
H919S2

A Strategy for Mapping Unstructured Mesh

Computational Mechanics Programs onto

Distributed Memory Parallel Architectures

Kevin McManus

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich

for the Degree of Doctor of Philosophy

25th September 1995

Revised 22nd February 1996

Centre for Numerical Modelling and Process Analysis

School of Computing and Mathematical Science

University of Greenwich

London, UK

To Libby

Acknowledgements

There are a number of people who I would like to thank for their help during the time

that it has taken me to write this thesis.

My supervisors, Professor Mark Cross and Doctor Steve Johnson for their invaluable

support and guidance.

My colleagues, Chris Bailey, Peter Chow, Nick Croft, Emyr Evans, John Ewer, Yvonne

Fryer, Cos lerotheou, Peter Lawrence, Peter Leggett, Miltos Petridis and Chris Walshaw,

for their help and patience in assisting me to write this thesis.

The staff and researchers at the School of Computing and Mathematical Science for

providing a pleasant working environment.

The Engineering and Physical Science Research Council for supplying the funding that

allowed me to escape from the pressures of industry and rediscover the world of academia.

n

Abstract

The motivation of this thesis was to develop strategies that would enable unstruc­

tured mesh based computational mechanics codes to exploit the computational advan­

tages offered by distributed memory parallel processors. Strategies that successfully

map structured mesh codes onto parallel machines have been developed over the pre­

vious decade and used to build a toolkit for automation of the parallelisation process.

Extension of the capabilities of this toolkit to include unstructured mesh codes requires

new strategies to be developed.

This thesis examines the method of parallelisation by geometric domain decomposi­

tion using the single program multi data programming paradigm with explicit message

passing. This technique involves splitting (decomposing) the problem definition into P

parts that may be distributed over P processors in a parallel machine. Each processor

runs the same program and operates only on its part of the problem. Messages passed

between the processors allow data exchange to maintain consistency with the original

algorithm

The strategies developed to parallelise unstructured mesh codes should meet a num­

ber of requirements:

The algorithms are faithfully reproduced in parallel.

The code is largely unaltered in the parallel version.

The parallel efficiency is maximised.

The techniques should scale to highly parallel systems.

The parallelisation process should become automated.

Techniques and strategies that meet these requirements are developed and tested in this

dissertation using a state of the art integrated computational fluid dynamics and solid

mechanics code. The results presented demonstrate the importance of the problem par­

tition in the definition of inter-processor communication and hence parallel performance.

The classical measure of partition quality based on the number of cut edges in the

111

mesh partition can be inadequate for real parallel machines. Consideration of the topol­

ogy of the parallel machine in the mesh partition is demonstrated to be a more significant

factor than the number of cut edges in the achieved parallel efficiency. It is shown to be

advantageous to allow an increase in the volume of communication in order to achieve

an efficient mapping dominated by localised communications. The limitation to parallel

performance resulting from communication startup latency is clearly revealed together

with strategies to minimise the effect.

The generic application of the techniques to other unstructured mesh codes is dis­

cussed in the context of automation of the parallelisation process. Automation of par-

allelisation based on the developed strategies is presented as possible through the use

of run time inspector loops to accurately determine the dependencies that define the

necessary inter-processor communication.

IV

Contents

1 Introduction 2

1.1 The Nature of a Parallel Machine 2

1.2 The Nature of an Unstructured Mesh Code 5

1.3 Objectives of Parallelisation 7

1.4 Parallelisation Strategies 9

1.5 Parallelisation by Domain Decomposition 11

2 Parallel Processing 13

2.1 Processor Interconnection 14

2.2 Inter-Processor Communication 15

2.3 Communication Model 18

2.3.1 Shared Memory............................. 18

2.3.2 Message Passing 18

2.4 Code Structure 19

2.4.1 Parallel Utility Library 21

2.4.2 Parallel Communication Library 22

2.4.3 Communication Harness 22

3 Domain Decomposition 25

3.1 Representation of an Unstructured Mesh 26

3.2 Mesh Partitioning 28

3.2.1 Load Balance 29

CONTENTS

3.2.2 Communication Balance 30

3.2.3 Processor Topology Mapping 31

3.2.4 Partitioning Algorithms 34

3.2.5 Parallel Partitioning 39

3.3 Mesh Decomposition 40

3.3.1 Derive Secondary Partitions 41

3.3.2 Overlap Construction 43

3.3.3 Parallel Execution Control and Renumbering 46

3.3.4 Overlap Communication 51

4 Algorithm Decomposition 57

4.1 UIFS - Unstructured Incompressible Flow and Stress 58

4.1.1 The FV Fluid Dynamics Scheme 58

4.1.2 The FV Solid Mechanics Scheme 61
•

4.1.3 Integration within UIFS 66

4.2 Parallelisation of UIFS 68

4.2.1 Partitioning 69

4.2.2 Renumbering 70

4.2.3 Communication 70

4.2.4 Parallel Utilities 71

4.3 Matrix Decomposition 72

4.4 Iterative Methods 75

4.4.1 Jacobi Method 76

4.4.2 Gauss-Seidel SOR 79

4.4.3 Conjugate Gradient 81

4.4.4 Summary 83

5 Performance of the Parallel Code 85

5.1 Measuring Performance 86

5.1.1 Speed-up 87

VI

CONTENTS

5.1.2 Parallel Efficiency 88

5.1.3 Scalability 88

5.2 Irregular Shape Test Case 90

5.2.1 Fluid Dynamic Test Case 94

5.2.2 Solid Mechanics Test Case 94

5.2.3 Solidification Test Case 95

5.3 Performance on the Transtech Paramid 96

5.3.1 Fluid dynamic test case 100

5.3.2 Solid mechanics test case 103

5.3.3 Solidification test case 106

5.4 Improving Performance 109

5.4.1 Latency Reduction 109

5.4.2 Flow and Heat Solvers 109

5.4.3 Solid Mechanics Solver Ill

5.4.4 The Effect of Optimised Solvers on the Solidification Test Case . . 114

5.4.5 Asynchronous Communication 114

5.5 Summary 120

6 Automation of Parallelisation 122

6.1 Computer Aided Parallelisation Tools 122

6.1.1 Dependence Analysis 123

6.1.2 Data Partitioning 124

6.1.3 Execution Control 125

6.1.4 Communication 125

6.2 Generic Parallelisation Methods for Unstructured Mesh Codes 126

6.2.1 Application of CAPTools Structured Mesh Techniques to Unstruc­

tured Mesh Codes 128

6.2.2 Data Structures for an Unstructured Mesh 129

6.2.3 Inspector Loops 131

vn

CONTENTS

6.2.4 Partitioning 132

6.2.5 Communication Generation 133

6.2.6 Renumbering 133

6.3 Summary 136

7 Other Parallel Issues 137

7.1 Are Further Improvements Possible? 137

7.1.1 Layered Overlaps 138

7.1.2 Machine Topology Profile 138

7.1.3 Dynamic Load Balance 139

7.1.4 Other Communication Schemes 140

7.2 Difficult Problems 141

7.2.1 Inhomogeneous Problems 141

7.2.2 Adaptive Meshing 142

7.2.3 Long Range Dependencies 142

7.3 Are there any alternatives? 143

7.3.1 Parallel Mesh Generation 143

7.3.2 Parallel Visualisation 144

7.3.3 Virtual Shared Memory 144

8 Conclusions 147

8.1 Were the Objectives Met? 147

8.1.1 Objective (i) Minimise the Changes to the Original Algorithm . . 147

8.1.2 Objective (ii) Minimise the Visibility of the Parallel Code 148

8.1.3 Objective (iii) Maximise Parallel Efficiency 150

8.1.4 Objective (iv) Portability to Most DM MIMD Platforms 151

8.1.5 Objective (v) Scalability of Computation151

8.1.6 Objective (vi) Scalability of Memory 152

8.1.7 Objective (vii) Automate the Parallelisation Process 152

8.2 Summary 152

vin

CONTENTS

A Parallel Utilities 154

A.I Parallel Included Declarations 154

A.2 Parallel Utility Library 156

B Partition List 159

C Parallel Iterative Solvers 160

C.I Jacobi Solver 161

C.2 Gauss-Seidel Solver 166

C.3 Diagonally Preconditioned Conjugate Gradient Solver 168

D Modified Parallel Iterative Solvers 172

D.I Modified Jacobi Solver 172

D.2 Modified Diagonally Preconditioned Conjugate Gradient Solver 175

E Asynchronous Parallel Iterative Solvers 179

E.I Asynchronous Jacobi Solver 179

E.2 Asynchronous Diagonally Preconditioned Conjugate Gradient Solver ... 182

IX

List of Figures

1.1 Four mesh categories. 5

1.2 Automatically generated three dimensional unstructured mesh. 6

1.3 Possible data dependency stencils over an unstructured mesh. 7

2.1 Shell structure of the parallel code. 20

3.1 Entity relationship diagram for a three dimensional unstructured mesh. . 28

3.2 Example run times for two possible partitions over 5 processors. 30

3.3 Processor interconnection mapped to a pipe mesh partition. 32

3.4 Partitions of a 2D mesh into (a) ID, (b) 2D and (c) uniform topologies

with the corresponding sub-domain connectivity graphs. 33

3.5 Mesh partitioned into three parts with overlap elements applied. 40

3.6 A mesh of 28 triangles divided into two sub-domains with the overlaps

required for the flow scheme. 44

3.7 A mesh of 28 triangles divided into two sub-domains with the overlaps

required for the stress scheme. 45

3.8 A mesh of 28 triangles divided into two sub-domains showing the renum­

bering of grid points from global to local numbering. 50

3.9 A mesh of 28 triangles divided into two sub-domains showing the renum­

bering of elements from global to local numbering. 50

3.10 Overlap update communication scheme. 52

3.11 Mesh of 42 triangular elements. 54

LIST OF FIGURES

3.12 Mesh of 42 triangular elements partitioned into three renumbered sub-

domains. 55

4.1 Formation of a control volume from sub-control volumes around point P. . 63

4.2 Mapping of a finite volume element to a reference element. 64

4.3 Flowchart for UIFS. 67

4.4 Matrix form for a five point element stencil over a 4 x 4 regular mesh. . . 73

4.5 4x4 mesh operated on as 2 sub-domains showing the transfer of data into

the overlaps on each renumbered sub-domain. 74

4.6 Mesh of 42 triangular elements. 74

4.7 Mesh of 42 triangular elements partitioned into three renumbered sub-

domains. 75

4.8 Matrix for the 42 triangle mesh. 76

4.9 Matrices for the 42 triangle mesh partitioned into three sub-domains. ... 77

5.1 The number of cut edges against the number of partitions for a range of

partition strategies on the 3,034 triangle irregular shape mesh. 91

5.2 The number of cut edges against the number of partitions for a range of

partition strategies on the 10,027 triangle irregular shape mesh. 91

5.3 The number of cut edges against the number of partitions for a range of

partition strategies on the 30,064 triangle irregular shape mesh. 92

5.4 The number of cut edges against the number of partitions for a range of

partition strategies on the 60,005 triangle irregular shape mesh. 92

5.5 The number of cut edges against the number of partitions for a range of

partition strategies on the 119,822 triangle irregular shape mesh. 93

5.6 Flow vectors for the fluid dynamic test case. 94

5.7 Mesh displacement for the solid mechanics test case. 95

5.8 Residual stress contours and flow vectors for the solidification test case. . 96

5.9 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 3,034 triangle mesh. 100

XI

LIST OF FIGURES

5.10 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 10,027 triangle mesh. 100

5.11 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 30,064 triangle mesh. 101

5.12 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 60,005 triangle mesh. 101

5.13 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 119,822 triangle mesh. 102

5.14 Best speed-up obtained for the fluid dynamic test case against the number

of processors for a range of mesh sizes. 102

5.15 Graph of speed-up for the solid mechanics test case against the number

of processors for a range of partition strategies using a 3,034 triangle mesh. 103

5.16 Speed-up for the solid mechanics test case against the number of proces­

sors for a range of partition strategies using a 10,027 triangle mesh. 103

5.17 Speed-up for the solid mechanics test case against the number of proces­

sors for a range of partition strategies using a 30,064 triangle mesh. 104

5.18 Speed-up for the solid mechanics test case against the number of proces­

sors for a range of partition strategies using a 60,005 triangle mesh. 104

5.19 Speed-up for the solid mechanics test case against the number of proces­

sors for a range of partition strategies using a 119,822 triangle mesh. . . . 105

5.20 Best speed-up obtained for the solid mechanics test case against the num­

ber of processors for a range of mesh sizes. 105

5.21 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 3,034 triangle mesh. 106

5.22 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 10,027 triangle mesh. 106

5.23 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 30,064 triangle mesh. 107

xn

LIST OF FIGURES

5.24 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 60,005 triangle mesh. 107

5.25 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 119,822 triangle mesh. 108

5.26 Best speed-up obtained for the solidification test case against the number

of processors for a range of mesh sizes. 108

5.27 Speed-up obtained with the optimised (solid lines) and unoptimised (dashed

lines) Jacobi solver for the fluid dynamics test case with a range of mesh

sizes. 110

5.28 Graph of speed-up obtained with the optimised (solid lines) and unopti­

mised (dashed lines) conjugate gradient solver for the solid mechanics test

case with a range of mesh sizes. 112

5.29 Speed-up obtained with the optimised conjugate gradient solver using a

hypercube (solid lines) and a pipeline (dashed lines) global commutative

for the solid mechanics test case with a range of mesh sizes. 113

5.30 Speed-up obtained with the optimised solvers for the solidification test

case with a range of partition strategies using a 60,005 triangle mesh. . . 115

5.31 Mesh of 42 triangular elements partitioned into three sub-domains renum­

bered for asynchronous communication. 116

5.32 Matrices for the 42 element mesh partitioned into three sub-domains

renumbered for asynchronous communication.117

5.33 Speed-up obtained with the asynchronous (solid lines) and synchronous

(dashed lines) optimised solvers for the fluid dynamic test case with a

range of mesh sizes. 118

5.34 Speed-up obtained with the asynchronous (solid lines) and synchronous

(dashed lines) optimised solvers for the solid mechanics test case with a

range of mesh sizes. 119

xin

LIST OF FIGURES

5.35 Speed-up obtained with the asynchronous optimised solvers for the so­

lidification test case with a range of partition strategies using a 60,005

triangle mesh. 120

6.1 Four element mesh. 129

7.1 Foil mesh partitioned over four processors. 142

7.2 Foil mesh partition with solver balancing. 142

xiv

List of Tables

3.1 Partition mapping strategies provided by JOSTLE 39

3.2 Element indirection pointer arrays for the partition illustrated in Fig­

ure 3.9 51

3.3 Communication operations required for a simple chain of processors ... 53

Chapter 1

Introduction

1.1 The Nature of a Parallel Machine

The quest for greater performance has driven the development of computer technology at

an exponential rate. Clock speeds and bus widths continue to increase while low power

semiconductor technologies now permit Very Large Scale Integration (VLSI) to shrink

the Central Processing Unit (CPU) of a 64bit computer onto a single silicon substrate.

It has long been assumed that there is a fundamental limit to the performance that may

be achieved by a single processor. How small can semiconductor features be made? How

fast can a semiconductor switch operate? When does the technology reach a fundamental

limit? [MF95]

Since the 1960's pipelined or vector processors have been at the heart of many su­

percomputers. Rather than operating upon a single variable at a time, these machines

increase their computational performance by allowing a vector of data to be operated

upon simultaneously [HJ81]. The achievable performance depends upon successfully

loading the appropriate vector operands from memory [Rod82, Ier90]. Initially the vec-

torisation of code was an optimisation for the code author to implement. Subsequent

development led to the vectorising compiler which could automatically extract the vector

parallelism from the source code [DLD93].

An extrapolation of this concept led to the development of the array structured Sin-

CHAPTER 1. INTRODUCTION

gle Instruction, Multiple Data (SIMD) [Fly72] parallel machines in which whole fields

of a variable could be subjected to the same operation in parallel [HB84]. These ma­

chines possessed large numbers of small processors (64 in Illiac-IV circa 1970, 65536 in

DAP circa 1980) and gave rise to the description Massively Parallel Processing (MPP).

SIMD machines have changed little since their conception and can still sustain a credible

throughput in comparison with more modern architectures. Like the vector machines,

they rely on running a code which maps well to the machine [Par82]. In this case a reg­

ularly structured code containing few inherently serial operations is required. Unlike the

vector machines, automatic compilation of serial code for SIMD processing has not been

possible. Mapping of irregular problems to efficiently utilise the power offered by SIMD

machines has consequently been the focus of much research [Far89, FFL93, Wil91j. The

difficulties encountered in successfully programming for SIMD has contributed to the

architecture falling from popularity.

The notion that it may be more worthwhile to build a number of modest individual

computers rather than one large one is not new. Many such parallel machines have

now been successfully built, used and become obsolete [TW91]. Such machines are

categorised as Multi Instruction, Multi Data (MIMD) [Fly72], of which there are two

main variants: Distributed Memory (DM), in which each processor is equipped with its

own private memory and Shared Memory (SM), where the memory is common to all

processors [AG94]. Now that integration density can place what was until very recently

considered a supercomputer onto a single chip, and furnish it with a quantity of memory

in a similarly small space, with sufficiently low energy requirements to allow the intimate

connection of many processing elements, this makes highly parallel MIMD the probable

architecture for the next generations of supercomputers [FWM94].

The von Neumann programming model of a computer has not changed during these

developments [vN66]. Programs continue to be written as a series of instructions to

be executed in sequence. Indeed many algorithms depend upon the sequential order

of variable evaluation. A diversity of new languages and paradigms have consequently

been developed that attempt to express and exploit parallelism with concepts such as

CHAPTER 1. INTRODUCTION

Communicating Sequential Processes [Hoa86], tasks (Ada, Occam), data flow [DeC89]

and data parallelism (FortranD, HPF) [vH92, Ric95]. There exists, however, not only

a legacy of software that has been written in a simple sequential procedural manner,

but also a large base of program developers who have no interest in parallel processing.

Program developers are content with the von Neumann model as a means of algorith­

mic expression and want nothing more than a larger, faster serial processor. A means

of efficiently mapping existing and future software onto DM MIMD platforms is there­

fore required. The success of the vectorising compilers has led to an expectation that

parallelising compilers will eventually be produced [ZC90, CBB+94]. Success has been

shown with automatic parallelism for shared memory parallel MIMD systems with small

numbers of processors (Cray Y-MP, C90 (actually shared memory vector parallel), SGI

Power Challenge, Sun Sparc20MP, Digital 8400) [Sun94]. But shared memory is unlikely

to be feasible for large numbers of processors as the memory bandwidth does not scale

with the number of processors. Virtual shared memory systems that allow distributed

memory to appear as shared memory have shown some limited success (Kendall Square

KSR1, Cray T3D) but fail to reach the potential peak machine performance largely as

a consequence of the high degree of inter-processor communication required to sustain

memory/cache coherence [Bom93]. The advantage of distributed memory is freedom

from the SM bandwidth problem as the DM bandwidth scales automatically with the

number of processors. This is seen to outweigh the disadvantage of having to explicitly

express the distribution, communication and synchronisation of data between processors.

The argument for DM MIMD is essentially an economic one. An enormous amount of

development is directed towards the cost-effective high-performance workstation market.

No matter how powerful these machines become there will always exist users who seek

greater processing power. The simple interconnection of workstation technology allows

the DM MIMD parallel machine to capitalise on the economy of scale of workstation

development and provide the required power at a cost which is highly competitive in

comparison with other High Performance Computing (HPC) technologies [Smi90]. The

number of floating point operations (Flops) per dollar has become a new yardstick for

CHAFTER 1. INTRODUCTION

the performance measurement of HPC.

1.2 The Nature of an Unstructured Mesh Code

Computational Mechanics (CM) may be applied to the modelling of diverse physical

systems (structural mechanics, structural dynamics, fluid dynamics, electromagnetics,

magnetohydrodynamics, etc.). The technique of applying a system of equations over a

discretised domain leads inevitably to the concept of a mesh or grid. A mesh describes

the spatial nature of a discretisation. Wherever possible this thesis will deal with 3

dimensional space, this is however not always convenient for the purposes of illustration

or example, where 2 dimensional space will normally be used for clarity.

Regular Structured Structured Body Fitted

Irregular Block Structured Unstructured

Figure 1.1: Four mesh categories.

The complexity of a computational mesh ranges from the simple regular structured

to fully unstructured. Structured grids, suitable for transport phenomena modelling,

were widely used in the development of Finite Volume (FV) (finite difference / control

volume) schemes for Computational Fluid Dynamics (CFD) [PatSO]. Irregular and block

CHAPTER 1. INTRODUCTION

structured grids were introduced to allow FV schemes to work with complex geometries

and a deformable mesh. The Finite Element (FE) method for structural and thermal

analysis introduced an unstructured mesh to represent arbitrarily complex geometries

[Zie77]. The desire to analyse flow in complex three dimensional geometries motivated the

development of FE-CFD codes [MSSP88]. Difficulties with continuity and convergence

in FE-CFD [Che91] led to recent work extending FV methods to unstructured grids

[Cho93] and solid mechanics [FBCL91, CBCP92]. Unstructured mesh codes are unlikely

to offer the computational efficiency of structured mesh codes. The implicit nature of a

structured mesh avoids the need for indirection in variable addressing and allows great

efficiency of coding, cache utilisation and vectorisation. But unstructured meshes provide

a far greater flexibility for the modelling of complex geometries and avoid the need for

the complexity of a block structured code. Now that automatic generation of complex

unstructured meshes has become readily available [Law94] the focus of development is

towards unstructured mesh codes.

Figure 1.2: Automatically generated three dimensional unstructured mesh.

In parallelising a program the concern is not so much with the nature of the algo-

CHAPTER 1. INTRODUCTION

rithms or intentions of the program but rather the nature of the data dependency. The

data dependency for a CM code stems from the integration stencil required for solution

of the mesh based discretisation of Partial Differential Equations (PDE's). For example,

the value of pressure in an element may be calculated from the pressure in all adjacent

elements with a four point integration stencil as in Figure 1.3a. Temperature at a node

may be expressed in terms of the temperature at all connected nodes (Figure 1.3b).

The stencil may be deeper than nearest neighbour and extend to next neighbours (Fig­

ure 1.3c). Additionally the data dependency may be more extensive than simply the

integration stencil, for instance the contribution from adjacent elements may need to be

evaluated in terms of some node based value (Figure 1.3d).

Figure 1.3: Possible data dependency stencils over an unstructured mesh.

1.3 Objectives of Parallelisation

There are a number of rudimentary objectives that whilst not mandatory would certainly

be desirable outcomes from a parallelisation strategy.

7

CHAPTER 1. INTRODUCTION

i) Minimise the changes to the original algorithm:

The parallel code should ideally produce identical results to the original serial

code. This can be a necessary requirement for acceptance by code users who are

familiar with the serial code and require confidence that the results generated by

the parallel code execution are every bit as reliable as those produced by the serial

code.

ii) Minimise the visibility of the parallel code:

The parallel code should be hidden from both the serial code developers and the

parallel code users. This permits transparent maintenance of the parallel code

alongside the serial code by the serial code developers. In addition this avoids

deterring users from the parallel code. Code developers and users may be safely

assumed to have no interest in parallelism and a significant interest in rapid code

execution.

iii) Maximise parallel efficiency:

The parallel code must show significant speed-up over the serial code. The primary

motivation for parallelisation is to reduce the code run-time. The parallel code

must therefore use the parallel machine efficiently, otherwise the time and money

expended on a parallel machine would be better invested on one or more serial

machines.

iv) Portability to most DM MIMD platforms:

Parallel code needs to make good use of most currently available hardware, the DM

MIMD model provides an efficient lowest common denominator hardware model. A

programming model is therefore also required to necessitate only the most primitive

platform support without loss of efficiency.

v) Scalability of computation:

DM MIMD Massively Parallel Processing (MPP) is the direction in which the high

Flop per Dollar supercomputers are being developed. Although there continues

to be much discussion concerning the implementational details of such MPP's, the

8

CHAPTER 1. INTRODUCTION

development of high performance, highly integrated serial processors will inevitably

lead to the interconnection of increasing numbers of such processors (Cray T3D,

Intel Paragon, IBM SP2, TMC CM5). To take advantage of the full power of MPP's

the performance of a parallel code needs to be able to scale with the number of

available processors. Doubling the number of processors should ideally halve the

run-time.

vi) Scalability of memory:

Larger machines allow larger problems to be solved. To make full use of the

distributed memory a parallel code must be able to distribute a problem over

the DM machine. Globally dimensioned data items (data objects that are not

distributed) must therefore be avoided.

vii) Automate the parallelisation process:

The human effort required to parallelise a CM code is significant. The majority

of this effort is demonstrably automatable for structured mesh codes [JICL94,

CIJL94]. A strategy is required which can minimise human intervention in the

process of parallelising unstructured mesh based codes.

1.4 Parallelisation Strategies

Why use a parallel processor? Why not simply use many serial processors? There are

two significant reasons; one is to provide a machine which can sustain a problem size

that is too large to fit onto a serial processor, an other is to reduce the critical path to

a solution. Given a set of interrelated tasks, a task interaction graph can be produced

to describe the operations required to find the solution. Tasks may be carried out in

sequence, one after the other, or some tasks may be executed in parallel as concurrent

processes. The greater the level of concurrency that can be employed the less time is

required to achieve the solution. Parallelism in computation exists in many forms and

many different approaches have been used to exploit the parallelism that can be found

in CM codes.

CHAPTER 1. INTRODUCTION

Task farming, for example, has the advantage of potentially high parallel efficiency

by keeping all processors busy. As soon as a processor completes one task another

is initiated. The technique is however, only suited to problems which present a large

number of unrelated tasks such as Monte Carlo techniques. To achieve any efficiency

the amount of data to be sent to and returned from each task must be insignificant in

comparison to the task computation, which for a CM code is unlikely.

Algorithmic parallelisation involves each processor operating on different parts of a

algorithm. For example solving flow in three dimensions could be achieved by solving for

each dimension on differing processors. Taking the example further other computed vari­

ables could be distributed over a set of processors. Each processor calculates its variable

and hands the problem to the processor computing the next stage in the algorithm. This

scheme has little to commend it as it suffers from a high communication requirement

and poor efficiency as each stage in the calculation will take a different amount of time

leaving most of the processors waiting for data.

Geometric decomposition partitions the problem space over a set of processors. Each

processor executes the same algorithm on their own section of the problem. This method

has the advantage of flexibility to allow variations on the decomposition strategy to be

used to minimise the communication and maximise processor utilisation. Partitioning

may be based on the mesh geometry or topology, or on the distribution of computational

effort within the algorithms used in the code. For example computational partitioning of

a CM code based around a direct solver may be dominated by the solver which dictates

the decomposition of the problem. Often a wraparound partition of a matrix (i.e. with

P processors, processor q owns matrix rows q, P + q, IP + q- •) may be required to

keep the processors busy in the solver. This can also determine how other parts of the

mesh are to be distributed. For example in the FAMCALC parallelisation [JAC92] the

finite elements are distributed in a wraparound fashion according to their inclusion in

the system matrix. In this case a large communication overhead is incurred to allow

satisfactory processor utilisation. As is often the case with CM codes based on short

range interactions communication can be minimised and processor utilisation maximised

10

CHAPTER 1. INTRODUCTION

by a domain decomposition based on the geometry (topology) of the mesh.

1.5 Parallelisation by Domain Decomposition

Domain Decomposition (DD) is a generic name given to a variety of computational

activities which involve the division of a problem space into two or more parts that

may be operated on separately to some advantage. Such is the interest in DD that

there is an annual conference devoted to domain decomposition methods in all their

diversity [KX93]. Originally developed as a means of solving engineering problems that

were too large to fit into machine memory [Kro63], there has been a revival of interest

in domain decomposition as a means of mapping CM codes onto parallel computers

[Wil90, BCG93]. Parallelisation by DD is a divide and conquer strategy in which a

problem domain is decomposed into a set of sub-domains which can then be operated

on in parallel. Attempts have been made at new parallel algorithms which seek to find a

partial solution for each sub-domain and then reconcile the partial solutions across the

sub-domain interfaces [FXR92, Lai95j. This runs contrary to the strategies discussed in

this thesis which should meet objective (i) (and (ii)) and maintain as far as possible the

integrity of the original algorithm across the partitioned domain. This thesis is concerned

only with geometric DD as a method for the direct parallelisation of unstructured mesh

based CM codes for DM MIMD computers. This is a technique that is well suited to the

short range dependence typical of a CM iterative method (Section 1.2).

The initial step in applying DD to an unstructured mesh based code is to obtain a

partition of the mesh that allows the problem to be distributed amongst the available

processors in such a way as to equally apportion the computation time on each of P

processors. If this process is 100% efficient then the processing time for a problem may

be divided by P. To achieve a high parallel efficiency with a large P has consequently

become the subject of much research. Much success has been shown with the paral­

lelisation of structured grid codes using DD with message passing [JC91, GCC+ 93] ,

wherein the partition of the mesh is closely mapped onto the processor interconnection

11

CHAPTER 1. INTRODUCTION

topology in order to minimise the inter-processor communication. Some work on un­

structured mesh codes following the same topology mapping principle has shown success

[RL90]. A generic method that can provide good performance without requiring an ab­

solute adherence to the processor topology is needed to allow automated decomposition

of unstructured meshes with scalability and efficient portability.

A number of languages and environments have been developed for the generation of

code which may be automatically parallel. Parallel languages have much to offer, but

are of limited use for 'dusty deck' codes and more importantly of little interest to serial

code developers. It is simply not acceptable to require code authors to learn new skills

in order to be able to use parallel machines. It is a hard enough task to author a CM

code in the first instance without having to spend more time and effort in persuading

the code to run on a parallel machine. Environments and libraries for parallelisation

may point the way for development of parallel code that is transparent to both the code

developers and the code users, but they fall a long way short of addressing the entire

parallelisation problem. The Computer Aided Parallelisation Tools project (CAPTools)

at the University of Greenwich [JICL94, CIJL94] seeks to resolve the parallelisation of

structured mesh Fortran codes through the use of an interactive toolkit based on highly

sophisticated interprocedural dependence analysis. It is hoped that the strategies devel­

oped in this thesis will extend scope of the CAPTools package towards the parallelisation

of unstructured mesh codes.

12

Chapter 2

Parallel Processing

A Distributed Memory Multi-Instruction Multi-Data (DM-MIMD) parallel computer

is, in the simplest of terms, a number of interconnected processors, each of which is

equipped with a quantity of memory. The combination of processor and memory is re­

ferred to as a Processor Element (PE). Programs (processes) running on the processors

can communicate with each other in what has been described and formalised as concur­

rent communicating sequential processes [Hoa86]. In this way the processors operate in

unison to provide a high overall rate of computation.

Many different approaches to programming for a DM-MIMD parallel machine have

been explored [Kri89, LC90]. The parallel programming strategy used in this thesis is a

Single Program Multi Data (SPMD) message passing paradigm. Each processor runs the

same program (process) on its part of the data set communicating with other processors

through the exchange of messages. The terms processor and process for the purposes

of this thesis are consequently interchangeable. This strategy has similarities with the

data parallel strategy [Hil94] but uses an explicit derivation the data partition based on

the mesh. The strategy is actually a master slave scheme during input/output processes

in that one processor is the designated master simply because it has control of the i/o

processes. Parallel i/o hardware is still uncommon and any dependency on such platform

specific features would pose a significant barrier to portability.

Any time spent in communication between the processors is an overhead not incurred

13

CHAPTER 2. PARALLEL PROCESSING

with serial processing and so to use a parallel machine efficiently the inter-processor com­

munication must be minimised. Successful inter-processor communication requires a high

degree of synchronisation between the processes [Val90]. Successful parallel processing

requires that no processor needs to idle whilst waiting to synchronise with other pro­

cessors. To achieve an efficient parallel implementation the workload must therefore be

balanced amongst the processors.

2.1 Processor Interconnection

There are many varied and novel methods by which processing elements may be inter­

connected. The relative merits of the differing interconnection strategies are discussed

at length by several authors [TW91, AG94, FWM94]. A number of interconnection

topologies have been tried. The richly connected hypercube (nCUBE 2s), two and three

dimensional arrays, often looped into a ring or torus connection (Intel Paragon, Cray

T3D) and other connections such as fat trees (Thinking Machines CMS) have also been

used [vanderSteen94]. The advent of the INMOS transputer [Inm89c, Inm89a] with four

high speed serial communication ports integrated into a single chip CPU popularised the

scheme of a simple interconnected mesh of relatively low cost, highly integrated PE's

[HJ88]. The companion chip to the transputer family, the Inmos C004 32-way crossbar

switch [Inm89c, Inm89b] provides at low cost a means of reconfiguring the intercon­

nection topology of an array of transputers. This model has persisted into many new

designs, most probably as a result of the low cost of implementation coupled with a po­

tentially high performance. Different switching technologies have been employed (IBM

SP2, NEC Cenju-3, Meiko Computing Surface) but the reconfigurable interconnection

model remains largely similar. Consequently this is the model of PE interconnection that

this thesis will focus upon. Because this model of a parallel machine relys upon no special

features the concepts discussed will be applicable to the majority of DM-MIMD plat­

forms. Highly sophisticated and complex processor interconnections suffer significantly

from the high cost of implementation. To remain cost effective the interconnection cost

14

CHAPTER 2. PARALLEL PROCESSING

must be small in comparison with the PE cost. Additionally the reliance upon machine

specific features in programming may provide a good performance on one platform but

can result in restricted portability. Advanced interconnection features may be imple­

mented on simple platforms through the use of a software communication harness, but

with consequent performance degradation. To achieve a cost effective parallel machine

the investment in processor interconnection must result in a well balanced ratio between

the communication performance and the calculation performance of the individual PE's.

2.2 Inter-Processor Communication

The key parameters for communication between processors are the bandwidth of the

communication channels and the startup latency time to send a message.

The bandwidth rn is the rate at which a data packet of length n may be transferred

between two processors, normally measured in millions of bytes (Megabytes) per second

(MBs" 1). Typical bandwidths may be l.TMBs" 1 per connection for the T800 trans­

puter up to ITOMBs" 1 per connection in the Intel Paragon. For clusters of workstations

connected by ethernet TCP/IP the bandwidth is more like O.QMBs" 1 [DD95]. This

bandwidth cannot however be shared simultaneously by all of the processors as they all

share the same ethernet connection. A more meaningful measure of interconnect band­

width may be to divide the sum of the bandwidth of all interconnects in the machine

by the number of PE's to give the bandwidth per processor. Clearly the bandwidths

provided by different parallel systems ranges dramatically over two orders of magnitude.

This spread in performance is even wider if the bandwidth per processor is considered.

The definition of latency varies but should give some measure of the time that it

takes for a communication or message to begin transmission [CDJ95]. Latency is usually

measured in microseconds (//s)and varys markedly from around 3/^s in the Cray T3D up

to 900//S for ATM-100 TCP/IP [DD95].

Measurement of the peak achievable communication performance for a platform can

be misleading. The nature of a parallel code is that execution is synchronised in data

15

CHAPTER 2. PARALLEL PROCESSING

exchanges [Val90]. Ergo the critical communication is not with one individual message

in the machine but with every processor involved in communication. The effect of this on

the actual communication performance is highly dependent upon the machine hardware

implementation. None of the DM machines offer a totally interconnected processor

network and hence the interconnection bandwidth is shared amongst the processors. A

more meaningful measure of latency and bandwidth can be obtained with the processor

interconnects saturated as this reflects more accurately the communication of a typical

code execution [MWC+ 95]. It is possible to saturate the interconnects with either local

(near neighbour) or distant (non adjacent) traffic which will give differing measures of

communication performance. The degree to which this will affect measurement is of

course system dependent.

The number of processors (hops) between the source of a message and its destination

affects the time for a message to complete. Jack Dongarra [DD95] considers the per hop

delay to be a linear function of distance and so gives a model of the time tn required to

transmit n bytes of data as:

tn = a + (3n + (h-l}i (2.1)

With start up time (latency) a, per byte time /?, per hop delay 7 and number of hops

h. The bandwidth of the system can therefore be expressed as:

n

Hence the peak bandwidth r^ of a system is therefore expressable as:

roc = i (2.3)

A popular measure of the communication performance that combines latency with

bandwidth is the bisection bandwidth n\ denned as the message length at which half

of the peak bandwidth is reached (perhaps better described as the bisection message

length). For a single hop message this reduces to being simply the ratio of latency to

peak bandwidth:

" = (2.4)

16

CHAPTER 2. PARALLEL PROCESSING

It can be useful to consider whether bandwidth or latency is the bound on the per­

formance of a code on a particular platform. The latency is often large in comparison

with the time to transmit an individual data item. Given that the most obvious op­

timisation is to communicate only the data that is absolutely necessary, the next step

is to minimise the number of transmissions that need to be made. Bundling the data

to be communicated into large packets that require infrequent transmission reduces the

latency overhead but incurs the overhead of copying data into buffer space. The extent

to which communication may be buffered depends upon the individual code.

A parallel machine may be characterised by the communication to calculation ratio.

This is sometimes given as the ratio of the time to send a one word message to the time

for a floating point operation [FJL+88]. The notion being that a machine is well bal­

anced if this ratio is less than unity. The actual MFlop performance is seldom maximal.

As processor clock speeds increase to rates well beyond the access times for Dynamic

Random Access Memory (DRAM) cache success rate begins to dominate the returned

processing speed. Communication performance is both code and problem dependent as

to whether latency or bandwidth form the limit. The computation to communication

ratio is consequently somewhat arbitrary and subjective but if considered carefully can

give a reasonably meaningful comparison of machine performance [AG94, FWM94]. A

high ratio is likely to give poor parallel performance, the inter processor communication

causing a processing bottleneck. A very low ratio would suggest that the investment

in communication outweighs the investment in processing. Isolated consideration of the

achievable parallel efficiency or speed-up of an application may give a misleading im­

pression of the machine performance. The users (purchasers) viewpoint is usually more

pragmatic involving wall-clock and dollars [FJL+88j.

17

CHAPTER 2. PARALLEL PROCESSING

2.3 Communication Model

2.3.1 Shared Memory

Prom a programming viewpoint the simplest communication model is the shared memory

model in which the entire machine memory is considered to be shared by all processors.

For a DM-MIMD machine this leads to a locality dependent Non-Uniform Memory Ac­

cess (NUMA) which can be handled to a some extent by advanced compiler techniques

[LP92]. Whilst this presents an attractive model for programming and is amenable to

automatic parallelisation it is an inefficient model for communication, giving rise to many

small communications and hence tending to be latency bound. Nevertheless this can be a

moderately successful communication model for small to medium scale parallelism (2-16

processors) and low latency platforms.

2.3.2 Message Passing

Message passing provides an explicit control of the inter-processor communication in

which data to be transmitted is considered to be a messsage sent to a destination pro­

cessor. This allows greater optimisation of the inter-processor communication and con­

sequently is the communication model adopted in this thesis.

A communication harness of some description is normally used to implement mes­

sage passing. At its most primitive the harness allows message passing between directly

connected processors. More usually some form of 'wormhole' routing is provided that

allows messages to be sent from any processor to any other processor hiding the under­

lying processor interconnection from the programmer [NM93]. A per-hop cost penalty

on non local message passing as discussed in Section 2.1 means that messages should be

wherever possible nearest neighbour (localised) to maximise efficiency. Implementational

details of the message passing paradigm vary greatly but may be contrived to provide a

uniform view of the parallel machine across a wide range of platforms (Section 2.4.2). It

is now widely accepted that shared memory offers a simple port to serial codes to attract

code developers and users to parallel processing but cost effective efficiency can only be

18

CHAPTER 2. PARALLEL PROCESSING

obtained from low latency, high bandwidth, localised message passing.

2.4 Code Structure

Implementation of a message passing parallelisation into an unstructured mesh code

must be largely hidden in order to comply with objective (ii). A structured approach to

the parallel implementation can go a long way towards achieving this aim. The SPMD

paradigm is used in this thesis as it allows a single source code parallel program to be

developed which may be maintained as a serial code by the original code authors. The

DD method adopted requires extension of existing data structures and additional data

structures to define the mesh decomposition and inter-processor communication. These

additional data structures need to circumvent the subroutine parameter lists to remain

hidden. Include files containing common data areas provide a reasonably convenient

way to manage these variables. Mapping of the partitioned mesh to the original mesh

(required to rebuild partioned data for output) requires a global sized data structure

that has to be distributed among the processors in order to remain scalable (objective

In this parallelisation strategy a shell structure illustrated in Figure 2.1 has been

used to build layers of (in) visibility within the code. Around the outside of the shell are

the majority of the original routines which remain unchanged.

At the next level in are the routines from the original code that have been modified to

function in parallel. Most of these routines are changed only slightly in that additional

subroutine calls have been included and some array dimensions and loop lengths are

changed. The i/o routines unfortunately require extensive modification and remain a

difficult area of code to successfully parallelise. Parallel i/o hardware is uncommon and

so a serial pipelined approach has been adopted.

The visible parallel routines are provided by a parallel utilities library which provides

routines that are locationless and directionless and so form a barrier to the visibility of

the parallel implementation. At this level there is no concept of master or slave processor

19

CHAPTER 2. PARALLEL PROCESSING

or indeed processor number, position or communication channel. It is felt that the serial

code developers should have no problem with this view of parallelism.

The communication library provides a barrier to the visibility of the parallel machine.

The communication library consists a very simple set of communication routines used by

the utility library to present a uniform functionality on all machines. This layer provides

a portability interface and provides similar functionality to the many popular high level

parallel communication harness' such as PVM or MPI.

The innermost level is the native communication harness provided for the parallel

machine. Only the most primitive send and receive functions are necessary at this level

thereby guaranteeing portability to most hardware platforms. Higher level communica­

tions at this level may however be used to simplify or improve the implementation of the

communication library.

unchanged^———~^
parallelised-—••——^

parallel
^—^
comms

Figure 2.1: Shell structure of the parallel code.

20

CHAPTER 2. PARALLEL PROCESSING

2.4.1 Parallel Utility Library

Routines in the utility library are visible at the serial code level and must attempt

to hide the parallel implementation whilst providing a parallel functionality which is

conceptually straightforward. Simplicity of calling is of paramount importance in the

library routines to achieve objective (ii). The routines in the library are described in

Appendix A along with the parallel data declarations. The library is currently written

in terms of the data structures used by the code being parallelised and hence is specific

to that code. This library could however be made general purpose by adoption of a

generic data structure for the utilities, this is discussed further in Chapter 6. The

mesh decomposition routines at this level require extensive data structures and globally

dimensioned variables. Embedding of these routines in the parallel code is not always

possible, mainly due to memory restrictions. In which case they may be used to pre-

process the serial problem files into a domain decomposed problem file that can then be

used by the parallel program in place of the original problem specification. This process

can be made reasonable seamless from the viewpoint of a code user.

Similar functionality has been developed for the Bulk Synchronous Parallel (BSP)

[MR93] package and the Oplus package both from The Oxford Parallel group at the Ox­

ford Computer Laboratory, LOCO from Katholieke Universiteit Leuven, PLUMP from

CSCS in Switzerland [CDE+94] and DIME from Caltech [FWM94]. These packages offer

a range of attractive features for portability, adaptive gridding and dynamic load balanc­

ing. The significant difference between their work and the work presented in this thesis

is that they provide an environment and data structure that supports the generation of

codes to handle irregular problems so that parallelisation of the code becomes more or

less automatic. CM programmers cannot be expected to take on-board the overhead of

authoring parallel code. This thesis therefore attempts a strategy for the parallelisation

of existing codes for irregular problems with the intention of developing a methodology

for automation of the parallelisation of old and new codes.

21

CHAPTER 2. PARALLEL PROCESSING

2.4.2 Parallel Communication Library

The parallel communication library imparts portability to the code by providing an in­

terface between the parallel utility library and the machines' communication harness.

Porting the parallel code to a new platform (harness) requires re-writing only the com­

munication library. The library used for this thesis is the CAPLib library developed as

part of the Computer Aided Parallelisation Tools project (CAPTools) at the University

of Greenwich [CIJL94]. This library is constructed in two layers; CAPLib for high level

routines and CAPLow for the low level portability shell. This further simplifies the porta­

bility of code using the CAP library system as only CAPLow requires porting. CAPLib is

currently available for C Toolset on the Transtech Paramid, 3L Fortran on transputers,

PVM2, PVM3 and MPI with Cray shared memory under development.

2.4.3 Communication Harness

A communication harness is in many ways analogous to an operating system in that it

provides a means of loading an executable code onto the processors with a number of

system facilities such as input/output. Most notably a parallel communication harness

provides a means of inter-processor (inter-process) communication. Some manufacturers

refer to their harness as a parallel operating system (Helios, Genesys, Parix) whilst oth­

ers describe it more in terms of a loader or server program. In actuality it is usually a bit

of both. Networks of workstations running UNIX can be configured as a Parallel Virtual

Machine by using the popular PVM package or one of the more recently developed Mes­

sage Passing Interface (MPI) packages. Some of the larger parallel machines use UNIX

as the communication harness which then provides direct support for communication

packages such as PVM or MPI but at the cost of a memory and processing overhead.

Communication Packages

The communication harness in Figure 2.1 may be implemented as any of a wide range of

communication packages. There are almost as many different communication packages

as there are parallel machines. An incomplete list of some of the most popular and

22

CHAPTER 2. PARALLEL PROCESSING

persistent of the packages is given here:

C Toolset - Inmos [Inm92]

PVM - Parallel Virtual Machine - Oak Ridge National Laboratory. [GBD+94]

MPI - Message Passing Interface - An international consortium coordinated through the

University of Tennessee, Knoxville. [For94]

Parmacs - Parallel Macros for Fortran - Argonne/GMD. [Hem91]

CHIMP - Common High-level Interface for Message Passing - Edinburgh Parallel Com­

puting Centre. [CTHW91]

PICL - Portable Instrumented Communication Library - Oak Ridge National Labora­

tory. [GHPW90]

Express - ParaSoft Corporation. [Par92]

MPL - Message Passing Library for the IBM SP2.

At the most fundamental level these packages provide a means of explicitly sending

a message from one process (processor) to another. This simple message passing is all

that is necessary for CAPLib to be ported to a communication package. Many of the

packages provide more sophisticated features such as global commutative operations and

asynchronous communications. Such features often rely on hardware specific calls for

their successful implementation. Where available such features can be used directly by

CAPLib to provide the functionality with consequent improved performance.

23

CHAPTER 2. PARALLEL PROCESSING

Communication Primitives

To achieve parallel message passing only a small number of communication primitives

are required from the communication harness. Only Initialise, Send and Receive are ac­

tually required to implement a usable communication library. High level communication

routines such as broadcast and global commutative operations can be built from these

simple primitives. More efficient implementations of higher functions may be provided

as primitives on some platforms and harness'. Some of the more sophisticated functions

such as asynchronous communication must however be supported as primitives and can­

not be built from synchronous communications. Primitive calls provided by the harness

take many varied forms, some of the terms used to describe the routines are outlined

below.

 synchronous (blocking) communication: returns when the operation is complete

and data resources used in the call are available for re-use.

 asynchronous (non-blocking) communication: returns before the operation is com­

plete and data resources used in the call are not available for re-use.

 broadcast: sends a data item to all processes

 reduction: performs a commutative arithmetic or logical operation on all processes.

 scatter: distribute a data item amongst the processes.

 gather: rebuild a data item using components from many processes.

24

Chapter 3

Domain Decomposition

Decomposition of a mesh based domain into a set of 5 sub-domains that may be allocated

to a set of P processors involves finding a partition of the mesh so that the amount

of compute time on each processor is very nearly equal. Two schemes are popularly

used. One is to divide the problem into as many sub-domains as there are processors,

i.e. S = P, so that each processor is allocated one sub-domain. The other scheme is to

divide the problem into more sub-domains than there are processors, S > P, so that each

processor operates on one or more sub-domains. This latter scheme has some advantages

for targeting an inhomogeneous compute platform such as a network of workstations, in

which the PE's are workstations which may have not only differing characteristics, but

may also be subject to other workloads. Such a scheme can provide an effective coarse

grained dynamic load balancing mechanism necessary for successful use of shared facility

networks [MJ95]. Such networks tend to be reasonably small scale (~ P < 32), in which

case the overhead of dynamic sub-domain allocation may allow an effective speed-up.

This thesis attempts to propose a scheme which will scale to a highly parallel (~ P > 64)

homogeneous DM MIMD processor array and so the former S = P scheme is advocated.

The simpler S = P scheme carries a lower sub-domain allocation overhead and so may

achieve a greater overall efficiency. Also there is an overhead incurred for each cut edge

of the mesh which is minimised by keeping S = P. Edge is used here in a graphical sense

meaning a relationship between mesh entities that is cut if the entities are in different

25

CHAPTER 3. DOMAIN DECOMPOSITION

sub-domains. Dynamic load balancing schemes may still be implemented as fine grained

migration of the mesh entities between the sub-domains.

Partitioning of a structured mesh is a reasonably straightforward procedure of cutting

the mesh along the grid lines (2D) or planes (3D) [JC91]. Achieving a precise load balance

in this instance requires that the mesh size along the partitioned axis is a multiple of the

required number of partitions. Obtaining a balanced partition of an unstructured mesh

is potentially a more complex problem and the focus of considerable research.

In order to solve for the nodes and elements around the edge of each sub-domain

data is required from the neighbouring sub-domains according to the stencil of data

dependency as discussed in Section 1.2. This data may be communicated as required

from the processor on which the neighbouring domain is calculated, but this can lead

to an unnecessarily large number of small communications. The strategy adopted in

this thesis is to extended each sub-domain to overlap its adjacent sub-domains. This is

discussed in more detail in Section 3.3. Each processor can then solve for the problem

inside its sub-domain using the variables held in the overlap layer. Variables in the

overlaps are updated from variables calculated on other processors to maintain a solution

consistent with the original serial code.

3.1 Representation of an Unstructured Mesh

An unstructured mesh is specified as a hierarchy of components or mesh entities, each

of which may be regarded as a data object or structure which can be used to provide

a spatial, geometric or topological reference to the variables used in a computational

mechanics code.

The definition of an unstructured mesh begins with a set of grid points or nodes, each

of which is defined by set of spatial coordinates. The grid points describe the geometric

shape and physical size of the mesh. Points are also convenient to provide a spatial

reference for dimensionally independent variables such as temperature or pressure.

Points can be connected to form a set of edges, faces or both edges and faces. In

26

CHAPTER 3. DOMAIN DECOMPOSITION

three dimensions edges can be connected to form a set of faces. Edges in 2D and faces in

3D may be used to provide a spatial reference for flux variables such as current density.

The space enclosed by a set of edges or faces describes an element. Elements have

a volume and may be used as a spatial reference for volumetric entities such as mass or

heat.

The perimeter or surface of a mesh defines a boundary which can be usefully asso­

ciated with some boundary condition. Boundaries may also be defined internally to a

mesh.

A defined volume or area within the mesh can be defined as a domain which is subject

to certain conditions such as being of a material with specified physical characteristics.

The entity relationship diagram for a three dimensional unstructured mesh as shown

in Figure 3.1 has only these few components and yet the web of relationships is highly

interconnected. In two dimensions there is no definition of a face and so the relationships

are a little more straightforward. Not all of the entities or the relationships are mandatory

and the relationships may be explicit or implicit. The actual entities and relationships

used varies from code to code.

The connectivity or topology of the mesh is explicitly expressed as relationships

between like or differing mesh entities. For example the elements may be described in

terms of their nodes as a list of node numbers for each element. From this information

the element connectivity (adjacency) may be derived as a list of element numbers for

each adjacent element. There is a trade off to be made between the memory used

for the storage of these relationships against the ease of calculation required within

the code. The nature of the integration employed by CM codes is nearest neighbour.

Evaluation of an element based variable may for example require the variable values for

all neighbouring elements and the coordinates of the points that comprise those elements

(see Figure 1.3 d). This example would require the element to element connectivity to

find the neighbouring elements and the element to node relationship to find the nodes

of the adjacent elements.

27

CHAPTER 3. DOMAIN DECOMPOSITION

boundaries

Figure 3.1: Entity relationship diagram for a three dimensional unstructured mesh.

3.2 Mesh Partitioning

The problem of partitioning an unstructured mesh has attracted the imaginations of

many workers for more than twenty years [KL70] [PSL89] [BS93]. It is after all an

interesting problem and one which at first sight at least seems well defined and self

contained. A good mesh partition is one which divides the computational load equally

amongst the sub-domains and minimises the amount of communication required between

sub-domains. For many meshes it can be computationally prohibitive to find an optimal

partition and computationally expensive to find a near optimal partition. On the other

hand a reasonable partition may be calculated with little effort. The search for the 'best'

partitioning algorithm has led to exploration of the middle ground, trading partition

quality with the order of the partitioning routine.

Partitioning may be based on any of the mesh entities, usually either the elements or

nodes of the mesh. A sensible choice is to partition according to the structure associated

with the greatest amount of computation in the computational mechanics code. For

28

CHAPTER 3. DOMAIN DECOMPOSITION

example a flow code dealing with element based variables would be partitioned according

to elements whereas a stress code using node based variables would be partitioned as

grid points. In actuality an element based code integrates over each face of each element

and so a face based partition may be more appropriate. Similarly a node based code

may integrate over each edge of the mesh and so an edge based partition may be more

appropriate. The actual basis for partition chosen is not however of great consequence

providing that the resulting mesh partition is balanced. This thesis will for simplicity

normally refer to an element based partition. A mesh partition may be expressed in any

of a number of ways, the method adopted is a simple list of the partition number for

each element (entity). (Appendix B)

3.2.1 Load Balance

A fundamental objective in finding a partition is to balance the computational effort or

load required in each sub-domain. The simplest approach is to assume that the load

per element is homogeneous throughout the mesh. In this case the partition should

have as near equal numbers of elements per partition as possible. Should the load be

inhomogeneous then a weight or cost function may be applied to the elements to achieve a

cost balanced partition. For example the computational effort required for each element

may be proportional to the number of faces the element possesses. So tetrahedra will

incur a cost of 4, bricks a cost of six and so on. An important consideration in load

balancing is that it is not so much essential to achieve a totally uniform balance of load

but rather that no one processor should have significantly more than average load. Any

processor with an exceptional work load will cause all other processors to incur idle time

with resultingly poor parallel performance. Should any one processor have too little work

this will not hold up any other processors and have a correspondingly less detrimental

effect on overall performance. This is illustrated in Figure 3.2 where the overall run time

for partition A is longer than the overall run time for partition B despite the greater

imbalance between the individual processor run times for partition B. The definition of

a good load balance must reflect this effect. What is required is not a small deviation of

29

CHAPTER 3. DOMAIN DECOMPOSITION

any load from the average load. Nor a small maximum to minimum load difference, but

a small maximum to average difference.

Run Time

9-

8-
I

7-

6-

5-

4-

3-

2-

T
I

Partition A

Partition B

. average (optimal)

i
Processorl Processor2 Processors Processor4 Processors

Figure 3.2: Example run times for two possible partitions over 5 processors.

3.2.2 Communication Balance

The perimeter interfaces between the sub-domains should be as short as possible to re­

duce the communication overhead between the sub-domains. Again an optimal solution

is expensive to compute and a near optimal solution is sufficiently good. Reducing the

number of adjacent sub-domains reduces the amount of messages that require trans­

mission again reducing the communication overhead. It is also important to have some

degree of balance in the communication, especially that no one sub-domain interface is

unduly larger than the average. Again any exceptionally large interface will delay the

overall parallel execution. These requirements paint a picture of partitions that are low

order, to reduce the number of interfaces and reasonably regular, to present uniform

smooth perimeters.

30

CHAPTER 3. DOMAIN DECOMPOSITION

3.2.3 Processor Topology Mapping

The complexity and therefore the cost of building a totally interconnected non-blocking

processor array is significant and so some form of interconnection map is generally

favoured. As discussed in Section 2.1 this may be anything from a simple ID or 2D

array up to a 3D torus array or a fat tree structure. Many transputer based systems

employ the Inmos C004 32 channel crossbar switch programmable link router chip al­

lowing reconfigurable topologies to be constructed from a set of compute nodes. The

IBM SP2 and the NEC Cenju3 use 4x4 switches to similar effect. A more detailed de­

scription of a number of popular and esoteric hardware architectures may be found in

[vdS94, TW91]. In spite of what hardware manufacturers may claim there will always

be a distance related communication cost. This cost becomes more significant as the

number of processors increases. No matter how the processor interconnection is realised,

a parallel processor platform will incur some form of topological communication cost. It

is inevitable that it is more efficient to communicate with neighbouring processors than

with distant processors. Robinson and Lonsdale [RL90] suggest that communication

costs may be reduced by interconnecting the processors to reflect the mesh partition

as illustrated in Figure 3.3. It may not however be possible or practical to reconfig­

ure a processor array to suit a given partition. A more generic, flexible and scalable

scheme is to consider the processor topology to be fixed as, for example, a 2D or 3D

grid. This processor interconnection topology can then be reflected in the mesh par­

tition. A transputer based platform, for example, would require the partition to limit

the number of adjacent sub-domains to four (a 2D grid or 4 dimensional hypercube),

as this is the number of communication links on each transputer. To this end weights

can be applied to the partition to discourage the separation of neighbouring elements

onto non-neighbouring processors [Jon94, Wal95j. In practice it can prove impossible

to force a partition to adhere to a processor map, but the closer the partition reflects

the processor map the greater the potential efficiency of the partition. A number of

workers attempt to incorporate the underlying machine topology into the partitioning

process in order to produce a partition that can provide improved parallel performance

31

CHAPTER 3. DOMAIN DECOMPOSITION

Robinson and Lonsdale 1990

Figure 3.3: Processor interconnection mapped to a pipe mesh partition.

[Far89, WCE+95, Har94, MWC+95]. Figure 3.4 shows a mesh partitioned (using the

JOSTLE code discussed in Section 3.2.4) into 16 sub-domains using three different par­

titioning strategies along with the corresponding processor interconnection graphs.

Regardless of how the mesh partition is calculated one is faced with the problem

of mapping S partitions onto P processors (S = P) [SE87, SER90, BA92, HS92].

If P is small then all combinations may be tried to rind the optimal mapping, that

is the mapping which minimises the number of partition boundaries that do not align

with processors interconnections. The combinations of mappings increase as P factorial

which makes this impractical for even modest sizes of P. A simple scheme to obtain

a mapping for little cost is to loop over all partitions in an initially arbitrary mapping

looking for a partition which can be swapped so that communication cost reduction is

maximised. This loop is iterated until no further cost reduction is found. Schemes such

as this are prone to local minima traps but can give a useful mapping with little overhead

[WCE+95].

32

CHAPTER 3. DOMAIN DECOMPOSITION

Figure 3.4: Partitions of a 2D mesh into (a) ID, (b) 2D and (c) uniform topologies with

the corresponding sub-domain connectivity graphs.

33

CHAPTER 3. DOMAIN DECOMPOSITION

3.2.4 Partitioning Algorithms

Some partitioning algorithms operate on the geometric mesh coordinates. Others treat

the mesh as a graph G(N,E] of nodes and edges. Graph based techniques have the

advantages of dimensional independence and a true representation of the connectivity

of the mesh in the partioning process. This is demonstrated by Nick Floros and Jeff

Reeve to be of particular importance when partitioning highly complex shapes [FR94].

The graph to be partitioned may be simply the grid points (nodes) of the mesh or a

dual graph of the mesh with the graph nodes representing for example elements and the

graph edges representing the element adjacency. If the graph is based on elements of

the same shape then the node degree (number of edges on each node) in the graph is

more or less constant (nodes at the boundaries are of reduced degree). Partitioning to

achieve an equal number of nodes in each sub-domain may achieve a good load balance.

If however the graph is based on grid points, or the mesh is of mixed element shapes the

node degree in the graph is variable. Partitioning a graph to achieve an equal number

of edges (rather than nodes) in each partition may, in some cases, be more appropriate

for load balance. Other factors may affect the computational load at each node of

the graph, perhaps different materials, or phases for instance are associated with each

node. Applying a weight to the nodes (perhaps based upon the number of connected

elements and/or some other parameter) and then partitioning the weighted list can give

an improved load balance. In practice it can prove difficult to accurately predict the

computational load in each sub-domain.

Many of the schemes involve recursive bisections, variations on the bisection schemes

involve cutting the mesh into more than two partitions at each step. This allows the

algorithms to provide numbers of partitions other than 2n .

What is required of a mesh partitioning algorithm is a high quality of partition

at a low cost. The time required to calculate the partition must be insignificant in

proportion to the time for the CM code to execute. High quality means a balanced load,

short interfaces and a small number of interfaces. This paints a picture of partitions as

uniform packed bubbles, shapes of minimum surface energy. Much of the current research

34

CHAPTER 3. DOMAIN DECOMPOSITION

centres on hybrid approaches with graph reduction techniques and multilevel schemes

to reduce the order of the problem [Jon94, WCE+95, HL93, VK95, DMM95, KK95].

A good but incomplete review of partitioning algorithms has been compiled by Chris

Geenough [GF94] and Dirk Roose [RVD93]. A number of the algorithms have been

collected into a package called RalPar [FG94]. Some of the more important techniques

are covered in detail by Beryl Jones in her thesis [Jon94]. There follows a brief summary

of many of the better known algorithms.

Recursive coordinate bisection

Recursive Coordinate Bisection (RGB) [Fox88] is a simple geometric scheme in which the

grid points of the mesh are sorted into order along one axis (normally the longest) and

then bisected. This process is repeated recursively on each partition until the required

number of partitions is obtained. This gives rise to thin strip partitions with long

interfaces. A variant of the scheme is Orthogonal Coordinate Bisection (OCB) in which

the sort axis is alternated at each recursion. The resulting partitions are consequently

more checkerboard in shape. An improvement is to bisect each partition along its longest

axis, which is not necessarily the same for each partition.

Recursive inertial bisection

Recursive Inertial Bisection (RIB) is similar to RGB but bisects the geometric coordinates

along the line of principal inertia [RVD93]. It can be expected that the line of principal

inertia is aligned with the length of the mesh and the narrowest part of the mesh will be

orthogonal to it. Whilst RIB is more expensive than RGB or OCB it is still a 'cheap'

method and gives better results with concave geometries. RIB is still popularly used as

it is fast and reliable.

Greedy

The greedy method is a graph based technique which begins with a node of minimum

degree (minimum number of connected edges) and 'bites' level sets from the graph [Far

35

CHAPTER 3. DOMAIN DECOMPOSITION

until the appropriate number of nodes (^) have been 'eaten'. This process is repeated

on the remaining graph until all of the graph has been consumed. This is an extremely

cheap method (O(AT)) which produces mostly good partitions but is liable to leave some

disconnected partitions (i.e. partitions that are split into two or more pieces).

MINCUT

MINCUT [KL70] employs heuristics to optimise a partition by swapping vertices of the

graph between partitions to find the swap that minimises cost. "The general idea is to

perturb the locally optimal solution in what we hope is an enlightened manner, so that

an iteration of the process on the perturbed solution will yield a further reduction in the

total cost." A logical exchange of all vertex pairs in the graph is performed and the effect

of each exchange on the partition cost calculated. All exchanges up to the exchange that

produces the minimum cost are then committed as actual exchanges. This process is

repeated until no reduction in cost is obtained. This method attempts to climb out of a

local mina trap but is not always successful.

Recursive graph bisection

Recursive Graph Bisection (RGB) [Sim91] is similar to RGB and RIB but operates on

the graph of the mesh. A diameter of the graph is found and starting from one end

of the diameter level sets are removed from the graph until the graph is bisected. The

process is repeated recursively on each partition.

Recursive spectral bisection

Recursive Spectral Bisection (RSB) [PSL89] represents the graph with its Laplacian

matrix L. The method recursively partitions the graph by finding x which minimises

xTLx. The eigenvector that corresponds to the second smallest eigenvalue (the first

eigenvalue is trivial) is sorted and bisected to give a partition of the graph. This is

a sophisticated and expensive method that provides a high quality partition that is

especially suitable for complex geometries. Hendrickson and Leland [HL92] extended

36

CHAPTER 3. DOMAIN DECOMPOSITION

the method to allow weighting of the nodes and edges and cutting into more than two

partitions at each step. Multilevel Recursive Spectral Bisection (MRSB) dramatically

speeds up the algorithm by coarsening the graph with clustering and using RSB on the

coarsened graph [BS93]. This is a highly elaborate technique that provides the high

partition quality of RSB at less cost.

Tabu search

Tabu search (TS) [Glo89, Glo90] is a combinatorial optimisation based iterative im­

provement technique that tries to avoid local minima traps by temporarily accepting

unprofitable changes to the partition. Cycling in the search trajectory is avoided by

keeping a history of the most recent changes, making further changes of the most re­

cently moved nodes 'taboo'. Some open problems of TS are the determination of an

appropriate 'prohibition period' and the robustness of the technique for a wide range

of different problems. Some of the limitations of TS have been overcome in Reactive

Tabu Search (RTS) [BT94] in which the appropriate size of the prohibition list is learned

automatically by reacting to the occurrence of cycles.

Simulated annealing

Simulated Annealing (SA) is a generalised optimisation method that borrows ideas from

a statistical mechanics approach to annealing in a cooling solid [KJV83, vLA87]. A

parameter analogous to temperature is reduced during the course of the calculation.

For each temperature a number of modifications to the current solution are tested. If

a modification reduces the cost function the modification is accepted, otherwise the

modification is accepted according to a probability function based on the exponent of

the ratio of cost function to temperature. As the temperature cools the algorithm is

less likely to accept a change that increases the cost. With a slow 'cooling' rate this

method can produce good partitions but is computationally expensive. Developments of

the basic ideas of SA have led to Mean Field Annealing (MFA) which combines SA type

strategies with Neural Network techniques[BA92].

37

CHAPTER 3. DOMAIN DECOMPOSITION

JOSTLE

JOSTLE [Wal95, WCE+95, MWC+95] is the code used to produce the partitions used in

this thesis. The JOSTLE strategy is to derive an initial partition as quickly and cheaply

as possible and then use optimisation techniques to improve the quality of the partition.

Two alternative methods are provided to produce the initial partition. One method is a

variation of the Greedy algorithm, in this case a graph based variant on the original mesh

based algorithm proposed by Charbel Farhat [Far88]. The other method is geometric

sorting which operates in a similar manner to OCB. This method provides a crude map­

ping to a p x q processor grid (p > q). The nodes are sorted on the longest axis and split

into sets of N/p. The nodes in these sets are then sorted in the orthogonal axis and split

into sets of N/pq. Having used one of the above methods to obtain an initial partition

one of two optimisation methods can be applied to the improve the partition. Uniform

optimisation is a technique in which each partition attempts to minimise its own surface

energy analogous to the way that bubbles pack together. The technique works by calcu­

lating the centre of each partition in a graphical sense and determining the radial distance

of each node from the centre. Nodes that are most distant from the centre can then be

migrated between neighbouring partitions. Grid optimisation is a similar technique to

uniform optimisation except that nodes are allowed to migrate only between neighbours

in the processor grid. Four partitioning (mapping) strategies are provided by JOSTLE.

Unmapped partitioning ignores the processor interconnection topology throughout the

entire partitioning process. A Post-mapped partition is an unmapped partition that has

been mapped to the processor topology with a simple mapping algorithm applied post

partitioning. The Premapped partition begins with a partition that is crudely mapped to

the processor topology and then is optimised ignoring the processor topology to minimise

the number of cut edges. The Mapped partition acknowledges the processor topology

throughout the partitioning process. Some partitions produced by JOSTLE can be seen

in Figure 3.4.

38

CHAPTER 3. DOMAIN DECOMPOSITION

Strategy

Unmapped

Postmapped

Premapped

Mapped

Initial partition

Greedy

Greedy

Geometric sort

Geometric sort

Optimisation

Uniform

Uniform

Uniform

Grid

Processor allocation

No

Yes

No

No

Table 3.1: Partition mapping strategies provided by JOSTLE

3.2.5 Parallel Partitioning

Ideally the partition of the mesh should be carried out at run time in parallel. As P and N

increase an O(N) partitioning algorithm may become unacceptable for a solver running

at O(f(N)/P). Few of the available partitioning algorithms are suitable for parallel

implementation. The work of Chris Walshaw [Wal95] and Ralf Diekmann [DMM95]

aims to provide paralleliseable routines that can be used to partition and also re-partition

meshes in a dynamic load balancing scheme. This strategy relies on obtaining a rapid

initial mesh partition to crudely distribute the mesh across the processors and then

operate on the partitions in parallel to optimise the partitions. Difficulties arise when

the size of the mesh becomes too great to fit onto one processor. This is a natural

consequence of massively parallel processing where the capacity of the whole machine

may be orders of magnitude greater than the capacity of a single node. In such an

instance the partitioning algorithm may have to begin by taking an arbitrary partition

of the mesh as it is read in from file and distributed in sequence to a number (not

necessarily all) of the processors. A high level of communication will then be required to

re-distribute the mesh amongst all of the processors to provide a crude initial partition.

If the partitioning strategy is, for example, to be the mapped JOSTLE scheme this will

be a reasonably successful process. Geometric sorting will be a reasonably simple and

cheap algorithm to implement as a parallel initial partition scheme.

39

CHAPTER 3. DOMAIN DECOMPOSITION

3.3 Mesh Decomposition

Having obtained a partition of the mesh into P parts the partition is used to decompose

the mesh into P sub-domains that can be allocated one per processor. The elements,

nodes and faces that are allocated uniquely to a processor are referred to in this thesis

as the core mesh components. These components are said to be 'owned' by a processor.

Each sub-domain is extended with a layer of points and elements which overlap the sub-

domains along the inter-processor boundaries as illustrated in Figure 3.5. These overlap

or halo regions carry variable values from neighbouring sub-domains that are required

for the solution of variables inside the sub-domain.

Problem
Mesh

1D Domain Decomposition

Add Halo Elements

Figure 3.5: Mesh partitioned into three parts with overlap elements applied.

Decomposition of the mesh into a set of extended sub-meshes consists of five essential

steps;

i) Find a partition of the mesh (primary).

ii) Derive secondary partitions from the primary partition.

40

CHAPTER 3. DOMAIN DECOMPOSITION

iii) Determine the mesh overlaps to the neighbouring sub-domains.

iv) Re-number the mesh in each sub-domain.

v) Construct a template for overlap data exchange.

3.3.1 Derive Secondary Partitions

As mentioned in Section 3.2 the mesh entity that provides the dominant spatial reference

used by the code to be parallelised is ordinarily chosen as a basis for mesh partitioning.

This partition is referred to as the primary partition. Secondary partitions may be

derived from the primary partition for the other mesh entities used in the code. The

compute time for a CM code is dominated by the time spent in the solution of an

equation of the form Ax = b. It is consequently important for load balance to obtain

an equal number rows and an equal number of coefficients in each of the distributed A

matrices. This inevitably results in some compromise. With an element based x for

example, a primary partition based on elements will keep the vector length and hence

number of rows in A balanced across each sub-domain. But the number of off diagonal

coefficients in each A depends upon the number of internal faces in the sub-domain.

Balancing elements will not necessarily balance matrix coefficients In the case of the two

dimensional flow code used in this thesis the primary partition is based on elements and

there is only one secondary partition, that being for grid points. For reasons of clarity

the following discussion is based on an element based primary partition. The discussion

is nonetheless applicable to other mesh entity partitioning orders.

Secondary partitions are inherited from the primary partition in accordance with the

connectivity between the entities. For example, each node is connected to a number

of elements, each of which belongs exclusively to one sub-domain. This provides a

basis for the allocation of the node to a sub-domain. The most obvious and simple

partition inheritance scheme is to allocate the node to the sub-domain which owns the

majority of the connected elements. In the case of an equal number of connected elements

being owned by two or more sub-domains, the node is allocated to the domain which

41

CHAPTER 3. DOMAIN DECOMPOSITION

owns the least number of nodes. This simple, inexpensive scheme gives a good match

between the primary and secondary partitions, but can lead to an unnecessarily high load

imbalance in the secondary partition. It does not follow that two unstructured meshes

with equal numbers of elements will have the same number of nodes, indeed there may

be a large discrepancy between the two node counts. When the two meshes are sub-

domains to be operated on in parallel this can produce an unacceptably high degree of

load imbalance for element based matrix computations as discussed earlier and possibly

even greater imbalance for node based calculations. If however the node allocation

between the sub-domains is forced to be balanced the element and node partition may

not be well matched which can result in an undesirably large and imbalanced overlap

layer. This will consequently lead to large and unbalanced communications between the

sub-domains. The comments about load and communication imbalance in sections 3.2.1

and 3.2.2 should be borne in mind at this point.

The load imbalance may be redressed to an extent by the use of more elaborate

schemes to derive secondary partitions. A possibly superior partition inheritance scheme

is to first locate the nodes for which all connected elements lie in one partition and for

each node found, allocate the node to that partition. The remaining nodes are then

allocated in turn to the least loaded domain beginning with the node which has the

greatest connectivity to that domain.

It is conceivable that the nodal imbalance may become unmanageably large, in which

case some nodes may require allocating to sub-domains that own none of the connected

elements in order to redress the balance. This will result in a communication imbalance

which may or may not be significant depending upon the characteristics of the hardware

platform. The quality of the secondary partitions then becomes a platform dependent

optimisation issue.

These schemes may be seen as an attempt at solving a graph problem by the applica­

tion of simple heuristics. It may therefore be worthwhile to use graph based techniques

to derive the secondary partitions. A possible scheme is to produce a weighted graph

of the nodes which clusters the nodes for which all connected elements lie on one parti-

42

CHAPTER 3. DOMAIN DECOMPOSITION

tion. This graph may then be partitioned using one of the graph partitioning algorithms

developed for obtaining primary partitions. The work of Chris Walshaw [Wal95] is of

interest here. The amount of effort that it is worthwhile devoting to the derivation of a

secondary partition is problem dependent. Like the search for a primary partition there

may be no singular optimal solution and a near optimal solution will in the majority of

cases provide a sufficiently good solution.

3.3.2 Overlap Construction

The overlaps between the sub-domains are determined in accordance with the data de­

pendency required by the code as discussed in section 1.2. For example, if the solution

for an element based variable requires the values in all adjacent elements as illustrated in

Figure 1.3a then the adjacent elements that lie in neighbouring sub-domains are added as

overlaps to the list of elements. Similarly if the nodes that compose the overlap elements

are also required as in Figure 1.3d then they too are added to the list of overlap nodes.

In this way the description of the mesh for each sub-domain is extended to include all

data that are required for solution of the sub-domain. The utility used to construct

overlaps for the codes parallelised in this thesis uses a simple set of rules to determine

the elements and nodes which are to be included in the overlaps (Appendix A).

When using only the element based flow and heat code;

Overlap elements are denned as:-

All elements that are adjacent to a core element.

Overlap nodes are defined as:-

Nodes of all elements including overlaps that are not core nodes.

However the node based stress code involves a more extensive data dependency

and the required overlap layers become deeper so that;

Additional overlap elements are defined as:-

43

CHAPTER 3. DOMAIN DECOMPOSITION

Elements that contain at least one core node.

Additional overlap nodes are defined as:-

Nodes that are connected to core nodes.

An example of the overlaps required for the flow code is shown in Figure 3.6. The same

mesh is shown in Figure 3.7 with the additional elements and nodes in the overlaps

required for the stress code .

o

Key:
core element

core node

overlap element

overlap node

Figure 3.6: A mesh of 28 triangles divided into two sub-domains with the overlaps

required for the flow scheme.

Providing that the mesh data structures are either one dimensional linked or indexed

lists, or stored as multi dimensional arrays in which the number of entities is the highest

index (last in F77, first in C) then the overlaps may be stored as extensions to existing

data structures which allows them to be passed to subroutines and addressed in the

parallel code in the same manner as the original data structures. This hides the paral­

lelism and results in only small source file changes being required to extend mesh as it

44

CHAPTER 3. DOMAIN DECOMPOSITION

core element

• core node

";:' overlap element

o overlap node

Figure 3.7: A mesh of 28 triangles divided into two sub-domains with the overlaps

required for the stress scheme.

is implemented in the serial code. For example the array of grid points in Fortran may

be declared as;

INTEGER DIMENSION, NO_OF_GRID_POINTS

INTEGER GRID_POINTS(1:DIMENSION, 1:NO_OF_GRID_POINTS)..

This array may be easily extended to include overlaps as;

INTEGER DIMENSION, EXTD_NO_OF_GRID_POINTS

INTEGER GRID_POINTS(1:DIMENSION, 1:EXTD_NO_OF_GRID_POINTS)

Clearly this structure will still be correctly declared in all subsequent subroutines calls

without any code modification. Subroutines may be called with either the original or the

extended point count and the declaration will remain consistent. If however the array of

grid points is declared as;

INTEGER GRID_POINTS(1:NO_OF_GRID_POINTS, 1:DIMENSION)

45

CHAPTER 3. DOMAIN DECOMPOSITION

Then the array may also be extended as;

INTEGER GRID_POINTS(1:EXTD_NO_OF_GRID_POINTS, 1:DIMENSION)

But now each subroutine must declare grid points to the extended size in order to

remain consistent. It may prove less invasive to change the serial code to reverse such

declarations and subsequently all occurrences of the variable. Apart from cache effects

such a modification will not affect the serial code and unlikely to raise objections from

the serial code authors.

3.3.3 Parallel Execution Control and Renumbering

Consider the following code fragment that loops over each grid point in each element.

INTEGER NUMBER_OF_GP_IN_ELEMENT(1: NUMBER, OF.ELEMENTS)
INTEGER GP_IN_ELEMENT (1: MAX_NUM_GP_PER_ELE, 1: NUMBER_OF_ELEMENTS)
REAL XELE(1:NUMBER.OF.ELEMENTS)
REAL YGP(1:NUMBER_OF_GRID_POINTS)

DO I = 1, NUMBER_OF_ELEMENTS
DO J = 1, NUMBER_OF_GP_IN_ELEMENT(I)

XELE(I) = XELE(I) + YGP(GP_IN_ELEMENT(J,I))
END DO

END DO

Two arrays are used in this example to describe the element topology;

NUMBER_OF_GP_IN_ELEMENT is a vector that contains the number of grid points that are

in each element.

GP_IN_ELEMENT is a two dimensional array that contains the grid point number for each

grid point in each element.

Two data items are involved; an element based variable XELE and a grid point based

variable YGP . This code fragment can be implemented in parallel by using 'owner com­

putes' execution control masks which are conditionals to control the scope of operations

46

CHAPTER 3. DOMAIN DECOMPOSITION

for each processor. In this example the execution control mask is implemented with a

function OWNER.OF.ELEMENT that returns true only if the argument is an element number

that is owned by the processor, the computation only being performed if this is the case.

DO I = 1, NUMBER_OF_ELEMENTS
IF (OWNER_OF_ELEMENT(I)) THEN

DO J = 1, NUMBER_OF_GP_IN_ELEMENT(I))
XELE(I) = XELE(I) + YGP(GP_IN_ELEMENT(J,D)

END DO
END IF

END DO

However in order to achieve scalability of memory each processor can store only its own

sub-domain. In this example the most fundamental mesh entity, the grid point, described

as a set of coordinates, will renumber itself through the simple process of being packed

into memory as a consecutive list of coordinates for each grid point in the sub-domain. So

the core grid points are packed into the first 1 to LOCAL_NUMBER_OF_GRID_POINTS locations

and the overlap grid points as LOCAL_NUMBER_OF_GRID_POINTS+1 to EXT_LOC_NUMBER_OF_GRID_POINTS.

Where LOCAL_NUMBER_OF_GRID_POINTS is the number of grid points in the sub-domain core

and EXT_LOC_NUM_OF_GRID_POINTS is the number of grid points in the entire sub-domain.

Similarly extracting and storing (packing) only the local entries for the variables XELE,

YGP and NUMBER.OF_GP_IN_ELEMENT is straightforward. Other mesh entities are however

described as relationships or 'pointers' between entities. So packing GP_IN_ELEMENT re­

sults in a list of global node numbers for each locally numbered element. To allow for

this pointer arrays must be embedded into the code in order that each time the code

refers to a grid point of an element the pointer array indirectly addresses a grid point in

the local numbering scheme.

INTEGER NUMBER_OF_GP_IN_ELEMENT(1 :EXT_LOC_NUM_OF_ELEMENTS)
INTEGER GP_IN_ELEMENT(1 :MAX_NUM_GP_PER_ELE, 1:EXT_LOC_NDM_OF_ELEMENTS)
INTEGER PTR.ELE(1:NUMBER.OF.ELEMENTS)
INTEGER PTR.GP(1:NUMBER_OF_GRID_POINTS)
REAL XELE(1:EXT_LOC_NUM_OF_ELEMENTS)
REAL YGP(1: EXT_LOC_NUM_OF_GRID_POINTS)

DO I = 1, NUMBER.OF.ELEMENTS

47

CHAPTER 3. DOMAIN DECOMPOSITION

IF (OWNER_OF_ELEMENT(I)) THEN
DO J = 1, NUMBER_OF_GP_IN_ELEMENT(PTR_ELE(I))

XELE(PTR_ELE(I)) = XELE(PTR_ELE(I)) +
i- YGP (PTR.GP (GP_IN_ELEMENT (J ,PTR_ELE (I))))

END DO
END IF

END DO

Here two indirection pointer arrays are used PTR_ELE and PTR.GP which store the local

element and grid point numbers respectively. For example if element number 28 is

local element number 14 then PTR_ELE(28) has the value 14. The code still uses global

numbers, only the addresses are indirected. A simple optimisation here is to move the

element indirection upwards.

DO II = 1, NUMBER_OF_ELEMENTS
IF (OWNER_OF_ELEMENT(II)) THEN

I = PTR.ELE(II)
DO J = 1, NUMBER_OF_GP_IN_ELEMENT(I)

XELE(I) = XELE(I) + YGP(PTR_GP(GP_IN_ELEMENT(J,I)))
END DO

END IF
END DO

These pointers will need to be globally sized and so do not scale in memory. Also the loop

still increments over the global number of elements and so does not scale in processing.

Execution of the control mask for every element can be a significant operation. Since

PTR.ELE now represents the local renumbering implied by the array packing, the local

element numbers in the above loop when the execution control mask is true will run from

1 to LOCAL_NUMBER_OF_ELEMENTS. Therefore a further optimisation is possible by changing

the loop limits to local numbering.

DO I = 1, LOCAL_NTJMBER_OF_ELEMENTS
DO J = 1, NUMBER.OF_GP_IN_ELEMENT(I)

XELE(I) = XELE(I) + YGP(PTR_GP(GP_IN_ELEMENT(J,I)))
END DO

END DO

Now only one pointer is required but it remains globally sized and so is still not scalable.

If all uses of GP_IN_ELEMENT throughout the code are as the index of the array PTR.GP

48

CHAPTER 3. DOMAIN DECOMPOSITION

then this indirection can be propagated upwards to the highest level where PTR_GP is

used to renumber the contents of GP_IN_ELEMENT to a local grid point numbering scheme.

The example now becomes

DO I = 1, LOCAL_NUMBER_OF_ELEMENTS
DO J = 1, NUMBER_OF_GP_IN_ELEMENT(I)

XELE(I) = XELE(I) + YGP(GP_IN_ELEMENT(J,I))
END DO

END DO

If this code fragment exists inside a subroutine where NUMBER.OF.ELEMENTS is passed

into the subroutine as an argument then the calling routine can be modified to call the

subroutine with LOCAL_NUMBER_OF_ELEMENTS so that no code modification is required in
the subroutine.

This thesis follows the option of re-numbering each entire sub-domain to a local

numbering scheme as this has been shown above to be consistent with objectives (ii) and

(iii). Each processor 'sees' its renumbered sub-domain as a complete mesh consisting

of 1 to ne elements and 1 to np grid points where ne and np are the local number of

elements and grid points respectively. This can be carried out at the highest possible

level in the code, that is where the problem specification is read from file. A record of the

global (serial) numbers for each local mesh entity (referred to as a decomposition index)

is stored on each processor in order to allow reconstruction of data back into its original

global form. Translation back from local to global numbering using this record is only

required as an i/o process when writing variables to file. Rebuilding of global variables is

carried out by the i/o (master) processor and so this is the only processor that requires

the decomposition indices, however the indices are distributed with the sub-domains to

maintain scalability of memory. This scheme can encounter difficulty when the problem

size increases to the point at which the geometry description will no longer fit into the

memory of the master processor. This is not however insurmountable and is discussed

further in Section 4.2 and Chapter 7. The effect of renumbering is illustrated in Figures

3.8 and 3.9. Consider the element partition in Figure 3.9 The partition list Pe of

processor numbers that own each element as returned from the partitioner utility is as

follows;

1111112222222111111112222222

49

CHAPTER 3. DOMAIN DECOMPOSITION

11

Key:
core element

• core node

"\V'' overlap element

o overlap node

Figure 3.8: A mesh of 28 triangles divided into two sub-domains showing the renumbering

of grid points from global to local numbering.

core element

• core node

~,~ * overlap element

o overlap node

Figure 3.9: A mesh of 28 triangles divided into two sub-domains showing the renumbering

of elements from global to local numbering.

50

CHAPTER 3. DOMAIN DECOMPOSITION

The resulting element renumbering as stored in PTR_ELE is listed in Table 3.2. The

Global
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Processor 1
1
2
3
4
5
6
15
0
0
0
0
0
16
7
8
9
10
11
12
13
14
17
18
0
0
0
0
0

Processor2
0
0
0
0
0
15
1
2
3
4
5
6
7
16
17
0
0
0
0
0
18
8
9
10
11
12
13
14

Table 3.2: Element indirection pointer arrays for the partition illustrated in Figure 3.9

renumbering has maintained the core elements as the first 14 elements in each partition

allowing the transformation to local loop limits. The implications of renumbering are

discussed further in Section 4.3.

3.3.4 Overlap Communication

The notion of the mesh overlaps is that each processor calculates only the values of core

variables. That is variables that are associated with mesh entities within its own domain,

51

CHAPTER 3. DOMAIN DECOMPOSITION

no computation being performed on the overlaps. Variable values are then swapped into

the overlap from the processors on which the variables are calculated, as shown in Fig­

ure 3.10. This is a one way communication process between all adjacent sub-domains.

Data travels only from the core of the sub-domains (where it is calculated) into the

overlaps of adjacent sub-domains (where it is used). There are however some rather

obvious exceptions, where data operations are so trivial that it is faster to perform the

operation locally on the overlap than to import the new values from a neighbour (see

Jacobi example in Appendix C. For example, setting a variable to a fixed value, zero

for instance, requires a processor only to write a register to memory. This will undoubt­

edly be faster than reading data from the communication port and writing the data

back out to memory. Implementation of such exceptions may be seen as an optimisa­

tion of the parallelisation. Indeed such optimisations may produce an improvement in

performance on some platforms and not others. Overlap values are generally exchanged

between processors as soon as practically possible, usually whenever a variable has been

fully updated, for example, at each iteration of a solver. Asynchronous communication

schemes may be used to improve the parallel performance by overlapping communication

with calculation. This is discussed further in Chapter 5. The coordination of overlap

Figure 3.10: Overlap update communication scheme.

data exchange requires a communication template for each sub-domain which holds the

mesh entity numbers to be sent and the processor number to which they are to be trans-

52

CHAPTER 3. DOMAIN DECOMPOSITION

mitted. A corresponding template records the entity numbers to be received and the

processor number from which they will arrive. These templates must be matched across

each sub-domain boundary so that the data sent from one sub-domain is received in

the anticipated order in the adjacent sub-domain. This is achieved by preserving the

global ordering of the elements. For a simple processor interconnection topology such as

a pipeline (a one dimensional chain), where the partition can guarantee mapping to the

processor topology, the template becomes reasonably straightforward. Exchange of data

between processors can be synchronised by the template on an odd-even alternate pair

basis. This is a four cycle process described in the following table.

Processor Number Odd Even

Send right Receive left

Receive right Send left

Send left Receive right

Receive left Send right

Table 3.3: Communication operations required for a simple chain of processors

This simple scheme enables the exchange to be carried out as a parallel process.

More elaborate processor topologies can be handled with variations on such a scheme.

Regular two dimensional processor arrays can for instance use red - black checkerboard

type schemes. It cannot however be assumed that the mesh can be partitioned in such

a way as to map perfectly to the processor interconnection topology (Section 3.2.3).

A scheme is required which can cope efficiently with an unstructured partition of an

unstructured mesh mapped imperfectly to an array of processors. This is a scheduling

problem of the type familiar to operational research [Wil84].

The scheme adopted involves constructing the graph G(P, C) of processors P and

sub-domain (processor) interconnections C and attaching weights to the interconnects

according to the size of the interface. This graph is initially sorted by weight with the

processor pair having the largest amount of data to communicate being first. The graph

is then scheduled to provide a sequence in which exchanges occur as a parallel process

53

CHAPTER 3. DOMAIN DECOMPOSITION

with the largest exchanges first. Starting with the heaviest node pair, the processor

numbers are recorded. The graph is then searched for the next heaviest weight that does

not use one of the already recorded processors. When found this processor pair is sorted

to be the next entry in the graph. This operation is carried out until either all processors

are involved in communication or an unrecorded processor pair is no longer available for

scheduling. If there are still entries in the graph that have not been scheduled the list

of recorded processors is cleared and the process repeated until all processor pairs have

been scheduled. This results in a layering of exchange communication processes which

should be (but is not guaranteed to be) no deeper than the maximum node degree of

the processor graph G(P,C).

Consider the mesh illustrated in Figure 3.11 decomposed into three renumbered sub-

domains in Figure 3.12 Here the overlap renumbering has followed the original global

Figure 3.11: Mesh of 42 triangular elements.

numbering scheme Processor (a) must receive data for overlap elements 17 and 18 from

processor (b) where they are numbered 6 and 9 respectively. Similarly processor (b) must

receive data for overlap elements 15 and 16 from processor (a) where they are numbered

3 and 8 respectively. The communications for this example may be carried out in six

stages as follows:

54

CHAPTER 3. DOMAIN DECOMPOSITION

(b)

15
'. 16 .--' \

-•' \ 17 .-'

19

Figure 3.12: Mesh of 42 triangular elements partitioned into three renumbered sub-

domains.

Processor (a)

1 Sending to processor (b) elements 3 and 8

2 Receiving from processor (b) elements 17 and 18

3 Sending to processor (c) elements 9 and 12

4 Receiving from processor (c) elements 15 and 16

Processor (b)

1 Receiving from processor (a) elements 15 and 16

2 Sending to processor (a) elements 6 and 9

5 Sending to processor (c) elements 5, 7, 10, and 13

6 Receiving from processor (c) elements 17, 18, 19 and 20

Processor (c)

55

CHAPTER 3. DOMAIN DECOMPOSITION

3 Receiving from processor (a) elements 15 and 19

4 Sending to processor (a) elements 5 and 6

5 Receiving from processor (b) elements 16, 17, 18 and 20

6 Sending to processor (b) elements 6, 8, 10 and 14

Note that these element numbers are always in increasing order both globally and

locally. The sending is always carried out first to allow parallelism in packing.

Data that is to be transmitted from a sub-domain core is collected into a data buffer

which allows one transmission and therefore only one latency to complete the transfer.

Unpacking of data from a buffer is an overhead that is not necessary for data reception.

Data is only ever received into an overlap, so arranging for the overlap renumbering

scheme to consecutively number overlap entities that are owned by the same processor

allows incoming data to be received directly into the overlap memory. So the global

number ordering is preserved for each interface to other processors, but not throughout

the overlap. In the above example elements 15 and 19 on processor (c) are in the core

of processor (a) and so should be numbered consecutively. This involves renumbering

overlap element 19 on processor (c) to be 16 and then overlap elements 16, 17, 18 and

20 to be 17, 18, 19 and 20 respectively.

56

Chapter 4

Algorithm Decomposition

The algorithms employed in unstructured mesh codes have invariably been developed us­

ing the traditional Von Neumann programming model of sequential instruction execution.

The conversion of these serial algorithms into parallel algorithms may be straightforward,

or may be very involved. Parallelism exists in many forms with a CM code. Having

chosen a geometric (topologic) DD strategy, decomposition of the algorithms to concur­

rently operate locally within each sub-domain whilst performing the same operations as

the original serial algorithm becomes a largely automatic process of communicating data

as and when required. Profiling CM execution shows that the majority of run time is

spent within the matrix equation solvers. It is these solvers that are subjected to close

scrutiny to extract the maximum possible parallel efficiency Ideally we should be able

to meet objective (i) and produce results from the parallel code that identically match

the results produced by the serial code. This may not however, be either practical or

possible. A variation between the serial and parallel code is sometimes inevitable. There

are instances where it may be more important for example to meet objective (iii) and

produce a highly efficient parallel code at the expense of failing to precisely meet ob­

jective (i). Again it will usually be a case of having to make an intelligent decision as

to which is the overridingly important criteria. Often there is little choice but to either

modify the algorithm or else suffer unacceptable inefficiency.

57

CHAPTER 4. ALGORITHM DECOMPOSITION

4.1 UIFS - Unstructured Incompressible Flow and Stress

The code used as a vehicle for developing the parallel strategies used in this thesis is

known as UIFS. Developed for the purpose of modelling the processes involved in metals

casting UIFS is a 2D unstructured mesh code for solving the Navier Stokes equations

for transient and steady state flow problems with solidification [Cho93] along with the

elastic stress-strain equations [FBCL91, CBCP92]. The techniques developed for UIFS

have led to the development of the 3D code PHYSICA which provides even greater

modelling flexibility for multi-physical processes.

4.1.1 The FV Fluid Dynamics Scheme

The Finite Volume (FV) (irregular control volume) fluid dynamics scheme in UIFS solves

for flow on a single unstructured mesh using a modification of the SIMPLE algorithm

of Patanker and Spalding [PatSO]. This is a cell centred scheme in which the control

volume is formed by the elements of the mesh which may be any arbitrary shape. The

definition of a staggered grid as used by Patanker et. al. is not clear for an unstructured

mesh. So the scheme uses a co-located grid with the Rhie and Chow [RC82] pressure

weighted interpolation method to suppress pressure oscillation. The solidification scheme

uses the Voller and Cross enthalpy method [VCM87] to model the velocity correction

and latent heat release during phase change. The dependency required by the solvers in

this element centred finite volume scheme is simple nearest neighbour as illustrated in

Figure 1.3(a). However in order to evaluate the cell volumes for the displaced grid the

grid point dependency as shown in Figure 1.3(d) is also required. Hence the definition

of the overlap mesh entities as given in Section 3.3.2. The scheme produces a sparse

irregular diagonally dominant system matrix which may be solved using either Jacobi or

Gauss Seidel SOR iterative methods. The fluid dynamics loop is illustrated in Figure 4.3.

The number of iterations for each of the momentum, pressure and heat solvers are set

at run time along with the maximum and minimum number of sweeps around the fluid

dynamics loop. Convergence is based on the residuals of all of momentum, heat and

58

CHAPTER 4. ALGORITHM DECOMPOSITION

pressure variables.

Momentum Equations

The equations governing the conservation of momentum for an incompressible fluid in a

cartesian system of coordinates may be expressed as:

d(puj] dp' ' + V (pvui) = V (AtViii) --^- + sui (4.1)
ot orii

Here Ui is the momentum in the i axis, similar equations govern the momentum in the

other axis. The other terms are; the density p the resultant velocity, v, the viscosity //,

the pressure p, the face normal component HI and the momentum source in the i axis

sUi . The momentum source term includes the buoyancy source s^ and the Darcy source

Sd{ terms which couple the momentum equation to the energy equation.

$Ui = ^>6j > ^di ' "^boundary ' ^other \)

Continuity Equation

Then continuity equation governing mass conservation can be expressed as:

|£ + V (pv) = sc (4.3)

Here sc is the mass source.

Energy Equation

Conservation of energy can be written as:

dph
dt

+ V (pvh) = V (fcVT) + sh (4.4)

Where h is the specific enthalpy, k is the thermal conductivity, T is the temperature and

s^ is the volumetric source for heat. This equation may be expressed solely in terms of

temperature using h — cT where c is the specific heat.

59

CHAPTER 4. ALGORITHM DECOMPOSITION

Buoyancy Source

The source terms sUt in Equation 4.1 couples into the energy equation through the

buoyancy terms. Two alternative buoyancy terms are available in UIFS; constant and

variable density. The constant density approximation Boussinesq source s^ in the i

direction can be expressed as

sbi = -prefP9i(T-TTef) (4.5)

Where pref is the constant density, (3 is the volumetric coefficient of thermal expansion, T

is the temperature, Tref is the reference temperature (temperature for pref) and gi is the

acceleration due to gravity in the i direction. Density may be more accurately expressed

as a function of temperature p(T) so the buoyancy source becomes

sbi = p(T}9i (4.6)

Solidification Sources

For a system undergoing a change of phase from liquid to solid (or solid to liquid) the

total enthalpy H can be expressed as the sum of the 'sensible' enthalpy h and the latent

heat A#

H = h + AH . (4.7)

Latent heat will be some function F of temperature

= F(T) (4.8)

which may be written in terms of the latent heat of solidification L and liquid fraction

(ratio of liquid to solid) fi

F(T) = Lfi (4.9)

Combining this with Equation 4.4 gives the enthalpy source due to the latent heat of

solidification as

) (4.10)

60

CHAPTER 4. ALGORITHM DECOMPOSITION

Velocity correction for changes in material properties during phase transition uses the

Darcy source term

sdi = ~ut (4.11)

where p, is the viscosity and K is the permeability. Little data is available for the viscosity

and permeabilities of materials undergoing phase transition so a simple approximation

involving the liquid fraction is used

sdi = -B(l - fi)ui (4.12)

where B is an empirical constant.

4.1.2 The FV Solid Mechanics Scheme

The grid point (vertex) based solid mechanics code uses the finite volume unstructured

mesh procedure of Fryer et.al. [FBCL91, Fry93] for the solution of the elastic stress-strain

equations for bodies undergoing thermal or mechanical loads.

Governing Equations

The general equilibrium equations governing the conservation of force on a static body

are

-*• (4 - 13)

dy dx ~ y

Where on, Oij and fi are the components of normal stress, shear stress and body forces

acting in direction i. In matrix form the above equations become

cr = Ds (4.14)

where the stress vector is a = (oxx ayy <Jzy) T and the elastic strains are e ^ =

(£xx £yy £xy) T - The matrix D holds the material elastic properties; Youngs modulus

61

CHAPTER 4. ALGORITHM DECOMPOSITION

E and Poissons ratio // where for plane strain

E
(1 - /Li2)

1

V

0

n
1

0

0

0

9 -

(4.15)

The total strain is related to displacement by

e <T> = Ld (4.16)

Where the displacement vector d = (u v)T represents displacement in the x and y

directions and L holds the differential operators

L-

do:

dy
d ^\

o

. dy dx .

(4.17)

Thermal strains are given by

(4.18)

where a is the coefficient of thermal expansion, AT is the temperature change and

Discretisation of the Solution Domain

This scheme forms a control volume around each grid point with contributions to the

control volume from each of the surrounding mesh elements as illustrated in Figure 4.1.

Here the sub control volumes in each surrounding element are formed by connecting

the element centres to the face centres. Temperature and displacement variables are

stored at the grid points and the material properties, Youngs modulus, Poisson ratio,

etc., are associated with the elements. The equilibrium equations are integrated over the

control volumes where the divergence theorem is used to transform the area integrals

62

CHAPTER 4. ALGORITHM DECOMPOSITION

Grid Points

Integration
Points

Sub-Control
Volumes

Figure 4.1: Formation of a control volume from sub-control volumes around point P.

into line integrals which enables the stresses to be approximated at the integration points

on the surface of the control volume. The discretisation uses reference elements to

represent the mesh elements in a local coordinate system in a manner similar to the

Finite Element (FE) method [SR87] (Figure 4.2). This is a computationally efficient

scheme which obtains approximations to the derivatives in the equilibrium equations in

local coordinates and uses a Jacobian matrix to map the approximations back to global

coordinates. A variable 0 and its derivatives can be approximated anywhere within an

element of m grid points using Equations 4.19 and 4.20.

(4.19)

(4.20)

1=1

dk f^ dk

k = s t

The shape functions Ni for a bilinear quadrilateral are

Ni(s,t) = 0.25(1

63

CHAPTER 4. ALGORITHM DECOMPOSITION

Sub-Control
Volumes .

Integration
Points t

Global Element Reference Element

Figure 4.2: Mapping of a finite volume element to a reference element.

N2 (s,t) = 0.25(1 -s)(l + t)

N3 (s,t) = 0.25(1 -s)(l-t)

Ni(s,t) = 0.25(1+ s)(l-t)

The Jacobian matrix in Equation 4.21 is used to map the derivatives of the shape function

from local to global coordinates.

dx

. dy

dx dy '
ds ds
dx dy

L ~dt ~dt -I

r dNj i ~ds~

dx

dx ~dt

dy_
ds

/T* .X

(4.21)

64

CHAPTER 4. ALGORITHM DECOMPOSITION

dt dt y
Where Xi and y; are the grid point coordinates of the element.

Discretisation of the equilibrium equations

The tensor form of the equilibrium equation is

ux .=ti (4-22)

Integrating over a control volume

Jn

Using the divergence theorem

/ ?pi dto= [<7ij • HJ dS (4.24)
Jn oxj Js

where S is the surface of the control volume. Which gives the matrix form for the integral

over the surface of the control volume

i (7 -ndS = I fdtt (4.25)
Js Jn

Substituting the stress-displacement relationship cr = DLNu — De(Th) with B = LN

into Equation 4.25 gives an integral expression in terms of the nodal displacements u for

each control volume.

/ (DBu - De(Th)) -ndS= [f dti (4.26)
./s Jn

rearranging to give displacements in terms of strain

/ (DBu) • n dS = I f d$l + <f De(Th) • n dS (4.27)
Js Jn. Js

For plane stress the stress-displacement relationships are

-C/ I \S W/ <-/ \J , ^ •* ___ I / ^ —. rt \oxx = 7;——^ —+//—-(!+ /^)aT (4.28)

E [dv du
o\ I r\ r ^** ^— /i^) L^2/ ^

E r5w 9ui
2(1+Ai) dy dx

65

CHAPTER 4. ALGORITHM DECOMPOSITION

Boundary Conditions

For control volumes at the boundary of the domain F the contribution of the faces that

lie on the boundary are given as boundary conditions.

-i DBu-ncJT (4.29)

This surface integral can represent displacements and loads applied to the domain sur­

face.

Solution Procedure

For each axis, coefficients for each node are assembled to form a sparse irregular diag­

onally dominant system matrix A. The vector x = (ui, • • • un) where n is the number

of nodes in the mesh represents the displacements for this axis. The vector b repre­

sents the source terms from the temperature changes, stresses and boundary conditions.

The equation Ax = b is solved using the diagonally preconditioned conjugate gradient

method.

4.1.3 Integration within UIFS

The fluid mechanics code is loosely coupled with the solid mechanics code as shown in

Figure 4.3. Here the fluid dynamics loop reaches convergence for a time step before

entering the solid mechanics loop. When the solid mechanics loop reaches convergence

UIFS loops for the next time step. Each of the solvers may be turned on or off to

suit the requirements of a given problem. As the fluid mechanics stage often requires

more effort to obtain a satisfactory solution than solid mechanics, the elastic solver loop

may be masked to only run every kth time step. Even with k = I the bulk of the

computational effort is usually expended in the fluid mechanics loop. This is of course

problem dependent, for a solidification type problem the initial time steps may be entirely

fluid and the closing time steps entirely solid.

Discretisation of the integration of the governing equations leads to matrix equations

that exhibit localised dependencies across the mesh. Solution of an element requires

66

CHAPTER 4. ALGORITHM DECOMPOSITION

Time-Step
Loop

Solidification

/Converge? \

Displacement

Converge?

Step

Fluid
Dynamics
Loop

Solid
Mechanics
Loop

Figure 4.3: Flowchart for UIFS.

67

CHAPTER 4. ALGORITHM DECOMPOSITION

data from its neighbouring elements. From the perspective of parallelisation the details

of the solution schemes are important only in so far as they give a description of the data

dependency. The way in which neighbouring variables and related variables interdepend

in the solution system is the overriding concern for parallelisation. It is important to

realise the close interaction of the variables, from the point of initialisation onwards

the solution of any one variable is dependent upon many previously solved variables.

Momentum is used to solve for pressure, which in turn is used to solve for energy, energy

for solidification, solid fraction for displacement, displacement for momentum and so

the cycle of dependence continues. This relationship places bounds on what and where

to communicate. The use of data in an overlap indicates that a communication will

be required prior to the calculation, this communication must be performed after the

required data is calculated in a previous stage.

4.2 Parallelisation of UIFS

The bulk of the Parallel UIFS (PUIFS) code remains almost untouched by parallelisa­

tion. Following the SPMD paradigm each processor has a copy of the entire (PUIFS)

code which is executed in a similar manner to the serial case. The parallelism is to a

significant extent hidden 'behind the scenes' while the code runs. The point at which

a UIFS problem is parallelised is as the problem geometry specification (grid points,

element topology, element adjacency, boundaries) is read from file. This provides a clear

interface between the serial problem as it exists on file and the parallel problem as it

exists in the distributed memory. At run time the PUIFS code reads the problem in a de­

composed form from file. That is a problem which has been partitioned into re-numbered

sub-domains along with some extra data to specify the overlaps and communications.

Decomposition of the problem files may be carried out transparently at run time on the

i/o processor or executed as a preprocessing task on the problem files possibly using

another machine. This allows processing of problems that are too large for the geome­

try to be accommodated by the memory of one node in the parallel machine. Also the

68

CHAPTER 4. ALGORITHM DECOMPOSITION

same decomposed problem may be re-run with altered boundary conditions or material

properties without the need to pre-process each time. As each part of the problem is

read in (by the one i/o processor (master)) the parts are distributed to the appropriate

processor. The data space required to store the extra variables is concealed as a common

block that is included into parallelised routines, this is given in Appendix A. This system

is actually a master slave paradigm during the i/o process, there may be only one source

code but it contains conditionals such as;

IF (MASTER) THEN

Once the decomposed problem has been loaded onto the processors each processor acts

on its own sub-domain as if it were a self contained problem. Execution on each proces­

sor is synchronised in information exchanges in order that the global problem remains

consistent. At the end of the run the results and re-start variables are dumped to file

in exactly the same format as a serial code run. Reconstruction of the global variables

from the decomposed variables is carried out by the i/o processor Each processor in

sequence hands its variable back to the i/o processor along with the global numbering

scheme required to place the variables into global order. The current implementation

requires that the i/o processor has sufficient memory to allow the re-construction of a

single global sized data item.

4.2.1 Partitioning

The JOSTLE program [WCE+95] is used to provide a partition of the mesh. JOSTLE

operates on a graph that in the case of UIFS represents the mesh and returns a partition

of that graph (Appendix B). For PUIFS the dual graph of the mesh is used to obtain

a partition based on elements. The dual graph is the graph in which the nodes or

vertices of the graph represent the elements of the mesh and the graph edges represent

the element adjacency (connectivity). For the purposes of experimentation JOSTLE

can be run as a stand alone program that produces a file describing the mesh partition.

This allows for flexibility in adjusting the parameters used to control the partition and

visualisation of the partition produced. JOSTLE has also been embedded into PUIFS

69

CHAPTER 4. ALGORITHM DECOMPOSITION

so that a partition may be produced rapidly at run time. The partition produced by

JOSTLE (primary partition) is used to generate a secondary partition for the mesh grid

points as described in Section 3.3.1. The primary and secondary partitions are inverted

to generate lists of the global element and grid point numbers that exist in each sub-

domain. The rules for overlap generation given in Section 3.3.2 are applied to produce

descriptions of the overlaps in a global numbering scheme. The element and grid point

lists are extended to contain the global element and grid point numbers for the overlaps.

Boundaries in UIFS are described as a set of grid points and boundary conditions are

described in file as a set of 'patches'. This allows the boundary points along with the

associated boundary patch number to be partitioned in accordance with the extended

grid point partition. The boundary patches and material properties are not partitioned.

These parameters are read at run time and distributed to all processors whether or not

they are needed on that processor. For small numbers of processors (P < 500) this is

an insignificant memory overhead for PUIFS exchanged for simplicity of the code.

4.2.2 Renumbering

To create self-contained sub-domains the extended mesh partitions are renumbered into

local numbering schemes as described in Section 3.3.3. All element and grid point based

variables are packed and renumbered with overlaps following the core data. All loops in

PUIFS are transformed into local loops, all mesh entity relationships (element topology,

connectivity, etc.) are renumbered to local numbering along with the boundary grid point

lists. Therefore no execution control masks or indirection pointer arrays are required.

4.2.3 Communication

Overlap communication schedules are calculated at the beginning of a code run as part of

the decomposition process. This is calculated once using the global problem geometry as

read from file. The decomposed problem definition is subsequently distributed along with

the communication schedules to the appropriate processors. Any invariant quantities

are communicated once only at the start of the code before entering the timestep loop.

70

CHAPTER 4. ALGORITHM DECOMPOSITION

All other variables are communicated as and when required using the communication

schedules calculated at the start of the code.

4.2.4 Parallel Utilities

The parallel utility library developed for PUIFS is described in Appendix A. The routines

PARTITION, SECONDARY and DECOMPOSE are used either at the start of the code run to

decompose the problem into sub-domains or as components of a preprocessor to pre-

partition the problem specification.

The key communication utility is SWAP(VARIABLE, SPATIAL_REFERENCE) which per­

forms an exchange of overlap data for the input VARIABLE between all processors in ac­

cordance with the communication schedules. The SPATIAL.REFERENCE argument defines

which of the communication schedules to be used, i.e. element or grid point. Overlap

exchange is a highly parallel process which involves a matching send and receive opera­

tion across all sub-domain boundaries. The time required for a SWAP is approximated as

2smai^m where smax is the maximum number node order in the processor graph G(P, C]

in Section 3.3.4 and tm is the average time to send a message. The important point here

is that the number of processors P does not feature highly in this approximation and so

SWAP scales well, the time required being independent of P.

Global commutative (reduce) operations (GSUM, GMAX, GAND, etc.) are used to obtain

global values of a commutative function by combining local partial evaluations of the

function and broadcasting the results to each processor. The time required for a global

commutative operation is dependent on the actual implementation of the operation which

can vary with partition strategy, communication harness and platform hardware. For

example a global commutative may be implemented on a chain of processors by passing

all partial evaluations back to the master processor where the global value can be evalu­

ated which is then passed back along the chain in a broadcast to all processors. The time

required for this operation will consequently be something like to 2(P — l)i/ where fy is

the communication start up time (latency). With a mesh of p x q processors a similar

strategy will require 2(p + q-2)ti. No matter how a global operation is implemented the

71

CHAPTER 4. ALGORITHM DECOMPOSITION

time required increases with increasing P and so does not scale well. Care is therefore

required in avoiding as far as possible such operations. Some global commutative strate­

gies do not ensure that an identical result reaches all processors. It must be remembered

that a floating point operation has finite precision and so floating point arithmetic com­

mutative operations are not truly commutative due to the effects of rounding errors.

So for example a GSUM operation based on a ring of processors that accumulates partial

summations by passing the partial results around the ring of processors will complete

in (P — l)ti but the values left by GSUM on each processor will have different rounding

errors. This can cause severe problems to many algorithms. If, for instance, the result of

GSUM is tested to determine convergence some processors may test true and others false

and the code will consequently fail. Execution of a global summation in parallel must

produce a different result to the serial summation but both results are valid. It is only

required that a global commutative produces an identical result across all processors,

not an identical result to the serial commutative operation.

The SCATTER routine is used to distribute a variable across the processors, again in

accordance with the given SPATIAL_REFERENCE. Similarly GATHER is used to rebuild vari­

ables from components on each processor. SCATTER GATHER operations are costly of both

time and memory, requiring a number of messages proportional to P and globally dimen­

sioned data space. The negative impact of these operations is however not particularly

significant as they are only required for i/o operations.

4.3 Matrix Decomposition

Computational mechanics codes invariably require the solution to a number of systems

of equations of the form Ax = b which represent the discretisation of the equations

governing the physical processes. For an element based finite difference method the form

of the matrix equation for a regular 4x4 mesh is represented in Figure 4.4

Splitting this 4 times4 mesh into two renumbered sub-domains is illustrated in Fig­

ure 4.5. Here the parallel system matrices are no longer square as the rows of the matrices

72

CHAPTER 4. ALGORITHM DECOMPOSITION

4

3

2

1

8

7

6

5

12

11

10

9

16

15

14

13

• •
• ••

• •

Figure 4.4: Matrix form for a five point element stencil over a 4 x 4 regular mesh.

that correspond to the inter processor boundary now contain coefficients that address

elements that lie in the overlap region beyond the core length of the x vector. Note

that the number of rows in the system matrix and the length of the b vector correspond

with the number of core elements. The matrix and b vector are not required for the

overlap. Note also that the 64 matrix coefficients are divided equally between each sub-

domain. No additional calculation is required. The matrix and vector are constructed

by each processor as if the processor was operating in isolation only upon its sub-domain

core. The mesh topology for each sub-domain causes the generation of extra coefficients

that correspond to the overlaps. The solution of the two sets of equations, one for each

sub-domain achieves consistency through the interchange at each iteration of the solver

of the coefficients of x that lie in the overlaps. The values for the overlap regions are

exchanged as shown by the arrows in Figure 4.5.

These small, structured examples are easy to follow but do not clearly illustrate the

effects of a decomposed system matrix for an unstructured mesh. Figure 4.6 illustrates

a simple two dimensional unstructured mesh of 42 triangular elements.

Figure 4.7 shows the same mesh partitioned into three sub-domains which have been

extended with a layer of overlap elements. The sub-domains are shown as being renum­

bered following the ordering of the original mesh. This is simply an aid to seeing how the

73

CHAPTER 4. ALGORITHM DECOMPOSITION

4

3

2

1

8

7

6

5

12

11

10

9

12

11

10
......

9

4

3

2

1

8

7

6

5

f oooo

i
• core
o overlap

—*• communication

I
I

Figure 4.5: 4x4 mesh operated on as 2 sub-domains showing the transfer of data into

the overlaps on each renumbered sub-domain.

Figure 4.6: Mesh of 42 triangular elements.

74

CHAPTER 4. ALGORITHM DECOMPOSITION

system matrices for the decomposed problem have been constructed. The decomposed

matrix would be the same had the sub-domains not been renumbered but the same

element order followed. Even so this simple example is difficult for the eye to follow.

Changing the order of the elements within the sub-domains would yield a different but

nevertheless equivalent set of sub-domain matrix equations.

(b)
19 ••..

.15 18 .'. 16 .--' '
\ 17 .-'

(a)

Figure 4.7: Mesh of 42 triangular elements partitioned into three renumbered sub-

domains.

The original matrix is shown in Figure 4.8 to be sparse and irregular with a diagonally

symmetric number of entries, as would be expected of an unstructured mesh problem.

The matrix equations corresponding to the partitioned mesh are shown in Figure 4.9.

This figure illustrates the complex pattern of dependence (communication) between the

sub-domains (processors).

4.4 Iterative Methods

The length of x required by practical CM problems is large, of the order 1000 to

10,000,000. Iterative methods have been shown to provide the most effective and the

75

CHAPTER 4. ALGORITHM DECOMPOSITION

Figure 4.8: Matrix for the 42 triangle mesh.

most popular schemes. Direct methods tend to be more demanding of memory and less

efficient when dealing with large problems. Three iterative methods are used by UIFS;

Jacobi, Gauss Seidel SOR and the diagonally preconditioned conjugate gradient method.

4.4.1 Jacobi Method

The Jacobi method attempts to find a solution to Ax = b by generating each x\ from

components of x^) for k > 0 according to Equation 4.30 until convergence is reached.

(4.30)

i = 1,2,... , n

This algorithm is entirely independent of the order in which the components x are

evaluated, the values for x\ are dependent only upon the values for the previous

iteration x\ . In parallel each processor calculates a new vector x(fc+1) for its core

components using the values for x in the core and overlap. The values for

are then copied into the overlap regions from the processors on which the components

76

CHAPTER 4. ALGORITHM DECOMPOSITION

(a)

(b)

(c)

Figure 4.9: Matrices for the 42 triangle mesh partitioned into three sub-domains.

77

CHAPTER 4. ALGORITHM DECOMPOSITION

have been calculated. This process is carried out at each iteration to ensure consistency

with the original serial algorithm. Using this parallel Jacobi solver the solution variables

remain identical to those of the serial code at each iteration of the solution procedure.

In parallel the system matrix is no longer a n x n sparse matrix as illustrated in Figures

4.4 and 4.8 but is partitioned and re-ordered (renumbered) as shown in Figures 4.5 and

4.9 to be distributed over P processors as a set of np x mp sparse matrices where np is

the number of elements (coefficients) in sub-domain p and mp is the number of elements

(coefficients) including the overlaps in sub-domain p. The parallel Jacobi method for P

processors can therefore be expressed as Equation 4.31.

±^i (4.

i = 1,2, ...,np

p=l,2,...,P

Equation 4.31 may give the impression that the parallel solver now has to loop over k,

np and mp , which would not be a particularly efficient parallel method. But the system

matrix is sparse and the code for the solver only loops over non-zero coefficients in each

row. The number of non-zero coefficients for each row (mesh entity) of the parallel

system matrix is identical to that of the serial system matrix Consequently the parallel

overhead caused by the non-square local matrices is zero.

Convergence is tested using the norm (/i, /2 or ^oo) of the difference between x(fc+1)

and x(fc). The actual value of the li and l<i norms depend upon a global summation

and so rounding errors could in theory cause the parallel version of the algorithm to

terminate one iteration before or after convergence of the serial algorithm. This effect is

however rarely observed in practice.

The parallel Jacobi algorithm is given in Appendix C.I.

78

CHAPTER 4. ALGORITHM DECOMPOSITION

4.4.2 Gauss-Seidel SOR

The Gauss-Seidel Successive Over Relaxation (GS-SOR) method was developed as an

improvement of the Jacobi solver that typically exhibits faster convergence. The Gauss-

Seidel method differs from the Jacobi method only in that the most current values of

the variable x are used in each iteration. This can be thought of as overwriting x at

each iteration which has the advantage of reduced storage requirement. Successive Over

Relaxation is a scalar magnification factor a applied at each iteration in a attempt to

accelerate convergence. GS-SOR may be expressed as Equation 4.32.

= a ^=1'^ v "^ y r "* + (1 - a)x\k) (4.32)
I _. I \ ' t ^ '

i = 1,2,... ,n

An over relaxation coefficient may be similarly applied to the Jacobi method, however it

is sometimes chosen to under relax a solver (a < 1.0) in order to improve the stability of

the algorithm. The optimal relaxation coefficient may be calculated using sophisticated

eigenvalue analysis. Such analysis is however rarely performed, empirical values for a are

generally adopted. Because the most current values are used for evaluation of each coeffi­

cient the algorithm is dependent upon the order of evaluation. This order dependency is

sometimes used in structured problems as a means of accelerating convergence for some

problems by 'upwinding' the solvers with the pressure gradient. When parallelising a

Gauss-Seidel solver for a structured mesh, pipeline techniques may be used to ensure

consistency of the parallel algorithm [JC91]. The ordered sweep of a solver across the

domain, which makes such techniques possible is however not appropriate when consider­

ing an unstructured mesh. Parallel communication costs make it inefficient to identically

parallelise a Gauss-Seidel iterative solver for an unstructured mesh as the parallelism

is restricted and many small, frequent communications will be required. The order of

evaluation of the coefficients must be modified if an effective parallel scheme is to be

found. Mesh ordering may simply be a side effect of mesh generation or an attempt at

cache optimisation but has no intended effect on the numerical scheme. Alteration of

79

CHAPTER 4. ALGORITHM DECOMPOSITION

the order of coefficient evaluation is therefore of little consequence (bandwidth minimi­

sation techniques may be applied to the decomposed matrices). The simplest and most

obvious solution is to implement an overlap update scheme exactly as described for the

Jacobi algorithm. The resulting parallel algorithm becomes a near Gauss-Seidel hybrid

of Gauss-Seidel and Jacobi in that the components of x^+1 ^ that are addressed in the

overlaps are actually x^. This may not be so great a disturbance to the algorithm as

it first appears. Equation 4.32 is not particularly accurate as the coefficients of Xj +

in are actually x^ ' for i < j. The GS-SOR algorithm may be more correctly expressed as:

(4 33)
i = 1, 2, . . . , n

In a similar manner to Equation 4.31 the parallel Gauss-Seidel SOR equation imple­

mented over P processors can be expressed as:

X; = a. I ————————————————————————— I + (1 — Oi]x; (4.34)
I o-a
\ J

l; = 1, 2,... , np

P=1,2,...,P

Results given in this thesis show that variations in the values of serial and parallel

variables and differences in the number of iterations required to converge are both in­

significant. In practical terms the variations between the serial and parallel results are

significantly less than the variations caused by running the serial code on different proces­

sors (Spare, i860, MIPS, etc.). Even with processors using IEEE arithmetic differences

in rounding modes lead to variations in results.

The parallel Gauss-Seidel SOR algorithm is given in Appendix C.2.

80

CHAPTER 4. ALGORITHM DECOMPOSITION

4.4.3 Conjugate Gradient

The Conjugate Gradient (CG) method has become an established nonstationary iterative

method for symmetric positive definite systems due to its rapid convergence rate and

computational efficiency, O(m] where m is the number of non-zero components of A.

The conjugate gradient solver is an extension of the method of steepest descent where

search directions are constructed by conjugation of the residuals [She94, GL89, BBC+ 94].

Preconditioning is often applied to improve the condition number of the matrix A. For

a positive definite matrix preconditioner M

Ax = b = M- 1 Ax = M~ 1 b (4.35)

If the eigenvalues of M~ 1 A are clustered better than the eigenvalues of A then the

preconditioned problem may be iteratively solved faster than the original problem. .A

clear description of preconditioning is given by Shewchuck in [She94]. The preconditioned

conjugate gradient algorithm consists of iterating the following stages until p (1) reaches

the required precision.
r(1) = b - Ax* 1 * (4.36)

1) (4.37)

M (4.38)

u<*> - Ap<*> (4.39)
Jk)

X(*+D = x(*) + a(*) p(*) (4.41)

r(*) _ a(*) u(*) (4.42)

= M-ir(*+D (4.43)

81

CHAPTER 4. ALGORITHM DECOMPOSITION

This method involves three basic computational processes; matrix- vector product,

vector inner product and AXPY (ax plus y).

Remembering that each distributed A matrix is no longer square (Figure 4.9) as it

now addresses coefficients in the overlaps. So an overlap exchange communication is

required to obtain the values of p in the overlaps before evaluating the matrix vector

product Ap in equation 4.39.

The inner products in equations 4.40 and 4.44 are calculated in parallel as a sum of

local partial inner products. Equation 4.44 for example is evaluated as:

—P =m

P=i j=i

This requires a global summation and hence synchronisation across all processors.

The AXPY in equations 4.41, 4.42 and 4.46 is an ideally parallel process requiring

no inter processor communication.

The simplest preconditioner is the diagonal or Jacobi preconditioner which is the

diagonal of the A matrix that has the effect of scaling the quadratic form along the co­

ordinate axes. Whilst not the most effective preconditioner this is easy to implement and

effective for most reasonably well conditioned CM matrices. The actual CG method used

in UIFS uses a diagonal prescaling modification [LL88] which involves transformation of

Ax = b into Ax = b where the components of A, x and b are:

(4.48)

(4.49)

(4.50)

This results in the diagonal of A being the identity matrix I and so for a Jacobi precon­

ditioner M = I. This has the computational advantages of removing equation 4.43 and

simplifying calculation of the matrix- vector product in equation 4.39. After convergence

x is rescaled to give x.

82

CHAPTER 4. ALGORITHM DECOMPOSITION

The Diagonally Preconditioned Conjugate Gradient (DPCG) algorithm, along with most

other preconditioning schemes is explicit in that it uses only old variable values within

each iteration. It may therefore be expected to give identical results from both serial and

parallel versions. However rounding errors occur in the global summation involved in

the inner products and these errors are different for serial and parallel implementations.

As the solutions are highly sensitive to a. and fi these small variations lead to differences

between the serial and parallel solution. In this case both serial and parallel solutions

are equally valid solutions to the original problem. Much of the literature discusses the

efficient implementation of global accumulation [dC95] without mention of this effect.

The parallel diagonally preconditioned conjugate gradient algorithm is given in Ap­

pendix C.3.

4.4.4 Summary

Implementation of geometric domain decomposition as presented in Chapter 3 within

UIFS was entirely straightforward. The entire UIFS code has been parallelised with only

minimal changes to the code and the algorithm being required. Many of the subroutines

required no changes whatsoever as was anticipated in Section 3.3.3 The majority of

programming effort was required for the implementation of the initial decomposition

of the problem. The three iterative methods discussed, Jacobi, Gauss SOR and DPCG

provide algorithms with a high degree of easily utilised parallelism. The Jacobi method is

one of the simplest algorithms to parallelise. It requires only one exchange of overlap data

per iteration and one global operation to determine convergence. The DPCG algorithm

appears at first sight to be similarly straightforward. However the global summations

involved in the algorithm affect the numeric result. It is worth remembering that a

simple arithmetic process such as summing n real numbers is affected by rounding errors.

The result given by summing from 1 to n is likely to be different from the result of

summing from n to 1. In parallel, with two processors the summation would be executed
n

as something like £)i2 + 53a+u which would again give a different result. In practice

83

CHAPTER 4. ALGORITHM DECOMPOSITION

the coefficients that constitute the system matrix are also subject numerical differences

arising from Founding errors which can mask the rounding effects from the solver. If the

original serial algorithm is stable then these effects have no actual significance on the

results. If rounding effects lead to divergence of the parallel results from the serial then

suspicion must fall on the validity of the serial case.

The Gauss SOR scheme is however subject to algorithmic modification. There are

schemes that can allow this algorithm to be faithfully reproduced in parallel but such

schemes involve frequent small communications and/or pipelining techniques with the

consequent high cost of communication startup latency along with pipeline startup and

shutdown latency. Given that parallel machines are far from perfect the more pragmatic

parallel scheme described in Section 4.4.2 has been successfully adopted.

84

Chapter 5

Performance of the Parallel Code

The performance yardstick for a parallel code is often by comparison of the run-time for

one processor t\ against the run-time for many processors tp . This gives rise to a number

of interesting problems. For example it may not be possible to run a large problem on

only one processor, or indeed small numbers of processors, if it does not fit into the

available memory. It is possible that modification of the algorithms may be required to

achieve a parallel solution. In which case the the run-time for the best serial code on

one processor should be compared with the parallel run-time [RVD93]. Such results are

highly machine dependent. The calculation to communication ratio of a machine has

a profound effect on the parallel performance of a particular code. Early developments

in this research were conducted on T800 transputer based equipment which returned

very'good parallel efficiency. Rather than reflecting a good parallel solution these results

reflected the rather poor calculation performance of the T800 in comparison to its good

communication capability. Results are highly problem dependent. Problem size can

determine whether latency or bandwidth forms the bound on performance. Some workers

prefer a more absolute frame of reference such as comparison of the run-time of a problem

on a parallel machine with a well known serial machine, often a Cray Y-MP. This reduces

to a measure of the achieved Mflop rate. Additionally scalability tries to provide some

measure to describe how far the parallelism of a code and/or platform may be exploited,

i.e. does the performance scale with the number of processors? Invariably the parallel

85

________ CHAPTERS. PERFORMANCE OF THE PARALLEL CODE

performance is a function of the nature of the machine, the original code and the quality

of the parallelisation.

5.1 Measuring Performance

Strictly speaking the run time of the original serial code should be used as a measure of

the run time on one processor. This is however not always the most practical scheme. It

is often the case that in scrutinising a code for parallelisation there arise instances where

optimisations of the serial code may be made, and must be made to achieve honest

comparisons. One common occurrence in CM codes is the printing of end of sweep

residuals, principally as a means of imparting confidence to the code user. Interrupting

an operating system to print can carry a significant overhead and so silencing a code

gives a reduced run-time. This effect is of greater importance in parallel where for many

systems the operating system interrupt can carry a significant overhead. We are left

with a dilemma as to what we consider to be the run time on one processor and what

is the run time on many processors. Many CM codes incorporate a timer to report the

elapsed CPU time for a run. It has become normal practice for such timers to start after

reading the problem specification from file and stop before writing results to file. This is

reasonable as file access times can be dependent on other traffic on the systems. Timing

only the CPU activity gives an optimistic view of parallel performance as parallel i/o

hardware is rare and so i/o activity seldom scales. The order of CM codes tends to

be somewhere between linear O(N) and quadratic O(N2 } so measuring only CPU time

is not unreasonable as CPU time forms the asymptotic bound on run-time for large

problems.

This situation can become difficult when faced with parallelisation of codes that

perform unnecessary calculations. That is computation that has no effect whatsoever on

the results. There is a choice between identically parallelising the unnecessary calculation

or modifying the serial code to remove the redundant code. It is possible that the

redundant code can involve dependencies across the mesh that are not required by the

86

_____________ CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

rest of the code. It is often the case that some 'fixing' of the serial code is required in

the parallelisation process.

The results presented in this Chapter use the CPU time of the parallel code on one

processor for t\ , which is in this case less than the run time of the original code. The

overhead of the parallel version on a single processor is only the cost of the call to the

communication routines in which no communication occurs. This has proved to have an

insignificant impact on the run time in numerous parallelised codes.

5.1.1 Speed-up

Parallel speed-up Sp is the ratio of the run-time on one processor t\ to the run-time on

P processors tp.

- (5.1)

If the parallelisation is 100% efficient then Sp = P but this is rarely the case for real

CM problems. There is always some fraction of the code fs (0 < /s < 1) that is

inherently serial. This limitation on the maximum possible speed-up 5™ax is summarised

as Amdahl's law in Equation 5.2 [Amd67].

(5 '2)
The asymptotic limit of Amdahl's law as P -> oo gives:

emax __ /c o\ Op — —- \\j.o)
fs

This clearly places a finite limit on the maximum achievable speed-up from a paral­

lel code. Amdahl's law has been cited as a strong reason to doubt the usefulness of

massively parallel systems. For a fixed problem size fs is constant and so scalability

is restricted. Scalability can only be possible if /s reduces with an increasing problem

size. In practice fs for a CM code is often extremely small even with modest problem

sizes. CM codes tend to be somewhere between O(N) and O(N2) whereas fs somewhere

between constant and O(N}. Consequently fs tends towards insignificance as the prob­

lem size increases and so scalability becomes possible. The communication cost and the

87

_____________ CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

idle time invariably suffered in a parallel code also deteriate the performance further,

however other factors not included in Amdahl's law such as better cache usage for each

sub-domain in comparison with the global problem can have a beneficial effect.

5.1.2 Parallel Efficiency

Parallel efficiency is sometimes used as the performance measure for a parallel code.

Parallel efficiency Ep is simply the ratio of the parallel speed-up Sp to the number of

processors P.

100% (5.4)

As Section 5.1.1 has shown parallel efficiency cannot exceed 100%, or can it? There are

two instances in which parallel efficiency may become 'superlinear' and exceed 100%.

One possibility is to break some data dependency in the parallel code that is not ac­

tually required. The implication here is that the serial code is open to some form of

optimisation. Having applied the optimisation to the serial code a superlinear parallel

efficiency should no longer be achievable. The other cause of superlinear performance

is cache usage. Decomposing a large problem, that does not fit well into cache, into a

number of small problems, may allow the decomposed problems to fit into cache. Cache

success is an important factor in CPU performance, especially for the extremely high

clock rate (>100MHz) new generation of processors that are able to process data far

faster than conventional DRAM memory may be accessed.

5.1.3 Scalability

There are two aspects to scalability; scalability of computation and scalability of memory.

Scalability of Computation

Computation is said to be scalable if the gradient of the graph of speed-up against

number of processors is positive. That is if more processors are used then the run time

will reduce. In practical terms the returned processing power is not profitable once the

gradient of the curve has reduced to around 0.5. Given that practical problems must have

_____________CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

an inherently serial portion of code then a given problem has a finite limit on scalability

dictated by Amdahls law. It is often chosen to demonstrate the scalability of a machine

using a constant (usually large) problem size per processor in an attempt at minimising

the appearance of Amdahls law. For a fixed problem, as the number of processors

increases, the compute time on each processor decreases while the communication time

remains constant or increases slightly [Joh92]. It is predominantly this change in the

ratio of calculation to communication that leads to the drop in speed-up as the number

of processors increases.

Scalability of Memory

Memory is said to be scalable if the problem size can be increased in proportion to the

number of processors. That is (assuming a constant amount of memory per processor)

if the number of processors is doubled can a problem twice as big be accommodated

on the machine. Scalable memory implies that there are no globally sized data items

and no significant arrays that have the number of processors as an index. In practice

it can be simplifying to have some global sized structures. With care the restriction on

memory scalability can be an acceptable level. For example the topology of a hexahedral

element can be represented by an array of length number of elements and width eight.

If the memory size on each PE is x words then the largest topology that can be held

on one PE is |. A typical code may use around 100 variables each of length number of

elements. So the largest problem that can be run per PE will be y^. If this memory

space is to be used, for example, to store the entire mesh topology for the purpose of

partitioning and then re-cycled to hold the distributed problem data, this places a limit

on scalability of ^p, or 12 processors, which is clearly not acceptable. If however only a

single globally dimensioned vector is required and the code uses 200 variables then the

limit on scalability is more like 200 which could well be considered acceptable. If the

code uses more variables, or i/o processors are available with increased memory then

this limit can easily become larger than any currently available machine. So with a little

care it is possible to take advantage of a globally dimensioned data structure without

89

____ CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

prejudicing scalability.

5.2 Irregular Shape Test Case

The irregular shape mesh of 3034 triangular elements partitioned by JOSTLE using three

different mapping strategies is shown in Figure 3.4. This shape was automatically meshed

[Law94] as 3034, 10027, 30064, 60005 and 119822 triangles. The JOSTLE code [Wal95]

was used to partition each of the meshes using five different partitioning strategies:

i) Unmapped: Machine topology is ignored throughout the partitioning process.

ii) Postmapped: The unmapped partition is post-mapped to match the machine topol­

ogy as a p x 2 grid.

iii) Premapped: Initially mapped 2D partition optimised to reduce the number of cut

edges.

iv) MappedlD: Mapped to a ID processor array,

v) Mapped2D: Mapped to a 2D processor array.

The effect of the partitioning strategy on the cut edge count is shown in Figures 5.1 - 5.5.

Through all of the mesh sizes the lowest cut edge count is obtained using the unmapped

(postmapped) partitioning strategy. The mappedlD and mapped2D partitions give the

highest cut edge count with the mappedlD partition having approximately twice the cut

edge count of the other partitions.

90

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

500 -

CD
O)

T3
(D

O

O—O unmapped
premapped
mapped 1D
mapped2D

10 15 20
no. of processors

25 30

Figure 5.1: The number of cut edges against the number of partitions for a range of

partition strategies on the 3,034 triangle irregular shape mesh.

1000

(0
<D
O) •D
0
"5
O

500

unmapped
premapped
mapped 1D

V—V mapped2D

10 15 20
no. of processors

25 30

Figure 5.2: The number of cut edges against the number of partitions for a range of

partition strategies on the 10,027 triangle irregular shape mesh.

91

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

2500

2000 -

<S 1500
D)-a
CD
g 1000

500

O—O unmapped
O——O premapped
A—A mapped 1D
V—V mapped2D

10 15 20
no. of processors

25 30

Figure 5.3: The number of cut edges against the number of partitions for a range of

partition strategies on the 30,064 triangle irregular shape mesh.

3000

2500

2000
(0
0
O)
"§ 1500

13
O

1000

500

O——O unmapped
O——O premapped
&—A mapped 1D
V—V mapped2D

10 15 20
no. of processors

25 30

Figure 5.4: The number of cut edges against the number of partitions for a range of

partition strategies on the 60,005 triangle irregular shape mesh.

92

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

5500
5000

4500

4000

C0 3500
CD
.g> 3000

2 2500
3
0 2000

1500

1000

500

0

O——O unmapped
O——0 premapped
A—A mapped 1D
V—V mapped2D

10 15 20
no. of processors

25 30

Figure 5.5: The number of cut edges against the number of partitions for a range of

partition strategies on the 119,822 triangle irregular shape mesh.

93

________ CHAPTERS. PERFORMANCE OF THE PARALLEL CODE

5.2.1 Fluid Dynamic Test Case

To provide a fluid dynamic test case the shape is filled with liquid gallium at 80 Centi­

grade. The boundary is set at 80 Centigrade with the exception of the top surface which

is cooled to 30 Centigrade. The test case is run to steady state to produce the convection

currents illustrated in Figure 5.6. The momentum, pressure and heat solvers only are

used for this test case with the Jacobi method used for each solver. The Jacobi method

is used simply because the parallel results with a Jacobi solver are identical regardless of

the number of processors used. This makes it easier to detect any errors in the test runs.

The Jacobi method does not give the best serial performance, Gauss Seidel SOR would

ordinarily be used for the pressure and heat solvers for such a problem. This however

is irrelevant for the purposes of evaluating speed-up, results would be the same if Gauss

Seidel SOR was used.

Figure 5.6: Flow vectors for the fluid dynamic test case.

5.2.2 Solid Mechanics Test Case

To provide a solid mechanic test case the mesh was left free to move in all directions

with the exception of the top surface which was fixed. Material properties used were

for gallium. A uniform fixed thermal load of 10 Centigrade was applied to an initial

94

_____ CHAPTERS. PERFORMANCE OF THE PARALLEL CODE

temperature of -30 Centigrade. This load was applied for four two second time steps.

Four time steps were used simply to provide a convenient run time for the purposes of

measurement. An exaggerated mesh displacement is shown in Figure 5.7. Only the dis­

placements are solved in this test case, stresses being calculated from the displacements.

The diagonally preconditioned conjugate gradient method is used in the displacement
solvers.

Figure 5.7: Mesh displacement for the solid mechanics test case.

5.2.3 Solidification Test Case

The solidification test case starts with liquid gallium close to solidification at 30 Centi­

grade. The boundary is held at 20 Centigrade with the exception of the top surface
which is held at 0 Centigrade. The case is run until the gallium is largely solidified with

small patches of recirculating liquid remaining. The residual stress contours, mesh dis­

placement and flow vectors are illustrated in Figure 5.8. This case uses the larger stress

overlaps for both the flow and the stress portions of the problem. At the start of the run

there is negligible work for the stress solver as the majority of the domain is liquid. At

the end of the run only a small portion of the problem remains liquid yet the majority

of the compute time is still required in the flow solvers. All of the solvers are enabled

95

_____________CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

for this test case, momentum, pressure, heat and displacement. The Jacobi method is

used for the momentum, pressure and heat solvers as in the fluid dynamics test case.

The diagonally preconditioned conjugate gradient method is used in the displacement

solvers as in the solid mechanics test case.

Figure 5.8: Residual stress contours and flow vectors for the solidification test case.

5.3 Performance on the Transtech Paramid

The following speed-up curves in Figures 5.9 - 5.26 were obtained using the Transtech

Paramid at the University of Greenwich. This machine has 28 i860XP based processor

elements, 16 of which are equipped with 32MBytes and 12 of which are equipped with

16MByte of fast (40ns) DRAM memory. Each i860 is equipped with a T800 commu­

nication co-processor with 8 or 4MByte of memory. The PE's are hard connected in

pairs with Inmos C004 multi-stage crossbar switches providing interconnection between

the PE pairs. This configuration allows great versatility in PE interconnection topol­

ogy. An obvious and simple arrangement for the Paramid topology is a px2 grid which

is the arrangement used for these results. A virtual channel router resident on each

processor allows message passing between all of the processors in the machine, allowing

the machine to be programmed as though the machine were a fully connected network.

96

___________ CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

Parmacs, PVM and C Toolset style communication libraries are all available on the

Paramid. These results have been obtained using the C Toolset library as this library

gives better performance than the alternatives on this platform.

The 30,064 element test case is the largest of the test cases that can fit into the

memory of one 32MByte processor node. The serial run time for the 60,005 element

case was regressed from the two processor run time and for the 119,822 element test case

the four processor run time was used. Clearly this affects the absolute accuracy of the

graphs but does not change the nature of the graphs in providing a comparison between

partitioning techniques.

The lowest number of cut edges and therefore the lowest amount of communication

for each mesh size is given by the unmapped (postmapped) partition but this partition

clearly does not give the best speed-up performance. The unmapped and postmapped

partitions are actually the same partition, the postmapped partition having had an

additional optimised mapping of partitions to processors applied to it. Where the two

partitions give a similar speed-up this reflects an unintentionally fortuitous mapping of

the unmapped partition to the processor topology. It is possible that the unmapped

and postmapped partitions may by chance be identical, it is however highly unlikely

that the unmapped partition would ever give a better speed-up than the postmapped

partition, in such a case the processor allocation strategy would have failed. Of course any

performance differences between the unmapped and postmapped partitions are unlikely

to be significant for small numbers of processors.

The best overall speed-up performance in the graphs is given by the mapped parti­

tions, despite the cut edge count being higher than the other partitions. This confirms

the proposition that partitioning in accordance with the machine topology will result in

improved performance.

Using a pipelined (mappedlD) partition leads to a significantly higher number of cut

edges and consequently the message length is far greater, however fewer messages are

required. A mappedlD partition requires only two messages and hence two latencies for

each overlap update (one to each neighbour), which explains the perhaps unexpectedly

97

_____________CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

good speed-up results for the pipeline partition.

The mapped2D partition in Figure 3.4 shows the maximum node degree of the pro­

cessor communication graph to be four. However the edges in this communication graph

represent only element adjacency but the data dependency is actually more extensive

than merely adjacency. Adding overlaps to the sub-domains therefore increases the max­

imum node degree of the processor communication graph to five as the overlaps reveal

dependencies between sub-domains previously shown as unconnected. Consequently five

messages are required for each overlap update. Given that the imbalance of elements

between the sub-domains for all cases is less than 0.25%, and for the secondary grid

point partition the imbalance is less than 0.75%, the effect of load imbalance for the test

cases is insignificant (constant element shape with near constant mesh density).

It is therefore apparent from these results that the machine performance with this

code is latency bound for the smaller test cases and bandwidth bound for the larger

flow dominated test cases. Consider Figure 5.9, here the best speed-up is given with the

mappedlD partition, this partition has the greatest amount of data to communicate but

the lowest number of messages (latencies) per processor. Clearly latency is the bound

on performance with this problem. For the larger fluid dynamic test case shown in Fig­

ure 5.13 the mapped2D partition gives the best speed-up. Here the large amount of data

communication required for the mappedlD partition is eroding the advantage of fewer

latencies allowing the mapped2D partition to outperform it. Clearly the inter-processor

bandwidth is the bound on this problem. For the graphs between the small and large

test case the transition from latency to bandwidth bound can be seen. Figure 5.26 is an

encouraging result that demonstrates that scalability is achievable given a large enough

problem size. The slow down exhibited with the small test cases is a direct consequence

of the communication dominating the calculation, as the number of processors increases

the time required for calculation falls but the time required for communication remains

more or less constant.

Investigation shows that the relatively poor results for the solid mechanics test cases

are primarily a consequence of the two global commutative operations required in every

98

_____________CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

iteration of the the CG solver as implemented in the serial code. Each global commuta­

tive operation incurs a number of communication start-up latency costs, a high latency

cost leads to poor performance. This is clearly revealed by profiling the parallel code

execution where the global commutative summations dominate the run time. The so­

lidification test case uses the larger overlaps required for the stress code but this has

only a slight effect on the speed up in comparison with the flow only results. This con­

firms that the predominant limiting factor for performance on the Transtech Paramid is

the communication start up latency. Part of the solidification test case involves the CG

solver but again this only marginally affects the results as the time required for the stress

calculation is considerably less than the time required for the flow and heat calculation.

Start-up latency on the Transtech Paramid has been measured as 33//S with a peak

bandwidth of l.TMBytes per second. This bandwidth is not sustained with virtual chan­

nel routing and degrades to around 1.3 for near neighbour communication and can get as

low as 0.9 for non local messages. This can deteriorate further to around 0.3MBytes per

second if the communication channels are saturated as they will be for real problems with

unmapped partitions. Similarly the startup latency degrades with increasing network

traffic. While this bandwidth is low in comparison with other parallel machines [DD95]

the latency appears reasonably good. Similar performance may therefore be expected

from other parallel platforms for the test cases that run to a latency bound. The test

cases that show that what is bandwidth limitated on the Paramid would be expected to

run slightly faster on other platforms and become latency bound.

Partitioning onto a p x q processor array where q > 2 has yet to be tested, but is

not expected to improve performance on the Paramid (or indeed other machines) with

these test cases because of the latency bound . Whilst a q — 2 mapped partition is likely

to incur five latencies, a q > 2 mapped partition will incur eight latencies, but will not

significantly reduce the number of cut edges until P (and N) increases considerably.

99

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

5.3.1 Fluid dynamic test case

Q.
13

CD
Q.
CO

O——O unmapped
D——O postmapped
O——O premapped
A-—A mapped 1D

mapped2D

10 15 20
no. of processors

25 30

Figure 5.9: Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 3,034 triangle mesh.

10

8

T3
CD
CD
Q-to 4*

O——O unmapped
D—D postmapped

premapped
mappedlD
mapped2D

10 15 20
no. of processors

25 30

Figure 5.10: Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 10,027 triangle mesh.

100

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

15

10

0
0
Q.
CO

O—O unmapped
D——n postmapped
O——0 premapped
A—A mappedl D

mapped2D

10 15 20
no. of processors

25 30

Figure 5.11: Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 30,064 triangle mesh.

15

O—O unmapped
D—n postmapped

premapped
mappedl D

V——V mapped2D

10 15 20
no. of processors

25

Figure 5.12: Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 60,005 triangle mesh.

101

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

20

15

73

0 10
Q.

O——O unmapped
postmapped
premapped

A——A mappedl D
mapped2D

10 15 20 25
no. of processors

30

Figure 5.13: Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 119,822 triangle mesh.

30

25

20
Q.
3
^
<D
0
Q.
(0

10

O——O3034
10027
30064
60005

V——V 119822

5 10 15 20 25
no. of processors

30

Figure 5.14: Best speed-up obtained for the fluid dynamic test case against the number

of processors for a range of mesh sizes.

102

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

5.3.2 Solid mechanics test case

Q.
ZJ i~°
CD
CD
Q.
(0

O——O unmapped
D——D postmapped
O——O premapped
A——A mapped 1D
V——V mapped2D

10 15 20
no. of processors

25 30

Figure 5.15: Graph of speed-up for the solid mechanics test case against the number of

processors for a range of partition strategies using a 3,034 triangle mesh.

•a
a> CD a.
CO

1 O—O unmapped
n—D postmapped
0——O premapped
A—A mapped 1D

mapped2D

10 15 20
no. of processors

25 30

Figure 5.16: Speed-up for the solid mechanics test case against the number of processors

for a range of partition strategies using a 10,027 triangle mesh.

103

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

Q.
13 i-O
<D
<D
Q.
CO

O——O unmapped
in——D postmapped

premapped
mapped 1D
mapped2D

10 15 20
no. of processors

25 30

Figure 5.17: Speed-up for the solid mechanics test case against the number of processors

for a range of partition strategies using a 30,064 triangle mesh.

CL
3 i~O

0
<D
CL
CO

O——O unmapped
D——n postmapped

premapped
mapped 1D

V——V mapped2D

10 15 20
no. of processors

25 30

Figure 5.18: Speed-up for the solid mechanics test case against the number of processors

for a range of partition strategies using a 60,005 triangle mesh.

104

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

10

Q.
13

CD
CD
Q.
CO

O——O unmapped
D—D postmapped

premapped
mapped 1D

V—V mapped2D

10 15 20 25
no. of processors

30

Figure 5.19: Speed-up for the solid mechanics test case against the number of processors

for a range of partition strategies using a 119,822 triangle mesh.

30

25 -

20

(D
CD
Q.
CO

10

O——O3034
D——D 10027
O——O 30064
A——A 60005

119822

V

10 15 20 25
no. of processors

30

Figure 5.20: Best speed-up obtained for the solid mechanics test case against the number

of processors for a range of mesh sizes.

105

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

5.3.3 Solidification test case

Q.
IS-6
0 o>
Q.
CO

O——O unmapped
n—n postmapped

premapped
mapped 1D

V——V mapped2D

10 15 20
no. of processors

25 30

Figure 5.21: Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 3,034 triangle mesh.

unmapped
postmapped
premapped

A——A mapped 1D
V—V mapped2D

10 15 20
no. of processors

Figure 5.22: Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 10,027 triangle mesh.

106

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

10

Q.
13
TJ
CD
CD
Q. 5
CO

O——O unmapped
D——D postmapped
O——O premapped
A-——A mapped 1D
V——V mapped2D

10 15 20
no. of processors

25 30

Figure 5.23: Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 30,064 triangle mesh.

15

0.10 -

TJ
CD
CD
Q.
O)

5 I- O——O unmapped
D——D postmapped
O——O premapped
&——A mapped 1D

mapped2D

10 15 20
no. of processors

25 30

Figure 5.24: Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 60,005 triangle mesh.

107

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

O—O unmapped
postmapped
premapped

A——A mapped 1D
V——V mapped2D

10 15 20
no. of processors

25

Figure 5.25: Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 119,822 triangle mesh.

30

25

20
Q.
13

15
0
Q.
(0

10

O——O3034
D——D 10027
O——030064
A——A 60005
V——V 119822

10 15 20
no. of processors

25 30

Figure 5.26: Best speed-up obtained for the solidification test case against the number

of processors for a range of mesh sizes.

108

_____________CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

5.4 Improving Performance

The graphs given in Section 5.3 demonstrate a range of results from poor to good with

moderate parallelism. It is fair to say that the poor results reflect poor communication

performance, especially in terms of the communication start up latency. This coupled

with the reasonably good calculation performance of the parallel platform, leads to a poor

calculation to communication ratio. Given that a parallel machine is unlikely to ever

return perfect performance all possible optimisations of the code should be sought. Two

simple to implement optimisations that may be expected to realise a significant perfor­

mance improvement became apparent. One is to reduce the start-up latency overhead of

global commutative operations, the other is to overlap communication with calculation.

5.4.1 Latency Reduction

As communication start up latency is the dominant component of the communication

overhead it seems reasonable to tackle this problem first. Profiling code execution pro­

vides a reasonably accurate view of where time is being spent in the code. For the test

cases presented already in this dissertation the profiles present a clear picture of the

nature of the execution. The overriding proportion of the run time was taken up in the

solvers and a significant portion of that time was spent in communication. Of the time

spent in communication it took very nearly the same amount of time to carry out an

overlap update as it did to carry out a global commutative operation.

5.4.2 Flow and Heat Solvers

Looking closely at the Jacobi and GS-SOR solvers it becomes apparent that the preferred

mode of operation in UIFS is to run these solvers to some preset maximum number of

iterations, usually set at less than the amount required for convergence, and then loop

over all solvers until an overall convergence criteria is reached. The logic being that no

one solver should take precedence in the path to convergence. The relative importance

of each component in the solution is then reflected by the number of iterations set for

109

___________CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

each solver, e.g. 2 for each momentum, 10 for enthalpy, 20 for pressure correction. It

is therefore not necessary to evaluate the residual norm at each iteration. A flag TOMITR

in the original serial code is passed into each of the solvers to specify whether or not

to run to the specified maximum number of iterations. For the test cases TOMITR is

always true. A simple conditional test of TOMITR allows the norm evaluation and hence

global commutative operation to be omitted. This reduces the serial run time by a small

amount but has a significant effect on the parallel run time. The code for the modified

Jacobi solver is given in Appendix D

30

25

20

(D
Q.
CO

10

O——O3034
D——D 10027
O——O 30064
A——A 60005

119822

—— O———c———--

10 15 20
no. of processors

25 30

Figure 5-27: Speed-up obtained with the optimised (solid lines) and unoptimised (dashed

lines) Jacobi solver for the fluid dynamics test case with a range of mesh sizes.

The effect of this modification on the fluid dynamics test case is shown in Figure 5.27.

In comparison with the performance of the unoptimised solver the degree of improvement

in the speed-up is more pronounced with large numbers of processors as the proportion

of communication to calculation increases with the number of processors. Also the effect

is more apparent with the smaller test cases as the proportion of communication to

calculation is greater on the smaller, latency bound cases.

110

_____________ CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

5.4.3 Solid Mechanics Solver

The conjugate gradient solver used in the solid mechanics code has two inner product

operations. These operations appear in the source as two separate global summation

operations. Close inspection of the code reveals that that it is possible to re-arrange the

code to bring the summations to the same point in the code. Recalling equation 4.44

with the prescaled Jacobi preconditioner M = I gives

= r(*+l)Tr(*+l) (5 . 5)

Substituting r^+1) from equation 4.42 gives

p(k+i) = (r(k) _ a(k) u(k^T (r(k) _ a(*) u(*)) (5 .6)

Expanding gives

= r(*)rr(*)

= p(k] +

Now calculation of p(k+l ^ requires two inner products rather than one but no longer re­

quires r^"1" 1) and so may be moved forward in the scheme to the same point as evaluation

of <*(*) . Consequently the three global summations necessary for the three inner products

may be merged into one communication. This is similar to the work of D'Azvedo et al

[DER93] but involves no algorithmic modification whatsoever and so has no effect on

stability or convergence of the method. The time required for a global summation tgs

is dominated by the communication start up latency and so the time for three merged

global summations is approximately equal to the time required for a single global sum­

mation. This modification is trading the time required for an inner product tip against

the time required for a global summation. Remembering that that tgs increases with in­

creasing P and that tip decreases with increasing P then with increasing P there rapidly

comes a point where this modification is beneficial. The code for the modified CG solver

is given in Appendix D The effect of this modification on the solid mechanics test case

is shown in Figure 5.28. These results use the one processor run time for the faster

111

_____________CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

unmodified CG solver to give a correct evaluation of the speed-up. What is immediately

apparent from Figure 5.28 is the improvement across a range of test case sizes for four

or more processors. Close examination shows that the largest test case does not show

improvement until more than four processors are used. This is consistent with tgs being

a function of P only however tip is a function of both P and problem size N. Further

increases in problem size would be expected to more clearly reveal this effect.

30

25 h

20
Q.
13

"§ 15
CD
Q.

10

0

O——O3034
10027
30064
60005
119822

/
/

/
/

/
/

/
/

/

10 15 20
no. of processors

25 30

Figure 5.28: Graph of speed-up obtained with the optimised (solid lines) and unoptimised

(dashed lines) conjugate gradient solver for the solid mechanics test case with a range of

mesh sizes.

Figure 5.28 represents a significant improvement on the speed-up results for the

unoptimised solver but the one remaining commutative operation remains an undesirable

overhead. This prompts a closer examination of the global summation operation. A

global summation operation has a great deal of parallelism as each processor evaluates

its own partial sum. The original global summation algorithm was developed before the

virtual channel router provided all to all communication. For this reasons the global

summation operates in a chain fashion where each processor number p receives a sum

from processor p + 1, adds its own partial sum and passes the result to processor number

112

_____________CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

p — 1. After P — 1 messages processor 1 has the global summation that can be broadcast

to all processors, this will therefore involve 2(P - 1) latencies overall. So the latency

overhead increases with the number of processors as discussed in section 4.2.4. This

scheme ensures that each processor ends up with an identical copy of the global sum

regardless of rounding errors. It should be remembered that parallel summation such as

this is an order dependent calculation that will not identically reproduce the rounding

errors as the number of processors varies. What is vitally important however is not that

the rounding errors are the same for different numbers of processors but that the result

on each processor is identical. This criteria is satisfied by a hypercube based scheme

where processor pairs exchange their cumulative partial summations. This scheme also

gives the lowest possible number of latencies In where 2n > P > 2n~ 1 . So for example

for P between 33 and 64 only 12 latencies are required

The effect of this modification on the solid mechanics test case is shown in Figure 5.29.

30

25

20

"§ 15
<D
Q.
</)

10

3034
D——D 10027

30064
60005
119822

10 15 20
no. of processors

25 30

Figure 5.29: Speed-up obtained with the optimised conjugate gradient solver using a

hypercube (solid lines) and a pipeline (dashed lines) global commutative for the solid

mechanics test case with a range of mesh sizes.

113

__________ CHAPTERS. PERFORMANCE OF THE PARALLEL CODE

It is apparent from the results in Figure 5.29 that the effect of the hypercube com­

mutative is highly significant. This confirms the proposition that communication start

up latency is an overridingly important factor in the achieved performance of a parallel

system.

5.4.4 The Effect of Optimised Solvers on the Solidification ^Test Case

Figure 5.30 shows the effect of the optimised solvers and global commutative functions

on the solidification test case. The reduction of latency based communication overheads

in the optimised solvers has had three important effects. Comparing Figure 5.30 with

the graph in Figure 5.24 for the unmodified code clearly shows the effects. Firstly, the

overall level of speed-up has increased, speed-up that was in the range 12-15 for 28

processors has increased to 15-21. Secondly, the separation of the performance from the

different partitions is more pronounced. Most noticeably the lines for the mappedlD and

mapped2D partitions have separated, this is a direct consequence of bandwidth becom­

ing more relevant as the latency is reduced in the solvers. The mappedlD partition has

a larger amount of data to communicate and fewer communications than the mapped2D

partition. Thirdly, the gradient of the mapped2D partition line is much steeper in Fig­

ure 5.30. Further speed-up could therefore be expected if more processors were available.

5.4.5 Asynchronous Communication

Many parallel platforms provide asynchronous or non-blocking communication calls to

allow calculation to overlap communication. This allows subroutines to initialise a com­

munication and return from the subroutine call before completion of the communication.

The communication can then be tested for completion (synchronised) at some future

point in the code. In an ideal case, unrelated code can be executed immediately after

an asynchronous communication call and synchronisation effected prior to the point at

which the communicated data is used. This allows the execution of unrelated code to

be overlapped with the communication. Often this is not possible since the communi-

114

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

20

15 h
Q.
13
TJ
CD
<D 10
Q.
<0

postmapped
premapped

A—A mapped 1D
V——V mapped2D

10 15 20
no. of processors

25 30

Figure 5.30: Speed-up obtained with the optimised solvers for the solidification test case

with a range of partition strategies using a 60,005 triangle mesh.

cated data is immediately required. This is the case with PUIFS, however asynchronous

communication can be exploited within the solvers by splitting the computation into

two parts. The Jacobi and Gauss-Seidel solvers firstly solve for the variables around the

perimeter of the sub-domain that are required in the overlaps of the neighbouring sub-

domains. Once the perimeter calculation is complete, asynchronous communication of

these variables is initiated. This leaves the time required to solve for the variables in the

rest of the sub-domain (independent variables) for the asynchronous communication to

complete. Completion of the communication is tested at a synchronisation point before

proceeding to the next iteration. The conjugate gradient solver operates in a similar

manner splitting two loops so that calculation of u and p over the independent grid

points is overlapped with the communication. These schemes amount to a renumbering

of each sub-domain core so that entities that are required by the overlaps of neighbouring

sub-domains are numbered before the rest of the core. Such renumbering is generally

acceptable as partitioning has already changed the original numbering which was often

merely a consequence of the mesh generation in the first instance (Jacobi and CG meth-

115

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

ods are order independent anyway). The effect of this renumbering scheme on the mesh

(b)

(a)

Figure 5.31: Mesh of 42 triangular elements partitioned into three sub-domains renum­

bered for asynchronous communication.

of 42 triangles illustrated in Figures 4.6 and 4.7 is shown in Figure 5.31. Two changes

in the numbering are apparent. Firstly, the overlaps have been numbered so that over­

lap elements that are owned by the same sub-domain are numbered consecutively. This

allows an overlap exchange to write the received overlap variables directly into memory

without the need to unpack a buffer. Secondly, the elements within each sub-domain

that are overlap elements on neighbouring sub-domains have been numbered before the

rest of the sub-domain. Figure 5.32 shows the effect of the renumbering on the overlap

communications. In contrast with the matrices shown in Figure 4.9 the communications

now originate in the first few rows of each sub-domains matrix. In the iterative solver

these rows are evaluated first and then the asynchronous communication of overlaps is

initiated. Evaluation of the remainder of the rows in matrix equation can then pro­

ceed for that iteration while the communication is being carried out. Completion of the

communication is tested before continuing on to the next iteration.

116

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

(a)

(b)

(c)

Figure 5.32: Matrices for the 42 element mesh partitioned into three sub-domains renum­

bered for asynchronous communication.

117

_____________CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

On the Transtech Paramid asynchronous communication is achieved through ex­

ploitation of the T800 co-processors to manage the communication. For workstation

networks, notorious for their high latency, this is effected through communication buffers.

The results of using asynchronous modified solvers for the fluid dynamic test case and

the solid mechanics test case are presented in Figures 5.33- 5.34. Here the improvement

30

25 I-

20

Q)
O
Q.

10

O——O3034
D——D 10027
O——030064
A——A 60005
V——V 119822

10 15 20
no. of processors

25 30

Figure 5.33: Speed-up obtained with the asynchronous (solid lines) and synchronous

(dashed lines) optimised solvers for the fluid dynamic test case with a range of mesh

sizes.

in performance over the synchronous results is clear. These results paint a very different

picture of parallel performance on a Transtech Paramid than for instance Figure 5.15.

These results reinforce the assertion that parallel performance is highly code, problem

and machine dependent. Overlapping the communication with calculation through the

use of asynchronous message passing has effectively concealed the bandwidth requirement

for communication of overlap data. That is providing that there is enough calculation

to conceal the communication. The curves for the 3,034 and 10,027 element test cases

in Figure 5.33 show a drop in performance in comparison with the synchronous results

for 28 processors. With large P and a small problem the amount of calculation may not

118

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

30

25 -

20 h

"S 15
CD
Q.
CO

10

O——O3034
D——D 10027
O——O 30064
A——A 60005
V——V 119822

~~1-J———D———P———P———-P
_ ___-- O- - -D- -- -a

10 15 20
no. of processors

25 30

Figure 5.34: Speed-up obtained with the asynchronous (solid lines) and synchronous

(dashed lines) optimised solvers for the solid mechanics test case with a range of mesh

sizes.

be sufficient to overlap all of the communication. Figure 5.35 clearly shows how effective

this hiding is for the 60,005 element solidification test case. Here the spread in perfor­

mance between the partitioning strategies is far less apparent than the synchronous case

in Figure 5.30. The mappedlD and mapped2D partitions still have a performance advan­

tage but the performance from the other partitions is now comparable with the mapped

partitions. The premapped, postmapped and unmapped partitions now look capable

of returning further speed-up beyond the 28 available processors, which is clearly not

the case in Figure 5.30. The mappedlD and mapped2D partitions return near identical

performance as the bandwidth overhead of the mappedlD partition is effectively con­

cealed and the advantage of the lower latency requirement for the ID partition becomes

significant. These results invite investigation of the performance beyond 28 processors.

There must inevitably come a point at which the performance returned from the different

partitions becomes more significant. Eventually the amount of computation in the each

sub-domain core will not be sufficient to fully overlap the communication.

119

CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

25

20 -

TJ
CD
0Q.

unmapped
n—n postmapped

premapped
A-—A mapped 1D
V—V mapped2D

10 15 20
no. of processors

25 30

Figure 5.35: Speed-up obtained with the asynchronous optimised solvers for the solidi­

fication test case with a range of partition strategies using a 60,005 triangle mesh.

Code for the asynchronous Jacobi and conjugate gradient solvers is given in Ap­

pendix E

5.5 Summary

Speed-up has been used throughout for the presentation of these results. If larger num­

bers of processors were available the temptation to run still larger test cases may make

speed-up curves impractical. However it is felt that speed-up graphs present a more

clear picture of parallel performance than efficiency or run time graphs. To put the

performance of the i860 processors in context, the execution of UIFS on a single i860 PE

is approximately 10% faster than the run time on a state of the art Sun Sparc20 75MHz

processor. The results presented in this chapter have shown how the communication

overhead in parallel processing is the limiting factor to achievable performance. The

precise nature of the communication must be addressed and optimised if an acceptable

performance is to be obtained. Acknowledgement of the topology of the machine in the

mesh partition has been shown to be of significant importance. There comes a point how-

120

_____________CHAPTER 5. PERFORMANCE OF THE PARALLEL CODE

ever when all possible optimisations have been applied and yet the performance remains

disappointing, as in the small test cases in Figure 5.34. The only remaining significant

factor is start-up latency which is unavoidable Communication start-up latency must be

reduced if a parallel machine is to achieve computational scalability.

121

Chapter 6

Automation of Parallelisation

Parallelisation of a large unstructured mesh CM code is a time consuming, error prone

and labour intensive task. Any tool that can help to alleviate the problem of paralleli-

sation will be a welcome asset. Some success has been shown with environments and

libraries for the authoring of parallel unstructured mesh codes but this is of no help to

the parallelisation of existing codes and should not be forced upon code authors who

have little or no interest in parallelism. Much success has been shown with the Com­

puter Aided Parallelisation Tools (CAPTools) for automation of the parallelisation of

structured mesh codes [JCI+94]. Extension of CAPTools to provide automation of the

parallelisation of unstructured mesh codes presents some new and interesting problems.

6.1 Computer Aided Parallelisation Tools

CAPTools is an interactive toolkit for Computer Aided Parallelisation of mesh based

FORTRAN codes. The objective of CAPTools is to automate as much as possible of

the process of parallelising mesh based numerical FORTRAN codes. The principle ax­

iom of CAPTools is to generate code of equivalent or better quality to that which can

be produced manually (Perhaps with minimal user interaction). The code generation

techniques employed therefore match those used successfully for numerous manual par-

allelisations. Parallelisation relies on an accurate analysis of the target code achieved

122

_______ CHAPTER 6. AUTOMATION OF PARALLELISATION

through the use of sophisticated interprocedural symbolic algebra techniques to analyse

the code and produce an accurate dependence graph that can be enhanced with knowl­

edge supplied by the toolkit user. Parallel code is generated based on a data partition

constructed using the dependence graph allowing execution control and communication

requirements to be subsequently identified. An X windows based graphical user interface

provides an environment for the user to navigate the code, visualise dependencies and

interact with the knowledge base throughout the parallelisation process.

6.1.1 Dependence Analysis

Dependence analysis builds a directed graph D(S,R) where the nodes S of the graph are

executable statements and the edges R represent the relationship of required execution

order (the dependencies). There are four basic dependence categories;

True dependence - resulting from the data flow between a source (point of assignment)

and a sink (point of use).

Control dependence - when execution is controlled by a conditional statement.

Anti-dependence - caused by re-assignment of a used variable in a sink statement.

Output dependence - where a source variable is re-assigned the order of assignment

must be maintained.

The location of a dependence is also significant, does the dependence exist between loops

or within a single iteration of all surrounding loops? Dependence analysis is achieved

using the Greatest Common Divisor test (GCD), the Bannerjee tests [Ban79, Ban88] and

the Symbolic Inequality Disproof Algorithm (SIDA) [Joh92] The graph is then pruned

using all previous dependence information to give a precise representation of the depen­

dence structure of the code.

123

_______________CHAPTER 6. AUTOMATION OF PARALLELISATION

6.1.2 Data Partitioning

Distribution of a programs data over a parallel machine begins with the determination

of the set of variables that are to be distributed and the way in which they are to be

distributed. Two techniques are currently employed. One is to select an array index

that can be partitioned. The chosen array should be a significant component inside

the dominant (most compute intensive) loop identified through profiling of the code

execution. The other technique is to select a loop (again usually the most dominant)

and partition all arrays contained within the loop in accordance with their use of the

loop counter. For example;

DO I = 1, NI-1
DO J = 1, NJ-1

DO K = 1, NK-1
V(I,J,K) = (X(I+1)-X(I)) * (Y(J+1)-Y(J)) * (Z(K+1)-Z(K)).

END DO
END DO

END DO

Selecting the inner K loop as the partitioned loop will partition V in its third index and

Z. Other array variables that are assigned or used by a partitioned array will inherit the

partition if a linear relationship exists involving the index expression in relation to the

already defined array partition. So the statement;

Q(K,J,I) = V(I,J,K)

will imply that the partition of the third index of V is inherited as the first index of Q.

Inheritance propagates the partition via the dependencies to partition as many arrays

as possible in all routines of the code (interprocedural). The partition is implemented

through the introduction onto each processor of lower CAP_L and upper CAP_H limits to

the index of the array. So a declaration that was

INTEGER NI, NJ, NK
INTEGER V(1:NI,1:NJ,1:NK)

can become in parallel

124

_____________CHAPTERS. AUTOMATION OF PARALLELISATION

INTEGER NI, NJ, NK
INTEGER CAP_L, CAP_H
INTEGER V(1:NI,1:NJ,CAP_L:CAP_H)

These CAP_ variables hold different values on each processor. The values are calculated on

all processors at run time as functions of the assigned range of the partitioned component

of the array along with the number of processors employed and the number of the

processor on which they are being calculated.

6.1.3 Execution Control

Execution control masks are used to enforce an 'assign only allocated data' rule to the

data partition. These are a conditionals that determines whether a statement should

execute on a particular processor. The control mask can take the form;

IF (CAP_L .LE. <expression> .AND. <expression> .LE. CAP_H) THEN

where the partition of an array has inferred the mask. This can be propagated to the

loop limits so the previous example can become

DO I = 1, NI-1
DO J = 1, NJ-1

DO K = MAX(1,CAP_L), MIN(NK-1,CAP_H)
V(I,J,K) = (X(I+1)-X(I)) * (Y(J-H)-Y(J)) * (Z(K+1)-Z(K))

END DO
END DO

END DO

Execution control masks are propagated using dependence information to cover as many

statements as possible to maximise parallelism. Any statement that is not masked must

be executed on every processor.

6.1.4 Communication

Having partitioned the arrays and set masks to control the execution, the use of data

that is not on the assigning processor can be determined. Communication is requested

by a reference within a statement to access data that is not on the processor executing

125

__________CHAPTER 6. AUTOMATION OF PARALLELISATION

the statement. Determination of the communication involves comparison of the execu­

tion control mask of a statement with the location of the data as defined by the data

partition. Both are specified in terms of the partition range variables which are only

assigned values at run time. Calculation of the communication must therefore be based

on symbolic inequalities involving the variables. Communication requests are then mi­

grated to as early a point in the code as is legal and profitable, often exiting loops to

allow bulk communications. Barriers to movement are detected from true dependencies

indicating the location of assignments of the data to be communicated, either in an ear­

lier code section or in an earlier iteration of a surrounding loop. Several requests for

communication of the same or subsets of the same data can be generated and migrated

to the same place. These requests can often be merged into a single communication.

In the above example, the reference to Z(K+1) will generate a communication request

for the single value Z(CAP_H+1) which can be migrated out of the code section and possibly

merged with similar requests.

A special case exists for commutative operations which can exploit parallelism where

it appears to be prohibited by a loop carried true dependence.

DO I = 1, N
p = <function>(P,R)

END DO

Where the function may be max, min, -I- or x.

DO I = 1, N
IF (<function>(P,R)) P = R

END DO

Where the function may be <,<,=,> or >.

6.2 Generic Parallelisation Methods for Unstructured Mesh

Codes

In seeking to automate the parallelisation of any unstructured mesh based CM code the

methods used must be sufficiently generic to cope with the diversity of code structures.

126

________________CHAPTER 6. AUTOMATION OF PARALLELISATION

The ideas described in this thesis have been demonstrated on UIFS, a large two dimen­

sional FV element based code integrated with a FV node based code. The similarities

between the FV scheme and the more popular FE schemes are such that the two present

much the same case for parallelisation. Extension of the strategies into three dimensions

is of little consequence, the techniques used are to a large extent dimensionally inde­

pendent. The strategies described in this thesis have been successfully applied to other

complex codes, for example the aerodynamics code SAUNA [PS92, IFB95] which is a

three dimensional multigrid block structured and unstructured mesh Euler and Navier

Stokes code. At a conceptual level the strategies are certainly of general application to

unstructured mesh codes with localised data dependencies. Long range or global de­

pendencies would require large overlaps and consequently large amounts of data to be

communicated between processors. Other strategies than those described in this thesis

will be required to parallelise such codes.

This thesis has described the strategy of geometric domain decomposition. The

geometric nature of the code and its data structures is understood and acknowledged

throughout. Geometry (topology) is used as a basis for the partitioning of the mesh,

the construction of overlaps and the scheduling of messages. Geometric and topologic

concepts are convenient as models for human understanding but are of limited use as

models for a machine to understand and operate upon. The data structures used in a

code must be treated in more abstract terms if an automated analysis is to have any

success. Partitioning based on a graph has now been demonstrated to be a practical

generic method to obtain a partition of the problem space. Similarly the derivation of

secondary partitions given the relationship between primary and secondary mesh entities

is a generic operation. Some of the open problems are;

• How is the graph to provide the primary partition obtained?

• How are the relationships to other mesh entities obtained?

• How are the communication requirements determined?

127

_______________CHAPTER 6. AUTOMATION OF PARALLELISATION

• How are the sub-domains renumbered?

• How are the overlaps determined?

6.2.1 Application of CAPTools Structured Mesh Techniques to Un­

structured Mesh Codes

The methods developed in CAPTools for dependence analysis are immediately applica­

ble to unstructured mesh codes. Construction and pruning of the dependence graph for

unstructured mesh codes presents no new problems over structured mesh codes and so is

supported by the current version of CAPTools. CAPTools can identify the arrays that

need to be partitioned. For example, in UIFS it can identify all element based arrays and

indicate that they should have the same partition definition. Partitioning of the array

index into segments defined on each processor using CAP_L and CAP_H is possible with

an unstructured mesh code but unlikely to give good results as the ordering of arrays is

unlikely to reflect the structure of the mesh. A more suitable method for an unstruc­

tured mesh code is to define the partition with an array indicating the owning processor

for each individual entity allowing the flexibility of an efficiently mapped partition as

demonstrated in Chapter 3. Such information can only be determined at run time once

the mesh structure is known and cannot be predetermined using inequality based rela­

tionships as with a structured mesh. If a set of graphs that represent the mesh can be

identified from analysis of the code then array partitioning can be achieved by handing

one of the graphs to a graph partitioning code such as JOSTLE. The dependencies that

are identified between the graphs can then be used to derive secondary partitions for the

other graphs.

Parallel execution control can be determined in the same way as for structured meshes

except that the owner computes masks become functions of the partition list and the

processor number (Section 3.3.3). Determination of what to communicate and where to

communicate is again largely the same for unstructured mesh codes as for a structured

mesh. As with a structured mesh, comparison of a statement execution control mask

and the partition definition of an array that the statement accesses, can be used to

128

_________________CHAPTER 6. AUTOMATION OF PARALLELISATION

determine if a communication is required. Due to the added complication of the partition

being denned as a run time calculated list of processor numbers, the implementation of

communications in the generated code requires further examination.

6.2.2 Data Structures for an Unstructured Mesh

Section 3.1 describes the entities and relationships that are used to specify an unstruc­

tured mesh. The data structures used to encapsulate these relationships may be imple­

mented in an almost limitless variety of schemes. A suitably generic means of describing

data relationships is required that can accommodate not only the existing diversity of

expression but also any future system that may not yet be conceived. The elements of

7

Figure 6.1: Four element mesh.

the mesh illustrated in Figure 6.1 could for example be described in terms of the grid

points in any of the following three formats.

a) A two dimensional array of length number of elements and width maximum number

of grid points per element.

1267
2360
3456
6570

129

________________CHAPTERS. AUTOMATION OF PARALLELISATION

b) A one dimensional list of length £J(mn + 1) where n is the number of elements and

mn is the number of nodes in element number n. This lists for each element the number

of nodes in the element followed by the node numbers.

412673236434563657

c) A one dimensional list of length £1 mn listing the node numbers in each element with

the last node for each element identified by being negative.

126-723-6345-665-7

Many alternative means of expression of the relationship between grid points and

elements could be conceived. A number of other variables will usually be required to

complete the descriptions. Some possibilities are;

• The total number of grid points

• The total number of elements

• The number of element shapes

• The number of elements of each shape

Given that this is only one of the many relationships that may be used in the mesh

description it is apparent that an almost limitless variety of description is not only

possible but probable. It would be a greatly simplifying strategy to prescribe a data

structure that could be used to describe a mesh in such a way that it may be parallelised.

Oplus, for example, describes mesh entities as sets and the relationships between them

as pointers. This elegantly simple system can express in an obvious form all that is

required of an unstructured mesh. But we cannot force the re-authoring of a code in

terms of alternative data structures, this runs contrary to objective (ii) and re-educating

the programming community for the sake of automatic parallelisation is an impractical

and unnecessary task. Parallel utilities such as those described in Section 4.2.4 must

have a standard data structure that they can use to interface between the codes data

structures and the utility data structures. This information is only available at run time

but the means to extract the information at run time must be generated at compile time.

130

_________________CHAPTER 6. AUTOMATION OF PARALLELISATION

6.2.3 Inspector Loops

Inspector loops [vH92, MSS+ 88] can be generated from the code to build at run time

the mesh topology as a graph of entity pairs. The following code fragment comes from

the Jacobi solver listed in Appendix C.I

DO 300 I = IONE, TOTELE

DO 200 J = IONE, SYSINX(HEADER,I)
X(I) = X(I) + SYSMAT(J,I) * OX(SYSINX(J,I))

200 CONTINUE
RESVAL(I) = ABS (X(I) - OX(I))

300 CONTINUE

Calculation of X(I) requires the value of OX(SYSINX(J,D) that is possibly on another

processor. The two variables X and OX are known (from the partition definition) to be

associated with the same (mesh) entity. This loop can be used as an inspector to create

(or add to) a description of the dependence between the like entities in this example

as a directed graph TOPOLOGY of entity number pairs. Only statements relating to the

index expression in the array usage (in this case SYSINX (J, I)) and the expression in the

execution control mask on the statement (in this case I) need to be reproduced. These

expression values are stored as a pair of integers relating the requiring processor and the

data owning processor.

COUNT = 1
DO 300 I = IONE, TOTELE

DO 200 J = IONE, SYSINX(HEADER,I)
TOPOLOGY(COUNT) = I
TOPOLOGY(COUNT+1) = SYSINX(J,I)
COUNT = COUNT + 2

200 CONTINUE
300 CONTINUE

Using routines to initialise (INITTOP) the TOPOLOGY and check for duplicates before adding

to the graph (ADDTOP) the amount of information in the graph can be minimised.

CALL INITTOP(TOPOLOGY)
DO 300 I = IONE, TOTELE

DO 200 J = IONE, SYSINX(HEADER,I)
CALL ADDTOP(TOPOLOGY,I,SYSINX(J,I))

200 CONTINUE
300 CONTINUE

131

CHAPTER 6. AUTOMATION OF PARALLELISATION

6.2.4 Partitioning

Partitioning has now been demonstrated to be successful given any graph. The inspector

loops build at run time a set of directed graphs that describes the dependence between

entities. Selecting the dominant graph, this graph can be undirected and sorted to

remove duplicates to produce an undirected graph suitable for passing to a code such as

JOSTLE.

Section 3.3.2 describes the use of rules for the determination of sub-domain overlaps.

These rules are derived from a knowledge of the dependencies of the code. This is not a

suitable method for automatic generation of overlaps. JOSTLE will provide a primary

partition which can be used as a basis for derivation of secondary partitions as outlined

in Section 3.3.1. The directed graphs returned by the inspectors can now be used instead

of rules to construct overlaps onto the partitioned mesh entities using the standardised

data structures that they construct.

In the previous example the topology pairs represent the element requiring a value

and the element owning the required value. If PL_X is the processor list array for

the array X and PL_OX is the processor list for OX then a communication is required

if PL_X(TOPOLOGY(I)) is not equal to PL_OX(TOPOLOGY(I+D). The required entity number

and its owning processor number are used to construct communication lists as described

in Section 3.3.4. The generic utilities based on those developed for PUIFS to perform

communication list construction and communication are of the form:

OVERLAP (COMMS_SET_ID, TOPOLOGY, PA, PB)
SWAPOVER (COMMS_SET_ID, VAR, LENGTH, STRIDE)

Where COMMS_SET_ID indicates a particular communication set (assigned in OVERLAP

and used in SWAPOVER). TOPOLOGY is returned from the inspector loop immediately pre­

ceding the call to OVERLAP. PA and PB are the processor lists for the entities involved in

the relationship. VAR is the variable to be communicated. LENGTH is the data item size

(single, double precision) and STRIDE is the distance between consecutive entities in the

VAR array.

132

_______________CHAPTER 6. AUTOMATION OF PARALLELISATION

6.2.5 Communication Generation

The requirement for a communication can be detected using execution control and par­

tition definition information. To implement unstructured mesh communications, two

related requests are generated, one for the communication itself and the other for the

associated inspector loop representing the relationship that caused the communication.

Both requests are then migrated as far as possible up the control flow of the code. Typi­

cally the inspector request will migrate further than the communication request since it

is not usually a function of program solution variables, but only integer pointer arrays

that are often, for example, read into the code near the start of its execution. This often

allows inspectors to be executed only once for each run of the code whilst the result­

ing information, i.e. the communication lists, are subsequently used many times. The

merging of communications requires the union or merger of related inspector loops. The

resulting communication list will contain all of the information of both communication

requests allowing a single generated communication to perform all required data transfer.

6.2.6 Renumbering

It is essential to pack the partitioned mesh and data in each sub-domain in order to

achieve scalability of memory. Section 3.3.3 has shown that unless the partitioned prob­

lem is renumbered to a local numbering scheme then^ globally dimensioned pointer arrays

are required to indirect addresses from the mesh entity relationships. Everything that

has been discussed in Section 3.3.3 can be easily automated except the renumbering of

the pointer arrays. Application of indirections to local array accesses is straightforward

once the indirection arrays have been obtained from utilities. Transferring loop limits

from global to local ranges is possible due to organised renumbering from the utility,

however every reference to the loop counter must be within the same indirection array.

Consider the following code fragment

INTEGER NUMBER_OF_GP_IN_ELEMENT(1:LOCAL_NUMBER_OF_ELEMENTS)
INTEGER GP_IN_ELEMENT(1:MAX_NUM_GP_PER_ELE,1:LOCAL_NUMBER_OF_ELEMENTS)
INTEGER PTR.ELE(1:NUMBER_OF_ELEMENTS)
INTEGER PTR_GP(1:NUMBER.OF_GRID_POINTS)

133

CHAPTER 6. AUTOMATION OF PARALLELISATION

REAL XELE(1:LOCAL_NUMBER_OF_ELEMENTS)
REAL YGP(1:LOCAL_NUMBER_OF_GRID_POINTS)

DO I = 1, NUMBER.OF_ELEMENTS
IF (OWNER_OF_ELEMENT(I)) THEN

IF (I .LE. NTRI) THEN
NNODES = 3

ELSE
NNODES = 4

END IF
DO J = 1, NNODES

XELE(PTR_ELE(I)) = XELE(PTR_ELE(D) +
+ YGP(PTR_GP((GP_IN_ELEMENT(J,PTR_ELE(I)))

END DO
END IF

END DO

Here the number of nodes for each element is determined by the global element

number where the first NTRI elements are triangles. Since the reference to I in the

conditional is not within the local number indirection then the loop limit cannot legally

be altered. This is still a parallel loop operating on renumbered packed data but iterating

globally. Such loops are easily identifiable by the tools along with the reason prohibiting

transformation, in this case the reference to I in the conditional. In practice the users

knowledge that NTRI represents the number of triangular elements can allow the user to

provide the code to calculate a local value for NTRI and therefore enable the optimisation

to continue. Other loops are independent of the decision for this loop and may still be

able to transform the loop mask into loop limits.

The renumbering of pointer arrays to local numbering schemes is however a far more

complicated problem. Consider the mesh storage examples from Section 6.2.2. The

following code fragments are examples that may be used to access the structures along

with codes to perform the renumbering,

a)

DO I = 1, LOCAL_NUMBER_OF_ELEMENTS
DO J - 1, 4

IF (GP_IN_ELEMENT(J,I).NE.O) THEN
XELE(I) = XELE(I) + YGP(PTR_GP(GP_IN_ELEMENT(J,I)))

END IF
END DO

134

CHAPTER 6. AUTOMATION OF PARALLELISATION

END DO

The code to renumber GP_IN_ELEMENT is

DO I = 1, LOCAL_NUMBER_OF_ELEMENTS
DO J = 1, 4

IF (GP_IN_ELEMENT(J,I).NE.O) THEN
GP_IN_ELEMENT(J,I) = PTR_GP(GP_IN_ELEMENT(J,D)

END IF
END DO

END DO

This renumbering loop is a similar form to an inspector loop of the original code fragment.

b)

ICOUNT = 0
DO I = 1, LOCAL_NUMBER_OF_ELEMENTS

ICOUNT = ICOUNT + 1
DO J = 1, GP_IN_ELEMENT(ICOUNT)

ICOUNT = ICOUNT + 1
XELE(I) = XELE(I) + YGP(PTR_GP(GP_IN_ELEMENT(ICOUNT)))

END DO
END DO

The code to renumber GP_IN_ELEMENT is

ICOUNT = 0
DO I = 1, LOCAL_NUMBER_OF_ELEMENTS

ICOUNT = ICOUNT + 1
DO J = 1, GP_IN_ELEMENT(ICOUNT)

ICOUNT = ICOUNT + 1
GP_IN_ELEMENT(ICOUNT) = PTR_GP(GP_IN_ELEMENT(ICOUNT))

END DO
END DO

This renumbering loop is again a similar form to an inspector loop of the original code

fragment.

c)

ICOUNT = 0
DO I = 1, LOCAL_NUMBER_OF_ELEMENTS

10 ICOUNT=ICOUNT+1
XELE(I) = XELE(I) + YGP(PTR_GP(ABS(GP_IN_ELEMENT(ICOUNT))))
IF (GP_IN_ELEMENT(ICOUNT).GT.O) GOTO 10

END DO

135

CHAPTER 6. AUTOMATION OF PARALLELISATION

The code to renumber GP_IN_ELEMENT is

ICOUNT = 0
DO I = 1, LOCAL_NUMBER_OF_ELEMENTS

10 ICOUNT=ICOUNT+1
GP_IN_ELEMENT(ICOUNT) = PTR_GP(ABS(GP_IN_ELEMENT(ICOUNT))) *

+ SIGN(1,GP_IN_ELEMENT(ICOUNT))
IF (GP_IN_ELEMENT(ICOUNT).GT.O) GOTO 10

END DO

This renumbering loop is a similar form to an inspector loop of the original code fragment

however the operation required to achieve renumbering with preservation of the sign to

delimit element boundaries is not obvious. In effect, the multiplication by SIGN is the

inverse of the ABS function used in the references to the array.

This is a difficult problem as the general case involves an extremely wide range of

possibilities. The subtleties of detecting legal transformations guaranteeing that all of

the array contents that are referred to in indirections are renumbered and also that those

that are not in indirections (i.e. the number of nodes values in example (b)) are left

alone, is extremely complex. This may lead to no renumbering of some pointer arrays in

many cases, although, again, user involvement can ease this problem in some instances.

6.3 Summary

There exist many similarities between the methods used for automation of the paral-

lelisation of structured and unstructured mesh codes. Some new additional techniques

are required to extend the now established structured mesh methods to enable paral-

lelisation of a wider range of codes using a vast range of data structures. Although not

all optimisations can be applied in automatically in all cases, the code produced can

closely resemble that produced manually as in the parallelisation of UIFS. The utilities

developed for PUIFS have been simply adjusted to the general case.

136

Chapter 7

Other Parallel Issues

There comes a point when the research has to pause to allow the dissertation to be

written. In the course of the work described in this dissertation a number of issues

have surfaced that require some mention. An alternative title to this chapter may be

Unfinished Business but while some of these issues will be addressed in the near future

others remain the subjects of research that have yet to become accepted practice.

7.1 Are Further Improvements Possible?

The graphs given in Chapter 5 demonstrate how a range of results from poor to good

with moderate parallelism can be transformed into good to excellent. It is fair to say

that the poor results reflect poor communication performance especially in terms of the

communication start up latency, this coupled with the good calculation performance of

the parallel platform, leads to a poor calculation to communication ratio. Objective

(v) requires scalability to massive parallelism. If this is to be achieved then excellent

moderate scale parallelism is required. Given that a parallel machine is unlikely to

ever return perfect performance all possible optimisations of the parallel code should be

sought. It is apparent that there are a number of further improvements that could be

implemented.

137

CHAPTER 7. OTHER PARALLEL ISSUES

7.1.1 Layered Overlaps

The PUIFS implementation uses only two overlap structures. An element overlap and

a grid point overlap. The size of each of these overlaps is determined by whether the

flow code is used with or without the stress code. If the stress code is used then the

size of each of the overlaps is increased to accommodate the extra dependence required.

It is logical to allow for the definition of more than one overlap for each mesh entity.

This will provide a small improvement in efficiency within the flow portion of a run that

also involves stress. The reduction in run times will be more apparent for bandwidth

limited problems. Implementation of layered overlaps within PUIFS is a reasonably

simple optimisation that could be implemented with a duplication of the communication

schedules. For automated parallelisation the outcome of inspector loops described in

Section 6.2.3 is a set of dependencies which can result in many layers for each overlap.

7.1.2 Machine Topology Profile

In spite of what parallel machine manufacturers may claim there will always be a dis­

tance related communication cost. This cost becomes more significant as the number of

processors increases. To quantify the variations in latency and bandwidth a code has

been developed which measures the communication performance of a parallel machine.

Latency is measured by the simple method of sending a short message between each

processor on the parallel machine. Similarly bandwidth is measured by sending a large

message between each processor. These measurements are initially carried out with only

one message being passed at any one time, and then with every processor communicating

simultaneously. This provides a peak and a saturated performance measure that may be

expressed as a weighted graph (matrix) that describes the communication performance

between each pair of processors. What is immediately apparent is the non-uniform per­

formance described by the graph. Such a weighted graph can be obtained quickly, at run

time, and then used by the partitioning code to ensure that the mesh partition produced

is appropriate for the measured machine communication profile as opposed to a notional

topology that may not be reflected in actual communication performance. It has been

138

CHAPTER 7. OTHER PARALLEL ISSUES

demonstrated in Chapter 5 that reflecting the processor topology in the mesh partition

provides a performance improvement. It is therefore anticipated that this scheme will

provide improved performance across a range of parallel machines without the need to

understand or specify the architecture of the machine.

7.1.3 Dynamic Load Balance

The test cases used in this thesis have been partitioned to achieve a static load balance.

This has been achieved through balancing the number of elements in each partition. For

a constant element shape this can give a good load balance. There are many reasons

why good load balance may not be achieved or maintained.

The variation in computational load for different element types (shapes) can be ac­

commodated to some extent in the partitioning process as discussed in Section 3.2.4,

however the exact computational balance can only be determined at run time. Chang­

ing physics in an application can affect the amount of computation per element or grid

point. For example phase change (solidification) can lead to more complex physical pro­

cesses requiring extra computation, e.g. latent heat release may effect some elements

and not others.

The parallel machine may not have homogeneous performance, that is some process­

ing elements may be faster or slower than others. This is especially true for workstation

networks. Again such a variation can be accommodated to an extent in the partitioning

process but cannot be accurately predicted. It is often the case for workstation networks

that the machines may be used by other jobs, again causing an imbalance in processing

performance.

A dynamic load balancing scheme is required to re-distribute the work over the

processors so as to minimise idle time. Many of the recently developed partitioning

schemes address such repartioning as a parallel task. There exist however some questions

that require investigation.

How often should the balancing process be carried out? Re-partitioning to redress

load imbalance is an overhead that requires optimisation between the degree to which

139

CHAPTER 7. OTHER PARALLEL ISSUES

load imbalance may be tolerated and the cost of re-partitioning.

How much of the load should be moved? If the load imbalance is caused by movement

of the computational load or changes in the computational resource then the best that

can be hoped for is to use some expression to anticipate the movement of load that

will redress the imbalance. Where changes in the computational resource is caused by

outside agencies such as the submission of other jobs to a network it is impossible to

predict the future partition requirements. Given that a parallel code executes only as

fast as its slowest processor this can cause difficult problems for such open systems.

How to avoid cycling? If the parameters used to redistribute the load are inappro­

priate then the load balancing scheme may cycle the load between processors or even

circulate the problem around the parallel machine. Methods similar to taboo search can

be used to reduce such incidence but cycle recognition remains unclear.

Undoubtedly dynamic load balancing is not only desirable but may be necessary for

some parallel applications. However some of the open problems have no easy solution.

The scope of the problem is reasonably clear but an elegant solution has yet to be

identified.

7.1.4 Other Communication Schemes

With a small mesh size latency becomes the overridingly dominant communication cost.

Some success has been demonstrated with communication schemes that help to reduce

the latency cost. Rather than considering the machine to be connected as a mesh, con­

sider the machine to be connected as a star. All communication is transacted via the

processor at the hub [GWZ95]. This has reduced the number of processor interconnec­

tions to P. For example an overlap update for a processor (sub-domain) inside a two

dimensional processor array would be likely to incur up to eight latencies. A processor

in a hub connected array would incur only one latency. Partitioning would be much

the same as described in this thesis, with a low cut edge count partition likely to give

the best performance. Only the communication would alter, all overlap data would be

exchanged via the processor at the hub. Each processor can pass data required by other

140

CHAPTER 7. OTHER PARALLEL ISSUES

processors in one packet to the central processor. The hub processor having accumulated

data from all other processors sends back to each processor the data corresponding to its

overlap. Of course the scheme would require some degree of asynchronous communica­

tion to avoid a bottleneck at the hub processor. Also the hub processor would not be able

to carry out a full share of the workload and so anticipating a static load balance would

be a problem. Ultimately the scheme would not scale far as the communication load

on the central processor becomes too great. However the premise for the scheme was to

alleviate latency bound problems, i.e. small mesh sizes, which would not be expected to

scale far anyway. So if the requirement was to improve performance for small problems

this could be a worthwhile investment of effort. Workstation networks with PVM for

example are a suitable platform for this strategy as such a system incurs a very high

latency and supports non blocking communications.

7.2 Difficult Problems

7.2.1 Inhomogeneous Problems

Figure 7.1 shows a simple foil mesh partitioned into four sub-domains, each containing

the same number of elements. This has achieved a balance of elements across each

processor but it is necessary to balance the load across all solvers. In this example only

flow is solved for in the space around the foil and only stress is solve within the foil. To

achieve a load balance the nature of these physical domains must be incorporated into

the partitioning scheme. A more balanced partition may appear more like that shown in

Figure 7.2. Here the balance of elements across processors has been maintained within the

foil and outside the foil but at the cost of an increased and imbalanced communication.

A dynamic load balancing scheme is in this case required to acknowledge the differing

physical domains. Code execution time within each solver could possibly be used to

direct the redistribution of a mesh in accordance with the physical domains. Solidification

problems, for example, present severe difficulties to this type of scheme due to the massive

migration of elements required as the computational load moves from possibly the entire

141

CHAPTER 7. OTHER PARALLEL ISSUES

Figure 7.1: Foil mesh partitioned over four processors.

Figure 7.2: Foil mesh partition with solver balancing.

mesh to a small remaining liquid portion. This can lead to a limit of achievable load

balance.

7.2.2 Adaptive Meshing

Adaptive meshing involving the creation and deletion of elements and grid points is

gaining popularity especially in the CFD community. An adapted mesh requires reparti-

tioning to preserve load balance. This presents a severe test for a dynamic load balancing

scheme, particularly if the mesh changes significantly from that which was originally pre­

sented to the partitioning algorithm.

7.2.3 Long Range Dependencies

The strategies presented in this dissertation focus on short range dependencies. Long

range or even global dependencies within a code present a barrier to scalability. For

example contact analysis of deforming shapes requires testing of a deformed mesh to

142

CHAPTER 7. OTHER PARALLEL ISSUES

determine if any contact between otherwise unconnected parts of the mesh has occurred.

This involves a dependence between all parts of the mesh. Some work has been done to

restrict possible dependence to localised parts of a mesh [GMD95a]. Similar difficulties

arise for moving mesh problems and particle based codes such as molecular dynamics.

7.3 Are there any alternatives?

The strategies discussed in this thesis follow the now accepted path of development that

attempts to reproduce a serial code as faithfully as possible on a DM-MIMD machine.

There are however some developments that may alter the way in which parallel machines

are used.

7.3.1 Parallel Mesh Generation

An alternative solution to the problems presented by a very large mesh in relation to

the capacity of a single processor is parallel mesh generation. This scheme begins with

a geometric decomposition of the problem space into P sub-domains each of which are

then meshed in parallel [CJL+ 89, HJ94]. It is arguable that the mesh quality is hard to

control. But the matter of mesh quality is a difficult issue which is beyond the scope of

this thesis. Also relevant is the inability to compare serial with parallel when there is no

serial case. The measure of the success of a parallel exercise remains a comparison of the

parallel results with serial results. This viewpoint may have to change with the arrival of

highly parallel processing where P > 1024. Such a machine would invite the application

of meshes of such magnitude that a comparison with serial performance would be out

of the question and even visualisation of the full mesh may be impractical. Analysis

of the mesh quality would in that case have to be automatic and so any measure that

may be applied to mesh quality may also be used to improve the mesh to the point of

conformance with stipulated criteria of quality (Zen and the art of mesh generation).

143

CHAPTER 7. OTHER PARALLEL ISSUES

7.3.2 Parallel Visualisation

The final product of computational mechanics is normally some form of graphical image.

As computational techniques have become more sophisticated so too have the techniques

of visualisation. It is now commonplace to transform the results of scientific computation

into animated three dimensional images. Such animations may be supplemented with

advanced techniques such as particle tracking and stream lines/ribbons. The process

of transforming data sets into graphical presentations is a computationally demanding

exercise that lends itself to parallel processing. There is an attractive logic in removing

the step of writing data sets from parallel computation to file and producing images

instead [Hei94j. The generation of images is however usually an interactive process as

view angles, lighting, perspectives, etc are manipulated to produce the required result.

As such the visualisation may become a repetetive labour intensive task, not a task

well suited to batch processing. Nevertheless one of the aims of parallel processing is

to reduce the run time of programs to the point at which interactive computational

mechanics becomes a possibility. High speed run time visualisation would be a great

asset to such an undertaking.

7.3.3 Virtual Shared Memory

A shared memory parallel machine is without doubt a far easier machine to program

than a distributed memory machine. With a shared memory machine a problem can

exist in machine memory in the same form as the serial without the need for renumber­

ing or overlaps and overlap updating. All that is required for such parallel processing is

the determine an appropriate partition for compute masking. Dynamic load balancing

for example becomes far simpler as only the compute masks require adjustment to re­

dress balance. The advantages for adaptive meshing and inhomogeneous problems are

manifold. There remains however the problem of scalability. The memory bandwidth in

a shared memory machine does not scale with the number of processors. For this rea­

son current shared memory machines are normally less than 16 processors and for most

CM codes SM machines operate best at less than 8 processors. Virtual Shared Memory

144

CHAPTER 7. OTHER PARALLEL ISSUES

(VSM) machines are systems that allow the entire machine memory to appear as shared

memory even though it may not be actually shared. A VSM machine may be a dis­

tributed memory machine with a software harness that allows the processors to address

the memory on other processors. A VSM machine may be a cluster of shared mem­

ory machines, again with a software harness that allows the memory to appear shared

amongst all processors. Some manufacturers have employed elaborate hardware, mem­

ory and cache arrangements to provide workable VSM with distributed memory. Many

manufacturers and academics claim that the future of parallel processing lies with VSM.

Indeed the advantages that such systems offer for simplicity of programming are clear.

But unless memory bandwidth scales with the number of processors then scalability will

not be achieved. The advocated VSM model is one in which compilers and operating

systems communicate as often as necessary. However the cost of ignoring processor

topology on a DM machine, even with a well partitioned mesh is clearly demonstrated

in Chapter 5. If in addition all concept of cut edge were ignored the communication re­

quirements of a CM code will become astronomical. Since we can organise unstructured

meshes onto processor topologies with significant performance gains and little human

effort (Chapter 6) there appears to be little to be gained and a lot to be lost through

VSM. Perhaps the more enlightened view is one recently voiced at a conference; If man-

ufactureers allow VSM programming on their hardware then automatic compilation of

existing code onto small numbers of processors will encourage use (purchase) of parallel

machines. Having persuaded people to use (buy) the machine they may then be encour­

aged to optimise their application through the use of message passing techniques. Cost

effectiveness remains an overridingly important criteria in the commercial success of a

system. An architecture that is gaining popularity is to produce highly cost effective 4

- 8 processor SM systems that may be interconnected with low latency, high bandwidth

interfaces. This makes such systems highly attractive as they may be used very effec­

tively for running multiple low P jobs or less effectively using VSM to allow very large

problems to be accommodated with little or no parallel skills being required. Optimis­

ing code for such a platform will nevertheless benefit from the techniques described in

145

CHAPTER 7. OTHER PARALLEL ISSUES

this dissertation to avoid the inevitable bottlenecks as data moves between the shared
memories.

146

Chapter 8

Conclusions

8.1 Were the Objectives Met?

A number of objectives for parallelisation of an unstructured mesh CM code were set out

in the introduction to this thesis. To what extent have these objectives been achieved?

8.1.1 Objective (i) Minimise the Changes to the Original Algorithm

The entire test case program UIFS has been parallelised with only one simple algorith­

mic change being required. The Jacobi and Conjugate Gradient algorithms are both

reproduced identically in parallel. Rounding errors are however subject to coefficient

evaluation order and can therefore give rise to variations in the numerical values pro­

duced by the code despite there being no actual algorithmic change. In the interest of

meeting objective (iii) (and to some extent (ii)) the Gauss Seidel SOR algorithm has

been modified in the parallel scheme proposed in this thesis. While the results produced

by the parallel GS-SOR solver are numerically dependent on factors such as the number

of processors and the mesh partition, these changes are qualitatively insignificant. The

results produced by the serial code are qualitatively reproduced by the parallel code. In

practice the variation between serial and parallel GS-SOR results caused by algorithmic

modification are no greater than the variation between the serial and parallel CGM re­

sults which do not arise from algorithmic modification. It should be possible however to

147

CHAPTERS. CONCLUSIONS

produce pathological test cases that are extremely sensitive to numeric accuracy. But in

such a case the results produced by the serial code are highly questionable. This raises

an issue in that if the parallel results differ significantly from the serial then we should

suspect that the serial results are of questionable validity. It is clear that objective (i)

has been achieved for the three solvers covered in this thesis. There exist however a

great many other solvers in use in CM codes. It cannot be guaranteed that all solvers

will be so amenable to parallelisation. Parallelism probably exists in all algorithms but

the limitation of achievable parallel machine performance (latency and bandwidth) re­

stricts the feasibility of some parallel solutions. There are some classic examples from the

structured mesh CM codes of solvers that are either difficult or impractical to parallelise.

Some of these solvers have been elevated to the status of benchmarks in the NASPAR

suite [BBLS93]. The ADI solver and LU factorisation (APPLU) are two examples that

have achieved some notoriety in their difficulty for successful parallelisation. A lesson

that is now being accepted by the CM community is that if the solver is unsuited to

parallelisation then it should be replaced by one of the many solvers that are highly

paralleliseable. The replacement solver may not give such good performance on one

processor but the parallel performance can usually justify the substitution. This has

been the case with the parallelisation of the highly successful PHOENICS structured

mesh CFD code from CHAM [CHA94]. Like UIFS this code offers a range of solvers, in

particular the highly efficient conjugate gradient with ILU preconditioning is used. This

solver has caused a number of difficulties for parallelisation and so the solution adopted

for the parallel code was to use the slightly less efficient but highly parallel Jacobi pre­

conditioned conjugate gradient solver [GMD95b]. The strategy adopted by CHAM for

the Gauss-Seidel solver is the same as used in this thesis.

8.1.2 Objective (ii) Minimise the Visibility of the Parallel Code

Whilst the parallel code can hardly be described as invisible, the layered library strategy

described in Section 2.4 has allowed the bulk of the parallel code to be hidden. The

concept of the PUTILS library is to provide a barrier that obscures the parallel imple-

148

CHAPTERS. CONCLUSIONS

mentation and the parallel machine from the view of a code author. This is achieved

by providing a source code perspective that requires only a minimal knowledge of par­

allelism to understand and use the library routines. For the PUIFS code this exercise

has proved to be a great success, as many of the routines have required no modification

whatsoever. Of the 209 subroutines in UIFS only 71 have required some alteration to

function in parallel. Of these 71 routines that require either calls to the PUTILS routines

or use of the data in puif s. inc the intrusion into the original routines has been in most

cases at an acceptably low level (c.f. Appendix C). Unfortunately 35 of the 71 paral­

lelised routines are i/o routines that have required significant modification. Little can

be done to ameliorate this problem especially while parallel i/o remains an uncommon

hardware feature. In actuality the i/o problem is too great as the i/o routines are (de­

spite their size) some of the simpler routines in the code and so re-authoring them for

parallel functioning is not a great task, especially with the PUTILS routines available.

From the user perspective concealment of parallelism has shown great success. No

modifications of the problem definition and specification are required for the problem

to be run on a parallel machine. Partitioning and decomposition of the problem has

been implemented in PUIFS as a transparent run-time process. Even the restart files

may be used to move sequential runs between serial and parallel machines and between

differing numbers of processors on parallel machines. The small problem of binary file

compatibility can occur when moving between systems but is no more complicated in

the parallel case as in a transfer between differing serial machines. No additional input

is required from the user other than the number of processors that are to be used. This

single integer is not however trivial information. It is conceivable that the choice of the

number of processors to use could be made by the program. For a very small problem

it can be difficult to obtain speed-up on a parallel machine with a poor calculation to

communication ratio. Having run the parallel code with a range of problem sizes a

profile of the machines returned performance is obtained. Such a profile can be used to

determine the maximum number of processors that will return an 'effective' speed-up for

the size of problem to be run. The definition of effective need not be static but could

149

CHAPTERS. CONCLUSIONS

be influenced by the demand history placed on the machine. This opens up numerous

possibilities for job scheduling to maximise return from parallel resources.

8.1.3 Objective (iii) Maximise Parallel Efficiency

Chapter 5 presents some results that range from very poor (Figure 5.15) to very good

(Figure 5.35). Clearly the returned performance is highly problem dependent. For ex­

ample a guaranteed slow-down is possible given a small enough test case. Likewise near

perfect performance could be obtained with a constant problem size per processor of

near the maximum that can be accommodated. In the case of PUIFS on the Transtech

Paramid at the University of Greenwich where the smallest nodes have 16MBytes of

memory with a triangular mesh then approximately 20,000 elements can be accommo­

dated per processor or 560,000 elements over the entire machine. This problem would

occupy approximately 500MBytes of memory Extrapolation of the speed-up curves gives

an estimated speed-up of over 24 or approximately 90% efficiency. 16 of the Paramid

nodes have 32MBytes of memory which would allow a problem of more like 30,000 el­

ements per processor or 480,000 elements in total. Extrapolation gives a speed-up of

around 15.5 and efficiency at around 95%. As discussed in Chapter 5 the efficiency of

a parallel code is a highly machine dependent measurement. It would seem from the

Paramid results that the machine dependency is most noticeable for smaller sized prob­

lems, or more accurately for smaller meshed problems. There exist many real UIFS

problems with mesh sizes well below 3,000 elements for which the run times on a work­

station are about a week. PUIFS on the Paramid can only be of limited help with such

problems. With a small mesh PUIFS problem the Paramid machine is latency bound

and the returned performance consequently poor.

Topology mapping the mesh partition to the Paramid has been demonstrated to pro­

vide improved performance. This is especially noticeable at the point in the speed-up

curve where performance falls off. Clearly the commonly accepted criteria of mimising

the number of cut edges in the partition does not necessarily provide the best perfor­

mance. Several avenues of development that provided a highly significant improvement

150

CHAPTERS. CONCLUSIONS

in performance were discussed in Section 5.4. The extent to which such improvements
can be made is again platform dependent. However all possible improvements must be
explored and implemented if further gains can be made in performance. The modifi­
cations required to implement the optimisations were contrary to objective (ii) in that
significant alteration of the source code was required. However only the three solver
routines are affected by these modifications which is a small disadvantage in comparison
to the enormous performance improvement.

8.1.4 Objective (iv) Portability to Most DM MIMD Platforms

It is now widely accepted that use of one of the well known message passing libraries with
Fortran?? code provides a highly portable parallel code. Use of the CAPTools libraries
has provided an improved portability interface than direct use of a message passing
library. The majority of the currently used message passing interfaces are supported by
the CAPTools libraries. Not only does this extend the portability to all of the message
passing interfaces that are supported by CAPLIB but it allows the choice of the most
efficient supported library to be made. Porting of the libraries to other interfaces is not
automatic but has at least been reduced to an easily manageable task, the porting of
CAPLOW.

8.1.5 Objective (v) Scalability of Computation

Computational scalability is another highly machine dependent parameter. Computa­
tional scalability has been shown to be achievable provided that the problem size is large
enough. This does not however fully address the issue. The returned performance pre­
sented in Chapter 5 quite clearly does not scale well for small problems and especially
not for the stress code. Why not? Latency is the limit on scalability of computation not
only for the Transtech Paramid but also for a great many other parallel systems.

151

CHAPTERS. CONCLUSIONS

8.1.6 Objective (vi) Scalability of Memory

Scalability of memory has clearly been achieved up to the point at which a description of

the mesh or a globally sized vector variable may be accommodated within the memory of

one processor. This takes Scalability of memory way beyond the limit of the 28 processors

available using the University of Greenwich Paramid. How far? For the PUIFS code the

current strategy can take Scalability to around 60 processors. After that more effort will

be required to fully parallelise some of the i/o operations.

8.1.7 Objective (vii) Automate the Parallelisation Process

Automation of the entire process of parallelisation will eventually be realised. The CAP-

Tools project has acknowledged that this process can be enhanced with user supplied

knowledge and so has provided an interactive toolkit to automate as far as possible the

process of parallelisation of mesh based codes. The dependence analysis already avail­

able in CAPTools provides a powerful analysis of unstructured mesh codes. This thesis

has developed strategies for parallelisation of unstructured mesh codes based upon those

developed for structured mesh codes. The CAPTools libraries have been used to develop

utilities for unstructured meshes that point the way for generic techniques that may be

used in an automated parallelisation process. The techniques developed in this thesis

will eventually be incorporated into the CAPTools package to extend the scope of par­

allelisation to irregular mesh based codes. Some open problems discussed in Chapter 6

remain but do not obstruct the development of CAPTools towards unstructured mesh

codes.

8.2 Summary

Why did we trouble ourselves with parallelisation in the first place? Nobody really wants

parallel processing, what is really required is a larger, faster serial processor. That way

we do not have to expend any effort parallelising codes and our time can be used more

profitably elsewhere. But parallel processing is inevitable. There are a number of reasons

152

CHAPTERS. CONCLUSIONS

that keep bringing us back to parallel concept. However large and fast a serial processor

can be built there will always be the temptation to connect several of them together to

create a single system with greater power. However large a problem we are currently

solving we want to be able to solve a larger problem. A more pragmatic reason is simply

the economics of producing a supercomputer. Economy of scale in the development of

workstation technology makes a highly parallel machine based on this technology the

most cost effective approach to high performance computing. The arguments concerning

the optimal architecture to adopt for such a parallel machine will probably continue for

some time but the common ground remains the same: Connect together a large number

of state of the art processors and memory to produce a single high performance system.

It is therefore essential to develop the skills required to use such a system efficiently.

153

Appendix A

Parallel Utilities

A.I Parallel Included Declarations

The following is the include file puif s . inc that declares the extra variables required for

parallel processing. These declarations are scalable to the extent that a buffer is required

on the i/o processor that can hold a globally sized set of coordinates or a globally sized

variable in order to reconstruct the coordinates or a variable prior to writing to file. In

this instance MAXBUF must be declared as the greater of either MAXELE or twice the size of

MAXGPT. One difficulty with included declarations in F77 is the explicit length declaration

of array sizes. Any change to the declaration of MAXBUF requires recompilation of all

sources that include puif s. inc.

C Parallel UIFS include file
C K. McManus 12th June 1993
C University of Greenwich
C London UK

C
C
C
C
C
C
C
C

MAXHLO
MAXBUF
XTOTEL
XTOTGP
XNETYP
GTOTEL
GTOTGP

Maximum halo size
Maximum size of buffer
Total number of elements including halos
Total number of grid points including haloes
Total number of element types including haloes
Global total number of elements
Global total number of grid points

BUFLEN Buffer length - scratch

154

APPENDIX A. PARALLEL UTILITIES

C
C
C
C
C
C
C
C
C
C
C
C
C
c====

PROCNUM This processors number
NPROC Number of processors (sub-domains)
MASTER Logical true if processor number one
ELINDX Element index, global element numbers for this subdomain
PTINDX Point index, global point numbers for this subdomain
HEINDX Halo element communication index
HPINDX Halo point communication index
BUFFER Integer buffer - big
IUFFER Integer buffer
RBUFER Floating point buffer - big
FBUFER Floating point buffer
DBUFER Double precision buffer

INTEGER MAXHLO, MAXBUF
c note MAXBUF must be divisible by 16 for data alignment

PARAMETER (MAXBUF = 160000)
PARAMETER (MAXHLO = MAXBUF/40)
INTEGER XTOTEL, XTOTGP, XNETYP
INTEGER GTOTEL, GTOTGP, BUFLEN
INTEGER PROCNUM, NPROC
LOGICAL MASTER

INTEGER ELINDX(0:MAXBUF/2)
INTEGER PTINDX(0:MAXBUF/2)
INTEGER HEINDX(1:MAXHLO)
INTEGER HPINDX(1:MAXHLO)

INTEGER
INTEGER
REAL
REAL
REAL*8

BUFFER(1: MAXBUF)
IBUFER(1: MAXBUF)
RBUFER(1: MAXBUF)
FBUFER(1: MAXBUF)
DBUFER (1: MAXBUF)

INTEGER ELEMENT, NODE, D.NODE
PARAMETER (ELEMENT = 1)
PARAMETER (NODE = 2)
PARAMETER (D.NODE = 4)

c the buffers are arranged into overlapping memory space
EQUIVALENCE (DBUFER(1), RBUFER)
EQUIVALENCE (DBUFER(MAXBUF/2 + 1) , FBUFER)
EQUIVALENCE (BUFFER, RBUFER)
EQUIVALENCE (IBUFER, FBUFER)

COMMON /PCOMM/ XTOTEL, XTOTGP, XNETYP, GTOTEL, GTOTGP,
® PROCNUM, NPROC, MASTER,

155

APPENDIX A. PARALLEL UTILITIES

5 ELINDX, PTINDX, HEINDX, HPINDX,
5 BUFLEN, DBUFER,
5 ELEMENT, NODE, D.NODE
SAVE /PCOMM/

A.2 Parallel Utility Library

The routines provided by the parallel utility library discussed in Section 2.4.1 are as

follows:

• INITIALISE()

Sets up the parallel configuration. This initialises the variables NPROC and PROCNUM

which remain hidden in the common data PCOMM.

• HALTQ

Shuts down parallel processing.

• CHECK()

Checks to see if the processors are responding. Used only to provide confidence

check.

• BCASTC VARIABLE, VARIABLEJLENGTH)

Broadcasts a VARIABLE of size VARIABLE-LENGTH from the master processor to all

processors. All processors are left with an identical value for VARIABLE. This could

have been implemented with a processor number as an argument to indicate which

processor is broadcasting. This was not however found to be required, mainly as a

consequence of the SPMD paradigm.

• GSUMR(REAL.VARIABLE)

Returns the global sum of the REAL_VARIABLE to all processors.

• GMAXRC REAL_VARIABLE)

Returns the global maximum of the REAL_VARIABLE to all processors.

156

APPENDIX A. PARALLEL UTILITIES

• GSUMDC DOUBLEJVARIABLE)

Returns the global sum of the DOUBLE-VARIABLE to all processors.

• GMAXRC DOUBLEJVARIABLE)

Returns the global maximum of the DOUBLE-VARIABLE to all processors.

• GORC BOOLEAN-VARIABLE)

Returns the global OR of the BOOLEAN-VARIABLE to all processors.

• GANDC BOOLEAN-VARIABLE)

Returns the global AND of the BOOLEAN-VARIABLE to all processors.

• SWAPC VARIABLE, SPATIAL JREFERENCE)

Exchanges the VARIABLE values in the overlaps to give consistent data across all
processors. SPATIAL-REFERENCE may be any of ELEMENT, NODE or D-NODE.

• SCATTERC VARIABLE, SPATIALJIEFERENCE)

Distributes a global SPATIAL-REFERENCE based variable from the master processor
to be a local variable on all processors. Used only in i/o routines.

• GATHERC VARIABLE, SPATIAL-REFERENCE)

Rebuilds a global SPATIAL-REFERENCE based variable onto the master processor
from local variables on all processors. Used only in i/o routines.

• TOPROCC PROCESSOR-NUMBER, BUFFER, VARIABLE, VARIABLEJLENGTH)

Sends BUFFER of length VARIABLE-LENGTH from the master processor into VARIABLE
on PROCESSOR-NUMBER. This call requires a PROCESSOR-NUMBER and is used only in
i/o routines.

• FROMPROCC PROCESSOR-NUMBER, BUFFER, VARIABLE, VARIABLEJLENGTH)

Sends VARIABLE of length VARIABLEJLENGTH from PROCESSORJNUMBER into BUFFER
on the master processor. This call requires a PROCESSORJNUMBER and is used only
in i/o routines.

157

APPENDIX A. PARALLEL UTILITIES

• ASWAP(VARIABLE, SPATIAL_REFERENCE, SWAP_ID)

Performs an asynchronous (non-blocking) exchange of the VARIABLE values in the
overlaps to give consistent data across all processors. SWAP-ID is a unique identifier
for the communication.

• SYNCC SWAP-ID)

Waits until the message identified by SWAP-ID is complete.

158

Appendix B

Partition List

The partition listed here corresponds to the partitioned mesh shown in Figure 4.7

The first entry is the number of elements N (nodes in graph), the second is the

number of partitions P. There then follows a list of N numbers giving the partition to

which the element belongs.

42

3

2

1

3

1

2

2

3

3

1

3

1

2

1

1

3

3

1

1

2

1

1

3

3

2

3

2

1

1

1

2

2

3

2

2

3

2

3

3

3

1

2

2

159

Appendix C

Parallel Iterative Solvers

The code listed here is the original serial code that has been modified to function in

parallel by the addition of the code highlighted in bold. The additional subroutines

called can be found in the PUIFS utility library and the additional variables used are

from putils.inc, both are listed in Appendix A.

These routines have met the requirements of objectives (i), (ii), (iii) and (iv);

(i) The algorithms for Jacobi and DPCGM are unchanged, and for Gauss SOR minimally

changed.

(ii) The changes made to the serial code are minimal and hopefully comprehendable

without extensive knowledge of parallel processing.

(iii) Given a well balanced partition the parallel efficiency is potentially high as little

communication is required.

(iv) Portability is achieved through the use of library functions.

Whether scalability (requirement (v)) has been achieved is dependent on the imple­

mentation of the global commutative functions.

160

APPENDIX C. PARALLEL ITERATIVE SOLVERS

C.I

r-
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
P-\^

Jacob! Solver

Subroutine

Author

Description

JACOBI (JACOBI) scheme

: P. Chow 23rd March 1989
K. McManus 23rd September 1993
Centre for Numerical Modelling & Process Analysis
University of Greenwich, London, England.

: Solve Ax = b using Jacobi iterative scheme.

Variables :
IN
IN
IN
IN
IN
IN
IN
IN
IN
I&O
OUT
OUT
OUT
OUT
WSP

RMETHD
TOLVAL
MAXITR
TOMITR
TOTELP
TOTELE
SYSINX
SYSMAT
B
X
RESVAL
NITERS
BIGRES
CONVER
OX

- Residual method.
- Tolerance value.
- Maximum number of iteration.
- To maximum iteration.
- Total number of grid points per element .
- Total number of element.
- System matrix index.
- System matrix A.
- B vector.
- Solving variable X.
- Residual values.
- Number of iteration taken.
- Biggest residual value.
- Convergent indicator.
- Old X value (work space) .

SUBROUTINE JACOBI (RMETHD, TOLVAL, MAXITR, TOMITR, TOTELP,

@
<3 I

INTEGER
INTEGER
REAL
REAL
REAL
REAL
LOGICAL

TOTELE, SYSINX, SYSMAT, B , X
RESVAL, NITERS, BIGRES, CONVER, OX)

RMETHD, MAXITR, TOTELP, TOTELE, NITERS
SYSINX (0 : TOTELP , 1 : TOTELE)
TOLVAL, BIGRES
SYSMAT (1 : TOTELP , 1 : TOTELE)
B (1: TOTELE), X (1: TOTELE)
RESVAL (1: TOTELE), OX (IrTOTELE)
TOMITR, CONVER

C Commons
INCLUDE 'puifs.inc'

C Local Constants
INTEGER HEADER, IZERO , IONE

161

APPENDIX C. PARALLEL ITERATIVE SOLVERS

PARAMETER (HEADER = 0, IZERO = 0, IONE = 1)

C Local Variables
INTEGER ISTART, IEND , ISTEP , I , J
LOGICAL DONE

NITERS = IZERO

100 CONTINUE
NITERS = NITERS + IONE

C DO 150 I = IONE, TOTELE - operate locally on the overlap
DO 150 I = IONE, XTOTEL

OX(I) = X(I)
150 CONTINUE

DO 300 I = IONE, TOTELE

DO 200 J = IONE, SYSINX (HEADER, I)
X(I) = X(I) + SYSMAT(J,I) * OX(SYSINX(J,I))

200 CONTINUE

RESVAL(I) = ABS (X(I) - OX (I))

300 CONTINUE

CALL ERESID (RMETHD, TOTELE, RESVAL, X , BIGRES)

CONVER = BIGRES .LE. TOLVAL
DONE = (NITERS .GE. MAXITR) -OR.

<9 (CONVER .AND. (.NOT. TOMITR))

CALL SWAP (X, 'E')

IF (.NOT. DONE) GOTO 100

RETURN
END

The solver calls ERESID to evaluate the residuals at each iteration. This routine in
turn calls LNORMS to evaluate the residual norms. ERESID is unchanged in parallel, but is
listed here with LNORMS to show the call to LNORMS which requires a global commutative

operation.

c ——
C Subroutine ERESID (E)rror (RESID)ual
C

162

APPENDIX C. PARALLEL ITERATIVE SOLVERS

C Author
C
C
C
C Description
C
C
C Variables
C IN METHOD
C
C
C
C
C
C
C
C IN TOTELE
C IN RESDIF
C IN CURVAL
C OUT RESVAL
C
n ___________ _-

: P. Chow 1st July 1992
Centre for Numerical Analysis & Process Control
University of Greenwich, London, England.

: Evaluate the residual value given residual and
current values.

*

Method of residual evaluation.
1 - Absolute L-l norm.
2 - Absolute L-2 norm.
3 - Absolute L-Infinity norm.
4 - Relative L-l norm.
5 - Relative L-2 norm.
6 - Relative L-Inf inity norm.

- Total number of elements.
- Residual difference.
- Current value
- Residual value.

SUBROUTINE ERESID (METHOD, TOTELE, RESDIF, CURVAL, RESVAL)

INTEGER METHOD, TOTELE
REAL RESVAL
REAL RESDIFCl:TOTELE), CURVAL(1:TOTELE)

Local Constants
INTEGER
PARAMETER

ITHREE
(ITHREE = 3

C External User Defined Functions
REAL LNORMS, TOZERO
LOGICAL EQZERO
EXTERNAL LNORMS, TOZERO, EQZERO

C Local Variables
INTEGER SLNORM, I
REAL ZETA

SLNORM = METHOD
IF (METHOD .GT. ITHREE) THEN

SLNORM = METHOD - ITHREE

ZETA = TOZERO ()

DO 100 I = 1, TOTELE
RESDIF(I) = RESDIF(I) / (ABS (CURVAL(I)) + ZETA)

163

APPENDIX C. PARALLEL ITERATIVE SOLVERS

100 CONTINUE
END IF

RESVAL = LNORMS (SLNORM, TOTELE, RESDIF)

P-

c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
r.

RETURN
END

Real Function

Author :

Description :

Variables :
IN METHOD -

IN TOTELE -
IN VECTOR -

LNORMS (L)- (NORMS)

P. Chow 1st July 1992
K. McManus 23rd September 1993
Centre for Numerical Analysis & Process Control
University of Greenwich, London, England.

Evaluate the L-l, L-2 or L-infinity norm of a vector

Method of norm.
1 - L-l norm.
2 - L-2 norm.
3 - L-infinity norm.
Total number of elements.
Vector of real numbers.

REAL FUNCTION LNORMS (METHOD, TOTELE, VECTOR)

INTEGER METHOD, TOTELE
REAL VECTOR(1:TOTELE)

C Local Constants
INTEGER L1NORM, L2NORM, LINORM, IONE
REAL ZERO
PARAMETER (LINORM = 1, L2NORM = 2, LINORM = 3, IONE = 1)
PARAMETER (ZERO = 0.0)

C Local Variables
INTEGER I
REAL RESVAL

RESVAL = ZERO

IF (METHOD .EQ. LINORM) THEN
DO 100 I = IONE, TOTELE

RESVAL = RESVAL + VECTOR(I)
100 CONTINUE

CALL GSUMR (RESVAL)

164

APPENDIX C. PARALLEL ITERATIVE SOLVERS

ELSE IF (METHOD .EQ. L2NORM) THEN
DO 200 I = IONE, TOTELE

RESVAL = RESVAL + VECTOR(I) * VECTOR(I)
200 CONTINUE

CALL GSUMR (RESVAL)
RESVAL = SQRT (RESVAL)

ELSE IF (METHOD .EQ. LINORM) THEN
DO 300 I = IONE, TOTELE

IF (VECTOR(I) .GT. RESVAL) RESVAL = VECTOR(I)
300 CONTINUE

CALL GMAXR (RESVAL)
END IF

LNORMS = RESVAL

RETURN
END

165

APPENDIX C. PARALLEL ITERATIVE SOLVERS

C.2 Gauss-Seidel Solver

C Subroutine
C
C
C Author
C
C
C
C
C Description
C
C Variables
C IN RMETHD
C IN RELAXA
C IN TOLVAL
C IN MAXITR
C IN TOMITR
C IN TOTELP
C IN TOTELE
C IN SYSINX
C IN SYSMAT
C IN B
C I&O X
C OUT RESVAL
C OUT NITERS
C OUT BIGRES
C OUT CONVER
C

SORSCH (SOR) (SCH)eme

: P. Chow 23rd March 1989
K. McManus 23rd September 1993
Centre for Numerical Modelling & Process Analysis
University of Greenwich, London, England.

: Solve Ax = b using SOR iterative scheme.

^

- Residual method.
- Relaxation value.
- Tolerance value.
- Maximum number of iteration.
- To maximum iteration.
- Total number of grid points per element .
- Total number of element .

System matrix index.
System matrix A.

- B vector.
Solving variable X.

- Residual values.
- Number of iteration taken.
- Biggest residual value.
- Convergent indicator .

C ——————————————————————————————— — ———— — ———— —— ______
SUBROUTINE SORSCH (RMETHD, RELAXA, TOLVAL, MAXITR, TOMITR,

@

@

INTEGER
INTEGER
REAL
REAL
REAL
REAL
LOGICAL

TOTELP, TOTELE, SYSINX, SYSMAT, B
X , RESVAL, NITERS, BIGRES, CONVER)

RMETHD, MAXITR, TOTELP, TOTELE, NITERS
SYSINX (0 : TOTELP , 1 : TOTELE)
RELAXA, TOLVAL, BIGRES
SYSMAT (1 : TOTELP , 1 : TOTELE)
B (1:TOTELE), X (IrTOTELE)
RESVAL (1: TOTELE)
TOMITR, CONVER

C Local Constants
INTEGER HEADER, IZERO , IONE
PARAMETER (HEADER = 0, IZERO = 0, IONE

C Local Variables
INTEGER ISTART, IEND , ISTEP , I

= 1)

166

APPENDIX C. PARALLEL ITERATIVE SOLVERS

REAL PREVAL, CURVAL
LOGICAL DONE , BKWARD

BKWARD = .FALSE.
NITERS = IZERO

100 CONTINUE
NITERS = NITERS + IONE

IF (BKWARD) THEN
ISTART = TOTELE
IEND = IONE
ISTEP = -1
BKWARD = .FALSE.

ELSE
ISTART = IONE
IEND = TOTELE
ISTEP = IONE

C BKWARD = .TRUE.
END IF

DO 300 I = ISTART, IEND, ISTEP
PREVAL = X(I)
CURVAL = B(I)
DO 200 J = IONE, SYSINX(HEADER,I)

CURVAL = CURVAL + SYSMAT(J,I) * X(SYSINX(J,D)
200 CONTINUE

CURVAL = PREVAL + RELAXA * (CURVAL - PREVAL)

RESVAL(I) = ABS (CURVAL - PREVAL)
X(I) = CURVAL

300 CONTINUE

CALL ERESID (RMETHD, TOTELE, RESVAL, X , BIGRES)

CONVER = BIGRES .LE. TOLVAL
DONE = (NITERS .GE. MAXITR) .OR.

@ (CONVER .AND. (.NOT. TOMITR))

CALL SWAP (X, '£>)

IF (.NOT. DONE) GOTO 100

RETURN
END

167

APPENDIX C. PARALLEL ITERATIVE SOLVERS

C.3 Diagonally Preconditioned Conjugate Gradient Solver
\s~

C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
r

Subroutine

Author

Date

Description

Variables :
IN BANWID
IN TOTNOD
IN SYSINX
IN A
IN B
IN TOLVAL
I/O X

ESOLVE

C. Bailey
K. McManus 17th November 1993
Centre for Numerical Modelling &
University of Greenwich, London,

22 June 1992.

: Solves the system Ax=B using the
method .

Bandwidth
Total number of unknowns
Index for the systems matrix
Systems matrix.
Load vector.
Tolerance.
Unknown values.

Process Analysis
England .

conjugate gradient

c.

SUBROUTINE ESOLVE (BANWID, TOTNOD, SYSINX, A , B
@ TOLVAL, X , MAXITR)

INTEGER BANWID, TOTNOD, MAXITR
INTEGER SYSINX(1:BANWID,1:TOTNOD)
REAL A (1:BANWID,!:TOTNOD)
REAL B (1:TOTNOD), X (1:TOTNOD)
REAL TOLVAL

Local variables
INTEGER MAXBAN, MAXNOD, I , J , ITER
PARAMETER (MAXBAN = 10, MAXNOD = 500)
REAL*8 PRCONA(1:MAXBAN,1:MAXNOD), PRCONB(1:MAXNOD)
REAL*8 PRCONXU:MAXNOD), OLDX (1:MAXNOD)
REAL*8 RESID (1:MAXNOD), U (1:MAXNOD)
REAL*8 P (1:MAXNOD), Bl (1:MAXNOD)
REAL*8 BIGDEV, ALPHAK, BETAK , DENOM , DENOM1
REAL*8 RHOK, RHOKP
LOGICAL CONVER

DO 2 I = 1, TOTNOD
OLDX(I) = X(I)

DO 3 J = 2, SYSINX(1,I)
* X(SYSINX(J,I))

168

APPENDIX C. PARALLEL ITERATIVE SOLVERS

3 CONTINUE
2 CONTINUE

C==== Set up Pre-Conditioned matrix and vectors.
C==== Using diagonal scaling.

DO 10 I = 1, TOTNOD
X(I) = 0.0
PRCONX(I) =0.0
PRCONB(I) = B1(I) / SQRT(A(1,I))
DO 5 J = 2, SYSINX(1,I)

PRCONA(J,I) = A(J,I) / SQRT(A(1,I) * A(1,SYSINX(J,I)))
5 CONTINUE

PRCONA(1,I) =1.0
10 CONTINUE

C==== Set up RESID, P .

DENOM1 =0.0
DO 40 I = 1, TOTNOD

RESID(I) = PRCONB(I)
P(I) = RESID(I)
DENOM1 = DENOM1 + (RESID(I) ** 2)

40 CONTINUE
CALL GSUMD (DENOM1)
IF (DENOM1 .LE. 0.0) RETURN
RHOK = DENOM1

C===== Start iteration cycle

ITER = 0
CONVER = .FALSE.

1001 ITER = ITER + 1
CALL SWAP (P, 'DN»)

C===== Calculate U(I) ======

DO 60 I = 1, TOTNOD

DO 65 J = 2, SYSINXU,!)
U(I) = U(I) + PRCONA(J,I) * P(SYSINX(J,D)

65 CONTINUE
60 CONTINUE

C===== Calculate ALPHAK ======

DENOM =0.0

169

APPENDIX C. PARALLEL ITERATIVE SOLVERS

DO 70 I = 1, TOTNOD
DENOM = DENOM + P(I) * U(I)

70 CONTINUE
CALL GSUMD (DENOM)
IF (DENOM .LE. 0.0) THEN

ALPHAK =0.0
ELSE

ALPHAK = RHOK / DENOM
END IF

C===== Calculate PRCONX and RESID at this iteration.

RHOKP =0.0
DO 90 I = 1, TOTNOD

PRCONX(I) = PRCONX(I) + ALPHAK * P(I)
RESID(I) = RESID(I) - ALPHAK * U(I)
RHOKP = RHOKP + (RESID(I) ** 2)

90 CONTINUE
CALL GSUMD (RHOKP)

C===== Calculate BETAK and P at this iteration =====

IF (RHOK .LE. 0.0) THEN
BETAK =0.0

ELSE
BETAK = RHOKP / RHOK

END IF

DO 130 I = 1, TOTNOD
P(I) = RESID(I) + BETAK * P(I)

130 CONTINUE

C===== Calculate the residual norm.

BIGDEV = SQRT (RHOK / DENOM1)

C===== Check to see if convergence has been achieved

IF ((BIGDEV.GT.TOLVAL).AND.(ITER.LT.MAXITR)) THEN
RHOK = RHOKP
GOTO 1001

END IF

C====== Calculate X from PRCONX.

DO 500 I = 1, TOTNOD
X(I) = PRCONX(I) / SQRT(A(1,D)
X(I) = X(I) + OLDX(I)
IF (ABS(XU)) .LT. l.E-8) X(I) = 0

170

APPENDIX C. PARALLEL ITERATIVE SOLVERS

500 CONTINUE

CALL SWAP (I, 'N J)

RETURN
END

171

Appendix D

Modified Parallel Iterative Solvers

The codes listed here are the parallel Jacobi and conjugate gradient solvers that have

been modified to provide improved parallel speed-up. The nature of the modifications is

discussed in Section 5.4.

D.I Modified Jacobi Solver

u ———————— ---—-——— -——————-—— ——--——————— —-——-———

C Subroutine JACOBI (JACOBI) scheme
C
C
C Author :
C
C
C
C
C Description :
C
C Variables :
C IN RMETHD -
C IN TOLVAL -
C IN MAXITR -
C IN TOMITR -
C IN TOTELP -
C IN TOTELE -
C IN SYSINX -
C IN SYSMAT -
C IN B

P. Chow 23rd March 1989
K. McManus 23rd September 1993
Centre for Numerical Modelling & Process Analysis
University of Greenwich, London, England.

Solve Ax = b using Jacobi iterative scheme.

Residual method.
Tolerance value.
Maximum number of iteration.
To maximum iteration.
Total number of grid points per element.
Total number of element.
System matrix index.
System matrix A.
B vector.

172

APPENDIX D. MODIFIED PARALLEL ITERATIVE SOLVERS

C I&O
C OUT
C OUT
C OUT
C OUT
C WSP
C
r ———

X
RESVAL
NITERS
BIGRES
CONVER
OX

- Solving variable X.
- Residual values.
- Number of iteration taken.
- Biggest residual value.

Convergent indicator.
- Old X value (work space) .

SUBROUTINE JACOBI (RMETHD, TOLVAL, MAXITR, TOMITR, TOTELP,
@ TOTELE, SYSINX, SYSMAT, B , X
<9 RESVAL, NITERS, BIGRES, CONVER, OX)

INTEGER RMETHD, MAXITR, TOTELP, TOTELE, NITERS
INTEGER SYSINX (0: TOTELP,!: TOTELE)
REAL TOLVAL, BIGRES
REAL SYSMAT (1 : TOTELP , 1 : TOTELE)
REAL B (1: TOTELE), X (1: TOTELE)
REAL RESVAL (1: TOTELE), OX (1: TOTELE)
LOGICAL TOMITR, CONVER

C Commons
INCLUDE 'puifs.inc'

C Local Constants
INTEGER HEADER, IZERO , IONE
PARAMETER (HEADER = 0, IZERO = 0, IONE = 1)

C Local Variables
INTEGER ISTART, IEND , ISTEP ,1 , J
LOGICAL DONE

NITERS = IZERO

DO WHILE (.NOT. DONE)
NITERS = NITERS + IONE

C DO 150 I = IONE, TOTELE - operate locally on the overlap
DO 150 I = IONE, XTOTEL

OX(I) = X(I)
150 CONTINUE

DO 300 I = IONE, TOTELE

DO 200 J = IONE, SYSINX (HEADER, I)
X(I) = X(I) + SYSMAT(J,I) * OX(SYSINX(J,D)

200 CONTINUE
300 CONTINUE

IF (TOMITR) THEN

173

APPENDIX D. MODIFIED PARALLEL ITERATIVE SOLVERS

DONE = (NITERS .GE. MAXITR)
ELSE

DO I = 1, TOTELE
RESVAL(I) = ABS (X(I) - OX(I))

END DO
CALL ERESID (RMETHD, TOTELE, RESVAL, X , BIGRES)
DONE = (NITERS .GE. MAXITR) .OR. (BIGRES .LE. TOLVAL)

END IF

CALL SWAP (X, '£')

END DO

IF (TOMITR) THEN
DO I = 1, TOTELE

RESVAL(I) = ABS (X(I) - OX(I))
END DO
CALL ERESID (RMETHD, TOTELE, RESVAL, X , BIGRES)

END IF

RETURN
END

174

___________APPENDIX D. MODIFIED PARALLEL ITERATIVE SOLVERS

D.2 Modified Diagonally Preconditioned Conjugate Gra­

dient Solver
^ —————————————

C Subroutine
C
C Author
c
C
C
C
C Date
C
C Amendments .
C
C Description
C
C Variables :
C IN BANWID
C IN TOTNOD
C IN SYSINX
C IN A
C IN B
C IN TOLVAL
C I/O X
r- — _ —— _ ——— .\j

ESOLVE

C. Bailey
K. McManus 10th July 1995
Centre for Numerical Modelling & Process Analysis
University of Greenwich, London, England.

22 June 1992.

: Solves the system Ax=B using the conjugate gradient
method .

Bandwidth
Total number of unknowns
Index for the systems matrix.
Systems matrix.
Load vector.
Tolerance.
Unknown values.

SUBROUTINE ESOLVE (BANWID, TOTNOD, SYSINX, A , B
@

INTEGER
INTEGER
REAL
REAL
REAL

TOLVAL, X , MAXITR)

BANWID, TOTNOD, MAXITR
SYSINX (1 : BANWID , 1 : TOTNOD)
A (1: BANWID,!: TOTNOD)
B (1: TOTNOD), X (1: TOTNOD)
TOLVAL

C Local variables
INTEGER
PARAMETER
REAL*8
REAL*8
REAL* 8
REAL* 8
REAL*8
REAL*8
REAL*8
LOGICAL

MAXBAN, MAXNOD, I , J , ITER
(MAXBAN = 10, MAXNOD = 500)
PRCONA (1 : MAXBAN , 1 : MAXNOD) , PRCONB (1 : MAXNOD)
PRCONX(1: MAXNOD), OLDX (1: MAXNOD)
RESID (1: MAXNOD), U (1: MAXNOD)
P (1: MAXNOD), Bl (1: MAXNOD)
BIGDEV, ALPHAK, BETAK , DENOM , DENOM1
RHOK, RHOKP
UU, RESIDU
CONVER

175

APPENDIX D. MODIFIED PARALLEL ITERATIVE SOLVERS

DO 2 I = 1, TOTNOD
OLDX(I) = X(I)
B1(I) = B(I) - A(1,I) *
DO 3 J = 2, SYSINX(1,I)

B1(I) = Bid) - A(J,I) * X(SYSINX(J,D)
3 CONTINUE
2 CONTINUE

C==== Set up Pre-Conditioned matrix and vectors.
C==== Using diagonal scaling.

DO 10 I = 1, TOTNOD
X(I) = 0.0
PRCONX(I) =0.0
PRCONB(I) = Bid) / SQRT(A(1,I))
DO 5 J = 2, SYSINX(1,I)

PRCONA(J,I) = A(J,I) / SQRTC A(1,I) * A(1,SYSINX(J,I)))
5 CONTINUE

PRCONA(l.I) =1.0
10 CONTINUE

C==== Set up RESID, P .

DENOM1 =0.0
DO 40 I = 1, TOTNOD

RESID(I) = PRCONB(I)
P(I) = RESID(I)
DENOM1 = DENOM1 + (RESID(I) ** 2)

40 CONTINUE

CALL GSUHD (DENON1)

IF (DENOM1 .LE. 0.0) RETURN
RHOK = DENOM1

C===== Start iteration cycle =====

ITER = 0
CONVER = .FALSE.

1001 ITER = ITER + 1
CALL SWAP (P, 'DN')

C===== Calculate U(I) ======

DO 60 I = 1, TOTNOD
U(I) = P(I)
DO 65 J = 2, SYSINX(1,I)

176

APPENDIX D. MODIFIED PARALLEL ITERATIVE SOLVERS

U(I) = U(I) + PRCONACJ,!) * P(SYSINX(J,I))
65 CONTINUE
60 CONTINUE

C===== Calculate ALPHAK ======

DENOM =0.0
UD = 0.0
RESIDU = 0.0
DO 70 I = 1, TOTNOD

DENOM = DENOM + P(I) * U(I)
UU = UU + U(I)*U(I)
RESIDU = RESIDU + RESID(I)*U(I)

70 CONTINUE
CALL GSUMD3 (DENOM, UU, RESIDU)
IF (DENOM .LE. 0.0) THEN

ALPHAK =0.0
ELSE

ALPHAK = RHOK / DENOM
END IF
RHOKP = RHOK + ALPHAK * (ALPHAK*UU - 2*RESIDU)

C===== Calculate PRCONX and RESID at this iteration.

RHOKP =0.0
DO 90 I = 1, TOTNOD

PRCONX(I) = PRCONX(I) + ALPHAK * P(I)
RESID(I) = RESID(I) - ALPHAK * U(I)

90 CONTINUE

C===== Calculate BETAK and P at this iteration =====

IF (RHOK .LE. 0.0) THEN
BETAK =0.0

ELSE
BETAK = RHOKP / RHOK

END IF

DO 130 I = 1, TOTNOD
P(I) = RESID(I) + BETAK * P(I)

130 CONTINUE

C===== Calculate the residual norm.

BIGDEV = SQRT (RHOK / DENOM1)

C===== Check to see if convergence has been achieved =====

IF ((BIGDEV.GT.TOLVAL).AND.(ITER.LT.MAXITR)) THEN

177

APPENDIX D. MODIFIED PARALLEL ITERATIVE SOLVERS

RHOK = RHOKP
GOTO 1001

END IF

C====== Calculate X from PRCONX.

DO 500 I = 1, TOTNOD
X(I) = PRCONX(I) / SQRT(A(1,I))
X(I) = X(I) + OLDX(I)
IF (ABS(X(D) .LT. l.E-8) X(I) = 0

500 CONTINUE

CALL SWAP (X, »N»)

RETURN
END

178

Appendix E

Asynchronous Parallel Iterative

Solvers

To achieve an improved efficiency through the use of asynchronous communications to

overlap communication and calculation, the loop structure has to be split to operate

firstly on the variables required for communication and then on the rest of the sub-

domain. To succeed this requires that the sub-domain core has been renumbered with

the dependent elements (grid points), i.e. those that are required for communication

to neighbouring sub-domains, being numbered before the rest of the sub-domain. This

is discussed in Section 5.4.5 A new variable NDEPEL contained in puifs.inc records the

number of dependent elements. The element loop can now loop over NDEPEL elements,

initiate communication, loop over NDEPEL+1 to TOTELE and then synchronise the commu­

nication. Listed here are asynchronous versions of the Jacobi and conjugate gradient

parallel solvers. The techniques illustrated here can be applied to many other code

structures.

E.I Asynchronous Jacobi Solver

c_____________________________________
C Subroutine JACOBI (JACOBI) scheme

179

APPENDIX E. ASYNCHRONOUS PARALLEL ITERATIVE SOLVERS

c
c
C Author :
C
C
C
C
C Description :
C
C Variables :
C IN RMETHD -
C IN RELAXA -
C IN TOLVAL -
C IN MAXITR -
C IN TOMITR -
C IN TOTELP -
C IN TOTELE -
C IN SYSINX -
C IN SYSMAT -
C IN B
C I&O X
C OUT RESVAL -
C OUT NITERS -
C OUT BIGRES -
C OUT CONVER -
C WSP OX
C
C — __ _ ___ _

SUBROUTINE
@
@
@

INTEGER
INTEGER
REAL
REAL
REAL
REAL
LOGICAL

P. Chow 23rd March 1989
K. McManus 21st July 1995
Centre for Numerical Modelling & Process Analysis
University of Greenwich, London, England.

Solve Ax = b using JOR iterative scheme.

Residual method.
Relaxation value.
Tolerance value.
Maximum number of iteration.
To maximum iteration.
Total number of grid points per element.
Total number of element .
System matrix index.
System matrix A.
B vector.
Solving variable X.
Residual values.
Number of iteration taken.
Biggest residual value.
Convergent indicater.
Old X value (work space) .

JACOBI (RMETHD, RELAXA, TOLVAL, MAXITR, TOMITR,
TOTELP, TOTELE, SYSINX, SYSMAT, B
X , RESVAL, NITERS, BIGRES, CONVER,
OX)

RMETHD, MAXITR, TOTELP, TOTELE, NITERS
SYSINX (0 : TOTELP , 1 : TOTELE)
RELAXA, TOLVAL, BIGRES
SYSMAT (1 : TOTELP , 1 : TOTELE)
B (1: TOTELE), X (1: TOTELE)
RESVALCl: TOTELE), OX (IrTOTELE)
TOMITR, CONVER

C Commons
INCLUDE 'puifs.inc'

C Local Constants
INTEGER HEADER, IZERO , IONE
PARAMETER (HEADER = 0, IZERO = 0, IONE = 1)

C Local Variables

180

APPENDIX E. ASYNCHRONOUS PARALLEL ITERATIVE SOLVERS

INTEGER ISTART, IEND , ISTEP ,1 , J , ID
LOGICAL DONE

NITERS = IZERO
DONE = .FALSE.

DO WHILE (.NOT. DONE)

NITERS = NITERS + IONE

DO I = IONE, XTOTEL
OX(I) = X(I)

END DO

DO I = IONE, NDEPEL

DO J = IONE, SYSINX (HEADER, I)
X(I) = X(I) + SYSMAT(J,I) * OX (SYSINX (J, I))

END DO
END DO

CALL ASVAP (X, >E>, ID)

DO I = NDEPEL+IONE, TOTELE

DO J = IONE, SYSINX (HEADER, I)
X(I) = X(I) + SYSMAT(J,I) * OX(SYSINX(J,I))

END DO
END DO

CALL SYNC (ID)

IF (TOMITR) THEN
DONE = (NITERS .GE. MAXITR)

ELSE
DO I = 1, TOTELE

RESVAL(I) = ABS (X(I) - OX(I))
END DO
CALL ERESID (RMETHD, TOTELE, RESVAL, X , BIGRES)
DONE = (NITERS .GE. MAXITR) .OR. (BIGRES .LE. TOLVAL)

END IF

END DO

IF (TOMITR) THEN
DO I = 1, TOTELE

RESVAL(I) = ABS (X(I) - OX(I))
END DO

181

APPENDIX E. ASYNCHRONOUS PARALLEL ITERATIVE SOLVERS

CALL ERESID (RMETHD, TOTELE, RESVAL, X
END IF

RETURN
END

, BIGRES)

E.2 Asynchronous Diagonally Preconditioned Conjugate

Gradient Solver
v^- 1

c
c
c
c
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
r_

Subroutine

Author

Date

Amendments.

Description

Variables :
IN BANWID
IN TOTNOD
IN SYSINX
IN A
IN B
IN TOLVAL
I/O X

ESOLVE

C. Bailey
K. McManus 14th August 1995
Centre for Numerical Modelling & Process Analysis
University of Greenwich, London, England.

22 June 1992.

: Solves the system Ax=B using the conjugate gradient
method .

Bandwidth
Total number of unknowns
Index for the systems matrix.
Systems matrix.
Load vector.
Tolerance.
Unknown values.

SUBROUTINE ESOLVE (BANWID, TOTNOD, SYSINX, A , B
@ TOLVAL, X , MAXITR)

INTEGER BANWID, TOTNOD, MAXITR
INTEGER SYSINXC1:BANWID,1:TOTNOD)
REAL A (1:BANWID,1:TOTNOD)
REAL B (IrTOTNOD), X (1:TOTNOD)
REAL TOLVAL

Local variables
INTEGER MAXBAN, MAXNOD, I , J , ITER, ID
PARAMETER (MAXBAN = 10, MAXNOD = 500)
REAL*8 PRCONA(1:MAXBAN,1:MAXNOD), PRCONB(1:MAXNOD)
REAL*8 PRCONXC1:MAXNOD), OLDX (1:MAXNOD)

182

APPENDIX E. ASYNCHRONOUS PARALLEL ITERATIVE SOLVERS

REAL*8 RESID (IrMAXNOD), U (1:MAXNOD)
REAL*8 P (1:MAXNOD), Bl (IrMAXNOD)
REAL*8 BIGDEV, ALPHAK, BETAK , DENOM , DENOM1
REAL*8 RHOK, RHOKP
REAL*8 UU, RESIDU
LOGICAL CONVER

DO 2 I = 1, TOTNOD
OLDX(I) = X(I)
B1(I) = B(I) - A(1,I) * X(I)
DO 3 J = 2, SYSINX(1,I)

B1(I) = B1(I) - A(J,I) * X(SYSINX(J,I))
3 CONTINUE
2 CONTINUE

C==== Set up Pre-Conditioned matrix and vectors.
C==== Using diagonal scaling.

DO 10 I = 1, TOTNOD
X(I) = 0.0
PRCONX(I) =0.0
PRCONB(I) = B1(I) / SQRT(A(1,I))
DO 5 J = 2, SYSINX(1,I)

PRCONA(J,I) = A(J,I) / SQRT(A(1,I) * A(1,SYSINX(J,I)))
5 CONTINUE

PRCONA(1,I) =1.0
10 CONTINUE

C==== Set up RESID, P .

DENOM1 =0.0
DO 40 I = 1, TOTNOD

RESID(I) = PRCONB(I)
P(I) = RESID(I)
DENOM1 = DENOM1 + (RESID(I) ** 2)

40 CONTINUE

CALL GSUMD (DENON1)

IF (DENOM1 .LE. 0.0) RETURN
RHOK = DENOM1

CALL ASWAP (P, >DN>, ID)

C===== Start iteration cycle =====

183

_______APPENDIX E. ASYNCHRONOUS PARALLEL ITERATIVE SOLVERS

ITER = 0
CONVER = .FALSE.

1001 ITER = ITER + 1

C===== Calculate U(I) ======

DO 60 I = NDEPGP+1, TOTNOD

DO 61 J = 2, SYSINX(1,I)
U(I) = U(I) + PRCONA(J,I) * P(SYSINX(J,I))

61 CONTINUE
60 CONTINUE

CALL STNC (ID)

DO 62 I = 1, NDEPGP

DO 63 J = 2, SYSINX(1,I)
U(I) = U(I) + PRCONA(J,I) * P(SYSINX(J,I))

63 CONTINUE
62 CONTINUE

C===== Calculate ALPHAK

DENOM =0.0
UU = 0.0
RESIDU =0.0
DO 70 I = 1, TOTNOD

DENOM = DENOM + P(I) * U(I)
UU = UU + U(I)*U(I)
RESIDU = RESIDU + RESID(I)*U(I)

70 CONTINUE
CALL GSUMD3 (DENOM, UU, RESIDU)
IF (DENOM .LE. 0.0) THEN

ALPHAK =0.0
ELSE

ALPHAK = RHOK / DENOM
END IF
RHOKP = RHOK + ALPHAK * (ALPHAK*UU - 2*RESIDU)

C===== Calculate PRCONX and RESID at this iteration.

RHOKP =0.0
DO 90 I = 1, TOTNOD

PRCONX(I) = PRCONX(I) + ALPHAK * P(I)
RESIDU) = RESID(I) - ALPHAK * U(I)

90 CONTINUE

C===== Calculate BETAK at this iteration

184

APPENDIX E. ASYNCHRONOUS PARALLEL ITERATIVE SOLVERS

IF (RHOK .LE. 0.0) THEN
BETAK =0.0

ELSE
BETAK = RHOKP / RHOK

END IF

C===== Calculate the residual norm.

BIGDEV = SQRT (RHOK / DENOM1)

C===== Check to see if convergence has been achieved =====

IF ((BIGDEV.GT.TOLVAL).AND.(ITER.LT.MAXITR)) THEN
RHOK = RHOKP

DO 130 I = 1, NDEPGP
P(I) = RESID(I) + BETAK * P(I)

130 CONTINUE

CALL ASWAP (P, 'DN>, ID)

DO 131 I = NDEPGP+1, TOTNOD
P(I) = RESID(I) + BETAK * P(I)

131 CONTINUE

GOTO 1001
END IF

C====== Calculate X from PRCONX.

DO 500 1=1, TOTNOD
X(I) = PRCONX(I) / SQRT(A(1,D)
X(I) = X(I) + OLDX(I)
IF (ABS(X(D) .LT. l.E-8) X(I) = 0

500 CONTINUE

CALL SWAP (X, »N>)

RETURN
END

185

Bibliography

[AG94] George S. Almasi and Allan Gottlieb. Highly Parallel Computing, 2nd Edi­

tion. Benjamin/Cummings, Redwood City, 1994.

[Amd67] G. M. Amdahl. Validity of the single-processor approach to achieving large

scale computing capabilities. In Proc AFIPS, pages 483-485, 1967.

[BA92] Tevfik Bultan and Cevdet Aykanat. A new mapping heuristic based on mean

field annealing. Parallel and Distributed Computing, 16:292-305, September

1992.

[Ban79] U. Bannerjee. Speedup of Ordinary Programs. PhD thesis, University of

Illinois at Urbana Champaign, 1979.

[Ban88] U. Bannerjee. Dependence Analysis for Supercomputing. Kluwer Academic

Publishers, 1988.

[BBC+ 94] Rchard Barrett, Michael Berry, Tony Chan, James Demmel, June Donato,

Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk

van der Vorst. Templates for the Solution of Linear Systems: Building Blocks

for Iterative Methods. Netlib, 1994.

[BBLS93] David Bailey, John Barton, Thomas Lasinski, and Horst Simon. The NAS

parallel benchmarks. Technical Memorandum 103863, NASA, July 1993.

186

BIBLIOGRAPHY

[BCG93] P. E. Bj0rstad, W. M. Coughran, and E. Grosse. Parallel domain decom­

position applied to coupled transport equations. In Domain Decomposition

Methods 7, October 1993.

[Bom93] Erik Boman. Experiences on the KSR1 computer. Technical Report RNR-

93-008, NAS Applied Research Branch, April 1993.

[BS93] S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive

spectral bisection for partitioning unstructured problems. In Proc 6th SI AM

Conf, Parallel Processing for Scientific Computing, pages 711-718, 1993.

[BT94] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on

Computing, 6(2):126-140, 1994.

[CBB+94] B. M. Chapman, S. Benkner, R. Blasko, P. Brezany M. Egg, T. Fahringer,

H. M. Gerndt, J. Hulman, B. Knaus, P. Kutschera, H. Moritsch, A. Schwald,

V. Sipkova, and H. P. Zima. VIENNA FORTRAN Compilation System

Version 1.0 User's Guide. University of Vienna, January 1994.

[CBCP92] M. Cross, C. Bailey, P. Chow, and K. Pericleous. Towards an integrated con­

trol volume unstructured mesh code for the simulation of all the macroscopic

processes involved in shape casting. In Numerical Methods in Industrial

Forming Processes, (NUMIFORM 92), pages 787-792. Balkema, 1992.

[CDE+94] C. Clemencon, K. M. Decker, A. Endo, J. Pritscher, G. Jost, N. Masuda,

A. Miiller, R. Riihl, W. Sawyer, E. de Sturler, and B. J. N. Wylie. Appli­

cation driven development of an integrated tool environment for distributed

parallel processors. Technical Report CSCS-TR-94-01, CSCS-ETH, April

1994.

[CDJ95] Henri Casanova, Jack Dongarra, and Weicheng Jiang. The performance

of PVM on MPP systems. Technical report, Dept of Computer Science,

University of Tenessee, July 1995.

187

BIBLIOGRAPHY

[CHA94] CHAM, Wimbledon, UK. The Phoenics Reference Manual, 1994.

[Che91] J. Chen. The Numerical Solution of Complex Fluid Flow Phenomena. PhD

thesis, University of Leeds, 1991.

[Cho93] Peter Chow. A Control Volume Unstructured Mesh Procedure for

Convection-Diffusion Solidification Processes. PhD thesis, University of

Greenwich, 1993.

[CIJL94] M. Cross, C. S. lerotheou, S. P. Johnson, and P. F. Leggett. CAPTools -

semiautomatic parallelisation of mesh based computational mechanics codes.

In High Performance Computing and Networking, volume II, pages 241-246.

Springer Verlag, 1994.

[CJL+89] F. Cheng, J. W .Jaromczyk, J-R. Lin, S-S. Chang, and J-Y. Lu. A parallel

mesh generation algorithm based on the vertex label assignment scheme.

International Journal for Numerical Methods in Engineering, 28, 1989.

[CTHW91] Lyndon Clark, Arthur Trew, Neil Hey wood, and Matthew White. CHIMP

concepts. Technical Report EPCC-KTP-CHIMP-CONC 1.2, Edinburgh

Parallel Computing Centre, June 1991.

[dC95] R. Dias da Cunha. Parallel preconditioned conjugate gradient methods on

transputer networks. Transputer Communications, 1995. (submitted for

publication).

[DD95] Jack J. Dongarra and Tom Dunigan. Message passing performance of various

computers. Technical report, University of Tenessee and Oak Ridge National

Laboratory, University of Tenessee and Oak Ridge National Laboratory,

1995.

[DeC89] Angel L. DeCegama. The Technology of Parallel Processing, volume 1.

Prentice-Hall, 1989.

188

BIBLIOGRAPHY

[DER93] Eduardo D'Azvedo, Victor Eijkhout, and Charles Romine. Reducing com­

munication costs in the conjugate gradient algorithm on distributed mem­

ory multiprocessors. Technical Report CS-93-185, Lapack Working Note 56,

Oak Ridge National Laboratory and The University of Tennessee, Knoxville,

January 1993.

[DLD93] David Callahan David Levine and Jack Dongarra. A comparative study of

automatic vectorising compilers. Parallel Computing, 17:1223-1244, 1993.

[DMM95] Ralf Diekman, Derk Meyer, and Burkhard Monien. Parallel decomposition of

unstructured FEM-meshes. In Parallel Algorithms for Irregularly Structured

Problems. Springer, September 1995.

[Far88] C. Farhat. A simple and efficient automatic FEM domain decomposer. Com­

puters and Structures, 28:579-602, 1988.

[Far89] C. Farhat. On the mapping of massively parallel processors onto finite ele­

ment graphs. Computers and Structures, 32(2):347-353, 1989.

[FBCL91] Y. D. Fryer, C. Bailey, M. Cross, and C-H. Lai. A control volume procedure

for solving the elastic stress-strain equations on an unstructured mesh. Appl.

Math. Modelling, 15, November 1991.

[FFL93] Charbel Farhat, Loula Fezoui, and Stephane Lanteri. Two-dimensional vis­

cous flow computations on the connection machine: Unstructured meshes,

upwind schemes and massively parallel computations. Computer Methods in

Applied Mechanics and Engineering, 102:61-68, 1993.

[FG94] R. F. Fowler and C. Greenough. Ralpar- ral mesh partitioning program

version 1.1. Internal report, Rutherford Appleton Laboratory, May 1994.

[FJL+88] G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker.

Solving Problems on Concurrent Processors, volume I. Prentice Hall, Engle-

wood Cliffs, NJ, 1988.

189

BIBLIOGRAPHY

[Fly72] Michael J. Flynn. Some computer organizations and their effectiveness.

IEEE Transactions on Computers, 0-21:948-960, 1972.

[For94] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan­

dard. University of Tenessee, May 1994.

[Fox88] G. 0. Fox. Numerical Algorithms for Modern Parallel Computers. Springer-

Verlag, 1988.

[FR94] N. Floros and J. S. Reeve. Domain decomposition tool. Technical report,

Southampton HPC Centre, 1994.

[Fry93] Y. D. Fryer. A Control Volume Unstructured Grid Approach to the Solution

of the Elastic Stress-Strain Equations. PhD thesis, University of Greenwich,

1993.

[FWM94] G. C. Fox, R. D. Wiliams, and P. C. Messina. Parallel Computing Works.

Morgan Kaufmann, 1994.

[FXR92] C. Far hat and F. Xavier-Roux. An unconventional domain decomposition

method for an efficient parallel solution of large-scale finite element systems.

SIAM J. Sci. Stat. Comp., 13(l):379-396, January 1992.

[GBD+ 94] Al Geist, A. Beguelin, J. Dongarra, Jiang Weicheng, Robert Manchek, and

Vaidy Sunderam. PVM: Parallel Virtual Machine - A Users' Guide and

Tutorial for Networked Parallel Computing. MIT Press, 1994.

[GCC+93] E. R Galea, A. Chan, M. Cross, N. Hoffman, C. lerotheou, S. Johnson, and

K. Pericleous. Application of a parallel CFD code to large scale practical

systems. In Parallel Computational Fluid Dynamics '92, pages 147-155.

Elsevier Science Publishers B.V., 1993.

[GF94] C. Greenough and R. F. Fowler. Partitioning methods for unstructured finite

element meshes. Internal report, Rutherford Appleton Laboratory, March

1994.

190

BIBLIOGRAPHY

[GHPW90] G. A. Geist, M. T. Heath, B. W. Peyton, and P.H. Worley. A users' guide

to PICL a portable instrumented communication library. Technical Report

ORNL/TM-11616, Oak Ridge National Laboratory, October 1990.

[GL89] Gene H. Golub and Charles F. Van Loan. Matrix Computations: Second

Edition. John Hopkins University Press, Baltimore and London, 1989.

[Glo89] F. Glover. Tabu search - part i. ORSA Journal on Computing, 1(3): 190-260,

1989.

[Glo90] F. Glover. Tabu search - part ii. ORSA Journal on Computing, 2(l):4-32,

1990.

[GMD95a] GMD. Camas-link. ESPRIT EUROPORT - 1 Newsletter, 5:1-2, August

1995.

[GMD95b] GMD. Parallel phoenics. ESPRIT EUROPORT - 1 Newsletter, 3:1-2, July

1995.

[GWZ95] P. W. Grant, M. F. Webster, and X. Zhang. Solving computational fluid

dynamics problems on unstructured grids with distributed parallel process­

ing. In Parallel Algorithms for Irregularly Structured Problems. Springer,

September 1995.

[Har94] Haritaoglu, I and Aykanat, C. An efficient mapping heuristic fo mesh-

connected parallel architectures based on mean field annealing. In Parallel

Processing: CONPAR 94 - VAPP VI, pages 820-831. Springer Verlag, 1994.

[HB84] Kai Hwang and Faye A Briggs. Computer Architecture and Parallel Pro­

cessing. McGraw-Hill, 1984.

[Hei94] R. Heimes. pV3: A distributed system for large-scale unstedy CFD visual­

ization. Technical report, AIAA, 1994.

191

BIBLIOGRAPHY

[Hem91] R. Hempel. The ANL/GMD macros (PARMACS) in FORTRAN for

portable parallel programming using the message passing programming

model. User's guide and reference manual, Gesellschaft fur Mathematik

und Datenverarbeitung mbH, November 1991.

[Hil94] Jonathon M. D. Hill. An introduction to the data-parallel paradigm. Sel-hpc

course material, LPAC, 1994.

[HJ81] R. W. Hockney and C. R. Jessope. Parallel Computers: architectures, pro­

gramming and algorithms. Adam Hilger, Bristol, 1981.

[HJ88] R. W. Hockney and C. R. Jessope. Parallel Computers 2: architectures,

programming and algorithms. Adam Hilger, Bristol, 1988.

[HJ94] D. C. Hodgeson and P. K. Jimak. Parallel generation of partitioned, un­

structured meshes. Report 94.19, University of Leeds, School of Computer

Studies Research, June 1994.

[HL92] B. Hendrickson and R. Leland. An improved spectral graph partitioning al­

gorithm for mapping parallel computations. Tech. rep. sand 92-1460, Sandia

National Labs, Albuquerque, NM, 1992.

[HL93] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning

graphs. Tech. rep. sand 93-1301, Sandia National Labs, Albuquerque, NM,

1993.

[Hoa86] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1986.

[HS92] Steven W Hammond and Robert Schreiber. Mapping unstructured grid

problems to the connection machine. In Piyush Mehrota, Joel Saltz, and

Robert Voigt, editors, Unstructured Scientific Computation on Scalable Mul­

tiprocessors, pages 11-29. MIT Press, 1992.

[Ier90] Constantinos S lerotheou. The Simulation of Fluid Flow Processes Using

Vector Processors. PhD thesis, Thames Polytechnic, 1990.

192

BIBLIOGRAPHY

[IFB95] C. S. lerotheou, C. R. Forsey, and U. Block. Parallelisation of a novel

3d hybrid structured-unstructured grid CFD production code. In High-

Performance Computing and Networking, pages 831-836. Springer, May

1995.

[Inm89a] Inmos. Transputer Applications Notebook: Architecture and Software, 1989.

[Inm89b] Inmos. Transputer Applications Notebook: Systems and Performance, 1989.

[Inm89c] Inmos. The Transputer Databook, 1989.

[Inm92] Inmos. ANSI C Toolset User Guide, 1992.

[JAC92] S. P. Johnson, F. AH, and M. Cross. Parallelising the FAMCALC FEA code.

Report, Centre for Numerical Modelling and Process Analysis, February

1992.

[JC91] S. P. Johnson and M. Cross. Mapping structured grid three-dimensional

CFD codes onto parallel architectures. Appl. Math. Modelling, 15:948-960,

August 1991.

[JCI+94] S. P. Johnson, M. Cross, C. S. lerotheou, P. F. Leggett, and A. T. J. Marsh.

Computer aided parallelisation tools (CAPTools) for real CFD applications.

In Proc. Parallel CFD'94. North Holland, 1994. in press.

[JICL94] S. P. Johnson, C. S. lerotheou, M. Cross, and P. F. Leggett. User interaction

and symbolic extensions to dependence analysis. In Parallel Processing:

CONPAR 94 - VAPP VI, pages 725-736. Springer Verlag, 1994.

[Joh92] S. P. Johnson. Mapping Numerical Software onto Distributed Memory Par­

allel Systems. PhD thesis, University of Greenwich, 1992.

[Jon94] B. W. Jones. Mapping Unstructured Mesh Codes onto Local Memory Par­

allel Architectures. PhD thesis, School of Maths., University of Greenwich,

London SE18 6PF, UK, 1994.

193

BIBLIOGRAPHY

[KJV83] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simu­

lated annealing. Science, 220:671-680, 1983.

[KK95] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme

for irregular graphs. Technical Report 95-064, Department of Computer

Science, University of Minnesota, August 1995.

[KL70] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs. The Bell System Technical Journal, pages 291-307, Febuary 1970.

[Kri89] E. V. Krishnamurthy. Parallel Processing Principles and Practice. Addison

Wesley, 1989.

[Kro63] G. Kron. Diakoptics: The Piecewise Solution of Large-Scale Systems. Mac-

Donald & Co., London, 1963.

[KX93] David E. Keyes and Jinchao Xu, editors. Domain Decomposition Methods

in Scientific and Engineering Computing. AMA, 1993. Proceedings of the

7th International Conference on Domain Decomposition.

[Lai95] C-H. Lai. On domain decomposition and mapping issues for massively par­

allel computing. Report P95/IM/04, University of Greenwich, 1995.

[Law94] Peter James Lawrence. Mesh Generation by Domain Bisection. PhD thesis,

University of Greenwich, 1994.

[LC90] P. F. Leggett and M. Cross. Parallel processing approaches to view factor

calculation. Report, Thames Polytechnic, 1990.

[LL88] C-H. Lai and H. M. Liddell. Preconditioned conjugate gradient methods

on the DAP. In The Mathematics of Finite Elements and Applications VI,

pages 145-156. Academic Press, 1988.

[LP92] Wei Li and Keshav Pingali. Access normalisation: Loop restructuring for

NUMA compilers. Technical Report TR92-1278, Cornell University, 1992.

194

BIBLIOGRAPHY

[MF95] Grant McFarland and Michael Flynn. Limits of scaling MOSFETs. Technical

Report CSL-TR-95-662, Stanford University, January 1995.

[MJ95] D R McCarthy and W R Jones. Adaptive domain decomposition and par­

allel CFD. In Parallel Computational Fluid Dynamics: New Trends and

Advances, pages 31-40. Elsevier Science Publishers B.V., 1995.

[MR93] Richard Miller and Joy Reed. The oxford BSP library users' guide version

1.0. Technical report, Oxford Computing Laboratory, 1993.

[MSS+88] R. Mirchandaney, J. Saltz, R. Smith, D. Nicol, and K. Crowley. Principles

of runtime support for parallel processors. In Proc. Second Int. Conf. on

Supercomputing, July 1988.

[MSSP88] W. J. Mincowycz, E. M. Sparrow, G. E. Schneider, and R. H. Pletcher.

Handbook of Numerical Heat Transfer. Wiley, 1988.

[MWC+95] K. McManus, C. Walshaw, M. Cross, P. Leggett, and S. Johnson. Eval­

uation of the JOSTLE mesh partitioning code for practical multiphysics

applications. In Proceedings PCFD'95, 1995. submitted for publication.

[NM93] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in

direct networks. IEEE Computer, pages 62-76, Feb 1993.

[Par82] Dennis Parkinson. Practical parallel processors and their uses. In D. J.

Evans, editor, Parallel Processing Systems, pages 216-236. Cambridge Uni­

versity Press, 1982.

[Par92] ParaSoft Corporation, Pasadena, CA, USA. Express: Building Parallel and

Distributed Programs^ 1992.

[PatSO] S V Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere, Wash­

ington DC, 1980.

195

BIBLIOGRAPHY

[PS92] A. J. Peace and A. J. Shaw. The modelling of aerodynamic flows by the

solution of the eulaer equations on mixed polyhedra grids. Int. J. Numerical

Methods in Engineering, 35:2003-2029, 1992.

[PSL89] A. Pothen, H. D. Simon, and K. P. Liu. Partitioning sparse matrices with

eigenvectors of graphs. Technical Report RNR-89-009, NASA Ames Re­

search Centre, July 1989.

[RC82] C. M. Rhie and W. L. Chow. A numerical study of the turbulent flow past

an isolated airfoil with trailing edge separation. JAIAA, 21:1525-1532, 1982.

[Ric95] H. Richardson. High performance fortran: history, overview and current

developments. Technical report, Thinking Machines Corporation, March

1995.

[RL90] Guy Robinson and Richard Lonsdale. Fluid dynamics in parallel using an

unstructured mesh. Internal report, UKAEA, April 1990.

[Rod82] Garry Rodrigue. Parallel Computations. Academic Press, New York, 1982.

[RVD93] D. Roose and R. Van Driessche. Distributed memory parallel computers and

computational fluid dynamics. TW Report 186, Department of Computer

Science, Katholieke Universiteit Leuven, Belgium, March 1993.

[SE87] Ponnuswamy Saddayapan and Fikret Ercal. Cluster partitioning approaches

to mapping parallel programs onto a hypercube. IEEE Transactions on

Computers, C-36(12):1408-1421, 1987.

[SER90] P. Saddayapan, F. Ercal, and J. Ramanujam. Cluster partitioning ap­

proaches to mapping parallel programs onto a hypercube. Parallel Com­

puting, 13:1-16, 1990.

[She94] J. R. Shewchuck. An introduction to the conjugate gradient method without

the agonizing pain. Technical Report CMU-CS-94-125, Carnegie Mellon

University, March 1994.

196

BIBLIOGRAPHY

[Sim91] H. D. Simon. Partitioning of unstructured problems for parallel processing.

Computing Systems in Engineering, 2(2/3): 135-148, 1991.

[Smi90] Burton Smith. The end of architecture. Keynote Address, 17th Annual

Symposium on Computer Architecture, Washington, May 1990.

[SR87] G. E. Schneider and M. J. Raw. Control volume finite-element method for

heat transfer and fluid flow using colocated variables - 1. computational

procedure. Numerical Heat Transfer, 2:363-390, 1987.

[Sun94] Sun Microsystems, Mountain View, CA. Fortran 3.0.1 User's Guide, August

1994.

[TW91] Arthur Trew and Greg Wilson, editors. Past, Present, Parallel: A Survey

of Available Parallel Computer Systems. Springer-Verlag, 1991.

[Val90] Leslie G. Valiant. A bridging model for parallel computation. Communica­

tions of the ACM, pages 103-111, August 1990.

[VCM87] V. R. Voller, M. Cross, and N. C. Markatos. An enthalpy method for convec­

tion/diffusion phase change. International Journal for Numerical Mehtods

in Engineering, 24:271-284, 1987.

[vdS94] Aad J. van der Steen. An overview of recent supercomuters. Technical report,

Stichting Nationale Computer Faciliteiten, September 1994. 4th edition.

[vH92] R v Hanxleden. Compiler support for machine independent parallelisation

of irregular problems. Technical Report CRPC-TR92301-S, Center for Re­

search on Parallel Computation, Rice University, November 1992.

[VK95] D. Vanderstraeten and R. Keunings. Optimized partitioning of unstructured

computational grids. Int. J. Num. Meth. Engng., 38:433-450, 1995.

[vLA87] P. J. M. van Laarhoven and E. H. L Aarts. Simulated Annealing: Theory

and Applications. D. Reidel Publishing Company, Dordrecht, 1987.

197

BIBLIOGRAPHY

[vN66] J. von Neumann. A system of 29 states with a general transition rule.

In A. Burks, editor, Theory of Self-Reproducing Automata, pages 305-317.

University of Illinois Press, 1966.

[Wal95] C. Walshaw. A parallelisable algorithm for optimising unstructured mesh

partitions. Technical Report P95/IM/03, School of Computing and Mathe­

matical Science, January 1995.

[WCE+95] C. Walshaw, M. Cross, M. G. Everett, S. Johnson, and K. McManus. Parti­

tioning & mapping of unstructured meshes to parallel machine topologies. In

A. Ferreira and J. Rolim, editors, Proc. Irregular '95: Parallel Algorithms

for Irregularly Structured Problems, volume 980 of LNCS, pages 121-126.

Springer, 1995.

[W1184] Ray Wild. Production and Operations Management. Holt, Rinehart and

Winston, 1984. 3rd ed.

[Wil90] R. D. Williams. Performance of a distributed unstructured mesh code for

transonic flow. Technical Report C3P 856, California Institute of Technology,

January 1990.

[Wil91] Willis. Distributed finite element calculations on transputer arrays and the

DAP. Computing Systems in Engineering, 2(4):421-424, 1991.

[ZC90] Hans Zima and Barbera Chapman. Supercompilers for Parallel and Vector

Computers. ACM Press, New York, 1990.

[Zie77] O. C. Zienkiewicz. The Finite Element Method, 3rd Edition. McGraw-Hill,

London, 1977.

198

