//, a2)) where

! (2 " 9)

o 
This is our simple re-parameterization of Johnson's SB and the two parameterizations are

related by equation (2.9) and (2.10). We use parameter pairs (/, &} when we wish to 

compare with Johnson's original (y, S) parameters, but the equivalent (//, a) if we just work 

with the new parameterization. Equivalently, combining these re-parameterized 

transformations we obtain:

, A (2.H)x = <; +        - —— -  
l + exp(Hy +o z))

a four-parameter logistic transformation of the standard normal z which reveals the 

transformational simplicity of the SB distribution. A similar model is used in Item Response 

Theory of psychological testing (Barton and Lord 1981). With the new parameterization, the 

SB pdf is given as,
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5'
(2.12)

We note also, that (i)', the scaling up from N(0,l), could be dropped if we just started the 

construction with a N(|j,, a2 ). Alternatively but equivalently, we could retain the start of the 

construction with N(0,l), drop the scaling up to N(ji, a2 ), but apply a simple-linear-logistic

regression model, * = !/(! + exp(-(ji +a z)))» to N(0,l), finally scaling up to the range (£,

Figure 2.1. Construction of SB from a 3-parameter logistic transformation on N(ji, a2 )

Figure 2.1 illustrates the construction of SB by transformation from a N(0,l) on the real x- 

axis, through N(ja, a2), followed by the transformation by y -^ + A,/(l + exp(-jc)) (in blue),

to the SB on the ^-axis (in red). The constructed SB is also plotted (red-dashed) on the ;c-axis 

for comparison purposes. With such a diagram it is easy to see that SB approaches the Log- 

Normal (with positive skew) as jn /a   > - oo, (since the lower tail of the logistic is

17



asymptotically exponential), while the (pseudo) Log-Normal with negative skew is obtained 

from ju /a —> oo.

2.3 Maximum Likelihood Estimation of Johnson's SB Distribution

For estimation it is most convenient to work with z, which is the standard normal. For the 

original and the new parameterizations of SB, z is given by the following, respectively:

(2.13)

iIn ——— - — -y
,- ^7* (2.14)

If the observed data values are assumed iid (independently and identically distributed) from 

S B (0) distribution then the likelihood of the observed data is:

where 0=(£ A, y, <5) for (2.13) and 0= (%,A,,y',S') for (2.14), and

*=————^———— (2.16) 
dx (x- £)(£ + A-x)

dz A IS' (2.17)
dx (x- £)(£ + A-x) 

Using the right hand side of (2.15) gives the following minus-log-likelihood function:

r n, „ . \»,»,dz (2.18) -LL = -ln(2^) + -I z -I, In—^
2 2"1 ' '=' rfx.

Hence ML estimation of SB amounts to the minimization of (-LL), with respect to the 

parameter vector 0.

18



2.4 The Variance-Co variance Matrix

After parameter estimation, the asymptotic information matrix, the variance-covariance 

matrix, and the correlation matrix (of the estimated parameter vector) can be computed. The 

(i, y)th element of Fisher's information matrix (of the parameter estimates) is

' 3L(<9) X1(0) = E
,3(9.3(9,. .V ' J J 0=0

(2.19)

__ /\

The asymptotic variance-covariance matrix of parameter estimates, V(0) , is the inverse of

the information matrix. The correlation matrix (of the parameter estimates) is obtained from 

the variance-covariance matrix in the usual way (Cox and Hinkley 1979).

Algebraic methods lead to very complex expressions for the correlations between the 

parameter estimates for the two parameterizations. It is not clear which of the 

parameterizations is more "well-formulated" in terms of having lower correlations between 

the parameter estimates. It may be that neither is generally better than the other, but that 

superiority depends on the data used. Hence we have to resort to an empirical evaluation of 

the performance of the two parameterizations.

2.4.1 Computing the Variance- Co variance Matrix

The function nlminb (local minimizer for smooth nonlinear functions subject to bound- 

constrained parameters) of S-Plus (Mathsoft 1999) is used for parameter estimation. To 

estimate V, the following approximation was used,

Observed]
V̂ ' i )e=

(2 . 20)

with the partial derivatives being evaluated symbolically using the S-Plus function "deriv\ 

The approximate Information, variance-covariance and correlation matrices were then
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obtained. The standard errors of the parameter estimates are given by the square roots of the 

diagonal elements of the variance-covariance matrix.

2.5 The Forest Tree Diameter Data for the Empirical Comparison

The diameter data of 20 plots of Changbai larch plantations as provided by the Chinese 

Academy of Forestry were used in this empirical comparison. These plots were located at the 

Jingouling Farm of the Wangqing Forestry Bureau in north Changbai Mountains, north 

eastern China, 130° 5' to 130° 20' E, 43° 17' to 43°25'N. Figure A2.1, in the

Appendix, shows the twenty diameter distributions which illustrate the range of shapes in the 

distributions of this empirical evaluation with the fitted frequency curves overlaid. A 

summary of the plot data is presented in Table 2.1, including age, plot size, number of trees in 

each plot, sample skewness (V&O and kurtosis (Z?2), where the latter are defined as (see 

Johnson and Kotz 1970):

-2
« w

(2.22) 

n-{ '~

Figure 2.2 shows the variation of the skewness and kurtosis statistics for the twenty plots, 

together with some reference lines. The Weibull and Log-Normal lines represent the Weibull 

and Log-Normal distributions, respectively (more details presented in the next Chapter). The 

"lower-limit-line" is a line such that, below it, is the impossible region in terms of achievable

, b2) pairs. The Normal is at the lowest point, (0, 1), on this lower limit line. The "Pseudo
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Log-Normal" line is the counterpart of the usual positive-skew Log-Normal but with negative

skew-coordinate,

Table 2.1. Summary of age, plot size, number of 
trees/plot, skewness (Vfci) and kurtosis (b2)

Plot

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

Age

37
37
37
37
37
37
37
37
35
35
35
35
35
35
35
35
35
36
36
35

Plot Size 
(m2)

775
775
1300
975

2000
2000
2000
2000
2500
2500
2500
2500
2025
2025
1125
1000
1000
1125
1000
1000

No. Trees 
in Plot

75
110
143
87
191
273
206
124
273
199
184
216
140
157
148
104
128
95
82
132

4,
0.33
0.62
0.15
-0.15
1.09
0.74
0.07
-0.41
0.50
0.53
0.57
0.66
0.42
0.58
0.92
0.51
0.04
-0.05
0.23
0.43

*>2

3.29
2.50
2.46
2.31
6.23
3.81
2.55
2.65
2.34
2.93
3.23
3.51
4.42
2.92
4.81
3.57
2.37
3.19
3.79
2.54

co'co 
o •e

-2-101 

Skewness

• Sample

- — - - Log-Normal

• Rseudo Log-Normal 

Weibull

- — - — Low er Limit

Figure 2.2. Scatter plot skewness vs. kurtosis for 20 larch plots and reference lines
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The (&l5 £2) coverage of Johnson's S B is between the "lower-limit-line" and the Log- 

Normal/Pseudo-Log-Normal upper limit. We have seen from Figure 2.1 that this upper limit 

of SB arises when the bulk of the initial generating N(0,l) is transformed by the lower tail of

/the logistic function, (i.e. as —f —> - <x>). From Table 2.1 or Figure 2.2, all but 3 (plot 304, 308
8

and 318) out of the 20 sample data exhibit positive skewness, which is in agreement with 

Assmann's indication that diameters usually have positively skewed distributions (Assmann 

1970).

Also from Figure 2.2, four points are seen to lie well above the Log-Normal line 

indicating that the distributions are not of "SB-form". Three points are just above the Log- 

Normal line and one point just below: the distributions concerned are of "Log-Normal" form. 

Two distributions are close to the Weibull line, and one is between the Weibull and Log- 

Normal lines, with the remaining nine lying between the Weibull and lower-limit-line. That 

SB has such a variety of "forms" including those of the Log-Normal and Weibull, is probably 

one of the main reasons why SB has been so much used since its introduction.

2.6 Results

2.6.1 Parameter Estimates and Standard Errors

Table 2.2 lists the estimates, standard errors (se) and t (t=estimate/se(estimate)) values 

for (y, 6) and (/, ft). Estimates for £ and A are not listed, since, the parameterizations are the 

same in respect to these two parameters, and the estimates of the parameters and standard 

errors were found to be identical, as is necessarily so.

The main point to note in Table 2.2 is the |t| values for y are generally larger than those

for Y (17 out of 20 cases), indicating that y' is better parameterized than y. It is also noted

22



that the t| values for § and $' are identical, a result which follows from the invariance

principle for ML estimates, since the parameters are reciprocals of each other. 

Table 2.2. Estimates, Standard-Errors and |t|-values for ( y , S ) and ( y' , 6' )
Plot
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

Y se(f) t
0.99 0.73 1.36
0.76 0.26 2.91
0.43 0.22 2.01
0.19 0.29 0.67
4.33 3.72 1.16
2.73 1.84 1.48
0.28 0.31 0.88
-0.56 0.42 1.33
0.84 0.09 9.40
1.12 0.24 4.59
1.11 0.59 1.86
1.32 0.21 6.35
1.77 0.75 2.37
0.81 0.20 4.08
3.61 4.54 0.79
1.77 1.55 1.14
0.21 0.14 1.45
0.44 0.36 1.24
1.27 1.59 0.80
0.75 0.31 2.47

S se(<J) |t|
1.64 0.61 2.70
0.97 0.14 7.15
1.26 0.25 4.99
1.25 0.35 3.58
2.35 0.87 2.71
2.04 0.63 3.22
1.70 0.43 3.93
1.29 0.38 3.42
0.78 0.0515.97
1.19 0.16 7.51
1.41 0.40 3.51
1.08 0.14 7.92
1.95 0.46 4.22
0.96 0.12 7.84
2.19 1.27 1.72
1.91 0.92 2.06
0.95 0.16 5.82
1.62 0.37 4.42
2.59 1.12 2.30
1.23 0.22 5.52

f se(f') t
-0.60 0.31 1.92
-0.78 0.20 3.97
-0.34 0.17 2.06
-0.15 0.25 0.60
-1.84 0.97 1.90
-1.34 0.53 2.55
-0.16 0.18 0.89
0.44 0.24 1.83

-1.08 0.0911.33
-0.94 0.15 6.44
-0.79 0.24 3.22
-1.22 0.13 9.23
-0.91 0.26 3.51
-0.84 0.15 5.63
-1.65 1.17 1.41
-0.93 0.45 2.06
-0.22 0.15 1.44
-0.27 0.21 1.30
-0.49 0.47 1.05
-0.61 0.19 3.26

$' se(<J') t
0.61 0.23 2.70
1.03 0.14 7.15
0.79 0.16 4.99
0.80 0.22 3.59
0.43 0.16 2.71
0.49 0.15 3.22
0.59 0.15 3.94
0.78 0.23 3.42
1.28 0.0816.10
0.84 0.11 7.49
0.71 0.20 3.51
0.92 0.12 7.94
0.51 0.12 4.22
1.04 0.13 7.84
0.46 0.27 1.72
0.52 0.25 2.06
1.06 0.18 5.81
0.62 0.14 4.42
0.39 0.17 2.31
0.81 0.15 5.53

Table 2.3. Correlation Coefficients Among Parameter Estimates
Plot
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

(|,f) (|,f) d,
-0.4766 0.0168 0.4598
-0.3245 0.0574 0.2671
0.0794 -0.4525 -0.3731
0.6984 -0.7907 -0.0923
-0.8128 0.6659 0.1469
-0.8122 0.6460 0.1662
0.1627 -0.3753 -0.2126
0.9327 -0.7867 0.1460
-0.1319 -0.2949 -0.1630
-0.3815 -0.2018 0.1797
-0.7278 0.3932 0.3346
-0.4656 -0.3553 0.1103
-0.4872 -0.0304 0.4568
-0.3536 -0.0849 0.2687
-0.8906 0.7834 0.1072
-0.7537 0.4068 0.3469
0.1986 -0.4136 -0.2150
0.1157 -0.3740 -0.2583
-0.4389 0.1692 0.2697
-0.3365 -0.0535 0.2830

(i,f) U,f) d2
0.8673 -0.5459 0.3214
0.8862 -0.7487 0.1375
0.3740 0.0066 0.3674
-0.4640 0.5831 -0.1191
0.9971 -0.9834 0.0137
0.9970 -0.9602 0.0368
0.2238 -0.0041 0.2197
-0.8701 0.6803 0.1898
0.6062 -0.3354 0.2708
0.8837 -0.5246 0.3591
0.9600 -0.7771 0.1829
0.8848 -0.3921 0.4927
0.9435 -0.6614 0.2821
0.8487 -0.5763 0.2724
0.9986 -0.9825 0.0161
0.9774 -0.8055 0.1719
0.1783 0.0520 0.1263
0.4333 -0.1804 0.2529
0.8866 -0.7232 0.1634
0.8408 -0.5772 0.2636

(r,s) (f,<n d3
0.7434 0.3347 0.4087
0.7742 0.5019 0.2723
0.2621 -0.1447 0.1174
-0.4822 -0.6064 -0.1242
0.9456 0.8462 0.0994
0.9471 0.8348 0.1123
0.1689 -0.0562 0.1127
-0.8011 -0.5677 0.2334
0.5606 -0.0263 0.5343
0.7078 0.1352 0.5726
0.8917 0.6229 0.2688
0.7290 -0.1046 0.6244
0.7671 0.3069 0.4602
0.7182 0.2731 0.4451
0.9682 0.8966 0.0716
0.9015 0.6270 0.2745
0.1231 -0.1255 -0.0024
0.2994 0.0207 0.2787
0.7768 0.5624 0.2144
0.7011 0.3367 0.3644

Note: 
|corr(

d, = |corr(|,f)|- |corr(| , y' }\ ; d2 = |corr(/l,f)| - |corr(/l , f )|; d, = \con(y,S)\ - 
7',<r)|.
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2.6.2 Correlation Coefficients Among Parameter Estimates

Table 2.3 lists the correlation coefficients among some parameter estimates. Those for |

M

and A are not listed, since their correlation coefficients are necessarily the same for each 

parameterization. It was also noticed that the correlation coefficient of (|,£) and that of 

(£, 0 ) are the same in absolute values but with opposite signs; the same applies to (A,S)

^ ^ f

and (A,S ). This is due to the invariance principle for ML estimates and the reciprocal 

relationship between parameter S and 8' . Therefore, correlation coefficients of (|, 8 ),

£ f>/ ^. A. A. /v,

(£,0 ), (>!,£) and(/l,J ) are also not listed.

It was found from Table 2.3 that 14 out of 20 correlation coefficients (in absolute values) 

between | and y' are less than those between | and y ; that 19 out of 20 correlation 

coefficients between A and y' are less than those between A and y, and that 18 out of 20 

correlation coefficients between y' and 8' are less than those between y and S. The mean 

reduction in parameter estimate correlations is significant, using a paired t-test (Table 2.4). 

This indicates that the new parameterization considerably reduced interdependency among 

some parameter estimates.

Table 2.4. Paired t-test for difference in correlation coefficients 
(in absolute value) with old/new parameterization
Pair Mean Std. t df p-value 

Dev. (1-tailed)
D! 0.111 0.247 2.017 19 0.029
d2 0.201 0.143 6.302 19 <0.0001
d3 0.267 0.200 5.979 19 <0.0001

Therefore, from the above, we conclude that the new parameterization has superior 

statistical properties than the standard SB parameterization, and hence (in the terms of Ross 

(1990)) may be considered to be a "better" parameterization than the one commonly used.

24



2.7 Discussion

In Table 2.2, parameter estimates of f and A were intentionally left out for clarity. These 

two parameters are both restricted by 0 < £ < D^n and £ + A > Dmax in fitting, where D^ and 

A™ are the minimum and maximum value of diameters in each plot respectively. Hafley and 

Schreuder (1977) set £= 0, avoiding any estimation problems associated with this bounding 

parameter. In this empirical study there were 6 plots (plot 301, 304, 305, 313, 318 and 319) 

whose estimates of £ were zero, the lower bound for £ This may be taken to indicate that a 

lower bound of zero for parameter £ may be not small enough as a lower bound, even though 

a negative value for the lower bound for £ is "unphysical". The sample distribution for plot 

319, shown in Figure A2.1, indicates that an excess relative frequency observed in the lowest 

diameter class (9-11cm) could be the reason for df being set to its lower bound of zero. 

Detailed examination of the other plots for which £ is set to zero suggests the possibility that 

the minimal diameter measurement (about 6 cm) results in the sample being slightly truncated. 

This possibility, and the adaptations needed to estimation methods in such a situation, will be 

considered for further research.

For the 14 plots for which £ is not set to zero, the estimated value of £ is plotted against 

the minimum observed diameter, in Figure 2.3. The differences between £ estimates and 

minimum diameters in plot data vary from 0.27cm to 6.51cm, with a mean of 3.03cm, and 

this indicates that the practice of the setting the "parameter estimate" for £ to the minimum 

observed diameter minus some small constant (1.3cm, say) before fitting the other parameters 

(Zhou and McTague 1996, Zhang et al. 2003), may not be the best approach. However, it 

seems to be the case that the Maximum Likelihood method is not well suited for parameters 

such as £ which are the lower bounds of a distribution. An "order-statistic" based method for 

estimating £ has been prepared by Professor Rennolls and the author.
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Figure 2.3. Scatter plot of vs. minimum sample diameter, with reference line: y=x

We have compared two parameterizations of Johnson's SB in terms of standard errors of 

parameter estimates and correlation coefficients among parameter estimates. The fitted 

models under the two parameterizations have the same likelihood, since the underlying model 

is the same for the two parameterizations. Hence attempts to compare the "goodness of fit" of 

the two parameterizations would not be appropriate, or fruitful.

The new parameterization of Johnson's SB, equation (2.12), can be readily applied to the 

bivariate version of Johnson's SB, Johnson's SBB (Johnson 1949b) for modelling the joint 

distribution of tree diameter and height (Schreuder and Hafley 1977, Hafley and Buford 1985, 

Tewari and Gadow 1997, 1999, Li et al. 2002), and to the trivariate Johnson's S B BB for 

modelling the joint distribution of tree diameter, height and volume (Schreuder et al. 1982a, 

1982b). We have used this new parameterization of Johnson's SBB to characterise the joint 

tree diameter-height distribution (Wang and Rennolls 2005b).

This new parameterization not only can be extended into the multivariate versions of 

Johnson's SB, but is also used in the Logit-Logistic distribution (Wang and Rennolls 2005a) 

and its bivariate versions, in the following Chapters.
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Appendix Figure A2.1. Histograms of diameter data for 20 Changbai larch sample plots and

the fitted Johnson's SB frequency curves. The mid-class diameters are given.
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Chapter 3: The Logit-Logistic Distribution and Other New Models

Summary

The "Logistic" distribution is that tractable distribution which has a Logistic function as its 

cumulative distribution function: it is approximately the Normal distribution. By replacing 

the Normal distribution of Johnson's S B with the Logistic distribution, a new distributional 

model which approximates S B , is obtained. It is analytically tractable, and we name it the 

"Logit-Logistic" distribution. The "Log-Logistic" is a limiting form of the Logit-Logistic.

A 4-parameter "Generalized Weibull" distribution is introduced. It may also be seen as a 

generalization of a "Richards" distribution, which has been used previously in tree diameter 

distribution modelling.
*j

Using the distribution "shape-plane" (with axes skew and kurtosis), we compare the 

"coverage" properties of the Logit-Logistic and the Generalized Weibull with Johnson's S B , 

the Beta, and the 3-parameter Weibull (the main distributions used in forest modelling), and 

the Burr III, and XII Distribution. The Logit-Logistic is found to have the largest range of 

shapes.

An empirical case-study of the distributional models is conducted on 107 sample-plots of 

Chinese fir. The Logit-Logistic performs best amongst 4-parameter models. The (^0)- 

constrained SB is best amongst (^= 0)-constrained 3-parameter models.
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3.1 Introduction

A wide range of probability density functions have been used in forestry to model tree 

diameter distributions. These have included the Log-Normal (Bliss and Reinker 1964), 

Gamma (Nelson 1964), Weibull (Bailey and Dell 1973, Rennolls et al. 1985), Beta (Clutter 

and Bennett 1965, Zohrer 1972, Li et al. 2002), SB (Hafley and Schreuder 1977), Logistic 

(Hui and Sheng 1995, Wang and Sun 1998), and the Normal. Among these models, the 4- 

parameter SB and the 3-parameter Weibull models are possibly the most frequently used.

Hafley and Schreuder (1977) compared the Beta, Johnson's SB , Weibull, Log-Normal, 

Gamma, and Normal distributions in terms of their coverage in the skewness-squared vs 

kurtosis (the /?i-/?2) plane. They concluded that Johnson's SB gave the best performance in 

terms of the quality of fitting a variety of sample distributions (tree diameter and height data). 

Subsequently, the SB and its bivariate version have been much used and compared with the 

other common distributional models (Schreuder and Hafley 1977, Hafley and Buford 1985, 

Knoebel and Burkhart 1991, Zhou and McTague 1996, Kamziah et al. 1999, Tewari and 

Gadow 1997, 1999, Li et al. 2002, Scolforo et al. 2003, and Zhang et al. 2003).

In considering how to generate new families of models of distributions, Johnson's 

approach (Johnson 1949) was to consider families of transformations which would result in 

normality. SB is that distribution transformed into normality by (i) a linear scaling to the (0,1) 

range, then (ii) a Logit transformation (y=\n(x/(l-x)) ) where 0<x<l, and finally (iii) a linear 

scaling to the standard Normal. Johnson (1949) pointed out that the "transformation to 

normality" idea could be adapted to any other standard target distribution, such as the Laplace 

distribution as considered in Johnson 1954. Another choice is the Logistic distribution (the 

distribution obtained by using a logistic function as a cumulative distribution function (CDF)), 

especially considering the fact that the Logistic distribution has a shape similar to that of 

normal distribution. In fact, the close similarity in shape between the Logistic distribution
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and the normal allows, in suitable situations, to replace the Normal by the Logistic to simplify 

the analysis without too great discrepancies in the theory (Johnson and Kotz 1970). Berkson 

(1951) and Johnson and Kotz 1970, amongst many others, approximate the Normal 

distribution by the Logistic distribution. Mardia (1970a, b) suggested using the Logistic 

distribution function to approximate cumulative probability for Johnson's family of 

distributions when fitting contingency-type bivariate distributions. Tadikamalla and Johnson 

(1982) used the Logistic distribution as their standard distribution, giving what we call the 

Logit-Logistic distribution (following the naming convention for the Log-Normal).

The 3-parameter Weibull was developed by Weibull (1939, 1951) in studies of reliability 

of materials to evaluate the probability of material failure and was introduced by Bailey and 

Dell (1973) as a model for tree diameter distributions. The popularity of the Weibull in 

forestry is mainly due to two reasons. The first is its more flexibility than the Gamma and 

Log-Normal to take on a number of different shapes corresponding to many different 

observed unimodal tree diameter distributions. The second is that the CDF of the Weibull 

exists in closed form and thus allows for quick and estimation of the number of trees by 

diameter class without integration of the probability distribution function (PDF) once the 

parameters have been estimated. The CDF in closed form is the main advantage of the 

Weibull, which is represented by a line in the skewness-kurtosis shape plane, over the more 

flexible SB and Beta, both of which cover an area in the plane. There are already many 

methods to add an additional parameter to the 3-parameter Weibull model to increase its 

flexibility. One natural way is to exponentiated its CDF, resulting what we call the 

Generalized Weibull.

Both the Logit-Logistic and the Generalized Weibull are flexible in shape and have simple 

CDF, which are thus possibly promising in modelling tree diameter distributions. There are
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also several other distributional models from the Burr system, namely, the Burr III, Burr XI 

and Burr IV, which are flexible and simple as well.

This chapter introduces the Logit-Logistic, the generalized Weibull, and the Burr III, XII, 

and IV models to forest diameter distribution modelling, and compares their performance 

with the other main distributions that have been used. We note that we did the work on the 

development and fitting of the Logit-Logistic and the generalized Weibull before we 

discovered the respective precedents of Tadikamalla and Johnson (1982) and Mudholkar and 

Srivastava (1993).

3.2 The Main Distributional Models Considered

Seven 4-parameter distributions were considered in detail in this study. The Beta and 

Johnson's SB have been much used in forest distributional studies, because of their flexibility 

of distributional form (or shape), and their ability to represent equally well positive and 

negative skew distributions. We introduce the Logit-Logistic, generalized Weibull, and the 

Burr III, XII and IV for comparison. The seven distributions are defined in the following 

sections. However, as we discovered the Burr III and IV during the last stage of writing this 

thesis, we will not compare the Burr IV with the others in terms of its flexibility in the 

skewness and kurtosis shape-plane, because we do not know its coverage in the shape-plane, 

but included both of them in our empirical study.

3.2.1 The SB in a New Parameterisation

Johnson's distribution system, based on "transformation to normality", includes the Log- 

Normal system (St), by use of the log transformation; the bounded system (SB) by use of the 

Logit transformation; and the unbounded system (Su) by use of the inverse hyperbolic sine 

transformation. In chapter 2 (see also Rennolls and Wang 2005), we present an inverse
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transformational definition of Johnson's S B and a new parameterization. The S B distribution 

is obtained, for X say, by a 4-parameter logistic transformation of a standard Normal variate, 

Z:

A
(3.1)

exp(-(// + c 

where, -oo < z < oo, g<x< g+L The S B PDF is given by,

— 1 1 2~"
X^~N(3 ' 2)

where z is given by the inversion of (3.1) as,

(3.3)
CT

There is no explicit form for the S B CDF, in contrast to the Logit-Logistic distribution of the

next section.

3.2.2 The Logit-Logistic Distribution Model

Substitution of the Normal in the Johnson system by the Logistic gives an alternative, but 

similar, set of families of distribution models to those based on the Normal. For the Logit 

transformation we call the resulting distribution the Logit-Logistic distribution rather than the 

LB as in Tadikamalla and Johnson (1982), in analogy to the naming of the Log-Normal. 

Replacing the standard normal z in equation (3.1) with that of the standard Logistic, L(0,l), 

results in the Logit-Logistic (LL) distribution.

The standard Logistic distribution (SL) has CDF given by

-±- (3.4)

and its PDF is,

- 2 * ^ Z e- +e (3 ' 5)
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The standard Logistic is symmetric and has a standard deviation of 7i/A/3(=1.82), so is not a 

standardized distribution. We follow convention and work with the standard Logistic rather 

than the standardized Logistic. The kurtosis of the SL is 4.2. The transformation given by 

(3.1) relates ZSL to JCLL- It follows that:

—— —— ̂ ———— (3.6)

A,
fx LL (*) = fz S7 U) • LL 5L - x)(x -

___________ 1 ___________ (3.7)

The fact that the Logit-Logistic CDF exists in a simple invertible closed form facilitates its 

practical application, compared with the use of SB for which no closed form of CDF exists. 

3.2.3 The Beta Distribution

The Beta PDF is,

1 / \ P —1 / Z-* \ Q —1

/(*) = ——-—— (X ~ a) , ; (3.8)
J ^ ' •"' n\ (l*_ ^\P+9-!

where, a<x<b, p, q > 0 are two shape parameters. 

3.2.4 The Generalized Weibull Distribution

The 3-parameter Weibull CDF is,

) = (l-e) (3.9) 

where, x > a, b > 0, c > 0. By adding an "exponentiated" parameter, k (k > 0), it can be 

generalized as,

(3-10) 

Its PDF is given as,
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-t x~a -\ c

b b

The Generalized Weibull (GW) distribution is reversed J-shaped when ck < 1 and unimodal 

when ck >1. The original reason for introducing this Generalized Weibull distribution was to 

be able to compare distributional models each having the same number of parameters as S B 

and the Logit-Logistic. Mudholkar and Srivastava (1993) termed this model the 

"exponentiated Weibull". It has been studied extensively in the statistics (Mudholkar et al.

1995. Mudholkar and Hutson 1996, Jiang and Murthy 1999, Singh et al. 2002, Nassar and 

Eissa 2003, 2004). The applications of the GW distribution in reliability and survival studies 

were illustrated by Mudholkar et al. (1995).

This generalized Weibull includes one form of a "Chapman-Richards distribution" when c 

= 1, which has been used in forest diameter distribution modelling (Ishikawa 1987, 1991,

1996. 1997, 1998). The Chapman-Richards distribution corresponds to the well known 

Chapman-Richards growth function in forestry (Pienaar and Turnbull 1973), and was 

recognized as a distributional model by Ahuja and Nash (1967). Currently it is known as the 

"Generalized Exponential" or the "Exponentiated Exponential" (Gupta and Kundu 1999) and 

has received much attention (Gupta and Kundu 2001a, b, 2002, 2003, 2004, Ragab 2002, 

2004, Kundu et al. 2005). Both the Chapman-Richards (generalized exponential) and the 

Weibull generalize the exponential distribution, but in different ways.

Another specific distribution with c = 2 is the Burr X distribution (Burr 1942). 

3.2.5 The Burr III, XII, and IV Distributions

Burr (1942) introduced 12 families of distributions. All the 12 families CDFs exist in 

closed form, as Burr's objective was to fit cumulative distributions rather than density 

functions to frequency data, to avoid the problems of numerical integration which are 

encountered when probabilities are evaluated from Pearson curves. Among these families, 

Types III and XII are the simplest functionally and thus the most attractive for statistical
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modelling. Originally, only the Burr XII was studied in detail (Burr 1942, 1968, 1973, Burr 

and Cislak 1968, Rodriguez 1977), which is the reason we did not pay attention to the Burr III 

and Burr IV in the earlier stage of this study. 

3.2.5.1 The Burr XII 

The Burr XII CDF is,

) = l ————— l- ——— (3.12)

b 

where, x > a, c> 0, k > 0. The PDF is given,

b b b

The 4-parameter Burr XII distribution does not seem to have been previously evaluated for 

forest modelling and is included in this comparative study because of the simple form of its 

CDF.

3.2.5.2 The Burr III 

The Burr III CDF is,

) = ———— - ———— (3.14)

b 

where, x > a, c > 0, k > 0. Its PDF is given as,

" ""
b b b

This family was studied in detail later on than the Burr XII (Rodriguez 1977, Tadikamalla 

1980), which is more flexible than the Burr XII. Lindsay et al. (1996) investigated the Bun- 

Ill in modelling diameter distributions. They found the Burr III outperforms the Weibull in 

fitting tree diameter distributions. The Burr XII and Burr III are related, in the sense that if X 

has a Burr XII distribution with parameters c and k, then \IX has a Burr III distribution with 

parameters c and k (Tadikamalla 1980). However, we note that the relationship between the
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two models is only applicable to their standard forms (that is, with a = 0 and b = 1). If we 

consider the location and scale parameters explicitly, very interestingly, we found that if X (a 

< x < oo) has a Burr XII distribution with parameters c and k, then Y =l/X (0 < y < l/d) will 

probably have a Logit-Richards distribution with parameters b, c and k, which is being 

consideration for further research. That is,

Pr(F < y)=Pr(l/X < y)=Pr(X>l/ y)=\-Pr(X < \l y)

1 / ' 1 /

(3.16)

a l/a-y 

If we take a - 1 in (3.16), then 0 < y < 1 and (3.16) becomes,

(3.17)

1-y

Equation (3.17) is the standard form of the Logit-Richards, which includes the Logit-Logistic 

and the Burr IV ((3.20) in the subsequent section) as special cases with k = 1 and b = 1, 

respectively. It should be noted that the scale parameter b in the Burr XII distribution now 

becomes a shape parameter. 

3.2.5.3 The Burr IV

The Burr IV CDF without location (minimum parameter) and scale parameters is,

(3.18)

y
where 0 < y < c, c > 0, k > 0. Parameter c acts as a maximum location parameter and also a 

shape parameter as well. With jc = a + b y and some re-parameterizations, the Burr IV CDF is 

given as,
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(3.19)

a + b- x

where a < x< a + b, and c is no longer related to location or range. Note that the standard 

form of the Burr IV CDF (where a - 0 and b = 1) becomes,

l-x x

and is obviously different from that originally developed by Burr. However, we still term it 

the "Burr IV". Its PDF is given as,

/(*) - 7 ——— , .(-rtl + C--rr*-1 (3.21) 
(x-a)(a + b-x) a + b-x a + b-x

Interestingly, the Burr IV CDF shows some similarity to the Logit-Logistic CDF, both 

being special cases of a more general distributional model, the Logit-Richards.

3.3 Comparison of the Range of Shapes of the Distributional Models

The mean and the standard deviation of a distribution are location and scale parameters and 

may be used to produce a standardized distribution with mean zero and standard deviation one. 

The shape of the distribution is therefore characterised by the (standardized) distribution's 

higher order moments. Usually skewness (V/?0 and kurtosis (/?2) are taken to be adequate to 

represent distribution shape. Both are given as moment ratios,

^ 6 = —~ is ' ^2 2 (3 22) \°"^^)
^

where juk is the &th central moment. Skewness is used for describing a departure from 

symmetry about the mean where negative values indicate a distribution with a long tail to the 

left (left-skewed) and positive values a long tail to the right (right-skewed). Kurtosis is 

generally considered to be a relative measure of flatness or peakedness of a distribution.
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Although skewness and kurtosis do not uniquely define a distribution, they do characterise 

the general shape of the distribution and suggest potential models for consideration for a 

particular problem. If the data has skewness and kurtosis values outside the coverage of a 

particular model then the model can never fit the data well.

^
A graph of (fi\, $2) [= (skewness , kurtosis)] is commonly used to demonstrate the range of 

shapes covered by various statistical distributions. Such a graph is very helpful in envisaging 

the representational strengths and weaknesses of distributions. All the 4-parameter 

distributional models considered have two shape parameters (JLI and o for the SB and LL, p and 

q for the Beta, and c and k for the others), each of which covers an area in the (fi\, $2) shape 

plane. Before we start to compare their areal coverage in the shape plane, we firstly introduce 

some shape lines which are used to delimit the boundaries of the 4-parameter models. These 

lines correspond to the 3-parameter distributions. 

3.3.1 3-Parameter Distributions ("Lines" in Figure 3.1)

As the location parameter and the scale parameter do not affect the distribution shape, for 

simplicity, only the shape parameter (c > 0) is presented in the functional form of CDF or 

PDF for each of the 3-parameter distribution. The only exception is for the Log-Normal.

The Gamma (Pearson Type III) distribution is given by its PDF as,

where F represent the gamma function. 

The Log-Normal is given by its PDF as,

--(r+S]n(x-a)) 2
(3.24)

where jc > a, S > 0, and S is the shape parameter. 

The Log-Logistic distribution has the CDF,
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F(x) = (3.25)

The Weibull distribution has the CDF,

(3.26)

The Burr II distribution has the CDF,

1
d + O'

(3.27)

The Burr II distribution is one generalization of the Logistic distribution, and we call it the 

"Richards" distribution.

All of these one shape parameter distributions are represented by lines in the shape plane, 

they are,

Gamma Line, -3fti -6=0 (3.28)

Log-Normal Line,

(3.29)

, <r2 
where, w = e

Log-Logistic Line, (53 -35H
2x3(B2 -Bf)

(3.30)

where Bi=B(l- //c,l+ z'/c), i =1,2,3,4, c>4, B is the beta function.

Weibull Line,
1 - 2
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Burr II Line,

_ .c (332) 
^2 , c)] 2

00 1

where f(s,fl) = V ———— is the Hurwitz zeta function (s > 1).

Another special line is the so-called "lower limit" line, that is,

"Lower Limit" Line, 02 - P\ -1=0 (3.33) 

It is called the "lower limit" line, as for a given value of skewness /?i, there is a lower bound 

on the possible value of kurtosis /?2 , which is determined by the equation (3.33). In other 

word, for any distributions, we have /?2 >fi\ + 1.

The literature for these lines are referred to Johnson and Kotz (1970), Ord (1972), and 

Ahuja and Nash (1967).

3.3.2. Comparison in the (ft, ft) Region 

3.3.2.1 Logit-Logistic, SB, Beta, and Burr XII

Figure 3.1 shows the known "shape domains" for some of the distributions considered in 

this study (Johnson and Kotz 1970, Ord 1972). The placement of the axes (with the y-axis for 

/?2 plotted downwards) in Figure 3.1 is conventional in such studies, but has the effect that 

what is called "the lower-limit line", the limit for all distributions, is shown as the upper line 

in Figure 3.1. Distributions on the lower-limit line are discrete (two) probability-mass 

distributions, the asymptotic limit of U-shape distributions. No distributions can exist above 

or to the right of it in Figure 3.1.
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Figure 3.1. (fi\, fa) of Distribution Families

The Normal distribution is represented by the point at (fi\, fa) = (0, 3). From this point two 

lines emanate, one corresponding to the 1-dimensional family of shapes covered by Gamma 

distributions, and the other, further out, corresponds to the Log-Normal. It can be seen that 

the 2-dimensional family of shapes covered by the Beta distributions is the domain between 

the lower-limit-line and the Gamma line. The SB distributions cover the shape domain 

between the lower-limit-line and the Log-Normal line, the asymptotic limit of S B . Hence, in 

terms of coverage of the positive (/?i, fa) quadrant, the S B shape-domain encompasses that of 

the Beta, and is more extensive. The Burr XII distribution covers the domain between the 

Weibull line, the asymptotic lower limit of Burr XII, and Log-Logistic line. The Burr III 

shape domain encompasses that of the Burr XII and extends much more towards the lower- 

limit-line. The Logit-Logistic shape-domain stretches from the lower-limit-line to the Log- 

Logistic line (the limit of the Logit-Logistic as u, —> -«> and a remains bounded), intersecting
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the /?2 axis at (/?1? /?2) = (0, 4.2), which corresponds to the Logistic distribution. Hence the 

Logit-Logistic shape domain encompasses and extends (dominates) the Beta, S B and Burr XII: 

LL z> SB H) Beta; LL ID Burr III z> Burr XII, where the inclusion refers to the shape domains. 

However, both the Burr XII and Burr III distributions as parametrically specified have limited 

range in the negative skew domain, a problem which may be overcome by using a reflection 

transformation which will change the sign of the odd moments.

We note that the popular 3-parameter Weibull is represented by a line (a 1-dimensional 

family of shapes) which has two branches with a fold at the /?2 =2.7 point on the /?2 axis. This 

3-parameter Weibull may be seen from Figure 3.1 to be capable of having shapes close to 

both the Gamma and Log-Normal distributions. However, the 1-dimensional shape coverage 

of all these 3-parameter models is encompassed by the 2-dimensional shape coverage of the 

Logit-Logistic, SB , Burr XII, and the Burr III. 

3.3.2.2 The Generalized Weibull

The generalized Weibull has a 2-dimensional shape-space coverage in Figure 3.1, in 

contrast to the 1-dimensional coverage line for the 3-parameter Weibull. We do not have 

analytical forms of the boundaries in shape space of the generalized Weibull, but the shape- 

space coverage as indicated by simulation methods is shown in Figure 3.2. It seems from 

Figure 3.2 that the GW upper-limit is fairly close to the Log-Normal line, the same upper- 

limit as SB, but not as high as the Log-Logistic upper-limit of the Logit-Logistic. Using the 

simulated limit cases in Figure 3.2, the lower-limit line for the Generalized Weibull may be 

approximated by /?2 = 2.17+1.29/?i. This line is also indicated in Figure 3.1 for comparing the 

GW with the other distributions. Significantly, the GW cannot get near the lower-limit line 

and thus does not have the lower-limit shape-space coverage of the Logit-Logistic, SB, and the 

Beta, all of which extend to the Lower-Limit line.
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Generalized Weibull
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— — — - Low er Line of GW 

Gamma
----- Log-Normal 

Log-Logistic

Figure 3.2. (fi\, fa) coverage of the Generalized Weibull Distribution

3.3.3 Comparison in the (V/?i, fa) Region

Traditionally, the parameter choice (fi\, fa) = (skewness2 , kurtosis) is chosen, possibly 

because in this parameterisation, the shape-domain boundaries are linear, or close to it. 

However, this type of moment-ration diagrams suffers from the defect that information on the 

sign of ju3 is lost. If we wish a diagrammatic representation of shape-space which retains this 

information, then we may use (V/?i, fa) in stead of (/?i, fa). In the following diagrams of V/?i

and/?2 , V/?i is plotted on the horizontal axis and fa on the vertical axis, in the usual way.

Figure 3.3, 3.4, and 3.5 show the results for the "symmetric" distributions (Logit-Logistic, 

SB and Beta), the asymmetric Burr Xll and III, and the GW, respectively.
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Figure 3.3. (V/?i, /fe) of the "skew-symmetric" Distribution Families 

Figure 3.3 shows that the symmetric coverage by Beta, S B and Logit-Logistic in both 

positive and negative skewness areas. This is obvious for the Beta (from application of the 

transformation y =1 - x to the standard Beta) and clear from the diagrammatic representation 

of the SB and Logit-Logistic (see Chapter 2). The asymptotic limits of the Beta, S B) and the 

Logistic-Logistic are the Gamma, Log-Normal and Log-Logistic of both positive and negative 

skewness, respectively. The Gamma, Log-Normal and Log-Logistic as specified are all 

limited to shapes that have positive skewness. However, a linear transformation with 

negative slope will yield distributions with negative skewness. Equivalently, a reflection and 

a change of scale will achieve the same result. The negative skew forms of the Gamma, Log- 

Normal and Log-Logistic distributions are, rather surprisingly, not mentioned in the statistical 

distribution literature. We may have called such negative-skew counterparts "pseudo- 

Gamma", "pseudo-Log-Normal", and "pseudo-Log-Logistic" respectively, but not shown 

them in Figure 3.3 for line clarity with black-white drawing.
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Figure 3.4. (V/?i, #>) of the Burr XII and III Distribution

Figure 3.4 shows the asymmetric coverage by Burr XII and Burr III. Both the Burr XII 

and Burr III distributions have the capacity to describe both positive and negative skewness, 

but with a rather smaller range of negative skew than positive. The skewness (V/?t ) and 

kurtosis (/?2) for the Burr XII are given by

(3-34)

where ^ = F(l + i /c}Y(k - i/c), F is the gamma function, / = 1,2,3,4 and ck > 4.
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The lower bound of Burr XII corresponds to the Weibull curve, which is realized as k—* oo 

with c fixed (Burr 1968, Rodriguez 1977). The upper bound in the positive V/?i half-plane 

corresponds to the Burr XII distributions for which k = 1 and c > 4 (Rodriguez 1977), the 

Log-Logistic line. The upper bound in the negative V/?i half-plane is part of a curve called 

"generalized logistic" (GenLogistic) corresponding to the generalized logistic distribution as 

defined below,

) = l--—— !— (3.35)

which represents the limiting forms of Burr XII distributions as c— > oo with k fixed (Rodriguez 

1977). This limiting Burr XII curve pass through the Logistic point (0, 4.2) and approaches 

the Weibull curve asymptotically as fc— > oo at their end point of (-1.14, 5.4). Figure 3.4 shows 

that although the Burr XII family covers a large portion of the (V/?i, /?2) diagram, a much 

greater area is covered by the Burr III family. The skewness (V/?0 and kurtosis (/?2) formula 

for the Burr III are the same as those given for Burr XII, that is, (3.34), but with parameter c 

replaced with (- c) for calculating ^ , that is Aj = F(l - / / c)Y(k + i / c), c > 4. The lower 

boundary of the Burr III corresponds to the limiting forms of Burr III as k— >0+ with c fixed. 

The upper boundary in the negative V/?i corresponds to the Burr II distributions with c < 1. 

This limiting Burr XII curve pass through the Logistic point (0, 4.2) and approaches the lower 

bound of Burr III asymptotically as &— >0+ at their end point of (-2, 9). The upper boundary in 

the positive V/?i corresponds to the Log-Logistic distributions, same as the Burr XII. It is 

important to note that Burr III covers all the space regions in the skewness-kurtosis plane 

occupied by Gamma, Weibull, Log-Normal, and the Burr XII distributions.
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Figure 3.5. (V/?i, fa) coverage of the Generalized Weibull Distribution

Figure 3.5 shows the coverage of the GW in the (V/?i, fa) shape plane using simulation 

results. The upper and lower bound in the positive V/?i half plane are approximated by the 

Log-Normal and the fa = 2.17+1.29(V/?i)2 , respectively, but we do not know their counterparts 

in the negative positive V/?i half plane, analytically or numerically. The main point of what 

we can draw is the GW is similar to the Burr XII or Burr III, both being asymmetric in the 

0//?i, fa) plane with much more capacity to describe positive skewness than negative 

skewness but in different area.

In summary, the Logit-Logistic distribution covers more area in the (/?i, fa) or 0//?i, fa) 

shape-space than the 3-parameter models, Log-Normal, Weibull, and Gamma, and 4- 

parameter models SB, Beta, Generalized Weibull, and the Burr XII and III. We therefore 

expect that the Logit-Logistic distribution model would perform, empirically, rather better 

than most previously used distributional models.
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3.4 Case-Study with Chinese Fir Diameter Distribution Data

Seven distributions, the Logit-Logistic, SB, Generalized Weibull, Beta, and Burr III, IV, 

and XII were compared, all in 4-parameter form. The seven distributions are defined in the 

above sections.

In terms of skew-kurtosis coverage, the analytical results summarised in the last section 

come to the clear conclusion that the LL distribution is the best of the distributions considered. 

However, there are various criteria of goodness of fit that go beyond the third and fourth 

moments of the distributions fitted.

Ideally we would like to be able to compare the performance of the various new models 

that we have introduced with the performance of the more familiar models, using a range of 

criteria of fit and a standard database of empirical distributions which had previously been 

used by other authors. Unfortunately this is an unachievable ideal, since there is no such 

database established, and for example, the data used in the early studies of Hafley and 

Schreuder (1977) have been lost (personal communication). Hence, we do an empirical 

evaluation on datasets that are available to use. We do not claim they represent a perfect 

dataset covering all the forms of distributions that might arise in practice. However the data 

selected for the empirical study is chosen to include a fairly wide range of distributional forms.

In order to allow unambiguous comparison between models we consider in this paper only 

models with four parameters. We also use a common estimation method, maximum 

likelihood, and adopt the corresponding measure of goodness of fit, the deviance (= (^log- 

likelihood)), which, in our case, is equivalent to the AIC criterion (= (-21og-likelihood) + 2P; 

where P is the number of parameters of the model) for model identification (Akaike 1974), 

since all the models considered have the same number of parameters (that is, four).
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3.4.1 The Case-Study Data

The diameter data of 107 plots for Chinese fir plantations were provided by the Chinese 

Academy of Forestry. These data have been extensively used in stand-level growth and yield 

modelling in the China (Wang and Tang 1997, Wang and Li 2000, Li and Wang 2001).

These plots were located at Kaihua forestry farm, Zhejiang province, South-eastern China. 

The plot size ranges from 400 to 600 m2 , age from 10 to 29 (years), density from 1000 to 

4500 per hectare. The sample size ranges from 63 to 239, with mean of about 119. See Table 

A3.1, in the Appendix, for a detailed sample-plot summary. Figure 3.1 shows the sample-plot 

distribution shapes in terms of skewness and kurtosis.

From Figure 3.1 we see that LL and Burr III cover all of the sample distribution shapes, 

and would be expected to provide an adequate fit to all of the sample distributions. However, 

we see that 8 of the 107 sample distributions lie between the Log-Normal/Gamma line and the 

Log-Logistic line, and we would therefore expect that they would not be well fitted by the SB 

or Beta. Conversely, we would expect the Burr XII to perform very poorly for the 

distribution of shapes in this case study. Since the GW covers the middle range of shapes we 

would expect them to perform reasonably well. 

3.4.2 Model Fits to the Case-Study Diameter Distributions

Maximum likelihood estimation (MLE) was used, by minimizing the negative log- 

likelihood function (-AA) using S-Plus (Mathsoft 1999). (-AA) is essentially a deviance 

measure and is used as a goodness of fit criterion. Decreasing (-AA) indicates improved 

model fit. Significance tests using this statistic are only valid if the models compared are 

nested. However, we take this statistic as our common goodness of fit measure in comparing 

the various distributions, each having the same number of parameters.
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We have fitted the Logit-Logistic, S B , Generalized Weibull, Beta, and Burr III, IV, and XII 

to all the datasets. Table A3.2, given in the Appendix, lists the value of the (-AA) goodness 

of fit statistic for each of the models fitted to each of the sample plot distributions.

We already know from the considerations of the last section that some models will not be 

able to get close to fitting even the (/?!, /?2) statistics of a dataset, and hence non-convergence 

in fitting is a likely outcome.

For the 107 sample plots in the case study, the maximum likelihood estimation method 

converged for the LL, S B , Beta, GW, and Burr III, IV and XII distributions 106, 106, 105, 88, 

100, 88 and 106 times, respectively. The poor (technical) convergence percentage of the Burr 

IV (88/107-82%) is not clear to us, since we do not know its coverage in the shape-plane, 

analytically or by simulation. The poor (technical) convergence percentage of the GW 

distribution (88/107-82%) may be partly due to the limited shape coverage of the GW 

distribution; it cannot get near the lower-limit line. Most non-convergence for GW occurred 

for datasets that were near the GW lower line and this may possibly be a contributory factor 

in GW (technical) non-convergence. However, the effects of parameters c and k in GW are 

confounded, since kc is the parametric combination which determines GW model shape. For 

the empirical distributions for which there was non-convergence, the re-parameterization k —> 

k/c was used, but no improvement in convergence performance was achieved.

We note that Burr XII also, cannot get close to the lower-limit line but attains convergence 

in 99% (=106/107) of the sample plots. We found (see Table A3.2) that there was only one 

empirical distribution (plot 73) for which there was non-convergence for all the compared 

distributional models, which is reverse J-shaped and thus the non-convergence is not 

unexpected due to the non-regular problems with MLE (Smith 1989, Cheng and Traylor 

1995). However, for other empirical distributions for which there was (technical) non- 

convergence for some of the models, difference in the resulting (negative) log-likelihood
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between converged models and non-converged models is small, (being much less than that 

required to demonstrate a significant difference between nested 3 and 4 parameter models). 

Therefore, we only eliminate one sample (plot 73) from subsequent comparisons.

Pi

o o

•. o

o Un-Con\arge
- - - - Lower Limit
----- Lower Line of GW
- Gamma 
....... Log-Normal
----- Log-Logistic

Generalize 
Weibull

Figure 3.6. Un-converged Samples in Fitting GW

3.4.2.1 Comparison in terms of (-AA)

Table 3.1 shows the between-model comparative performance of the various models in 

terms of goodness-of-fit statistic (-AA). 

Table 3.1. Comparison results based on {-AA}

\Col

Row\

LL
BurrlV
GW
Beta
SB
BurrIII

BurrlV GW

60/106 74/106
67/106

Beta

86/106
67/106
66/106

SB

94/106
71/106
73/106
84/106

BurrIII

72/106
75/106
71/106
59/106
55/106

BurrXII

90/106
79/106
89/106
70/106
65/106
63/106

Proportion of cases in which the row-distribution model had a lower {-AA} 
than the column-distribution.
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From Table 3.1, the Logit-Logistic (LL) had a lower (-AA) than S B for 94 of the 106 

distributions (i.e. 89%). The LL was better than the Burr IV, GW, Beta, and Burr III and XII 

for 57%, 70%, 81%, 68% and 85% of cases, respectively. Hence, in terms of this criterion of 

comparison, LL dominates all the other models, at least in this case study.

These relative performances, based on the (-AA) criterion, may be summarized as: 

LL>Burr IV>GW>Beta>SB >Burr III>Burr XII, where the inequality indicates the relative 

performance. The main conclusion is that the Logit-Logistic distribution performed better 

than all other alternative distributional models in these empirical comparisons, as was 

expected from the considerations of Section 3. The Burr IV ranked second, better than the 

Beta and SB for 63% and 67% of cases, respectively. Although we do not know its coverage 

in the shape plane, we expect some similarity between this model and the LL. The worst 

performance of the Burr XII is not unexpected, since most of samples (about 85) lies below or 

on the Weibull line, the lower bound of this model, in the (V/?i, fa) shape-plane as shown in 

Figure 3.4 or the Figure 3.7 below. For most of these empirical distributions and the two near 

the GenLogistic line, the estimates of parameter k were found to be rather large (with a 

minimum of about 319, a maximum of 42218, and the mean of 13263), and this indicated that 

for these samples the fitted Burr XII asymptotically approached the 3-parameter Weibull, the 

lower limit distribution of the Burr XII. We compared the Burr XII and the Weibull, and not 

surprisingly, we found that the Weibull performed better than the Burr XII for all these cases 

with large estimates of k, though the difference in the (-AA) was quite small (with a mean of 

difference of 0.001), while for all the other 21 cases (exclusive of plot 73) Burr XII performed 

better than the Weibull. Figure 3.7 further graphically showed the comparative performance 

between the 4-parameter Burr XII and the 3-parameter Weibull. Therefore, for this empirical 

study, the 4-parameter Burr XII performed worse than the 3-parameter Weibull, which can be 

explained by the coverage of our empirical distributions in the shape-plane and more
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importantly indicates that for those un-nested models, a model with an extra parameter does 

not necessarily fits the data better than a model with less number of parameters.

o Burr XII > Weibull 

X Burr XII < Weibull
Gen Logistic 

— — - Log-Logistic
Weibull

-3 -2 -1 0

Figure 3.7. Comparative Performance of the Burr XII and 3-parameter Weibull

However, it is found that the Beta is better than the SB in 84 of 106 (79%) of cases, 

confirming the results of Li et al. (2002), but not in accord with our expectations following 

from their shape-space coverage properties. The poor performance of the Burr III compared 

to the Beta (59/106 ~ 56%) and S B (55/106 ~ 52%), though not differing as much as the other 

pairs of compared distributions, is also out of our expectation, as the Burr III covered all the 

empirical distributions in the shape-plane and we expected its performance similar to the 

Logit-Logistic. The main reason is possibly that as shown in Figure 3.1, most of the (/?i, ^2) 

points of our samples fall in the common area shared by Beta, SB, and Burr III, with only 

seven sample points laying beyond the Gamma line as well as the Log-Normal line and thus 

outside the coverage area of Beta or SB. Therefore, these comparison results may indicate that
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for those (empirical) distributions falling in the common area of these three models, Beta may 

fit them better than the S B , and both models overall better than the Burr III, for which the 

reasons are not clear. Graphically, Figure 3.8 showed the comparison between Beta and S B in 

the (pi, ft) shape-plane, while Figure 3.9 and Figure 3.10 showed the comparison between 

Burr III, and the Beta and S B in the (V/?i, fa) shape-plane, respectively. From Figure 3.9 and 

3.10, not surprisingly, Burr III performed better than Beta and S B for 6 and 7 out of the seven 

samples which fall in the shape area of Burr III but not in those of Beta and S B , respectively. 

By removing these seven sample points, that is, for those samples in the common area of 

these three models, the better performance in percentage of Beta and S B over the Burr III 

increased to 58/99 (59%) and 55/99 (56%) from 59/106 (56%) and 55/106 (52%), 

respectively.

Beta > SB 

Beta < SB

- Low er Limit

— Ganrrna

— • - Log-Normal 

Log-Logistic

Figure 3.8. Comparative Performance of the Beta and S B
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X

SB > Burr III 
Burr III > SB

• Log-Log is tic
- Burr II 
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-2 -1 0

Figure 3.9. Comparative Performance of the Burr III and S B

o
X

Beta > Burr III 
Burr III > Beta

• Log-Logistic
- Burr II 

-•Gamma

• Low er Limit of Burr
- Low er Limit

-3 -2 -1 0

Figure 3.10. Comparative Performance of the Burr III and Beta
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o LL > Beta 

X LL < Beta

— - - — - Low er Limit

— - - - Weibull

———— Gamma

• - - - Log-Normal 

• Log-Logistic

Figure 3.11. Comparative Performance of the Lo git-Logistic and Beta

0

o LL > SB

X LL < SB

- — - Low er Limit

- - - Weibull 

Gamma

— - - Log-Normal 

Log-Logistic
Logit-Logistic

Figure 3.12. Comparative Performance of the Logit-Logistic and SB
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Therefore, by recognizing the fact that the common area of Beta, S B and Burr III in which 

most of the samples fall is also shared by the Logit-Logistic, and possibly by the Burr IV and 

Generalized Weibull, we may conclude that: the better performance of the LL, Burr IV and 

GW over the others is not only because they cover more wider area in the shape plane (except 

the GW), but more importantly because they may fit the sample distributions in the common 

area more adequately, at least in this empirical study here. We have to admit that we have not 

understood the second point, but Figure 3.11 and 3.12 illustrated this point by comparing LL 

with Beta and S B empirically in this study, respectively.

3.4.2.2 Comparison in terms of other Goodness-of-fit Criteria

During reviewing one of our submitted papers, it has been suggested by a reviewer and an 

Associate Editor that a comparison of the models using a different criterion of goodness-of-fit 

than (-AA) might be of interest. We have done this for several other possible criteria, 

including Kolmogorov-Smirnov (D), Cramer-von Mises (W2), and Reynolds' "error index", 

both grouped and continuous versions. We did not include the Burr III and IV models here 

since we discovered both models much later and these criteria are all secondary as we already

y\

included them in the comparison using the (-AA) criterion. Let z t = F(xf ) be the estimated 

CDF, we have

- + ,D-) (3.36)

(3.37)

n n

n \2n

Reynolds et al. (1988) suggested an "error index" (El) as a measure of fit, which is a weighted 

sum of the absolute differences between predicted and observed numbers of diameters in each 

diameter class, which is defined as,
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i,
(3.38)

/\

where F(x) is the estimated CDF, Fn(x) is the empirical CDF, w(x) is a weight function of 

diameter, /, is the;th diameter class (/=l,2,...,w) and N is the sample size. Let w(x) = 1, this

error index collapses to,

(3.39)
1=1

where 0, and Et are the observed and predicted/expected numbers of trees respectively in the 

z'th diameter class. An "un-grouped" version of El can be defined as,

1=1 1=1
1-0.5

n
(3.40)

The comparison results based on these secondary criteria are shown in Table 3.2, 3.3, 3.4, 

and 3.5, respectively. It can be summarized as,

D: LL>Burr=GW>S B >Beta

W2 : LL>Burr>GW>S B >Beta

EI2: LL>GW>Burr>S B >Beta

EL S B >LL, LL> (Beta, Burr, GW), GW>Burr>S B >Beta

With the criteria of D, W2 , and £72, it is seen that the LL model still dominates the other 4 

distributions considered, while the Beta is dominated by all other distributions. However, 

with the El, the set of non-transitive relations above makes it impossible to make clear 

conclusion, except that the Beta is dominated by all other distributions. The non-transitive 

relations occurred due to our "1 to 1" comparison logic, that is, we compare model A and B, 

model B and C, separately. Suppose we get A>B and B>C (> denoting relative better 

performance). If we further get A>C, then the performance among these three models is 

A>B>C. However, sometimes we may get C>A, under such cases, we will not draw 

conclusion clearly. As an alternative to this comparison logic and also for more confidence in
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our comparing the models, we rank all the compared models for each data set and the rank 

sum will determine the relative performance of the models. Table 3.6 presents the rank sums 

for the criteria we used ((-AA), D, W2 , El and £72) across the 106 data sets, in which smaller 

value of rank sums indicates relative better performance. From table 3.6, the comparison 

results based on (-AA), D, W2 , and EI2 under the "rank sum" logic can be regarded as the 

same as those under the "1 to 1" logic, considering that "GW > Burr XII" based on EI2 under 

the "1 to 1" comparison logic is because GW performed better than Burr XII for just 1 more 

than the half (53) of the samples. With the criterion of El, we tend to accept the comparison 

results using the "rank sum" logic, that is, GW>SB >LL>Burr XII>Beta.

From the analysis above, the main conclusion we would draw is that the LL model still 

dominates the other four 4-parameter distributions considered. However, the differences 

between these criteria (D, W2 , El, and Ell) based performances of Burr XII, GW, S B and Beta 

are so marginal that we do not feel a ranking of the model is justified from this empirical 

study. The first reason is that since the fitting has been done using the (-AA) criterion, 

examination of performance on a secondary criterion, such as D, amounts to an attempt to 

evaluate the models's fit to the data using two criteria simultaneously. The second is that if 

we do prefer to use these criteria (D, W2 , El, and £72) for model selection, we actually can use 

each of these criteria for fitting the models as well (like {-AA} used in MLE), which we will 

discuss further in some chapter later.

Table 3.2. Comparison results based on KS statistics (D)

LL
Burr XII 
GW
SB

Burr XII GW >B Beta

66/106 74/106 78/106 84/106
53/106 62/106 68/106

56/106 65/106
68/106

Proportion of cases in which the row-distribution model 
had a lower (D) than the column-distribution.
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Table 3.3. Comparison results based on W2

NCol
Row\^

LL 
Burr XII 
GW
SB

Burr XII GW

65/106 70/106 
55/106

SB

70/106 
61/106 
56/106

Beta

82/106 
64/106 
63/106 
69/106

Proportion of cases in which the row-distribution model 
had a lower (W2} than the col-distribution.

Table 3.4. Comparison results based on El

\Col

Row N.

SB
LL
GW
BurrXH
Beta

SB

47/106
59/106
54/106
42/106

LL

59/106

51/106
50/106
48/106

GW

47/106
55/106

48/106
41/106

Burr XII

52/106
56/106
58/106

52/106

Beta

64/106
58/106
65/106
54/106

Proportion of cases in which the row-distribution model had a lower 
(El) than the col-distribution.

Table 3.5. Comparison results based on EI2

\Col 

Row N.

LL 
GW 
Burr XII 
SB

GW Burr XII

64/106 60/106 
54/106

SB

59/106 
59/106 
64/106

Beta

77/106 
63/106 
64/106 
72/106

Proportion of cases in which the row-distribution model 
had a lower (£72) than the col-distribution.

Table 3.6. Rank Sum of Compared Distributional Models based on 5 Measures of Fit
\vModel

MeasunN.

(-AA)
D
W2
EI2
El

LL

186
228
243
270
314

SB

398
340
330
322
308

Beta

316
391
384
382
347

Burr XII GW

420 270
307 324
309 324
304 312
324 297

Compare Results

LL>GW>Beta>S B >Burr XII
LL>Burr XII>GW>S B >Beta
LL>Burr XII>GW>S B >Beta
LL>Burr XII>GW>S B >Beta
GW>S B >LL>Burr XII>Beta
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3.4.3 Constrained Model Estimation

To complete the comparison of the various models considered, but in the context of the 

lower bound parameter being zero, we fitted all the seven distribution models, with the lower 

bound parameter, £or a, constrained to zero. Table 3.7 lists the comparative results. 

Table 3.7. Comparison results based on {-AA} (with £or a = 0)

\Col

Row\

SB
Beta
GW
BurrlV
BurrXII
LL

Beta GW

78/106 74/106
71/106

BurrlV

69/106
65/106
54/106

BurrXII

84/106
84/106
96/106
66/106

LL

85/106
85/106
93/106
73/106
85/106

Burrlll

88/106
88/106
92/106
79/106
85/106
87/106

Proportion of cases in which the row-distribution model had a lower {-AA} than 
the col-distribution.

From Table 3.7, it follows that SB > Beta > GW >Burr IV > Burr XII > LL > Burr III, 

where ">" represents better performance. The Logit-Logistic performs the second worst, and 

except for the Burr III and XII distributions which are still among the worst, the results for the 

other five models were "inverted" compared with the results without the constraint on the 

lower boundary parameter! Hence, the alternate strategies, of imposition of a constraint on 

the location parameter (to zero) in Hafley and Schreuder (1977), but not in Li et al. (2002), 

explains, at least to some extend, why different conclusions about the comparative 

performance of SB and Beta were reached in those studies. In this study it was found that 

imposing the zero-constraint on lower boundary parameter resulted in S B performing better 

than Beta, consistent with the Hafley and Schreuder (1977). However, without this constraint, 

Table 3.1 confirms the conclusion of Li et al. that the Beta out-performs S B . Of course, the 

studies of Hafley and Schreuder (1977) and Li et al. (2002) used different data, another 

possible reason for the differing conclusions.
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3.4.4 Testing the Lower-bound Parameter Constraint (£or a = 0)

We may ask, and test if adopting the constraint is reasonable or not for the case-study data. 

It is well known (McCullagh and Nelder 1989) that -2(AA(unconstrained)- AA(constrained)) 

is distributed approximately as Chi-Square distribution with one degree of freedom, where 

AA denotes log-likelihood. We have employed a Chi-Square test to test whether the 

constraint makes a significant difference, at the 5% probability level. However, as parameter 

on boundary is a non-standard case, testing the hypothesis (g or a = 0) becomes a 50:50 

mixture of Chi-Square on 0 and 1 degree of freedom (df), not the standard Chi-Sqaure on 1 df 

(Self and Liang 1987). For this mixture distribution, the 95% significant point is 2.7 (Ramesh 

1995). Table 3.8 lists the results.

Table 3.8. Chi-Square test of HQ: "Location parameter = 0"

Beta Burr XII S^ LL GW Burr IV Burr III 
38/106 38/106 25/106 65/106 43/106 47/106 67/106 

Proportion of nulls rejected at 5% level.

For the Logit-Logistic and Burr III distributions, more than 50% of Chi-Square test 

rejected the "Location=0" null hypothesis. That is, the pre-setting of the location parameter to 

zero is not reasonable for both models. In contrast, pre-setting the location parameter to zero 

may be relatively reasonable for the other 4-parameter distributions considered, especially for 

SB- This largely explains why Logit-Logistic performed best in the unconstrained situation, 

but the second worst in the constrained situation.

Use of £= 0 constrained models might be regarded as indicated, for example for S B , for 

which 33 out of the 106 sample-plots estimated £ as 0 in this study. Use of the Logit-Logistic 

model would avoid such constraint since only 7 out of 106 sample-plots have £-estimates of 

zero.
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3.4.5 Comparison of 3 and 4 Parameter Weibull

Since the 3-parameter Weibull is a special case of the Generalized Weibull with k = 1, we 

tested the null hypothesis: k = 1, using a likelihood ratio test at the 0.05 significance level. It 

was found that for 24 out of 106 sample-plots the 4-parameter model was better. Hence, the 

Generalized Weibull, with one additional shape parameter, improves goodness-of-fit 

performance over the usual 3-parameter Weibull model, in this empirical study.

3.4.6 Comparison of the 3-parameter Weibull with Constrained 4-parameter Models

The 3-parameter Weibull distribution model, equation (3.9), is widely used, and because of 

this we have compared it with the seven 3-parameter models obtained from the 4-paramerer 

models when the lower bound parameters are set as zero. This conventional 3-parameter 

Weibull model (with unconstrained lower bound parameter) performed better (in -AA terms) 

than all of the seven constrained models, evaluated over the 106 sample-plots: 60/106 for the 

SB, 65/106 for Beta, 70/106 for the Generalized Weibull, 63/106 for Burr IV, 93/106 for Burr 

XII, 84/106 for the Logit-Logistic, and 84/106 for the Burr IE.

3.5 Discussion

The Logit-Logistic distribution performed best in both the theoretical study of skew- 

kurtosis shape-space coverage, and in the empirical study, and would therefore seem to offer 

considerable potential for future practical usage, particularly in view of its tractability because 

of the availability of its CDF in explicit form.

We have also conducted a simulation study in which the performance of each of the 

distributional models is evaluated on data simulated from each of the other distribution 

models. It is from this simulation study that the shape-space points for the Generalized 

Weibull were obtained in Figure 3.2 and 3.5. The results are not simple, but overall, the
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Logit-Logistic distribution is most often the best 4-parameter distribution at fitting data that is 

generated by another distribution, consistent with the results of the case study in this Chapter.

We do not claim to fully understand this result. On a priori grounds we would have 

expected the performance of the Logit-Logistic to be similar to the SB, with the main 

comparative advantage being the tractability of the model.

The reversal of performance rankings, depending on defining the lower boundary 

parameter to be zero, is not fully understood. However, it may be noted that the estimation of 

boundary parameters has been a recurrent problematic issue in the fitting of diameter 

distributions, and is considered in detail in another paper being prepared.

The Beta, SB and LL are all equally capable of representing positive or negative skewness, 

and they all extend up to the lower-limit line near which distributions are U-shaped. Figure 

3.3 shows that the upper-limit lines for these three distributions form a fan-like arrangement, 

in which the main distinguishing feature is the largest kurtosis attainable for zero skew. For 

the Beta and the SB this is 3 (the Normal), compared with 4.2 for Logit-Logistic (the Logistic). 

Can a new distributional model be found or devised with a higher (zero skew) maximal 

kurtosis than 4.2? If so, it may be even better than the Logit-Logistic!
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Appendix: Chinese Fir case-study summaries: data and results.

Table A3.1: Plot Summaries: age (years), number of trees/plot, 
diameters (cm), root-mean-square diameter (cm), skewness ^lb l and

minimum and maximum 
kurtosis b2 .

Plot

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Age

17
15
15
13
15
13
13
13
16
12
13
13
16
16
15
16
14
14
15
15
15
15
16
16
16
16
17
12
15
16
14
15
13
15
10
14
15
17
29
14
14
15
15
17
16
15
13
12
12
14
16
15
13
15

Num

106
110
117
146
113
121
156
138
144
100
91
74
85
71
101
95
109
162
132
167
71
95
83

116
94
90
99
133
86
118
125
107
187
110
147
199
93
72
123
173
131
148
86

162
211
148
162
109
239
69
89

110
123
177

Dmn

4.6
4.9
3.8
3.8
4.8
5.2
4.3
4.7
4.7
4.1
6.5
9.6
10.1
9.7
4.5
8.3
4.6
4.0
4.6
4.1
4.8
6.5
7.4
8.1
7.5
5.4
8.1
4.0
4.0
6.0
4.1
2.9
4.3
3.5
3.5
3.5
6.1
9.5
4.5
3.9
3.5
4.1
6.8
3.5
3.5
4.7
2.2
4.9
4.0
6.4
4.0
6.1
7.2
4.9

Dmax Dg V&!

15.7 9.7 0.39
18.6 13.4 -0.52
21.4 11.5 0.22
19.3 8.9 0.64
18.9 12.0 0.09
17.5 11.8 -0.05
18.9 11.8 -0.05
15.6 9.8 0.22
18.6 11.3 0.09
15.7 10.6 -0.01
17.9 13.3 -0.05
18.3 14.1 -0.24
20.5 14.5 0.38
19.5 14.0 0.30
17.7 12.4 -0.68
18.0 13.3 -0.10
16.9 11.9 -0.32
15.5 10.1 -0.08
18.2 12.0 -0.07
17.6 9.4 0.50
18.0 11.4 0.13
16.9 11.1 0.67
20.9 16.2 0.72
17.6 13.4 -0.06
18.1 13.3 -0.12
19.1 12.2 -0.19
17.6 13.3 -0.13
14.5 9.3 -0.12
20.8 13.6 -0.23
17.2 10.8 0.24
15.4 9.7 0.15
15.0 8.1 0.41
13.2 8.0 0.47
15.0 9.2 -0.16
14.6 9.6 -0.21
15.8 8.7 0.16
16.9 10.5 0.58
20.2 15.3 -0.06
22.1 12.6 0.30
19.5 11.2 0.23
17.2 11.4 -0.47
17.5 12.1 -0.58
18.0 13.3 -0.27
17.3 10.5 0.20
18.0 10.2 0.06
18.5 10.7 0.13
13.1 8.4 0.21
19.5 12.4 -0.36
14.2 9.1 -0.03
23.0 13.1 0.55
19.2 10.6 0.35
18.0 12.5 -0.28
17.3 12.6 -0.03
20.2 12.1 -0.01

b2

2.57
2.78
2.98
3.23
2.96
2.80
2.98
2.11
2.69
3.21
2.34
2.29
2.63
3.00
3.43
2.61
2.81
2.67
2.15
3.27
2.17
3.45
3.79
2.37
2.58
2.55
2.92
2.25
2.70
2.68
2.25
3.09
2.63
2.56
2.69
2.53
2.92
2.25
2.62
1.92
2.87
3.14
2.49
2.30
2.25
2.51
1.99
2.83
2.18
3.43
2.96
3.01
2.39
2.54

Plot

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

Age

15
16
18
17
13
15
15
15
14
16
15
15
15
15
15
15
15
12
15
14
14
17
17
14
16
17
17
17
26
16
17
13
13
13
16
13
15
26
16
26
19
15
15
15
15
15
16
26
26
26
26
26
18

Num

114
102
99
138
99
91
105
82
74
195
104
103
118
162
96
112
156
122
90
95
96
77
95
167
190
125
103
101
63
81
177
92
116
106
100
183
138
65

122
93
122
109
142
147
129
173
108
94
110
71
125
78
138

  -'min

5.6
4.9
8.0
5.4
4.3
5.9
5.0
5.3
4.9
1.9
4.0
5.9
4.0
5.5
4.5
4.0
4.3
4.2
4.0
3.7
4.2
4.0
5.5
4.0
4.3
4.5
4.0
7.5
9.7
4.6
4.7
8.3
6.2
5.0
4.9
4.0
4.6
4.5
6.7
10.8
8.8
4.1
4.0
4.6
5.9
4.0
6.5
7.5
9.9
10.7
6.7

12.1
9.0

 L'max

16.4
17.4
18.6
16.8
16.5
19.9
18.9
18.0
17.0
11.5
15.4
19.0
16.3
20.7
19.8
22.4
17.2
19.8
16.3
11.3
13.7
15.0
20.0
13.6
17.6
15.1
16.3
23.0
23.4
22.9
20.4
19.1
20.7
16.5
18.7
17.1
15.1
27.5
20.5
25.9
22.0
17.2
14.9
17.7
18.6
11.7
22.5
26.3
24.9
27.5
24.5
24.7
19.6

Dg

12.6
11.8
13.4
10.9
11.5
13.7
13.7
12.1
12.4
6.7
9.9

11.6
10.6
11.8
12.9
13.2
11.0
10.5
7.9
6.3
8.6

11.2
12.5
8.2

10.2
9.2

10.1
15.6
17.8
14.4
9.7

13.5
14.7
10.3
14.2
10.6
9.9

20.5
14.2
17.1
15.5
10.9
8.0

10.5
12.1
8.1

14.2
16.7
18.2
19.5
15.0
17.8
14.0

4,

-0.82
-0.30
0.04
0.28
-0.70
-0.11
-0.66
0.05
-0.29
0.62
-0.07
0.32
-0.01
-0.13
-0.21
0.10
0.22
0.17
0.87
0.96
0.15

-0.59
-0.02
0.41
0.15
0.35
0.18
-0.05
-0.40
-0.14
1.16
0.15
-0.41
0.23
-0.92
0.19
0.10
-0.83
-0.32
0.44
0.01
-0.10
0.68
0.39
0.23
-0.03
-0.25
0.23
-0.02
0.10
0.13
0.12
0.24

b2
3.35
2.75
2.52
2.67
3.10
3.18
3.61
1.98
2.61
2.82
2.42
2.30
2.59
2.81
2.56
2.56
2.26
3.85
3.03
3.64
2.29
2.37
2.41
2.52
2.68
2.31
2.27
3.48
2.68
2.66
4.84
2.60
2.49
2.78
4.84
2.40
2.37
4.59
2.67
2.83
3.33
2.38
2.95
2.87
2.45
2.33
2.96
3.02
2.19
2.67
3.05
2.48
2.69
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Table A3.2. Negative Log-Likelihood for Fitting Logit-Logistic (LL), Johnson's SB (SB ), 

Generalized Weibull (GW), Beta, and Burr III, IV and XII Distributions.

Plot LL SB GW Beta Burr III Burr IV Burr XII

1 244.35 245.05 245.25 244.94 246.36 245.01 245.74
2 271.08 271.96 271.82 271.92 272.67 272.01 273.53
3 300.64 300.45 299.94 300.31 299.20 300.53 299.90
4 357.68 357.71 353.11*355.25 349.75*348.38*356.36
5 276.21 276.89 276.63 276.74 277.09 276.26 276.62
6 285.22 285.92 285.84 285.88 286.79 285.27 285.85
7 379.63 380.63 379.78 380.30 378.80 378.80 379.53
8 323.34 324.29 324.21*323.26 324.15*322.50*330.51
9 350.97 351.48 350.68 351.35 350.22 349.81 351.12
10 227.27 228.77 228.17 228.51 227.99 227.27 227.98
11 211.07 211.17 212.32 210.83 214.35 210.19 212.61
12 153.84 154.07 153.18* 154.04 152.52 153.85 155.03
13 183.89 184.06 184.08 184.01 185.17 184.63 184.18
14 147.98 148.20 147.98 148.16 147.52 147.94 147.97
15 233.52 235.08 233.53 235.25 232.62 236.93 234.35
16 205.82 206.62 206.04 206.52 206.12 205.77 206.71
17 250.25 250.45 250.44 250.43 251.19 250.63 250.56
18 380.19 381.78 381.38 381.60 381.72 380.33 381.88
19 335.01 335.50 335.82*335.27 336.50 335.06 339.09
20 377.58 377.79 377.71 377.76 378.56 382.59 377.65
21 178.96 179.33 179.35* 179.16 179.04 178.86 180.90
22 200.19 201.01 200.81 201.18 200.22 201.55 200.08
23 189.79 190.40 190.09 190.49 190.80 191.44 190.23
24 250.14 250.75 251.65 250.44 253.44 249.85 252.45
25 214.39 215.40 215.26 215.21 215.44 214.50 215.75
26 227.63 228.08 226.54 228.07 226.18 224.01*228.19
27 205.77 206.29 206.23 206.27 206.49 205.99 206.23
28 306.05 306.82 304.60*306.27 304.20 304.98 310.28
29 226.98 227.36 227.13 227.27 227.31 227.29 227.27
30 249.98 248.90 248.82 248.88 248.77 250.41 248.82
31 290.36 290.60 291.06 290.54 291.92 290.47 292.11
32 240.61 240.76 240.52 240.68 240.62 243.23 240.48
33 376.53 377.03 377.37 376.90 379.79 379.03 377.95
34 250.46 250.69 249.33 250.69 248.72 247.95 250.53
35 331.53 332.13 332.13 332.04 333.57 331.92 332.46
36 468.99 469.16 463.90 467.83 462.33 461.90*469.06
37 200.83 200.90 201.12 200.99 202.45 203.21 201.16
38 164.35 164.49 164.61 164.45 164.95 164.34 165.48
39 336.13 336.78 336.52 336.63 337.10 335.98 336.90
40 466.41 466.45 469.19*465.30 465.01*466.14*477.54
41 327.70 328.87 328.23 328.83 329.21 329.26 330.57
42 351.32 352.42 351.53 352.61 352.47 354.13 353.09
43 204.99 206.56 206.75*205.70 207.80 205.18 208.32
44 415.76 417.23 418.14 416.60 420.57 415.98 421.13
45 544.50 544.86 540.74*543.92 540.27 536.70*547.91
46 355.50 354.96 353.45 354.75 353.23 353.34 354.69
47 374.87 373.82 378.34 373.97 380.25 373.69 378.74
48 274.20 274.93 273.69 274.84 272.44 271.56 274.11
49 542.43 544.01 540.77*542.50 541.05 540.65 551.07
50 182.19 182.59 181.66 182.30 180.70 180.39*181.99
51 226.07 226.55 225.92 226.37 225.51 225.52 226.13
52 247.96 248.75 248.32 248.70 247.93 247.31 248.26
53 273.77 274.77 275.09 274.42 276.61 273.78 276.41
54 466.45 467.55 463.87*467.08 463.91 459.79*467.78

Plot LL SB GW Beta Burr III Burr IV Burr XII

55 245.88 246.53 246.17 246.92 246.39 248.05 248.84
56 240.95 241.08 240.99 241.08 241.72 241.47 241.31
57 220.69 221.12 221.08 221.05 222.27 220.67 221.40
58 319.15 320.35 320.28 320.20 321.30 319.35 320.48
59 223.78 224.86 223.15 225.24 221.45 227.30 224.63
60 218.36 219.25 218.84 219.10 219.01 218.43 218.76
61 243.06 244.69 243.41 244.77 242.35 246.21 243.67
62 203.09 202.90 203.67*202.95 204.19 203.07 205.62
63 173.38 173.50 174.16 173.23 174.89 172.87 174.72
64 397.94 396.42 396.41 396.72 399.54 404.39 398.90
65 243.48 244.15 243.73 243.98 244.51 243.42 245.09
66 251.85 251.69 251.80 251.61 252.36 252.26*253.25
67 282.03 282.85 283.21 282.69 285.34 281.99 283.38
68 397.12 396.86 394.15 396.54 389.09 387.78*395.02
69 246.58 246.64 246.57 246.66 247.10 246.82 247.14
70 302.34 302.30 302.44 302.30 304.20 302.50 302.47
71 384.16 384.30 386.19 384.44 389.12 384.53 386.78
72 287.59 289.86 288.26 289.05 286.06 287.96 287.06
73 191.09* 141.71* 173.55* 181.50* 94.53* 50.73* 199.83*
74 165.83 165.91 166.35 166.22 167.76 178.66 166.44
75 210.39 211.18 209.71*210.45 209.88*208.75*213.03
76 177.87 178.57 180.39* 178.81* 178.80 178.81* 189.33
77 245.17 245.55 244.27 245.39 244.20 242.86*246.06
78 355.14 355.82 356.27 355.67 358.41 356.47 357.21
79 467.61 468.98 465.28 468.08 464.55 461.58*468.57
80 280.88 280.60 281.53 280.82 282.82 281.63 283.13
81 255.51 256.92 256.83*255.93 257.03*254.55*259.94
82 241.41 242.60 241.94 242.38 241.39 241.38 241.38
83 157.56 157.91 157.97 157.87 158.58 157.87 158.61
84 223.20 223.60 223.30 223.53 223.40 223.32 223.53
85 413.17 414.16 414.03 414.12 413.45 429.81*413.59
86 203.36 203.63 203.66 203.60 204.74 203.47 203.72
87 296.28 296.70 296.18*296.86 296.42 297.25 298.98
88 244.69 245.53 245.40 245.48 246.19 244.46 245.44
89 215.09 217.43 215.75 217.71 214.10 220.15 215.96
90 438.44 438.32 439.38 438.42 442.63 439.03 439.53
91 313.97 315.15 315.05 314.71 316.60 313.85 316.90
92 181.75 183.29 182.68 182.96 183.07 182.74 183.32
93 293.53 293.45 292.88 293.56 293.23 294.52 293.51
94 237.26 237.65 237.37 237.50 237.60 237.65 237.58
95 266.92 267.35 267.04 267.24 266.86 266.89 266.70
96 270.42 271.02 270.26 270.84 271.11 270.27 272.36
97 311.82 312.97 310.42*311.27 312.27*308.42*313.34
98 351.00 351.90 351.76 351.83 352.45 352.05 351.76
99 309.11 309.30 309.77 309.32 311.49 309.64 310.00
100 337.88 338.77 339.03 338.52 339.96 337.90 340.87
101 270.40 271.00 269.82 270.83 267.09 267.09 269.63
102 258.74 259.24 259.11 259.19 259.14 258.96 259.04
103 287.53 287.62 288.64 287.47 289.46 287.26 289.92
104 190.25 190.58 190.70 190.56 192.05 190.28 190.70
105 322.21 322.48 322.18 322.31 323.40 322.26 322.21
106 193.19 193.88 192.14* 193.36 191.72 187.23* 194.25
107 303.02 303.61 303.42 303.51 304.31 303.30 303.54

Note: * denotes un-convergence
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Chapter 4: Least Squares Approaches to Estimating Parameters 

of Logit-Logistic and Johnson's SB

Summary

In this chapter, following the fundamental theory of the order statistics, we describe two 

least squares (LS) methods in fitting distributions, the percentile-based regression method and 

the cumulative distribution function (CDF) based regression method. The performance of the 

two LS methods and the MLE is compared in terms of a number of goodness-of-fit statistics, 

for both Johnson's SB and the Logit-Logistic using the Chinese fir data set. Meanwhile, 

comparison of the Logit-Logistic and SB under each estimation method in terms of these 

measures of fit is made. It was shown that the CDF-based performed best among the three 

compared estimation methods, and that overall the percentile-based LS better than the MLE, 

but with the exception of the Logit-Logistic when both the lower bound and the scale 

parameters were predetermined with the Knoebel-Burkhart method. The overall out- 

performance of the Logit-Logistic over SB is consistent with the result we obtained in Chapter 

3. We suppose this is due to the more flexibility of the Logit-Logistic than SB in terms of the 

area covered in the (skewness-kurtosis) shape plane.

4.1 Introduction

In Chapter 3, the Logit-Logistic was introduced into forest diameter distribution 

modelling and its performance was compared with the SB and other distributional models. 

The overall superior performance of the Logit-Logistic over the other models was found not 

only analytically in terms of the model coverage in the skewness-kurtosis shape plane, but 

also empirically on a large dataset of Chinese fir, using the (log) likelihood (essentially
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equivalent to the AIC criterion) as the comparison criterion resulted from the maximum 

likelihood estimation (MLE) method adopted to estimate parameters.

MLR is generally considered the best as it is asymptotically the most efficient method, 

and thus it is the most frequently used method to estimate parameters of distributions. 

However, the MLE does not exist in cases where the likelihood function can be made 

arbitrarily large. This occurs, for example, to distributions whose range depends on their 

parameters, such as the three-parameter lognormal, Weibull, and gamma distributions (see 

Cheng and Amin 1983, Castillo and Hadi 1995) and the four-parameter S B and Logit-Logistic 

as we found in our simulation study. A numerical example we encountered in Chapter 3 is 

plot 73 sample distribution whose frequency curve is inverse J-shaped, on which none of the 

compared distributional models converged.

On the other hand, many other methods have been proposed to estimate the parameters of 

distributions, such as the method of moment. Particularly taking the SB for example, these 

methods can be found in the statistical literature as well as the forestry literature, including the 

moment method (Johnson 1949), the four percentile method (Slifker and Shapiro 1980), the 

Knoebel-Burkhart method (Knoebel and Burkhart 1991), the mode method (Hafley and 

Buford 1985), and the regression methods (Zhou and McTague 1996, Kamziah et al. 1999). 

The regression methods (linear or nonlinear) have been consistently found to be superior for 

estimating parameters of the S B (Zhou and McTague 1996, Kamziah et al. 1999, Zhang et al. 

2003) in forestry applications. Considering the similarity between the SB and the Logit- 

Logistic, we may expect the regression methods to perform better than the MLE in estimating 

the parameters of the Logit-Logistic.

The linear regression method proposed by Zhou and McTague (1996) and the nonlinear 

method by Kamziah et al. (1999) can be regarded as percentile (quantile) based regression 

methods, based on the theory of order statistics. On the other hand, Wilson (1983) suggested
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the other least squares method to estimate parameters of the S B , which is cumulative 

distribution function (CDF) based, following the theory of order statistics. Both types of 

regression methods provide alternatives to the MLE and have an advantage in computation 

that most of the statistical software packages currently available (S-Plus, SAS, SPSS,...) 

support the LS estimation but may not support the MLE, therefore it is worthwhile to 

introducing the LS methods for fitting the Logit-Logistic distribution and comparing their 

performance with the MLE. Furthermore, as the relative performance of different 

distributional models may depended on the estimation method used, one example being 

Zhang et al. (2003), it is then interesting to see if the superior performance of the Logit- 

Logistic over the other models still holds under the LS methods.

In this Chapter, firstly we briefly introduce the fundamental theory of the order statistics. 

Then based on order statistics theory, we describe the percentile-based regression method and 

introduce the CDF-based regression method. Subsequently we compare the performance of 

the two least squares (LS) methods with MLE in terms of several goodness-of-fit statistics, 

for both the SB and the Logit-Logistic using the Chinese fir data sets. Finally, comparisons of 

the Logit-Logistic and SB via these measures of fit and the sum of squared errors with the LS 

methods is made, which is a complementary to the comparison conducted based on the log- 

likelihood in Chapter 3. For simplicity, we limited our comparison of the Logit-Logistic with 

only the SB-

We note that the two LS approaches are applicable to all continuous distributions in 

principle and inversely the applications in other distributions can be used to justify the use of 

the LS methods for the Logit-Logistic, however, in introducing the LS methods we put our 

emphases on the references related to the Weibull and S B , as they are the most widely used 

distributional models in forestry.
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4.2 Basic Properties of Order Statistics

Let Xi, *2,..., *n is an ordinary random sample (independent and identically distributed, 

i.i.d.) of size n from a given distribution with cumulative distribution function F(x) and 

probability density function (PDF)/(;c), and xw <x{2) < ... < xw be the order statistics obtained 

by rearranging the ordinary sample in ascending order. 

4.2.1 CDF, PDF and Moments of Order Statistics

The CDF of the zth order statistic, jc(j) (7=1,2,.. .,n) is given by:

Fx (x) = Pr[X (1) < x] =Pr[at least i of the jc(r) are less than or equal to x]

[F(x)] r [l-F(x)rr (4.1)
v y

and that the PDF is:

) (4.2) 
(i-i)l(n-i)l

(see Cox and Hinkley 1979, David 1985).

The fan moment of the z'th order statistic denoted by ju^ (k = 0,1,..., and 1 < i < n) is

given by:

//<*> = £(*«*,) = "' _ JVtFWrtl-FW]"-'/^)^

--- (4.3)

For the first moment, we have

! 1-1 ...
(4.4)

"' (i-l)\(n-i)\ 

which is the expected value of the observed order statistics.
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4.2.2 Uniformized Order Statistics

It is well known that the transformation p = F(x) leads to variables p l5 /?2 ,.-., pn which are 

i.i.d. from the uniform distribution on (0,1), hence the transformation is sometimes termed 

uniformization. And clearly /?(0=F(jc(0). It then follows from (4.1) and (4.2) that the 

uniformized order statistics p(0 have beta distributions with parameters (/, n-i+l). That is, the 

PDF of the p(i) is given as:

\ ) = ——————— p]i\ (1 ~~ Pa\ Y ' (4.5)
I ' X • •« \ I y «\ • MT (I] N L (I) s \ /

with the expectations, variance and covariance given by

= —— (4.6) 
n + 1

(see Cox and Hinkley 1979). It is noted that this uniformized transformation is applicable to 

all the continuous distributions, with the advantage of simple closed forms of expectations, 

variance and covariance of the transformed order statistics being existed. Other 

transformations of the order statistics JC(,-) specific to distributional models may be considered, 

two examples given in the context of the following section.

4.3 Nonlinear LS Estimations Based on (Uniformized) Order Statistics

Based on the basic properties of order statistics and uniformized order statistics as 

introduced above, there are two ways of seemingly using least squares methods to estimate 

parameters, the first one based on the order statistics *(/) and their expectations, and the other 

based on the transformed order statistics F(x(i}) and their expectations, termed as percentile-
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based LS and CDF-based LS respectively. We introduce these two approaches in detail in the

following.

4.3.1 Percentile-Based LS Estimation

Based on equation (4.4), the percentile-based LS method estimates parameter by 

minimizing the sum of squares of the difference between the observed and expected values of 

the order statistics jc(l) , that is,

o-))] 2 (4-9)

Or in terms of regression analysis, (4.9) be expressed as,

x(i) =E(x(i) ) + ef (4.10)

where et are error terms. For the Weibull distribution defined as,

<¥'
(4.11) 

where a, b, c are parameters, Weibull (1967) derived the expected values, variance and

X — CLcovariance of the transformed order statistics, y - clog 10 ( ——— ) , then used this LS method
b

(weighted or unweighted depending on using variance information or not) to estimate the 

parameters. Mykytka and Ramberg (1979) derived the &th moment (thus expectation, 

variance and covariance) of the order statistics for the generalized lambda distribution (OLD, 

Ramberg et al. 1979) as defined by,

(4,2)

where /I, (/=1,2,3,4) are parameters, xp is quantile corresponding to probability p. Later on 

Ozturk and Dale (1985) used this LS estimator to OLD.

However, it is noted that the expected values of the order statistics are rather complicated 

and always difficult to obtain for even simple distributions. Then in practice it is common 

procedure to approximate these expected values using theoretical (population) quantiles (Cox
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and Hinkley 1979, Castillo and Hadi 1995), which are given by the inverse function 

(percentile/quantile function) as,

) ) (4.13) 

That is, to estimate parameters by minimizing

.,)r (4.i4)1=1
Equivalently (4.13) or (4.14) be expressed as,

x = F~I (D } + e (4 15^(i) \r(i)J ^i \ t - L -J J

This approximation could be justified by considering the asymptotic distributions of order 

statistics, that is, for i=np, 0</?<1, rc—»oo, ^is asymptotically normal with mean gp given by 

the population percentile (quantile) function

(4.16) 

and variance by

(4.17)

(See Cox and Hinkley 1979, David 1985). Also, this approximation could be considered 

quite natural by noting the fact that a continuous probability distribution can be alternatively 

defined by its percentile (quantile) function rather than by its distribution function or by its 

density function as usually (Ramberg et al. 1979). Therefore, it is quite natural to use some 

nonlinear regression techniques for parameter estimation based on the percentile function by 

using (4.14) as objective function in stead of (4.9), that is, to estimate parameters by 

minimizing the sum of squared difference between sample percentiles and population 

percentiles. However, we may have to realize the fact that by doing so we actually use the 

theoretical percentiles as approximations to the expected values of order statistics (the sample 

percentiles), though in practice we may directly apply LS to model (4.15) without explicitly
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resorting to the theory of order statistics. This will help to understand what is behind of this 

percentile-based LS method defined as (4.14) or (4.15).

When referring to the percentile-based LS in the following, we mean (4.15), not (4.10) 

any more. For some distributions whose percentile functions exist in closed form, this 

estimation method has been used quite successfully, such as the Weibull in reliability analysis 

(Duffy et al. 1993, Gross 1996), generalized exponential distribution (Gupta and Kundu 2001), 

and generalized Rayleigh distribution (Kundu and Raqab 2005). More importantly, some 

more flexible families of distributions can be derived by using the transformation method 

based on quantile function, indicating a natural way of parameter estimation using such 

percentile-based LS. For example, the GLD families can be obtained from transformation on 

the uniform, for which the MLE may not apply. For the SB, Chapter 2 (see also Rennolls and 

Wang 2005) presents an alternative transformational definition by applying a 4-parameter 

linear-logistic function,

A (4.18)

to a standard normal distribution. Similarly the Logit-Logistic is readily obtained by 

replacing the standard normal with the standard Logistic. By replacing z with the standard

normal percentile <D ~ l (p) or standard Logistic percentile In——, the quantile functions for thel-p

SB and Logit-Logistic are given as,

/I
exp(-(r

A, (4.20)
~S

\-p

For these families of distributions, which are defined by their quantile functions, the use of 

quantile-based LS for fitting is then a natural choice. Ozturk and Dale (1985) suggested this
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percentile-based LS method for fitting the OLD. Kamziah et al. (1999) proposed this method 

for estimating the parameters of the S B based on its percentile function,

^ K (4-21)

Zhou and McTague (1996) used linear LS to fit S B with the location parameter £ and 

range parameter 1 predetermined, that is,

-r
- *,, -

(4-22)

where z (1) =O~1 (p(I. ) ) and p(i) are selected at 0.1, 0.2, ..., 0.9. This LS approach has been

found to be superior for estimating the parameters of the SB (Zhou and McTague 1996, Zhang 

et al. 2003). This method is actually based on the transformed order statistics

in/"!" 1 -r
A- x(i) x,n - %

- —— . If we consider the transformed order statistics In— — ̂ ——— , the

following linear regression model may be used,

In ' =r + &.- +e/=r + <«»" (/?.•) + *.• (4.23)

Both (4.22) and (4.23) can be regarded as some variants of (4.21), transformed from nonlinear 

to linear for utilizing the facility of the linear regression analysis. It is noted that in regression 

analysis, (4.22) and (4.23) differ in which variable is dependent and which is independent for 

the simple linear regression models. For the cases where the two variables are closely 

correlated, which occurs if "correct" distributional model is selected, the two regression lines 

would be almost equivalent. As Kamziah et al. (1999) found their nonlinear LS method 

outperformed all the other methods of parameter estimation (including Zhou and McTaugue's
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linear LS) for fitting S B , therefore, for the S B with the location parameter £ and range 

parameter A predetermined, the nonlinear LS approach may still be preferred.

For the percentile-based LS method to be employed, some estimate of the uniformized 

order statistic p(0= F(x(0) has to be used to obtain theoretical/population percentile F~ 1 (p(i) ).

This is equivalent to choosing the probability plotting positions as in P-P plots or Q-Q plots. 

Various plotting positions have been proposed (Looney and Gulledge 1984), including, 

i-0.5
n

rc + 0.25

(4-24)

(4 - 25)

(4.26)

All the above estimates can be obtained from a general equation given as,

p. =_ll£_(0<c<l) (4.28) 
n + l-2c

with different constant c assigned. In this study, we use p(i) = —— as it is one of the most
n + l

used estimators of F(JC(O) and also the expected value of F(x(0).

The ordinary LS method (OLS) can then be used by minimizing the sum of squares 

defined by (4.14). It may be mentioned that in doing so, we tacitly but incorrectly assume 

that the order statistics are i.i.d. In fact, these order statistics, *(0 , are neither independent nor 

identically distributed though the original x's are. Theoretically, the variance and covariance 

of the *(,-)' s and thus the <? (() 's can be obtained by using the moment formula (4.3), but would be 

too complicated to limit such derivation. Some approximations to the variance and 

covariance may be made by considering the asymptotic distributions of order statistics, that is,
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for r(-npi with 0<p,<l (/=!,..., £), as rc— »oo the order statistics ;c(r) , ..., xw are asymptotically 

multivariate normal with mean and covariance matrix determined by (4.16), (4.17) and

™ (4 - 29)
(see Cox and Hinkley 1979). However, even this asymptotic approximation may be also too 

complicated to be used in LS estimation. Thus, in practice, we may ignore the heterogeneity 

and correlations of the order statistics, but nevertheless ordinary least squares estimation can 

be made, which is one common practice in regression analysis when the error terms are not 

i.i.d.

It is noted that this percentile-based LS method could be considered as the extension of 

the percentile-matching method, which has been used for fitting distributions for a long time. 

The percentile-matching method estimates parameters by equating observed (sample)

percentiles to their theoretical (population) values F~l (p (i) ) , the number of percentiles

depending on the number of parameters to be estimated. This percentile-matching method 

has been used for fitting the Weibull (Zarnoch and Dell 1985, Shiver 1988, Newberry et al. 

1993), and the S B (Johnson 1949, Bukac 1972, Mage 1980, Slifker and Shapiro 1980, 

Wheeler 1980, Newberry and Burk 1985, Shayib 1989, Knoebel and Burkhart 1991, 

Siekierski 1992, Newberry et al. 1993). However, in using such quantile-based estimators for 

fitting, the question can arise as to whether a highly-selective set, a more representative set, or 

all the quantiles should be used. This becomes the more general question of whether and how 

quantiles should be "weighted" in quantile-based procedures (Rayner and MacGillivray 2002). 

Meanwhile, for such percentile-based estimators, we have to realize that different percentile 

choices may always lead to different parameter estimates although we may choose some 

"special/important" percentiles to achieve better fit, as Newberry et al. (1993) evaluated such 

choices for the Weibull and S B . Also, we may suppose that the "selective" percentile-based
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estimators may be partially due to the computation difficulty encountered before. Therefore, 

the percentile-based LS method could be regarded as a method using all of the percentile 

information and by which the parameter estimates are unique.

4.3.2 CDF-Based LS Estimation

Wilson (1983) proposed a least squares criterion which minimizes the sum of squared 

difference between the uniformized order statistics pay=F(x(ij) and their expected values given 

by equation (4.6) for fitting Johnson's systems of distribution. That is, to estimate parameters 

by minimizing

— (4-30) 
1=1 n + L

This LS approach is termed as CDF-based regression method in contrary to the percentile- 

based LS as discussed above. The regression model can be given as the following,

i (4.31)i

The error ei = F(x(i) )- —— represents the random deviation between the observed and

expected values of the ith uniformized order statistic, and the covariance between e{ and e^ is 

given by equation (4.8), or equivalently,

> e} -- l<- l<-^ n (432)

It is noted that this LS approach is obviously different from what are the traditional 

regression models in that the dependent variable, F(*(0), is not "observed" and that the 

expectations act as the "independent" variable! Nonetheless, the LS estimation can be made. 

Noting that these uniformized order statistics (thus the errors e,'s) are dependent and 

nonidentically Beta distributed, there are several variants of the LS methods. By ignoring the 

variance and covariance, the ordinary least squares estimator is given by minimizing (4.30).
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Considering the heteroscedasticity only, the weighted LS (WLS) estimator is obtained by 

minimizing

(() )--]2 (4-33)

where w. = ——————— = ———————— which is determined by (4.7). More generally, 
Var(F(x(i) y) i(n-i + l)

taking both the heteroscedasticity and correlation into account, the generalized LS (GLS) may 

be used with the "weights" (W) are given by the inverse of the variance and covariance matrix 

as, W = V\ V = [Cov(ei , e}}, with the WLS as a special case of GLS in that W = D'\ D = 

diag{Var(e^,..., Var(en)}. These two variants of the OLS method, WLS and GLS, have been 

proposed for fitting the Johnson cumulative probability distributions (Swain and Wilson 1985, 

Swain et al. 1988). However, for most / and moderate sample sizes (n > 30), the Beta 

distributions will be fairly normal and the correlation could be neglected, so that the OLS is 

suitable for estimation. In small and medium samples, the GLS approach can yield relatively 

large bias in the fitted CDF as well as in the GLS parameter estimators, while better results 

can be obtained by the WLS (Storer et al. 1988). Therefore, the OLS and WLS estimators 

have been used widely in simulation study, to fitting Johnson's systems of distribution (Swain 

and Wilson 1985, Swain et al. 1988, Storer et al. 1988, DeBrota et al. 1988), to Bezier 

distributions (Wagner and Wilson 1996), to generalized exponential distribution (Gupta and 

Kundu 2001), and to generalized Rayleigh distribution (Kundu and Raqab 2005).

It is noted that, intuitively, both percentile-based LS and CDF-based LS could be regarded 

as numerical refinement of the graphical methods in estimating parameters, corresponding to 

the well-known Quantile-Quantile (Q-Q) plots of the fitted/theoretical distribution quantiles 

versus the sample quantiles and Percentile-Percentile (P-P) plots of the fitted distribution 

probability versus the empirical probability (plotting positions), respectively. Both Q-Q plots
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and P-P plots are always used to graphically show whether the hypothesized distribution 

adequately fits the sample data or not, and these informal graphical techniques are sometimes 

used to estimate parameters of the alternative distributions, especially for those location-scale 

families of distribution.

4.4 Case-Study with Chinese Fir Diameter Distribution Data

The percentile-based regression models for the SB and Logit-Logistic can be expressed as,

expHr

,where z (() -

and,

(4.21)

(4-34)

CDF-Based regression model is,

>= +e« <4 - 35 >
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4.4.1 The Case-Study Data

The Chinese fir data set consists of 107 plots collected from Chinese fir plantations, which 

have been used in Chapter 3.

4.4.2 Model Fits to the Case-Study Diameter Distributions

We use MLE and the two LS methods to estimate parameters of the SB and Logit-Logistic. 

The MLE method is to fit both models by minimizing the minus log-likelihood (details see 

Chapter 3 or Wang and Rennolls 2005). For both percentile-based and CDF-based LS 

approaches, we use OLS to fit models (4.21), (4.34) to (4.36) by ignoring heterogeneity of 

and dependency between order statistics, since our sample sizes are generally large (ranging 

from 63 to 239, with mean of about 119). All the least squares fitting is carried out using the 

S-Plus (Mathsoft 1999) function nlregb (local minimizer for sums of squares of nonlinear 

functions subject to bound-constrained parameters), the S-Plus codes of fitting Logit-Logistic 

being given in the Appendix, Code 4.1, 4.2, and 4.3.

Rather than to test if one distributional model under specific parameter estimation method 

is adequate to fit the data or not, which is one way of ranking different parameter estimation 

methods for a specific distributional model as adopted by Kamziah et al. (1999), we 

emphasize to see which estimation method (MLE, percentile-based LS, CDF-based LS) gives 

better fit, in terms of several measures of fit. For the tree diameter distribution modelling, 

Reynolds et al. (1988) suggested an "error index" (El) as a measure of fit for selecting and 

validating distributional models. This error index is a weighted sum of the absolute 

differences between predicted and observed numbers of diameters in each diameter class, 

which is defined as,

(4.37)
7=1
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where x is DBH, F(x) is the estimated CDF, Fn(x) is the empirical CDF, w(x) is a weight

function of diameter, 7, is theyth diameter class (/'=!,2,...,w) and N is the sample size. Simply 

let w(x)=l, this error index collapses to,

>,.-£,-1 (4.38) 
1=1

where 0, and Et are the observed and predicted/expected numbers of trees respectively in the 

ith diameter class. This simplified error index has been used to evaluate different methods of 

parameter estimation for Weibull and S B (Zhang et al. 2003). Two EDF-based goodness-of- 

fit test statistics are also used as measures of fit, the Kolmogorov-Smirnov (£>) and Cramer- 

von Mises (W2). They are defined as,

D = sup x \Fn (x)-F(x)\

W 2 =n\~ {Fn (x)-F(x)} 2 dF(x)
J-oo

/\

Let Zj = F(xf ) , we have

D + = max |.{--z,.}, D~ = max,{z(. -— }, D = max(D + ,D") (4.39) 
n n

W - > f r ^ r I - > \z - M Z + (440) 
tl* ' 2/1 12/i tT ' /i 12/i

It is clear that the Kolmogrov-Smirnov statistic is based on the maximum distance between 

the empirical CDF and the hypothesized CDF, while the Cramer-von Mises statistic is an 

overall measure of the squared distance between the EDF and the true CDF evaluated at all 

the observed data values. Compared to the Cramer-von Mises statistic, the error index is an 

essentially "grouped" measure of overall differences between fitted and empirical CDFs. We 

then consider an "un-grouped" version of El, that is,

, i-0.5
1=1 n

(4.41)
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These four measures of fit were computed under these three estimation methods for each

sample, and the performance of the three methods was compared under each fit measure. 

Table 4.1 lists the proportions of the first estimation method better than the second for each 

pair of compared estimation methods under each measure of fit, for fitting the S B and the 

Logit-Logistic. Table 4.2 lists the proportions of the Logit-Logistic better than SB compared 

on each measure of fit under the three estimation methods. Although we already compared 

the performance of both models in terms of these test statistics with the MLE used for 

parameter estimation in Chapter 3, we purposely included these results here for further 

comparison with the LS estimation methods.

Table 4.1. Superior Proportions of 1 st Estimation Method 
than 2nd for Fitting Johnson's SB and Logit-Logistic 
Compared on 4 Measures of Fit

Compared 
Methods

.• st pnd

CLS-MLE

PLS-MLE

CLS-PLS

Compared Superior 
Statistics Proportion

Johnson's SB Logit-Logistic
D
I/I/2
EI2
El

D
Vf
EI2
El

D
W*

EI2
El

98/107
106/107
105/107
60/107

76/1 07
75/107
77/107
65/107

91/107
104/107
103/107
54/107

91/107
104/107
98/107
57/1 07

74/107
75/107
78/107
68/107

82/107
103/107
97/107
42/1 07

Note: MLE-Maximum Likelihood Estimation, CLS-CDF based 
LS, PLS-Percentile-based LS, D-Kolmogorov-Smirnov Statistic, 
W2-Cramer-von Mises statistic, £/-Reynold's Error Index, 
£Y2-ungrouped Error Index.

From Table 4.1, it was shown that in terms of statistics D, W , EI2, and El, both LS methods 

overall performed better than the MLE, for fitting the SB and the Logit-Logistic. For the two 

LS methods, in terms of D, W2 , EI2, the CDF-based LS outperformed the percentile-based LS 

for both models, while in terms of Reynolds et al.'s error index, the two methods performed 

almost equally (54 in contrast to 53) for the SB and the percentile-based LS better than the
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CDF-based (65 out of 107) for the Logit-Logistic. It is noted that the difference in 

performance of the compared three estimation methods in terms of El are all smaller than 

those in terms of the other statistics, for both SB and Logit-Logistic, and this may be due to 

the fact that this index is a "grouped" measure by which some difference may have been 

"smoothed". Also noted is that the best performance of the CDF-based LS (except in the case 

of the Logit-Logistic in terms of El) is not unexpected, since this method uses the sum of 

squared differences between the uniformized order statistics (fitted probability) and their 

expected probabilities as the objective function in fitting which naturally has more close link 

to the measures of goodness-of-fit used for comparisons.

Table 4.2. Superior Proportions of Logit-Logistic 
than Johnson's SB Compared on 4 Measures of 
Fit under Three Estimation Methods

Estimation 
Methods
MLE

CLS

PLS

Compared 
Statistics
D
I/I/2
EI2
El

D
I/I/2
EI2
El

D
Vf
EI2
El

Superior 
Proportion
79/107
71/107
60/107
48/107

53/107
50/107
45/107
52/1 07

62/1 07
69/107
64/107
58/107

Note: MLE-Maximum Likelihood Estimation, CLS-CDF based 
LS, PLS-Percentile-based LS, D-Kolmogorov-Smirnov Statistic, 
W2-Cramer-von Mises statistic, ^/-Reynold's Error Index, 
£Y2-ungrouped Error Index.

From Table 4.2, with the MLE, the Logit-Logistic performed better than S B in terms of D, W2 , 

and EI2 (79, 71 and 60 out of 107, respectively), but worse in terms of El (48 out of 107). 

With the CDF-based LS, the S B performed a little better than the Logit-Logistic in terms of all 

the statistics used for comparisons here, while with the percentile-based LS, the Logit- 

Logistic performed better than S B . This may indicate that different parameter estimation
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methods affect the comparative performance of the Logit-Logistic and SB, but in general we 

may conclude that the Logit-Logistic outperformed than S B .

When using the three methods of parameter estimation, the lower bound parameter <f and 

the scale parameter 1 are restricted by 0 < £ < D^n and £ + A > Dmax in fitting, where £>min and 

Anax are the minimum and maximum value of diameters in each plot respectively. In Chapter 

3, it was found that with the MLE, there are more proportions of estimates of £ as "zero" for 

SB than Logit-Logistic, 33 out of 107 sample-plots in contrast to 7 out of 107. For both LS 

methods we used, it was also found more proportions of estimates of £ as "zero" for the SB 

than Logit-Logistic, that is, 56 out of 107 in contrast to 36 out of 107 with the CDF-based LS, 

and 57 out of 107 in contrast to 20 out of 107 with the percentile-based LS. Therefore, 

compared to the MLE, there was much increase in such proportions with both LS approaches. 

Furthermore, it was found that both LS methods are likely to estimate the minimum parameter 

(£) as Dmin, 7 and 19 out of 107 for the SB and Logit-Logistic respectively with the CDF LS, 3 

and 7 out of 107 respectively with the percentile LS, and to estimate the maximum parameter 

(<f + /I) as Dmax , 25 and 35 out of 107 for SB and Logit-Logistic respectively with the CDF LS, 

5 and 13 out of 107 respectively with the percentile LS, which is not observed with the MLE.

4.4.3 Model Fits with Parameter £, A Predetermined

To complete the comparison of the three estimation methods and the comparison of the SB 

and the Logit-Logistic under each of estimation methods, but in the context of the lower 

bound parameter £ and the scale parameter 1 being predetermined which is a common 

procedure in fitting the SB in forestry practice, we predetermined these two parameters in the 

sense of Knoebel-Burkhart (1991), that is,

f=Anin-1.3 (4 - 42) 

£>min + 5.1 (4.43)
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We fitted the two distribution models using three estimation methods. The performance of

each model under the three methods was then compared, and Table 4.3 lists the comparative 

results. Table 4.4 lists the comparison results of both models under each estimation method.

Table 4.3. Superior Proportions of 1 st Estimation Method 
than 2nd for Fitting Johnson's SB and Logit-Logistic 
Compared on 4 Measures of Fit (^, X, predetermined)

Compared 
Methods

^ st p nd

CLS-MLE

PLS-MLE

CLS-PLS

Compared Superior 
Statistics Proportion

D
W2

EI2
El

D
W2

EI2
El

D
W2

EI2
El

Johnson's SB
101/107
105/107
102/107
87/107

100/107
101/107
101/107
86/1 07

92/1 07
102/107

91/107
82/107

Logit-Logistic
76/107

101/107
92/107
77/107

30/107
33/107
36/107
37/107

90/107
105/107
98/107
79/107

Note: MLE-Maximum Likelihood Estimation, CLS-CDF based 
LS, PLS-Percentile-based LS, D-Kolmogorov-Smirnov Statistic, 
W2-Cramer-von Mises statistic, ^/-Reynold's Error Index, 
E/2-ungrouped Error Index.

Table 4.4. Superior Proportions of Logit-Logistic 
than Johnson's SB Compared on 4 Measures of 
Fit under Three Estimation Methods 
(4, X, predetermined)

Estimation 
Methods
MLE

CLS

PLS

Compared 
Statistics
D
W2

EI2
El

D
W2

EI2
El

D
vf
EI2
El

Superior 
Proportion
75/107
79/107
81/107
67/107

55/107
61/107
59/107
53/107

51/107
60/107
62/107
57/1 07

Note: MLE-Maximum Likelihood Estimation, CLS-CDF based 
LS, PLS-Percentile-based LS, D-Kolmogorov-Smirnov Statistic, 
^-Cramer-von Mises statistic, ^/-Reynold's Error Index, 
£/2-ungrouped Error Index.
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From Table 4.3, it was shown that in terms of statistics D, W2 and EI2 and El, CDF-based 

LS overall performed best for fitting both S B and Logit-Logistic, and percentile-based LS 

better than the MLE for the S B . This is generally in agreement with the results with all the 

four parameters being estimated. However, it is noted that for the Logit-Logistic, the MLE 

performed better than the percentile-based LS, inverting the comparative result for this model 

when all parameters are to be estimated. The reason is not understood.

From Table 4.4, with all the three estimation methods, the Logit-Logistic overall 

performed better than the S B in terms of all statistics considered. But with both LS methods, 

this out-performance decreased compared to the MLE: both models performed roughly 

equally in terms of D and EL

4.4.4 Comparison of Logit-Logistic with SB in terms of Sum of Squared Errors (SSE)

In the above comparisons, for comparing the performance of the LS methods with the 

MLE for fitting distributions, we had to adopt some commonly used goodness-of-fit measures 

as comparison criteria. Meanwhile, we also used these criteria to compare the two 

distributional models. However, as we argued in Chapter 3 that comparing different models 

under the same estimation method by using the secondary criteria (the goodness-of-fit 

measures we used, say) is so marginal that we prefer the criteria directly resulted from the 

estimation process, we then used the (log) likelihood obtained from the MLE for model 

comparison in Chapter 3. Therefore, it would be more reasonable to use the sum of squared 

errors (SSE) resulted straightforward from the LS fitting as the criterion for the comparison of 

the S B and Logit-Logistic under the LS estimation methods, which is a common practice in 

regression analysis. Table 4.5 lists the results.
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Table 4.5. Superior Proportions of Logit-Logistic 
than Johnson's SB Compared on SSE under the 
LS Estimation Methods

Estimation Superior Proportion
Methods ———————————————————
_____fc >i) Estimated fc X) predetermined
CIS 55/107 65/107 

PLS 69/107 55/107
Note:CLS-CDF based LS, PLS-Percentile-based LS.

From Table 4.5, with both LS methods, the Logit-Logistic overall performed better than the 

SB- However, in the case of all the four parameters being estimated simultaneously with the 

CDF-based LS and in the case of the (£, X) predetermined with the percentile-based LS, the 

two models performed roughly equivalently (that is, 55 to 52).

4.5 Discussion

4.5.1 Measures of Model Fit in Favour of CDF-based Method

In general, the CDF-based performed best among the three compared estimation methods. 

We suppose this is mainly due to the fact that this method uses the sum of squared differences 

between the uniformized order statistics (fitted probability) and their expected probabilities as 

the objective function (see equation (4.30)) in fitting and this objective function could be 

regarded as an alternative but also a similar measure of model fit to those used for 

comparisons in this paper. For example, comparing the objective function of equation (4.30) 

and the Cramer-von Mises (W2) statistic defined by (40), the difference between them is 

essentially only the different choices of the "plotting position"! Therefore, in this sense, we 

might not "reasonably" conclude that this method did outperform the others, since the 

measures we used for comparison is in favour of this method though we did not find other 

more reasonable measures. Also noted is that one drawback of this method, we think, is that
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this estimator is more likely to be affected by the boundary limits imposed on the lower bound 

parameter £ and the scale parameter 1 (then the upper bound, £ + /I).

The out-performance of the percentile-based LS over the MLE for fitting the S B is 

consistent with the comparison result by Kamziah et al. (1999). However, for the Logit- 

Logistic, the performance of these two methods was affected by whether the lower bound 

parameter £ and the scale parameter /I being predetermined (with the Knoebel-Burkhart 

method) or not: with the two parameters predetermined, MLE performed better. 

4.5.2 Other Estimation Methods

The fact that the CDF-based LS method is actually to minimize an alternative measure of 

goodness-of-fit may indicate more general approaches to estimating parameters of 

distributional models by optimizing goodness-of-fit statistics directly. Such an idea has been 

suggested by Starlinger et al. (1993). One way is to minimize the Cramer-von Mises (W2) 

statistic defined by (4.40) using LS method, or more generally to minimize the sum of 

squared differences between the uniformized order statistics p(0=F(x(0) and an empirical 

estimate of p(0 (plotting positions), that is,

^[F(x(i) )-p(i) ] 2 (4.44)
1=1

Other than the LS methods which take the sum of squares as the objective function in 

fitting, many other criteria (generally the Lp norms) could be used. For example, the Least 

Absolute Deviation (the LI) is defined as

1=1

in which the un-grouped version of Reynolds et al.'s Error Index defined by (4.41) is a special 

case. The Loo norm is defined as

Fa (x)-F(x) (4.46)
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which is the Kolmogorov-Smirnov statistic D. The use of L, and Loo norms in estimating 

parameters of the Johnson distributions have been employed (DeBrota et al. 1988, Wagner 

and Wilson 1996, Wilson et al. 1988).

Similarly, these non-LS criteria could also be applied to the percentile-based LS methods. 

All of these variants of parameter estimation would be worthwhile to be exploited for their 

potential uses. 

4.5.3 Performance of Logit-Logistic over SB

Under each of the three estimation methods, the Logit-Logistic overall performed better 

than the SB, which is consistent with the result we got in Chapter 3. We suppose this is due to 

the more flexibility of the Logit-Logistic than S B in terms of the area covered in the 

(skewness-kurtosis) shape plane, and then the Logit-Logistic provides a good replacement of 

the SB in forest diameter distribution modelling.
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Appendix Code 4.1: Maximum Likelihood Estimation of Logit-Logistic

strfolder<-"j:/distrpapers/estimation/"##folder to store data 

datafilename<-"test.dbf '##Chinese Fir data 

datafile<-paste(strfolder,sep="",datafilename) 

import.data('test2',datafile,"DBASE")

##Negative Log-Likelihood Function 

LogitLogistic4.neg.ll<-+ 

function(theta,x) 

{ n<-length(x)

zetta<-theta[l]##minimum parameter, 0<=zetta<Dmin

lambda<-theta[2]##maximum parameter, lambda>Dmax

gamma<-theta[3]

delta<-theta[4]

ul<-x-zetta

u2<-lambda-x

u<-ul/u2

n*(log(delta)-log(lambda-zetta)-

gammaydelta)+l/delta*sum(log(u))+sum(log(ul))+sum(log(u2))+2*surn(log(l+exp(gamma/delta) :i: uA(- 

I/delta)))

for (i in 1:107)

{ dO<-test2$D[test2$PLOT= =i]

dO<-sort(dO)

n.sample<-length(dO)

outfilename<-"Logit4MLE.txt"##message on convergence

outfilename2<-"Logit4MLE_p.txt''##message on parameter estimates

outfile<-paste(strfolder,sep="",outfilename)

outfile2<-paste(strfolder,sep="",outfilename2)

cat(i," ," ,file=outfile,append=T)

cat(i,",",file=outfile2,append=T)

minO<-min(dO)

maxO<-max(dO)
mylist<-nlminb(start=c(minO-2,maxO+2,l,l),objective=LogitLogistic4.neg.ll,control =

nlminb.control(eval.max=10000,iter.max=10000),lower=c(0,maxO,-Inf,0),upper=c(minO,Inf,Inf,Inf),x=dO)

cat(mylist[2],mylist[3],"\n",file=outfile,append=T

cat(unlist(mylist[l]),"\n",file=outfile2,append=T)
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Appendix Code 4.2: Nonlinear Least Squares (based on the cumulative probability 
function/CDF) Estimation of Logit-Logistic

strfolder<-"j:/distrpapers/estimation/"##folder to store data 

datafilename<-"test.dbf '##Chinese fir data 

datafile<-paste(strfolder,sep="",datafilename) 

import.data('test2',datafile,"DBASE")

## Residual Function (CDF based)

LogitLogistic<-+

function(theta,x,y)

{ zetta<-theta[l]##minimum parameter, 0<=zetta<Dmin

lambda<-theta[2]##maximumparameter,lambda>Dmax

gamma<-theta[3]

delta<-theta[4]

ul<-y-zetta

u2<-lambda-y

z<-(log(ul/u2)-gamma)/delta

xO<-plogis(z,0,l) 

x-xO }

for (i in 1:107)

{ dO<-test2$D[test2$PLOT= =i] 

dO<-sort(dO) 

dOO<-dO

n.sample<-length(dO)

for (ii in Im.sample) { dOO[ii]<-ii/(n.sample+l) } 

outfilename<-"Logit4NLR.txt"##message on convergence 

outfilename2<-"Logit4NLR_p.txt"##message on parameter estimates 

outfile<-paste(strfolder,sep="",outfilename) 

outfile2<-paste(strfolder,sep="",outfilename2) 

cat(i,",",file=outfile,append=T) 

cat(i,",",file=outfile2,append=T) 

minO<-min(dO) 

maxO<-max(dO) 
mylist<-nlregb(n=n.sample,start=c(minO-2,maxO+2,0,0.5),residuals=LogitLogistic,control =

nlregb.control(eval.max=10000,iter.max=10000,lower=c(0,maxO,-Inf,0), upper=c(minO,Inf,Inf,Inf),

X=d00,y=d0)
cat(mylist[2],mylist[3],"\n",file=outfile,append=T) 

cat(unlist(mylist[ 1 ]),"\n",file=outfile2,append=T)
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Appendix Code 4.3: Nonlinear Least Squares (percentiles based) Estimation of Logit- 
Logistic

strfolder<-"j:/distrpapers/estimation/"##folder to store data 

datafilename<-"test.dbf '##Chinese fir data 

datafile<-paste(strfolder,sep="",datafilename) 

import.data('test2',datafile,"DBASE")

## Residual Function (percentile based)

LogitLogistic<-+

function(theta,x,y)

{ zetta<-theta[l]##minimum parameter, 0<=zetta<Dmin

lambda<-theta[2]##maximumparameter,lambda>Dmax

gamma<-theta[3]

delta<-theta[4]

z<-qlogis(x)

yO<-zetta+(lambda-zetta)/( 1 +exp(-(gamma+delta*z)))

y-yO}

for (i in 1:107)

{ dO<-test2$D[test2$PLOT= =i] 

dO<-sort(dO) 

dOO<-dO

n.sample<-length(dO)

for (ii in l:n.sample) { dOO[ii]<-ii/(n.sample+l) } 

outfilename<-"Logit4NLR2.txt"##message on convergence 

outfilename2<-"Logit4NLR2_p.txt"##message on parameter estimates 

outfile<-paste(strfolder,sep="",outfilename) 

outfile2<-paste(strfolder,sep="",outfilename2) 

cat(i,",",file=outfile,append=T) 

cat(i,",",file=outfile2,append=T) 

minO<-min(dO) 

maxO<-max(dO) 
mylist<-nlregb(n=n.sample,start=c(minO-2,maxO+2,l,l),residuals=LogitLogistic,control =

nlregb.control(eval.max=10000,iter.max=10000),lower=c(0,maxO,-Inf,0), upper=c(minO,Inf,Inf,Inf),

x=dOO,y=dO)

cat(mylist[2],mylist[3],"\n",file=outfile,append=T) 

cat(unlist(mylist[l]),"\n",file=outfile2,append=T)
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Chapter 5: Bivariate Distribution Modelling with Plackett's Method 

Summary

This chapter compares four bivariate distributional models in terms of their adequacy in 

representing empirical diameter-height distributions from 102 sample plots of the Chinese fir 

data sets. The four bivariate models are: SBB, the natural, well-known, and much-used 

bivariate generalization of S B ; and the bivariate distributions with the Logit-Logistic (LL), SB 

and Beta (GBD) as marginals, constructed using Plackett's method (LL-2P etc...). All models 

are fitted using maximum likelihood, and their goodness-of-fits are compared using model 

deviance (equivalent to Akaike's Information Criterion, the AIC). The performance ranking 

was: SBB, LL-2P, GBD-2P , and S B -2P.

5.1 Introduction

As we discussed in the "Introduction" chapter, stand volume estimation is an important 

aspect of forest mensuration, and is usually based on estimates of individual tree volumes 

from samples of tree diameters and heights. The traditional approach consists of fitting a 

marginal diameter distribution and then using an empirical height-diameter regression model 

to estimate the average height per diameter class and hence volume (Clutter and Allison 1974). 

That is, the mean sample tree volume is traditionally (T) estimated as

VT = = ~ ll (5.1)
'* 1=

/\

where f(d} is the marginal diameter distribution, h(d) is the height-diameter regression 

model, both obtained from the n diameter sample trees, and v(d,h) is an individual volume

equation, usually determined previously.

This approach, in using estimated heights in the volume equation, rather than actual 

heights, ignores the fact that height can vary considerably for a given diameter, and therefore

96



introduces biases into volume estimation and associated precision estimates (Schreuder and 

Hafley 1977). These estimated-height bias effects may be avoided by use of the empirical 

bivariate distribution of diameters and heights for the height-diameter sample trees, or the

^

fitted bivariate (B) density f(d,h) say, to obtain mean tree volume estimate as:

V B =
d>0,h>0

(5.2) 
,*>o fW ' '

Furthermore, the fitted bivariate distribution provides an alternative to usually adopted 

regression analysis for obtaining the H-D model, another approach to improving volume 

estimation.

These considerations highlight the importance of estimating the joint and conditional 

distributions of tree diameter and height, as well as their marginal distributions. Therefore, in 

this chapter we introduce two new bivariate models which may be used by forest 

biometricians, which are resulted from Plackett's method in following the work of Li et al. 

(2002). Although Plackett's method was found to fall into a more general topic, the copula, 

which is to be introduced in the next Chapter, we did the work related to Plackett's method 

here much earlier than we discovered the "copula" and then we report it in an independent 

Chapter as a preliminary work on the general topic of copula.

5.2 Literature Review

The Farlie-Gumbel-Morgenstern (FGM) system (Conway 1983) is an approach to 

constructing bivariate distributions, but a major drawback of bivariate FGM distributions is 

that they are limited to describing only weak dependence between X and Y (Schucany et al., 

1978). Hafley and Schreuder (1976) derived a bivariate Weibull distribution of the FGM
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form. They found this bivariate Weibull was not biologically reasonable for describing the 

bivariate height-diameter distribution.

Schreuder and Hafley (1977) introduced Johnson's S B B (Johnson 1949b) for describing 

diameter-height frequency data. This bivariate distribution model has been used increasingly 

in forestry (Hafley and Buford 1985, Knoebel and Burkhart 1991, Tewari and Gadow 1997, 

1999, Li et al. 2002). The SBB is constructed by applying a 4-parameter Logistic 

transformation to each of the component variables of a standard bivariate normal distribution 

(see section 5.5 below and Johnson (1949b), Johnson and Kotz (1972), Schreuder and Hafley 

(1977), and Rennolls and Wang (2005)).

Construction of a satisfactory bivariate distribution without resorting to transformation of 

a bivariate normal distribution is surprisingly difficult. No completely satisfactory method 

has yet been found of determining bivariate distribution models as extensions of univariate 

distributions (Kendall and Stuart 1977). The marginal distributions do not uniquely 

determine the corresponding bivariate distribution: it can be shown that for given marginal 

distributions, there exist infinitely many bivariate distributions with these marginal 

distributions (Frechet cited in Gumbel 1960, 1961). For example, two standard normal 

marginal distributions may correspond to the infinite family of bivariate normal distributions 

indexed by the correlation parameter p.

Some bivariate distributions that may be constructed have the unsatisfactory property that 

the correlation parameter cannot take the whole of the range form -1 to 1, for example, the 

FGM system. In contrast, Plackett (1965) introduced a method of constructing a bivariate 

distribution from given marginal distributions, in which the resulting distribution has a single 

parameter of association, and the whole range of correlation is available. Li et al. (2002) used 

Plackett's method to obtain the bivariate Generalized Beta Distribution (GBD-2) and used it 

to fit empirical distributions of tree diameter and height. They found, for their data, better
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performance using GBD-2 than Johnson's SBB- Therefore, Plackett's method seems 

providing a promising way of constructing bivariate distribution models.

Various univariate distribution models have been used for describing (marginal) diameter 

distributions in forest stands, including Gamma (Nelson 1964), Lognormal (Bliss and Reinker 

1964), Weibull (Bailey and Dell 1973, Rennolls et al. 1985), Beta (Zohrer 1972, Li et al. 

2002), and Johnson's S B (Hafley and Schreuder 1977, Zhou and McTague 1996, Kamziah et 

al. 1999). In chapter 3, we introduced the Logit-Logistic (LL) distribution for forest diameter 

distribution modelling. Among these distribution models, the LL, SB, and Beta are the most 

flexible distributions in terms of the (skewness-kurtosis) region covered, ranked in the order: 

LL, SB and Beta/GBD, while in Chapter 3 it was found in the empirical tree diameter 

distribution study that the LL and the Beta/GBD were both more flexible than SB .

In this Chapter we construct the bivariate distributions with double-LL and double-SB 

marginal distributions by Plackett's method: we denote them by LL-2P and S B-2P following 

the notation of Li et al. (2002) (i.e. GBD-2), and indicating that Plackett's method has been 

used. We compare these two new bivariate distributions with the SBB and GBD-2P 

distributions, and examine if the superior univariate flexibility of LL extends into the bivariate 

domain. The newly constructed bivariate models provide more "model choices" in forest 

bivariate distribution modelling, beyond the well-known Johnson's SBB , and the GBD-2 of Li 

et al. (2002).

The bivariate distribution models considered are compared in an empirical case study 

using the maximum-likelihood estimation and a deviance goodness-of-fit criterion, on the 

Chinese fir diameter and height data sets.
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5.3 Plackett's Method

Plackett proposed a method of constructing a one-parameter class of bivariate distributions 

from given marginal distributions (Plackett 1965, Mardia 1967, 1970, Ord 1972). This 

method is based on the use of the odds-ratio as the measure of association for a 2x2 

contingency table and the resulting distributions are called contingency-type bivariate 

distributions by Mardia (1967, 1970). Figure 5.1 illustrates the concepts underlying the 

method.

(-00,-OO)

GOO

y

v

X

Pr(X
= H(x,y) = a

=F(x)-H(x9

= G(y)-H(x,y) = b

, Y>y) 
=l-F(x)-G(y) 
+H(x,y)

= d

(00,00)

Figure 5.1. Plackett's method: 2x2 partition of the joint density H(*,y)

In Figure 5.1, F(x) and G(y) are the marginal cumulative distribution functions (CDFs) of 

random variables X and F, respectively, and H(x, y) is the bivariate CDF. The odds-ratio (if/
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- (ad/bc) > 0) is a commonly used measure of the association between the row and column 

variables of a 2 x 2 contingency table. Evaluating this odds-ratio on the probabilities in the 

four quadrants around the point (x, y) in Figure 5.1 gives:

ad H[l-F-G + H]V =— = —-————————- (53) 
be [F-H][G-H)] '

where the arguments of the CDFs have been suppressed. This identity may be expressed as a 

quadratic equation in H:

(\I/-\}H 2 -SH + i/sFG = 0 (5.4) 

where 5 = [1 + (\i/-\)(F + G)]. H(x,y) may be determined as a root of this equation,

S(x, y) - VS 2 (x, y) -
, (5.5)-1)

The other root is does not give a suitable CDF (Mardia 1967).

The bivariate probability density function (PDF), h(x,y), is thus obtained by differentiating 

equation (5.3) with respect to jc and y. Some manipulations give:

Vf(x)g(y){l + (V~ ty[F(x) + G(y)- 2F(x)G(y}]} — ———————— — ————————^———— (5.6)

where/(jc) and g(y) are the marginal densities.

The association parameter y/ characterizes the full range of dependence between random 

variables X and Y. Let p(y/) denote the correlation between X and Y for association y/. When 

y/ = 1, H(x, y) = F(x)G(y), and X and Y independent with p(l) = 0. With y/ > 1 and y/ < 1, X 

and y are positively and negatively correlated, respectively, with p(0) = -1 and p(od) = +1. 

The conditional CDF of Y given X - x is given by:

*)= r
(Mardia 1967), which may be used in (5.2) or used to derive a median regression equation.
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5.4 Marginal Distribution Models
Three univariate distributions are considered as candidate marginal distributions from

which to construct bivariate distributions using Plackett's method: the Beta (GBD), Johnson' 

SB, and the Logit-Logistic (LL). 

5.4.1 Beta (GBD)

The Beta PDF is defined by:

B(p,q) <*-„

where a <x < b, a is the minimum parameter, b is the maximum parameter, and;?, q > 0 are 

shape parameters. 

5.4.2 Johnson's SB

Johnson's SB distribution (Johnson 1949a, Johnson and Kotz 1970) is that distribution 

which, when scaled to the range (0, 1), and then transformed by a logit transformation yields a 

Normal distribution. Chapter 2 (see also Rennolls and Wang 2005) present an inverse 

transformational definition of the SB and a new parameterization. That is, X ~ SB distribution 

is obtained by applying a 4-parameter logistic transformation to a standard Normal variate, Z :

x = £ + ——————————— (5.9) 
1 + exp(-(// + a

where -oo < z < oo, £ < * < £ + A. The parameters |n and a are related to the parameters used 

by Johnson by ja = -YJ /8j and a = l/6j . The S B density is given by:

5.4.3 Logit-Logistic

Replacing the standard Normal in (5.9) with the standard Logistic results in the Logit- 

Logistic (LL) distribution (see Chapter 3). Its CDF and PDF are given by:
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- x -E *
(5.11)

/«=-•
a (x- /< (5.12)-<?

5.5 Bivariate Distributions

5.5.1 Johnson's SBB

By analogy to the alternative transformational definition of SB given in Chapter 2 

(Rennolls and Wang 2005), the SBB distribution (Johnson 1949b, Johnson and Kotz 1972) is 

the bivariate distribution of random variables x and y obtained by applying separate 4- 

parameter linear-logistic transformations, as (5.9), to each of the component variables, zx and 

zy , of a standard bivariate normal N(0, Z), with correlation p . The zx and zy have the joint 

distribution:

f(zx ,z y ,p) =

By applying the linear-logistic transforms as,

(5.13)

l+g-^+^>
where, A* > 0, ax > 0, & <* < 4 + ^ and Ay > 0, oy > 0, ^, <y < £y + 

The SBB joint density for x and y is thus given by

(5.14)

~ l

f(x,y,p) =
Ady

2•y +z >

J-^> 2 "->
p'

where

J =
j dx d

, (x - £x )(f v

/I,
- v (y - ̂

(5.15)

- y) (5.16)
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oy (5.17)

5.5.2 Plackett's Bivariate Beta, SB and Logit-Logistic

Although the two marginal distributions do not necessarily have to have the same 

distributional form, in practice, we always select them to be so. Use of (5.5), by replacing the 

marginals (F(x) and G(y)) with the Logit-Logistic (LL), S B and Beta (GBD) respectively, 

leads to the LL-2P, S B -2P and GBD-2P joint distributions. It is noted that the Plackett's 

method is based on CDFs. For the three univariate distributions considered here, only the 

Logit-Logistic has a closed form for its CDF (in (5.11)), thus for the S B and Beta, numerical 

methods for evaluating their CDFs have to be used in the model fitting process.

5.6 Model Fitting and Goodness-of-Fit Criterion

Previous approaches in the forestry literature to fitting a bivariate distribution to tree 

diameter and height data have been as follows. First, fit the two marginal distributions 

separately using either the maximum likelihood method, a moment method, or other methods. 

It is also common practice to predetermine the location parameter (cf of the S B or a of the Beta) 

and possibly the range parameter (/I for S B or the maximum parameter b for the Beta) to 

specific sample related values (Schreuder and Hafley 1977, Li et al. 2002). Second, estimate 

the dependence parameter, p for S BB (Johnson 1949b, Schreuder and Hafley 1977) or y/ for the 

bivariate Plackett distributions, usually by heuristic methods (Plackett 1965, Li et al. 2002).

In contrast, we used the maximum likelihood estimation to fit the bivariate distributions 

directly; all the parameters are estimated simultaneously. We imposed the necessary 

constraints on £ and A for S B or the LL (0< £ < xmn and £ + 1 > x^ ), and on a and b for the 

Beta (0< a < xirun and b > JW) where xmn and x^ are the minimum and maximum values of 

the sampled .x-values (x being diameter or height). The computation was carried out using the
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function nlminb (local minimizer for smooth nonlinear functions subject to bound-constrained 

parameters) of S-Plus (Mathsoft 1999) by minimizing the negative log-likelihood (-AA) 

function of density (5.15) for the S BB , or (5.6) for the three Plackett-based bivariate models. 

Assuming the sample is iid, then for the SBB the (-AA) is the sum over all trees of:

? Z X ~2pZX Zy + Zy— In/ = -In/ + ln2^ + 0.51n(l-/o ) + ——————-——— (5.18)
2(1 -p1 }

where /, zx and zy are as defined in (5.16) and (5.17). For the Plackett-based bivariate models,

(-AA) is the sum of single-tree terms of the form:

UA
f-l)FG\ (5.19)

The marginal CDFs (F and G) of the Beta and Normal are evaluated using S-plus's pbeta and 

pnorm functions, respectively.

The goodness-of-fit criterion which we use for comparison purposes is the negative log- 

likelihood (-AA), the deviance statistic, which is equivalent to the AIC (Akaike 1974) in this 

case study, as each bivariate model considered here has the same number of parameters, i.e. 9. 

The smaller is (-AA) of a fitted model, the better the model fits.

5.7 Data and Results

Among the 107 plots of the Chinese fir data, there are 102 plots, in which each tree in a 

plot was measured for diameter and height. Thus these 102 plots were used in this study.

Table 5.1 lists the value of the (-AA) goodness-of-fit statistics for each of the models fitted 

to each of the sample-plot diameter and height distributions. For the 102 sample plots in the 

case study, the maximum likelihood estimation method did not converge for only 2 plots for 

the LL-2P model (plot 73 and 76) and for only four plots for the GBD-2P model (plots 40, 47, 

73 and 76). The reason for non-convergence is not completely clear to us, but is probably
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related to these plots having J-shaped marginal distributions. However, we found from Table 

5.1 that three of the four empirical distributions for which there was non-convergence for 

either LL-2P or GBD-2P or both, the differences in the resulting (-AA) is quite small between 

converged models and non-converged models. However, this was not the case for plot 73, 

and therefore, we have eliminated plot 73 from subsequent comparisons.

Table 5.2 indicates the between-model comparative performance of these four models in 

terms of their goodness of fit statistics. The SBB has out-performed all three bivariate 

Plackett-based distributional models in our empirical comparisons. The SBB distribution had a 

lower value of the (-AA) statistic than the LL-2P, GBD-2P, and S B-2P for 74, 85 and 86 of the 

101 distributions, respectively.

The observed relative performance of SBB and GBD-2P is different from that observed by 

Li et al. (2002). There are a number of possible reasons for this: (i) We have used different 

case-study data than they used, (ii) We have used a different estimation method, (iii) We have 

used the log-likelihood/deviance/AIC/(-AA) goodness-of-fit criterion obtained directly from 

the maximum likelihood estimation process, while Li et al. (2002) used a/2 criterion relating 

to volume predictions.

From Table 5.2, for the three bivariate Plackett-based models, LL-2P was better than 

GBD-2P (88 out of 101) and S B-2P (95 out of 101), and GBD-2P better than S B-2P (71 out of 

101). We may summarize the results from Table 5.2 as follows:

S BB > (LL-2P) > (GBD-2P) > (S B-2P) 

where ">" represents "better than" in the sense used in Table 5.2.

The better performance of LL-2P over both Ss-2 and GBD-2P is not unexpected, since the 

Logit-Logistic (LL) is the most flexible (in terms of skewness-kurtosis coverage) among these 

three distributional models in the univariate domain, and the bivariate models have been 

constructed using the same method.
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Table 5.1. Negative log-likelihood (-AA) for four bivariate distribution models
Plot
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

SBB
335.22
400.37
415.55
492.02
422.01
390.74
570.96
468.81
470.60
328.49
305.73
246.64
278.51
218.86
342.63
316.56
353.72
551.41
469.15
548.22
252.82
286.91
286.80
385.85
317.54
348.33
299.98
420.42
336.03
339.28
404.80
335.39
528.21
374.01
474.49
644.06
278.66
246.99
539.39
648.84
482.02
512.31
312.79
621.38
801.59
536.36
526.30
391.40
758.15
268.72
329.62

LL-2P
334.20
404.64
422.05
496.93
430.09
396.80
581.87
472.21
469.05
328.88
305.35
245.42
278.20
219.43
349.76
316.70
359.13
555.90
469.55
553.42
246.42
291.43
292.00
384.59
319.05
346.15
307.96
418.27
344.27
339.18
403.85
340.33
534.71
378.27
476.60
649.60
286.77
240.38
550.58
649.73
476.86
513.62
316.29
622.59
801.41
540.88
529.08
398.42
763.95
268.10
328.62

SB-2F
336.67
406.16
421.36
496.64
431.09
398.52
582.48
473.32
469.79
330.74
307.09
246.28
278.75
220.14
351.94
317.74
360.83
558.68
470.56
556.02
247.04
292.63
292.50
384.90
320.70
347.65
307.97
419.52
344.73
339.04
404.50
341.03
535.79
379.23
477.92
649.77
288.10
240.70
551.69
650.09
478.92
514.80
318.33
624.27
802.62
541.16
531.26
400.32
765.37
268.80
329.00

GBD-2F
335.51
405.44
421.29
494.75
430.92
398.30
582.38
472.64
469.54
330.48
306.02
246.16
278.75
220.22
352.18
317.62
360.67
558.07
470.67
555.80
246.81
292.78
292.54
384.82
320.26
346.91
307.96
418.38
344.59
339.06
404.15
339.38
535.79
379.12
477.71
648.55
287.47
240.76
551.97
650.47*
478.79
514.74
317.28
623.77
802.68
541.21
529.72*
400.11
763.70
268.73
328.76

Plot
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
96
97
98
99
100
101
102
104
106

SBB
337.64
444.25
669.32
364.91
366.02
329.75
462.10
346.20
340.19
361.60
260.95
252.76
521.55
362.62
367.41
428.86
561.45
355.03
445.40
548.71
406.89
241.25
220.70
282.28
260.80
354.59
516.47
697.00
418.69
385.57
358.46
246.23
314.11
647.25
303.06
465.30
355.34
321.45
629.12
429.81
262.17
444.55
390.72
463.77
515.41
451.72
490.36
418.53
361.98
253.75
292.60

LL-2P SB-2P GBD-2P
344.
442.
677.
366.
365.

75
29
64
59
52

330.76
463.
351.
349.
364.
266.
254.
519.
363.
367.
438.
561.
362.

98
57
02
61
07
11
54
86
31
42
26
10

448.22
551
409

14
17

244.07*
222.57
284.64
262.90*
353.49
516.22
696.88
426.61
390.74
357.45
248.26
318.00
651.28
305.33
470.34
355.80
327.32
638.22
430.73
266.50
451.93
397.96
473.93
519.23
457 33
478.37
423 34
369.30
255
289

.92

.81

345.80
443.20
678.76
367.41
366.98
331.91
465.83
352.52
349.86
366.08
266.42
255.11
521.85
365.32
367.75
439.62
562.21
362.88
448.88
550.96
410.71
237.19
223.12
286.76
266.00
353.66
516.82
699.82
426.87
392.47
359.98
248.75
319.64
651.32
305.45
471.37
357.67
328.68
637.68
432.37
267.22
452.05
398.84
474.81
520.37
457.80
480.23
423.07
370.73
256.49
290.93

345.
442.
677.
367.
366.
331.
465.
352.
349.
366.
266.
254.
520.
365.
367.
439.
562.
362.
448.
551.
410.
297.
223.
285.
266.
353.
516.
698.
426.
391.
359.
248.
318.
651.
305.
471.
357
328
637
431.
266
452
398
473
520
457
479
422
370

82
80
15
66
96
72
56
74
79
16
46
83
71
12
47
36
47
82
89
29
73
36*
28
12
91*
38
76
22
60
30
73
48
78
71
42
37
30
82
90
97
70
09
49
46
43
65
85
89
36

256.56
290.50

Note: * indicates that a non-convergence notification was obtained in fitting.
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Table 5.2. Comparison results of four bivariate distribution models based on (-AA): 
Proportion of cases in which the row-distribution model had a lower (-AA) than the column- 
distribution.

\col 

row NV

SBB 
LL-2P 
GBD-2P

T T 0 fTD'Tl O^-LJ_y-^ \JD\J~Z,

74/101 85/101 
88/101

S B-2P

86/101 
95/101 
71/101

It is noted that the ranking of the bivariate Plackett-based distributions is consistent with 

the rankings obtained for the marginal distributions, for both diameter and height. The results 

for height distributions are listed in Table 5.3, while the details for diameter distributions are 

given in Chapter 3 (also Wang and Rennolls 2005). The empirical superiority of GBD-2P 

over SB-2P (and Beta over SB) in this case-study is slightly unexpected, since (theoretically) 

SB is more flexible than the Beta, by virtue of larger coverage of the skewness-kurtosis shape- 

plane.

Table 5.3. Comparison results of Logit-Logistic (LL), SB and Beta (GBD) in fitting marginal 
heights based on (-AA): Proportion of cases in which the row-distribution model had a lower 
(-AA) than the column-distribution.

LL 
Beta

Beta

89/102

SB

89/102 
61/102

5.8 Discussion

Besides the transformation-translation method of construction of Johnson's SBB, and the 

Plackett's method by which the other three bivariate distribution models are constructed in 

this paper, there are other ways to construct bivariate distributions. With the Logit-Logistic as 

the marginals, we also constructed and fitted two bivariate models using two methods of

108



Gumbel (1961) (LL-2GI and LL-2Gn say). The results were poor and are not presented here. 

The poor performance is due to the fact that both Gumbel methods can only accommodate 

weak dependency, which is not the case of bivariate diameter and height modelling. Table 

5.4 listed descriptive statistics of correlations between tree diameters and heights for the 102 

bivariate samples. The Pearson's correlation coeeficient (r2) is the traditional linear 

correlation measure. Since correlation between tree diameters and heights is intrinsically 

non-linear, two other rank based correlation measures, Kendall's T and Spearman's p, are also 

provided. Both measures will be discussed in detail in the next chapter.

For a good bivariate distribution, not only must the marginal distributions have flexible 

shape, but the method of construction of the bivariate distribution has to be able to model both 

high and low levels of dependency/correlation. The Logit-Logistic (LL) distribution seems to 

be the most suitable of the available choices for univariate distribution modelling while the 

Plackett's method is able to model dependencies with correlations between -1 and 1. In the 

case of bivariate diameter-height modelling, tree heights are usually positively highly 

correlated with tree diameters (see Table 5.4), what we are concerned is, therefore, that the 

Plackett's method is capable of modelling positive correlation ranging from zero to one. 

Hence, we recommend the LL-2P bivariate model for future use in diameter-height modelling 

studies in forestry.

Table 5.4. Descriptive Statistics of Three Correlation Measures of H-D Samples
Correlation
Pearson's r2 
Kendall's i 
Spearman's p

N
102 
102 
102

Minimum Maximum Mean
0.65 0.96 0.8478 
0.43 0.84 0.6544 
0.59 0.97 0.8353

Std. Dev.
0.05846 
0.07128 
0.06553
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Chapter 6: The Copula Approach to Bivariate Distribution Modelling 

Summary

By a theorem due to Sklar in 1959, a bivariate distribution can be represented in terms of 

its underlying marginals by binding them together using a copula function. This copula 

representation of the bivariate distribution allows different specifications for the marginals but 

models the dependence with the copula function itself, thus providing a general way of 

constructing bivariate distributions. The basics of the copula and some popular copula 

functions are introduced in this Chapter. The well-known Johnson's SBB is obtained from the 

normal copula using the SB as marginal model. Using the normal copula, we construct 

bivariate Logit-Logistic and bivariate Beta distributions. An empirical case-study on tree 

heights and diameters of 102 sample plots of Chinese Fir demonstrates that the bivariate 

Logit-Logistic can have superior performance over SBB, extending similar univariate results 

for diameter distributions. An empirical comparison of the normal copula with the others 

shows that the normal copula is the best for modelling the joint distribution of tree diameters 

and heights.

6.1 Introduction

As an alternative but also an improvement to the traditional approach to stand volume 

estimation, fitting a joint bivariate distribution model, f(d,h) say, to the height-diameter 

sample is generally considered more satisfactory for estimating stand volume (Schreuder and 

Hafley 1977, Li et al. 2002). The bivariate distribution modelling approach considers not 

only the fact that height can vary considerably for a given diameter, but also provides an 

alternative way of obtaining the H-D regression rather than the traditional regression methods. 

Also, the bivariate/(d,/0 provides a means of describing diameter-height dynamics over time 

in the context of spatial modelling of a forest stand (Li et al. 2002).
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Schreuder and Hafley (1977) introduced Johnson's SBB (Johnson 1949b) into the forestry 

literature for modelling the joint distribution of tree diameter and height, and since then this 

bivariate distributional model has been widely used in forestry (Hafley and Buford 1985, 

Knoebel and Burkhart 1991, Tewari and Gadow 1997, 1999, Li et al. 2002). In fact, the S BB 

seems the only bivariate model successfully used in describing the joint distribution of tree 

diameter and height for a long time.

Li et al. (2002) used Plackett's method to obtain a bivariate Beta distribution. In Chapter 

5, we constructed a bivariate Logit-Logistic using the same method, as well as a bivariate S B 

(not equivalent to SBB) for comparative purposes. Plackett's method allows for arbitrarily 

marginals to be employed in constructing a bivariate distributon model. However, given 

marginal distributions do not uniquely determine a bivariate ditribution: the bivariate 

distribution determined by Plackett's method is only one of a family of possible bivariate 

distributions with the given marginals.

Mardia (1970) in extending Johnson's method of "transformation to bivariate normal" 

allows for the construction of a bivariate distribution with arbitrary given marginals. 

Mardia's approach can produce the SBB as the resulting bivariate model when both the 

marginals are SB.

Both Plackett's and Mardia's methods for the construction of a bivariate distribution 

model from given marginals are special cases of a more general copula-based approach. The 

copula approach to multivariate modelling follows from a theorem in Sklar (1959) (see also 

Sklar 1973, Nelson 1999) and provides a constructive method for building a bivariate model 

from given marginals, using a copula function. By considering a family of copula functions, a 

family of bivariate distributions can be obtained. Recently, practical use of copulas in 

constructing multivariate models has been increasing, especially in the financial and actuarial 

fields (Frees and Valdez 1998, Klugman and Parsa 1999, Embrechts et al. 1999, 2001, Bouye
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et al. 2000, Li 2000, Smith 2003, Wiithrich 2004, Hurlimann 2004), also in decision analysis 

or management science (Jouini and Clemen 1996, Clemen and Reilly 1999). However, the 

concept of "copula" is new to forestry, though the normal copula and the Plackett copula, 

with which Johnson's SBB and Plackett's families can be obtained respectively, have been 

implicitly used. So, it would be much of interest to forest researchers to introduce the copula 

approach into forestry.

In this Chapter, firstly we briefly describe the basic properties of copulas useful to our 

study. Then we introduce some copula models, not surprisingly with emphasis on the normal 

copula. Finally we conduct an empirical study of comparing these copula models for their 

potential usages in forestry.

6.2 Bivariate Copula

6.2.1 Basics of Copula Functions

The idea behind the concept of the copula is to separate a multivariate distribution 

function into two parts, one describing the dependence structure and the other describing 

marginal behaviors. This concept was introduced by Sklar in 1959 to answer a question about 

the relationship between a multivariate distribution function and its univariate marginals in 

the framework of "Probabilistic Metric Spaces". As noted by Micocci and Masala (2003), 

since 1986 copula functions are intensively investigated from a statistical point of view due to 

the impulse of Genest and MacKay's work "The joy of copulas" (1986). A historical review 

and major developments can be found in Joe (1997) and Nelsen (1999).

Broadly speaking, a copula is a function that joins or "couples" a multivariate distribution 

function to their one-dimensional marginal distributions (Nelson 1999), or alternatively a 

copula is a joint multivariate distribution function with uniform marginals. For a bivariate 

copula, we have,
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(6.1)

where u and v are uniform random variables. Suppose we have two random variables x and y 

which follow arbitrary marginal distribution functions F(x) and G(y), respectively. The 

copula function C combines these two marginals to give the joint distribution function as

(6.2)

simply due to the fact that the probability integral transformed variables u=F(x) and v=G(y) 

are uniform random variables. This copula function defines a new bivariate distribution, 

which can be easily shown as follows:

C(F(x\G(y»=Pr[U<F(x\V<G(y)]

=Pr[F\U)<x,G-\V)<y] 

=Pr[X<x,Y<y]

Conversely, any bivariate distribution function H can be written in terms of its marginals 

using a copula representation as,

tf(jcoO=C(F(jc),GOO) (6.3) 

If the marginal distributions F and G are both continuous, then H has a unique copula C. The 

above equations (6.2) and (6.3) comprise of the theoretical basis of multivariate modeling by 

copulas, which is known as Sklar's theorem. Clearly the copula function C is a re 

formulation of the joint cumulative distribution function (CDF) in terms of its marginal CDF, 

for which a copula is sometimes called a "uniform representation" (Kimeldorf and Sampson 

1975). Furthermore, given that marginal distribution functions (F and G) and C are 

differentiable, the joint density /(*, y) can be expressed as,

,v) (6.4) 

where fix), g(y) are the density corresponding to F and G, respectively, and where

, C(M,V) = — — - —— (6.5)
OltOV
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is the called the copula density.

By contrast to the traditional modeling approach that decomposes the joint density as a 

product of marginal and conditional densities, equation (6.4) shows that the joint density can 

be expressed as a product of the marginal densities and the copula density. Then from the 

representation in (6.4), it is clear that the density C(M,V) thus the copula C(w,v) encodes 

information about the dependence between x and y, for which the copula is also known as the 

"dependence function" (Galambos 1978), while the densities f(x) and g(y) control the marginal 

behaviors.

Therefore, the separation of a bivariate distribution into its marginal part and its 

dependence part with the copula approach provides much facility in statistical modeling: 

firstly as a way of studying scale-free measures of dependence and secondly as a tool of 

constructing families of bivariate distributions (Fisher 1997). As equation (6.2) shows that 

various bivariate distributions can be constructed with copula functions and marginals, 

equation (6.3) indicates such copula functions can be obtained from some existing bivariate 

distributions by expressing them in terms of CDF, one example being the normal copula 

which we will describe in detail later. For our purposes, we are interested in the "copula" 

approach mainly because it provides a general way of setting up multivariate distributions 

given the specific copula and arbitrary marginals. However, the dependence via some 

measure(s) described by the copula can act as a criterion for prescreening copula functions, 

then we will briefly introduce the use of copulas in studying measures of dependence in the 

subsequent section. 

6.2.2 Dependence Measures

A measure of dependence commonly used in statistics is (Pearson's) linear correlation (p). 

However, it is known that this measure cannot capture the nonlinear dependence relationships
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exhibited by random variables, is not invariant under strictly increasing transformations of 

these variables, and the possible values of correlation depend on the marginal distributions. 

To avoid such drawbacks, some alternative measures of dependence, known as rank 

correlations, have been introduced in statistics. The most famous rank correlations include 

Kendall's tau (T) and Spearman's rho (/?s). Let X and Y be random variables with distribution 

functions F and G and joint distribution H. Spearman's p can be interpreted as a correlation 

coefficient between the CDFs of the two variables. That is,

ps(X,Y)=p(F(x),G(y)) (6.6) 

where p is the usual linear correlation. Kendall's tau is defined as the probability of 

concordance minus the probability of discordance:

T(X, 7)=P[(XrX2X7r72)>0]-P[(XrX2)(7r72)<01 (6.7) 

where (X^Yi), (X2,72) are independent random vectors from the common joint H.

Schweizer and Wolff (1981) established that the copula accounts for all the dependence 

between these two variables, X and 7, and also showed that these two measures could be 

expressed solely in terms of the copula function, they are:

p =l2?\\C(u,v)-uv]dudv (6.8)•* Jo Jo

,v)-l (6.9)
o Jo

In contrast, the linear correlation depends not only on the copula but also on the marginal 

distributions.

For continuous random variables the above measures are measures of concordance, and 

both can take values in [-1, 1]. Both measures take the value zero when we have 

independence between two variables, that is, when we have the independent copula, uv. Two 

other important copulas are the lower Frechet bound, max (0, w+v-1), and the upper Frechet 

bound, min(w,v), corresponding to the perfect negative dependence (T = ps =-1) and the perfect
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positive dependence (T = ps =1), respectively. As Frechet (1951, see Nelson 1999) showed 

that any copula function satisfies that max(0,w+v-l) < C(w,v) < min(w,v), but does not 

necessarily cover the whole interval, the copula which can range from the lower Frechet 

bound to the upper Frechet bound is said to be comprehensive. Though a copula is not 

necessarily comprehensive, the capability of its accommodating dependence in terms of the 

range of Kendall's tau or Spearman's rho it can achieve would be undoubtedly useful to 

decide whether this copula is suitable or not. 

6.2.3 Copula Functions

If we have a collection of copulas, then using Sklar's theorem, we can construct bivariate 

distributions with arbitrary marginals. Although many copula families are available with one 

or more parameters, we now only present a very brief overview of some one-parameter 

families of copulas with much attention put on the normal copula. Extensive surveys of 

families of copulas can be found in Hutchinson and Lai (1990), Joe (1997) and Nelson (1999). 

Table 6.1 provides a brief description of seven families most commonly used in biostatisties, 

actuarial science, or even management science. 

Table 6.1: Families of One-Parameter Copulas
Family Function Form C(«,v)

Normal N p (®~ 1 (u),®~ 1 (v))

2(0-1) 1(0-1) 

Frank InTl-l- 1
n L / -e i\ J c/ ^£? — L)

Clayton (u~ + v~ —1)
i

s~, i i -[( — ln«) +(-lnv) ] 6Oumbel e 

AMH
1 /3/1 ,,\/"1 T,\ 

— c/l 1 — U )\i — V^

FGM Mv[l + 0(l-w)(l-v)]

Parameter 
Range
[-1,1]

^-^ (0,oo)

(-00,00)

(0,*)

[!,«) 

[-1,1]

[-1,1]

Kendall's tau 
Range
[-1,1] 

[-1,1]

[-1,1] 

[0,1]

[0,1] 

[-0.18, 1/3]

[-2/9, 2/9]

Spearman's rho 
Range
[-1,1] 

[-1,1]

[-0.27,0.48] 

[-1/3, 1/3]
Note: O and Np are the standard normal or bivariate normal respectively.
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In each copula, the parameter 9 (for the normal copula we purposely use p indicating the 

link with the normal distribution) measures the degree of association/dependence. For the 

Normal (Mardia 1970), Frank (Frank 1979), AMH (Ali et al. 1978) and FGM (Conway 1983), 

the larger 6 is in absolute value, the stronger the association between variables: 9 > 0 implies 

positive dependence, 9 < 0 implies negative dependence, and 9 - 0 or 9 —> 0 implies 

independence. For Gumbel (Gumbel 1960, 1961), 9 = 1 leads to independence and 9 —> oo 

leads to perfect positive dependence. For the Clayton copula (Clayton 1978, Cook and 

Johnson 1981, 1983, Oaks 1982), 0 —> 0 and 9 —» oo lead to independence and perfect positive 

dependence, respectively. For Plackett (Plackett 1965), 0 = 1 leads to independence, and 0 —> 

0 and 0 —> oo lead to perfect negative or positive dependence, respectively.

As shown by Schucany et al. (1978) that the FGM copula allows only for a limited degree 

of dependence (Kendall's i is restricted to [-2/9, 2/9] and Spearman's p to [-1/3, 1/3]), which 

reduces its appeal for use in applications. Similar considerations hold also for the AMH, 

whose range for Kendall's i is restricted to [-0.18, 1/3] and for Spearman's p to [-0.27, 0.48]. 

Schreuder and Hafely (1977) found that the bivariate distribution constructed by using the 

FGM copula with Weibull as marginals is not satisfactory in modelling joint distribution of 

tree diameters and heights. We also used this copula but with the Logit-Logistic as marginals 

as mentioned in Chapter 5 and concluded the poor performance of this copula in modelling 

joint distribution of tree diameters and heights is due to the lower correlation restricted to this 

copula. For the AMH copula, it would be expected that it is not suitable for modelling joint 

distributions of tree diameters and heights because of the limited degree of dependence it 

allows. Therefore, we may not consider this copula as well as the FGM in this study. 

However, in order to clearly show that the performance of bivariate distributions with the 

same given marginals will be dependent on copulas used to construct such bivariate 

distributions, we will compare these two copulas with the others.
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In contrast, the Normal, Frank and Plackett copulas are comprehensive in that they can 

accommodate both positive and negative dependence ranging from the lower Frechet bound 

(perfect negative dependence) to the upper Frechet bound (perfect positive dependence). The 

Clayton copula and Gumbel copula are not comprehensive but they can accommodate all the 

possible positive dependence, which is the case of joint distributions of tree diameters and 

heights.

As shown later, the widely used Johnson's SBB can be obtained from the Normal copula. 

We already used the Plackett copula to construct bivariate models in Chapter 5 and found the 

SBB performed better than Plackett's families of bivariate distributions. Then we will pay 

much attention to the Normal copula, and also investigate the Gumbel, Frank, and Clayton 

copulas, since recently they have been widely used in other disciplines.

6.2.3.1 The Normal Copula (Mardia's Extension of Johnson's System)

Mardia (1970) extended the normal marginals of a bivariate normal distribution to any 

given marginals, by transforming specified marginals into normal distributions by means of 

the inverse standard normal distribution function so that a standard bivariate normal can be 

used to model the joint distribution. The CDF and PDF of the standard bivariate normal are 

given as,

C( Zjr ,z,)=f'T —— j!==e 2('-' ! > dxdy (6.10)
•> J-oo J-oo /-) __ /I _227Tl —

=^e 2 «-'> (6.11) -p 2

For any given marginals u=F(x) and v=G(j), the inverse function of the standard normal 

distribution function (O" 1 ), actually being the well-known normalization, will transform the 

uniformized variables u and v (thus x and y) into standard normal, that is,
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z x = ® (") = O (F(x)) t z y = O \v) = O \G(y)) (6.12)

which is due to the fact that the probability integral transformed random variable from any 

given (continuous) distribution will be uniformly distributed. Therefore a standard bivariate 

normal can be used to model the joint distribution. The bivariate density h(x, y) is then given 

as the following,

dz, dz y d 2 C(zx ,z v ) dz r dz.* - 
dx dy ozx dz y dx dy

(6

In general, the density function does not exist in closed form since there is no closed form 

expression for the inverse standard normal (CX 1 ). However, for example, if the marginals are 

normal or from Johnson's system of univariate distributions (83, SL, and Su), the involved 

transformations (to normal) as defined by equation (6.12) exist in closed form thus does the 

joint density. For example, with normal marginals where the usual bivariate normal is 

obtained, equation (6.12) simplifies to the "standardization", that is,

With the SB where Johnson's SBB is the resulting bivariate distribution, we have,

y )-rv

S , y S (6.15)x

So we see the inverse standard normal function method of "transformation to normal" 

collapses to Johnson's method of "transformation to normal" (given as (6.15) for the SB) 

when marginals from Johnson's families of univariate distributions. And in this sense, the
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bivariate normal distributions are extended to allow for marginals from other than Johnson's 

univariate system.

Lee (1983) used Mardia's method to formulate models with given marginal distributions 

for econometric applications. This method is now known as "the normal copula" approach 

and has been increasingly used in financial and actuarial modelling (Li 2000, Carriere 2000, 

Ane and Kharoubi 2003, Mendes and Souza 2004). Also Clemen and Reilly (1999) used it 

for decision and risk analysis. It is called the normal copula because it encodes dependence in 

precisely the same way as the standard bivariate normal distribution does, but it does so for 

variables with arbitrary marginals. By rewriting equation (6.10), the standard normal, in 

terms of u and v rather than zx and zy , the bivariate normal copula is given as,

2- p
dxdy (6.16)

where zx =3>~ 1 (w), zy =<E>~ 1 (v). Obviously, this copula is obtained by the "inversion of

marginals" method" (Nelson 1999) from the standard bivariate distribution, equation (6.10). 

The copula density is given as,

du dv dz x dz y du dv

1 e 2(I -'> (6-17)

and the bivariate density h(x, y} is then given as the following,

du dv 9 2 C(w,v)
h(x, y) =

dx dy dudv

/U)g(y) e ^~p ) (6.18)
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The equivalence of Mardia's method and the copula approach in constructing the joint 

distribution can be easily shown by noting that,

H(x,y) = C(zx ,z y ) = C(n,v) (6.19)

,, s dz r dz v d C(zx ,zJ h(x, y) =

dv
du dx dv dy

,7

du dv
dx dy

dz dzx y
du dv

dudvd 2 C(u,v)
— (o.2U)dx dy

We note that this equivalence essentially indicates an important property of the copula, that is, 

with strictly increasing transformations on the random variables, the copula of the 

transformed variables is the same as that before transformation, or in other words, the copula 

function is invariant under strictly increasing transformations of the variables. The advantage 

of the copula approach mainly lies that it clearly separates the joint distribution density into 

its marginal densities and the copula densities while the transformation method does not 

explicitly. Also, we note that the normal copula (correlation) parameter p is not the 

correlation coefficient between random variables x and y- any more, but the correlation 

coefficient between these two variables is much smaller than the copula parameter p (equal to 

only if both variables are normal).

Very interestingly, we note that the inverse function of the standard normal distribution 

function involved in the Normal copula approach to constructing bivariate distributions, is 

actually the well-known normalization, and in doing so to each component variable, the 

Normal copula method may be regarded as the normalization in the multi-dimension domain.
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6.2.3.2 Archimedean Families

The Frank, Clayton, Gumbel, and AMH belong to an important class of copulas known as 

Archimedean (Genest and MacKay 1986), which is of the form as,

C(M,V) - (p~ l ((p(u\(p(v}) (6.21) 

where (p, called the generator function, is a continuous strictly decreasing convex function, 

defined on [0,1] and satisfying that <p(0) = oo and (p(V) = 0. Table 6.2 lists generators of these

four Archimedean members. These families of this class are capable of representing different 

types of dependencies. Frank copula implies symmetric dependence patterns. Gumbel and 

Clayton copulas are both asymmetric, implying higher dependency at right tails and left tails, 

respectively. These Archimedean copulas are among some popular copula models and have 

been increasingly used in applications, especially in financial and actuarial fields (Frees and 

Valdez 1998, Klugman and Parsa 1999, Embrechts et al. 1999, 2001, Carriere 2000, Li 2000, 

Henessey and Lapan 2002, Ane and Kharoubi 2003, Hiirlimann 2004, Mendes and Souza 

2004, Wuthrich 2004) as a tool for investigating problems such as risk measurement. 

Procedures also exist for choosing a particular member of a given family of Archimedean 

copulas to fit a data set (Genest and Rivest 1993). Another attractive point of the 

Archimedean class of copulas is their rather simple closed form expressions for both the 

copula function and copula density function, compared to the normal copula. 

Table 6.2: Archimedean Families of One-Parameter Copulas

Family Function Form C(«,v) Generator Function (p(t)

Frank __in [i + i£———2i£———1] -In—-——
0 («~*-l) e~°-I

Clayton (w~* +v~0 -I)' 1 '* ————

i
Gumbel e ~ [( ~ lnu) + (- tav ) (-InO^

M v . 1-0(1-0AMH —————————— In ———————
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6.3 Parameter Estimation

There are usually two approaches to fitting a copula model. The first one is to estimate 

marginal distributions and the copula jointly. The second is a two-step procedure, estimating 

the marginal and the copula parameter separately. 

6.3.1 Joint Estimation

For the joint estimation, the Maximum Likelihood Estimation (MLE) is usually employed 

to estimate all the parameters simultaneously. With the density function of a bivariate 

distribution given as,

h(x,y)=f(x)xg(y)xc(u,v) (6.4) 

For a sample of size n, the likelihood function will be given as,

;,)c(F(jci ),G(y,)) (6.22) 
1=1 1=1

The one-step procedure estimates parameters by maximizing the log-likelihood for the joint 

distribution, that is,

1=1

.»] (6.23)
1=1

The resulting estimate for the copula parameter would be marginal-dependent, just as the 

estimates of the parameters involved in the marginal distributions would be indirectly affected 

by the copula. 

6.3.2 Two-Step Estimation

Note that the log likelihood of the whole system maybe very complicated thus the 

optimization may be rather difficult to solve (MLE computationally too difficult or infeasible). 

In this case, some two-stage estimation can be adopted, as the copula representation splits the
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parameters into marginal parameters and the copula parameter(s). By re-expressing the log- 

likelihood function as,

.» (6.24)
i=i 1=1 ,=i

the marginal distributions F and G can be estimated firstly using MLE by maximizing the 

marginal log-likelihood for F and G respectively, that is,

" n

lnL* =£ ln /W> lnLy =YJ \ng(yi ) (6.25)
1=1 1=1

After obtaining the MLE estimates of marginal parameters, substitute them into (6.24) then 

estimate the copula parameter by maximizing the log-likelihood for the copula,

(6.26)

where F(x) and G(y) denote the MLE estimates of the marginals from the first step. This

two-step MLE method is referred to as the method of Inference Functions for Margins or EFM 

method (Joe and Xu 1996, Joe 1997, 2004). The advantage of the IFM over the joint ML is 

primarily in computational ease, but these estimators are less efficient than ML (Joe and Xu 

1996, Joe 2004). Note that this IFM method is the same as the MLE for the multivariate 

normal distribution. Obviously, with the IFM method, the estimation of the copula parameter 

depends on the choice of univariate distributions and the misspecification of marginals may 

affect the estimation of the copula parameter(s).

Other than the MLE used in the IFM, the two-step procedure allows for other alternatives 

of estimating parameters of the marginal distributions as well as the copula parameter. For 

the marginal distributions, (linear or nonlinear) least squares methods can be employed, which 

have been found superior for fitting Johnson's SB (Zhou and McTague 1996, Kamziah et al. 

1999, Zhang et al. 1999) and the Logit-Logistic in the forestry literature, for details see 

Chapter 4.
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For the correlation parameter, it can be estimated "completely independently of the 

marginal fitting without specifying marginals. One approach is to use the empirical marginal 

distributions (EDF) Fn(x) and Gn(y) as the "estimated" marginals, that is, to estimate the 

copula by maximizing the log-likelihood for the copula,

>,),£„(}>,)) (6.27)

Several estimates of the EDF could be obtained from, for example, i/n, i/(n+l), or the others 

(see Chapter 4). This approach to estimating copula parameter was probably originally 

proposed by Genest et al. (1995) and is known as the Canonical maximum Likelihood method 

(CML). The CML method is sometimes called "semiparametric two-stage estimation" in that 

the marginals are estimated as the empirical distributions. It is appropriate when one does not 

want to specify any parametric model to describe the marginal distribution and in such cases 

the inference about the dependence parameter should be marginal-free. For each copula 

model, we should obtain the maximum likelihood estimation (MLE) of the dependence 

parameter. In this case, the model selection problem could be addressed using the AIC 

criteria through the resulting values of pseudo log-likelihood of the copula model. We note 

that the estimate of the copula parameter using CML method has a larger asymptotic variance 

than the maximum likelihood estimator of this parameter assuming marginals known (Genest 

et al. 1995).

The other approach is to match the sample correlation measure (Kendall's tau or 

Spearman's rho) to the theoretical dependence measure which can be expressed as a function 

of the correlation parameter, independent of marginal distributions. This method is in the 

spirit of Pearson's method of moments (Genst and Rivest 1993). For example, we could 

estimate the copula parameter by using a relationship between Kendall's tau and the copula 

(Genest 1987, Genest and Rivest 1993). This method was reported by Genest (1987) to 

perform reasonably well in the case of Frank's family for samples of size 50 or larger. This
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method's efficiency was also investigated by Oaks (1986) for Clayton's system of 

distributions. Both approaches to estimating the copula parameter are marginal free, thus we 

can evaluate model performance based on the choice of copula families rather than the joint 

distributions if we accept the same marginal models due to some prior knowledge on the 

univariate domain.

Clearly, combinations of marginal estimation methods with the copula estimation methods 

will provide many choices for the two-step approach. As contrast to the EFM, we may firstly 

estimate the copula parameter independently of the marginals, and then estimate the marginal 

parameters.

In this Chapter, we mainly use the joint MLE and the CML methods to estimate 

parameters. The resulting log-likelihood from both methods can be subsequently used as a 

measure of fit to rank alternative bivariate distributional models, which is essentially Akaike's 

information criterion (AIC) due to the fixity of the marginals thus the same number of 

parameters across estimated models. The AIC is defined by

AIC=2(negative log-likelihood)+2p (6.28) 

where p is the number of parameters of the model. The lower is the AIC, the better the model. 

In our case all models have the same number of parameters, thus equivalently the lower the 

negative log-likelihood, the better the model. This advantage makes it easier to compare 

different bivariate distributions obtained from the same copula with different marginals or 

different copulas with the same marginals. It is to be mentioned that for the Archimedean 

Families, Genest and Rivest (1993) proposed a procedure for identifying the particular family 

of Archimedean copulas that provides the best possible fit to the data. However, for our 

purposes, we have to compare the Archimedean families with the other copulas thus we do 

not explore Genest and Rivest's procedure in this study.
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We have to admit that there are many other selection criteria in choosing specific copula 

from a family of them, such as the distance between the considered copula and the empirical 

copula and the generalized likelihood ratio test (Vuong 1989), however, the AIC seems much 

simple and straightforward with the joint MLE estimation or the CML method. The CML 

resulting AIC may be especially convenient for the comparison of different copulas with the 

same set of univariate marginals.

6.4 Case Study

6.4.1 Data

The same 102 of the plots of the Chinese fir as used in Chapter 5, were used in this study.

6.4.2 Normal Copula with Different Marginals

Various univariate distributions have been used in modelling diameter distributions. 

However, not all of these univariate models have their satisfactory counterparts in the 

bivariate domain which are suitable for modelling the joint distribution of tree diameters and 

heights, one example being the Weibull. Considering the successful applications of them in 

forestry, which is obtained from the normal copula approach, we then well reasonably 

conclude that the normal copula may provide a satisfactory way of constructing bivariate 

models with given marginals which we may already know are suitable in the univariate 

domain. Such marginal models include the Logit-Logistic, SB , and Beta, for details see 

Chapter 5.

In Chapter 5, we used the Plackett copula to construct bivariate distribution models, with 

the Logit-Logistic, S B and Beta as the marginal distributions, respectively. The three bivariate 

distribution models and Johnson's SBB are fitted to the same data set as used in this study, and 

it was found that the SBB performed best, and for the three Plackett-based models, Logit- 

Logistic was better than Beta and SB, and Beta better than SB- We argued that the better
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performance of the SBB over the Plackett's models is mainly due to the construction methods, 

and now with the concept of the copula, we may have reasons to prefer the normal copula for 

coining bivariate models. It was also found that the comparison results for the three Plackett- 

based models are consistent with those results made for marginal distributions, diameter and 

height, respectively, for details see Chapter 3 and 5. This fact may indicate that with the same 

copula, the performance of the resulting bivariate distributions will depend on the marginal 

models. In Chapter 3, it was already found that the Logit-Logistic was more flexible than the 

SB and Beta in the univariate distribution modelling situation. Hence with the normal copula, 

we may expect that the superior univariate flexibility extends into the bivariate domain, that is, 

better performance of normal-copula based bivariate Logit-Logistic over the SBB-

The normal copula is then employed to set up bivariate distributional models, with the 

Logit-Logistic, the SB (Johnson's SBB resulting) and Beta as the marginal distributions, 

respectively. The CDF and PDF of the Logit-Logistic are given as,

(6.29)

l + e* X * )~ s
A-X

/to = ~

Y+e s ( ? ) * +2

The SB PDF is given by:

,_, *-S
1 ____. 

~2 ~^~s J ,£<;c<<f + l (6.31)

The Beta PDF is,

(6.32)
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The three bivariate distribution models and the SBB are fitted to each sample of our data set 

with the joint estimation approach using S-Plus (Mathsoft 1999), and the resulting negative 

log-likelihood is used to compare model performance.

Table 6.3 listed fitting results, the negative log-likelihood (-AA) for the three bivariate 

distributions which are constructed using the normal copula but with three different marginal 

models, in fitting each plot diameter and height data. It is found from this table that the 

bivariate model with the Logit-Logistic as marginals did not converge on a relatively large 

proportion of sample plots, 23 out of 102, in contrast to 0 and 7 out of 102 for the SBB and 

Beta models, respectively. The reason is not clear to us, since we already found in Chapter 3 

that all the three univariate models converged on almost all the sample marginal distributions, 

diameter and height, respectively, and no improvement was found at all even we have used 

these marginal parameter estimates as the starting points for the joint estimation.

Table 6.4 indicates the between-model comparative performance of the three models in 

terms of their goodness of fit statistics on the sample-plot diameter-height joint distributions 

on which both models converged. For example, the bivariate Logit-Logistic (LL) distribution 

had a lower of (-AA) than the bivariate Beta for 72 out of the 79 distributions for which joint 

convergence of bivariate Logit-Logistic and bivariate Beta were obtained. From Table 6.4, it 

follows that LL>Beta>S B where ">" represents "better than". Both bivariate Logit-Logistic 

and Beta performed better than bivariate SB (Johnson's SBB), which is consistent with the 

comparison results of the three marginal distributions we got in Chapter 3. Together with the 

comparison results obtained for the Plackett-based bivariate models in Chapter 5, we see 

empirically that with the same copula (method of constructing bivariate models), the choice of 

marginal distributional models will play an important role in deciding the superior bivariate 

distributional model.
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Table 6.3: minus log-likelihood of three bivariate distributions based on normal copula 

Keys: LL-Bivariate Logit-Logistic, Betaa-Bivariate Beta
Plot

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

LL
333.79
399.54
414.66
491.73*
421.21
388.96
569.77
468.05
469.35
325.51
299.94*
242.41*
278.12
218.17
339.92
316.02
352.14
548.96
467.89
546.01
252.58
285.58
286.07
385.83
316.54
347.33
299.74
419.19
333.71*
338.22
405.49
334.82
523.83*
372.93
473.50
643.22
273.30*
246.85
534.77*
649.21
477.76
510.67
310.98
620.69
800.28
535.32
519.60*
388.82
756.94
267.49
328.16*

SBB
335.22
400.37
415.55
492.02
422.01
390.74
570.96
468.81
470.60
328.49
305.73
246.64
278.51
218.86
342.63
316.56
353.72
551.41
469.15
548.22
252.82
286.91
286.80
385.85
317.54
348.33
299.98
420.42
336.03
339.28
404.80
335.39
528.21
374.01
474.49
644.06
278.66
246.99
539.39
648.84
482.02
512.31
312.79
621.38
801.59
536.36
526.30
391.40
758.15
268.72
329.62

Beta
335.00
400.05
414.59
491.31
421.97
390.48
570.86
468.47
470.44
328.06
298.43*
246.49
278.51
218.94
342.46
316.53
353.63
551.14
469.16
548.11
252.67
287.36
286.72
385.83
317.39
348.23
299.99
419.95
335.89
339.29
405.05
334.63
527.87
373.87
474.45
643.50
272.47*
247.04
539.51*
649.29
481.58
512.08
312.34
621.34
801.42
536.58
520.26*
391.04
757.14
268.42
329.48

Plot
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
96
97
98
99
100
101
102
104
106

LL
334.46*
443.58
667.79
362.80
363.17
328.86
460.59
344.67
339.00
360.33
253.34*
252.05
519.76
361.84
367.09
427.16
558.53*
353.80
442.03*
547.27
400.42*
241.21
219.98
277.33*
259.00
354.89
516.40
693.96
413.83*
384.11
353.92
245.81
303.67*
646.74
302.64
461.35*
353.65
320.57
628.66
428.77
257.95*
444.02
387.35*
460.75*
513.15
450.17*
488.52
418.76
351.48*
253.79
291.48

SBB
337.64
444.25
669.32
364.91
366.02
329.75
462.10
346.20
340.19
361.60
260.95
252.76
521.55
362.62
367.41
428.86
561.45
355.03
445.40
548.71
406.89
241.25
220.70
282.28
260.80
354.59
516.47
697.00
418.69
385.57
358.46
246.23
314.11
647.25
303.06
465.30
355.34
321.45
629.12
429.81
262.17
444.55
390.72
463.77
515.41
451.72
490.36
418.53
361.98
253.75
292.60

Beta
337.49
444.04
668.09
365.16
365.58
329.68
462.00
346.11
340.03
361.59
260.88
252.69
519.71
362.55
367.19
428.53
561.25
354.81
445.20
548.58
406.66
238.46
220.74
280.95*
260.14
354.44
516.58
695.90
418.10
384.84
357.98
246.11
310.15*
647.48
303.02
465.26
355.10
321.55
629.32
429.63
261.78
444.58
389.96
463.43
514.97
451.58
490.09
418.28
349.06*
253.80
292.39

Note: * denotes un-convergence in the joint MLE fitting
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Table 6.4. Comparison of 3 normal copula based bivariate
distribution models based on {-AA}
Keys: LL-Bivariate Logit-Logistic, Beta-Bivariate Beta
\col 
row^\
LL 
Beta

Beta

72/79

SBB

74/79 
77/95

Proportion of cases (in which there was 
joint fitting convergence) in which the 
row-distribution model had a lower 
{-LL} than the col-distribution.

Because of the better performance of the bivariate Logit-Logistic over the SBB, we may 
desire to estimate parameters of this bivariate model properly for those samples where the 
one-step procedure failed. For this purpose, some two-step procedure would be worthwhile. 
Meanwhile, it is interesting to see whether the joint MLE estimates of the copula parameter 
differ significantly from those obtained from the two-step procedure. For simplicity, we 
estimated the copula parameter by matching the sample Kendall's tau or Spearman's rho to its 
theoretical correspondence expressed in function of this copula parameter, that is, 

_ 2 • , ^ and _ 6 ../?., respectively. Table 6.5 lists estimates of the copula parameterT — •—STCSllUjC/J Pf, — —HTCSin^—) ' r Jn n 1

(p) obtained from the one-step procedure with the three marginal distributional models and 
from the two-step procedure. Rather than comparing these two approaches in terms of 
goodness-of-fit statistics, we compared these estimates of the copula parameter p with those 
obtained from the above one-step MLE. Table 6.6 listed the paired t test results. Clearly, all 
the one-step estimates of p for the bivariate models with different marginals do not show 
significant differences from those obtained by matching Kendall's tau, that is, y6 = sin(fl) .

Also, no significant differences is found between the one-step estimates for the bivariate 
Logit-Logistic and those obtained by matching Spearman's rho, that is, p = 2 sm(^> while

6

there are significant differences between the one-step estimates for the bivariate Beta or S B 
and those by matching Spearman's rho, which may indicate that the estimation of the copula 
parameter may be affected by the choice of the marginal distributions. Furthermore, 
significant difference is shown between tau based and rho based estimates. Therefore, if the 
one-step MLE does not converge in fitting, we may independently estimate the copula 
parameter by matching Kendall's tau, and then fit the marginals (separately or possibly 
simultaneously given the estimated copula parameter).
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Table 6.5: Normal Copula Parameter Estimates (p ) 

Keys: LL-Bivariate Logit-Logistic, Beta-Bivariate Beta
Joint MLE

plot
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

LL Beta
0.88
0.84
0.93
0.90*
0.86
0.83
0.84
0.87
0.91
0.85
0.83*
0.72*
0.65
0.77
0.88
0.79
0.87
0.89
0.91
0.86
0.89
0.81
0.68
0.72
0.78
0.85
0.74
0.91
0.91*
0.82
0.92
0.88
0.86*
0.87
0.87
0.90
0.89*
0.76
0.83*
0.87
0.82
0.85
0.85
0.90
0.91
0.89
0.89*
0.90
0.86
0.86
0.90*

0.88
0.85
0.92
0.90
0.86
0.84
0.84
0.87
0.91
0.85

SBB
0.88
0.85
0.92
0.90
0.86
0.84
0.84
0.87
0.91
0.85

0.87* 0.83
0.72
0.65
0.77
0.89
0.80
0.87
0.90
0.91
0.86
0.89
0.81
0.68
0.72
0.79
0.85
0.74
0.91
0.90
0.81
0.92
0.88
0.86
0.87
0.87
0.90
0.89
0.76
0.83
0.87
0.83
0.86
0.86
0.90
0.91
0.89
0.89
0.90
0.86
0.85
0.90

0.72
0.66
0.77
0.89
0.80
0.87
0.90
0.91
0.86
0.89
0.81
0.68
0.72
0.79
0.85
0.74
0.91
0.90
0.81
0.92
0.88
0.86
0.87
0.87
0.90

*0.89
0.76

*0.83
0.87
0.82
0.86
0.86
0.90
0.91
0.89

*0.90
0.90
0.86
0.85
0.90

Macthing

tau
0.89
0.84
0.94
0.90
0.85
0.81
0.81
0.88
0.92
0.86
0.84
0.71
0.70
0.79
0.86
0.80
0.87
0.89
0.91
0.86
0.92
0.80
0.62
0.76
0.80
0.86
0.73
0.91
0.89
0.85
0.93
0.88
0.86
0.86
0.87
0.90
0.89
0.81
0.82
0.88
0.83
0.85
0.85
0.91
0.92
0.90
0.92
0.87
0.86
0.88
0.90

rho
0.89
0.83
0.94
0.90
0.86
0.80
0.80
0.89
0.91
0.86
0.83
0.69
0.70
0.77
0.84
0.80
0.87
0.88
0.91
0.85
0.90
0.80
0.61
0.75
0.78
0.85
0.72
0.91
0.88
0.85
0.93
0.87
0.86
0.86
0.86
0.91
0.90
0.80
0.81
0.88
0.82
0.84
0.85
0.91
0.93
0.90
0.92
0.87
0.86
0.89
0.89

Joint MLE

plot LL Beta
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
96
97
98
99
100
101
102
104
106

0.88*
0.72
0.89
0.84
0.89
0.83
0.89
0.81
0.82
0.77
0.92*
0.88
0.85
0.88
0.90
0.88
0.85*
0.90
0.86*
0.91
0.84*
0.96
0.85
0.90*
0.89
0.79
0.86
0.85
0.87*
0.89
0.77
0.80
0.93*
0.84
0.73
0.78*
0.82
0.81
0.89
0.87
0.83*
0.81
0.90*
0.91*
0.89
0.89*
0.79
0.82
0.88*
0.91
0.79

0.88
0.72
0.90
0.84
0.88
0.83
0.89
0.81
0.83
0.77
0.92
0.88
0.86
0.88
0.90
0.88
0.84
0.91
0.86
0.91
0.84
0.95
0.85
0.92*
0.90
0.79
0.86
0.85
0.88
0.89
0.76
0.80
0.94*
0.84
0.73
0.78
0.83
0.82
0.88
0.87
0.80
0.81
0.90
0.91
0.89
0.88
0.80
0.83
0.88*
0.91
0.78

SBB
0.88
0.72
0.90
0.84
0.88
0.83
0.89
0.81
0.82
0.77
0.92
0.88
0.86
0.88
0.90
0.88
0.84
0.91
0.85
0.91
0.84
0.96
0.85
0.92
0.90
0.79
0.86
0.85
0.87
0.89
0.76
0.80
0.93
0.84
0.73
0.78
0.83
0.82
0.88
0.87
0.80
0.81
0.90
0.91
0.89
0.88
0.80
0.83
0.86
0.91
0.78

Macthing

tau
0.86
0.72
0.88
0.85
0.90
0.84
0.89
0.75
0.77
0.76
0.93
0.86
0.87
0.89
0.91
0.88
0.87
0.90
0.85
0.92
0.80
0.97
0.85
0.92
0.88
0.82
0.87
0.85
0.87
0.90
0.79
0.79
0.93
0.83
0.75
0.73
0.82
0.79
0.89
0.89
0.76
0.79
0.90
0.91
0.89
0.89
0.82
0.81
0.83
0.90
0.78

rho
0.85
0.74
0.87
0.84
0.89
0.84
0.89
0.76
0.75
0.77
0.93
0.86
0.87
0.89
0.92
0.88
0.87
0.90
0.84
0.92
0.77
0.97
0.84
0.92
0.88
0.82
0.86
0.85
0.88
0.91
0.80
0.78
0.92
0.81
0.75
0.72
0.80
0.78
0.89
0.88
0.76
0.79
0.90
0.91
0.88
0.89
0.81
0.79
0.83
0.90
0.78

Note: * denotes un-convergence in the joint MLE fitting
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Table 6.6. Paired t-test for difference in the normal copula p with different approaches

Pair

A A

Pr, Pr,

A A

PLL . Pr
A A

Pseia ' Pr
A A

A A

PLL - Pr,
rt *~ 
PBeta ' Pr,

A A

PSm , Pfs

A A

Pit ' PBeta
A A

PLL ' Psm

PBeta ' A^

Paired Differences

Mean
0.00436

-0.00236

0.00077

0.00074

-0.00176

0.00521

0.00510

-0.00151
-0.00145

0.00028

Std. Dev.
0.00711

0.01935

0.02072

0.01989

0.02175

0.02394

0.02309

0.00338
0.00343

0.00126

t

6.186

-1.082

0.365
0.375

0.720

2.119

2.229

-3.965
-3.756

2.127

df

101

78
94

101

78

94

101

78
78

94

p-value 
(2-tailed)
<0.0001

0.282
0.716
0.709

0.472

0.037

0.028

<0.0001
<0.0001

0.036em-* J BB

Note: f)T -matching sample Kendall's tau with the theoretical, pr -matching sample Spearman's rho with the 

theoretical, pLL -joint MLE with LL marginals, pBeta -joint MLE with Beta marginals, ps -MLE with the S BB -

6.4.3 Comparison of Copula Models

Since the Logit-Logistic is the most flexible distributional model among the three we 

compared and the resulting normal copula bivariate model consistently showed the best 

performance, we then use this model as marginals and employ other copulas to construct 

bivariate models, thus comparing the performance of these copulas in modelling the 

correlation structure between tree diameters and heights. Table 6.7 lists copula density 

functions in facilitating fitting these bivariate distributions.

In Chapter 5, we have already used the Plackett copula and the resulting negative log- 

likelihood can be found there. However, for convenience, we listed these results together 

with the results for the other copulas in Table 6.8. The following table 6.9 indicates the 

between-model comparative performance of these seven bivariate distributional models. 

From table 6.9, overall, it follows that Normal > Frank > Plackett > Gumbel > Clayton >
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AMH > FGM where ">" represents "better than". The best performance of the normal 

copula based bivariate distributional model indicates that it is the best way of constructing 

bivariate distributions for our tree diameter and height data, then if other marginal 

distributions are to be used, the normal copula would be the first choice to construct the 

corresponding bivariate models. All the other six models performed better than the FGM 

model in fitting each sample plot, and all the other five better than the AMH almost in fitting 

each sample. This is due to the fact that both copulas can only be suitable for describing 

"weak dependency", thus not adequate for modelling the joint distribution of tree diameter 

and height as regularly they are both highly dependent. 

Table 6.7: Density Function of Copulas____ _______________________
Family Function Form C(w,v) density function

dudv

Normal N

Plackett

,
(v))

Frank - —

2(0-1) 

1

2(0-1) {\[+(0-\)(u+v)f -4u\0(\-0) f2
-* -*(*- -!)(«- -

~ e ~0Clayton (u~ +v~ - 

Gumbel g-K- ta «>* + <- ln

(1 + 

(\nu\nvf~1 [

1 '9 (u~e + v~e -1)" 

0 + (-\nvf]ve- 2 [(-\r\u) 0

AMH
uv

1 - 9(1 - u)(i - v) 
FGM uv[\ + 9(1 -u)(i- v)]

0(uv + u + v-2)-02 (l-u)(\-v): ————— 
[1 - 9(\ - w)(l - v)] 3

0(1- 2u}(\ - 2v)

As we know, the normal, Frank and Plackett copulas all imply symmetric dependence 

patterns, while Gumbel and Clayton copulas are both asymmetric, implying higher 

dependency at right tails and left tails, respectively. Meanwhile as we know that "in the even- 

aged forest stand, the tallest (dominant) trees and the shortest (suppressed) trees are associated, 

respectively, with the largest and smallest diameters" (Schreuder and Hafley 1977), the better 

performance of these three symmetric copulas (normal, Frank, and Plackett) over the other
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two asymmetric copulas (Gumbel and Clayton) may further indicate that the dependence 

between tree diameters and heights is somewhat symmetric, that is, the association between 

the tallest trees and the largest diameters may behave in the similar way as the association 

between the shortest trees and the smallest diameters. The out-performance of the normal 

copula over the Frank, Plackett may indicate that this copula can be more capable of capturing 

the "symmetric dependence" between tree diameters and heights than the other two 

alternatives.

Furthermore, we calculated the "fitted" Kendall's tau with correlation parameter estimates 

obtained for each copula except Plackett's copula for which no closed tau formula exists, see 

table 6.10. We then compared the "fitted" Kendall's tau resulted from each copula with the 

sample Kendall's tau by using paired t test. Table 6.11 showed the results: there is no 

significant difference between the sample tau and the fitted tau for the normal and Gumbel 

copulas, while there is for Frank and Clayton. So, in terms of Kendall's tau, the normal and 

Gumbel copulas may be regarded as more "successfully" reflecting the dependency for our 

data while Frank and Clayton not. The inefficiency of Frank and Clayton in expressing 

dependency may also be recognized by the observation that 92 out of 99 (number of sample 

with fitting converged) fitted tau with Frank copula is bigger than the sample Tau while 98 

out of 98 fitted tau is smaller than the sample tau for the Clayton copula. We have to admit 

that Kendall's tau is only one measure of dependence and there should be other aspects of 

dependence for which tau can not capture, but comparison of the fitted tau with the sample 

tau may provide a criterion to decide which copula is not well suited.

In fact, for selecting one particular copula from a collection of them, we may use the CML 

method to fit the copula itself without specifying any univariate model but using empirical 

univariate distributions (i/(n+\), we adopted here) for approximating the marginals. The 

resulting pseudo log-likelihood is then used as the comparing criterion. Table 6.12 lists the
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pseudo log-likelihood for each copula, and table 6.13 shows the comparison results for the 

seven copulas. Not surprising, the CML based comparison results are consistent with those 

based on the joint log-likelihood above. This marginal free selection procedure may be 

preferred for choosing an appropriate copula from a given family.

In addition, we compared the estimates of the normal copula parameter p with those 

obtained from the above one-step MLE. Table 6.14 listed the paired t test results. Clearly, all 

the two-step estimates of p do not show significant differences. Also, no significant 

differences is found between the CML estimates and those from fitting the bivariate (normal) 

Logit-Logistic, while there are significant differences between the two-step estimates and 

those for the bivariate (normal) Beta or S B B- Therefore, for the bivariate normal copula based 

Logit-Logistic, if the one-step MLE does not converge in fitting, we may independently 

estimate the copula parameter by matching Kendall's tau or using the CML method, and then 

fit the marginals.
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Table 6.8: Negative log-likelihood of 7 bivariate distributions based on 7 copulas with logit- 
logistic as marginals
Plot Normal
1 333.79
2 399.54
3 414.66
4 491.73*
5 421.21
6 388.96
7 569.77
8 468.05
9 469.35
10 325.51
11 299.94*
12 242.41*
13 278.12
14 218.17
15 339.92
16 316.02
17 352.14
18 548.96
19 467.89
20 546.01
21 252.58
22 285.58
23 286.07
24 385.83
25 316.54
26 347.33
27 299.74
28 419.19
29 333.71*
30 338.22
31 405.49
32 334.82
33 523.83*
34 372.93
35 473.50
36 643.22
37 273.30*
38 246.85
39 534.77*
40 649.21
41 477.76
42 510.67
43 310.98
44 620.69
45 800.28
46 535.32
47 519.60*
48 388.82
49 756.94
50 267.49
51 328.16*

Frank
330.07
403.97
419.33
496.19
429.68
398.81
583.21
466.96
466.53
327.23
306.43
247.07
277.20
219.17
351.38
314.40
357.77
554.36
466.73
555.08
250.25
291.18
292.56
385.18
316.33
344.80
306.22
413.60
345.51
336.49
402.72
339.60
535.49
376.13
477.61
650.19
285.15
241.60
549.53
648.73
481.43
514.87
313.47
616.83
797.67
539.76
520.33
397.65
762.47
264.77
329.70

Plackett
334.20
404.64
422.05
496.93
430.09
396.80
581.87
472.21
469.05
328.88
305.35
245.42
278.20
219.43
349.76
316.70
359.13
555.90
469.55
553.42
246.42
291.43
292.00
384.59
319.05
346.15
307.96
418.27
344.27
339.18
403.85
340.33
534.71
378.27
476.60
649.60
286.77
240.38
550.58
649.73
476.86
513.62
316.29
622.59
801.41
540.88

* 529.08
398.42
763.95
268.10
328.62

Gumbel Clayton
333.36 351.87
407.52 399.90
417.54 435.56
484.61*521.18
428.77 429.49
393.22 400.26
581.30 576.73
473.64 479.95
478.16 468.87
329.65 330.68
307.65 294.44*
248.03 245.46
280.77 281.17
221.19 221.79
347.04 347.60
321.25 317.77
359.28 361.11
560.50 555.55
476.57 465.04
553.95 558.44
248.95* 258.50
289.86 293.20
284.26* 294.04
387.88 389.90
322.88 317.81
352.67 346.42
307.37 301.91
422.47 422.86
341.60 334.90*
339.36 350.90
411.60 406.17
340.56 345.72
528.77 555.27
379.64 383.92
482.46 471.72
646.06* 665.95
275.78* 295.54
247.70 244.94
548.57 540.49
654.50 662.44
478.68 490.58
521.07 504.95
318.01 316.70
629.12 629.30
804.11 821.92
538.00 555.21
525.74* 548.73
400.19 388.99
771.92 762.96
268.95 278.17
330.60 340.55

AMH
365.40*
415.00
463.02
546.49
447.06
410.28
593.42
502.11
515.40
345.05
317.09*
242.89*
281.40
224.46
362.88
325.36
377.20
595.87
504.52
583.87
270.48*
300.93
294.10
393.73
324.93
360.90
305.36
460.67
360.02
360.17
454.68
363.32
578.81
399.64
502.03
707.16
309.29
251.04
554.48
693.07
501.17
531.00
328.46
675.31
875.48
580.55
579.52*
414.80
799.79
285.97
359.32

FGM
386.06
441.47
495.61
572.13
472.79
434.68
629.03
528.35
559.27
366.98
337.71
259.77
286.72
235.19
391.69
341.44
404.58
642.04
543.08
621.14
290.20
316.68
299.06
405.59
341.51
381.55
319.71
496.50
385.91
376.27
486.71
388.70
608.90
426.70
540.67
757.79
328.12
260.78
580.81
729.35
525.03
569.63
348.16
712.89
930.58
614.88
615.83
449.02
857.73
294.70
380.39

Plot Normal
52 334.46*
53 443.58
54 667.79
55 362.80
56 363.17
57 328.86
58 460.59
59 344.67
60 339.00
61 360.33
62 253.34*
63 252.05
64 519.76
65 361.84
66 367.09
67 427.16
68 558.53*
69 353.80
70 442.03*
71 547.27
72 400.42*
73 241.21
74 219.98
75 277.33*
76 259.00
77 354.89
78 516.40
79 693.96
80 413.83*
81 384.11
82 353.92
83 245.81
84 303.67*
85 646.74
86 302.64
87 461.35*
88 353.65
89 320.57
90 628.66
91 428.77
92 257.95*
93 444.02
96 387.35*
97 460.75*
98 513.15
99 450.17*
100488.52
101418.76
102351.48*
104253.79
106291.48

Frank Plackett
348.25
441.99
679.98
366.33
364.77
329.23
464.15
349.90
350.83
364.44
264.38
253.28
516.81
359.52
363.25
436.98
552.42
361.45
450.22
547.88
414.96
239.46*
224.10
283.36
261.87*
353.10
516.47
694.48
425.02
387.37
354.75
247.33
319.18
657.66
303.19
471.40
356.07
329.32
638.71
428.38
266.08
450.80
396.55
470.48
520.54
455.67
482.44
424.39
371.01
254.64
287.23

344.75
442.29
677.64
366.59
365.52
330.76
463.98
351.57
349.02
364.61
266.07
254.11
519.54
363.86
367.31
438.42
561.26
362.10
448.22
551.14
409.17
276.40*
222.57
284.64
263.75*
353.49
516.22
696.88
426.61
390.74
357.45
248.26
318.00
651.28
305.33
470.34
355.80
327.32
638.22
430.73
266.50
451.93
397.96
473.93
519.23
457.33
478.37
423.34
369.30
255.92
289.81

Gumbel Clayton
337.74* 348.75
445.93 449.51
677.05 681.27
370.34 367.27
365.62 374.16
334.74 330.06
466.73 474.10
354.68 341.29
342.08 348.70
364.62 364.40
261.17*269.95
257.58 250.87
518.09 551.55
370.19 360.75
370.87 376.67
437.07 436.42
568.31*566.06
361.84 358.03
449.08 451.58
553.62 563.41
411.10 404.78
237.65 255.29
217.51 236.81
270.89* 289.79
266.83* 252.05
354.04 366.44
519.18 533.18
704.77 693.42
421.55 438.17
393.39 388.71
357.78*366.28
248.80 249.07
308.47* 322.93
643.63 671.42
305.59 309.18
472.50 460.36
359.69 356.04
324.27 328.97
636.38 649.74
434.90 436.58
266.20 253.11*
451.59 450.50
385.66* 406.36
460.61*490.49
516.64 532.02
458.93 459.57
488.55 489.11
425.13 418.86
360.98* 342.68*
253.18 266.69
295.99 292.54

AMH
364.05
452.64
717.80
381.11
392.42
342.69
503.67
348.49
354.56
368.51
289.84*
267.53
574.37
383.58
403.10
457.10
587.43
382.72
464.48*
608.39
417.28
293.20*
246.03
317.88
274.48
370.48
557.43
720.49
454.24*
412.23
368.92
254.07
349.51*
687.63
311.28
466.02*
367.31
334.14
684.09
461.90
266.33*
459.26
428.76
519.49
560.51
484.86*
506.55
430.83
375.78*
282.24
298.61

FGM
391.10
463.39
769.73
406.65
416.40
362.21
536.91
371.99
371.88
385.05
311.85
287.05
600.74
411.06
424.57
488.37
617.37
410.07
491.33
644.90
449.47
310.73*
258.58
345.09
297.92
378.79
587.52
770.89
478.72
439.32
378.75
264.41
376.02
716.01
319.40
492.92
390.89
353.25
724.22
491.93
280.33
481.29
453.53
548.60
593.02
515.22
537.24
455.59
399.09
294.55
311.24

Note: * denotes un-convergence in the joint MLE fitting
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Table
plot

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

6.10: Kendall's
sample
0.70
0.63
0.77
0.71
0.65
0.60
0.60
0.69
0.74
0.66
0.63
0.50
0.50
0.57
0.65
0.59
0.67
0.70
0.73
0.66
0.74
0.59
0.43
0.55
0.59
0.66
0.52
0.73
0.70
0.65
0.76
0.69
0.67
0.66
0.67
0.72
0.70
0.60
0.61
0.69
0.62
0.64
0.65
0.73
0.75
0.71
0.74
0.68
0.66
0.68
0.71

normal
0.68
0.64
0.75
0.72*
0.66
0.62
0.63
0.67
0.74
0.65
0.62*
0.51*
0.45
0.56
0.69
0.58
0.67
0.70
0.73
0.66
0.69
0.60
0.48
0.52
0.57
0.64
0.53
0.72
0.73*
0.62
0.75
0.68
0.66*
0.67
0.67
0.71
0.69*
0.55
0.62*
0.68
0.61
0.65
0.65
0.71
0.73
0.70
0.70*
0.71
0.66
0.65
0.71*

tauby
Frank
0.72
0.65
0.77
0.73
0.67
0.63
0.63
0.69
0.76
0.68
0.66
0.54
0.49
0.59
0.69
0.62
0.70
0.74
0.75
0.68
0.75
0.61
0.45
0.54
0.61
0.68
0.51
0.75
0.72
0.64
0.78
0.70
0.68
0.70
0.70
0.74
0.70
0.61
0.62
0.70
0.65
0.68
0.68
0.74
0.76
0.72
0.74*
0.73
0.68
0.68
0.74

Sample
Gumbel

0.68
0.63
0.75
0.70*
0.65
0.61
0.62
0.66
0.75
0.65
0.63
0.54
0.45
0.57
0.68
0.58
0.67
0.71
0.74
0.65
0.73*
0.59
0.48*
0.52
0.56
0.65
0.50
0.73
0.71
0.62
0.75
0.68
0.65
0.67
0.68
0.70*
0.69*
0.59
0.59
0.68
0.62
0.66
0.64
0.72
0.74
0.70
0.72*
0.71
0.66
0.64
0.71

and Copulas
Clayton
0.66
0.59
0.66
0.64
0.61
0.54
0.57
0.62
0.70
0.61
0.58*
0.43
0.43
0.49
0.60
0.54
0.61
0.68
0.69
0.61
0.68
0.55
0.35
0.48
0.54
0.62
0.47
0.70
0.66*
0.54
0.73
0.63
0.60
0.60
0.64
0.65
0.63
0.56
0.58
0.63
0.55
0.62
0.60
0.70
0.68
0.62
0.68
0.66
0.61
0.58
0.66

Plot
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
96
97
98
99
100
101
102
104
106

sample
0.66
0.52
0.68
0.65
0.71
0.64
0.70
0.54
0.56
0.55
0.76
0.66
0.67
0.70
0.74
0.69
0.67
0.71
0.65
0.75
0.59
0.84
0.65
0.74
0.69
0.61
0.68
0.65
0.68
0.71
0.58
0.58
0.75
0.63
0.54
0.52
0.61
0.58
0.70
0.69
0.55
0.58
0.71
0.73
0.69
0.70
0.62
0.60
0.62
0.72
0.57

normal
0.69*
0.51
0.70
0.64
0.69
0.62
0.70
0.60
0.62
0.56
0.75*
0.69
0.65
0.69
0.72
0.69
0.64*
0.72
0.66*
0.73
0.64*
0.82
0.65
0.72*
0.70
0.58
0.66
0.65
0.68*
0.70
0.56
0.59
0.76*
0.64
0.52
0.57*
0.61
0.60
0.69
0.67
0.62*
0.60
0.71*
0.72*
0.69
0.70*
0.58
0.62
0.68*
0.72
0.58

Frank
0.69
0.55
0.73
0.66
0.72
0.65
0.73
0.59
0.60
0.56
0.76
0.71
0.69
0.71
0.75
0.69
0.67
0.73
0.67
0.75
0.64
0.74*
0.67
0.76
0.69*
0.62
0.69
0.68
0.69
0.72
0.59
0.61
0.79
0.65
0.54
0.57
0.65
0.60
0.70
0.70
0.59
0.60
0.72
0.74
0.72
0.71
0.64
0.63
0.66
0.76
0.63

Gumbel
0.67*
0.52
0.70
0.64
0.70
0.62
0.70
0.59
0.58
0.56
0.77*
0.69
0.65
0.69
0.72
0.68
0.64*
0.71
0.65
0.73
0.64
0.82
0.64
0.73*
0.71*
0.59
0.66
0.66
0.67
0.69
0.55*
0.58
0.75
0.63
0.52
0.55
0.62
0.60
0.69
0.67
0.57
0.59
0.70*
0.70*
0.69
0.69
0.61
0.62
0.67*
0.72
0.59

Clayton
0.60
0.47
0.65
0.57
0.63
0.59
0.67
0.52
0.52
0.48
0.69
0.66
0.61
0.65
0.69
0.63
0.59
0.66
0.58
0.69
0.57
0.80
0.58
0.70
0.68
0.50
0.62
0.61
0.60
0.66
0.46
0.55
0.72
0.57
0.46
0.51
0.58
0.50
0.63
0.64
0.53*
0.53
0.66
0.66
0.65
0.64
0.57
0.57
0.59*
0.67
0.54

Note: * denotes un-convergence in the joint MLE fitting
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Table 6.12: pseudo log-likelihood of 7
Plot Normal Frank Plackett

1 75.67 74.95 72.88
2 62.44 57.17 56.47
3 118.37 110.19 109.47
4 108.62 107.09 106.55
5 73.85 66.95 65.58
6 66.13 57.70 59.85
7 86.37 74.72 77.33
8 89.63 93.09 87.44
9 118.79 120.11 121.74
10 63.55 60.88 59.43
11 51.84 48.66 49.52
12 25.33 23.02 24.92
13 25.37 24.74 23.46
14 30.68 29.48 29.15
15 70.05 57.48 60.78
16 43.98 43.87 42.20
17 73.86 67.48 66.63
18 122.67 112.72 115.20
19 95.07 102.44 98.89
20 107.83 99.36 101.78
21 57.26 56.39 59.75
22 46.99 42.90 42.21
23 21.99 17.39 17.79
24 41.78 43.51 42.90
25 44.09 40.93 40.71
26 49.64 51.86 51.73
27 36.51 31.53 29.60
28 102.51 105.41 101.18
29 66.29 57.83 58.91
30 66.53 67.67 64.71
31 110.15 112.24 111.87
32 78.33 69.00 69.99
33 123.38 114.00 115.30
34 70.62 65.90 64.13
35 94.66 90.84 93.35
36 150.71 151.55 149.37
37 72.44 66.10 64.49
38 29.64 33.31 33.48
39 66.79 55.53 55.47
40 118.39 117.71 116.49
41 73.25 68.36 72.48
42 85.53 82.84 86.50
43 53.73 49.91 48.67
44 128.58 129.47 125.80
45 175.61 181.89 177.28
46 108.40 107.41 103.47
47 128.22 131.92 123.25
48 74.11 67.30 68.71
49 146.91 141.41 142.10
50 43.32 45.63 42.59
51 66.90 65.75 67.21

Gumbel
75.65
52.30

111.68
116.02
64.28
61.26
74.46
81.48

103.45
57.22
45.69
22.88
21.50
27.31
64.72
36.92
63.92

103.80
78.60

100.50
58.33
43.77
22.62
38.58
37.03
42.22
28.06
90.07
59.93
63.19
96.49
69.59

121.48
62.01
82.61

135.72
71.53
25.11
58.48

102.94
70.42
71.85
44.69

112.52
159.19
97.83

115.90
62.56

125.13
40.71
64.72

Clayton
51.55
65.75
93.46
67.54
64.29
58.57
80.07
69.11

118.40
57.37
46.17
26.61
20.92
27.10
65.47
40.02
66.10

120.28
100.44
91.78
43.75
37.00
16.49
34.94
43.00
50.24
36.20
87.74
64.46
45.35

101.88
68.48
90.12
57.38

102.09
121.32
51.88
27.30
64.10
98.50
61.36
98.33
48.11

107.63
145.87
88.11
92.68
78.16

145.30
29.48
49.99

copulas
AMH

37.79
43.86
51.44
51.33
44.37
44.12
58.45
51.28
64.09
39.23
33.11
22.31
19.91
22.44
41.40
32.39
43.79
69.66
56.47
64.05
27.53
29.75
16.35
31.36
33.32
34.54
30.62
54.53
36.93
37.78
55.40
43.32
66.81
42.01
61.51
78.57
35.58
22.12
44.53
67.39
45.72
60.53
33.07
66.83
88.59
58.51
63.88
45.08
95.47
22.99
33.93

FGM
24.28
23.23
28.51
33.72
24.59
24.12
31.25
31.77
34.31
21.99
18.76
12.02
14.60
13.69
21.35
19.48
24.16
36.60
30.85
36.03
16.14
19.02
11.51
22.20
18.80
19.47
17.46
31.26
19.14
24.99
29.99
23.72
40.73
24.21
32.03
46.78
21.31
14.33
23.84
39.54
27.38
31.39
18.55
38.16
50.36
34.49
38.46
23.72
52.17
15.69
20.21

Plot Normal
52 73.16
53 43.09
54 125.47
55 70.01
56 77.41
57 54.01
58 106.28
59 39.77
60 44.28
61 44.38
62 70.62
63 47.03
64 121.99
65 69.91
66 81.89
67 89.14
68 93.03
69 76.50
70 66.98
71 135.70
72 60.31
73 102.06
74 57.75
75 81.46
76 49.93
77 44.80
78 108.91
79 113.27
80 85.07
81 77.66
82 47.16
83 29.41
84 79.08
85 104.69
86 34.20
87 45.01
88 55.35
89 51.36
90 138.38
91 95.80
92 28.23
93 58.41
96 84.81
97 117.86
98 112.79
99 91.09
100 82.34
101 56.84
102 52.69
104 54.40
106 32.20

Frank Plackett
63.81
43.43

114.21
65.00
73.67
52.77
98.52
36.47
35.36
41.57
67.47
44.60

124.14
72.88
84.25
79.43
98.81
69.83
63.26

134.09
53.45

111.08
54.60
79.09
49.56
45.31

104.61
109.52
80.84
76.30
45.60
26.62
70.13
93.95
32.98
38.70
51.41
43.49

130.61
91.43
24.68
51.52
78.58

110.03
100.30
88.37
86.96
51.32
45.23
49.81
33.62

66.46
43.36

119.10
65.77
73.47
51.44

101.76
35.51
37.82
40.08
65.70
44.57

125.62
69.69
79.01
79.25
91.69
68.74
65.25

130.57
59.46

107.60
56.18
78.75
47.29
44.22

106.87
107.47
77.84
72.72
42.73
26.93
74.02

101.48
31.16
39.71
53.27
44.96

130.49
91.51
23.76
50.46
76.71

108.80
104.01
86.49
90.58
53.82
45.39
50.78
33.28

Gumbel
68.63
39.38

113.38
58.21
73.08
44.88
96.46
28.94
44.42
39.78
65.90
39.06

122.75
57.10
73.70
76.97
75.19
66.68
62.76

122.27
53.45

106.84
63.96
71.76
36.95
45.07

103.05
93.44
82.74
62.43
42.45
26.19
75.05

110.09
30.31
36.18
49.07
46.55

130.52
86.45
23.07
49.80
77.70

113.13
108.09
77.08
77.35
49.30
49.99
55.11
26.25

Clayton
62.53
37.00

110.46
66.84
59.20
53.13
90.10
48.53
38.64
39.33
54.23
49.04
81.30
66.75
62.17
82.98
79.51
68.44
58.45

106.44
70.07
68.98
38.96
75.11
60.24
27.04
78.25

115.82
59.70
78.66
32.23
26.80
70.34
81.46
25.87
51.40
52.15
46.74

110.43
83.31
26.84
51.82
65.79
83.18
91.00
81.45
80.52
57.97
46.65
37.69
30.99

AMH
42.80
33.64
71.69
44.90
40.36
36.94
57.00
36.19
30.48
33.33
31.86
29.55
63.16
42.72
41.25
49.57
59.61
40.60
41.89
66.11
46.38
35.38
30.37
41.60
32.81
25.27
58.86
76.25
44.29
43.70
29.06
20.79
36.28
62.26
24.06
39.57
38.13
35.63
73.94
54.53
21.30
41.05
43.50
55.88
58.68
52.29
60.35
40.49
32.27
25.50
24.75

FGM
23.57
23.08
39.03
24.41
23.30
20.88
31.31
18.97
16.35
20.53
18.34
15.71
42.71
24.05
24.72
26.85
36.19
22.20
23.34
37.44
23.18
21.93
20.22
22.69
17.45
18.92
35.57
41.66
28.09
24.05
20.66
11.85
19.02
35.73
17.03
20.26
21.00
19.81
42.04
30.45
11.98
23.63
24.90
32.69
32.63
29.09
34.89
20.95
18.18
15.32
15.18

139



Table 6.9: Comparison results of 7 copula-resulting bivariate 
distribution models based on joint {-AA}

row
Normal
Frank
Plackett
Gumbel
Clayton
AMH

Frank Plackett Gumbel Clayton AMH FGM

51/77 63/77 
64/99

67/74 68/79 76/76 78/78
62/85 71/95 85/87 99/99
59/85 68/96 85/87 100/100

49/83 75/77 85/85
87/87 97/97

88/88
Proportion of cases (in which there was joint fitting 
row-distribution model had a lower {-AA} than the

convergence) in which the 
col-distribution.

Table 6.11. Paired t-test for difference between sample tau and those of copula resulted
Paired Differences 

Pair ——._„_„__ _.. -
Mean

TN , Ts -0.00353

TF ,TS 0.02014

TG , Ts -0.00239

Tc , Ts -0.05398

Std. Dev.
0.02122
0.01421
0.01770
0.02254

t df

-1.479 78

14.099 98

-1.251 85
-23.707 97

p-value 
(2-tailed)
0.143
<0.0001
0.214
<0.0001

Note: rs -sample Kendall's tau, rN , TF , rc , rc -Kendall's tau calculated from 
the fitted Normal, Frank, Gumbel and Clayton copula, respectively.

Table 6.13. Comparison results of 7 copula models based on the CML pseudo {-AA}
.col

row
Normal
Frank
Plackett
Gumbel
Clayton
AMH

Frank Plackett Gumbel Clayton AMH FGM

79/102 87/102 92/102 87/102 102/102 102/102
60/102 75/102 69/102 101/102 102/102

76/102 72/102 100/102 102/102
55/102 99/102 102/102

102/102102/102
102/102

Table 6.14. Paired t-test for difference in the normal copula p between CML resulted and 
other approaches

Pair

/\
P
/\
P

.A.

P
/\

P
A

P

/\

r» PCML

rs ' PCML

*,

LL > PCML
/^

Beta ' PCML
y\

S BB ' PCML

Paired Differences

Mean
0.0023
-0.0020

0.0013

0.0036
0.0031

Std. Dev.
0.0140
0.0178

0.0124

0.0131

0.0126

t

1.694

-1.138

0.948

2.676
2.484

df

101

101

78

94

101

p-value 
(2-tailed)
0.093
0.258

0.346
0.009
0.015

Note: pr -matching sample Kendall's tau with the theoretical, pr -matching sample Spearman's rho with the 

theoretical, pCML -CML resulted, pLL -joint MLE with LL marginals, f> Beta -joint MLE with Beta marginals, 

-MLE with the SBB-

140



6.5 Conclusions

Many statistical distribution functions have been used to describe diameter distributions in 

forest stands, including the Weibull, Beta, Johnson's S B and Logit-Logistic. Then very 

naturally one quite interesting question arises that: is there such a method that we can use it to 

construct "promising" bivariate distributions with these given marginal distributions? The 

answer to this question would be much of interest to forestry researchers and practitioners, as 

in many cases we already have prior knowledge about the distributional model of the 

marginals. The copula approach provides such a general way of extending these univariate 

distributions into their bivariate domain.

By a theorem due to Sklar in 1959, a multivariate distribution can be represented in terms 

of its underlying marginals by binding them together using a copula function. A copula 

function then separates a bivariate distribution into its marginal component and the 

dependence structure between two variables. This separation allows for any specified 

marginals to be used for constructing a bivariate distribution with a copula function while the 

copula captures the "nonparametric", "distribution-free" or "scale-invariant" nature of the 

association between random variables. Using the normal copula, we constructed the bivariate 

(normal) Logit-Logistic model, thus extending its superior performance in the univariate 

domain to the bivariate domain. The normal copula may be regarded as normalization in the 

multivariate domain, while the Logit-Logistic may represent the empirical marginals much 

more adequately than the other univariate models we used.

We also compared other copulas (mainly of the Archimedean families) available in the 

statistical literature with the normal copula. Our results showed that the normal copula is the 

best one used for modelling the joint distribution of tree diameters and heights. As argued by 

Hafley and Schreuder (1976) that for a suitable bivariate distribution in modelling the joint 

distribution of tree diameters and heights, not only the marginals should be flexible for fitting
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the marginal frequencies of heights and diameters satisfactorily, but also this bivariate 

distribution provides a reasonable relationship between these two marginal variables. Based 

on this study we may tend to say that the normal copula approach is such a method of setting 

up such a suitable bivariate distribution, though we mainly put attention to some measures of 

dependence in this study while the relationship is characterized in terms of (median) 

regression in Hafley and Schreuder (1976) and thereafter. With the copula approach, the 

traditional mean regression would be too complicated but the median regression of Y to X is 

easily obtained since the conditional distribution of Y\X=x is given as,

(6.33)

"\ s-1 / x

where Cj (M, v) - ——— ! — . For the normal copula, the median regression is given as,
ou

)) (6.34)

which usually has no closed form expression, but Mardia (1970) gave an approximation by 

approximating the CDF of the normal with the Logistic as the following,

G(y) = ———— ———— (6.35)

The median regression height-diameter model implied by the SBB as in Schreuder and Hafley 

(1977) is thus a special case of equation (6.34), we may then expect that with more flexible 

marginal model, the resulting median regression model would be more adequate for 

describing the tree height-diameter relationship.

Our comparisons of different bivariate distributions, with the same copula but different 

marginals or with the same marginal but different copulas, were mainly based on the 

likelihood resulting directly from the MLE fitting the models, which is actually the AIC 

criterion. Other goodness-of-fit measures may be explored, especially when we use the two- 

step estimation in fitting for which we think further research on other methods of parameter 

estimation (LS method, say) would be worthwhile and in these cases the AIC may not apply.
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Finally, both the bivariate normal copula and the bivariate Archimedean families can be 

extended into the multivariate cases. However, the primary advantage of the multivariate 

normal copula over the Archimedean families may lie that the normal copula permits the use 

of any positive-definite correlation matrix as the ordinary multivariate normal distribution but 

the class of Archimedean copulas is limited to intra-class correlation matrices.
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Chapter 7: Spectral Refinement of Control Points for Co- 

Registration of Remotely Sensed Imagery

Summary

The traditional method of co-registering multi-temporal images to each other is to 

independently geometrically correct each image to a set of ground control points (GCPs). 

However, image-to-image co-registration is possible without the need for ground control 

points. Image co-registration control points (CPs) selected manually are subject to locational 

measurement errors. Spectral/intensity information is used to "refine" the estimate of the 

location of CPs for image-to-image registration. Three date Landsat Images (1987 Thematic 

Mapper (TM), 1997 TM, 2000 Enhanced Thematic Mapper (ETM)) covering a forest area in 

Northeastern China were used as a case study.

7.1 Introduction

Remotely sensed data contain both errors derived from the sensor instrument, and 

geometric representation errors. Most commercially available remote sensor data (e.g., TM 

images) already have much of the instrumental error removed (Jensen 1996). However, the 

non-instrumental error remains in the image, and therefore geometric correction usually has to 

be carried out to remove this error before actually analyzing remotely sensed (RS) data.

There are two common geometric correction procedures often used, image-to-map 

rectification and image-to-image registration. The difference between these two procedures is 

that in image-to-map rectification the reference is a map in a standard map projection, while 

in image-to-image registration the reference is another image. Both procedures normally 

involve selecting a number of control points (CPs). The selection of CPs is not an easy task 

when done manually, which is the norm.
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In the image to image case, even for an experienced RS interpreter, the locations of 

selected CPs are always subject to some measurement error. For example, the interpreter may 

know that the selected CP is within a small area on the image, but not exactly which pixel.

As we know residual geometric error in a production map produce a "component" of the 

apparent classification error (Rennolls 2002), it is of utmost importance to reduce the 

rectification error as much as possible. The quality of the classification stage will then be 

enhanced, and the classification accuracy statistics will really refer to "pure" classification 

error rather than classification error due to pixel mismatch.

In our study, we are concerned with a sequence of images, and are interested primarily in 

estimating change and growth. For this, sub-pixel accuracy of image co-registration is 

desired (Coppin and Bauer 1994). In this chapter we go into some detail on the pixel- 

matching problem, and present a simple heuristic spectrally based pixel matching algorithm 

which seems to offer considerable scope for very accurate image-to-image co-registration.

7.2 Literature Review

There is a very full and technical history and literature in the area of registration and 

geometric correction. Two comprehensive surveys of image registration methods are referred 

to Brown (1992) and Zitova and Flusser (2003). The image registration normally consists of 

four steps, (1) control points extraction from images (2) control points matching (3) 

transformation model estimation using matched CPs, and (4) image re-sampling. With the 

first two steps completed, the last two steps are straightforward in that both can be done 

automatically with support of some commercially available packages (e.g. Erdas). Therefore, 

the first two steps are two key steps in the process of image registration, and not surprisingly, 

much research has involved in automating control points/feature selection as well as matching. 

The control points frequently used include line intersections (Stockman et al. 1982), centroids
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of closed contours or salient points of open contours (Li et al. 1995), centers of closed- 

boundary regions (Goshtasby et al. 1986, Ton and Jain 1989, Dowman and Dare 1999), and 

feature points detected from maxima of wavelet coefficients (Le Moigne et al. 2002).

The extracted CPs can then be matched to find the feature correspondence, through 

feature-based matching methods or the area-based (intensity-based) methods. Feature-based 

methods are to establish geometric correspondence between two sets of salient features in the 

reference and sensed images using their spatial relations or various descriptors of features 

after the features have been detected (Zitova and Flusser 2003). In contrast, area-based 

methods compare directly pixel intensity values in small image subsets/windows (Pratt 1974, 

Li et al. 1995), not necessarily to detect feature points before matching. There are many 

similarity metrics used in area-based methods, including correlation (Bernstein 1983, Pratt 

1991, Brown 1992, Zitova and Flusser 2003), mutual information (Cole-Rhodes et al. 2003, 

Chen et al. 2003, Bardera et al. 2004), and sum of absolute or squared differences of the 

image intensity values (Zitova and Flusser 2003). Among them, the correlation metric is 

probably the most common used (Igbokwe 1999, Kenneday and Cohen 2003).

We note that area-based methods put emphasis on the CPs matching rather than on 

detecting them (Zitova and Flusser 2003), nonetheless it is the case of our study in which CPs 

are manually but roughly selected. Another point is that area-based methods may work with 

the whole images without requiring CPs, for example, Yao and Chern(2001) is particularly 

interesting in the way that combines the estimation of the registration transformation with the 

estimation of a shading function, with a robust weighted least squared method.

7.3 The Case Study Data

Three Landsat images were provided by the Chinese Academy of Forestry. They are 

1987 LandsatS TM, 1997 Landsat5 TM, Landsat7 ETM. All of them have been
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systematically corrected, geometrically and radiometrically. The 1987 and 1997 images are 

in the TM/Krasovsky projection with pixel size of 35m, and the 2000 image in UTM/WGS 84 

with pixel size of 33m.

Figure 7.1. Landsat TM images of Aol: 1987, 1997, 2000 (in 4,3,2 colour composite)

7.4 Co-registration: Image to Image Matching 

7.4.1 Stage 1 Matching

If the matching of two or more images is to be done completely automatically, the 

problem is "hard" (Keysers and Unger 2003). The rectification/geometric-correction 

approach to matching is usually "spatially" based. Control points have to be selected on each 

of the images and their coordinates determined as accurately as possible. If this determination 

is without error then a rubber-sheet transformation, such as a thin plate spline interpolates the 

match across the whole image. In such an approach the root-mean-square (RMS) error is zero 

and the matching accuracy (or equivalently the matching model-error) has to be determined 

from a validation set of control points that have been reserved from the rectification process.

Ironically this image matching is largely trivial for the human eye-brain complex. From 

observation of the images in Figure 7.1, we immediately "see" the lower "trident foot" of the 

common "snakes" in our images, whether they be ridges, valleys or roads. Our mind's-eye 

immediately (i) matches the images just with a handful of corresponding features, and 

mentally (ii) superimposes the intervening regions on the images.
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We bypass the hard problem of whole image matching, and follow the human eye-mind 

heuristic through two phases, as indicated above. We use the (actual) eye to select a "couple" 

of corresponding control points, and roughly determine their coordinates in their own image 

frames.

7.4.2 Selecting Control Points

For the 1987 and 1997 TM images, 41 CPs were selected manually. They are mainly road 

or river intersection points, which are relatively easily recognized in images. Suppose each of 

these points is within 5 pixels area with itself as the center. That is, we know for sure this CP 

is within a 11 x 11 square lattice of pixels, but are not quite sure which cell/pixel it is in.

Figure 7.2. Manual selected 41 GCPs in 1997 Image for 1987-1997 image co-registration (in
4,3,2 colour composite)
Note: Line in black is Bureau boundary

Figure 7.3 Several Manual selected GCPs in 1997 Image for 1987-1997 image co- 
registration (in 4,3,2 colour composite), road/road and road/river intersections

148



7.4.3 The Perspective Transformation

Various transformation models have been used for geometric correction, including affine 

(linear) transformation, bilinear transformation, perspective transformation, radial basis 

functions, and so on. For details see Fogel and Tinney (1996) and Glasbey and Mardia (1998). 

In this study, we use the perspective transformation given as,

where (u, v) are 1997 image coordinates, (jc, y) 1987 or 2000 image coordinates. 

7.4.3.1 The 1987-1997 Perspective Transformation

The 41 control points are used to fit the perspective transformation model using least 

squares method. Table 7.1 lists the parameter estimates and Figure 7.4 shows the residuals 

diagrams. 

Table 7.1. Perspective transformation 1987->1997, on 41 "rough" points
ao=
ai=
a2=
b0=
bi=
b2=
Cl=

C2=

10882.83622
0.975338626
-0.002058339
112205.3522
-0.005667355
0.953838592
-1.287E-09
-4.749E-09

From Figure 7.4, there are about 7 points whose registration errors are bigger than one 

pixel size, 35 meters in this case, in the jc-direction or y-direction. Usually we may remove 

these points with large errors and refit the transformation model (Jensen 1996).

Note that Ci and c2 are essentially zero, so the perspective form of the transformation is not 

necessary. Affine transformation is sufficient. Note also that for the affine transformation, 

we essentially have aj = 1 and a2 = 0. Similarly we have bj=0 and b2 = 1. Hence the (x, y) and 

(M, v) may already have the same orientation (no rotation is needed) and the same scale, since 

these two 1987 and 1997 images are in the same coordinate system (TM/Krasovsky) with the
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same remote sensor and for the same area (Xie et al. 2003). We should have known this! 

Under this situation, the transformation involved in mapping the 1987 image to the 1997 

reference reduces to a simple translation of the origin, given by the (ao, bo) vector, or in other 

words the pixels coincide perfectly. However, with the control points manually selected, such 

information has been hidden, see Figure 7.5.
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Figure 7.5. Shift differences for 1987->1997 images on 41 "rough" points

7.4.4 Spectral Pixel Matching for Refinement of Image-to Image Co-Registration

Our spectral refinement method also uses intensity information with the correlation 

coefficient (CC) as similarity metric to refine CPs. The difference between our refinement 

method and the automatic image registration lies in the fact that we have Stage 1 image to
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image registration already established and are just seeking to refine the accuracy of this pixel 

to pixel registration. Figure 6 shows the methodology.

Search Domain, D

j_

Moving Window, W

Figure 7.6. Spectral refinement of pixel-to -pixel matching

Let A be a pixel in image 1. Let A'=/(A) be the corresponding pixel in image 2, under the 

Stage 1 image-to-image co-registration transformation/ Let 8 = (6u , 6\,) be an off-set from 

A', where 8u and 6\, are the off-sets from A' in pixels in the directions u and v, the directions 

of the coordinate axes of image 2. Denote the pixel in image 2 which is 5 from A' by B(8). If 

8 is small, then B(8) is a pixel corresponding to the neighbourhood of the image of A, in 

image 2. We define a square neighbourhood of pixels around A' which we call the Search 

Domain, A say. We are interested in how "similar" the environments of A and B(6) are. We 

define an equal size square Sensing Window (of size mxm) around A and B(8), in images 1 

and 2 respectively, denoted by W and W'(8) respectively. In each of these two sensing 

windows we label the pixels in the same sequence; 1, ... , M (=m><m) (relative to the 

reference axes in each image). We then use the correlation between the Band-I intensities in 

the pixel-sequences (1, ..., M) in each image as the measure of local similarity, (1= 1, 2, ...7).
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These measures may be regarded as cross-image (structured) spatial correlation functions. 

The "structured" term is used to distinguish from the more often used cross-(|8|-dependent)- 

correlation function.

We search over 5 in A(A') to find the 8 such that Corr(Wi(A), W'(B(8)) is maximum. We 

take this point B(8), in Image 2, to be the "spectrally refined" matching point of A in Image 1. 

This is an intuitively obvious local correlation search algorithm, which we imagine is similar 

to the usual algorithms for matching whole images using correlation search. However, we 

have not seen this local form of search for refined registration defined in the literature.

We have tried using some other spectral distance measures, but to date the correlation 

measure seems best. When calculating these cross-correlational measures the search window 

size, we have evaluated the use of 3x3, 5x5, 7x7, 9x9, and 11x11 sensing windows. Since 

we found that decreasing size of sensing windows decreased the number of "Good Match 

Point" as defined in the following section, we report only on the use of an 11x11 search 

domain (that is, 5U = &v = 5), and an 11x11 sensing window, (the sensing window may extend 

beyond the search window).

Figure 7.7 shows the calculated correlation table for the 11x11 search domain for CP1 

using the band 1 spectral information, between the 1987 and 1997 images. The A' pixel is the 

centre, where the blue row and column intersect. We see the two highest values of the local 

correlation measure are to the immediate right of A'. From this Figure, we would conclude 

there is (about) one pixel error in the original "eye" matching of CP1. Figure 7.8 shows a 

contour map of the local correlation structure constructed using S-Plus.

Figure 7.8 suggests that by fitting a suitable response surface model to this correlational 

map, it would be possible to estimate the pixel-to-pixel match with considerable sub-pixel 

resolution. This is indeed reassuring, since one of the main aims of searching for accurate 

pixel-to-pixel spectral registration improvement was to obtain sub-pixel accuracy across most

152



of the image to image matching exercise, so that the subsequent phases, of classification and 

growth and change estimation could be dissociated from confounded registration error.
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11x11 Correlation Map for Control Point 1 (Band 1) using a 11 x 11 search

Figure 7.8. Contour representation of Figure 7

In contrast, Figure 7.9 shows that the thermal band 6 does not perform well in this 

approach, and should not be used.
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Figure 7.9. Correlation Contour Map for Control Point 1 (Band 6/Thermal)

Figure 7.10 shows the correlational maps for each of the bands (excluding the thermal 

band 6) for CP1 in the 1987-1997 matching exercise. We see that we have substantial mutual 

support in each of the bands for determination of the improved pixel to pixel match.

Figure 7.10. Correlation Contours for Control Point 1 (All Bands excluding Thermal)
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Figure 7.12. Contour representation of Figure 11

Figures 7.11 and 7.12 show the correlational map for a pixel-pixel mach which cannot be 

well defined since the maximum of the correlation measure is not well defined in the Search 

Window. There is a correlational ridge along the negative w-axis.

7.4.5 A Multi-Spectral Pixel Matching Criterion

Let (*, y) be one image coordinates, (H, v) the other. For each band of 6 bands (bl, b2, b3, 

b4, b5, b7) of TM images, we got 6 matching results using CC as similarity measure for each 

CP: (w,, w2 , w3 , w4 , u5 , u-j) for u corresponding to x, (v,, v2 , v3 , v4 , v5 , v7) for v corresponding to y. 

Then with (w,, u2 , w3 , u4 , us , u7) and (v,, v2 , v3 , v4 , v5 , v7), how to get the refined u and v? We 

adopt a rule that if more than half of (w,,w2 ,w3 ,w4 ,W5,w 7 ) and more than half of (vi,v2 ,v3 ,V4,v5 ,v7) 

are the of same numerical values, respectively, then the same "w" and "v" are taken as the 

refined results for u and v, expressed as (wr, vr). If not, we may think the refinement failed.

Moreover, the "round trip refinement" we called here as Ton and Jain (1989) termed the 

"two-way matching" was carried out. That is, we refine (x, y) from (wr , vr) following the same 

procedure for refining (u, v). Suppose (XT , yr) is the refinement, we have,

(x,y) -> (wr, vr) -> (xr,yT)

If x = ;cr , and y - y, , the paired CPs are very stable and defined as a "Good Match Point" 

(GMP).
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7.5 Results

7.5.1 Results for 1987 and 1997 Images

The rigorous multi-spectral criterion defined in the last section resulted in 20 GMPs being 

found from the original 41 "rough" point-pairs for the (87o97) image matching. These 

matches are so accurate they should make use of a rubber-sheeting representation, such as a 

thin plate spline, to represent and interpolate them. However, for convenience in comparing 

with the previous perspective transformation of the 41 original rough control points the fit of 

a similar transformation is given in Table 7.2. Figure 7.13 shows the residuals. 

Table 7.2 Parameter estimates for the perspective transformation on the 20 GMPs(87<-^97)
ao=
ai=
a2=
b0=
bi=
b2=
Cl =

C2=

-6649.383485
1.005822864
0.002181113
-53477.76408
-0.043547679
1.028246821
-9.062E-09
3.545E-09

From Figure 7.13, registration precision is much improved in that all the residuals are less 

than one pixel size (35 meters), the maximum error being about 25m, in both the ^-direction 

and y-direction. However, both scatter plots show some error trends. Check of parameter 

estimates from Table 7.2 indicates that as similar to our findings from Table 7.1, we 

essentially have a, = 1 and a2 = 0, and bi = 0 and b2 = 1. Therefore, the transformation 

involved in mapping the 1987 image to the 1997 reference reduces to a simple translation, and 

the error trends may be due to some outliers of the control points. Figure 7.14 shows the 

translation differences for the 20 GMPs (in x and y directions).
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The translation (shift) differences in meter as shown in Figure 7.14 can be transformed into 

pixel units. In terms of the .x-pixel difference, 12 CPs have a particular pixel count difference, 

and the other eight have an extra pixel difference. This indicates that the pixels do not in 

general "line-up" in terms of the x-u axes. The results would support a sub-pixel analysis. 

However, in terms of the pixel count differences in the ^-direction the vast majority do have a 

fixed difference, with just 1 out-lying points (assumed erroneous). So it does look as if the y 

and v axes do "line-up" to an exact pixel translation and therefore pixels match up exactly in 

this direction.
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7.5.2 Results for 2000 and 1997 Images

Similarly, for the 2000 and 1997 images, we roughly select 94 control points and obtain 14 

GMPs. Since the two images are of different scales (pixel size of 33m and 35m, respectively), 

we will not expect the simple translation result. However, the perspective transformation is 

found to collapse to the affine transformation as in the case of 1987 and 1997 images. 

Therefore, the affine transformation is used. Figure 7.14 and 7.15 show the residuals before 

and after refining, and the contrast shows the scale of residuals has been decreased 

significantly. In fact, the RMS decreased from about 36m to about 10m (0.3 pixel) and from 

about 43m to about 14m (0.4 pixel) in ^-direction and y-direction, respectively.
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Chapter 8: Radiometric Correction and Spectral Standardization 

..."Spectral Evolution Model" and 

... "Multi-temporal Classification"... ?

Summary

Radiometric correction is another pre-processing procedure which must be completed prior to 

using multi-temporal remotely sensed images for change detection and growth modelling. 

Truncation and rank-statistic based spectral standardization methods are used to achieve 

robust relative radiometric rectification on the case-study TM images.

8.1 Introduction

This chapter has a title and a tentative subtitle. The title refers to some preliminary work 

and ideas which lead on to the more tentative topics in the subtitle. These later topics should 

be taken as possible areas for future research.

Multi-temporal remotely sensed images have been used for change detection in forestry 

(Coppin and Bauer 1994, 1996, Collins and Woodcock 1996, Tokola et al. 1999, Wilson and 

Sader 2002). The basic idea behind change detection is that a difference exists in the spectral 

response of a pixel on two or multiple dates if the biophysical materials within the same area 

have changed (Jensen 1996). Therefore, when performing change detection, it is desirable to 

eliminate the radiometric noise caused by satellite sensors, environmental factors 

(atmospheric conditions, solar angles, etc.) and the phenological disparities (different growth 

seasons) as much as possible.

Radiometric correction of remote sensed images generally falls into two broad categories; 

absolute and relative. Absolute correction is usually not applicable to multi-temporal images,
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since the required atmospheric measurements at the time of data acquisition are very difficult 

to obtain. Relative correction is then generally to be recommended in order to 

radiometrically/spectrally normalize the images to each other (Song et al. 2001).

The most widely used relative method is probably the one developed by Hall et al. (1991), 

which involves in selecting pseudo-invariant features (also known as radiometric control 

points, compared with geometric control points for geometric correction/registration) which 

are expected to be spectrally constant from image to image and then applying a linear 

transformation (obtained by regression) to adjust spectral values between images. However, 

the typical pseudo-invariant features like lakes, concrete, and gravel which are commonly 

used (Coppin and Bauer 1994, Elvidge et al. 1995, Yuan and Elvidge 1996, Yang and Lo 

2000), may not be easily obtained especially in mainly forest occupied area. In the other hand, 

for change detection in forest stands, Olsson (1993) argues that the forest pixels themselves 

should be used as the spectral stable targets for radiometric correction.

In making an attempt at integrated classification and growth modelling on multi-temporal 

imagery, Joyce and Olsen (1999) suggested a "spectral standardization" based on a symmetric 

radiometric correction method between successive images (using means and standard 

deviations). In this Chapter, we apply a similar method using medians and inter-quartile 

ranges.

8.2 The Case Study Data

We selected a subset of our study area, the 10th forest farm, for this study, since the size of 

total study area is quite large. Figure 8.1 shows the three images. It is seen that the spectral 

difference in 1987 and 1997 is probably due to different growth seasons taken for data 

acquisition (May and July for 1987 and 1997, respectively), while the difference between 

1987 and 2000 both taken in May is mainly due to the different sensors, that is, TM and ETM.
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Figure 8.1. Landsat TM subset images of 10th Farm: 1987, 1997, 2000

8.3 Spectral Standardization

In Figure 8.2 are shown the frequency disributions over the possible intensity range, for 

Bands 1 (visible blue), 4 (near infrared) and 5 (middle infrared) for the three subset images. 

For Bands 1 and 4, for the 1987 and 1987 image distributions it is easy to see that the 

distributions have shapes that can be morphed into each other by a suitable scaling 

transfomration, in the same "direction" for both of these bands.
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Joyce and Olsen (2000) used a symmetric and transitive model for scaling between two 

such spectral intensity distributions, that is,

where *,- , xt and s.d.(xj) are spectral intensity values, the mean and standard deviation of the

intensity distribution for a specific spectral band of the ith image. Then if we scale the first 

image (*,) to the unit of the second (jc2), we got,

/ , — x S.Ct\Xj ) __ , o — ^
x, = (x, - x, ) 2 + x2 (8.2) 

s.d.(xl )

Such a scaling transformation assumes that there is no "significant" change in the spectral 

shape/signature of the forest mask of the interested image; rather inappropriate if one is 

actually trying to estimate change or growth from the information in the spectral signatures.

Notice there is a spike at the maximal intensity for the 1997 image for bands 1 and 5. 

Furhter check indicates that the spike corresponds to the cloud/shadow pixels as shown in 

Figure 8.1. We may mask out the cloud/shadow pixels before we carry out our radiometric 

correction. Alternatively, use of the robust median and interquartile range would be a better 

choice.

J,' = Jt -m)ii + m (8.3)

where m, and /.#.(#,•) are the median and interquartile range of the intensity distribution for a 

specific spectral band of the /th image.

Taking band 1 for example, Figure 8.3 shows intensity distributions after the median- 

interquartile range scaling of 1987 and 2000 images to the 1997 reference, but only over the 

range between the 5 percentile and the 95 percentile for the purpose of removing noises such 

as clouds/shadows. From Figure 8.3, the three spectral distributions are all multi-modal 

Mixture distribution models, with each mixture componenet having its own mode, would
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seem to be appropriate. The TM87 curve has a clear dominant mode just over 70, with 

bossible sub-modes at about 73 (upper sub-mode) and 67 (lower sub-mode) and and possibly 

another sub-dode at 78. The TM97 curve in Figure 8.3 has a dominant mode at about 68, 2 

down from the dominant mode of TM87. The upper sub-mode in TM97 is about 71, also 2 

units down from the upper sub-mode of TM87 (at 73). The lower sub-mode of TM87 has 

disappeared in TM97. It seems as if more of the salient features of the distributions could be 

used to obtain a non-linear scaling transformation which achieved a clearer supposition of the 

bulk of the intensity distributions in these cases. We do not go into detail here.

Interpretation of the differences between TM97 and ETM2000 are more problematic, 

since the two sensors differ.

Also, Hayes and Sader (2004) and many other researchers use NDVI as a basis for change 

detection, rather than the raw band data. Hence, in further research we should probably be 

looking at distributions on the NDVI scale rather than the raw bands.
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Figure 8.3: The median-interquartile range scaling of 1987, 2000 (B1) distribution to the 
1997

"Spectral Standardization" makes an implicit assumption of "no change" and "no 

growth" in the spectral distribution shape/signature, contrary to the basis of the whole 

exercise, which is attempting to detect and characterise change and growth from the image
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sequence. Indeed our interpretation of the changes between TM87 and TM97 are in this 

mode of thought.

What is really needed is a "spectral evolution model", which allows, for a given forest 

compartment of a given forest type, to change ("continuously") in spectral intensity 

distribution with increasing age (assuming that images were taken by the same 

instrumentysensor, at the same time in the season each year, under the same lighting 

conditions). We would expect that for two similar stands, of the same type, but differing in 

age by (for example) ten years would have spectral intensity distributions such that the 

younger crop's distribution evolved into the older crop's distribution after a period 

corresponding to the age difference.

We therefore see that in such an attempt to overcome the inappropriateness of the 

assumptions of spectral distribution shape/signature standardization we find that spectral 

characterizations and spectral evolution models are confounded with the forest type and forest 

age variables. Note that the classificaiton status of a pixel would normally be obtained at a 

later stage, when image classification is done.

If we are in a supervised learning situation (for example, we might have ground truth data 

on such things as forest type, age, etc...) it seems as if modelling of spectral evolution and 

forest classification/aging should take place simultaneously.
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