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Abstract

The motivation of this thesis was to develop strategies that would enable unstruc­ 

tured mesh based computational mechanics codes to exploit the computational advan­ 

tages offered by distributed memory parallel processors. Strategies that successfully 

map structured mesh codes onto parallel machines have been developed over the pre­ 

vious decade and used to build a toolkit for automation of the parallelisation process. 

Extension of the capabilities of this toolkit to include unstructured mesh codes requires 

new strategies to be developed.

This thesis examines the method of parallelisation by geometric domain decomposi­ 

tion using the single program multi data programming paradigm with explicit message 

passing. This technique involves splitting (decomposing) the problem definition into P 

parts that may be distributed over P processors in a parallel machine. Each processor 

runs the same program and operates only on its part of the problem. Messages passed 

between the processors allow data exchange to maintain consistency with the original 

algorithm

The strategies developed to parallelise unstructured mesh codes should meet a num­ 

ber of requirements:

The algorithms are faithfully reproduced in parallel.

The code is largely unaltered in the parallel version.

The parallel efficiency is maximised.

The techniques should scale to highly parallel systems.

The parallelisation process should become automated.

Techniques and strategies that meet these requirements are developed and tested in this 

dissertation using a state of the art integrated computational fluid dynamics and solid 

mechanics code. The results presented demonstrate the importance of the problem par­ 

tition in the definition of inter-processor communication and hence parallel performance.

The classical measure of partition quality based on the number of cut edges in the

111



mesh partition can be inadequate for real parallel machines. Consideration of the topol­ 

ogy of the parallel machine in the mesh partition is demonstrated to be a more significant 

factor than the number of cut edges in the achieved parallel efficiency. It is shown to be 

advantageous to allow an increase in the volume of communication in order to achieve 

an efficient mapping dominated by localised communications. The limitation to parallel 

performance resulting from communication startup latency is clearly revealed together 

with strategies to minimise the effect.

The generic application of the techniques to other unstructured mesh codes is dis­ 

cussed in the context of automation of the parallelisation process. Automation of par- 

allelisation based on the developed strategies is presented as possible through the use 

of run time inspector loops to accurately determine the dependencies that define the 

necessary inter-processor communication.

IV



Contents

1 Introduction 2

1.1 The Nature of a Parallel Machine ....................... 2

1.2 The Nature of an Unstructured Mesh Code ................. 5

1.3 Objectives of Parallelisation .......................... 7

1.4 Parallelisation Strategies ............................ 9

1.5 Parallelisation by Domain Decomposition .................. 11

2 Parallel Processing 13

2.1 Processor Interconnection ........................... 14

2.2 Inter-Processor Communication ........................ 15

2.3 Communication Model ............................. 18

2.3.1 Shared Memory............................. 18

2.3.2 Message Passing ............................ 18

2.4 Code Structure ................................. 19

2.4.1 Parallel Utility Library ........................ 21

2.4.2 Parallel Communication Library ................... 22

2.4.3 Communication Harness ........................ 22

3 Domain Decomposition 25

3.1 Representation of an Unstructured Mesh ................... 26

3.2 Mesh Partitioning ............................... 28

3.2.1 Load Balance .............................. 29



CONTENTS

3.2.2 Communication Balance ........................ 30

3.2.3 Processor Topology Mapping ..................... 31

3.2.4 Partitioning Algorithms ........................ 34

3.2.5 Parallel Partitioning .......................... 39

3.3 Mesh Decomposition .............................. 40

3.3.1 Derive Secondary Partitions ...................... 41

3.3.2 Overlap Construction ......................... 43

3.3.3 Parallel Execution Control and Renumbering ............ 46

3.3.4 Overlap Communication ........................ 51

4 Algorithm Decomposition 57

4.1 UIFS - Unstructured Incompressible Flow and Stress ............ 58

4.1.1 The FV Fluid Dynamics Scheme ................... 58

4.1.2 The FV Solid Mechanics Scheme ................... 61
•

4.1.3 Integration within UIFS ........................ 66

4.2 Parallelisation of UIFS ............................. 68

4.2.1 Partitioning ............................... 69

4.2.2 Renumbering .............................. 70

4.2.3 Communication ............................. 70

4.2.4 Parallel Utilities ............................ 71

4.3 Matrix Decomposition ............................. 72

4.4 Iterative Methods ................................ 75

4.4.1 Jacobi Method ............................. 76

4.4.2 Gauss-Seidel SOR ........................... 79

4.4.3 Conjugate Gradient .......................... 81

4.4.4 Summary ................................ 83

5 Performance of the Parallel Code 85

5.1 Measuring Performance ............................ 86

5.1.1 Speed-up ................................ 87

VI



CONTENTS

5.1.2 Parallel Efficiency ........................... 88

5.1.3 Scalability ................................ 88

5.2 Irregular Shape Test Case ........................... 90

5.2.1 Fluid Dynamic Test Case ....................... 94

5.2.2 Solid Mechanics Test Case ....................... 94

5.2.3 Solidification Test Case ........................ 95

5.3 Performance on the Transtech Paramid ................... 96

5.3.1 Fluid dynamic test case ........................ 100

5.3.2 Solid mechanics test case ....................... 103

5.3.3 Solidification test case ......................... 106

5.4 Improving Performance ............................ 109

5.4.1 Latency Reduction ........................... 109

5.4.2 Flow and Heat Solvers ......................... 109

5.4.3 Solid Mechanics Solver ......................... Ill

5.4.4 The Effect of Optimised Solvers on the Solidification Test Case . . 114

5.4.5 Asynchronous Communication .................... 114

5.5 Summary .................................... 120

6 Automation of Parallelisation 122

6.1 Computer Aided Parallelisation Tools .................... 122

6.1.1 Dependence Analysis .......................... 123

6.1.2 Data Partitioning ............................ 124

6.1.3 Execution Control ........................... 125

6.1.4 Communication ............................. 125

6.2 Generic Parallelisation Methods for Unstructured Mesh Codes ...... 126

6.2.1 Application of CAPTools Structured Mesh Techniques to Unstruc­ 

tured Mesh Codes ........................... 128

6.2.2 Data Structures for an Unstructured Mesh ............. 129

6.2.3 Inspector Loops ............................ 131

vn



CONTENTS

6.2.4 Partitioning ............................... 132

6.2.5 Communication Generation ...................... 133

6.2.6 Renumbering .............................. 133

6.3 Summary .................................... 136

7 Other Parallel Issues 137

7.1 Are Further Improvements Possible? ..................... 137

7.1.1 Layered Overlaps ............................ 138

7.1.2 Machine Topology Profile ....................... 138

7.1.3 Dynamic Load Balance ........................ 139

7.1.4 Other Communication Schemes .................... 140

7.2 Difficult Problems ............................... 141

7.2.1 Inhomogeneous Problems ....................... 141

7.2.2 Adaptive Meshing ........................... 142

7.2.3 Long Range Dependencies ....................... 142

7.3 Are there any alternatives? .......................... 143

7.3.1 Parallel Mesh Generation ....................... 143

7.3.2 Parallel Visualisation .......................... 144

7.3.3 Virtual Shared Memory ........................ 144

8 Conclusions 147

8.1 Were the Objectives Met? ........................... 147

8.1.1 Objective (i) Minimise the Changes to the Original Algorithm . . 147

8.1.2 Objective (ii) Minimise the Visibility of the Parallel Code ..... 148

8.1.3 Objective (iii) Maximise Parallel Efficiency ............. 150

8.1.4 Objective (iv) Portability to Most DM MIMD Platforms ...... 151

8.1.5 Objective (v) Scalability of Computation ..............151

8.1.6 Objective (vi) Scalability of Memory ................. 152

8.1.7 Objective (vii) Automate the Parallelisation Process ........ 152

8.2 Summary .................................... 152

vin



CONTENTS

A Parallel Utilities 154

A.I Parallel Included Declarations ......................... 154

A.2 Parallel Utility Library ............................. 156

B Partition List 159

C Parallel Iterative Solvers 160

C.I Jacobi Solver .................................. 161

C.2 Gauss-Seidel Solver ............................... 166

C.3 Diagonally Preconditioned Conjugate Gradient Solver ........... 168

D Modified Parallel Iterative Solvers 172

D.I Modified Jacobi Solver ............................. 172

D.2 Modified Diagonally Preconditioned Conjugate Gradient Solver ...... 175

E Asynchronous Parallel Iterative Solvers 179

E.I Asynchronous Jacobi Solver .......................... 179

E.2 Asynchronous Diagonally Preconditioned Conjugate Gradient Solver ... 182

IX



List of Figures

1.1 Four mesh categories. ............................. 5

1.2 Automatically generated three dimensional unstructured mesh. ...... 6

1.3 Possible data dependency stencils over an unstructured mesh. ....... 7

2.1 Shell structure of the parallel code. ...................... 20

3.1 Entity relationship diagram for a three dimensional unstructured mesh. . 28

3.2 Example run times for two possible partitions over 5 processors. ..... 30

3.3 Processor interconnection mapped to a pipe mesh partition. ........ 32

3.4 Partitions of a 2D mesh into (a) ID, (b) 2D and (c) uniform topologies

with the corresponding sub-domain connectivity graphs. .......... 33

3.5 Mesh partitioned into three parts with overlap elements applied. ..... 40

3.6 A mesh of 28 triangles divided into two sub-domains with the overlaps

required for the flow scheme. ......................... 44

3.7 A mesh of 28 triangles divided into two sub-domains with the overlaps

required for the stress scheme. ......................... 45

3.8 A mesh of 28 triangles divided into two sub-domains showing the renum­ 

bering of grid points from global to local numbering. ............ 50

3.9 A mesh of 28 triangles divided into two sub-domains showing the renum­ 

bering of elements from global to local numbering. ............. 50

3.10 Overlap update communication scheme. ................... 52

3.11 Mesh of 42 triangular elements. ........................ 54



LIST OF FIGURES

3.12 Mesh of 42 triangular elements partitioned into three renumbered sub- 

domains. ..................................... 55

4.1 Formation of a control volume from sub-control volumes around point P. . 63

4.2 Mapping of a finite volume element to a reference element. ........ 64

4.3 Flowchart for UIFS. .............................. 67

4.4 Matrix form for a five point element stencil over a 4 x 4 regular mesh. . . 73

4.5 4x4 mesh operated on as 2 sub-domains showing the transfer of data into

the overlaps on each renumbered sub-domain. ................ 74

4.6 Mesh of 42 triangular elements. ........................ 74

4.7 Mesh of 42 triangular elements partitioned into three renumbered sub- 

domains. ..................................... 75

4.8 Matrix for the 42 triangle mesh. ....................... 76

4.9 Matrices for the 42 triangle mesh partitioned into three sub-domains. ... 77

5.1 The number of cut edges against the number of partitions for a range of

partition strategies on the 3,034 triangle irregular shape mesh. ...... 91

5.2 The number of cut edges against the number of partitions for a range of

partition strategies on the 10,027 triangle irregular shape mesh. ...... 91

5.3 The number of cut edges against the number of partitions for a range of

partition strategies on the 30,064 triangle irregular shape mesh. ...... 92

5.4 The number of cut edges against the number of partitions for a range of

partition strategies on the 60,005 triangle irregular shape mesh. ...... 92

5.5 The number of cut edges against the number of partitions for a range of

partition strategies on the 119,822 triangle irregular shape mesh. ..... 93

5.6 Flow vectors for the fluid dynamic test case. ................. 94

5.7 Mesh displacement for the solid mechanics test case. ............ 95

5.8 Residual stress contours and flow vectors for the solidification test case. . 96

5.9 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 3,034 triangle mesh. ....... 100

XI



LIST OF FIGURES

5.10 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 10,027 triangle mesh. ...... 100

5.11 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 30,064 triangle mesh. ...... 101

5.12 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 60,005 triangle mesh. ...... 101

5.13 Speed-up for the fluid dynamic test case against the number of processors

for a range of partition strategies using a 119,822 triangle mesh. ..... 102

5.14 Best speed-up obtained for the fluid dynamic test case against the number

of processors for a range of mesh sizes. .................... 102

5.15 Graph of speed-up for the solid mechanics test case against the number

of processors for a range of partition strategies using a 3,034 triangle mesh. 103

5.16 Speed-up for the solid mechanics test case against the number of proces­ 

sors for a range of partition strategies using a 10,027 triangle mesh. .... 103

5.17 Speed-up for the solid mechanics test case against the number of proces­ 

sors for a range of partition strategies using a 30,064 triangle mesh. .... 104

5.18 Speed-up for the solid mechanics test case against the number of proces­ 

sors for a range of partition strategies using a 60,005 triangle mesh. .... 104

5.19 Speed-up for the solid mechanics test case against the number of proces­ 

sors for a range of partition strategies using a 119,822 triangle mesh. . . . 105

5.20 Best speed-up obtained for the solid mechanics test case against the num­ 

ber of processors for a range of mesh sizes. .................. 105

5.21 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 3,034 triangle mesh. ....... 106

5.22 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 10,027 triangle mesh. ...... 106

5.23 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 30,064 triangle mesh. ...... 107

xn



LIST OF FIGURES

5.24 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 60,005 triangle mesh. ...... 107

5.25 Speed-up for the solidification test case against the number of processors

for a range of partition strategies using a 119,822 triangle mesh. ..... 108

5.26 Best speed-up obtained for the solidification test case against the number

of processors for a range of mesh sizes. .................... 108

5.27 Speed-up obtained with the optimised (solid lines) and unoptimised (dashed 

lines) Jacobi solver for the fluid dynamics test case with a range of mesh 

sizes. ....................................... 110

5.28 Graph of speed-up obtained with the optimised (solid lines) and unopti­ 

mised (dashed lines) conjugate gradient solver for the solid mechanics test 

case with a range of mesh sizes. ........................ 112

5.29 Speed-up obtained with the optimised conjugate gradient solver using a 

hypercube (solid lines) and a pipeline (dashed lines) global commutative 

for the solid mechanics test case with a range of mesh sizes. ........ 113

5.30 Speed-up obtained with the optimised solvers for the solidification test

case with a range of partition strategies using a 60,005 triangle mesh. . . 115

5.31 Mesh of 42 triangular elements partitioned into three sub-domains renum­ 

bered for asynchronous communication. ................... 116

5.32 Matrices for the 42 element mesh partitioned into three sub-domains

renumbered for asynchronous communication. ................117

5.33 Speed-up obtained with the asynchronous (solid lines) and synchronous 

(dashed lines) optimised solvers for the fluid dynamic test case with a 

range of mesh sizes. .............................. 118

5.34 Speed-up obtained with the asynchronous (solid lines) and synchronous 

(dashed lines) optimised solvers for the solid mechanics test case with a 

range of mesh sizes. .............................. 119

xin



LIST OF FIGURES

5.35 Speed-up obtained with the asynchronous optimised solvers for the so­ 

lidification test case with a range of partition strategies using a 60,005 

triangle mesh. .................................. 120

6.1 Four element mesh. ............................... 129

7.1 Foil mesh partitioned over four processors. .................. 142

7.2 Foil mesh partition with solver balancing. .................. 142

xiv



List of Tables

3.1 Partition mapping strategies provided by JOSTLE ............. 39

3.2 Element indirection pointer arrays for the partition illustrated in Fig­ 

ure 3.9 ..................................... 51

3.3 Communication operations required for a simple chain of processors ... 53



Chapter 1

Introduction

1.1 The Nature of a Parallel Machine

The quest for greater performance has driven the development of computer technology at 

an exponential rate. Clock speeds and bus widths continue to increase while low power 

semiconductor technologies now permit Very Large Scale Integration (VLSI) to shrink 

the Central Processing Unit (CPU) of a 64bit computer onto a single silicon substrate. 

It has long been assumed that there is a fundamental limit to the performance that may 

be achieved by a single processor. How small can semiconductor features be made? How 

fast can a semiconductor switch operate? When does the technology reach a fundamental 

limit? [MF95]

Since the 1960's pipelined or vector processors have been at the heart of many su­ 

percomputers. Rather than operating upon a single variable at a time, these machines 

increase their computational performance by allowing a vector of data to be operated 

upon simultaneously [HJ81]. The achievable performance depends upon successfully 

loading the appropriate vector operands from memory [Rod82, Ier90]. Initially the vec- 

torisation of code was an optimisation for the code author to implement. Subsequent 

development led to the vectorising compiler which could automatically extract the vector 

parallelism from the source code [DLD93].

An extrapolation of this concept led to the development of the array structured Sin-
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gle Instruction, Multiple Data (SIMD) [Fly72] parallel machines in which whole fields 

of a variable could be subjected to the same operation in parallel [HB84]. These ma­ 

chines possessed large numbers of small processors (64 in Illiac-IV circa 1970, 65536 in 

DAP circa 1980) and gave rise to the description Massively Parallel Processing (MPP). 

SIMD machines have changed little since their conception and can still sustain a credible 

throughput in comparison with more modern architectures. Like the vector machines, 

they rely on running a code which maps well to the machine [Par82]. In this case a reg­ 

ularly structured code containing few inherently serial operations is required. Unlike the 

vector machines, automatic compilation of serial code for SIMD processing has not been 

possible. Mapping of irregular problems to efficiently utilise the power offered by SIMD 

machines has consequently been the focus of much research [Far89, FFL93, Wil91j. The 

difficulties encountered in successfully programming for SIMD has contributed to the 

architecture falling from popularity.

The notion that it may be more worthwhile to build a number of modest individual 

computers rather than one large one is not new. Many such parallel machines have 

now been successfully built, used and become obsolete [TW91]. Such machines are 

categorised as Multi Instruction, Multi Data (MIMD) [Fly72], of which there are two 

main variants: Distributed Memory (DM), in which each processor is equipped with its 

own private memory and Shared Memory (SM), where the memory is common to all 

processors [AG94]. Now that integration density can place what was until very recently 

considered a supercomputer onto a single chip, and furnish it with a quantity of memory 

in a similarly small space, with sufficiently low energy requirements to allow the intimate 

connection of many processing elements, this makes highly parallel MIMD the probable 

architecture for the next generations of supercomputers [FWM94].

The von Neumann programming model of a computer has not changed during these 

developments [vN66]. Programs continue to be written as a series of instructions to 

be executed in sequence. Indeed many algorithms depend upon the sequential order 

of variable evaluation. A diversity of new languages and paradigms have consequently 

been developed that attempt to express and exploit parallelism with concepts such as
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Communicating Sequential Processes [Hoa86], tasks (Ada, Occam), data flow [DeC89] 

and data parallelism (FortranD, HPF) [vH92, Ric95]. There exists, however, not only 

a legacy of software that has been written in a simple sequential procedural manner, 

but also a large base of program developers who have no interest in parallel processing. 

Program developers are content with the von Neumann model as a means of algorith­ 

mic expression and want nothing more than a larger, faster serial processor. A means 

of efficiently mapping existing and future software onto DM MIMD platforms is there­ 

fore required. The success of the vectorising compilers has led to an expectation that 

parallelising compilers will eventually be produced [ZC90, CBB+94]. Success has been 

shown with automatic parallelism for shared memory parallel MIMD systems with small 

numbers of processors (Cray Y-MP, C90 (actually shared memory vector parallel), SGI 

Power Challenge, Sun Sparc20MP, Digital 8400) [Sun94]. But shared memory is unlikely 

to be feasible for large numbers of processors as the memory bandwidth does not scale 

with the number of processors. Virtual shared memory systems that allow distributed 

memory to appear as shared memory have shown some limited success (Kendall Square 

KSR1, Cray T3D) but fail to reach the potential peak machine performance largely as 

a consequence of the high degree of inter-processor communication required to sustain 

memory/cache coherence [Bom93]. The advantage of distributed memory is freedom 

from the SM bandwidth problem as the DM bandwidth scales automatically with the 

number of processors. This is seen to outweigh the disadvantage of having to explicitly 

express the distribution, communication and synchronisation of data between processors. 

The argument for DM MIMD is essentially an economic one. An enormous amount of 

development is directed towards the cost-effective high-performance workstation market. 

No matter how powerful these machines become there will always exist users who seek 

greater processing power. The simple interconnection of workstation technology allows 

the DM MIMD parallel machine to capitalise on the economy of scale of workstation 

development and provide the required power at a cost which is highly competitive in 

comparison with other High Performance Computing (HPC) technologies [Smi90]. The 

number of floating point operations (Flops) per dollar has become a new yardstick for
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the performance measurement of HPC.

1.2 The Nature of an Unstructured Mesh Code

Computational Mechanics (CM) may be applied to the modelling of diverse physical 

systems (structural mechanics, structural dynamics, fluid dynamics, electromagnetics, 

magnetohydrodynamics, etc.). The technique of applying a system of equations over a 

discretised domain leads inevitably to the concept of a mesh or grid. A mesh describes 

the spatial nature of a discretisation. Wherever possible this thesis will deal with 3 

dimensional space, this is however not always convenient for the purposes of illustration 

or example, where 2 dimensional space will normally be used for clarity.

Regular Structured Structured Body Fitted

Irregular Block Structured Unstructured

Figure 1.1: Four mesh categories.

The complexity of a computational mesh ranges from the simple regular structured 

to fully unstructured. Structured grids, suitable for transport phenomena modelling, 

were widely used in the development of Finite Volume (FV) (finite difference / control 

volume) schemes for Computational Fluid Dynamics (CFD) [PatSO]. Irregular and block
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structured grids were introduced to allow FV schemes to work with complex geometries 

and a deformable mesh. The Finite Element (FE) method for structural and thermal 

analysis introduced an unstructured mesh to represent arbitrarily complex geometries 

[Zie77]. The desire to analyse flow in complex three dimensional geometries motivated the 

development of FE-CFD codes [MSSP88]. Difficulties with continuity and convergence 

in FE-CFD [Che91] led to recent work extending FV methods to unstructured grids 

[Cho93] and solid mechanics [FBCL91, CBCP92]. Unstructured mesh codes are unlikely 

to offer the computational efficiency of structured mesh codes. The implicit nature of a 

structured mesh avoids the need for indirection in variable addressing and allows great 

efficiency of coding, cache utilisation and vectorisation. But unstructured meshes provide 

a far greater flexibility for the modelling of complex geometries and avoid the need for 

the complexity of a block structured code. Now that automatic generation of complex 

unstructured meshes has become readily available [Law94] the focus of development is 

towards unstructured mesh codes.

Figure 1.2: Automatically generated three dimensional unstructured mesh. 

In parallelising a program the concern is not so much with the nature of the algo-
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rithms or intentions of the program but rather the nature of the data dependency. The 

data dependency for a CM code stems from the integration stencil required for solution 

of the mesh based discretisation of Partial Differential Equations (PDE's). For example, 

the value of pressure in an element may be calculated from the pressure in all adjacent 

elements with a four point integration stencil as in Figure 1.3a. Temperature at a node 

may be expressed in terms of the temperature at all connected nodes (Figure 1.3b). 

The stencil may be deeper than nearest neighbour and extend to next neighbours (Fig­ 

ure 1.3c). Additionally the data dependency may be more extensive than simply the 

integration stencil, for instance the contribution from adjacent elements may need to be 

evaluated in terms of some node based value (Figure 1.3d).

Figure 1.3: Possible data dependency stencils over an unstructured mesh.

1.3 Objectives of Parallelisation

There are a number of rudimentary objectives that whilst not mandatory would certainly 

be desirable outcomes from a parallelisation strategy.

7
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i) Minimise the changes to the original algorithm:

The parallel code should ideally produce identical results to the original serial 

code. This can be a necessary requirement for acceptance by code users who are 

familiar with the serial code and require confidence that the results generated by 

the parallel code execution are every bit as reliable as those produced by the serial 

code.

ii) Minimise the visibility of the parallel code:

The parallel code should be hidden from both the serial code developers and the 

parallel code users. This permits transparent maintenance of the parallel code 

alongside the serial code by the serial code developers. In addition this avoids 

deterring users from the parallel code. Code developers and users may be safely 

assumed to have no interest in parallelism and a significant interest in rapid code 

execution.

iii) Maximise parallel efficiency:

The parallel code must show significant speed-up over the serial code. The primary 

motivation for parallelisation is to reduce the code run-time. The parallel code 

must therefore use the parallel machine efficiently, otherwise the time and money 

expended on a parallel machine would be better invested on one or more serial 

machines.

iv) Portability to most DM MIMD platforms:

Parallel code needs to make good use of most currently available hardware, the DM 

MIMD model provides an efficient lowest common denominator hardware model. A 

programming model is therefore also required to necessitate only the most primitive 

platform support without loss of efficiency.

v) Scalability of computation:

DM MIMD Massively Parallel Processing (MPP) is the direction in which the high 

Flop per Dollar supercomputers are being developed. Although there continues 

to be much discussion concerning the implementational details of such MPP's, the

8
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development of high performance, highly integrated serial processors will inevitably 

lead to the interconnection of increasing numbers of such processors (Cray T3D, 

Intel Paragon, IBM SP2, TMC CM5). To take advantage of the full power of MPP's 

the performance of a parallel code needs to be able to scale with the number of 

available processors. Doubling the number of processors should ideally halve the 

run-time.

vi) Scalability of memory:

Larger machines allow larger problems to be solved. To make full use of the 

distributed memory a parallel code must be able to distribute a problem over 

the DM machine. Globally dimensioned data items (data objects that are not 

distributed) must therefore be avoided.

vii) Automate the parallelisation process:

The human effort required to parallelise a CM code is significant. The majority 

of this effort is demonstrably automatable for structured mesh codes [JICL94, 

CIJL94]. A strategy is required which can minimise human intervention in the 

process of parallelising unstructured mesh based codes.

1.4 Parallelisation Strategies

Why use a parallel processor? Why not simply use many serial processors? There are 

two significant reasons; one is to provide a machine which can sustain a problem size 

that is too large to fit onto a serial processor, an other is to reduce the critical path to 

a solution. Given a set of interrelated tasks, a task interaction graph can be produced 

to describe the operations required to find the solution. Tasks may be carried out in 

sequence, one after the other, or some tasks may be executed in parallel as concurrent 

processes. The greater the level of concurrency that can be employed the less time is 

required to achieve the solution. Parallelism in computation exists in many forms and 

many different approaches have been used to exploit the parallelism that can be found 

in CM codes.
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Task farming, for example, has the advantage of potentially high parallel efficiency 

by keeping all processors busy. As soon as a processor completes one task another 

is initiated. The technique is however, only suited to problems which present a large 

number of unrelated tasks such as Monte Carlo techniques. To achieve any efficiency 

the amount of data to be sent to and returned from each task must be insignificant in 

comparison to the task computation, which for a CM code is unlikely.

Algorithmic parallelisation involves each processor operating on different parts of a 

algorithm. For example solving flow in three dimensions could be achieved by solving for 

each dimension on differing processors. Taking the example further other computed vari­ 

ables could be distributed over a set of processors. Each processor calculates its variable 

and hands the problem to the processor computing the next stage in the algorithm. This 

scheme has little to commend it as it suffers from a high communication requirement 

and poor efficiency as each stage in the calculation will take a different amount of time 

leaving most of the processors waiting for data.

Geometric decomposition partitions the problem space over a set of processors. Each 

processor executes the same algorithm on their own section of the problem. This method 

has the advantage of flexibility to allow variations on the decomposition strategy to be 

used to minimise the communication and maximise processor utilisation. Partitioning 

may be based on the mesh geometry or topology, or on the distribution of computational 

effort within the algorithms used in the code. For example computational partitioning of 

a CM code based around a direct solver may be dominated by the solver which dictates 

the decomposition of the problem. Often a wraparound partition of a matrix (i.e. with 

P processors, processor q owns matrix rows q, P + q, IP + q- •  ) may be required to 

keep the processors busy in the solver. This can also determine how other parts of the 

mesh are to be distributed. For example in the FAMCALC parallelisation [JAC92] the 

finite elements are distributed in a wraparound fashion according to their inclusion in 

the system matrix. In this case a large communication overhead is incurred to allow 

satisfactory processor utilisation. As is often the case with CM codes based on short 

range interactions communication can be minimised and processor utilisation maximised
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by a domain decomposition based on the geometry (topology) of the mesh.

1.5 Parallelisation by Domain Decomposition

Domain Decomposition (DD) is a generic name given to a variety of computational 

activities which involve the division of a problem space into two or more parts that 

may be operated on separately to some advantage. Such is the interest in DD that 

there is an annual conference devoted to domain decomposition methods in all their 

diversity [KX93]. Originally developed as a means of solving engineering problems that 

were too large to fit into machine memory [Kro63], there has been a revival of interest 

in domain decomposition as a means of mapping CM codes onto parallel computers 

[Wil90, BCG93]. Parallelisation by DD is a divide and conquer strategy in which a 

problem domain is decomposed into a set of sub-domains which can then be operated 

on in parallel. Attempts have been made at new parallel algorithms which seek to find a 

partial solution for each sub-domain and then reconcile the partial solutions across the 

sub-domain interfaces [FXR92, Lai95j. This runs contrary to the strategies discussed in 

this thesis which should meet objective (i) (and (ii)) and maintain as far as possible the 

integrity of the original algorithm across the partitioned domain. This thesis is concerned 

only with geometric DD as a method for the direct parallelisation of unstructured mesh 

based CM codes for DM MIMD computers. This is a technique that is well suited to the 

short range dependence typical of a CM iterative method (Section 1.2).

The initial step in applying DD to an unstructured mesh based code is to obtain a 

partition of the mesh that allows the problem to be distributed amongst the available 

processors in such a way as to equally apportion the computation time on each of P 

processors. If this process is 100% efficient then the processing time for a problem may 

be divided by P. To achieve a high parallel efficiency with a large P has consequently 

become the subject of much research. Much success has been shown with the paral­ 

lelisation of structured grid codes using DD with message passing [JC91, GCC+ 93] , 

wherein the partition of the mesh is closely mapped onto the processor interconnection
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topology in order to minimise the inter-processor communication. Some work on un­ 

structured mesh codes following the same topology mapping principle has shown success 

[RL90]. A generic method that can provide good performance without requiring an ab­ 

solute adherence to the processor topology is needed to allow automated decomposition 

of unstructured meshes with scalability and efficient portability.

A number of languages and environments have been developed for the generation of 

code which may be automatically parallel. Parallel languages have much to offer, but 

are of limited use for 'dusty deck' codes and more importantly of little interest to serial 

code developers. It is simply not acceptable to require code authors to learn new skills 

in order to be able to use parallel machines. It is a hard enough task to author a CM 

code in the first instance without having to spend more time and effort in persuading 

the code to run on a parallel machine. Environments and libraries for parallelisation 

may point the way for development of parallel code that is transparent to both the code 

developers and the code users, but they fall a long way short of addressing the entire 

parallelisation problem. The Computer Aided Parallelisation Tools project (CAPTools) 

at the University of Greenwich [JICL94, CIJL94] seeks to resolve the parallelisation of 

structured mesh Fortran codes through the use of an interactive toolkit based on highly 

sophisticated interprocedural dependence analysis. It is hoped that the strategies devel­ 

oped in this thesis will extend scope of the CAPTools package towards the parallelisation 

of unstructured mesh codes.
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Chapter 2

Parallel Processing

A Distributed Memory Multi-Instruction Multi-Data (DM-MIMD) parallel computer 

is, in the simplest of terms, a number of interconnected processors, each of which is 

equipped with a quantity of memory. The combination of processor and memory is re­ 

ferred to as a Processor Element (PE). Programs (processes) running on the processors 

can communicate with each other in what has been described and formalised as concur­ 

rent communicating sequential processes [Hoa86]. In this way the processors operate in 

unison to provide a high overall rate of computation.

Many different approaches to programming for a DM-MIMD parallel machine have 

been explored [Kri89, LC90]. The parallel programming strategy used in this thesis is a 

Single Program Multi Data (SPMD) message passing paradigm. Each processor runs the 

same program (process) on its part of the data set communicating with other processors 

through the exchange of messages. The terms processor and process for the purposes 

of this thesis are consequently interchangeable. This strategy has similarities with the 

data parallel strategy [Hil94] but uses an explicit derivation the data partition based on 

the mesh. The strategy is actually a master slave scheme during input/output processes 

in that one processor is the designated master simply because it has control of the i/o 

processes. Parallel i/o hardware is still uncommon and any dependency on such platform 

specific features would pose a significant barrier to portability.

Any time spent in communication between the processors is an overhead not incurred
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with serial processing and so to use a parallel machine efficiently the inter-processor com­ 

munication must be minimised. Successful inter-processor communication requires a high 

degree of synchronisation between the processes [Val90]. Successful parallel processing 

requires that no processor needs to idle whilst waiting to synchronise with other pro­ 

cessors. To achieve an efficient parallel implementation the workload must therefore be 

balanced amongst the processors.

2.1 Processor Interconnection

There are many varied and novel methods by which processing elements may be inter­ 

connected. The relative merits of the differing interconnection strategies are discussed 

at length by several authors [TW91, AG94, FWM94]. A number of interconnection 

topologies have been tried. The richly connected hypercube (nCUBE 2s), two and three 

dimensional arrays, often looped into a ring or torus connection (Intel Paragon, Cray 

T3D) and other connections such as fat trees (Thinking Machines CMS) have also been 

used [vanderSteen94]. The advent of the INMOS transputer [Inm89c, Inm89a] with four 

high speed serial communication ports integrated into a single chip CPU popularised the 

scheme of a simple interconnected mesh of relatively low cost, highly integrated PE's 

[HJ88]. The companion chip to the transputer family, the Inmos C004 32-way crossbar 

switch [Inm89c, Inm89b] provides at low cost a means of reconfiguring the intercon­ 

nection topology of an array of transputers. This model has persisted into many new 

designs, most probably as a result of the low cost of implementation coupled with a po­ 

tentially high performance. Different switching technologies have been employed (IBM 

SP2, NEC Cenju-3, Meiko Computing Surface) but the reconfigurable interconnection 

model remains largely similar. Consequently this is the model of PE interconnection that 

this thesis will focus upon. Because this model of a parallel machine relys upon no special 

features the concepts discussed will be applicable to the majority of DM-MIMD plat­ 

forms. Highly sophisticated and complex processor interconnections suffer significantly 

from the high cost of implementation. To remain cost effective the interconnection cost
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must be small in comparison with the PE cost. Additionally the reliance upon machine 

specific features in programming may provide a good performance on one platform but 

can result in restricted portability. Advanced interconnection features may be imple­ 

mented on simple platforms through the use of a software communication harness, but 

with consequent performance degradation. To achieve a cost effective parallel machine 

the investment in processor interconnection must result in a well balanced ratio between 

the communication performance and the calculation performance of the individual PE's.

2.2 Inter-Processor Communication

The key parameters for communication between processors are the bandwidth of the 

communication channels and the startup latency time to send a message.

The bandwidth rn is the rate at which a data packet of length n may be transferred 

between two processors, normally measured in millions of bytes (Megabytes) per second 

(MBs" 1 ). Typical bandwidths may be l.TMBs" 1 per connection for the T800 trans­ 

puter up to ITOMBs" 1 per connection in the Intel Paragon. For clusters of workstations 

connected by ethernet TCP/IP the bandwidth is more like O.QMBs" 1 [DD95]. This 

bandwidth cannot however be shared simultaneously by all of the processors as they all 

share the same ethernet connection. A more meaningful measure of interconnect band­ 

width may be to divide the sum of the bandwidth of all interconnects in the machine 

by the number of PE's to give the bandwidth per processor. Clearly the bandwidths 

provided by different parallel systems ranges dramatically over two orders of magnitude. 

This spread in performance is even wider if the bandwidth per processor is considered.

The definition of latency varies but should give some measure of the time that it 

takes for a communication or message to begin transmission [CDJ95]. Latency is usually 

measured in microseconds (//s)and varys markedly from around 3/^s in the Cray T3D up 

to 900//S for ATM-100 TCP/IP [DD95].

Measurement of the peak achievable communication performance for a platform can 

be misleading. The nature of a parallel code is that execution is synchronised in data
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exchanges [Val90]. Ergo the critical communication is not with one individual message 

in the machine but with every processor involved in communication. The effect of this on 

the actual communication performance is highly dependent upon the machine hardware 

implementation. None of the DM machines offer a totally interconnected processor 

network and hence the interconnection bandwidth is shared amongst the processors. A 

more meaningful measure of latency and bandwidth can be obtained with the processor 

interconnects saturated as this reflects more accurately the communication of a typical 

code execution [MWC+ 95]. It is possible to saturate the interconnects with either local 

(near neighbour) or distant (non adjacent) traffic which will give differing measures of 

communication performance. The degree to which this will affect measurement is of 

course system dependent.

The number of processors (hops) between the source of a message and its destination 

affects the time for a message to complete. Jack Dongarra [DD95] considers the per hop 

delay to be a linear function of distance and so gives a model of the time tn required to 

transmit n bytes of data as:

tn = a + (3n + (h-l}i (2.1)

With start up time (latency) a, per byte time /?, per hop delay 7 and number of hops 

h. The bandwidth of the system can therefore be expressed as:

n

Hence the peak bandwidth r^ of a system is therefore expressable as:

roc = i (2.3)

A popular measure of the communication performance that combines latency with 

bandwidth is the bisection bandwidth n\ denned as the message length at which half 

of the peak bandwidth is reached (perhaps better described as the bisection message 

length). For a single hop message this reduces to being simply the ratio of latency to 

peak bandwidth:

" = (2.4)
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It can be useful to consider whether bandwidth or latency is the bound on the per­ 

formance of a code on a particular platform. The latency is often large in comparison 

with the time to transmit an individual data item. Given that the most obvious op­ 

timisation is to communicate only the data that is absolutely necessary, the next step 

is to minimise the number of transmissions that need to be made. Bundling the data 

to be communicated into large packets that require infrequent transmission reduces the 

latency overhead but incurs the overhead of copying data into buffer space. The extent 

to which communication may be buffered depends upon the individual code.

A parallel machine may be characterised by the communication to calculation ratio. 

This is sometimes given as the ratio of the time to send a one word message to the time 

for a floating point operation [FJL+88]. The notion being that a machine is well bal­ 

anced if this ratio is less than unity. The actual MFlop performance is seldom maximal. 

As processor clock speeds increase to rates well beyond the access times for Dynamic 

Random Access Memory (DRAM) cache success rate begins to dominate the returned 

processing speed. Communication performance is both code and problem dependent as 

to whether latency or bandwidth form the limit. The computation to communication 

ratio is consequently somewhat arbitrary and subjective but if considered carefully can 

give a reasonably meaningful comparison of machine performance [AG94, FWM94]. A 

high ratio is likely to give poor parallel performance, the inter processor communication 

causing a processing bottleneck. A very low ratio would suggest that the investment 

in communication outweighs the investment in processing. Isolated consideration of the 

achievable parallel efficiency or speed-up of an application may give a misleading im­ 

pression of the machine performance. The users (purchasers) viewpoint is usually more 

pragmatic involving wall-clock and dollars [FJL+88j.
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2.3 Communication Model

2.3.1 Shared Memory

Prom a programming viewpoint the simplest communication model is the shared memory 

model in which the entire machine memory is considered to be shared by all processors. 

For a DM-MIMD machine this leads to a locality dependent Non-Uniform Memory Ac­ 

cess (NUMA) which can be handled to a some extent by advanced compiler techniques 

[LP92]. Whilst this presents an attractive model for programming and is amenable to 

automatic parallelisation it is an inefficient model for communication, giving rise to many 

small communications and hence tending to be latency bound. Nevertheless this can be a 

moderately successful communication model for small to medium scale parallelism (2-16 

processors) and low latency platforms.

2.3.2 Message Passing

Message passing provides an explicit control of the inter-processor communication in 

which data to be transmitted is considered to be a messsage sent to a destination pro­ 

cessor. This allows greater optimisation of the inter-processor communication and con­ 

sequently is the communication model adopted in this thesis.

A communication harness of some description is normally used to implement mes­ 

sage passing. At its most primitive the harness allows message passing between directly 

connected processors. More usually some form of 'wormhole' routing is provided that 

allows messages to be sent from any processor to any other processor hiding the under­ 

lying processor interconnection from the programmer [NM93]. A per-hop cost penalty 

on non local message passing as discussed in Section 2.1 means that messages should be 

wherever possible nearest neighbour (localised) to maximise efficiency. Implementational 

details of the message passing paradigm vary greatly but may be contrived to provide a 

uniform view of the parallel machine across a wide range of platforms (Section 2.4.2). It 

is now widely accepted that shared memory offers a simple port to serial codes to attract 

code developers and users to parallel processing but cost effective efficiency can only be
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obtained from low latency, high bandwidth, localised message passing.

2.4 Code Structure

Implementation of a message passing parallelisation into an unstructured mesh code 

must be largely hidden in order to comply with objective (ii). A structured approach to 

the parallel implementation can go a long way towards achieving this aim. The SPMD 

paradigm is used in this thesis as it allows a single source code parallel program to be 

developed which may be maintained as a serial code by the original code authors. The 

DD method adopted requires extension of existing data structures and additional data 

structures to define the mesh decomposition and inter-processor communication. These 

additional data structures need to circumvent the subroutine parameter lists to remain 

hidden. Include files containing common data areas provide a reasonably convenient 

way to manage these variables. Mapping of the partitioned mesh to the original mesh 

(required to rebuild partioned data for output) requires a global sized data structure 

that has to be distributed among the processors in order to remain scalable (objective

In this parallelisation strategy a shell structure illustrated in Figure 2.1 has been 

used to build layers of (in) visibility within the code. Around the outside of the shell are 

the majority of the original routines which remain unchanged.

At the next level in are the routines from the original code that have been modified to 

function in parallel. Most of these routines are changed only slightly in that additional 

subroutine calls have been included and some array dimensions and loop lengths are 

changed. The i/o routines unfortunately require extensive modification and remain a 

difficult area of code to successfully parallelise. Parallel i/o hardware is uncommon and 

so a serial pipelined approach has been adopted.

The visible parallel routines are provided by a parallel utilities library which provides 

routines that are locationless and directionless and so form a barrier to the visibility of 

the parallel implementation. At this level there is no concept of master or slave processor
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or indeed processor number, position or communication channel. It is felt that the serial 

code developers should have no problem with this view of parallelism.

The communication library provides a barrier to the visibility of the parallel machine. 

The communication library consists a very simple set of communication routines used by 

the utility library to present a uniform functionality on all machines. This layer provides 

a portability interface and provides similar functionality to the many popular high level 

parallel communication harness' such as PVM or MPI.

The innermost level is the native communication harness provided for the parallel 

machine. Only the most primitive send and receive functions are necessary at this level 

thereby guaranteeing portability to most hardware platforms. Higher level communica­ 

tions at this level may however be used to simplify or improve the implementation of the 

communication library.

unchanged^———~^
parallelised-—••——^

parallel 
^—^ 
comms

Figure 2.1: Shell structure of the parallel code.
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2.4.1 Parallel Utility Library

Routines in the utility library are visible at the serial code level and must attempt 

to hide the parallel implementation whilst providing a parallel functionality which is 

conceptually straightforward. Simplicity of calling is of paramount importance in the 

library routines to achieve objective (ii). The routines in the library are described in 

Appendix A along with the parallel data declarations. The library is currently written 

in terms of the data structures used by the code being parallelised and hence is specific 

to that code. This library could however be made general purpose by adoption of a 

generic data structure for the utilities, this is discussed further in Chapter 6. The 

mesh decomposition routines at this level require extensive data structures and globally 

dimensioned variables. Embedding of these routines in the parallel code is not always 

possible, mainly due to memory restrictions. In which case they may be used to pre- 

process the serial problem files into a domain decomposed problem file that can then be 

used by the parallel program in place of the original problem specification. This process 

can be made reasonable seamless from the viewpoint of a code user.

Similar functionality has been developed for the Bulk Synchronous Parallel (BSP) 

[MR93] package and the Oplus package both from The Oxford Parallel group at the Ox­ 

ford Computer Laboratory, LOCO from Katholieke Universiteit Leuven, PLUMP from 

CSCS in Switzerland [CDE+94] and DIME from Caltech [FWM94]. These packages offer 

a range of attractive features for portability, adaptive gridding and dynamic load balanc­ 

ing. The significant difference between their work and the work presented in this thesis 

is that they provide an environment and data structure that supports the generation of 

codes to handle irregular problems so that parallelisation of the code becomes more or 

less automatic. CM programmers cannot be expected to take on-board the overhead of 

authoring parallel code. This thesis therefore attempts a strategy for the parallelisation 

of existing codes for irregular problems with the intention of developing a methodology 

for automation of the parallelisation of old and new codes.
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2.4.2 Parallel Communication Library

The parallel communication library imparts portability to the code by providing an in­ 

terface between the parallel utility library and the machines' communication harness. 

Porting the parallel code to a new platform (harness) requires re-writing only the com­ 

munication library. The library used for this thesis is the CAPLib library developed as 

part of the Computer Aided Parallelisation Tools project (CAPTools) at the University 

of Greenwich [CIJL94]. This library is constructed in two layers; CAPLib for high level 

routines and CAPLow for the low level portability shell. This further simplifies the porta­ 

bility of code using the CAP library system as only CAPLow requires porting. CAPLib is 

currently available for C Toolset on the Transtech Paramid, 3L Fortran on transputers, 

PVM2, PVM3 and MPI with Cray shared memory under development.

2.4.3 Communication Harness

A communication harness is in many ways analogous to an operating system in that it 

provides a means of loading an executable code onto the processors with a number of 

system facilities such as input/output. Most notably a parallel communication harness 

provides a means of inter-processor (inter-process) communication. Some manufacturers 

refer to their harness as a parallel operating system (Helios, Genesys, Parix) whilst oth­ 

ers describe it more in terms of a loader or server program. In actuality it is usually a bit 

of both. Networks of workstations running UNIX can be configured as a Parallel Virtual 

Machine by using the popular PVM package or one of the more recently developed Mes­ 

sage Passing Interface (MPI) packages. Some of the larger parallel machines use UNIX 

as the communication harness which then provides direct support for communication 

packages such as PVM or MPI but at the cost of a memory and processing overhead.

Communication Packages

The communication harness in Figure 2.1 may be implemented as any of a wide range of 

communication packages. There are almost as many different communication packages 

as there are parallel machines. An incomplete list of some of the most popular and
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persistent of the packages is given here:

C Toolset - Inmos [Inm92]

PVM - Parallel Virtual Machine - Oak Ridge National Laboratory. [GBD+94]

MPI - Message Passing Interface - An international consortium coordinated through the 

University of Tennessee, Knoxville. [For94]

Parmacs - Parallel Macros for Fortran - Argonne/GMD. [Hem91]

CHIMP - Common High-level Interface for Message Passing - Edinburgh Parallel Com­ 

puting Centre. [CTHW91]

PICL - Portable Instrumented Communication Library - Oak Ridge National Labora­ 

tory. [GHPW90]

Express - ParaSoft Corporation. [Par92]

MPL - Message Passing Library for the IBM SP2.

At the most fundamental level these packages provide a means of explicitly sending 

a message from one process (processor) to another. This simple message passing is all 

that is necessary for CAPLib to be ported to a communication package. Many of the 

packages provide more sophisticated features such as global commutative operations and 

asynchronous communications. Such features often rely on hardware specific calls for 

their successful implementation. Where available such features can be used directly by 

CAPLib to provide the functionality with consequent improved performance.
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Communication Primitives

To achieve parallel message passing only a small number of communication primitives 

are required from the communication harness. Only Initialise, Send and Receive are ac­ 

tually required to implement a usable communication library. High level communication 

routines such as broadcast and global commutative operations can be built from these 

simple primitives. More efficient implementations of higher functions may be provided 

as primitives on some platforms and harness'. Some of the more sophisticated functions 

such as asynchronous communication must however be supported as primitives and can­ 

not be built from synchronous communications. Primitive calls provided by the harness 

take many varied forms, some of the terms used to describe the routines are outlined 

below.

  synchronous (blocking) communication: returns when the operation is complete 

and data resources used in the call are available for re-use.

  asynchronous (non-blocking) communication: returns before the operation is com­ 

plete and data resources used in the call are not available for re-use.

  broadcast: sends a data item to all processes

  reduction: performs a commutative arithmetic or logical operation on all processes.

  scatter: distribute a data item amongst the processes.

  gather: rebuild a data item using components from many processes.
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Domain Decomposition

Decomposition of a mesh based domain into a set of 5 sub-domains that may be allocated 

to a set of P processors involves finding a partition of the mesh so that the amount 

of compute time on each processor is very nearly equal. Two schemes are popularly 

used. One is to divide the problem into as many sub-domains as there are processors, 

i.e. S = P, so that each processor is allocated one sub-domain. The other scheme is to 

divide the problem into more sub-domains than there are processors, S > P, so that each 

processor operates on one or more sub-domains. This latter scheme has some advantages 

for targeting an inhomogeneous compute platform such as a network of workstations, in 

which the PE's are workstations which may have not only differing characteristics, but 

may also be subject to other workloads. Such a scheme can provide an effective coarse 

grained dynamic load balancing mechanism necessary for successful use of shared facility 

networks [MJ95]. Such networks tend to be reasonably small scale (~ P < 32), in which 

case the overhead of dynamic sub-domain allocation may allow an effective speed-up. 

This thesis attempts to propose a scheme which will scale to a highly parallel (~ P > 64) 

homogeneous DM MIMD processor array and so the former S = P scheme is advocated. 

The simpler S = P scheme carries a lower sub-domain allocation overhead and so may 

achieve a greater overall efficiency. Also there is an overhead incurred for each cut edge 

of the mesh which is minimised by keeping S = P. Edge is used here in a graphical sense 

meaning a relationship between mesh entities that is cut if the entities are in different
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sub-domains. Dynamic load balancing schemes may still be implemented as fine grained 

migration of the mesh entities between the sub-domains.

Partitioning of a structured mesh is a reasonably straightforward procedure of cutting 

the mesh along the grid lines (2D) or planes (3D) [JC91]. Achieving a precise load balance 

in this instance requires that the mesh size along the partitioned axis is a multiple of the 

required number of partitions. Obtaining a balanced partition of an unstructured mesh 

is potentially a more complex problem and the focus of considerable research.

In order to solve for the nodes and elements around the edge of each sub-domain 

data is required from the neighbouring sub-domains according to the stencil of data 

dependency as discussed in Section 1.2. This data may be communicated as required 

from the processor on which the neighbouring domain is calculated, but this can lead 

to an unnecessarily large number of small communications. The strategy adopted in 

this thesis is to extended each sub-domain to overlap its adjacent sub-domains. This is 

discussed in more detail in Section 3.3. Each processor can then solve for the problem 

inside its sub-domain using the variables held in the overlap layer. Variables in the 

overlaps are updated from variables calculated on other processors to maintain a solution 

consistent with the original serial code.

3.1 Representation of an Unstructured Mesh

An unstructured mesh is specified as a hierarchy of components or mesh entities, each 

of which may be regarded as a data object or structure which can be used to provide 

a spatial, geometric or topological reference to the variables used in a computational 

mechanics code.

The definition of an unstructured mesh begins with a set of grid points or nodes, each 

of which is defined by set of spatial coordinates. The grid points describe the geometric 

shape and physical size of the mesh. Points are also convenient to provide a spatial 

reference for dimensionally independent variables such as temperature or pressure.

Points can be connected to form a set of edges, faces or both edges and faces. In
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three dimensions edges can be connected to form a set of faces. Edges in 2D and faces in 

3D may be used to provide a spatial reference for flux variables such as current density.

The space enclosed by a set of edges or faces describes an element. Elements have 

a volume and may be used as a spatial reference for volumetric entities such as mass or 

heat.

The perimeter or surface of a mesh defines a boundary which can be usefully asso­ 

ciated with some boundary condition. Boundaries may also be defined internally to a 

mesh.

A defined volume or area within the mesh can be defined as a domain which is subject 

to certain conditions such as being of a material with specified physical characteristics.

The entity relationship diagram for a three dimensional unstructured mesh as shown 

in Figure 3.1 has only these few components and yet the web of relationships is highly 

interconnected. In two dimensions there is no definition of a face and so the relationships 

are a little more straightforward. Not all of the entities or the relationships are mandatory 

and the relationships may be explicit or implicit. The actual entities and relationships 

used varies from code to code.

The connectivity or topology of the mesh is explicitly expressed as relationships 

between like or differing mesh entities. For example the elements may be described in 

terms of their nodes as a list of node numbers for each element. From this information 

the element connectivity (adjacency) may be derived as a list of element numbers for 

each adjacent element. There is a trade off to be made between the memory used 

for the storage of these relationships against the ease of calculation required within 

the code. The nature of the integration employed by CM codes is nearest neighbour. 

Evaluation of an element based variable may for example require the variable values for 

all neighbouring elements and the coordinates of the points that comprise those elements 

(see Figure 1.3 d). This example would require the element to element connectivity to 

find the neighbouring elements and the element to node relationship to find the nodes 

of the adjacent elements.
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boundaries

Figure 3.1: Entity relationship diagram for a three dimensional unstructured mesh.

3.2 Mesh Partitioning

The problem of partitioning an unstructured mesh has attracted the imaginations of 

many workers for more than twenty years [KL70] [PSL89] [BS93]. It is after all an 

interesting problem and one which at first sight at least seems well defined and self 

contained. A good mesh partition is one which divides the computational load equally 

amongst the sub-domains and minimises the amount of communication required between 

sub-domains. For many meshes it can be computationally prohibitive to find an optimal 

partition and computationally expensive to find a near optimal partition. On the other 

hand a reasonable partition may be calculated with little effort. The search for the 'best' 

partitioning algorithm has led to exploration of the middle ground, trading partition 

quality with the order of the partitioning routine.

Partitioning may be based on any of the mesh entities, usually either the elements or 

nodes of the mesh. A sensible choice is to partition according to the structure associated 

with the greatest amount of computation in the computational mechanics code. For
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example a flow code dealing with element based variables would be partitioned according 

to elements whereas a stress code using node based variables would be partitioned as 

grid points. In actuality an element based code integrates over each face of each element 

and so a face based partition may be more appropriate. Similarly a node based code 

may integrate over each edge of the mesh and so an edge based partition may be more 

appropriate. The actual basis for partition chosen is not however of great consequence 

providing that the resulting mesh partition is balanced. This thesis will for simplicity 

normally refer to an element based partition. A mesh partition may be expressed in any 

of a number of ways, the method adopted is a simple list of the partition number for 

each element (entity). (Appendix B)

3.2.1 Load Balance

A fundamental objective in finding a partition is to balance the computational effort or 

load required in each sub-domain. The simplest approach is to assume that the load 

per element is homogeneous throughout the mesh. In this case the partition should 

have as near equal numbers of elements per partition as possible. Should the load be 

inhomogeneous then a weight or cost function may be applied to the elements to achieve a 

cost balanced partition. For example the computational effort required for each element 

may be proportional to the number of faces the element possesses. So tetrahedra will 

incur a cost of 4, bricks a cost of six and so on. An important consideration in load 

balancing is that it is not so much essential to achieve a totally uniform balance of load 

but rather that no one processor should have significantly more than average load. Any 

processor with an exceptional work load will cause all other processors to incur idle time 

with resultingly poor parallel performance. Should any one processor have too little work 

this will not hold up any other processors and have a correspondingly less detrimental 

effect on overall performance. This is illustrated in Figure 3.2 where the overall run time 

for partition A is longer than the overall run time for partition B despite the greater 

imbalance between the individual processor run times for partition B. The definition of 

a good load balance must reflect this effect. What is required is not a small deviation of
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any load from the average load. Nor a small maximum to minimum load difference, but 

a small maximum to average difference.

Run Time

9-

8-
I

7- 

6- 

5- 

4- 

3- 

2-

T
I

Partition A 

Partition B

_._ average (optimal)

i
Processorl Processor2 Processors Processor4 Processors

Figure 3.2: Example run times for two possible partitions over 5 processors.

3.2.2 Communication Balance

The perimeter interfaces between the sub-domains should be as short as possible to re­ 

duce the communication overhead between the sub-domains. Again an optimal solution 

is expensive to compute and a near optimal solution is sufficiently good. Reducing the 

number of adjacent sub-domains reduces the amount of messages that require trans­ 

mission again reducing the communication overhead. It is also important to have some 

degree of balance in the communication, especially that no one sub-domain interface is 

unduly larger than the average. Again any exceptionally large interface will delay the 

overall parallel execution. These requirements paint a picture of partitions that are low 

order, to reduce the number of interfaces and reasonably regular, to present uniform 

smooth perimeters.
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3.2.3 Processor Topology Mapping

The complexity and therefore the cost of building a totally interconnected non-blocking 

processor array is significant and so some form of interconnection map is generally 

favoured. As discussed in Section 2.1 this may be anything from a simple ID or 2D 

array up to a 3D torus array or a fat tree structure. Many transputer based systems 

employ the Inmos C004 32 channel crossbar switch programmable link router chip al­ 

lowing reconfigurable topologies to be constructed from a set of compute nodes. The 

IBM SP2 and the NEC Cenju3 use 4x4 switches to similar effect. A more detailed de­ 

scription of a number of popular and esoteric hardware architectures may be found in 

[vdS94, TW91]. In spite of what hardware manufacturers may claim there will always 

be a distance related communication cost. This cost becomes more significant as the 

number of processors increases. No matter how the processor interconnection is realised, 

a parallel processor platform will incur some form of topological communication cost. It 

is inevitable that it is more efficient to communicate with neighbouring processors than 

with distant processors. Robinson and Lonsdale [RL90] suggest that communication 

costs may be reduced by interconnecting the processors to reflect the mesh partition 

as illustrated in Figure 3.3. It may not however be possible or practical to reconfig­ 

ure a processor array to suit a given partition. A more generic, flexible and scalable 

scheme is to consider the processor topology to be fixed as, for example, a 2D or 3D 

grid. This processor interconnection topology can then be reflected in the mesh par­ 

tition. A transputer based platform, for example, would require the partition to limit 

the number of adjacent sub-domains to four (a 2D grid or 4 dimensional hypercube), 

as this is the number of communication links on each transputer. To this end weights 

can be applied to the partition to discourage the separation of neighbouring elements 

onto non-neighbouring processors [Jon94, Wal95j. In practice it can prove impossible 

to force a partition to adhere to a processor map, but the closer the partition reflects 

the processor map the greater the potential efficiency of the partition. A number of 

workers attempt to incorporate the underlying machine topology into the partitioning 

process in order to produce a partition that can provide improved parallel performance
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Robinson and Lonsdale 1990

Figure 3.3: Processor interconnection mapped to a pipe mesh partition.

[Far89, WCE+95, Har94, MWC+95]. Figure 3.4 shows a mesh partitioned (using the 

JOSTLE code discussed in Section 3.2.4) into 16 sub-domains using three different par­ 

titioning strategies along with the corresponding processor interconnection graphs.

Regardless of how the mesh partition is calculated one is faced with the problem 

of mapping S partitions onto P processors ( S = P ) [SE87, SER90, BA92, HS92]. 

If P is small then all combinations may be tried to rind the optimal mapping, that 

is the mapping which minimises the number of partition boundaries that do not align 

with processors interconnections. The combinations of mappings increase as P factorial 

which makes this impractical for even modest sizes of P. A simple scheme to obtain 

a mapping for little cost is to loop over all partitions in an initially arbitrary mapping 

looking for a partition which can be swapped so that communication cost reduction is 

maximised. This loop is iterated until no further cost reduction is found. Schemes such 

as this are prone to local minima traps but can give a useful mapping with little overhead 

[WCE+95].
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Figure 3.4: Partitions of a 2D mesh into (a) ID, (b) 2D and (c) uniform topologies with 

the corresponding sub-domain connectivity graphs.
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3.2.4 Partitioning Algorithms

Some partitioning algorithms operate on the geometric mesh coordinates. Others treat 

the mesh as a graph G(N,E] of nodes and edges. Graph based techniques have the 

advantages of dimensional independence and a true representation of the connectivity 

of the mesh in the partioning process. This is demonstrated by Nick Floros and Jeff 

Reeve to be of particular importance when partitioning highly complex shapes [FR94]. 

The graph to be partitioned may be simply the grid points (nodes) of the mesh or a 

dual graph of the mesh with the graph nodes representing for example elements and the 

graph edges representing the element adjacency. If the graph is based on elements of 

the same shape then the node degree (number of edges on each node) in the graph is 

more or less constant (nodes at the boundaries are of reduced degree). Partitioning to 

achieve an equal number of nodes in each sub-domain may achieve a good load balance. 

If however the graph is based on grid points, or the mesh is of mixed element shapes the 

node degree in the graph is variable. Partitioning a graph to achieve an equal number 

of edges (rather than nodes) in each partition may, in some cases, be more appropriate 

for load balance. Other factors may affect the computational load at each node of 

the graph, perhaps different materials, or phases for instance are associated with each 

node. Applying a weight to the nodes (perhaps based upon the number of connected 

elements and/or some other parameter) and then partitioning the weighted list can give 

an improved load balance. In practice it can prove difficult to accurately predict the 

computational load in each sub-domain.

Many of the schemes involve recursive bisections, variations on the bisection schemes 

involve cutting the mesh into more than two partitions at each step. This allows the 

algorithms to provide numbers of partitions other than 2n .

What is required of a mesh partitioning algorithm is a high quality of partition 

at a low cost. The time required to calculate the partition must be insignificant in 

proportion to the time for the CM code to execute. High quality means a balanced load, 

short interfaces and a small number of interfaces. This paints a picture of partitions as 

uniform packed bubbles, shapes of minimum surface energy. Much of the current research
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centres on hybrid approaches with graph reduction techniques and multilevel schemes 

to reduce the order of the problem [Jon94, WCE+95, HL93, VK95, DMM95, KK95]. 

A good but incomplete review of partitioning algorithms has been compiled by Chris 

Geenough [GF94] and Dirk Roose [RVD93]. A number of the algorithms have been 

collected into a package called RalPar [FG94]. Some of the more important techniques 

are covered in detail by Beryl Jones in her thesis [Jon94]. There follows a brief summary 

of many of the better known algorithms.

Recursive coordinate bisection

Recursive Coordinate Bisection (RGB) [Fox88] is a simple geometric scheme in which the 

grid points of the mesh are sorted into order along one axis (normally the longest) and 

then bisected. This process is repeated recursively on each partition until the required 

number of partitions is obtained. This gives rise to thin strip partitions with long 

interfaces. A variant of the scheme is Orthogonal Coordinate Bisection (OCB) in which 

the sort axis is alternated at each recursion. The resulting partitions are consequently 

more checkerboard in shape. An improvement is to bisect each partition along its longest 

axis, which is not necessarily the same for each partition.

Recursive inertial bisection

Recursive Inertial Bisection (RIB) is similar to RGB but bisects the geometric coordinates 

along the line of principal inertia [RVD93]. It can be expected that the line of principal 

inertia is aligned with the length of the mesh and the narrowest part of the mesh will be 

orthogonal to it. Whilst RIB is more expensive than RGB or OCB it is still a 'cheap' 

method and gives better results with concave geometries. RIB is still popularly used as 

it is fast and reliable.

Greedy

The greedy method is a graph based technique which begins with a node of minimum 

degree (minimum number of connected edges) and 'bites' level sets from the graph [Far
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until the appropriate number of nodes (^) have been 'eaten'. This process is repeated 

on the remaining graph until all of the graph has been consumed. This is an extremely 

cheap method (O(AT)) which produces mostly good partitions but is liable to leave some 

disconnected partitions (i.e. partitions that are split into two or more pieces).

MINCUT

MINCUT [KL70] employs heuristics to optimise a partition by swapping vertices of the 

graph between partitions to find the swap that minimises cost. "The general idea is to 

perturb the locally optimal solution in what we hope is an enlightened manner, so that 

an iteration of the process on the perturbed solution will yield a further reduction in the 

total cost." A logical exchange of all vertex pairs in the graph is performed and the effect 

of each exchange on the partition cost calculated. All exchanges up to the exchange that 

produces the minimum cost are then committed as actual exchanges. This process is 

repeated until no reduction in cost is obtained. This method attempts to climb out of a 

local mina trap but is not always successful.

Recursive graph bisection

Recursive Graph Bisection (RGB) [Sim91] is similar to RGB and RIB but operates on 

the graph of the mesh. A diameter of the graph is found and starting from one end 

of the diameter level sets are removed from the graph until the graph is bisected. The 

process is repeated recursively on each partition.

Recursive spectral bisection

Recursive Spectral Bisection (RSB) [PSL89] represents the graph with its Laplacian 

matrix L. The method recursively partitions the graph by finding x which minimises 

xTLx. The eigenvector that corresponds to the second smallest eigenvalue (the first 

eigenvalue is trivial) is sorted and bisected to give a partition of the graph. This is 

a sophisticated and expensive method that provides a high quality partition that is 

especially suitable for complex geometries. Hendrickson and Leland [HL92] extended
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the method to allow weighting of the nodes and edges and cutting into more than two 

partitions at each step. Multilevel Recursive Spectral Bisection (MRSB) dramatically 

speeds up the algorithm by coarsening the graph with clustering and using RSB on the 

coarsened graph [BS93]. This is a highly elaborate technique that provides the high 

partition quality of RSB at less cost.

Tabu search

Tabu search (TS) [Glo89, Glo90] is a combinatorial optimisation based iterative im­ 

provement technique that tries to avoid local minima traps by temporarily accepting 

unprofitable changes to the partition. Cycling in the search trajectory is avoided by 

keeping a history of the most recent changes, making further changes of the most re­ 

cently moved nodes 'taboo'. Some open problems of TS are the determination of an 

appropriate 'prohibition period' and the robustness of the technique for a wide range 

of different problems. Some of the limitations of TS have been overcome in Reactive 

Tabu Search (RTS) [BT94] in which the appropriate size of the prohibition list is learned 

automatically by reacting to the occurrence of cycles.

Simulated annealing

Simulated Annealing (SA) is a generalised optimisation method that borrows ideas from 

a statistical mechanics approach to annealing in a cooling solid [KJV83, vLA87]. A 

parameter analogous to temperature is reduced during the course of the calculation. 

For each temperature a number of modifications to the current solution are tested. If 

a modification reduces the cost function the modification is accepted, otherwise the 

modification is accepted according to a probability function based on the exponent of 

the ratio of cost function to temperature. As the temperature cools the algorithm is 

less likely to accept a change that increases the cost. With a slow 'cooling' rate this 

method can produce good partitions but is computationally expensive. Developments of 

the basic ideas of SA have led to Mean Field Annealing (MFA) which combines SA type 

strategies with Neural Network techniques[BA92].
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JOSTLE

JOSTLE [Wal95, WCE+95, MWC+95] is the code used to produce the partitions used in 

this thesis. The JOSTLE strategy is to derive an initial partition as quickly and cheaply 

as possible and then use optimisation techniques to improve the quality of the partition. 

Two alternative methods are provided to produce the initial partition. One method is a 

variation of the Greedy algorithm, in this case a graph based variant on the original mesh 

based algorithm proposed by Charbel Farhat [Far88]. The other method is geometric 

sorting which operates in a similar manner to OCB. This method provides a crude map­ 

ping to a p x q processor grid (p > q). The nodes are sorted on the longest axis and split 

into sets of N/p. The nodes in these sets are then sorted in the orthogonal axis and split 

into sets of N/pq. Having used one of the above methods to obtain an initial partition 

one of two optimisation methods can be applied to the improve the partition. Uniform 

optimisation is a technique in which each partition attempts to minimise its own surface 

energy analogous to the way that bubbles pack together. The technique works by calcu­ 

lating the centre of each partition in a graphical sense and determining the radial distance 

of each node from the centre. Nodes that are most distant from the centre can then be 

migrated between neighbouring partitions. Grid optimisation is a similar technique to 

uniform optimisation except that nodes are allowed to migrate only between neighbours 

in the processor grid. Four partitioning (mapping) strategies are provided by JOSTLE. 

Unmapped partitioning ignores the processor interconnection topology throughout the 

entire partitioning process. A Post-mapped partition is an unmapped partition that has 

been mapped to the processor topology with a simple mapping algorithm applied post 

partitioning. The Premapped partition begins with a partition that is crudely mapped to 

the processor topology and then is optimised ignoring the processor topology to minimise 

the number of cut edges. The Mapped partition acknowledges the processor topology 

throughout the partitioning process. Some partitions produced by JOSTLE can be seen 

in Figure 3.4.
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Strategy

Unmapped

Postmapped

Premapped

Mapped

Initial partition

Greedy

Greedy

Geometric sort

Geometric sort

Optimisation

Uniform

Uniform

Uniform

Grid

Processor allocation

No

Yes

No

No

Table 3.1: Partition mapping strategies provided by JOSTLE

3.2.5 Parallel Partitioning

Ideally the partition of the mesh should be carried out at run time in parallel. As P and N 

increase an O(N) partitioning algorithm may become unacceptable for a solver running 

at O(f(N)/P). Few of the available partitioning algorithms are suitable for parallel 

implementation. The work of Chris Walshaw [Wal95] and Ralf Diekmann [DMM95] 

aims to provide paralleliseable routines that can be used to partition and also re-partition 

meshes in a dynamic load balancing scheme. This strategy relies on obtaining a rapid 

initial mesh partition to crudely distribute the mesh across the processors and then 

operate on the partitions in parallel to optimise the partitions. Difficulties arise when 

the size of the mesh becomes too great to fit onto one processor. This is a natural 

consequence of massively parallel processing where the capacity of the whole machine 

may be orders of magnitude greater than the capacity of a single node. In such an 

instance the partitioning algorithm may have to begin by taking an arbitrary partition 

of the mesh as it is read in from file and distributed in sequence to a number (not 

necessarily all) of the processors. A high level of communication will then be required to 

re-distribute the mesh amongst all of the processors to provide a crude initial partition. 

If the partitioning strategy is, for example, to be the mapped JOSTLE scheme this will 

be a reasonably successful process. Geometric sorting will be a reasonably simple and 

cheap algorithm to implement as a parallel initial partition scheme.
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3.3 Mesh Decomposition

Having obtained a partition of the mesh into P parts the partition is used to decompose 

the mesh into P sub-domains that can be allocated one per processor. The elements, 

nodes and faces that are allocated uniquely to a processor are referred to in this thesis 

as the core mesh components. These components are said to be 'owned' by a processor. 

Each sub-domain is extended with a layer of points and elements which overlap the sub- 

domains along the inter-processor boundaries as illustrated in Figure 3.5. These overlap 

or halo regions carry variable values from neighbouring sub-domains that are required 

for the solution of variables inside the sub-domain.

Problem 
Mesh

1D Domain Decomposition

Add Halo Elements

Figure 3.5: Mesh partitioned into three parts with overlap elements applied.

Decomposition of the mesh into a set of extended sub-meshes consists of five essential 

steps;

i) Find a partition of the mesh (primary). 

ii) Derive secondary partitions from the primary partition.
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iii) Determine the mesh overlaps to the neighbouring sub-domains.

iv) Re-number the mesh in each sub-domain.

v) Construct a template for overlap data exchange.

3.3.1 Derive Secondary Partitions

As mentioned in Section 3.2 the mesh entity that provides the dominant spatial reference 

used by the code to be parallelised is ordinarily chosen as a basis for mesh partitioning. 

This partition is referred to as the primary partition. Secondary partitions may be 

derived from the primary partition for the other mesh entities used in the code. The 

compute time for a CM code is dominated by the time spent in the solution of an 

equation of the form Ax = b. It is consequently important for load balance to obtain 

an equal number rows and an equal number of coefficients in each of the distributed A 

matrices. This inevitably results in some compromise. With an element based x for 

example, a primary partition based on elements will keep the vector length and hence 

number of rows in A balanced across each sub-domain. But the number of off diagonal 

coefficients in each A depends upon the number of internal faces in the sub-domain. 

Balancing elements will not necessarily balance matrix coefficients In the case of the two 

dimensional flow code used in this thesis the primary partition is based on elements and 

there is only one secondary partition, that being for grid points. For reasons of clarity 

the following discussion is based on an element based primary partition. The discussion 

is nonetheless applicable to other mesh entity partitioning orders.

Secondary partitions are inherited from the primary partition in accordance with the 

connectivity between the entities. For example, each node is connected to a number 

of elements, each of which belongs exclusively to one sub-domain. This provides a 

basis for the allocation of the node to a sub-domain. The most obvious and simple 

partition inheritance scheme is to allocate the node to the sub-domain which owns the 

majority of the connected elements. In the case of an equal number of connected elements 

being owned by two or more sub-domains, the node is allocated to the domain which
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owns the least number of nodes. This simple, inexpensive scheme gives a good match 

between the primary and secondary partitions, but can lead to an unnecessarily high load 

imbalance in the secondary partition. It does not follow that two unstructured meshes 

with equal numbers of elements will have the same number of nodes, indeed there may 

be a large discrepancy between the two node counts. When the two meshes are sub- 

domains to be operated on in parallel this can produce an unacceptably high degree of 

load imbalance for element based matrix computations as discussed earlier and possibly 

even greater imbalance for node based calculations. If however the node allocation 

between the sub-domains is forced to be balanced the element and node partition may 

not be well matched which can result in an undesirably large and imbalanced overlap 

layer. This will consequently lead to large and unbalanced communications between the 

sub-domains. The comments about load and communication imbalance in sections 3.2.1 

and 3.2.2 should be borne in mind at this point.

The load imbalance may be redressed to an extent by the use of more elaborate 

schemes to derive secondary partitions. A possibly superior partition inheritance scheme 

is to first locate the nodes for which all connected elements lie in one partition and for 

each node found, allocate the node to that partition. The remaining nodes are then 

allocated in turn to the least loaded domain beginning with the node which has the 

greatest connectivity to that domain.

It is conceivable that the nodal imbalance may become unmanageably large, in which 

case some nodes may require allocating to sub-domains that own none of the connected 

elements in order to redress the balance. This will result in a communication imbalance 

which may or may not be significant depending upon the characteristics of the hardware 

platform. The quality of the secondary partitions then becomes a platform dependent 

optimisation issue.

These schemes may be seen as an attempt at solving a graph problem by the applica­ 

tion of simple heuristics. It may therefore be worthwhile to use graph based techniques 

to derive the secondary partitions. A possible scheme is to produce a weighted graph 

of the nodes which clusters the nodes for which all connected elements lie on one parti-

42



CHAPTER 3. DOMAIN DECOMPOSITION

tion. This graph may then be partitioned using one of the graph partitioning algorithms 

developed for obtaining primary partitions. The work of Chris Walshaw [Wal95] is of 

interest here. The amount of effort that it is worthwhile devoting to the derivation of a 

secondary partition is problem dependent. Like the search for a primary partition there 

may be no singular optimal solution and a near optimal solution will in the majority of 

cases provide a sufficiently good solution.

3.3.2 Overlap Construction

The overlaps between the sub-domains are determined in accordance with the data de­ 

pendency required by the code as discussed in section 1.2. For example, if the solution 

for an element based variable requires the values in all adjacent elements as illustrated in 

Figure 1.3a then the adjacent elements that lie in neighbouring sub-domains are added as 

overlaps to the list of elements. Similarly if the nodes that compose the overlap elements 

are also required as in Figure 1.3d then they too are added to the list of overlap nodes. 

In this way the description of the mesh for each sub-domain is extended to include all 

data that are required for solution of the sub-domain. The utility used to construct 

overlaps for the codes parallelised in this thesis uses a simple set of rules to determine 

the elements and nodes which are to be included in the overlaps (Appendix A).

When using only the element based flow and heat code;

Overlap elements are denned as:-

All elements that are adjacent to a core element. 

Overlap nodes are defined as:-

Nodes of all elements including overlaps that are not core nodes.

However the node based stress code involves a more extensive data dependency 

and the required overlap layers become deeper so that;

Additional overlap elements are defined as:-
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Elements that contain at least one core node. 

Additional overlap nodes are defined as:-

Nodes that are connected to core nodes.

An example of the overlaps required for the flow code is shown in Figure 3.6. The same 

mesh is shown in Figure 3.7 with the additional elements and nodes in the overlaps 

required for the stress code .

o

Key:
core element 

core node 

overlap element 

overlap node

Figure 3.6: A mesh of 28 triangles divided into two sub-domains with the overlaps 

required for the flow scheme.

Providing that the mesh data structures are either one dimensional linked or indexed 

lists, or stored as multi dimensional arrays in which the number of entities is the highest 

index (last in F77, first in C) then the overlaps may be stored as extensions to existing 

data structures which allows them to be passed to subroutines and addressed in the 

parallel code in the same manner as the original data structures. This hides the paral­ 

lelism and results in only small source file changes being required to extend mesh as it
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core element 

• core node 

";:' overlap element 

o overlap node

Figure 3.7: A mesh of 28 triangles divided into two sub-domains with the overlaps 

required for the stress scheme.

is implemented in the serial code. For example the array of grid points in Fortran may 

be declared as;

INTEGER DIMENSION, NO_OF_GRID_POINTS

INTEGER GRID_POINTS(1:DIMENSION, 1:NO_OF_GRID_POINTS)..

This array may be easily extended to include overlaps as;

INTEGER DIMENSION, EXTD_NO_OF_GRID_POINTS

INTEGER GRID_POINTS(1:DIMENSION, 1:EXTD_NO_OF_GRID_POINTS)

Clearly this structure will still be correctly declared in all subsequent subroutines calls 

without any code modification. Subroutines may be called with either the original or the 

extended point count and the declaration will remain consistent. If however the array of 

grid points is declared as;

INTEGER GRID_POINTS(1:NO_OF_GRID_POINTS, 1:DIMENSION)

45



CHAPTER 3. DOMAIN DECOMPOSITION

Then the array may also be extended as;

INTEGER GRID_POINTS(1:EXTD_NO_OF_GRID_POINTS, 1:DIMENSION)

But now each subroutine must declare grid points to the extended size in order to 

remain consistent. It may prove less invasive to change the serial code to reverse such 

declarations and subsequently all occurrences of the variable. Apart from cache effects 

such a modification will not affect the serial code and unlikely to raise objections from 

the serial code authors.

3.3.3 Parallel Execution Control and Renumbering

Consider the following code fragment that loops over each grid point in each element.

INTEGER NUMBER_OF_GP_IN_ELEMENT(1: NUMBER, OF.ELEMENTS)
INTEGER GP_IN_ELEMENT (1: MAX_NUM_GP_PER_ELE, 1: NUMBER_OF_ELEMENTS)
REAL XELE(1:NUMBER.OF.ELEMENTS)
REAL YGP(1:NUMBER_OF_GRID_POINTS)

DO I = 1, NUMBER_OF_ELEMENTS
DO J = 1, NUMBER_OF_GP_IN_ELEMENT(I)

XELE(I) = XELE(I) + YGP(GP_IN_ELEMENT(J,I))
END DO 

END DO

Two arrays are used in this example to describe the element topology;

NUMBER_OF_GP_IN_ELEMENT is a vector that contains the number of grid points that are 

in each element.

GP_IN_ELEMENT is a two dimensional array that contains the grid point number for each 

grid point in each element.

Two data items are involved; an element based variable XELE and a grid point based 

variable YGP . This code fragment can be implemented in parallel by using 'owner com­ 

putes' execution control masks which are conditionals to control the scope of operations
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for each processor. In this example the execution control mask is implemented with a 

function OWNER.OF.ELEMENT that returns true only if the argument is an element number 

that is owned by the processor, the computation only being performed if this is the case.

DO I = 1, NUMBER_OF_ELEMENTS
IF ( OWNER_OF_ELEMENT(I) ) THEN

DO J = 1, NUMBER_OF_GP_IN_ELEMENT(I))
XELE(I) = XELE(I) + YGP(GP_IN_ELEMENT(J,D) 

END DO 
END IF 

END DO

However in order to achieve scalability of memory each processor can store only its own 

sub-domain. In this example the most fundamental mesh entity, the grid point, described 

as a set of coordinates, will renumber itself through the simple process of being packed 

into memory as a consecutive list of coordinates for each grid point in the sub-domain. So 

the core grid points are packed into the first 1 to LOCAL_NUMBER_OF_GRID_POINTS locations 

and the overlap grid points as LOCAL_NUMBER_OF_GRID_POINTS+1 to EXT_LOC_NUMBER_OF_GRID_POINTS. 

Where LOCAL_NUMBER_OF_GRID_POINTS is the number of grid points in the sub-domain core 

and EXT_LOC_NUM_OF_GRID_POINTS is the number of grid points in the entire sub-domain. 

Similarly extracting and storing (packing) only the local entries for the variables XELE, 

YGP and NUMBER.OF_GP_IN_ELEMENT is straightforward. Other mesh entities are however 

described as relationships or 'pointers' between entities. So packing GP_IN_ELEMENT re­ 

sults in a list of global node numbers for each locally numbered element. To allow for 

this pointer arrays must be embedded into the code in order that each time the code 

refers to a grid point of an element the pointer array indirectly addresses a grid point in 

the local numbering scheme.

INTEGER NUMBER_OF_GP_IN_ELEMENT(1 :EXT_LOC_NUM_OF_ELEMENTS)
INTEGER GP_IN_ELEMENT(1 :MAX_NUM_GP_PER_ELE, 1:EXT_LOC_NDM_OF_ELEMENTS)
INTEGER PTR.ELE(1:NUMBER.OF.ELEMENTS)
INTEGER PTR.GP(1:NUMBER_OF_GRID_POINTS)
REAL XELE( 1:EXT_LOC_NUM_OF_ELEMENTS)
REAL YGP(1: EXT_LOC_NUM_OF_GRID_POINTS)

DO I = 1, NUMBER.OF.ELEMENTS
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IF ( OWNER_OF_ELEMENT(I) ) THEN
DO J = 1, NUMBER_OF_GP_IN_ELEMENT(PTR_ELE(I))

XELE(PTR_ELE(I)) = XELE(PTR_ELE(I)) + 
i- YGP (PTR.GP (GP_IN_ELEMENT (J ,PTR_ELE (I))))

END DO 
END IF 

END DO

Here two indirection pointer arrays are used PTR_ELE and PTR.GP which store the local 

element and grid point numbers respectively. For example if element number 28 is 

local element number 14 then PTR_ELE(28) has the value 14. The code still uses global 

numbers, only the addresses are indirected. A simple optimisation here is to move the 

element indirection upwards.

DO II = 1, NUMBER_OF_ELEMENTS
IF ( OWNER_OF_ELEMENT(II) ) THEN 

I = PTR.ELE(II) 
DO J = 1, NUMBER_OF_GP_IN_ELEMENT(I)

XELE(I) = XELE(I) + YGP(PTR_GP(GP_IN_ELEMENT(J,I))) 
END DO 

END IF 
END DO

These pointers will need to be globally sized and so do not scale in memory. Also the loop 

still increments over the global number of elements and so does not scale in processing. 

Execution of the control mask for every element can be a significant operation. Since 

PTR.ELE now represents the local renumbering implied by the array packing, the local 

element numbers in the above loop when the execution control mask is true will run from 

1 to LOCAL_NUMBER_OF_ELEMENTS. Therefore a further optimisation is possible by changing 

the loop limits to local numbering.

DO I = 1, LOCAL_NTJMBER_OF_ELEMENTS
DO J = 1, NUMBER.OF_GP_IN_ELEMENT(I)

XELE(I) = XELE(I) + YGP(PTR_GP(GP_IN_ELEMENT(J,I)))
END DO 

END DO

Now only one pointer is required but it remains globally sized and so is still not scalable. 

If all uses of GP_IN_ELEMENT throughout the code are as the index of the array PTR.GP
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then this indirection can be propagated upwards to the highest level where PTR_GP is 

used to renumber the contents of GP_IN_ELEMENT to a local grid point numbering scheme. 

The example now becomes

DO I = 1, LOCAL_NUMBER_OF_ELEMENTS
DO J = 1, NUMBER_OF_GP_IN_ELEMENT(I)

XELE(I) = XELE(I) + YGP(GP_IN_ELEMENT(J,I))
END DO 

END DO

If this code fragment exists inside a subroutine where NUMBER.OF.ELEMENTS is passed 

into the subroutine as an argument then the calling routine can be modified to call the 

subroutine with LOCAL_NUMBER_OF_ELEMENTS so that no code modification is required in 
the subroutine.

This thesis follows the option of re-numbering each entire sub-domain to a local 

numbering scheme as this has been shown above to be consistent with objectives (ii) and 

(iii). Each processor 'sees' its renumbered sub-domain as a complete mesh consisting 

of 1 to ne elements and 1 to np grid points where ne and np are the local number of 

elements and grid points respectively. This can be carried out at the highest possible 

level in the code, that is where the problem specification is read from file. A record of the 

global (serial) numbers for each local mesh entity (referred to as a decomposition index) 

is stored on each processor in order to allow reconstruction of data back into its original 

global form. Translation back from local to global numbering using this record is only 

required as an i/o process when writing variables to file. Rebuilding of global variables is 

carried out by the i/o (master) processor and so this is the only processor that requires 

the decomposition indices, however the indices are distributed with the sub-domains to 

maintain scalability of memory. This scheme can encounter difficulty when the problem 

size increases to the point at which the geometry description will no longer fit into the 

memory of the master processor. This is not however insurmountable and is discussed 

further in Section 4.2 and Chapter 7. The effect of renumbering is illustrated in Figures 

3.8 and 3.9. Consider the element partition in Figure 3.9 The partition list Pe of 

processor numbers that own each element as returned from the partitioner utility is as 

follows;

1111112222222111111112222222
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11

Key:
core element 

• core node 

"\V'' overlap element 

o overlap node

Figure 3.8: A mesh of 28 triangles divided into two sub-domains showing the renumbering 

of grid points from global to local numbering.

core element 

• core node 

~,~ * overlap element 

o overlap node

Figure 3.9: A mesh of 28 triangles divided into two sub-domains showing the renumbering 

of elements from global to local numbering.
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The resulting element renumbering as stored in PTR_ELE is listed in Table 3.2. The

Global
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Processor 1
1
2
3
4
5
6
15
0
0
0
0
0
16
7
8
9
10
11
12
13
14
17
18
0
0
0
0
0

Processor2
0
0
0
0
0
15
1
2
3
4
5
6
7
16
17
0
0
0
0
0
18
8
9
10
11
12
13
14

Table 3.2: Element indirection pointer arrays for the partition illustrated in Figure 3.9

renumbering has maintained the core elements as the first 14 elements in each partition 

allowing the transformation to local loop limits. The implications of renumbering are 

discussed further in Section 4.3.

3.3.4 Overlap Communication

The notion of the mesh overlaps is that each processor calculates only the values of core 

variables. That is variables that are associated with mesh entities within its own domain,
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no computation being performed on the overlaps. Variable values are then swapped into 

the overlap from the processors on which the variables are calculated, as shown in Fig­ 

ure 3.10. This is a one way communication process between all adjacent sub-domains. 

Data travels only from the core of the sub-domains (where it is calculated) into the 

overlaps of adjacent sub-domains (where it is used). There are however some rather 

obvious exceptions, where data operations are so trivial that it is faster to perform the 

operation locally on the overlap than to import the new values from a neighbour (see 

Jacobi example in Appendix C. For example, setting a variable to a fixed value, zero 

for instance, requires a processor only to write a register to memory. This will undoubt­ 

edly be faster than reading data from the communication port and writing the data 

back out to memory. Implementation of such exceptions may be seen as an optimisa­ 

tion of the parallelisation. Indeed such optimisations may produce an improvement in 

performance on some platforms and not others. Overlap values are generally exchanged 

between processors as soon as practically possible, usually whenever a variable has been 

fully updated, for example, at each iteration of a solver. Asynchronous communication 

schemes may be used to improve the parallel performance by overlapping communication 

with calculation. This is discussed further in Chapter 5. The coordination of overlap

Figure 3.10: Overlap update communication scheme.

data exchange requires a communication template for each sub-domain which holds the 

mesh entity numbers to be sent and the processor number to which they are to be trans-
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mitted. A corresponding template records the entity numbers to be received and the 

processor number from which they will arrive. These templates must be matched across 

each sub-domain boundary so that the data sent from one sub-domain is received in 

the anticipated order in the adjacent sub-domain. This is achieved by preserving the 

global ordering of the elements. For a simple processor interconnection topology such as 

a pipeline (a one dimensional chain), where the partition can guarantee mapping to the 

processor topology, the template becomes reasonably straightforward. Exchange of data 

between processors can be synchronised by the template on an odd-even alternate pair 

basis. This is a four cycle process described in the following table.

Processor Number Odd Even

Send right Receive left

Receive right Send left

Send left Receive right

Receive left Send right

Table 3.3: Communication operations required for a simple chain of processors

This simple scheme enables the exchange to be carried out as a parallel process. 

More elaborate processor topologies can be handled with variations on such a scheme. 

Regular two dimensional processor arrays can for instance use red - black checkerboard 

type schemes. It cannot however be assumed that the mesh can be partitioned in such 

a way as to map perfectly to the processor interconnection topology (Section 3.2.3). 

A scheme is required which can cope efficiently with an unstructured partition of an 

unstructured mesh mapped imperfectly to an array of processors. This is a scheduling 

problem of the type familiar to operational research [Wil84].

The scheme adopted involves constructing the graph G(P, C) of processors P and 

sub-domain (processor) interconnections C and attaching weights to the interconnects 

according to the size of the interface. This graph is initially sorted by weight with the 

processor pair having the largest amount of data to communicate being first. The graph 

is then scheduled to provide a sequence in which exchanges occur as a parallel process
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with the largest exchanges first. Starting with the heaviest node pair, the processor 

numbers are recorded. The graph is then searched for the next heaviest weight that does 

not use one of the already recorded processors. When found this processor pair is sorted 

to be the next entry in the graph. This operation is carried out until either all processors 

are involved in communication or an unrecorded processor pair is no longer available for 

scheduling. If there are still entries in the graph that have not been scheduled the list 

of recorded processors is cleared and the process repeated until all processor pairs have 

been scheduled. This results in a layering of exchange communication processes which 

should be (but is not guaranteed to be) no deeper than the maximum node degree of 

the processor graph G(P,C).

Consider the mesh illustrated in Figure 3.11 decomposed into three renumbered sub- 

domains in Figure 3.12 Here the overlap renumbering has followed the original global

Figure 3.11: Mesh of 42 triangular elements.

numbering scheme Processor (a) must receive data for overlap elements 17 and 18 from 

processor (b) where they are numbered 6 and 9 respectively. Similarly processor (b) must 

receive data for overlap elements 15 and 16 from processor (a) where they are numbered 

3 and 8 respectively. The communications for this example may be carried out in six 

stages as follows:
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(b)

15
'. 16 .--' \

-•' \ 17 .-'

19

Figure 3.12: Mesh of 42 triangular elements partitioned into three renumbered sub- 

domains.

Processor (a)

1 Sending to processor (b) elements 3 and 8

2 Receiving from processor (b) elements 17 and 18

3 Sending to processor (c) elements 9 and 12

4 Receiving from processor (c) elements 15 and 16

Processor (b)

1 Receiving from processor (a) elements 15 and 16

2 Sending to processor (a) elements 6 and 9

5 Sending to processor (c) elements 5, 7, 10, and 13

6 Receiving from processor (c) elements 17, 18, 19 and 20

Processor (c)

55



CHAPTER 3. DOMAIN DECOMPOSITION

3 Receiving from processor (a) elements 15 and 19

4 Sending to processor (a) elements 5 and 6

5 Receiving from processor (b) elements 16, 17, 18 and 20

6 Sending to processor (b) elements 6, 8, 10 and 14

Note that these element numbers are always in increasing order both globally and 

locally. The sending is always carried out first to allow parallelism in packing.

Data that is to be transmitted from a sub-domain core is collected into a data buffer 

which allows one transmission and therefore only one latency to complete the transfer. 

Unpacking of data from a buffer is an overhead that is not necessary for data reception. 

Data is only ever received into an overlap, so arranging for the overlap renumbering 

scheme to consecutively number overlap entities that are owned by the same processor 

allows incoming data to be received directly into the overlap memory. So the global 

number ordering is preserved for each interface to other processors, but not throughout 

the overlap. In the above example elements 15 and 19 on processor (c) are in the core 

of processor (a) and so should be numbered consecutively. This involves renumbering 

overlap element 19 on processor (c) to be 16 and then overlap elements 16, 17, 18 and 

20 to be 17, 18, 19 and 20 respectively.
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Algorithm Decomposition

The algorithms employed in unstructured mesh codes have invariably been developed us­ 

ing the traditional Von Neumann programming model of sequential instruction execution. 

The conversion of these serial algorithms into parallel algorithms may be straightforward, 

or may be very involved. Parallelism exists in many forms with a CM code. Having 

chosen a geometric (topologic) DD strategy, decomposition of the algorithms to concur­ 

rently operate locally within each sub-domain whilst performing the same operations as 

the original serial algorithm becomes a largely automatic process of communicating data 

as and when required. Profiling CM execution shows that the majority of run time is 

spent within the matrix equation solvers. It is these solvers that are subjected to close 

scrutiny to extract the maximum possible parallel efficiency Ideally we should be able 

to meet objective (i) and produce results from the parallel code that identically match 

the results produced by the serial code. This may not however, be either practical or 

possible. A variation between the serial and parallel code is sometimes inevitable. There 

are instances where it may be more important for example to meet objective (iii) and 

produce a highly efficient parallel code at the expense of failing to precisely meet ob­ 

jective (i). Again it will usually be a case of having to make an intelligent decision as 

to which is the overridingly important criteria. Often there is little choice but to either 

modify the algorithm or else suffer unacceptable inefficiency.
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4.1 UIFS - Unstructured Incompressible Flow and Stress

The code used as a vehicle for developing the parallel strategies used in this thesis is 

known as UIFS. Developed for the purpose of modelling the processes involved in metals 

casting UIFS is a 2D unstructured mesh code for solving the Navier Stokes equations 

for transient and steady state flow problems with solidification [Cho93] along with the 

elastic stress-strain equations [FBCL91, CBCP92]. The techniques developed for UIFS 

have led to the development of the 3D code PHYSICA which provides even greater 

modelling flexibility for multi-physical processes.

4.1.1 The FV Fluid Dynamics Scheme

The Finite Volume (FV) (irregular control volume) fluid dynamics scheme in UIFS solves 

for flow on a single unstructured mesh using a modification of the SIMPLE algorithm 

of Patanker and Spalding [PatSO]. This is a cell centred scheme in which the control 

volume is formed by the elements of the mesh which may be any arbitrary shape. The 

definition of a staggered grid as used by Patanker et. al. is not clear for an unstructured 

mesh. So the scheme uses a co-located grid with the Rhie and Chow [RC82] pressure 

weighted interpolation method to suppress pressure oscillation. The solidification scheme 

uses the Voller and Cross enthalpy method [VCM87] to model the velocity correction 

and latent heat release during phase change. The dependency required by the solvers in 

this element centred finite volume scheme is simple nearest neighbour as illustrated in 

Figure 1.3(a). However in order to evaluate the cell volumes for the displaced grid the 

grid point dependency as shown in Figure 1.3(d) is also required. Hence the definition 

of the overlap mesh entities as given in Section 3.3.2. The scheme produces a sparse 

irregular diagonally dominant system matrix which may be solved using either Jacobi or 

Gauss Seidel SOR iterative methods. The fluid dynamics loop is illustrated in Figure 4.3. 

The number of iterations for each of the momentum, pressure and heat solvers are set 

at run time along with the maximum and minimum number of sweeps around the fluid 

dynamics loop. Convergence is based on the residuals of all of momentum, heat and
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pressure variables.

Momentum Equations

The equations governing the conservation of momentum for an incompressible fluid in a 

cartesian system of coordinates may be expressed as:

d(puj] dp' ' + V   (pvui) = V   (AtViii) --^- + sui (4.1) 
ot orii

Here Ui is the momentum in the i axis, similar equations govern the momentum in the 

other axis. The other terms are; the density p the resultant velocity, v, the viscosity //, 

the pressure p, the face normal component HI and the momentum source in the i axis 

sUi . The momentum source term includes the buoyancy source s^ and the Darcy source 

Sd{ terms which couple the momentum equation to the energy equation.

$Ui = ^>6j > ^di ' "^boundary ' ^other \ )

Continuity Equation

Then continuity equation governing mass conservation can be expressed as:

|£ + V   (pv) = sc (4.3) 

Here sc is the mass source.

Energy Equation

Conservation of energy can be written as:

dph
dt

+ V   (pvh) = V   (fcVT) + sh (4.4)

Where h is the specific enthalpy, k is the thermal conductivity, T is the temperature and 

s^ is the volumetric source for heat. This equation may be expressed solely in terms of 

temperature using h — cT where c is the specific heat.
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Buoyancy Source

The source terms sUt in Equation 4.1 couples into the energy equation through the 

buoyancy terms. Two alternative buoyancy terms are available in UIFS; constant and 

variable density. The constant density approximation Boussinesq source s^ in the i 

direction can be expressed as

sbi = -prefP9i(T-TTef ) (4.5)

Where pref is the constant density, (3 is the volumetric coefficient of thermal expansion, T 

is the temperature, Tref is the reference temperature (temperature for pref) and gi is the 

acceleration due to gravity in the i direction. Density may be more accurately expressed 

as a function of temperature p(T) so the buoyancy source becomes

sbi = p(T}9i (4.6)

Solidification Sources

For a system undergoing a change of phase from liquid to solid (or solid to liquid) the 

total enthalpy H can be expressed as the sum of the 'sensible' enthalpy h and the latent 

heat A#

H = h + AH . (4.7)

Latent heat will be some function F of temperature

= F(T) (4.8)

which may be written in terms of the latent heat of solidification L and liquid fraction 

(ratio of liquid to solid) fi

F(T) = Lfi (4.9)

Combining this with Equation 4.4 gives the enthalpy source due to the latent heat of 

solidification as

) (4.10)
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Velocity correction for changes in material properties during phase transition uses the 

Darcy source term

sdi = ~ut (4.11)

where p, is the viscosity and K is the permeability. Little data is available for the viscosity 

and permeabilities of materials undergoing phase transition so a simple approximation 

involving the liquid fraction is used

sdi = -B(l - fi)ui (4.12) 

where B is an empirical constant.

4.1.2 The FV Solid Mechanics Scheme

The grid point (vertex) based solid mechanics code uses the finite volume unstructured 

mesh procedure of Fryer et.al. [FBCL91, Fry93] for the solution of the elastic stress-strain 

equations for bodies undergoing thermal or mechanical loads.

Governing Equations

The general equilibrium equations governing the conservation of force on a static body 

are

-*• (4 - 13)

dy dx ~ y

Where on, Oij and fi are the components of normal stress, shear stress and body forces 

acting in direction i. In matrix form the above equations become

cr = Ds (4.14)

where the stress vector is a = (oxx ayy <Jzy ) T and the elastic strains are e ^ = 

(£xx £yy £xy) T - The matrix D holds the material elastic properties; Youngs modulus
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E and Poissons ratio // where for plane strain

E
(1 - /Li2 )

1

V

0

n
1

0

0

0

9 -

(4.15)

The total strain is related to displacement by

e <T> = Ld (4.16)

Where the displacement vector d = (u v)T represents displacement in the x and y 

directions and L holds the differential operators

L-

do:

dy
d ^\ 

o

. dy dx .

(4.17)

Thermal strains are given by

(4.18)

where a is the coefficient of thermal expansion, AT is the temperature change and

Discretisation of the Solution Domain

This scheme forms a control volume around each grid point with contributions to the 

control volume from each of the surrounding mesh elements as illustrated in Figure 4.1. 

Here the sub control volumes in each surrounding element are formed by connecting 

the element centres to the face centres. Temperature and displacement variables are 

stored at the grid points and the material properties, Youngs modulus, Poisson ratio, 

etc., are associated with the elements. The equilibrium equations are integrated over the 

control volumes where the divergence theorem is used to transform the area integrals
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Grid Points

Integration 
Points

Sub-Control 
Volumes

Figure 4.1: Formation of a control volume from sub-control volumes around point P.

into line integrals which enables the stresses to be approximated at the integration points 

on the surface of the control volume. The discretisation uses reference elements to 

represent the mesh elements in a local coordinate system in a manner similar to the 

Finite Element (FE) method [SR87] (Figure 4.2). This is a computationally efficient 

scheme which obtains approximations to the derivatives in the equilibrium equations in 

local coordinates and uses a Jacobian matrix to map the approximations back to global 

coordinates. A variable 0 and its derivatives can be approximated anywhere within an 

element of m grid points using Equations 4.19 and 4.20.

(4.19)

(4.20)

1=1

dk f^ dk 

k = s t

The shape functions Ni for a bilinear quadrilateral are

Ni(s,t) = 0.25(1
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Sub-Control 
Volumes .

Integration 
Points t

Global Element Reference Element

Figure 4.2: Mapping of a finite volume element to a reference element.

N2 (s,t) = 0.25(1 -s)(l + t) 

N3 (s,t) = 0.25(1 -s)(l-t) 

Ni(s,t) = 0.25(1+ s)(l-t)

The Jacobian matrix in Equation 4.21 is used to map the derivatives of the shape function 

from local to global coordinates.

dx

. dy

dx dy '
ds ds
dx dy

L ~dt ~dt -I

r dNj i ~ds~

dx

dx ~dt

dy_ 
ds

/T* .X

(4.21)
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dt dt y
Where Xi and y; are the grid point coordinates of the element.

Discretisation of the equilibrium equations

The tensor form of the equilibrium equation is

ux .=ti (4-22) 

Integrating over a control volume

Jn 

Using the divergence theorem

/ ?pi dto= [ <7ij • HJ dS (4.24) 
Jn oxj Js

where S is the surface of the control volume. Which gives the matrix form for the integral 

over the surface of the control volume

i (7 -ndS = I fdtt (4.25) 
Js Jn

Substituting the stress-displacement relationship cr = DLNu — De(Th) with B = LN 

into Equation 4.25 gives an integral expression in terms of the nodal displacements u for 

each control volume.

/ (DBu - De(Th)) -ndS= [ f dti (4.26) 
./s Jn

rearranging to give displacements in terms of strain

/ (DBu) • n dS = I f d$l + <f De(Th) • n dS (4.27) 
Js Jn. Js

For plane stress the stress-displacement relationships are

-C/ I \S W/ <-/ \J , ^ •* ___ I / ^ —. rt \oxx = 7;——^ —+//—-(!+ /^)aT (4.28)

E [dv du
o\ I r\ r ^** ^— /i^) L^2/ ^

E r5w 9ui
2(1+Ai) dy dx
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Boundary Conditions

For control volumes at the boundary of the domain F the contribution of the faces that 

lie on the boundary are given as boundary conditions.

-i DBu-ncJT (4.29)

This surface integral can represent displacements and loads applied to the domain sur­ 

face.

Solution Procedure

For each axis, coefficients for each node are assembled to form a sparse irregular diag­ 

onally dominant system matrix A. The vector x = (ui, • • • un ) where n is the number 

of nodes in the mesh represents the displacements for this axis. The vector b repre­ 

sents the source terms from the temperature changes, stresses and boundary conditions. 

The equation Ax = b is solved using the diagonally preconditioned conjugate gradient 

method.

4.1.3 Integration within UIFS

The fluid mechanics code is loosely coupled with the solid mechanics code as shown in 

Figure 4.3. Here the fluid dynamics loop reaches convergence for a time step before 

entering the solid mechanics loop. When the solid mechanics loop reaches convergence 

UIFS loops for the next time step. Each of the solvers may be turned on or off to 

suit the requirements of a given problem. As the fluid mechanics stage often requires 

more effort to obtain a satisfactory solution than solid mechanics, the elastic solver loop 

may be masked to only run every kth time step. Even with k = I the bulk of the 

computational effort is usually expended in the fluid mechanics loop. This is of course 

problem dependent, for a solidification type problem the initial time steps may be entirely 

fluid and the closing time steps entirely solid.

Discretisation of the integration of the governing equations leads to matrix equations 

that exhibit localised dependencies across the mesh. Solution of an element requires
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Time-Step 
Loop

Solidification

/Converge? \

Displacement

Converge?

Step

Fluid
Dynamics
Loop

Solid
Mechanics 
Loop

Figure 4.3: Flowchart for UIFS.
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data from its neighbouring elements. From the perspective of parallelisation the details 

of the solution schemes are important only in so far as they give a description of the data 

dependency. The way in which neighbouring variables and related variables interdepend 

in the solution system is the overriding concern for parallelisation. It is important to 

realise the close interaction of the variables, from the point of initialisation onwards 

the solution of any one variable is dependent upon many previously solved variables. 

Momentum is used to solve for pressure, which in turn is used to solve for energy, energy 

for solidification, solid fraction for displacement, displacement for momentum and so 

the cycle of dependence continues. This relationship places bounds on what and where 

to communicate. The use of data in an overlap indicates that a communication will 

be required prior to the calculation, this communication must be performed after the 

required data is calculated in a previous stage.

4.2 Parallelisation of UIFS

The bulk of the Parallel UIFS (PUIFS) code remains almost untouched by parallelisa­ 

tion. Following the SPMD paradigm each processor has a copy of the entire (PUIFS) 

code which is executed in a similar manner to the serial case. The parallelism is to a 

significant extent hidden 'behind the scenes' while the code runs. The point at which 

a UIFS problem is parallelised is as the problem geometry specification (grid points, 

element topology, element adjacency, boundaries) is read from file. This provides a clear 

interface between the serial problem as it exists on file and the parallel problem as it 

exists in the distributed memory. At run time the PUIFS code reads the problem in a de­ 

composed form from file. That is a problem which has been partitioned into re-numbered 

sub-domains along with some extra data to specify the overlaps and communications. 

Decomposition of the problem files may be carried out transparently at run time on the 

i/o processor or executed as a preprocessing task on the problem files possibly using 

another machine. This allows processing of problems that are too large for the geome­ 

try to be accommodated by the memory of one node in the parallel machine. Also the
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same decomposed problem may be re-run with altered boundary conditions or material 

properties without the need to pre-process each time. As each part of the problem is 

read in (by the one i/o processor (master) ) the parts are distributed to the appropriate 

processor. The data space required to store the extra variables is concealed as a common 

block that is included into parallelised routines, this is given in Appendix A. This system 

is actually a master slave paradigm during the i/o process, there may be only one source 

code but it contains conditionals such as;

IF ( MASTER ) THEN

Once the decomposed problem has been loaded onto the processors each processor acts 

on its own sub-domain as if it were a self contained problem. Execution on each proces­ 

sor is synchronised in information exchanges in order that the global problem remains 

consistent. At the end of the run the results and re-start variables are dumped to file 

in exactly the same format as a serial code run. Reconstruction of the global variables 

from the decomposed variables is carried out by the i/o processor Each processor in 

sequence hands its variable back to the i/o processor along with the global numbering 

scheme required to place the variables into global order. The current implementation 

requires that the i/o processor has sufficient memory to allow the re-construction of a 

single global sized data item.

4.2.1 Partitioning

The JOSTLE program [WCE+95] is used to provide a partition of the mesh. JOSTLE 

operates on a graph that in the case of UIFS represents the mesh and returns a partition 

of that graph (Appendix B). For PUIFS the dual graph of the mesh is used to obtain 

a partition based on elements. The dual graph is the graph in which the nodes or 

vertices of the graph represent the elements of the mesh and the graph edges represent 

the element adjacency (connectivity). For the purposes of experimentation JOSTLE 

can be run as a stand alone program that produces a file describing the mesh partition. 

This allows for flexibility in adjusting the parameters used to control the partition and 

visualisation of the partition produced. JOSTLE has also been embedded into PUIFS

69



CHAPTER 4. ALGORITHM DECOMPOSITION

so that a partition may be produced rapidly at run time. The partition produced by 

JOSTLE (primary partition) is used to generate a secondary partition for the mesh grid 

points as described in Section 3.3.1. The primary and secondary partitions are inverted 

to generate lists of the global element and grid point numbers that exist in each sub- 

domain. The rules for overlap generation given in Section 3.3.2 are applied to produce 

descriptions of the overlaps in a global numbering scheme. The element and grid point 

lists are extended to contain the global element and grid point numbers for the overlaps. 

Boundaries in UIFS are described as a set of grid points and boundary conditions are 

described in file as a set of 'patches'. This allows the boundary points along with the 

associated boundary patch number to be partitioned in accordance with the extended 

grid point partition. The boundary patches and material properties are not partitioned. 

These parameters are read at run time and distributed to all processors whether or not 

they are needed on that processor. For small numbers of processors (P < 500 ) this is 

an insignificant memory overhead for PUIFS exchanged for simplicity of the code.

4.2.2 Renumbering

To create self-contained sub-domains the extended mesh partitions are renumbered into 

local numbering schemes as described in Section 3.3.3. All element and grid point based 

variables are packed and renumbered with overlaps following the core data. All loops in 

PUIFS are transformed into local loops, all mesh entity relationships (element topology, 

connectivity, etc.) are renumbered to local numbering along with the boundary grid point 

lists. Therefore no execution control masks or indirection pointer arrays are required.

4.2.3 Communication

Overlap communication schedules are calculated at the beginning of a code run as part of 

the decomposition process. This is calculated once using the global problem geometry as 

read from file. The decomposed problem definition is subsequently distributed along with 

the communication schedules to the appropriate processors. Any invariant quantities 

are communicated once only at the start of the code before entering the timestep loop.
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All other variables are communicated as and when required using the communication 

schedules calculated at the start of the code.

4.2.4 Parallel Utilities

The parallel utility library developed for PUIFS is described in Appendix A. The routines 

PARTITION, SECONDARY and DECOMPOSE are used either at the start of the code run to 

decompose the problem into sub-domains or as components of a preprocessor to pre- 

partition the problem specification.

The key communication utility is SWAP( VARIABLE, SPATIAL_REFERENCE ) which per­ 

forms an exchange of overlap data for the input VARIABLE between all processors in ac­ 

cordance with the communication schedules. The SPATIAL.REFERENCE argument defines 

which of the communication schedules to be used, i.e. element or grid point. Overlap 

exchange is a highly parallel process which involves a matching send and receive opera­ 

tion across all sub-domain boundaries. The time required for a SWAP is approximated as 

2smai^m where smax is the maximum number node order in the processor graph G(P, C] 

in Section 3.3.4 and tm is the average time to send a message. The important point here 

is that the number of processors P does not feature highly in this approximation and so 

SWAP scales well, the time required being independent of P.

Global commutative (reduce) operations ( GSUM, GMAX, GAND, etc.) are used to obtain 

global values of a commutative function by combining local partial evaluations of the 

function and broadcasting the results to each processor. The time required for a global 

commutative operation is dependent on the actual implementation of the operation which 

can vary with partition strategy, communication harness and platform hardware. For 

example a global commutative may be implemented on a chain of processors by passing 

all partial evaluations back to the master processor where the global value can be evalu­ 

ated which is then passed back along the chain in a broadcast to all processors. The time 

required for this operation will consequently be something like to 2(P — l)i/ where fy is 

the communication start up time (latency). With a mesh of p x q processors a similar 

strategy will require 2(p + q-2)ti. No matter how a global operation is implemented the
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time required increases with increasing P and so does not scale well. Care is therefore 

required in avoiding as far as possible such operations. Some global commutative strate­ 

gies do not ensure that an identical result reaches all processors. It must be remembered 

that a floating point operation has finite precision and so floating point arithmetic com­ 

mutative operations are not truly commutative due to the effects of rounding errors. 

So for example a GSUM operation based on a ring of processors that accumulates partial 

summations by passing the partial results around the ring of processors will complete 

in (P — l)ti but the values left by GSUM on each processor will have different rounding 

errors. This can cause severe problems to many algorithms. If, for instance, the result of 

GSUM is tested to determine convergence some processors may test true and others false 

and the code will consequently fail. Execution of a global summation in parallel must 

produce a different result to the serial summation but both results are valid. It is only 

required that a global commutative produces an identical result across all processors, 

not an identical result to the serial commutative operation.

The SCATTER routine is used to distribute a variable across the processors, again in 

accordance with the given SPATIAL_REFERENCE. Similarly GATHER is used to rebuild vari­ 

ables from components on each processor. SCATTER GATHER operations are costly of both 

time and memory, requiring a number of messages proportional to P and globally dimen­ 

sioned data space. The negative impact of these operations is however not particularly 

significant as they are only required for i/o operations.

4.3 Matrix Decomposition

Computational mechanics codes invariably require the solution to a number of systems 

of equations of the form Ax = b which represent the discretisation of the equations 

governing the physical processes. For an element based finite difference method the form 

of the matrix equation for a regular 4x4 mesh is represented in Figure 4.4

Splitting this 4 times4 mesh into two renumbered sub-domains is illustrated in Fig­ 

ure 4.5. Here the parallel system matrices are no longer square as the rows of the matrices
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Figure 4.4: Matrix form for a five point element stencil over a 4 x 4 regular mesh.

that correspond to the inter processor boundary now contain coefficients that address 

elements that lie in the overlap region beyond the core length of the x vector. Note 

that the number of rows in the system matrix and the length of the b vector correspond 

with the number of core elements. The matrix and b vector are not required for the 

overlap. Note also that the 64 matrix coefficients are divided equally between each sub- 

domain. No additional calculation is required. The matrix and vector are constructed 

by each processor as if the processor was operating in isolation only upon its sub-domain 

core. The mesh topology for each sub-domain causes the generation of extra coefficients 

that correspond to the overlaps. The solution of the two sets of equations, one for each 

sub-domain achieves consistency through the interchange at each iteration of the solver 

of the coefficients of x that lie in the overlaps. The values for the overlap regions are 

exchanged as shown by the arrows in Figure 4.5.

These small, structured examples are easy to follow but do not clearly illustrate the 

effects of a decomposed system matrix for an unstructured mesh. Figure 4.6 illustrates 

a simple two dimensional unstructured mesh of 42 triangular elements.

Figure 4.7 shows the same mesh partitioned into three sub-domains which have been 

extended with a layer of overlap elements. The sub-domains are shown as being renum­ 

bered following the ordering of the original mesh. This is simply an aid to seeing how the
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Figure 4.5: 4x4 mesh operated on as 2 sub-domains showing the transfer of data into 

the overlaps on each renumbered sub-domain.

Figure 4.6: Mesh of 42 triangular elements.
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system matrices for the decomposed problem have been constructed. The decomposed 

matrix would be the same had the sub-domains not been renumbered but the same 

element order followed. Even so this simple example is difficult for the eye to follow. 

Changing the order of the elements within the sub-domains would yield a different but 

nevertheless equivalent set of sub-domain matrix equations.

(b)
19 ••..

.15 18 .'. 16 .--' '
\ 17 .-'

(a)

Figure 4.7: Mesh of 42 triangular elements partitioned into three renumbered sub- 

domains.

The original matrix is shown in Figure 4.8 to be sparse and irregular with a diagonally 

symmetric number of entries, as would be expected of an unstructured mesh problem. 

The matrix equations corresponding to the partitioned mesh are shown in Figure 4.9. 

This figure illustrates the complex pattern of dependence (communication) between the 

sub-domains (processors).

4.4 Iterative Methods

The length of x required by practical CM problems is large, of the order 1000 to 

10,000,000. Iterative methods have been shown to provide the most effective and the
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Figure 4.8: Matrix for the 42 triangle mesh.

most popular schemes. Direct methods tend to be more demanding of memory and less 

efficient when dealing with large problems. Three iterative methods are used by UIFS; 

Jacobi, Gauss Seidel SOR and the diagonally preconditioned conjugate gradient method.

4.4.1 Jacobi Method

The Jacobi method attempts to find a solution to Ax = b by generating each x\ from 

components of x^) for k > 0 according to Equation 4.30 until convergence is reached.

(4.30)

i = 1,2,... , n

This algorithm is entirely independent of the order in which the components x are 

evaluated, the values for x\ are dependent only upon the values for the previous 

iteration x\ . In parallel each processor calculates a new vector x(fc+1 ) for its core

components using the values for x in the core and overlap. The values for

are then copied into the overlap regions from the processors on which the components
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(a)

(b)

(c)

Figure 4.9: Matrices for the 42 triangle mesh partitioned into three sub-domains.

77



CHAPTER 4. ALGORITHM DECOMPOSITION

have been calculated. This process is carried out at each iteration to ensure consistency 

with the original serial algorithm. Using this parallel Jacobi solver the solution variables 

remain identical to those of the serial code at each iteration of the solution procedure. 

In parallel the system matrix is no longer a n x n sparse matrix as illustrated in Figures 

4.4 and 4.8 but is partitioned and re-ordered (renumbered) as shown in Figures 4.5 and 

4.9 to be distributed over P processors as a set of np x mp sparse matrices where np is 

the number of elements (coefficients) in sub-domain p and mp is the number of elements 

(coefficients) including the overlaps in sub-domain p. The parallel Jacobi method for P 

processors can therefore be expressed as Equation 4.31.

±^i (4.

i = 1,2, ...,np 

p=l,2,...,P

Equation 4.31 may give the impression that the parallel solver now has to loop over k, 

np and mp , which would not be a particularly efficient parallel method. But the system 

matrix is sparse and the code for the solver only loops over non-zero coefficients in each 

row. The number of non-zero coefficients for each row (mesh entity) of the parallel 

system matrix is identical to that of the serial system matrix Consequently the parallel 

overhead caused by the non-square local matrices is zero.

Convergence is tested using the norm ( /i, /2 or ^oo ) of the difference between x(fc+1 ) 

and x( fc ). The actual value of the li and l<i norms depend upon a global summation 

and so rounding errors could in theory cause the parallel version of the algorithm to 

terminate one iteration before or after convergence of the serial algorithm. This effect is 

however rarely observed in practice.

The parallel Jacobi algorithm is given in Appendix C.I.
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4.4.2 Gauss-Seidel SOR

The Gauss-Seidel Successive Over Relaxation (GS-SOR) method was developed as an 

improvement of the Jacobi solver that typically exhibits faster convergence. The Gauss- 

Seidel method differs from the Jacobi method only in that the most current values of 

the variable x are used in each iteration. This can be thought of as overwriting x at 

each iteration which has the advantage of reduced storage requirement. Successive Over 

Relaxation is a scalar magnification factor a applied at each iteration in a attempt to 

accelerate convergence. GS-SOR may be expressed as Equation 4.32.

= a ^=1'^ v "^ y r "* + (1 - a)x\k) (4.32)
I _. I \ ' t ^ '

i = 1,2,... ,n

An over relaxation coefficient may be similarly applied to the Jacobi method, however it 

is sometimes chosen to under relax a solver ( a < 1.0 ) in order to improve the stability of 

the algorithm. The optimal relaxation coefficient may be calculated using sophisticated 

eigenvalue analysis. Such analysis is however rarely performed, empirical values for a are 

generally adopted. Because the most current values are used for evaluation of each coeffi­ 

cient the algorithm is dependent upon the order of evaluation. This order dependency is 

sometimes used in structured problems as a means of accelerating convergence for some 

problems by 'upwinding' the solvers with the pressure gradient. When parallelising a 

Gauss-Seidel solver for a structured mesh, pipeline techniques may be used to ensure 

consistency of the parallel algorithm [JC91]. The ordered sweep of a solver across the 

domain, which makes such techniques possible is however not appropriate when consider­ 

ing an unstructured mesh. Parallel communication costs make it inefficient to identically 

parallelise a Gauss-Seidel iterative solver for an unstructured mesh as the parallelism 

is restricted and many small, frequent communications will be required. The order of 

evaluation of the coefficients must be modified if an effective parallel scheme is to be 

found. Mesh ordering may simply be a side effect of mesh generation or an attempt at 

cache optimisation but has no intended effect on the numerical scheme. Alteration of
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the order of coefficient evaluation is therefore of little consequence (bandwidth minimi­ 

sation techniques may be applied to the decomposed matrices). The simplest and most 

obvious solution is to implement an overlap update scheme exactly as described for the 

Jacobi algorithm. The resulting parallel algorithm becomes a near Gauss-Seidel hybrid 

of Gauss-Seidel and Jacobi in that the components of x^+1 ^ that are addressed in the

overlaps are actually x^. This may not be so great a disturbance to the algorithm as 

it first appears. Equation 4.32 is not particularly accurate as the coefficients of Xj + 

in are actually x^ ' for i < j. The GS-SOR algorithm may be more correctly expressed as:

(4 33)
i = 1, 2, . . . , n

In a similar manner to Equation 4.31 the parallel Gauss-Seidel SOR equation imple­ 

mented over P processors can be expressed as:

X; = a. I ————————————————————————— I + (1 — Oi]x; (4.34)
I o-a
\ J

l; = 1, 2,... , np 

P=1,2,...,P

Results given in this thesis show that variations in the values of serial and parallel 

variables and differences in the number of iterations required to converge are both in­ 

significant. In practical terms the variations between the serial and parallel results are 

significantly less than the variations caused by running the serial code on different proces­ 

sors (Spare, i860, MIPS, etc.). Even with processors using IEEE arithmetic differences 

in rounding modes lead to variations in results.

The parallel Gauss-Seidel SOR algorithm is given in Appendix C.2.
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4.4.3 Conjugate Gradient

The Conjugate Gradient (CG) method has become an established nonstationary iterative 

method for symmetric positive definite systems due to its rapid convergence rate and 

computational efficiency, O(m] where m is the number of non-zero components of A. 

The conjugate gradient solver is an extension of the method of steepest descent where 

search directions are constructed by conjugation of the residuals [She94, GL89, BBC+ 94]. 

Preconditioning is often applied to improve the condition number of the matrix A. For 

a positive definite matrix preconditioner M

Ax = b = M- 1 Ax = M~ 1 b (4.35)

If the eigenvalues of M~ 1 A are clustered better than the eigenvalues of A then the 

preconditioned problem may be iteratively solved faster than the original problem. .A 

clear description of preconditioning is given by Shewchuck in [She94]. The preconditioned 

conjugate gradient algorithm consists of iterating the following stages until p (1) reaches 

the required precision.
r(1 ) = b - Ax* 1 * (4.36)

1 ) (4.37)

M (4.38)

u<*> - Ap<*> (4.39)
Jk)

X(*+D = x(*) + a(*) p(*) (4.41)

r(*) _ a(*) u(*) (4.42)

= M-ir(*+D (4.43)
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This method involves three basic computational processes; matrix- vector product, 

vector inner product and AXPY (ax plus y).

Remembering that each distributed A matrix is no longer square (Figure 4.9) as it 

now addresses coefficients in the overlaps. So an overlap exchange communication is 

required to obtain the values of p in the overlaps before evaluating the matrix vector 

product Ap in equation 4.39.

The inner products in equations 4.40 and 4.44 are calculated in parallel as a sum of 

local partial inner products. Equation 4.44 for example is evaluated as:

—P =m

P=i j=i

This requires a global summation and hence synchronisation across all processors.

The AXPY in equations 4.41, 4.42 and 4.46 is an ideally parallel process requiring 

no inter processor communication.

The simplest preconditioner is the diagonal or Jacobi preconditioner which is the 

diagonal of the A matrix that has the effect of scaling the quadratic form along the co­ 

ordinate axes. Whilst not the most effective preconditioner this is easy to implement and 

effective for most reasonably well conditioned CM matrices. The actual CG method used 

in UIFS uses a diagonal prescaling modification [LL88] which involves transformation of 

Ax = b into Ax = b where the components of A, x and b are:

(4.48)

(4.49)

(4.50)

This results in the diagonal of A being the identity matrix I and so for a Jacobi precon­ 

ditioner M = I. This has the computational advantages of removing equation 4.43 and 

simplifying calculation of the matrix- vector product in equation 4.39. After convergence 

x is rescaled to give x.
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The Diagonally Preconditioned Conjugate Gradient (DPCG) algorithm, along with most 

other preconditioning schemes is explicit in that it uses only old variable values within 

each iteration. It may therefore be expected to give identical results from both serial and 

parallel versions. However rounding errors occur in the global summation involved in 

the inner products and these errors are different for serial and parallel implementations. 

As the solutions are highly sensitive to a. and fi these small variations lead to differences 

between the serial and parallel solution. In this case both serial and parallel solutions 

are equally valid solutions to the original problem. Much of the literature discusses the 

efficient implementation of global accumulation [dC95] without mention of this effect.

The parallel diagonally preconditioned conjugate gradient algorithm is given in Ap­ 

pendix C.3.

4.4.4 Summary

Implementation of geometric domain decomposition as presented in Chapter 3 within 

UIFS was entirely straightforward. The entire UIFS code has been parallelised with only 

minimal changes to the code and the algorithm being required. Many of the subroutines 

required no changes whatsoever as was anticipated in Section 3.3.3 The majority of 

programming effort was required for the implementation of the initial decomposition 

of the problem. The three iterative methods discussed, Jacobi, Gauss SOR and DPCG 

provide algorithms with a high degree of easily utilised parallelism. The Jacobi method is 

one of the simplest algorithms to parallelise. It requires only one exchange of overlap data 

per iteration and one global operation to determine convergence. The DPCG algorithm 

appears at first sight to be similarly straightforward. However the global summations 

involved in the algorithm affect the numeric result. It is worth remembering that a 

simple arithmetic process such as summing n real numbers is affected by rounding errors. 

The result given by summing from 1 to n is likely to be different from the result of 

summing from n to 1. In parallel, with two processors the summation would be executed
n

as something like £)i2 + 53a+u which would again give a different result. In practice
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the coefficients that constitute the system matrix are also subject numerical differences 

arising from Founding errors which can mask the rounding effects from the solver. If the 

original serial algorithm is stable then these effects have no actual significance on the 

results. If rounding effects lead to divergence of the parallel results from the serial then 

suspicion must fall on the validity of the serial case.

The Gauss SOR scheme is however subject to algorithmic modification. There are 

schemes that can allow this algorithm to be faithfully reproduced in parallel but such 

schemes involve frequent small communications and/or pipelining techniques with the 

consequent high cost of communication startup latency along with pipeline startup and 

shutdown latency. Given that parallel machines are far from perfect the more pragmatic 

parallel scheme described in Section 4.4.2 has been successfully adopted.
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Performance of the Parallel Code

The performance yardstick for a parallel code is often by comparison of the run-time for 

one processor t\ against the run-time for many processors tp . This gives rise to a number 

of interesting problems. For example it may not be possible to run a large problem on 

only one processor, or indeed small numbers of processors, if it does not fit into the 

available memory. It is possible that modification of the algorithms may be required to 

achieve a parallel solution. In which case the the run-time for the best serial code on 

one processor should be compared with the parallel run-time [RVD93]. Such results are 

highly machine dependent. The calculation to communication ratio of a machine has 

a profound effect on the parallel performance of a particular code. Early developments 

in this research were conducted on T800 transputer based equipment which returned 

very'good parallel efficiency. Rather than reflecting a good parallel solution these results 

reflected the rather poor calculation performance of the T800 in comparison to its good 

communication capability. Results are highly problem dependent. Problem size can 

determine whether latency or bandwidth forms the bound on performance. Some workers 

prefer a more absolute frame of reference such as comparison of the run-time of a problem 

on a parallel machine with a well known serial machine, often a Cray Y-MP. This reduces 

to a measure of the achieved Mflop rate. Additionally scalability tries to provide some 

measure to describe how far the parallelism of a code and/or platform may be exploited, 

i.e. does the performance scale with the number of processors? Invariably the parallel
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performance is a function of the nature of the machine, the original code and the quality 

of the parallelisation.

5.1 Measuring Performance

Strictly speaking the run time of the original serial code should be used as a measure of 

the run time on one processor. This is however not always the most practical scheme. It 

is often the case that in scrutinising a code for parallelisation there arise instances where 

optimisations of the serial code may be made, and must be made to achieve honest 

comparisons. One common occurrence in CM codes is the printing of end of sweep 

residuals, principally as a means of imparting confidence to the code user. Interrupting 

an operating system to print can carry a significant overhead and so silencing a code 

gives a reduced run-time. This effect is of greater importance in parallel where for many 

systems the operating system interrupt can carry a significant overhead. We are left 

with a dilemma as to what we consider to be the run time on one processor and what 

is the run time on many processors. Many CM codes incorporate a timer to report the 

elapsed CPU time for a run. It has become normal practice for such timers to start after 

reading the problem specification from file and stop before writing results to file. This is 

reasonable as file access times can be dependent on other traffic on the systems. Timing 

only the CPU activity gives an optimistic view of parallel performance as parallel i/o 

hardware is rare and so i/o activity seldom scales. The order of CM codes tends to 

be somewhere between linear O(N) and quadratic O(N2 } so measuring only CPU time 

is not unreasonable as CPU time forms the asymptotic bound on run-time for large 

problems.

This situation can become difficult when faced with parallelisation of codes that 

perform unnecessary calculations. That is computation that has no effect whatsoever on 

the results. There is a choice between identically parallelising the unnecessary calculation 

or modifying the serial code to remove the redundant code. It is possible that the 

redundant code can involve dependencies across the mesh that are not required by the
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rest of the code. It is often the case that some 'fixing' of the serial code is required in 

the parallelisation process.

The results presented in this Chapter use the CPU time of the parallel code on one 

processor for t\ , which is in this case less than the run time of the original code. The 

overhead of the parallel version on a single processor is only the cost of the call to the 

communication routines in which no communication occurs. This has proved to have an 

insignificant impact on the run time in numerous parallelised codes.

5.1.1 Speed-up

Parallel speed-up Sp is the ratio of the run-time on one processor t\ to the run-time on 

P processors tp.

- (5.1)

If the parallelisation is 100% efficient then Sp = P but this is rarely the case for real 

CM problems. There is always some fraction of the code fs (0 < /s < 1) that is 

inherently serial. This limitation on the maximum possible speed-up 5™ax is summarised 

as Amdahl's law in Equation 5.2 [Amd67].

(5 '2)
The asymptotic limit of Amdahl's law as P -> oo gives:

emax __ /c o\ Op — —- \\j.o)
fs

This clearly places a finite limit on the maximum achievable speed-up from a paral­ 

lel code. Amdahl's law has been cited as a strong reason to doubt the usefulness of 

massively parallel systems. For a fixed problem size fs is constant and so scalability 

is restricted. Scalability can only be possible if /s reduces with an increasing problem 

size. In practice fs for a CM code is often extremely small even with modest problem 

sizes. CM codes tend to be somewhere between O(N) and O(N2 ) whereas fs somewhere 

between constant and O(N}. Consequently fs tends towards insignificance as the prob­ 

lem size increases and so scalability becomes possible. The communication cost and the
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idle time invariably suffered in a parallel code also deteriate the performance further, 

however other factors not included in Amdahl's law such as better cache usage for each 

sub-domain in comparison with the global problem can have a beneficial effect.

5.1.2 Parallel Efficiency

Parallel efficiency is sometimes used as the performance measure for a parallel code. 

Parallel efficiency Ep is simply the ratio of the parallel speed-up Sp to the number of 

processors P.

100% (5.4)

As Section 5.1.1 has shown parallel efficiency cannot exceed 100%, or can it? There are 

two instances in which parallel efficiency may become 'superlinear' and exceed 100%. 

One possibility is to break some data dependency in the parallel code that is not ac­ 

tually required. The implication here is that the serial code is open to some form of 

optimisation. Having applied the optimisation to the serial code a superlinear parallel 

efficiency should no longer be achievable. The other cause of superlinear performance 

is cache usage. Decomposing a large problem, that does not fit well into cache, into a 

number of small problems, may allow the decomposed problems to fit into cache. Cache 

success is an important factor in CPU performance, especially for the extremely high 

clock rate ( >100MHz ) new generation of processors that are able to process data far 

faster than conventional DRAM memory may be accessed.

5.1.3 Scalability

There are two aspects to scalability; scalability of computation and scalability of memory.

Scalability of Computation

Computation is said to be scalable if the gradient of the graph of speed-up against 

number of processors is positive. That is if more processors are used then the run time 

will reduce. In practical terms the returned processing power is not profitable once the 

gradient of the curve has reduced to around 0.5. Given that practical problems must have
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an inherently serial portion of code then a given problem has a finite limit on scalability 

dictated by Amdahls law. It is often chosen to demonstrate the scalability of a machine 

using a constant (usually large) problem size per processor in an attempt at minimising 

the appearance of Amdahls law. For a fixed problem, as the number of processors 

increases, the compute time on each processor decreases while the communication time 

remains constant or increases slightly [Joh92]. It is predominantly this change in the 

ratio of calculation to communication that leads to the drop in speed-up as the number 

of processors increases.

Scalability of Memory

Memory is said to be scalable if the problem size can be increased in proportion to the 

number of processors. That is (assuming a constant amount of memory per processor) 

if the number of processors is doubled can a problem twice as big be accommodated 

on the machine. Scalable memory implies that there are no globally sized data items 

and no significant arrays that have the number of processors as an index. In practice 

it can be simplifying to have some global sized structures. With care the restriction on 

memory scalability can be an acceptable level. For example the topology of a hexahedral 

element can be represented by an array of length number of elements and width eight. 

If the memory size on each PE is x words then the largest topology that can be held 

on one PE is |. A typical code may use around 100 variables each of length number of 

elements. So the largest problem that can be run per PE will be y^. If this memory 

space is to be used, for example, to store the entire mesh topology for the purpose of 

partitioning and then re-cycled to hold the distributed problem data, this places a limit 

on scalability of ^p, or 12 processors, which is clearly not acceptable. If however only a 

single globally dimensioned vector is required and the code uses 200 variables then the 

limit on scalability is more like 200 which could well be considered acceptable. If the 

code uses more variables, or i/o processors are available with increased memory then 

this limit can easily become larger than any currently available machine. So with a little 

care it is possible to take advantage of a globally dimensioned data structure without
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prejudicing scalability.

5.2 Irregular Shape Test Case

The irregular shape mesh of 3034 triangular elements partitioned by JOSTLE using three 

different mapping strategies is shown in Figure 3.4. This shape was automatically meshed 

[Law94] as 3034, 10027, 30064, 60005 and 119822 triangles. The JOSTLE code [Wal95] 

was used to partition each of the meshes using five different partitioning strategies:

i) Unmapped: Machine topology is ignored throughout the partitioning process.

ii) Postmapped: The unmapped partition is post-mapped to match the machine topol­ 

ogy as a p x 2 grid.

iii) Premapped: Initially mapped 2D partition optimised to reduce the number of cut 

edges.

iv) MappedlD: Mapped to a ID processor array, 

v) Mapped2D: Mapped to a 2D processor array.

The effect of the partitioning strategy on the cut edge count is shown in Figures 5.1 - 5.5. 

Through all of the mesh sizes the lowest cut edge count is obtained using the unmapped 

(postmapped) partitioning strategy. The mappedlD and mapped2D partitions give the 

highest cut edge count with the mappedlD partition having approximately twice the cut 

edge count of the other partitions.
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Figure 5.1: The number of cut edges against the number of partitions for a range of 

partition strategies on the 3,034 triangle irregular shape mesh.
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Figure 5.2: The number of cut edges against the number of partitions for a range of 

partition strategies on the 10,027 triangle irregular shape mesh.
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Figure 5.3: The number of cut edges against the number of partitions for a range of 

partition strategies on the 30,064 triangle irregular shape mesh.
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Figure 5.4: The number of cut edges against the number of partitions for a range of 

partition strategies on the 60,005 triangle irregular shape mesh.
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Figure 5.5: The number of cut edges against the number of partitions for a range of 

partition strategies on the 119,822 triangle irregular shape mesh.
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5.2.1 Fluid Dynamic Test Case

To provide a fluid dynamic test case the shape is filled with liquid gallium at 80 Centi­ 

grade. The boundary is set at 80 Centigrade with the exception of the top surface which 

is cooled to 30 Centigrade. The test case is run to steady state to produce the convection 

currents illustrated in Figure 5.6. The momentum, pressure and heat solvers only are 

used for this test case with the Jacobi method used for each solver. The Jacobi method 

is used simply because the parallel results with a Jacobi solver are identical regardless of 

the number of processors used. This makes it easier to detect any errors in the test runs. 

The Jacobi method does not give the best serial performance, Gauss Seidel SOR would 

ordinarily be used for the pressure and heat solvers for such a problem. This however 

is irrelevant for the purposes of evaluating speed-up, results would be the same if Gauss 

Seidel SOR was used.

Figure 5.6: Flow vectors for the fluid dynamic test case.

5.2.2 Solid Mechanics Test Case

To provide a solid mechanic test case the mesh was left free to move in all directions 

with the exception of the top surface which was fixed. Material properties used were 

for gallium. A uniform fixed thermal load of 10 Centigrade was applied to an initial
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temperature of -30 Centigrade. This load was applied for four two second time steps. 

Four time steps were used simply to provide a convenient run time for the purposes of 

measurement. An exaggerated mesh displacement is shown in Figure 5.7. Only the dis­ 

placements are solved in this test case, stresses being calculated from the displacements. 

The diagonally preconditioned conjugate gradient method is used in the displacement 
solvers.

Figure 5.7: Mesh displacement for the solid mechanics test case.

5.2.3 Solidification Test Case

The solidification test case starts with liquid gallium close to solidification at 30 Centi­ 

grade. The boundary is held at 20 Centigrade with the exception of the top surface 
which is held at 0 Centigrade. The case is run until the gallium is largely solidified with 

small patches of recirculating liquid remaining. The residual stress contours, mesh dis­ 

placement and flow vectors are illustrated in Figure 5.8. This case uses the larger stress 

overlaps for both the flow and the stress portions of the problem. At the start of the run 

there is negligible work for the stress solver as the majority of the domain is liquid. At 

the end of the run only a small portion of the problem remains liquid yet the majority 

of the compute time is still required in the flow solvers. All of the solvers are enabled
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for this test case, momentum, pressure, heat and displacement. The Jacobi method is 

used for the momentum, pressure and heat solvers as in the fluid dynamics test case. 

The diagonally preconditioned conjugate gradient method is used in the displacement 

solvers as in the solid mechanics test case.

Figure 5.8: Residual stress contours and flow vectors for the solidification test case.

5.3 Performance on the Transtech Paramid

The following speed-up curves in Figures 5.9 - 5.26 were obtained using the Transtech 

Paramid at the University of Greenwich. This machine has 28 i860XP based processor 

elements, 16 of which are equipped with 32MBytes and 12 of which are equipped with 

16MByte of fast (40ns) DRAM memory. Each i860 is equipped with a T800 commu­ 

nication co-processor with 8 or 4MByte of memory. The PE's are hard connected in 

pairs with Inmos C004 multi-stage crossbar switches providing interconnection between 

the PE pairs. This configuration allows great versatility in PE interconnection topol­ 

ogy. An obvious and simple arrangement for the Paramid topology is a px2 grid which 

is the arrangement used for these results. A virtual channel router resident on each 

processor allows message passing between all of the processors in the machine, allowing 

the machine to be programmed as though the machine were a fully connected network.
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Parmacs, PVM and C Toolset style communication libraries are all available on the 

Paramid. These results have been obtained using the C Toolset library as this library 

gives better performance than the alternatives on this platform.

The 30,064 element test case is the largest of the test cases that can fit into the 

memory of one 32MByte processor node. The serial run time for the 60,005 element 

case was regressed from the two processor run time and for the 119,822 element test case 

the four processor run time was used. Clearly this affects the absolute accuracy of the 

graphs but does not change the nature of the graphs in providing a comparison between 

partitioning techniques.

The lowest number of cut edges and therefore the lowest amount of communication 

for each mesh size is given by the unmapped (postmapped) partition but this partition 

clearly does not give the best speed-up performance. The unmapped and postmapped 

partitions are actually the same partition, the postmapped partition having had an 

additional optimised mapping of partitions to processors applied to it. Where the two 

partitions give a similar speed-up this reflects an unintentionally fortuitous mapping of 

the unmapped partition to the processor topology. It is possible that the unmapped 

and postmapped partitions may by chance be identical, it is however highly unlikely 

that the unmapped partition would ever give a better speed-up than the postmapped 

partition, in such a case the processor allocation strategy would have failed. Of course any 

performance differences between the unmapped and postmapped partitions are unlikely 

to be significant for small numbers of processors.

The best overall speed-up performance in the graphs is given by the mapped parti­ 

tions, despite the cut edge count being higher than the other partitions. This confirms 

the proposition that partitioning in accordance with the machine topology will result in 

improved performance.

Using a pipelined (mappedlD) partition leads to a significantly higher number of cut 

edges and consequently the message length is far greater, however fewer messages are 

required. A mappedlD partition requires only two messages and hence two latencies for 

each overlap update (one to each neighbour), which explains the perhaps unexpectedly
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good speed-up results for the pipeline partition.

The mapped2D partition in Figure 3.4 shows the maximum node degree of the pro­ 

cessor communication graph to be four. However the edges in this communication graph 

represent only element adjacency but the data dependency is actually more extensive 

than merely adjacency. Adding overlaps to the sub-domains therefore increases the max­ 

imum node degree of the processor communication graph to five as the overlaps reveal 

dependencies between sub-domains previously shown as unconnected. Consequently five 

messages are required for each overlap update. Given that the imbalance of elements 

between the sub-domains for all cases is less than 0.25%, and for the secondary grid 

point partition the imbalance is less than 0.75%, the effect of load imbalance for the test 

cases is insignificant (constant element shape with near constant mesh density).

It is therefore apparent from these results that the machine performance with this 

code is latency bound for the smaller test cases and bandwidth bound for the larger 

flow dominated test cases. Consider Figure 5.9, here the best speed-up is given with the 

mappedlD partition, this partition has the greatest amount of data to communicate but 

the lowest number of messages (latencies) per processor. Clearly latency is the bound 

on performance with this problem. For the larger fluid dynamic test case shown in Fig­ 

ure 5.13 the mapped2D partition gives the best speed-up. Here the large amount of data 

communication required for the mappedlD partition is eroding the advantage of fewer 

latencies allowing the mapped2D partition to outperform it. Clearly the inter-processor 

bandwidth is the bound on this problem. For the graphs between the small and large 

test case the transition from latency to bandwidth bound can be seen. Figure 5.26 is an 

encouraging result that demonstrates that scalability is achievable given a large enough 

problem size. The slow down exhibited with the small test cases is a direct consequence 

of the communication dominating the calculation, as the number of processors increases 

the time required for calculation falls but the time required for communication remains 

more or less constant.

Investigation shows that the relatively poor results for the solid mechanics test cases 

are primarily a consequence of the two global commutative operations required in every
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iteration of the the CG solver as implemented in the serial code. Each global commuta­ 

tive operation incurs a number of communication start-up latency costs, a high latency 

cost leads to poor performance. This is clearly revealed by profiling the parallel code 

execution where the global commutative summations dominate the run time. The so­ 

lidification test case uses the larger overlaps required for the stress code but this has 

only a slight effect on the speed up in comparison with the flow only results. This con­ 

firms that the predominant limiting factor for performance on the Transtech Paramid is 

the communication start up latency. Part of the solidification test case involves the CG 

solver but again this only marginally affects the results as the time required for the stress 

calculation is considerably less than the time required for the flow and heat calculation.

Start-up latency on the Transtech Paramid has been measured as 33//S with a peak 

bandwidth of l.TMBytes per second. This bandwidth is not sustained with virtual chan­ 

nel routing and degrades to around 1.3 for near neighbour communication and can get as 

low as 0.9 for non local messages. This can deteriorate further to around 0.3MBytes per 

second if the communication channels are saturated as they will be for real problems with 

unmapped partitions. Similarly the startup latency degrades with increasing network 

traffic. While this bandwidth is low in comparison with other parallel machines [DD95] 

the latency appears reasonably good. Similar performance may therefore be expected 

from other parallel platforms for the test cases that run to a latency bound. The test 

cases that show that what is bandwidth limitated on the Paramid would be expected to 

run slightly faster on other platforms and become latency bound.

Partitioning onto a p x q processor array where q > 2 has yet to be tested, but is 

not expected to improve performance on the Paramid (or indeed other machines) with 

these test cases because of the latency bound . Whilst a q — 2 mapped partition is likely 

to incur five latencies, a q > 2 mapped partition will incur eight latencies, but will not 

significantly reduce the number of cut edges until P (and N) increases considerably.
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5.3.1 Fluid dynamic test case
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Figure 5.9: Speed-up for the fluid dynamic test case against the number of processors 

for a range of partition strategies using a 3,034 triangle mesh.
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Figure 5.10: Speed-up for the fluid dynamic test case against the number of processors 

for a range of partition strategies using a 10,027 triangle mesh.
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Figure 5.11: Speed-up for the fluid dynamic test case against the number of processors 

for a range of partition strategies using a 30,064 triangle mesh.
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Figure 5.12: Speed-up for the fluid dynamic test case against the number of processors 

for a range of partition strategies using a 60,005 triangle mesh.
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Figure 5.13: Speed-up for the fluid dynamic test case against the number of processors 

for a range of partition strategies using a 119,822 triangle mesh.
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Figure 5.14: Best speed-up obtained for the fluid dynamic test case against the number 

of processors for a range of mesh sizes.
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5.3.2 Solid mechanics test case
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Figure 5.15: Graph of speed-up for the solid mechanics test case against the number of 

processors for a range of partition strategies using a 3,034 triangle mesh.
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Figure 5.16: Speed-up for the solid mechanics test case against the number of processors 

for a range of partition strategies using a 10,027 triangle mesh.
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Figure 5.17: Speed-up for the solid mechanics test case against the number of processors 

for a range of partition strategies using a 30,064 triangle mesh.

CL
3 i~O 

0 
<D 
CL 
CO

O——O unmapped 
D——n postmapped 

premapped 
mapped 1D 

V——V mapped2D

10 15 20
no. of processors

25 30

Figure 5.18: Speed-up for the solid mechanics test case against the number of processors 

for a range of partition strategies using a 60,005 triangle mesh.
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Figure 5.19: Speed-up for the solid mechanics test case against the number of processors 

for a range of partition strategies using a 119,822 triangle mesh.
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Figure 5.20: Best speed-up obtained for the solid mechanics test case against the number 

of processors for a range of mesh sizes.
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5.3.3 Solidification test case
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Figure 5.21: Speed-up for the solidification test case against the number of processors 

for a range of partition strategies using a 3,034 triangle mesh.
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Figure 5.22: Speed-up for the solidification test case against the number of processors 

for a range of partition strategies using a 10,027 triangle mesh.
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Figure 5.23: Speed-up for the solidification test case against the number of processors 

for a range of partition strategies using a 30,064 triangle mesh.
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Figure 5.24: Speed-up for the solidification test case against the number of processors 

for a range of partition strategies using a 60,005 triangle mesh.
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Figure 5.25: Speed-up for the solidification test case against the number of processors 

for a range of partition strategies using a 119,822 triangle mesh.

30

25

20
Q.
13

15
0
Q.
(0

10

O——O3034 
D——D 10027 
O——030064 
A——A 60005 
V——V 119822

10 15 20
no. of processors

25 30

Figure 5.26: Best speed-up obtained for the solidification test case against the number 

of processors for a range of mesh sizes.
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5.4 Improving Performance

The graphs given in Section 5.3 demonstrate a range of results from poor to good with 

moderate parallelism. It is fair to say that the poor results reflect poor communication 

performance, especially in terms of the communication start up latency. This coupled 

with the reasonably good calculation performance of the parallel platform, leads to a poor 

calculation to communication ratio. Given that a parallel machine is unlikely to ever 

return perfect performance all possible optimisations of the code should be sought. Two 

simple to implement optimisations that may be expected to realise a significant perfor­ 

mance improvement became apparent. One is to reduce the start-up latency overhead of 

global commutative operations, the other is to overlap communication with calculation.

5.4.1 Latency Reduction

As communication start up latency is the dominant component of the communication 

overhead it seems reasonable to tackle this problem first. Profiling code execution pro­ 

vides a reasonably accurate view of where time is being spent in the code. For the test 

cases presented already in this dissertation the profiles present a clear picture of the 

nature of the execution. The overriding proportion of the run time was taken up in the 

solvers and a significant portion of that time was spent in communication. Of the time 

spent in communication it took very nearly the same amount of time to carry out an 

overlap update as it did to carry out a global commutative operation.

5.4.2 Flow and Heat Solvers

Looking closely at the Jacobi and GS-SOR solvers it becomes apparent that the preferred 

mode of operation in UIFS is to run these solvers to some preset maximum number of 

iterations, usually set at less than the amount required for convergence, and then loop 

over all solvers until an overall convergence criteria is reached. The logic being that no 

one solver should take precedence in the path to convergence. The relative importance 

of each component in the solution is then reflected by the number of iterations set for
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each solver, e.g. 2 for each momentum, 10 for enthalpy, 20 for pressure correction. It 

is therefore not necessary to evaluate the residual norm at each iteration. A flag TOMITR 

in the original serial code is passed into each of the solvers to specify whether or not 

to run to the specified maximum number of iterations. For the test cases TOMITR is 

always true. A simple conditional test of TOMITR allows the norm evaluation and hence 

global commutative operation to be omitted. This reduces the serial run time by a small 

amount but has a significant effect on the parallel run time. The code for the modified 

Jacobi solver is given in Appendix D
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Figure 5-27: Speed-up obtained with the optimised (solid lines) and unoptimised (dashed 

lines) Jacobi solver for the fluid dynamics test case with a range of mesh sizes.

The effect of this modification on the fluid dynamics test case is shown in Figure 5.27. 

In comparison with the performance of the unoptimised solver the degree of improvement 

in the speed-up is more pronounced with large numbers of processors as the proportion 

of communication to calculation increases with the number of processors. Also the effect 

is more apparent with the smaller test cases as the proportion of communication to 

calculation is greater on the smaller, latency bound cases.
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5.4.3 Solid Mechanics Solver

The conjugate gradient solver used in the solid mechanics code has two inner product 

operations. These operations appear in the source as two separate global summation 

operations. Close inspection of the code reveals that that it is possible to re-arrange the 

code to bring the summations to the same point in the code. Recalling equation 4.44 

with the prescaled Jacobi preconditioner M = I gives

= r(*+l)Tr(*+l) (5 . 5)

Substituting r^+1) from equation 4.42 gives

p(k+i) = (r(k) _ a(k) u(k^T (r(k) _ a(*) u(*)) ( 5 .6 )

Expanding gives

= r(*)rr(*)

= p(k] +

Now calculation of p(k+l ^ requires two inner products rather than one but no longer re­ 

quires r^"1" 1 ) and so may be moved forward in the scheme to the same point as evaluation 

of <*(*) . Consequently the three global summations necessary for the three inner products 

may be merged into one communication. This is similar to the work of D'Azvedo et al 

[DER93] but involves no algorithmic modification whatsoever and so has no effect on 

stability or convergence of the method. The time required for a global summation tgs 

is dominated by the communication start up latency and so the time for three merged 

global summations is approximately equal to the time required for a single global sum­ 

mation. This modification is trading the time required for an inner product tip against 

the time required for a global summation. Remembering that that tgs increases with in­ 

creasing P and that tip decreases with increasing P then with increasing P there rapidly 

comes a point where this modification is beneficial. The code for the modified CG solver 

is given in Appendix D The effect of this modification on the solid mechanics test case 

is shown in Figure 5.28. These results use the one processor run time for the faster
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unmodified CG solver to give a correct evaluation of the speed-up. What is immediately 

apparent from Figure 5.28 is the improvement across a range of test case sizes for four 

or more processors. Close examination shows that the largest test case does not show 

improvement until more than four processors are used. This is consistent with tgs being 

a function of P only however tip is a function of both P and problem size N. Further 

increases in problem size would be expected to more clearly reveal this effect.
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Figure 5.28: Graph of speed-up obtained with the optimised (solid lines) and unoptimised 

(dashed lines) conjugate gradient solver for the solid mechanics test case with a range of 

mesh sizes.

Figure 5.28 represents a significant improvement on the speed-up results for the 

unoptimised solver but the one remaining commutative operation remains an undesirable 

overhead. This prompts a closer examination of the global summation operation. A 

global summation operation has a great deal of parallelism as each processor evaluates 

its own partial sum. The original global summation algorithm was developed before the 

virtual channel router provided all to all communication. For this reasons the global 

summation operates in a chain fashion where each processor number p receives a sum 

from processor p + 1, adds its own partial sum and passes the result to processor number
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p — 1. After P — 1 messages processor 1 has the global summation that can be broadcast 

to all processors, this will therefore involve 2(P - 1) latencies overall. So the latency 

overhead increases with the number of processors as discussed in section 4.2.4. This 

scheme ensures that each processor ends up with an identical copy of the global sum 

regardless of rounding errors. It should be remembered that parallel summation such as 

this is an order dependent calculation that will not identically reproduce the rounding 

errors as the number of processors varies. What is vitally important however is not that 

the rounding errors are the same for different numbers of processors but that the result 

on each processor is identical. This criteria is satisfied by a hypercube based scheme 

where processor pairs exchange their cumulative partial summations. This scheme also 

gives the lowest possible number of latencies In where 2n > P > 2n~ 1 . So for example 

for P between 33 and 64 only 12 latencies are required

The effect of this modification on the solid mechanics test case is shown in Figure 5.29.
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Figure 5.29: Speed-up obtained with the optimised conjugate gradient solver using a 

hypercube (solid lines) and a pipeline (dashed lines) global commutative for the solid 

mechanics test case with a range of mesh sizes.
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It is apparent from the results in Figure 5.29 that the effect of the hypercube com­ 

mutative is highly significant. This confirms the proposition that communication start 

up latency is an overridingly important factor in the achieved performance of a parallel 

system.

5.4.4 The Effect of Optimised Solvers on the Solidification ^Test Case

Figure 5.30 shows the effect of the optimised solvers and global commutative functions 

on the solidification test case. The reduction of latency based communication overheads 

in the optimised solvers has had three important effects. Comparing Figure 5.30 with 

the graph in Figure 5.24 for the unmodified code clearly shows the effects. Firstly, the 

overall level of speed-up has increased, speed-up that was in the range 12-15 for 28 

processors has increased to 15-21. Secondly, the separation of the performance from the 

different partitions is more pronounced. Most noticeably the lines for the mappedlD and 

mapped2D partitions have separated, this is a direct consequence of bandwidth becom­ 

ing more relevant as the latency is reduced in the solvers. The mappedlD partition has 

a larger amount of data to communicate and fewer communications than the mapped2D 

partition. Thirdly, the gradient of the mapped2D partition line is much steeper in Fig­ 

ure 5.30. Further speed-up could therefore be expected if more processors were available.

5.4.5 Asynchronous Communication

Many parallel platforms provide asynchronous or non-blocking communication calls to 

allow calculation to overlap communication. This allows subroutines to initialise a com­ 

munication and return from the subroutine call before completion of the communication. 

The communication can then be tested for completion (synchronised) at some future 

point in the code. In an ideal case, unrelated code can be executed immediately after 

an asynchronous communication call and synchronisation effected prior to the point at 

which the communicated data is used. This allows the execution of unrelated code to 

be overlapped with the communication. Often this is not possible since the communi-
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Figure 5.30: Speed-up obtained with the optimised solvers for the solidification test case 

with a range of partition strategies using a 60,005 triangle mesh.

cated data is immediately required. This is the case with PUIFS, however asynchronous 

communication can be exploited within the solvers by splitting the computation into 

two parts. The Jacobi and Gauss-Seidel solvers firstly solve for the variables around the 

perimeter of the sub-domain that are required in the overlaps of the neighbouring sub- 

domains. Once the perimeter calculation is complete, asynchronous communication of 

these variables is initiated. This leaves the time required to solve for the variables in the 

rest of the sub-domain (independent variables) for the asynchronous communication to 

complete. Completion of the communication is tested at a synchronisation point before 

proceeding to the next iteration. The conjugate gradient solver operates in a similar 

manner splitting two loops so that calculation of u and p over the independent grid 

points is overlapped with the communication. These schemes amount to a renumbering 

of each sub-domain core so that entities that are required by the overlaps of neighbouring 

sub-domains are numbered before the rest of the core. Such renumbering is generally 

acceptable as partitioning has already changed the original numbering which was often 

merely a consequence of the mesh generation in the first instance (Jacobi and CG meth-
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ods are order independent anyway). The effect of this renumbering scheme on the mesh

(b)

(a)

Figure 5.31: Mesh of 42 triangular elements partitioned into three sub-domains renum­ 

bered for asynchronous communication.

of 42 triangles illustrated in Figures 4.6 and 4.7 is shown in Figure 5.31. Two changes 

in the numbering are apparent. Firstly, the overlaps have been numbered so that over­ 

lap elements that are owned by the same sub-domain are numbered consecutively. This 

allows an overlap exchange to write the received overlap variables directly into memory 

without the need to unpack a buffer. Secondly, the elements within each sub-domain 

that are overlap elements on neighbouring sub-domains have been numbered before the 

rest of the sub-domain. Figure 5.32 shows the effect of the renumbering on the overlap 

communications. In contrast with the matrices shown in Figure 4.9 the communications 

now originate in the first few rows of each sub-domains matrix. In the iterative solver 

these rows are evaluated first and then the asynchronous communication of overlaps is 

initiated. Evaluation of the remainder of the rows in matrix equation can then pro­ 

ceed for that iteration while the communication is being carried out. Completion of the 

communication is tested before continuing on to the next iteration.
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(a)

(b)

(c)

Figure 5.32: Matrices for the 42 element mesh partitioned into three sub-domains renum­ 

bered for asynchronous communication.
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On the Transtech Paramid asynchronous communication is achieved through ex­ 

ploitation of the T800 co-processors to manage the communication. For workstation 

networks, notorious for their high latency, this is effected through communication buffers. 

The results of using asynchronous modified solvers for the fluid dynamic test case and 

the solid mechanics test case are presented in Figures 5.33- 5.34. Here the improvement
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Figure 5.33: Speed-up obtained with the asynchronous (solid lines) and synchronous 

(dashed lines) optimised solvers for the fluid dynamic test case with a range of mesh 

sizes.

in performance over the synchronous results is clear. These results paint a very different 

picture of parallel performance on a Transtech Paramid than for instance Figure 5.15. 

These results reinforce the assertion that parallel performance is highly code, problem 

and machine dependent. Overlapping the communication with calculation through the 

use of asynchronous message passing has effectively concealed the bandwidth requirement 

for communication of overlap data. That is providing that there is enough calculation 

to conceal the communication. The curves for the 3,034 and 10,027 element test cases 

in Figure 5.33 show a drop in performance in comparison with the synchronous results 

for 28 processors. With large P and a small problem the amount of calculation may not
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Figure 5.34: Speed-up obtained with the asynchronous (solid lines) and synchronous 

(dashed lines) optimised solvers for the solid mechanics test case with a range of mesh 

sizes.

be sufficient to overlap all of the communication. Figure 5.35 clearly shows how effective 

this hiding is for the 60,005 element solidification test case. Here the spread in perfor­ 

mance between the partitioning strategies is far less apparent than the synchronous case 

in Figure 5.30. The mappedlD and mapped2D partitions still have a performance advan­ 

tage but the performance from the other partitions is now comparable with the mapped 

partitions. The premapped, postmapped and unmapped partitions now look capable 

of returning further speed-up beyond the 28 available processors, which is clearly not 

the case in Figure 5.30. The mappedlD and mapped2D partitions return near identical 

performance as the bandwidth overhead of the mappedlD partition is effectively con­ 

cealed and the advantage of the lower latency requirement for the ID partition becomes 

significant. These results invite investigation of the performance beyond 28 processors. 

There must inevitably come a point at which the performance returned from the different 

partitions becomes more significant. Eventually the amount of computation in the each 

sub-domain core will not be sufficient to fully overlap the communication.
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Figure 5.35: Speed-up obtained with the asynchronous optimised solvers for the solidi­ 

fication test case with a range of partition strategies using a 60,005 triangle mesh.

Code for the asynchronous Jacobi and conjugate gradient solvers is given in Ap­ 

pendix E

5.5 Summary

Speed-up has been used throughout for the presentation of these results. If larger num­ 

bers of processors were available the temptation to run still larger test cases may make 

speed-up curves impractical. However it is felt that speed-up graphs present a more 

clear picture of parallel performance than efficiency or run time graphs. To put the 

performance of the i860 processors in context, the execution of UIFS on a single i860 PE 

is approximately 10% faster than the run time on a state of the art Sun Sparc20 75MHz 

processor. The results presented in this chapter have shown how the communication 

overhead in parallel processing is the limiting factor to achievable performance. The 

precise nature of the communication must be addressed and optimised if an acceptable 

performance is to be obtained. Acknowledgement of the topology of the machine in the 

mesh partition has been shown to be of significant importance. There comes a point how-
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ever when all possible optimisations have been applied and yet the performance remains 

disappointing, as in the small test cases in Figure 5.34. The only remaining significant 

factor is start-up latency which is unavoidable Communication start-up latency must be 

reduced if a parallel machine is to achieve computational scalability.
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Chapter 6

Automation of Parallelisation

Parallelisation of a large unstructured mesh CM code is a time consuming, error prone 

and labour intensive task. Any tool that can help to alleviate the problem of paralleli- 

sation will be a welcome asset. Some success has been shown with environments and 

libraries for the authoring of parallel unstructured mesh codes but this is of no help to 

the parallelisation of existing codes and should not be forced upon code authors who 

have little or no interest in parallelism. Much success has been shown with the Com­ 

puter Aided Parallelisation Tools (CAPTools) for automation of the parallelisation of 

structured mesh codes [JCI+94]. Extension of CAPTools to provide automation of the 

parallelisation of unstructured mesh codes presents some new and interesting problems.

6.1 Computer Aided Parallelisation Tools

CAPTools is an interactive toolkit for Computer Aided Parallelisation of mesh based 

FORTRAN codes. The objective of CAPTools is to automate as much as possible of 

the process of parallelising mesh based numerical FORTRAN codes. The principle ax­ 

iom of CAPTools is to generate code of equivalent or better quality to that which can 

be produced manually (Perhaps with minimal user interaction). The code generation 

techniques employed therefore match those used successfully for numerous manual par- 

allelisations. Parallelisation relies on an accurate analysis of the target code achieved
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through the use of sophisticated interprocedural symbolic algebra techniques to analyse 

the code and produce an accurate dependence graph that can be enhanced with knowl­ 

edge supplied by the toolkit user. Parallel code is generated based on a data partition 

constructed using the dependence graph allowing execution control and communication 

requirements to be subsequently identified. An X windows based graphical user interface 

provides an environment for the user to navigate the code, visualise dependencies and 

interact with the knowledge base throughout the parallelisation process.

6.1.1 Dependence Analysis

Dependence analysis builds a directed graph D(S,R) where the nodes S of the graph are 

executable statements and the edges R represent the relationship of required execution 

order (the dependencies). There are four basic dependence categories;

True dependence - resulting from the data flow between a source (point of assignment) 

and a sink (point of use).

Control dependence - when execution is controlled by a conditional statement. 

Anti-dependence - caused by re-assignment of a used variable in a sink statement.

Output dependence - where a source variable is re-assigned the order of assignment 

must be maintained.

The location of a dependence is also significant, does the dependence exist between loops 

or within a single iteration of all surrounding loops? Dependence analysis is achieved 

using the Greatest Common Divisor test (GCD), the Bannerjee tests [Ban79, Ban88] and 

the Symbolic Inequality Disproof Algorithm (SIDA) [Joh92] The graph is then pruned 

using all previous dependence information to give a precise representation of the depen­ 

dence structure of the code.
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6.1.2 Data Partitioning

Distribution of a programs data over a parallel machine begins with the determination 

of the set of variables that are to be distributed and the way in which they are to be 

distributed. Two techniques are currently employed. One is to select an array index 

that can be partitioned. The chosen array should be a significant component inside 

the dominant (most compute intensive) loop identified through profiling of the code 

execution. The other technique is to select a loop (again usually the most dominant) 

and partition all arrays contained within the loop in accordance with their use of the 

loop counter. For example;

DO I = 1, NI-1 
DO J = 1, NJ-1 

DO K = 1, NK-1
V(I,J,K) = (X(I+1)-X(I)) * (Y(J+1)-Y(J)) * (Z(K+1)-Z(K)). 

END DO 
END DO 

END DO

Selecting the inner K loop as the partitioned loop will partition V in its third index and 

Z. Other array variables that are assigned or used by a partitioned array will inherit the 

partition if a linear relationship exists involving the index expression in relation to the 

already defined array partition. So the statement;

Q(K,J,I) = V(I,J,K)

will imply that the partition of the third index of V is inherited as the first index of Q. 

Inheritance propagates the partition via the dependencies to partition as many arrays 

as possible in all routines of the code (interprocedural). The partition is implemented 

through the introduction onto each processor of lower CAP_L and upper CAP_H limits to 

the index of the array. So a declaration that was

INTEGER NI, NJ, NK 
INTEGER V(1:NI,1:NJ,1:NK)

can become in parallel
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INTEGER NI, NJ, NK
INTEGER CAP_L, CAP_H
INTEGER V(1:NI,1:NJ,CAP_L:CAP_H)

These CAP_ variables hold different values on each processor. The values are calculated on 

all processors at run time as functions of the assigned range of the partitioned component 

of the array along with the number of processors employed and the number of the 

processor on which they are being calculated.

6.1.3 Execution Control

Execution control masks are used to enforce an 'assign only allocated data' rule to the 

data partition. These are a conditionals that determines whether a statement should 

execute on a particular processor. The control mask can take the form;

IF ( CAP_L .LE. <expression> .AND. <expression> .LE. CAP_H ) THEN

where the partition of an array has inferred the mask. This can be propagated to the 

loop limits so the previous example can become

DO I = 1, NI-1 
DO J = 1, NJ-1

DO K = MAX(1,CAP_L), MIN(NK-1,CAP_H)
V(I,J,K) = (X(I+1)-X(I)) * (Y(J-H)-Y(J)) * (Z(K+1)-Z(K)) 

END DO 
END DO 

END DO

Execution control masks are propagated using dependence information to cover as many 

statements as possible to maximise parallelism. Any statement that is not masked must 

be executed on every processor.

6.1.4 Communication

Having partitioned the arrays and set masks to control the execution, the use of data 

that is not on the assigning processor can be determined. Communication is requested 

by a reference within a statement to access data that is not on the processor executing
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the statement. Determination of the communication involves comparison of the execu­ 

tion control mask of a statement with the location of the data as defined by the data 

partition. Both are specified in terms of the partition range variables which are only 

assigned values at run time. Calculation of the communication must therefore be based 

on symbolic inequalities involving the variables. Communication requests are then mi­ 

grated to as early a point in the code as is legal and profitable, often exiting loops to 

allow bulk communications. Barriers to movement are detected from true dependencies 

indicating the location of assignments of the data to be communicated, either in an ear­ 

lier code section or in an earlier iteration of a surrounding loop. Several requests for 

communication of the same or subsets of the same data can be generated and migrated 

to the same place. These requests can often be merged into a single communication.

In the above example, the reference to Z(K+1) will generate a communication request 

for the single value Z(CAP_H+1) which can be migrated out of the code section and possibly 

merged with similar requests.

A special case exists for commutative operations which can exploit parallelism where 

it appears to be prohibited by a loop carried true dependence.

DO I = 1, N
p = <function>(P,R) 

END DO

Where the function may be max, min, -I- or x.

DO I = 1, N
IF ( <function>(P,R) ) P = R 

END DO

Where the function may be <,<,=,> or >.

6.2 Generic Parallelisation Methods for Unstructured Mesh 

Codes

In seeking to automate the parallelisation of any unstructured mesh based CM code the 

methods used must be sufficiently generic to cope with the diversity of code structures.
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The ideas described in this thesis have been demonstrated on UIFS, a large two dimen­ 

sional FV element based code integrated with a FV node based code. The similarities 

between the FV scheme and the more popular FE schemes are such that the two present 

much the same case for parallelisation. Extension of the strategies into three dimensions 

is of little consequence, the techniques used are to a large extent dimensionally inde­ 

pendent. The strategies described in this thesis have been successfully applied to other 

complex codes, for example the aerodynamics code SAUNA [PS92, IFB95] which is a 

three dimensional multigrid block structured and unstructured mesh Euler and Navier 

Stokes code. At a conceptual level the strategies are certainly of general application to 

unstructured mesh codes with localised data dependencies. Long range or global de­ 

pendencies would require large overlaps and consequently large amounts of data to be 

communicated between processors. Other strategies than those described in this thesis 

will be required to parallelise such codes.

This thesis has described the strategy of geometric domain decomposition. The 

geometric nature of the code and its data structures is understood and acknowledged 

throughout. Geometry (topology) is used as a basis for the partitioning of the mesh, 

the construction of overlaps and the scheduling of messages. Geometric and topologic 

concepts are convenient as models for human understanding but are of limited use as 

models for a machine to understand and operate upon. The data structures used in a 

code must be treated in more abstract terms if an automated analysis is to have any 

success. Partitioning based on a graph has now been demonstrated to be a practical 

generic method to obtain a partition of the problem space. Similarly the derivation of 

secondary partitions given the relationship between primary and secondary mesh entities 

is a generic operation. Some of the open problems are;

• How is the graph to provide the primary partition obtained?

• How are the relationships to other mesh entities obtained?

• How are the communication requirements determined?
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• How are the sub-domains renumbered?

• How are the overlaps determined?

6.2.1 Application of CAPTools Structured Mesh Techniques to Un­ 

structured Mesh Codes

The methods developed in CAPTools for dependence analysis are immediately applica­ 

ble to unstructured mesh codes. Construction and pruning of the dependence graph for 

unstructured mesh codes presents no new problems over structured mesh codes and so is 

supported by the current version of CAPTools. CAPTools can identify the arrays that 

need to be partitioned. For example, in UIFS it can identify all element based arrays and 

indicate that they should have the same partition definition. Partitioning of the array 

index into segments defined on each processor using CAP_L and CAP_H is possible with 

an unstructured mesh code but unlikely to give good results as the ordering of arrays is 

unlikely to reflect the structure of the mesh. A more suitable method for an unstruc­ 

tured mesh code is to define the partition with an array indicating the owning processor 

for each individual entity allowing the flexibility of an efficiently mapped partition as 

demonstrated in Chapter 3. Such information can only be determined at run time once 

the mesh structure is known and cannot be predetermined using inequality based rela­ 

tionships as with a structured mesh. If a set of graphs that represent the mesh can be 

identified from analysis of the code then array partitioning can be achieved by handing 

one of the graphs to a graph partitioning code such as JOSTLE. The dependencies that 

are identified between the graphs can then be used to derive secondary partitions for the 

other graphs.

Parallel execution control can be determined in the same way as for structured meshes 

except that the owner computes masks become functions of the partition list and the 

processor number (Section 3.3.3). Determination of what to communicate and where to 

communicate is again largely the same for unstructured mesh codes as for a structured 

mesh. As with a structured mesh, comparison of a statement execution control mask 

and the partition definition of an array that the statement accesses, can be used to
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determine if a communication is required. Due to the added complication of the partition 

being denned as a run time calculated list of processor numbers, the implementation of 

communications in the generated code requires further examination.

6.2.2 Data Structures for an Unstructured Mesh

Section 3.1 describes the entities and relationships that are used to specify an unstruc­ 

tured mesh. The data structures used to encapsulate these relationships may be imple­ 

mented in an almost limitless variety of schemes. A suitably generic means of describing 

data relationships is required that can accommodate not only the existing diversity of 

expression but also any future system that may not yet be conceived. The elements of

7

Figure 6.1: Four element mesh.

the mesh illustrated in Figure 6.1 could for example be described in terms of the grid 

points in any of the following three formats.

a) A two dimensional array of length number of elements and width maximum number 

of grid points per element.

1267
2360
3456
6570
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b) A one dimensional list of length £J(mn + 1) where n is the number of elements and 

mn is the number of nodes in element number n. This lists for each element the number 

of nodes in the element followed by the node numbers. 

412673236434563657

c) A one dimensional list of length £1 mn listing the node numbers in each element with 

the last node for each element identified by being negative. 

126-723-6345-665-7

Many alternative means of expression of the relationship between grid points and 

elements could be conceived. A number of other variables will usually be required to 

complete the descriptions. Some possibilities are;

• The total number of grid points

• The total number of elements

• The number of element shapes

• The number of elements of each shape

Given that this is only one of the many relationships that may be used in the mesh 

description it is apparent that an almost limitless variety of description is not only 

possible but probable. It would be a greatly simplifying strategy to prescribe a data 

structure that could be used to describe a mesh in such a way that it may be parallelised. 

Oplus, for example, describes mesh entities as sets and the relationships between them 

as pointers. This elegantly simple system can express in an obvious form all that is 

required of an unstructured mesh. But we cannot force the re-authoring of a code in 

terms of alternative data structures, this runs contrary to objective (ii) and re-educating 

the programming community for the sake of automatic parallelisation is an impractical 

and unnecessary task. Parallel utilities such as those described in Section 4.2.4 must 

have a standard data structure that they can use to interface between the codes data 

structures and the utility data structures. This information is only available at run time 

but the means to extract the information at run time must be generated at compile time.
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6.2.3 Inspector Loops

Inspector loops [vH92, MSS+ 88] can be generated from the code to build at run time 

the mesh topology as a graph of entity pairs. The following code fragment comes from 

the Jacobi solver listed in Appendix C.I

DO 300 I = IONE, TOTELE

DO 200 J = IONE, SYSINX(HEADER,I)
X(I) = X(I) + SYSMAT(J,I) * OX(SYSINX(J,I)) 

200 CONTINUE
RESVAL(I) = ABS ( X(I) - OX(I) ) 

300 CONTINUE

Calculation of X(I) requires the value of OX(SYSINX(J,D) that is possibly on another 

processor. The two variables X and OX are known (from the partition definition) to be 

associated with the same (mesh) entity. This loop can be used as an inspector to create 

(or add to) a description of the dependence between the like entities in this example 

as a directed graph TOPOLOGY of entity number pairs. Only statements relating to the 

index expression in the array usage (in this case SYSINX (J, I)) and the expression in the 

execution control mask on the statement (in this case I) need to be reproduced. These 

expression values are stored as a pair of integers relating the requiring processor and the 

data owning processor.

COUNT = 1
DO 300 I = IONE, TOTELE

DO 200 J = IONE, SYSINX(HEADER,I) 
TOPOLOGY(COUNT) = I 
TOPOLOGY(COUNT+1) = SYSINX(J,I) 
COUNT = COUNT + 2 

200 CONTINUE 
300 CONTINUE

Using routines to initialise (INITTOP) the TOPOLOGY and check for duplicates before adding 

to the graph (ADDTOP) the amount of information in the graph can be minimised.

CALL INITTOP(TOPOLOGY) 
DO 300 I = IONE, TOTELE

DO 200 J = IONE, SYSINX(HEADER,I)
CALL ADDTOP(TOPOLOGY,I,SYSINX(J,I)) 

200 CONTINUE 
300 CONTINUE
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6.2.4 Partitioning

Partitioning has now been demonstrated to be successful given any graph. The inspector 

loops build at run time a set of directed graphs that describes the dependence between 

entities. Selecting the dominant graph, this graph can be undirected and sorted to 

remove duplicates to produce an undirected graph suitable for passing to a code such as 

JOSTLE.

Section 3.3.2 describes the use of rules for the determination of sub-domain overlaps. 

These rules are derived from a knowledge of the dependencies of the code. This is not a 

suitable method for automatic generation of overlaps. JOSTLE will provide a primary 

partition which can be used as a basis for derivation of secondary partitions as outlined 

in Section 3.3.1. The directed graphs returned by the inspectors can now be used instead 

of rules to construct overlaps onto the partitioned mesh entities using the standardised 

data structures that they construct.

In the previous example the topology pairs represent the element requiring a value 

and the element owning the required value. If PL_X is the processor list array for 

the array X and PL_OX is the processor list for OX then a communication is required 

if PL_X(TOPOLOGY(I)) is not equal to PL_OX(TOPOLOGY(I+D). The required entity number 

and its owning processor number are used to construct communication lists as described 

in Section 3.3.4. The generic utilities based on those developed for PUIFS to perform 

communication list construction and communication are of the form:

OVERLAP ( COMMS_SET_ID, TOPOLOGY, PA, PB ) 
SWAPOVER ( COMMS_SET_ID, VAR, LENGTH, STRIDE )

Where COMMS_SET_ID indicates a particular communication set (assigned in OVERLAP 

and used in SWAPOVER ). TOPOLOGY is returned from the inspector loop immediately pre­ 

ceding the call to OVERLAP. PA and PB are the processor lists for the entities involved in 

the relationship. VAR is the variable to be communicated. LENGTH is the data item size 

(single, double precision) and STRIDE is the distance between consecutive entities in the 

VAR array.
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6.2.5 Communication Generation

The requirement for a communication can be detected using execution control and par­ 

tition definition information. To implement unstructured mesh communications, two 

related requests are generated, one for the communication itself and the other for the 

associated inspector loop representing the relationship that caused the communication. 

Both requests are then migrated as far as possible up the control flow of the code. Typi­ 

cally the inspector request will migrate further than the communication request since it 

is not usually a function of program solution variables, but only integer pointer arrays 

that are often, for example, read into the code near the start of its execution. This often 

allows inspectors to be executed only once for each run of the code whilst the result­ 

ing information, i.e. the communication lists, are subsequently used many times. The 

merging of communications requires the union or merger of related inspector loops. The 

resulting communication list will contain all of the information of both communication 

requests allowing a single generated communication to perform all required data transfer.

6.2.6 Renumbering

It is essential to pack the partitioned mesh and data in each sub-domain in order to 

achieve scalability of memory. Section 3.3.3 has shown that unless the partitioned prob­ 

lem is renumbered to a local numbering scheme then^ globally dimensioned pointer arrays 

are required to indirect addresses from the mesh entity relationships. Everything that 

has been discussed in Section 3.3.3 can be easily automated except the renumbering of 

the pointer arrays. Application of indirections to local array accesses is straightforward 

once the indirection arrays have been obtained from utilities. Transferring loop limits 

from global to local ranges is possible due to organised renumbering from the utility, 

however every reference to the loop counter must be within the same indirection array. 

Consider the following code fragment

INTEGER NUMBER_OF_GP_IN_ELEMENT(1:LOCAL_NUMBER_OF_ELEMENTS)
INTEGER GP_IN_ELEMENT(1:MAX_NUM_GP_PER_ELE,1:LOCAL_NUMBER_OF_ELEMENTS)
INTEGER PTR.ELE(1:NUMBER_OF_ELEMENTS)
INTEGER PTR_GP(1:NUMBER.OF_GRID_POINTS)
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REAL XELE(1:LOCAL_NUMBER_OF_ELEMENTS) 
REAL YGP(1:LOCAL_NUMBER_OF_GRID_POINTS)

DO I = 1, NUMBER.OF_ELEMENTS
IF ( OWNER_OF_ELEMENT(I) ) THEN 

IF ( I .LE. NTRI ) THEN
NNODES = 3 

ELSE
NNODES = 4 

END IF 
DO J = 1, NNODES

XELE(PTR_ELE(I)) = XELE(PTR_ELE(D) + 
+ YGP(PTR_GP((GP_IN_ELEMENT(J,PTR_ELE(I)))

END DO 
END IF 

END DO

Here the number of nodes for each element is determined by the global element 

number where the first NTRI elements are triangles. Since the reference to I in the 

conditional is not within the local number indirection then the loop limit cannot legally 

be altered. This is still a parallel loop operating on renumbered packed data but iterating 

globally. Such loops are easily identifiable by the tools along with the reason prohibiting 

transformation, in this case the reference to I in the conditional. In practice the users 

knowledge that NTRI represents the number of triangular elements can allow the user to 

provide the code to calculate a local value for NTRI and therefore enable the optimisation 

to continue. Other loops are independent of the decision for this loop and may still be 

able to transform the loop mask into loop limits.

The renumbering of pointer arrays to local numbering schemes is however a far more 

complicated problem. Consider the mesh storage examples from Section 6.2.2. The 

following code fragments are examples that may be used to access the structures along 

with codes to perform the renumbering, 

a)

DO I = 1, LOCAL_NUMBER_OF_ELEMENTS 
DO J - 1, 4

IF ( GP_IN_ELEMENT(J,I).NE.O ) THEN
XELE(I) = XELE(I) + YGP(PTR_GP(GP_IN_ELEMENT(J,I))) 

END IF 
END DO
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END DO

The code to renumber GP_IN_ELEMENT is

DO I = 1, LOCAL_NUMBER_OF_ELEMENTS 
DO J = 1, 4

IF ( GP_IN_ELEMENT(J,I).NE.O ) THEN
GP_IN_ELEMENT(J,I) = PTR_GP(GP_IN_ELEMENT(J,D) 

END IF 
END DO 

END DO

This renumbering loop is a similar form to an inspector loop of the original code fragment.

b)

ICOUNT = 0
DO I = 1, LOCAL_NUMBER_OF_ELEMENTS 

ICOUNT = ICOUNT + 1 
DO J = 1, GP_IN_ELEMENT(ICOUNT) 

ICOUNT = ICOUNT + 1
XELE(I) = XELE(I) + YGP(PTR_GP(GP_IN_ELEMENT(ICOUNT))) 

END DO 
END DO

The code to renumber GP_IN_ELEMENT is

ICOUNT = 0
DO I = 1, LOCAL_NUMBER_OF_ELEMENTS 

ICOUNT = ICOUNT + 1 
DO J = 1, GP_IN_ELEMENT(ICOUNT) 

ICOUNT = ICOUNT + 1
GP_IN_ELEMENT(ICOUNT) = PTR_GP(GP_IN_ELEMENT(ICOUNT)) 

END DO 
END DO

This renumbering loop is again a similar form to an inspector loop of the original code 

fragment.

c)

ICOUNT = 0
DO I = 1, LOCAL_NUMBER_OF_ELEMENTS 

10 ICOUNT=ICOUNT+1
XELE(I) = XELE(I) + YGP(PTR_GP(ABS(GP_IN_ELEMENT(ICOUNT))))
IF (GP_IN_ELEMENT(ICOUNT).GT.O) GOTO 10 

END DO
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The code to renumber GP_IN_ELEMENT is

ICOUNT = 0
DO I = 1, LOCAL_NUMBER_OF_ELEMENTS 

10 ICOUNT=ICOUNT+1
GP_IN_ELEMENT(ICOUNT) = PTR_GP(ABS(GP_IN_ELEMENT(ICOUNT))) * 

+ SIGN(1,GP_IN_ELEMENT(ICOUNT))
IF (GP_IN_ELEMENT(ICOUNT).GT.O) GOTO 10 

END DO

This renumbering loop is a similar form to an inspector loop of the original code fragment 

however the operation required to achieve renumbering with preservation of the sign to 

delimit element boundaries is not obvious. In effect, the multiplication by SIGN is the 

inverse of the ABS function used in the references to the array.

This is a difficult problem as the general case involves an extremely wide range of 

possibilities. The subtleties of detecting legal transformations guaranteeing that all of 

the array contents that are referred to in indirections are renumbered and also that those 

that are not in indirections (i.e. the number of nodes values in example (b) ) are left 

alone, is extremely complex. This may lead to no renumbering of some pointer arrays in 

many cases, although, again, user involvement can ease this problem in some instances.

6.3 Summary

There exist many similarities between the methods used for automation of the paral- 

lelisation of structured and unstructured mesh codes. Some new additional techniques 

are required to extend the now established structured mesh methods to enable paral- 

lelisation of a wider range of codes using a vast range of data structures. Although not 

all optimisations can be applied in automatically in all cases, the code produced can 

closely resemble that produced manually as in the parallelisation of UIFS. The utilities 

developed for PUIFS have been simply adjusted to the general case.
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Other Parallel Issues

There comes a point when the research has to pause to allow the dissertation to be 

written. In the course of the work described in this dissertation a number of issues 

have surfaced that require some mention. An alternative title to this chapter may be 

Unfinished Business but while some of these issues will be addressed in the near future 

others remain the subjects of research that have yet to become accepted practice.

7.1 Are Further Improvements Possible?

The graphs given in Chapter 5 demonstrate how a range of results from poor to good 

with moderate parallelism can be transformed into good to excellent. It is fair to say 

that the poor results reflect poor communication performance especially in terms of the 

communication start up latency, this coupled with the good calculation performance of 

the parallel platform, leads to a poor calculation to communication ratio. Objective 

(v) requires scalability to massive parallelism. If this is to be achieved then excellent 

moderate scale parallelism is required. Given that a parallel machine is unlikely to 

ever return perfect performance all possible optimisations of the parallel code should be 

sought. It is apparent that there are a number of further improvements that could be 

implemented.
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7.1.1 Layered Overlaps

The PUIFS implementation uses only two overlap structures. An element overlap and 

a grid point overlap. The size of each of these overlaps is determined by whether the 

flow code is used with or without the stress code. If the stress code is used then the 

size of each of the overlaps is increased to accommodate the extra dependence required. 

It is logical to allow for the definition of more than one overlap for each mesh entity. 

This will provide a small improvement in efficiency within the flow portion of a run that 

also involves stress. The reduction in run times will be more apparent for bandwidth 

limited problems. Implementation of layered overlaps within PUIFS is a reasonably 

simple optimisation that could be implemented with a duplication of the communication 

schedules. For automated parallelisation the outcome of inspector loops described in 

Section 6.2.3 is a set of dependencies which can result in many layers for each overlap.

7.1.2 Machine Topology Profile

In spite of what parallel machine manufacturers may claim there will always be a dis­ 

tance related communication cost. This cost becomes more significant as the number of 

processors increases. To quantify the variations in latency and bandwidth a code has 

been developed which measures the communication performance of a parallel machine. 

Latency is measured by the simple method of sending a short message between each 

processor on the parallel machine. Similarly bandwidth is measured by sending a large 

message between each processor. These measurements are initially carried out with only 

one message being passed at any one time, and then with every processor communicating 

simultaneously. This provides a peak and a saturated performance measure that may be 

expressed as a weighted graph (matrix) that describes the communication performance 

between each pair of processors. What is immediately apparent is the non-uniform per­ 

formance described by the graph. Such a weighted graph can be obtained quickly, at run 

time, and then used by the partitioning code to ensure that the mesh partition produced 

is appropriate for the measured machine communication profile as opposed to a notional 

topology that may not be reflected in actual communication performance. It has been
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demonstrated in Chapter 5 that reflecting the processor topology in the mesh partition 

provides a performance improvement. It is therefore anticipated that this scheme will 

provide improved performance across a range of parallel machines without the need to 

understand or specify the architecture of the machine.

7.1.3 Dynamic Load Balance

The test cases used in this thesis have been partitioned to achieve a static load balance. 

This has been achieved through balancing the number of elements in each partition. For 

a constant element shape this can give a good load balance. There are many reasons 

why good load balance may not be achieved or maintained.

The variation in computational load for different element types (shapes) can be ac­ 

commodated to some extent in the partitioning process as discussed in Section 3.2.4, 

however the exact computational balance can only be determined at run time. Chang­ 

ing physics in an application can affect the amount of computation per element or grid 

point. For example phase change (solidification) can lead to more complex physical pro­ 

cesses requiring extra computation, e.g. latent heat release may effect some elements 

and not others.

The parallel machine may not have homogeneous performance, that is some process­ 

ing elements may be faster or slower than others. This is especially true for workstation 

networks. Again such a variation can be accommodated to an extent in the partitioning 

process but cannot be accurately predicted. It is often the case for workstation networks 

that the machines may be used by other jobs, again causing an imbalance in processing 

performance.

A dynamic load balancing scheme is required to re-distribute the work over the 

processors so as to minimise idle time. Many of the recently developed partitioning 

schemes address such repartioning as a parallel task. There exist however some questions 

that require investigation.

How often should the balancing process be carried out? Re-partitioning to redress 

load imbalance is an overhead that requires optimisation between the degree to which
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load imbalance may be tolerated and the cost of re-partitioning.

How much of the load should be moved? If the load imbalance is caused by movement 

of the computational load or changes in the computational resource then the best that 

can be hoped for is to use some expression to anticipate the movement of load that 

will redress the imbalance. Where changes in the computational resource is caused by 

outside agencies such as the submission of other jobs to a network it is impossible to 

predict the future partition requirements. Given that a parallel code executes only as 

fast as its slowest processor this can cause difficult problems for such open systems.

How to avoid cycling? If the parameters used to redistribute the load are inappro­ 

priate then the load balancing scheme may cycle the load between processors or even 

circulate the problem around the parallel machine. Methods similar to taboo search can 

be used to reduce such incidence but cycle recognition remains unclear.

Undoubtedly dynamic load balancing is not only desirable but may be necessary for 

some parallel applications. However some of the open problems have no easy solution. 

The scope of the problem is reasonably clear but an elegant solution has yet to be 

identified.

7.1.4 Other Communication Schemes

With a small mesh size latency becomes the overridingly dominant communication cost. 

Some success has been demonstrated with communication schemes that help to reduce 

the latency cost. Rather than considering the machine to be connected as a mesh, con­ 

sider the machine to be connected as a star. All communication is transacted via the 

processor at the hub [GWZ95]. This has reduced the number of processor interconnec­ 

tions to P. For example an overlap update for a processor (sub-domain) inside a two 

dimensional processor array would be likely to incur up to eight latencies. A processor 

in a hub connected array would incur only one latency. Partitioning would be much 

the same as described in this thesis, with a low cut edge count partition likely to give 

the best performance. Only the communication would alter, all overlap data would be 

exchanged via the processor at the hub. Each processor can pass data required by other
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processors in one packet to the central processor. The hub processor having accumulated 

data from all other processors sends back to each processor the data corresponding to its 

overlap. Of course the scheme would require some degree of asynchronous communica­ 

tion to avoid a bottleneck at the hub processor. Also the hub processor would not be able 

to carry out a full share of the workload and so anticipating a static load balance would 

be a problem. Ultimately the scheme would not scale far as the communication load 

on the central processor becomes too great. However the premise for the scheme was to 

alleviate latency bound problems, i.e. small mesh sizes, which would not be expected to 

scale far anyway. So if the requirement was to improve performance for small problems 

this could be a worthwhile investment of effort. Workstation networks with PVM for 

example are a suitable platform for this strategy as such a system incurs a very high 

latency and supports non blocking communications.

7.2 Difficult Problems

7.2.1 Inhomogeneous Problems

Figure 7.1 shows a simple foil mesh partitioned into four sub-domains, each containing 

the same number of elements. This has achieved a balance of elements across each 

processor but it is necessary to balance the load across all solvers. In this example only 

flow is solved for in the space around the foil and only stress is solve within the foil. To 

achieve a load balance the nature of these physical domains must be incorporated into 

the partitioning scheme. A more balanced partition may appear more like that shown in 

Figure 7.2. Here the balance of elements across processors has been maintained within the 

foil and outside the foil but at the cost of an increased and imbalanced communication. 

A dynamic load balancing scheme is in this case required to acknowledge the differing 

physical domains. Code execution time within each solver could possibly be used to 

direct the redistribution of a mesh in accordance with the physical domains. Solidification 

problems, for example, present severe difficulties to this type of scheme due to the massive 

migration of elements required as the computational load moves from possibly the entire
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Figure 7.1: Foil mesh partitioned over four processors.

Figure 7.2: Foil mesh partition with solver balancing.

mesh to a small remaining liquid portion. This can lead to a limit of achievable load 

balance.

7.2.2 Adaptive Meshing

Adaptive meshing involving the creation and deletion of elements and grid points is 

gaining popularity especially in the CFD community. An adapted mesh requires reparti- 

tioning to preserve load balance. This presents a severe test for a dynamic load balancing 

scheme, particularly if the mesh changes significantly from that which was originally pre­ 

sented to the partitioning algorithm.

7.2.3 Long Range Dependencies

The strategies presented in this dissertation focus on short range dependencies. Long 

range or even global dependencies within a code present a barrier to scalability. For 

example contact analysis of deforming shapes requires testing of a deformed mesh to
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determine if any contact between otherwise unconnected parts of the mesh has occurred. 

This involves a dependence between all parts of the mesh. Some work has been done to 

restrict possible dependence to localised parts of a mesh [GMD95a]. Similar difficulties 

arise for moving mesh problems and particle based codes such as molecular dynamics.

7.3 Are there any alternatives?

The strategies discussed in this thesis follow the now accepted path of development that 

attempts to reproduce a serial code as faithfully as possible on a DM-MIMD machine. 

There are however some developments that may alter the way in which parallel machines 

are used.

7.3.1 Parallel Mesh Generation

An alternative solution to the problems presented by a very large mesh in relation to 

the capacity of a single processor is parallel mesh generation. This scheme begins with 

a geometric decomposition of the problem space into P sub-domains each of which are 

then meshed in parallel [CJL+ 89, HJ94]. It is arguable that the mesh quality is hard to 

control. But the matter of mesh quality is a difficult issue which is beyond the scope of 

this thesis. Also relevant is the inability to compare serial with parallel when there is no 

serial case. The measure of the success of a parallel exercise remains a comparison of the 

parallel results with serial results. This viewpoint may have to change with the arrival of 

highly parallel processing where P > 1024. Such a machine would invite the application 

of meshes of such magnitude that a comparison with serial performance would be out 

of the question and even visualisation of the full mesh may be impractical. Analysis 

of the mesh quality would in that case have to be automatic and so any measure that 

may be applied to mesh quality may also be used to improve the mesh to the point of 

conformance with stipulated criteria of quality (Zen and the art of mesh generation).
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7.3.2 Parallel Visualisation

The final product of computational mechanics is normally some form of graphical image. 

As computational techniques have become more sophisticated so too have the techniques 

of visualisation. It is now commonplace to transform the results of scientific computation 

into animated three dimensional images. Such animations may be supplemented with 

advanced techniques such as particle tracking and stream lines/ribbons. The process 

of transforming data sets into graphical presentations is a computationally demanding 

exercise that lends itself to parallel processing. There is an attractive logic in removing 

the step of writing data sets from parallel computation to file and producing images 

instead [Hei94j. The generation of images is however usually an interactive process as 

view angles, lighting, perspectives, etc are manipulated to produce the required result. 

As such the visualisation may become a repetetive labour intensive task, not a task 

well suited to batch processing. Nevertheless one of the aims of parallel processing is 

to reduce the run time of programs to the point at which interactive computational 

mechanics becomes a possibility. High speed run time visualisation would be a great 

asset to such an undertaking.

7.3.3 Virtual Shared Memory

A shared memory parallel machine is without doubt a far easier machine to program 

than a distributed memory machine. With a shared memory machine a problem can 

exist in machine memory in the same form as the serial without the need for renumber­ 

ing or overlaps and overlap updating. All that is required for such parallel processing is 

the determine an appropriate partition for compute masking. Dynamic load balancing 

for example becomes far simpler as only the compute masks require adjustment to re­ 

dress balance. The advantages for adaptive meshing and inhomogeneous problems are 

manifold. There remains however the problem of scalability. The memory bandwidth in 

a shared memory machine does not scale with the number of processors. For this rea­ 

son current shared memory machines are normally less than 16 processors and for most 

CM codes SM machines operate best at less than 8 processors. Virtual Shared Memory
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(VSM) machines are systems that allow the entire machine memory to appear as shared 

memory even though it may not be actually shared. A VSM machine may be a dis­ 

tributed memory machine with a software harness that allows the processors to address 

the memory on other processors. A VSM machine may be a cluster of shared mem­ 

ory machines, again with a software harness that allows the memory to appear shared 

amongst all processors. Some manufacturers have employed elaborate hardware, mem­ 

ory and cache arrangements to provide workable VSM with distributed memory. Many 

manufacturers and academics claim that the future of parallel processing lies with VSM. 

Indeed the advantages that such systems offer for simplicity of programming are clear. 

But unless memory bandwidth scales with the number of processors then scalability will 

not be achieved. The advocated VSM model is one in which compilers and operating 

systems communicate as often as necessary. However the cost of ignoring processor 

topology on a DM machine, even with a well partitioned mesh is clearly demonstrated 

in Chapter 5. If in addition all concept of cut edge were ignored the communication re­ 

quirements of a CM code will become astronomical. Since we can organise unstructured 

meshes onto processor topologies with significant performance gains and little human 

effort (Chapter 6) there appears to be little to be gained and a lot to be lost through 

VSM. Perhaps the more enlightened view is one recently voiced at a conference; If man- 

ufactureers allow VSM programming on their hardware then automatic compilation of 

existing code onto small numbers of processors will encourage use (purchase) of parallel 

machines. Having persuaded people to use (buy) the machine they may then be encour­ 

aged to optimise their application through the use of message passing techniques. Cost 

effectiveness remains an overridingly important criteria in the commercial success of a 

system. An architecture that is gaining popularity is to produce highly cost effective 4 

- 8 processor SM systems that may be interconnected with low latency, high bandwidth 

interfaces. This makes such systems highly attractive as they may be used very effec­ 

tively for running multiple low P jobs or less effectively using VSM to allow very large 

problems to be accommodated with little or no parallel skills being required. Optimis­ 

ing code for such a platform will nevertheless benefit from the techniques described in
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this dissertation to avoid the inevitable bottlenecks as data moves between the shared 
memories.
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Chapter 8

Conclusions

8.1 Were the Objectives Met?

A number of objectives for parallelisation of an unstructured mesh CM code were set out 

in the introduction to this thesis. To what extent have these objectives been achieved?

8.1.1 Objective (i) Minimise the Changes to the Original Algorithm

The entire test case program UIFS has been parallelised with only one simple algorith­ 

mic change being required. The Jacobi and Conjugate Gradient algorithms are both 

reproduced identically in parallel. Rounding errors are however subject to coefficient 

evaluation order and can therefore give rise to variations in the numerical values pro­ 

duced by the code despite there being no actual algorithmic change. In the interest of 

meeting objective (iii) (and to some extent (ii)) the Gauss Seidel SOR algorithm has 

been modified in the parallel scheme proposed in this thesis. While the results produced 

by the parallel GS-SOR solver are numerically dependent on factors such as the number 

of processors and the mesh partition, these changes are qualitatively insignificant. The 

results produced by the serial code are qualitatively reproduced by the parallel code. In 

practice the variation between serial and parallel GS-SOR results caused by algorithmic 

modification are no greater than the variation between the serial and parallel CGM re­ 

sults which do not arise from algorithmic modification. It should be possible however to
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produce pathological test cases that are extremely sensitive to numeric accuracy. But in 

such a case the results produced by the serial code are highly questionable. This raises 

an issue in that if the parallel results differ significantly from the serial then we should 

suspect that the serial results are of questionable validity. It is clear that objective (i) 

has been achieved for the three solvers covered in this thesis. There exist however a 

great many other solvers in use in CM codes. It cannot be guaranteed that all solvers 

will be so amenable to parallelisation. Parallelism probably exists in all algorithms but 

the limitation of achievable parallel machine performance (latency and bandwidth) re­ 

stricts the feasibility of some parallel solutions. There are some classic examples from the 

structured mesh CM codes of solvers that are either difficult or impractical to parallelise. 

Some of these solvers have been elevated to the status of benchmarks in the NASPAR 

suite [BBLS93]. The ADI solver and LU factorisation (APPLU) are two examples that 

have achieved some notoriety in their difficulty for successful parallelisation. A lesson 

that is now being accepted by the CM community is that if the solver is unsuited to 

parallelisation then it should be replaced by one of the many solvers that are highly 

paralleliseable. The replacement solver may not give such good performance on one 

processor but the parallel performance can usually justify the substitution. This has 

been the case with the parallelisation of the highly successful PHOENICS structured 

mesh CFD code from CHAM [CHA94]. Like UIFS this code offers a range of solvers, in 

particular the highly efficient conjugate gradient with ILU preconditioning is used. This 

solver has caused a number of difficulties for parallelisation and so the solution adopted 

for the parallel code was to use the slightly less efficient but highly parallel Jacobi pre­ 

conditioned conjugate gradient solver [GMD95b]. The strategy adopted by CHAM for 

the Gauss-Seidel solver is the same as used in this thesis.

8.1.2 Objective (ii) Minimise the Visibility of the Parallel Code

Whilst the parallel code can hardly be described as invisible, the layered library strategy 

described in Section 2.4 has allowed the bulk of the parallel code to be hidden. The 

concept of the PUTILS library is to provide a barrier that obscures the parallel imple-
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mentation and the parallel machine from the view of a code author. This is achieved 

by providing a source code perspective that requires only a minimal knowledge of par­ 

allelism to understand and use the library routines. For the PUIFS code this exercise 

has proved to be a great success, as many of the routines have required no modification 

whatsoever. Of the 209 subroutines in UIFS only 71 have required some alteration to 

function in parallel. Of these 71 routines that require either calls to the PUTILS routines 

or use of the data in puif s. inc the intrusion into the original routines has been in most 

cases at an acceptably low level (c.f. Appendix C). Unfortunately 35 of the 71 paral­ 

lelised routines are i/o routines that have required significant modification. Little can 

be done to ameliorate this problem especially while parallel i/o remains an uncommon 

hardware feature. In actuality the i/o problem is too great as the i/o routines are (de­ 

spite their size) some of the simpler routines in the code and so re-authoring them for 

parallel functioning is not a great task, especially with the PUTILS routines available.

From the user perspective concealment of parallelism has shown great success. No 

modifications of the problem definition and specification are required for the problem 

to be run on a parallel machine. Partitioning and decomposition of the problem has 

been implemented in PUIFS as a transparent run-time process. Even the restart files 

may be used to move sequential runs between serial and parallel machines and between 

differing numbers of processors on parallel machines. The small problem of binary file 

compatibility can occur when moving between systems but is no more complicated in 

the parallel case as in a transfer between differing serial machines. No additional input 

is required from the user other than the number of processors that are to be used. This 

single integer is not however trivial information. It is conceivable that the choice of the 

number of processors to use could be made by the program. For a very small problem 

it can be difficult to obtain speed-up on a parallel machine with a poor calculation to 

communication ratio. Having run the parallel code with a range of problem sizes a 

profile of the machines returned performance is obtained. Such a profile can be used to 

determine the maximum number of processors that will return an 'effective' speed-up for 

the size of problem to be run. The definition of effective need not be static but could
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be influenced by the demand history placed on the machine. This opens up numerous 

possibilities for job scheduling to maximise return from parallel resources.

8.1.3 Objective (iii) Maximise Parallel Efficiency

Chapter 5 presents some results that range from very poor (Figure 5.15) to very good 

(Figure 5.35). Clearly the returned performance is highly problem dependent. For ex­ 

ample a guaranteed slow-down is possible given a small enough test case. Likewise near 

perfect performance could be obtained with a constant problem size per processor of 

near the maximum that can be accommodated. In the case of PUIFS on the Transtech 

Paramid at the University of Greenwich where the smallest nodes have 16MBytes of 

memory with a triangular mesh then approximately 20,000 elements can be accommo­ 

dated per processor or 560,000 elements over the entire machine. This problem would 

occupy approximately 500MBytes of memory Extrapolation of the speed-up curves gives 

an estimated speed-up of over 24 or approximately 90% efficiency. 16 of the Paramid 

nodes have 32MBytes of memory which would allow a problem of more like 30,000 el­ 

ements per processor or 480,000 elements in total. Extrapolation gives a speed-up of 

around 15.5 and efficiency at around 95%. As discussed in Chapter 5 the efficiency of 

a parallel code is a highly machine dependent measurement. It would seem from the 

Paramid results that the machine dependency is most noticeable for smaller sized prob­ 

lems, or more accurately for smaller meshed problems. There exist many real UIFS 

problems with mesh sizes well below 3,000 elements for which the run times on a work­ 

station are about a week. PUIFS on the Paramid can only be of limited help with such 

problems. With a small mesh PUIFS problem the Paramid machine is latency bound 

and the returned performance consequently poor.

Topology mapping the mesh partition to the Paramid has been demonstrated to pro­ 

vide improved performance. This is especially noticeable at the point in the speed-up 

curve where performance falls off. Clearly the commonly accepted criteria of mimising 

the number of cut edges in the partition does not necessarily provide the best perfor­ 

mance. Several avenues of development that provided a highly significant improvement

150



CHAPTERS. CONCLUSIONS

in performance were discussed in Section 5.4. The extent to which such improvements 
can be made is again platform dependent. However all possible improvements must be 
explored and implemented if further gains can be made in performance. The modifi­ 
cations required to implement the optimisations were contrary to objective (ii) in that 
significant alteration of the source code was required. However only the three solver 
routines are affected by these modifications which is a small disadvantage in comparison 
to the enormous performance improvement.

8.1.4 Objective (iv) Portability to Most DM MIMD Platforms

It is now widely accepted that use of one of the well known message passing libraries with 
Fortran?? code provides a highly portable parallel code. Use of the CAPTools libraries 
has provided an improved portability interface than direct use of a message passing 
library. The majority of the currently used message passing interfaces are supported by 
the CAPTools libraries. Not only does this extend the portability to all of the message 
passing interfaces that are supported by CAPLIB but it allows the choice of the most 
efficient supported library to be made. Porting of the libraries to other interfaces is not 
automatic but has at least been reduced to an easily manageable task, the porting of 
CAPLOW.

8.1.5 Objective (v) Scalability of Computation

Computational scalability is another highly machine dependent parameter. Computa­ 
tional scalability has been shown to be achievable provided that the problem size is large 
enough. This does not however fully address the issue. The returned performance pre­ 
sented in Chapter 5 quite clearly does not scale well for small problems and especially 
not for the stress code. Why not? Latency is the limit on scalability of computation not 
only for the Transtech Paramid but also for a great many other parallel systems.
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8.1.6 Objective (vi) Scalability of Memory

Scalability of memory has clearly been achieved up to the point at which a description of 

the mesh or a globally sized vector variable may be accommodated within the memory of 

one processor. This takes Scalability of memory way beyond the limit of the 28 processors 

available using the University of Greenwich Paramid. How far? For the PUIFS code the 

current strategy can take Scalability to around 60 processors. After that more effort will 

be required to fully parallelise some of the i/o operations.

8.1.7 Objective (vii) Automate the Parallelisation Process

Automation of the entire process of parallelisation will eventually be realised. The CAP- 

Tools project has acknowledged that this process can be enhanced with user supplied 

knowledge and so has provided an interactive toolkit to automate as far as possible the 

process of parallelisation of mesh based codes. The dependence analysis already avail­ 

able in CAPTools provides a powerful analysis of unstructured mesh codes. This thesis 

has developed strategies for parallelisation of unstructured mesh codes based upon those 

developed for structured mesh codes. The CAPTools libraries have been used to develop 

utilities for unstructured meshes that point the way for generic techniques that may be 

used in an automated parallelisation process. The techniques developed in this thesis 

will eventually be incorporated into the CAPTools package to extend the scope of par­ 

allelisation to irregular mesh based codes. Some open problems discussed in Chapter 6 

remain but do not obstruct the development of CAPTools towards unstructured mesh 

codes.

8.2 Summary

Why did we trouble ourselves with parallelisation in the first place? Nobody really wants 

parallel processing, what is really required is a larger, faster serial processor. That way 

we do not have to expend any effort parallelising codes and our time can be used more 

profitably elsewhere. But parallel processing is inevitable. There are a number of reasons
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that keep bringing us back to parallel concept. However large and fast a serial processor 

can be built there will always be the temptation to connect several of them together to 

create a single system with greater power. However large a problem we are currently 

solving we want to be able to solve a larger problem. A more pragmatic reason is simply 

the economics of producing a supercomputer. Economy of scale in the development of 

workstation technology makes a highly parallel machine based on this technology the 

most cost effective approach to high performance computing. The arguments concerning 

the optimal architecture to adopt for such a parallel machine will probably continue for 

some time but the common ground remains the same: Connect together a large number 

of state of the art processors and memory to produce a single high performance system. 

It is therefore essential to develop the skills required to use such a system efficiently.
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Parallel Utilities

A.I Parallel Included Declarations

The following is the include file puif s . inc that declares the extra variables required for 

parallel processing. These declarations are scalable to the extent that a buffer is required 

on the i/o processor that can hold a globally sized set of coordinates or a globally sized 

variable in order to reconstruct the coordinates or a variable prior to writing to file. In 

this instance MAXBUF must be declared as the greater of either MAXELE or twice the size of 

MAXGPT. One difficulty with included declarations in F77 is the explicit length declaration 

of array sizes. Any change to the declaration of MAXBUF requires recompilation of all 

sources that include puif s. inc.

C Parallel UIFS include file
C K. McManus 12th June 1993
C University of Greenwich
C London UK

C
C
C
C
C
C
C
C

MAXHLO
MAXBUF
XTOTEL
XTOTGP
XNETYP
GTOTEL
GTOTGP

Maximum halo size
Maximum size of buffer
Total number of elements including halos
Total number of grid points including haloes
Total number of element types including haloes
Global total number of elements
Global total number of grid points

BUFLEN Buffer length - scratch
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C
c====

PROCNUM This processors number
NPROC Number of processors (sub-domains)
MASTER Logical true if processor number one
ELINDX Element index, global element numbers for this subdomain
PTINDX Point index, global point numbers for this subdomain
HEINDX Halo element communication index
HPINDX Halo point communication index
BUFFER Integer buffer - big
IUFFER Integer buffer
RBUFER Floating point buffer - big
FBUFER Floating point buffer
DBUFER Double precision buffer

INTEGER MAXHLO, MAXBUF
c note MAXBUF must be divisible by 16 for data alignment

PARAMETER ( MAXBUF = 160000 )
PARAMETER ( MAXHLO = MAXBUF/40 )
INTEGER XTOTEL, XTOTGP, XNETYP
INTEGER GTOTEL, GTOTGP, BUFLEN
INTEGER PROCNUM, NPROC
LOGICAL MASTER

INTEGER ELINDX(0:MAXBUF/2)
INTEGER PTINDX(0:MAXBUF/2)
INTEGER HEINDX(1:MAXHLO)
INTEGER HPINDX(1:MAXHLO)

INTEGER 
INTEGER 
REAL 
REAL 
REAL*8

BUFFER(1: MAXBUF) 
IBUFER(1: MAXBUF) 
RBUFER(1: MAXBUF) 
FBUFER(1: MAXBUF) 
DBUFER (1: MAXBUF)

INTEGER ELEMENT, NODE, D.NODE
PARAMETER ( ELEMENT = 1 )
PARAMETER ( NODE = 2 )
PARAMETER ( D.NODE = 4 )

c the buffers are arranged into overlapping memory space
EQUIVALENCE ( DBUFER(1), RBUFER )
EQUIVALENCE ( DBUFER(MAXBUF/2 + 1) , FBUFER )
EQUIVALENCE ( BUFFER, RBUFER )
EQUIVALENCE ( IBUFER, FBUFER )

COMMON /PCOMM/ XTOTEL, XTOTGP, XNETYP, GTOTEL, GTOTGP,
® PROCNUM, NPROC, MASTER,
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5 ELINDX, PTINDX, HEINDX, HPINDX,
5 BUFLEN, DBUFER,
5 ELEMENT, NODE, D.NODE
SAVE /PCOMM/

A.2 Parallel Utility Library

The routines provided by the parallel utility library discussed in Section 2.4.1 are as 

follows:

• INITIALISE()

Sets up the parallel configuration. This initialises the variables NPROC and PROCNUM 

which remain hidden in the common data PCOMM.

• HALTQ

Shuts down parallel processing.

• CHECK()

Checks to see if the processors are responding. Used only to provide confidence 

check.

• BCASTC VARIABLE, VARIABLEJLENGTH )

Broadcasts a VARIABLE of size VARIABLE-LENGTH from the master processor to all 

processors. All processors are left with an identical value for VARIABLE. This could 

have been implemented with a processor number as an argument to indicate which 

processor is broadcasting. This was not however found to be required, mainly as a 

consequence of the SPMD paradigm.

• GSUMR( REAL.VARIABLE )

Returns the global sum of the REAL_VARIABLE to all processors.

• GMAXRC REAL_VARIABLE )

Returns the global maximum of the REAL_VARIABLE to all processors.
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• GSUMDC DOUBLEJVARIABLE )

Returns the global sum of the DOUBLE-VARIABLE to all processors.

• GMAXRC DOUBLEJVARIABLE )

Returns the global maximum of the DOUBLE-VARIABLE to all processors.

• GORC BOOLEAN-VARIABLE )

Returns the global OR of the BOOLEAN-VARIABLE to all processors.

• GANDC BOOLEAN-VARIABLE )

Returns the global AND of the BOOLEAN-VARIABLE to all processors.

• SWAPC VARIABLE, SPATIAL JREFERENCE )

Exchanges the VARIABLE values in the overlaps to give consistent data across all 
processors. SPATIAL-REFERENCE may be any of ELEMENT, NODE or D-NODE.

• SCATTERC VARIABLE, SPATIALJIEFERENCE )

Distributes a global SPATIAL-REFERENCE based variable from the master processor 
to be a local variable on all processors. Used only in i/o routines.

• GATHERC VARIABLE, SPATIAL-REFERENCE )

Rebuilds a global SPATIAL-REFERENCE based variable onto the master processor 
from local variables on all processors. Used only in i/o routines.

• TOPROCC PROCESSOR-NUMBER, BUFFER, VARIABLE, VARIABLEJLENGTH )

Sends BUFFER of length VARIABLE-LENGTH from the master processor into VARIABLE 
on PROCESSOR-NUMBER. This call requires a PROCESSOR-NUMBER and is used only in 
i/o routines.

• FROMPROCC PROCESSOR-NUMBER, BUFFER, VARIABLE, VARIABLEJLENGTH )

Sends VARIABLE of length VARIABLEJLENGTH from PROCESSORJNUMBER into BUFFER 
on the master processor. This call requires a PROCESSORJNUMBER and is used only 
in i/o routines.
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• ASWAP( VARIABLE, SPATIAL_REFERENCE, SWAP_ID )

Performs an asynchronous (non-blocking) exchange of the VARIABLE values in the 
overlaps to give consistent data across all processors. SWAP-ID is a unique identifier 
for the communication.

• SYNCC SWAP-ID )

Waits until the message identified by SWAP-ID is complete.
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Partition List

The partition listed here corresponds to the partitioned mesh shown in Figure 4.7

The first entry is the number of elements N (nodes in graph), the second is the 

number of partitions P. There then follows a list of N numbers giving the partition to 

which the element belongs.
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Parallel Iterative Solvers

The code listed here is the original serial code that has been modified to function in 

parallel by the addition of the code highlighted in bold. The additional subroutines 

called can be found in the PUIFS utility library and the additional variables used are 

from putils.inc, both are listed in Appendix A.

These routines have met the requirements of objectives (i), (ii), (iii) and (iv); 

(i) The algorithms for Jacobi and DPCGM are unchanged, and for Gauss SOR minimally 

changed.

(ii) The changes made to the serial code are minimal and hopefully comprehendable 

without extensive knowledge of parallel processing.

(iii) Given a well balanced partition the parallel efficiency is potentially high as little 

communication is required. 

(iv) Portability is achieved through the use of library functions.

Whether scalability (requirement (v)) has been achieved is dependent on the imple­ 

mentation of the global commutative functions.
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C.I

r-
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
P-\^

Jacob! Solver

Subroutine

Author

Description

JACOBI (JACOBI) scheme

: P. Chow 23rd March 1989
K. McManus 23rd September 1993
Centre for Numerical Modelling & Process Analysis
University of Greenwich, London, England.

: Solve Ax = b using Jacobi iterative scheme.

Variables :
IN
IN
IN
IN
IN
IN
IN
IN
IN
I&O
OUT
OUT
OUT
OUT
WSP

RMETHD
TOLVAL
MAXITR
TOMITR
TOTELP
TOTELE
SYSINX
SYSMAT
B
X
RESVAL
NITERS
BIGRES
CONVER
OX

- Residual method.
- Tolerance value.
- Maximum number of iteration.
- To maximum iteration.
- Total number of grid points per element .
- Total number of element.
- System matrix index.
- System matrix A.
- B vector.
- Solving variable X.
- Residual values.
- Number of iteration taken.
- Biggest residual value.
- Convergent indicator.
- Old X value (work space) .

SUBROUTINE JACOBI ( RMETHD, TOLVAL, MAXITR, TOMITR, TOTELP,

@
<3 I

INTEGER
INTEGER
REAL
REAL
REAL
REAL
LOGICAL

TOTELE, SYSINX, SYSMAT, B , X
RESVAL, NITERS, BIGRES, CONVER, OX )

RMETHD, MAXITR, TOTELP, TOTELE, NITERS
SYSINX (0 : TOTELP , 1 : TOTELE)
TOLVAL, BIGRES
SYSMAT ( 1 : TOTELP , 1 : TOTELE)
B (1: TOTELE), X (1: TOTELE)
RESVAL (1: TOTELE), OX (IrTOTELE)
TOMITR, CONVER

C Commons
INCLUDE 'puifs.inc'

C Local Constants
INTEGER HEADER, IZERO , IONE
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PARAMETER ( HEADER = 0, IZERO = 0, IONE = 1 )

C Local Variables
INTEGER ISTART, IEND , ISTEP , I , J 
LOGICAL DONE

NITERS = IZERO

100 CONTINUE
NITERS = NITERS + IONE

C DO 150 I = IONE, TOTELE - operate locally on the overlap 
DO 150 I = IONE, XTOTEL

OX(I) = X(I) 
150 CONTINUE

DO 300 I = IONE, TOTELE

DO 200 J = IONE, SYSINX (HEADER, I)
X(I) = X(I) + SYSMAT(J,I) * OX(SYSINX(J,I)) 

200 CONTINUE

RESVAL(I) = ABS ( X(I) - OX (I) ) 

300 CONTINUE

CALL ERESID ( RMETHD, TOTELE, RESVAL, X , BIGRES )

CONVER = BIGRES .LE. TOLVAL 
DONE = (NITERS .GE. MAXITR) -OR. 

<9 (CONVER .AND. (.NOT. TOMITR))

CALL SWAP ( X, 'E' )

IF ( .NOT. DONE ) GOTO 100

RETURN 
END

The solver calls ERESID to evaluate the residuals at each iteration. This routine in 
turn calls LNORMS to evaluate the residual norms. ERESID is unchanged in parallel, but is 
listed here with LNORMS to show the call to LNORMS which requires a global commutative 

operation.

c ——————————————————————————————————————————————
C Subroutine ERESID (E)rror (RESID)ual 
C
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C Author 
C 
C 
C
C Description 
C
C
C Variables
C IN METHOD
C
C
C 
C
C
C 
C
C IN TOTELE
C IN RESDIF
C IN CURVAL
C OUT RESVAL
C
n ___________ _-

: P. Chow 1st July 1992 
Centre for Numerical Analysis & Process Control 
University of Greenwich, London, England.

: Evaluate the residual value given residual and 
current values.

*

Method of residual evaluation.
1 - Absolute L-l norm.
2 - Absolute L-2 norm.
3 - Absolute L-Infinity norm. 
4 - Relative L-l norm.
5 - Relative L-2 norm.
6 - Relative L-Inf inity norm.

- Total number of elements.
- Residual difference.
- Current value
- Residual value.

SUBROUTINE ERESID ( METHOD, TOTELE, RESDIF, CURVAL, RESVAL )

INTEGER METHOD, TOTELE
REAL RESVAL
REAL RESDIFCl:TOTELE), CURVAL(1:TOTELE)

Local Constants 
INTEGER 
PARAMETER

ITHREE
( ITHREE = 3

C External User Defined Functions 
REAL LNORMS, TOZERO 
LOGICAL EQZERO 
EXTERNAL LNORMS, TOZERO, EQZERO

C Local Variables
INTEGER SLNORM, I 
REAL ZETA

SLNORM = METHOD 
IF ( METHOD .GT. ITHREE ) THEN 

SLNORM = METHOD - ITHREE

ZETA = TOZERO ()

DO 100 I = 1, TOTELE
RESDIF(I) = RESDIF(I) / ( ABS ( CURVAL(I) ) + ZETA )
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100 CONTINUE 
END IF

RESVAL = LNORMS ( SLNORM, TOTELE, RESDIF )

P-

c
C
C 
C 
C 
C 
C
C 
C
C
C
C
C
C 
C
C
C 
r.

RETURN 
END

Real Function

Author :

Description :

Variables :
IN METHOD -

IN TOTELE -
IN VECTOR -

LNORMS (L)- (NORMS)

P. Chow 1st July 1992 
K. McManus 23rd September 1993 
Centre for Numerical Analysis & Process Control 
University of Greenwich, London, England.

Evaluate the L-l, L-2 or L-infinity norm of a vector

Method of norm.
1 - L-l norm.
2 - L-2 norm.
3 - L-infinity norm. 
Total number of elements.
Vector of real numbers.

REAL FUNCTION LNORMS ( METHOD, TOTELE, VECTOR )

INTEGER METHOD, TOTELE 
REAL VECTOR(1:TOTELE)

C Local Constants
INTEGER L1NORM, L2NORM, LINORM, IONE
REAL ZERO
PARAMETER ( LINORM = 1, L2NORM = 2, LINORM = 3, IONE = 1 )
PARAMETER ( ZERO = 0.0 )

C Local Variables
INTEGER I 
REAL RESVAL

RESVAL = ZERO

IF ( METHOD .EQ. LINORM ) THEN 
DO 100 I = IONE, TOTELE

RESVAL = RESVAL + VECTOR(I) 
100 CONTINUE

CALL GSUMR ( RESVAL )
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ELSE IF ( METHOD .EQ. L2NORM ) THEN 
DO 200 I = IONE, TOTELE

RESVAL = RESVAL + VECTOR(I) * VECTOR(I) 
200 CONTINUE

CALL GSUMR ( RESVAL ) 
RESVAL = SQRT ( RESVAL ) 

ELSE IF ( METHOD .EQ. LINORM ) THEN 
DO 300 I = IONE, TOTELE

IF ( VECTOR(I) .GT. RESVAL ) RESVAL = VECTOR(I) 
300 CONTINUE

CALL GMAXR ( RESVAL ) 
END IF

LNORMS = RESVAL

RETURN 
END
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C.2 Gauss-Seidel Solver

C Subroutine
C
C
C Author
C
C
C
C
C Description
C
C Variables
C IN RMETHD
C IN RELAXA
C IN TOLVAL
C IN MAXITR
C IN TOMITR
C IN TOTELP
C IN TOTELE
C IN SYSINX
C IN SYSMAT
C IN B
C I&O X
C OUT RESVAL
C OUT NITERS
C OUT BIGRES
C OUT CONVER
C

SORSCH (SOR) (SCH)eme

: P. Chow 23rd March 1989
K. McManus 23rd September 1993
Centre for Numerical Modelling & Process Analysis
University of Greenwich, London, England.

: Solve Ax = b using SOR iterative scheme.

^

- Residual method.
- Relaxation value.
- Tolerance value.
- Maximum number of iteration.
- To maximum iteration.
- Total number of grid points per element .
- Total number of element .

System matrix index.
System matrix A.

- B vector.
Solving variable X.

- Residual values.
- Number of iteration taken.
- Biggest residual value.
- Convergent indicator .

C ——————————————————————————————— — ———— — ———— —— ______ 
SUBROUTINE SORSCH ( RMETHD, RELAXA, TOLVAL, MAXITR, TOMITR,

@

@

INTEGER
INTEGER
REAL
REAL
REAL
REAL
LOGICAL

TOTELP, TOTELE, SYSINX, SYSMAT, B
X , RESVAL, NITERS, BIGRES, CONVER )

RMETHD, MAXITR, TOTELP, TOTELE, NITERS
SYSINX (0 : TOTELP , 1 : TOTELE)
RELAXA, TOLVAL, BIGRES
SYSMAT ( 1 : TOTELP , 1 : TOTELE)
B (1:TOTELE), X (IrTOTELE)
RESVAL (1: TOTELE)
TOMITR, CONVER

C Local Constants
INTEGER HEADER, IZERO , IONE 
PARAMETER ( HEADER = 0, IZERO = 0, IONE

C Local Variables
INTEGER ISTART, IEND , ISTEP , I

= 1 )
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REAL PREVAL, CURVAL 
LOGICAL DONE , BKWARD

BKWARD = .FALSE. 
NITERS = IZERO

100 CONTINUE
NITERS = NITERS + IONE

IF ( BKWARD ) THEN
ISTART = TOTELE
IEND = IONE
ISTEP = -1
BKWARD = .FALSE. 

ELSE
ISTART = IONE
IEND = TOTELE
ISTEP = IONE

C BKWARD = .TRUE. 
END IF

DO 300 I = ISTART, IEND, ISTEP 
PREVAL = X(I) 
CURVAL = B(I) 
DO 200 J = IONE, SYSINX(HEADER,I)

CURVAL = CURVAL + SYSMAT(J,I) * X(SYSINX(J,D) 
200 CONTINUE

CURVAL = PREVAL + RELAXA * (CURVAL - PREVAL)

RESVAL(I) = ABS ( CURVAL - PREVAL ) 
X(I) = CURVAL 

300 CONTINUE

CALL ERESID ( RMETHD, TOTELE, RESVAL, X , BIGRES )

CONVER = BIGRES .LE. TOLVAL 
DONE = (NITERS .GE. MAXITR) .OR. 

@ (CONVER .AND. (.NOT. TOMITR))

CALL SWAP ( X, '£> )

IF ( .NOT. DONE ) GOTO 100

RETURN 
END
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C.3 Diagonally Preconditioned Conjugate Gradient Solver
\s~

C
C
C
C

C 
C 
C
C
C
C 
C
C
C
C
C 
C 
C
C
C 
r

Subroutine

Author

Date

Description

Variables :
IN BANWID
IN TOTNOD
IN SYSINX 
IN A 
IN B
IN TOLVAL
I/O X

ESOLVE

C. Bailey 
K. McManus 17th November 1993
Centre for Numerical Modelling & 
University of Greenwich, London,

22 June 1992.

: Solves the system Ax=B using the 
method .

Bandwidth
Total number of unknowns
Index for the systems matrix 
Systems matrix. 
Load vector.
Tolerance.
Unknown values.

Process Analysis 
England .

conjugate gradient

c.

SUBROUTINE ESOLVE ( BANWID, TOTNOD, SYSINX, A , B
@ TOLVAL, X , MAXITR)

INTEGER BANWID, TOTNOD, MAXITR
INTEGER SYSINX(1:BANWID,1:TOTNOD)
REAL A (1:BANWID,!:TOTNOD)
REAL B (1:TOTNOD), X (1:TOTNOD)
REAL TOLVAL

Local variables
INTEGER MAXBAN, MAXNOD, I , J , ITER
PARAMETER (MAXBAN = 10, MAXNOD = 500)
REAL*8 PRCONA(1:MAXBAN,1:MAXNOD), PRCONB(1:MAXNOD)
REAL*8 PRCONXU:MAXNOD), OLDX (1:MAXNOD)
REAL*8 RESID (1:MAXNOD), U (1:MAXNOD)
REAL*8 P (1:MAXNOD), Bl (1:MAXNOD)
REAL*8 BIGDEV, ALPHAK, BETAK , DENOM , DENOM1
REAL*8 RHOK, RHOKP
LOGICAL CONVER

DO 2 I = 1, TOTNOD 
OLDX(I) = X(I)

DO 3 J = 2, SYSINX(1,I)
* X(SYSINX(J,I))
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3 CONTINUE 
2 CONTINUE

C==== Set up Pre-Conditioned matrix and vectors. 
C==== Using diagonal scaling.

DO 10 I = 1, TOTNOD 
X(I) = 0.0 
PRCONX(I) =0.0
PRCONB(I) = B1(I) / SQRT(A(1,I)) 
DO 5 J = 2, SYSINX(1,I)

PRCONA(J,I) = A(J,I) / SQRT( A(1,I) * A(1,SYSINX(J,I))) 
5 CONTINUE

PRCONA(1,I) =1.0 
10 CONTINUE

C==== Set up RESID, P .

DENOM1 =0.0
DO 40 I = 1, TOTNOD

RESID(I) = PRCONB(I)
P(I) = RESID(I)
DENOM1 = DENOM1 + (RESID(I) ** 2) 

40 CONTINUE
CALL GSUMD ( DENOM1 )
IF ( DENOM1 .LE. 0.0 ) RETURN
RHOK = DENOM1

C===== Start iteration cycle

ITER = 0
CONVER = .FALSE. 

1001 ITER = ITER + 1
CALL SWAP ( P, 'DN» )

C===== Calculate U(I) ======

DO 60 I = 1, TOTNOD

DO 65 J = 2, SYSINXU,!)
U(I) = U(I) + PRCONA(J,I) * P(SYSINX(J,D) 

65 CONTINUE 
60 CONTINUE

C===== Calculate ALPHAK ======

DENOM =0.0
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DO 70 I = 1, TOTNOD
DENOM = DENOM + P(I) * U(I) 

70 CONTINUE
CALL GSUMD ( DENOM )
IF ( DENOM .LE. 0.0 ) THEN

ALPHAK =0.0 
ELSE

ALPHAK = RHOK / DENOM 
END IF

C===== Calculate PRCONX and RESID at this iteration.

RHOKP =0.0
DO 90 I = 1, TOTNOD

PRCONX(I) = PRCONX(I) + ALPHAK * P(I) 
RESID(I) = RESID(I) - ALPHAK * U(I) 
RHOKP = RHOKP + (RESID(I) ** 2) 

90 CONTINUE
CALL GSUMD ( RHOKP )

C===== Calculate BETAK and P at this iteration =====

IF ( RHOK .LE. 0.0 ) THEN
BETAK =0.0 

ELSE
BETAK = RHOKP / RHOK 

END IF

DO 130 I = 1, TOTNOD
P(I) = RESID(I) + BETAK * P(I) 

130 CONTINUE

C===== Calculate the residual norm.

BIGDEV = SQRT ( RHOK / DENOM1 ) 

C===== Check to see if convergence has been achieved

IF ((BIGDEV.GT.TOLVAL).AND.(ITER.LT.MAXITR) ) THEN
RHOK = RHOKP
GOTO 1001 

END IF

C====== Calculate X from PRCONX.

DO 500 I = 1, TOTNOD
X(I) = PRCONX(I) / SQRT(A(1,D)
X(I) = X(I) + OLDX(I)
IF ( ABS(XU)) .LT. l.E-8 ) X(I) = 0
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500 CONTINUE

CALL SWAP ( I, 'N J )

RETURN 
END
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Modified Parallel Iterative Solvers

The codes listed here are the parallel Jacobi and conjugate gradient solvers that have 

been modified to provide improved parallel speed-up. The nature of the modifications is 

discussed in Section 5.4.

D.I Modified Jacobi Solver

u ———————— ---—-——— -——————-—— ——--——————— —-——-——— 

C Subroutine JACOBI (JACOBI) scheme
C
C
C Author :
C 
C 
C 
C
C Description : 
C
C Variables :
C IN RMETHD -
C IN TOLVAL -
C IN MAXITR -
C IN TOMITR - 
C IN TOTELP - 
C IN TOTELE -
C IN SYSINX - 
C IN SYSMAT - 
C IN B

P. Chow 23rd March 1989
K. McManus 23rd September 1993 
Centre for Numerical Modelling & Process Analysis 
University of Greenwich, London, England.

Solve Ax = b using Jacobi iterative scheme.

Residual method.
Tolerance value.
Maximum number of iteration.
To maximum iteration. 
Total number of grid points per element. 
Total number of element.
System matrix index. 
System matrix A. 
B vector.
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C I&O
C OUT
C OUT
C OUT
C OUT
C WSP
C 
r ———

X
RESVAL
NITERS
BIGRES
CONVER
OX

- Solving variable X.
- Residual values.
- Number of iteration taken.
- Biggest residual value.

Convergent indicator.
- Old X value (work space) .

SUBROUTINE JACOBI ( RMETHD, TOLVAL, MAXITR, TOMITR, TOTELP,
@ TOTELE, SYSINX, SYSMAT, B , X
<9 RESVAL, NITERS, BIGRES, CONVER, OX )

INTEGER RMETHD, MAXITR, TOTELP, TOTELE, NITERS
INTEGER SYSINX (0: TOTELP,!: TOTELE)
REAL TOLVAL, BIGRES
REAL SYSMAT ( 1 : TOTELP , 1 : TOTELE)
REAL B (1: TOTELE), X (1: TOTELE)
REAL RESVAL (1: TOTELE), OX (1: TOTELE)
LOGICAL TOMITR, CONVER

C Commons
INCLUDE 'puifs.inc'

C Local Constants
INTEGER HEADER, IZERO , IONE
PARAMETER ( HEADER = 0, IZERO = 0, IONE = 1 )

C Local Variables
INTEGER ISTART, IEND , ISTEP ,1 , J 
LOGICAL DONE

NITERS = IZERO

DO WHILE ( .NOT. DONE )
NITERS = NITERS + IONE

C DO 150 I = IONE, TOTELE - operate locally on the overlap 
DO 150 I = IONE, XTOTEL

OX(I) = X(I) 
150 CONTINUE

DO 300 I = IONE, TOTELE

DO 200 J = IONE, SYSINX (HEADER, I)
X(I) = X(I) + SYSMAT(J,I) * OX(SYSINX(J,D) 

200 CONTINUE 
300 CONTINUE

IF ( TOMITR ) THEN
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DONE = (NITERS .GE. MAXITR) 
ELSE

DO I = 1, TOTELE
RESVAL(I) = ABS ( X(I) - OX(I) ) 

END DO
CALL ERESID ( RMETHD, TOTELE, RESVAL, X , BIGRES ) 
DONE = (NITERS .GE. MAXITR) .OR. (BIGRES .LE. TOLVAL) 

END IF

CALL SWAP ( X, '£' ) 

END DO

IF ( TOMITR ) THEN
DO I = 1, TOTELE

RESVAL(I) = ABS ( X(I) - OX(I) )
END DO
CALL ERESID ( RMETHD, TOTELE, RESVAL, X , BIGRES ) 

END IF

RETURN 
END
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D.2 Modified Diagonally Preconditioned Conjugate Gra­ 

dient Solver
^ ————————————— 

C Subroutine
C
C Author
c
C
C
C
C Date
C
C Amendments .
C
C Description
C
C Variables :
C IN BANWID
C IN TOTNOD
C IN SYSINX
C IN A
C IN B
C IN TOLVAL
C I/O X
r- — _ —— _ ——— .\j

ESOLVE

C. Bailey
K. McManus 10th July 1995
Centre for Numerical Modelling & Process Analysis
University of Greenwich, London, England.

22 June 1992.

: Solves the system Ax=B using the conjugate gradient
method .

Bandwidth
Total number of unknowns
Index for the systems matrix.
Systems matrix.
Load vector.
Tolerance.
Unknown values.

SUBROUTINE ESOLVE ( BANWID, TOTNOD, SYSINX, A , B
@

INTEGER
INTEGER
REAL
REAL
REAL

TOLVAL, X , MAXITR)

BANWID, TOTNOD, MAXITR
SYSINX ( 1 : BANWID , 1 : TOTNOD)
A (1: BANWID,!: TOTNOD)
B (1: TOTNOD), X (1: TOTNOD)
TOLVAL

C Local variables
INTEGER
PARAMETER
REAL*8
REAL*8
REAL* 8
REAL* 8
REAL*8
REAL*8
REAL*8
LOGICAL

MAXBAN, MAXNOD, I , J , ITER
(MAXBAN = 10, MAXNOD = 500)
PRCONA ( 1 : MAXBAN , 1 : MAXNOD) , PRCONB ( 1 : MAXNOD)
PRCONX(1: MAXNOD), OLDX (1: MAXNOD)
RESID (1: MAXNOD), U (1: MAXNOD)
P (1: MAXNOD), Bl (1: MAXNOD)
BIGDEV, ALPHAK, BETAK , DENOM , DENOM1
RHOK, RHOKP
UU, RESIDU
CONVER
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DO 2 I = 1, TOTNOD 
OLDX(I) = X(I) 
B1(I) = B(I) - A(1,I) * 
DO 3 J = 2, SYSINX(1,I)

B1(I) = Bid) - A(J,I) * X(SYSINX(J,D) 
3 CONTINUE 
2 CONTINUE

C==== Set up Pre-Conditioned matrix and vectors. 
C==== Using diagonal scaling.

DO 10 I = 1, TOTNOD 
X(I) = 0.0 
PRCONX(I) =0.0
PRCONB(I) = Bid) / SQRT(A(1,I)) 
DO 5 J = 2, SYSINX(1,I)

PRCONA(J,I) = A(J,I) / SQRTC A(1,I) * A(1,SYSINX(J,I))) 
5 CONTINUE

PRCONA(l.I) =1.0 
10 CONTINUE

C==== Set up RESID, P .

DENOM1 =0.0
DO 40 I = 1, TOTNOD

RESID(I) = PRCONB(I)
P(I) = RESID(I)
DENOM1 = DENOM1 + (RESID(I) ** 2) 

40 CONTINUE

CALL GSUHD ( DENON1 )

IF ( DENOM1 .LE. 0.0 ) RETURN 
RHOK = DENOM1

C===== Start iteration cycle =====

ITER = 0 
CONVER = .FALSE. 

1001 ITER = ITER + 1
CALL SWAP ( P, 'DN' )

C===== Calculate U(I) ======

DO 60 I = 1, TOTNOD 
U(I) = P(I) 
DO 65 J = 2, SYSINX(1,I)
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U(I) = U(I) + PRCONACJ,!) * P(SYSINX(J,I)) 
65 CONTINUE 
60 CONTINUE

C===== Calculate ALPHAK ======

DENOM =0.0
UD = 0.0
RESIDU = 0.0
DO 70 I = 1, TOTNOD

DENOM = DENOM + P(I) * U(I)
UU = UU + U(I)*U(I)
RESIDU = RESIDU + RESID(I)*U(I) 

70 CONTINUE
CALL GSUMD3 ( DENOM, UU, RESIDU ) 
IF ( DENOM .LE. 0.0 ) THEN

ALPHAK =0.0 
ELSE

ALPHAK = RHOK / DENOM 
END IF 
RHOKP = RHOK + ALPHAK * ( ALPHAK*UU - 2*RESIDU )

C===== Calculate PRCONX and RESID at this iteration.

RHOKP =0.0
DO 90 I = 1, TOTNOD

PRCONX(I) = PRCONX(I) + ALPHAK * P(I) 
RESID(I) = RESID(I) - ALPHAK * U(I) 

90 CONTINUE

C===== Calculate BETAK and P at this iteration =====

IF ( RHOK .LE. 0.0 ) THEN
BETAK =0.0 

ELSE
BETAK = RHOKP / RHOK 

END IF

DO 130 I = 1, TOTNOD
P(I) = RESID(I) + BETAK * P(I) 

130 CONTINUE

C===== Calculate the residual norm.

BIGDEV = SQRT ( RHOK / DENOM1 ) 

C===== Check to see if convergence has been achieved =====

IF ((BIGDEV.GT.TOLVAL).AND.(ITER.LT.MAXITR)) THEN
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RHOK = RHOKP 
GOTO 1001 

END IF

C====== Calculate X from PRCONX.

DO 500 I = 1, TOTNOD
X(I) = PRCONX(I) / SQRT(A(1,I)) 
X(I) = X(I) + OLDX(I) 
IF ( ABS(X(D) .LT. l.E-8 ) X(I) = 0 

500 CONTINUE

CALL SWAP ( X, »N» )

RETURN 
END
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Asynchronous Parallel Iterative 

Solvers

To achieve an improved efficiency through the use of asynchronous communications to 

overlap communication and calculation, the loop structure has to be split to operate 

firstly on the variables required for communication and then on the rest of the sub- 

domain. To succeed this requires that the sub-domain core has been renumbered with 

the dependent elements (grid points), i.e. those that are required for communication 

to neighbouring sub-domains, being numbered before the rest of the sub-domain. This 

is discussed in Section 5.4.5 A new variable NDEPEL contained in puifs.inc records the 

number of dependent elements. The element loop can now loop over NDEPEL elements, 

initiate communication, loop over NDEPEL+1 to TOTELE and then synchronise the commu­ 

nication. Listed here are asynchronous versions of the Jacobi and conjugate gradient 

parallel solvers. The techniques illustrated here can be applied to many other code 

structures.

E.I Asynchronous Jacobi Solver

c_____________________________________
C Subroutine JACOBI (JACOBI) scheme
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c
c
C Author :
C
C
C
C
C Description :
C
C Variables :
C IN RMETHD -
C IN RELAXA -
C IN TOLVAL -
C IN MAXITR -
C IN TOMITR -
C IN TOTELP -
C IN TOTELE -
C IN SYSINX -
C IN SYSMAT -
C IN B
C I&O X
C OUT RESVAL -
C OUT NITERS -
C OUT BIGRES -
C OUT CONVER -
C WSP OX
C
C — __ _ ___ _

SUBROUTINE
@
@
@

INTEGER
INTEGER
REAL
REAL
REAL
REAL
LOGICAL

P. Chow 23rd March 1989
K. McManus 21st July 1995
Centre for Numerical Modelling & Process Analysis
University of Greenwich, London, England.

Solve Ax = b using JOR iterative scheme.

Residual method.
Relaxation value.
Tolerance value.
Maximum number of iteration.
To maximum iteration.
Total number of grid points per element.
Total number of element .
System matrix index.
System matrix A.
B vector.
Solving variable X.
Residual values.
Number of iteration taken.
Biggest residual value.
Convergent indicater.
Old X value (work space) .

JACOBI ( RMETHD, RELAXA, TOLVAL, MAXITR, TOMITR,
TOTELP, TOTELE, SYSINX, SYSMAT, B
X , RESVAL, NITERS, BIGRES, CONVER,
OX )

RMETHD, MAXITR, TOTELP, TOTELE, NITERS
SYSINX (0 : TOTELP , 1 : TOTELE)
RELAXA, TOLVAL, BIGRES
SYSMAT ( 1 : TOTELP , 1 : TOTELE)
B (1: TOTELE), X (1: TOTELE)
RESVALCl: TOTELE), OX (IrTOTELE)
TOMITR, CONVER

C Commons
INCLUDE 'puifs.inc'

C Local Constants
INTEGER HEADER, IZERO , IONE
PARAMETER ( HEADER = 0, IZERO = 0, IONE = 1 )

C Local Variables
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INTEGER ISTART, IEND , ISTEP ,1 , J , ID 
LOGICAL DONE

NITERS = IZERO 
DONE = .FALSE.

DO WHILE ( .NOT. DONE )

NITERS = NITERS + IONE

DO I = IONE, XTOTEL
OX(I) = X(I) 

END DO

DO I = IONE, NDEPEL

DO J = IONE, SYSINX (HEADER, I)
X(I) = X(I) + SYSMAT(J,I) * OX (SYSINX (J, I)) 

END DO 
END DO

CALL ASVAP ( X, >E>, ID )

DO I = NDEPEL+IONE, TOTELE

DO J = IONE, SYSINX (HEADER, I)
X(I) = X(I) + SYSMAT(J,I) * OX(SYSINX(J,I)) 

END DO 
END DO

CALL SYNC ( ID )

IF ( TOMITR ) THEN
DONE = (NITERS .GE. MAXITR) 

ELSE
DO I = 1, TOTELE

RESVAL(I) = ABS ( X(I) - OX(I) )
END DO
CALL ERESID ( RMETHD, TOTELE, RESVAL, X , BIGRES )
DONE = (NITERS .GE. MAXITR) .OR. (BIGRES .LE. TOLVAL) 

END IF

END DO

IF ( TOMITR ) THEN 
DO I = 1, TOTELE

RESVAL(I) = ABS ( X(I) - OX(I) ) 
END DO
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CALL ERESID ( RMETHD, TOTELE, RESVAL, X 
END IF

RETURN 
END

, BIGRES )

E.2 Asynchronous Diagonally Preconditioned Conjugate 

Gradient Solver
v^- 1

c
c
c
c 
C 
C
c
c
c
c
c
c 
c
c
c
c
c 
c 
c
c
c
r_

Subroutine

Author

Date

Amendments.

Description

Variables :
IN BANWID
IN TOTNOD
IN SYSINX 
IN A 
IN B
IN TOLVAL
I/O X

ESOLVE

C. Bailey 
K. McManus 14th August 1995 
Centre for Numerical Modelling & Process Analysis 
University of Greenwich, London, England.

22 June 1992.

: Solves the system Ax=B using the conjugate gradient 
method .

Bandwidth
Total number of unknowns
Index for the systems matrix. 
Systems matrix. 
Load vector.
Tolerance.
Unknown values.

SUBROUTINE ESOLVE ( BANWID, TOTNOD, SYSINX, A , B 
@ TOLVAL, X , MAXITR)

INTEGER BANWID, TOTNOD, MAXITR
INTEGER SYSINXC1:BANWID,1:TOTNOD)
REAL A (1:BANWID,1:TOTNOD)
REAL B (IrTOTNOD), X (1:TOTNOD)
REAL TOLVAL

Local variables
INTEGER MAXBAN, MAXNOD, I , J , ITER, ID 
PARAMETER (MAXBAN = 10, MAXNOD = 500) 
REAL*8 PRCONA(1:MAXBAN,1:MAXNOD), PRCONB(1:MAXNOD) 
REAL*8 PRCONXC1:MAXNOD), OLDX (1:MAXNOD)
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REAL*8 RESID (IrMAXNOD), U (1:MAXNOD)
REAL*8 P (1:MAXNOD), Bl (IrMAXNOD)
REAL*8 BIGDEV, ALPHAK, BETAK , DENOM , DENOM1
REAL*8 RHOK, RHOKP
REAL*8 UU, RESIDU
LOGICAL CONVER

DO 2 I = 1, TOTNOD 
OLDX(I) = X(I)
B1(I) = B(I) - A(1,I) * X(I) 
DO 3 J = 2, SYSINX(1,I)

B1(I) = B1(I) - A(J,I) * X(SYSINX(J,I)) 
3 CONTINUE 
2 CONTINUE

C==== Set up Pre-Conditioned matrix and vectors. 
C==== Using diagonal scaling.

DO 10 I = 1, TOTNOD 
X(I) = 0.0 
PRCONX(I) =0.0
PRCONB(I) = B1(I) / SQRT(A(1,I)) 
DO 5 J = 2, SYSINX(1,I)

PRCONA(J,I) = A(J,I) / SQRT( A(1,I) * A(1,SYSINX(J,I))) 
5 CONTINUE

PRCONA(1,I) =1.0 
10 CONTINUE

C==== Set up RESID, P .

DENOM1 =0.0
DO 40 I = 1, TOTNOD

RESID(I) = PRCONB(I)
P(I) = RESID(I)
DENOM1 = DENOM1 + (RESID(I) ** 2) 

40 CONTINUE

CALL GSUMD ( DENON1 )

IF ( DENOM1 .LE. 0.0 ) RETURN 
RHOK = DENOM1

CALL ASWAP ( P, >DN>, ID )

C===== Start iteration cycle =====
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ITER = 0
CONVER = .FALSE. 

1001 ITER = ITER + 1

C===== Calculate U(I) ======

DO 60 I = NDEPGP+1, TOTNOD

DO 61 J = 2, SYSINX(1,I)
U(I) = U(I) + PRCONA(J,I) * P(SYSINX(J,I)) 

61 CONTINUE 
60 CONTINUE

CALL STNC ( ID )

DO 62 I = 1, NDEPGP

DO 63 J = 2, SYSINX(1,I)
U(I) = U(I) + PRCONA(J,I) * P(SYSINX(J,I)) 

63 CONTINUE 
62 CONTINUE

C===== Calculate ALPHAK

DENOM =0.0
UU = 0.0
RESIDU =0.0
DO 70 I = 1, TOTNOD

DENOM = DENOM + P(I) * U(I)
UU = UU + U(I)*U(I)
RESIDU = RESIDU + RESID(I)*U(I) 

70 CONTINUE
CALL GSUMD3 ( DENOM, UU, RESIDU ) 
IF ( DENOM .LE. 0.0 ) THEN

ALPHAK =0.0 
ELSE

ALPHAK = RHOK / DENOM 
END IF 
RHOKP = RHOK + ALPHAK * ( ALPHAK*UU - 2*RESIDU )

C===== Calculate PRCONX and RESID at this iteration.

RHOKP =0.0
DO 90 I = 1, TOTNOD

PRCONX(I) = PRCONX(I) + ALPHAK * P(I) 
RESIDU) = RESID(I) - ALPHAK * U(I) 

90 CONTINUE

C===== Calculate BETAK at this iteration
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IF ( RHOK .LE. 0.0 ) THEN
BETAK =0.0 

ELSE
BETAK = RHOKP / RHOK 

END IF

C===== Calculate the residual norm.

BIGDEV = SQRT ( RHOK / DENOM1 ) 

C===== Check to see if convergence has been achieved =====

IF ((BIGDEV.GT.TOLVAL).AND.(ITER.LT.MAXITR)) THEN 
RHOK = RHOKP

DO 130 I = 1, NDEPGP
P(I) = RESID(I) + BETAK * P(I)

130 CONTINUE

CALL ASWAP ( P, 'DN>, ID )

DO 131 I = NDEPGP+1, TOTNOD
P(I) = RESID(I) + BETAK * P(I)

131 CONTINUE

GOTO 1001 
END IF

C====== Calculate X from PRCONX.

DO 500 1=1, TOTNOD
X(I) = PRCONX(I) / SQRT(A(1,D) 
X(I) = X(I) + OLDX(I) 
IF ( ABS(X(D) .LT. l.E-8 ) X(I) = 0 

500 CONTINUE

CALL SWAP ( X, »N> )

RETURN 
END
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