
M O O H l O Z O T f

SHOP SCHEDULING WITH
AVAILABILITY CONSTRAINTS

Mikhail A. Kubzin

A thesis submitted in partial fulfilment of the requirements of the
University of Greenwich for the degree of Doctor of Philosophy

June 2005

The University of Greenwich,
School of Computing and Mathematical Science,

Park Row, Greenwich, SE10 9LS

%



Contents

Acknowledgements iii

Abstract iv

1 Introduction 1
1.1 Shop Scheduling 5
1.2 Problem Classification 6

1.2.1 Machine Environment 7
1/2.2 Job Characteristics 8
1.2.3 Objective Function 9
1.2.4 More Notation and Definitions 10

1.3 Flow Shop Problem 11
1.4 Flow Shop Algorithms 14

1.4.1 Johnson's Algorithms 15
1.5 Flow Shop No-wait Problem 16
1.6 Flow Shop No-wait Algorithms 18

1.6.1 The Travelling Salesman Problem 18
1.6.2 Trasformation of F2\no— wait\C max to the TSP . . . . 19
1.6.3 Gilmore-Gomory Algorithm 21

1.7 Open Shop Problem 24
1.8 Open Shop Algorithms 27

1.8.1 Gonzalez and Salmi's Algorithm 27
1.8/2 Greedy Algorithms 29
1.8.3 Pinedo and Schrage Algorithm 32

1.9 Non-approximability 33

2 Machine availability constraints 36
2.1 Introduction 36
2.2 Single Machine 41
2.3 Parallel Machines 42
2.4 Multi-stage systems 44

i



CONTENTS ii

2.4.1 Flow Shop 44
2.4.2 Flow Shop No-wait 46
2.4.3 Open Shop 48

2.5 Machine Maintenance 49

3 Flow Shop Scheduling 52
3.1 Introduction 52
3.2 Resumable Scenario: Dynamic Programming 53
3.3 Resumable Scenario: FPTAS 59
3.4 Resumable Scenario: Approximation 65
3.5 Semi-Resumable Scenario: PTAS 68
3.6 Application of the developed method 78
3.7 Conclusion 80

4 Flow Shop No-wait Scheduling 82
4.1 Introduction 82
4.2 Complexity and Approximability 82
4.3 A| —Approximation Algorithm 85
4.4 Heuristic for the Resumable Scenario 94
4.5 Conclusion 103

5 Open Shop Scheduling 104
5.1 Introduction 104
5.2 Preliminaries 104
5.3 Several Holes on One Machine 108
5.4 One Hole on Each Machine 112
5.5 Conclusion 117

6 Scheduling machine maintenance 118
6.1 Introduction 118
6.2 Open Shop 120
6.3 Flow Shop 129
6.4 Flow Shop No-Wait 141
6.5 Conclusion 148

7 Summary 151



Acknowledgements

The author wishes to thank Professor Vitaly Strusevich for his continuous

guidance, wise and sound advices and good humour throughout. Addition-

ally, he wishes to thank Professor C.N. Potts for providing help and dialogue

along the way.

The author is grateful to Professor Colin Reeves for useful comments

which allowed to improve the thesis.

Financially, the author would like to recognise the support of the Univer-

sity of Greenwich which made this research possible.

Finally, the last but not the least of all, I owe most deepest and loving

thanks to my lovely wife Vita for her encouragement and support.

iii



Abstract

Scheduling Theory studies planning and timetabling of various industrial

and human activities and, therefore, is of constant scientific interest. Being

a branch of Operational Research, Theory of Scheduling mostly deals with

problems of practical interest which can be easily (from a mathematical point

of view) solved by full enumeration and at the same time usually require

enormous time to be solved optimally. Therefore, one attempts to develop

algorithms for finding optimal or near optimal solutions of the problems

under consideration in reasonable time. If the output of an algorithm is not

always an optimal solution then the worst-case analysis of this algorithm is

undertaken in order to estimate either a relative error or an absolute error

that holds for any given instance of the problem.

Scheduling problems which are usually considered in the literature assume

that the processing facilities are constantly available throughout the planning

period. However, in practice, the processing facility, e.g. a machine, a labour,

etc., can become non-available due to various reasons, e.g. breakdowns, lunch

breaks, holidays, maintenance work, etc. All these facts stimulate research

in the area of scheduling with non-availability constraints. This branch of

Scheduling Theory has recently received a lot of attention and a considerable

number of research papers have been published. This thesis is fully dedicated

to scheduling with non-availability constraints under various assumptions on

the structure of the processing system and on the types of non-availability

intervals.

IV



Chapter 1

Introduction

Scheduling is a form of decision-making which plays an important role in

many areas such as manufacturing, transport, computing, etc. Theory of

Scheduling studies mathematical models that arise in the planning and time-

tabling of various activities. While informally scheduling has been used for

centuries it began to be taken seriously at the beginning of the previous cen-

tury with the work of Gantt. However, it took the first scheduling publica-

tions almost half a century to appear in the Operational Research literature.

First scheduling algorithms were formulated and published by Johnson [68],

Smith [137] and Jackson [67]. Traditionally, scheduling problems are formu-

lated in terms of processing jobs on machines. A scheduling problem is to find

a feasible schedule that satisfies all processing requirements and optimises a

certain objective function, which usually depends on jobs' completion times.

In the early seventies due to famous works of Cook [36] and Karp [70] on

computational complexity, research focused mainly on complexity aspects of

scheduling problems. Nowadays it is commonly accepted to call a problem

to be easy if it admits an algorithm such that it finds an optimal solution

and its running time is bounded by a polynomial in the size of the input data

(this problem is said to belong to the class of P-hard problems). If for some

optimisation problem the existence of such an algorithm is highly unlikely

then this problem is assumed to be hard (this problem is said to belong to

i



CHAPTER 1. INTRODUCTION 2

the class of NP-hard problems). The crucial feature of scheduling theory is

the fact that it has a virtually unbounded number of problem types, see,

e.g., Conway et al. [35], Baker [9], Coffman [34], Rinnooy Kan [119], Lenstra

[96], French [41], Tanaev et al. [142], Most scheduling problems of practical

interest belong to the class of NP-hard problems.

There are two ways of solving NP-hard problems. First, we can try to find

an optimal solution but this requires a time consuming search and sometimes

the running time of such algorithms may appear to be unacceptable. Second,

we can search not for an optimal solution but for a feasible solution which is

close enough to the optimum. Certainly, if we select the latter way we wish

to obtain a heuristic solution which is as close to the optimum as possible

and spend on finding such a solution as less time as possible.

Most of the literature on scheduling studies scheduling problems under

the assumption that all machines are continuously available for processing

the jobs. This, however, is not always true in practice. Thus, it is worth

studying such problems with machine availability constraints. In many prac-

tical situations the processing machines may not be continuously available

throughout the planning period due to maintenance requirements or rest

periods which have to be taken into account. Scheduling problems with ma-

chine availability constraints have been extensively studied since the 1990s,

see [91, 130, 131] for surveys in this area.

There are two major types of sheduling problems considered in the lit-

erature: one-stage models and multi-stage (or shop scheduling) models. Let

us recall that in shop scheduling a decision-maker is given a set of jobs and

a set of machines. All jobs have to be processed on given machines. The se-

quence of machines in which a job undergo processing in the system is called

a processing route of this job. If all jobs have the same processing route than

this processing system is called a flow shop. If processing routes are not fixed

and can be defined for each job by the decision-maker then this processing

system is called an open shop.



CHAPTER 1. INTRODUCTION 3

A polynomial-time algorithm that outputs a heuristic solution that is

p > 1 times worse the optimal solution is called a p—approximation algorithm.

A family of (1 4-e) —approximation algorithms (where e > 0) is called a

polynomial-time approximation scheme, or a PTAS, if the running time is

polynomial in the length of the problem input. If additionally the running

time of a PTAS is polynomial with respect to 1/e, then it is called a fully

polynomial-time approximation scheme , or an FPTAS. We will give formal

definitions of approximation algorithms, PTAS and FPTAS in Section 1.2.

The main aim of this work is to design fast polynomial-time heuristic

algorithms for shop scheduling problems with availability constraints and to

prove that they guarantee to output solutions close to the optimum solutions

even in the worst case.

The layout of the rest of this thesis is as follows. Chapter 1 provides a gen-

eral background of the theory of scheduling. Here, we define terminology and

notation that is used throughout the thesis and introduce some basic schedul-

ing models. Furthermore, we make an overview of the present achievements

in Scheduling Theory and briefly describe some basic algorithms which will

be used later.

In Chapter 2 we introduce specific terminology and review the existing

literature on scheduling with availability constraints.

Chapters 3 through 6 are devoted to our contribution to the field of

scheduling with availability constraints. Each chapter addresses a particular

shop scheduling problem. For all problems we consider in this thesis, the

objective function is the maximal completion time, i.e., the makespan.

In Chapter 3 we consider the two-machine flow shop scheduling problem

with non-availability intervals either on the first machine or on the second

machine under various scenarios which are described in Chapter 2. We start

with presenting a dynamic programming algorithm for the resumable sce-

nario and several non-availability intervals on one of the machines. Then we



CHAPTER 1. INTRODUCTION 4

demonstrate how to convert the available dynamic programming algorithms

to FPTAS's. Since the running time of these FPTAS's is fairly large, a fast

heuristic algorithm with a guaranteed worst-case ratio of 3/2 is presented for

the problem with holes on the first machine. Finally we describe a PTAS for

the two-machine flow shop problem with a single non-availability interval on

one of the machines under the semi-resumable scenario.

In Chapter 4 we analyze the two-machine flow shop problem with no-wait

in process with one non-availability interval on one of the machines under

various scenarios. We show that our problem is NP-hard irrespective of the

scenario. Then we present a 3/2-approximation algorithm that is applica-

ble to any scenario and a 4/3-approximation algorithm for the resumable

scenario.

In Chapter 5 we present a PTAS for the open shop problem with several

non-availability intervals on one of the two machines and a PTAS for the two-

machine open shop with a single non-availability interval on each machine.

In Chapter 6 various scheduling problems subject to machine preventive

maintenance are considered. For the two-machine open shop problem we

present a polynomial-time algorithm, for the two-machine flow shop prob-

lem we prove that this problem becomes NP-hard even if the length of the

maintenance interval depends linearly on its starting time. We also give a

pseudopolynomial dynamic programming algorithm and two approximation

algorithms, including an FPTAS. For the two-machine flow shop problem

with no-wait in process subject to a single maintenance interval we present

a PTAS.

Finally in Chapter 7 we give some concluding remarks and summarize

the obtained results.



CHAPTER 1. INTRODUCTION

1 .1 Shop Scheduling

In this section we provide basic notation and recall some important definitions

related to shop scheduling.

In a general shop scheduling model, we are given a set

A A. = {M\,M 2,..., MM} of machines and a set TV= {JLT J 2,..., JN} of

jobs to be processed011 these machines .The process ingof each job J }£ N

consists of 7~jstages. Each job Jj € N 011 each stage q, q = 1,2,

can be processed 011 one machine L from the predefined subset of machines

-A/f1 C M.. Throughout the thesis we assume that |W q \ —1, i.e., in each

stage each job can be processed on only one machine. It is assumed that

each machine can process at most one job at a time and each job can be

processed at most 011 one machine at a time.

The processingtime of job Jj 011machine Mt is denoted by p^. If either

the processing time of job Jj does not depend on the machine or the job has

to be processed only on one given machine we omit the subscript i.

The workloadof machine M% is the total processing time of all jobs which

have to be processed on this machine.

The earliest time at which job Jj is ready for processing in the system is

called the release date of this job. The release date is denoted by r3.

The due date dj of job Jj represents the committed completion time. In

fact the completion of the job after the due date is allowed but a penalty

usually occurs.

If the due date must be met then we will refer to it as a deadline and

d e n o t eb y d j .

Sometimes it is necessary to take into account a job priority. For this

purpose we consider weight Wj of job Jj which determines the importance of

this job relatively to other jobs in the system.

In parallel machine scheduling there are m identical machines in the

p r o cessingsystem and we are given a set of jobs N — {Ji, J2, •••, Jn}- Each



CHAPTER 1. INTRODUCTION 6

job Jj requires a single operation Oj with processing time Pj and can be

processed on any of the m machines.

In flow shop scheduling model we are given a set of jobs N =

{ J i, J2 , . . . , J n } and m machinesM t , i = 1 ,2 , . . . ,m . Each job J j £ N

consists of the set of operations { Oij,..., O mj }, where O rj denotes an oper-

ation of job Jj on machine Mi, the processing time of each operation O rj is

known in advance and is denoted by ptj. All jobs are assigned to the same

processing route (Mi, M 2 ,..., M m) of machines.

If the order in which each machine processes the jobs is identical for all

machines then this schedule is called a permutation schedule. Such a schedule

may be specified just by a permutation of job indices.

An important variant of the flow shop problem is the so-called flow shop

with the no-wait in process constraint. In the no-wait environment each job

once started has to be processed 011all machines without interruptions and

inter-stage delays until it is completed.

The classical scheduling model which is known as an open shop was intro-

duced by Gonzalez and Sahni [52], In the open shop problem, each job has

to be processed on each machine, but the machine routes for each job are not

specified in advance and have to be chosen. Formally, there are m machines

M i , i — 1 , 2 , . . . , m , i n t h e s y s t e m a n dt h e s e t o f j o b sN — { J \ ,J 2 , . . . , Jn } -

Each job J j £ N can be v iewedas the se t o f opera t ions{0 \ j , Ooj • • • ,O m j} ,

where Ol3 denotes an operation of job Jj on machine M t, the processing time

of each operation O rj is known in advance and is denoted by pij. The order

in which operations undergo the processing is part of the decision-making,

different jobs being allowed to have different routes.

1 .2 Problem Classification

Since the number of scheduling problems seems to be virtually unbounded

an effective system of problems classification is required. Here we use the



CHAPTER 1. INTRODUCTION 7

commonly accepted three-field classification scheme introduced by Graham

et al. [57]. According to this scheme a scheduling problem is coded by a string

that consists of three main parts: the processing system, extra conditions and

the objective function. Each scheduling problem can be described using the

three-field notation a|/3|7 such that a represents the machine environment,

/3 defines the processing conditions, and 7 is the objective function which is

used for evaluating feasible schedules. Below we give a detailed description

of this notation system since it will be intensively used throughout the thesis.

Further, we assume that o denotes the empty symbol.

1.2.1 Machine Environment

This field defines the configuration of the processing system. This field has

the form a = a^c^, where a.\ and c*2are interpreted as follows.

• QL G {O,P ,F ,O ,j,vy.

i. ai = o: single machine;

ii. Qi = P: identical parallel machines;

iii. ai — O: an open shop;

iv. = F: a flow shop;

v. ai — J: a job shop.

• ol2 G {o,m}:

i. q 2 = o: the number of machines/stages is arbitrary;

ii. Q2 = m: there is a fixed number m of machines.



CHAPTER 1. INTRODUCTION 8

1.2.2 Job Characteristics

For each job Jt we are given its processing times on all machines which are

non-negative integers. Also each job may be characterized by its availability

for processing and a due date, its dependence on other jobs, the possibility

of interruptions in the processing, etc. All this information is included in the

second field of the three-field notation.

The second field (3 C {(3x,f32, /53, /34, /?5} indicates job characteristics as

follows.

• Pi € {o,pij = 1 ,pij G {0,1}}:

i. f3x = o: processing times are arbitrary;

ii. (3X — pij —1: each operation has unit processing time;

iii (3X — G {0,1}: each operation has either unit or zero processing

time.

• /32 G {°, Tj\:

i. P2 —°: 110 release dates are specified;

ii. P2 ~ r f j°b s have release dates.

• @3 G {o, d j , d j } :

i. p 3 = o: no due dates/deadlines are specified;

ii. P3 = df jobs have due dates;

iii. P3 = df jobs have deadlines.

• P4 G {o, pmtn}:

i. = o: no preemption is allowed;

ii. /34 = pmtn: operations of jobs may be preempted.



CHAPTER 1. INTRODUCTION 9

• (35 G {o, no-wait}:

i. P 5 — o: the no-wait requirement does not apply;

ii. (35 = no-wait: there are the "no-wait in process" restrictions.

1.2.3 Objective Function

The third field 7 specifies the objective function to be minimised. The ob-

jective function is a penalty function which depends on the completion times

of the jobs . Givena schedu le5 , we can computefor job J j \

• the completion time Cj (S) ;

• the lateness L j ( S ) = Cj ( S ) — d j \

• the earliness E j ( S ) = max { d j —Cj(5),0};

• the tardiness T j (S ) — max{C j (S ) —dj, 0}.

Moreover, if fj is a non-decreasing cost function, then the cost of com-

pletion time of job j is fj(S) — fj (Cj (S)). If no ambiguity arises regarding

the schedule under consideration, we may drop the reference to a particular

schedule and write Cj, Lj, E 3 , Tj, and fJ: respectively.

Some commonly used optimality criteria involve the minimisation of:

• the maximum completion time, i.e. makespan, C max = max Cj ;
j

• the maximum lateness Z/max = max Ln\
jeN

• the maximum cost /max = max fj;
j e N

• the total (weighted) completion time ^ (•Wj)Cj ;
jeN

• the total (weighted) tardiness Y2( wj)Tj'i
j £ N

• the total (weighted) earliness ^ (Wj)Ej;
jeN



CHAPTER 1. INTRODUCTION

• the total cost fj-
j £ N

To summarize, the third field 7 defines the optimality criterion, which

involves the minimisation of

7 ^ {Cmax) ^maxi /max?

It should be noted that some situations may require more than one of these

criteria to be considered.

The results discussed in this thesis are primarily devoted to the problems

of minimising the function CMSLX(S). A schedule minimising the makespan is

called time-optimal.

1.2.4 More Notation and Definitions

We recall some common scheduling dispatching rules. We will say that the

jobs obey the Earliest Due Date rule (EDD) if they are sequenced in non-

decreasing order of their due dates. Analogously, if the jobs are sequenced in

non-increasing (non-decreasing) order of their processing times we will say

that these jobs follow Longest (Shortest) Processing Time rule and denote

this tule by LPT (SPT).

If \JV[\ = 2, i.e., there are only two processing machines, we will denote

them by the le t t e r s A and B. The process ingt imesof job J) on machinesA

and B we will denote by aj and bj, respectively. Define

a ( Q )= J2 a " b W = J2 b>
jeQ i&Q

for a non-empty set Q C N of jobs, and define a(0) = 6(0) = 0.

For a schedule 5, let RJL{S) and C JL (S) denote the starting time and

the completion time, respectively, of operation O jl , JJ € N, L G { A , B}. Let

CA{S ) or CB{S) denote the time that machine A or respectively B completes

a l l i t s jobs in schedu leS .



CHAPTER 1. INTRODUCTION 11

Further we assume that the reader is familiar with Computational Com-

plexity and classes P and NP, otherwise a detailed discussion can be found

in [45].

Let us recall that a polynomial-time algorithm for a minimization problem

that creates a schedule with the makespan that is at most p > 1 times the

optimal value is called a p—approximation algorithm; the value of p is called

a worst-case ratio bound. If a problem admits a p—approximation algorithm

it is said to be approximable within a factor p. A worst-case ratio bound is

called tight if for any given E > 0 there exists an instance of the problem for

which the apprximation algorithm delivers a heuristic solution (p —e) times

the optimal value.

A family of p—approximation algorithms is called a polynomial-time ap-

proximation scheme, or a PTAS, if p = 1 + e for any fixed e > 0 and the

running time is polynomial in the length of the problem input. If addition-

ally the running time of a PTAS is polynomial with respect to \/e, then it

is called a fully polynomial-time approximation scheme, or an FPTAS. We

recall that, unless P=NP, there does not exist an FPTAS for any strongly

NP-hard problem.

Further, we use the following well-known NP-complete problem in the

proofs of NP-hardness of certain problems.

PARTITION. Given r positive integers e l , i E R = {1 ,2 , . . . , r} , and an

integer E such that ei —2jE7,does there exist a partition of set R into

two subsets Ri and R2 such that YlieR e* = YlieR2
ei ~ ^

1 .3 Flow Shop Problem

Let us recall that in flow shop scheduling model we are given a set of jobs

N = { Ji, J 2 ,..., J n} and m machines M t, i = 1,2,..., m. Each job J3 G

N consists of the set of operations {0\j,..., O mj }, where OtJ denotes an

opera t ionof job J3 on machineMi , t he process ingt ime of eachopera t ion0%j



CHAPTER 1. INTRODUCTION

is known in advance and is denoted by pl j . All jobs are assigned the same

processing route (M l5 M 2 ,..., M m) of machines.

In one of the first papers on deterministic machine scheduling, John-

son gives an 0(n logn)-time algorithm for finding an optimal permutation

schedule for problem F2||C max , see [68] and Section 1.4.1. Garey et al. [44]

prove that problem F3||C max is strongly NP-hard which yields that more

general problems Fra| |C max and F||C max are strongly NP-hard as well.

Most research on the flow shop problems has focused on permutation

schedules. Conway et al. [35] show that for FRA||Cmax there always exists

an optimal schedule with the same job ordering on the first two machines

Mi and M 2 and with the same job ordering on the last two machines M m _i

and M m . Thus, for both m —2 and m = 3 an optimal schedule for problem

FRA||CMAXcan always be found in the class of permutation schedules. How-

ever, for m > 4 that is not true. Potts et al. [125] analyze the worst-case

performance of permutation schedules for the flow shop problems with more

than 3 machines. They present a family of FRA||CMAXproblems such that the

worst-case performance ratio of the permutation schedules with respect to

the global optimum is not less than ~\y/m +and, therefore, is not bounded

by any finite constant.

Gonzalez and Sahni [52] prove strong NP-hardness of problem

F3 \pmtn\C max . Neumytov and Sevastianov [106] study a special case of the

three-machine flow shop in which each job consists of only two operations, one

of them (the last operation for all jobs, or by symmetry, the first operation for

all jobs) has to be performed on a particular machine, the same for all jobs.

It is shown that even such a restricted variant of F3||C max is strongly NP-

hard. Lenstra et al. [97] show that problems F2|r J|C max and F2||L max are

strongly NP-hard. Cho and Sahni [33] consider problems F2\rj ,pmtn\C miiX ,

F2 \pmtn \L max and prove that they are NP-hard in the strong sense. Garey

et al. [44] show that problem F2|| ^ Cj is strongly NP-hard while Du and

Leung [37] prove that problem F2 \pmtn\ Cj is strongly NP-hard too.



CHAPTER 1. INTRODUCTION

Gonzalez and Sahni [53] introduce the concept of busy schedules. A flow

shop schedule is called busy, if at any time during the interval [0, C max ] there

is at least one machine processing a job. For problem F||C max they show

that for any busy schedule SB the following bound

Cmax(5*6) .
Cmax (S*) - m

holds and is tight. For problem Fra||C max it is clear that sequencing the

jobs in an arbitrary order yields a trivial m-approximation algorithm. This

bound was improved by Rock and Schmidt [121]. They present a polynomial

time \m/2\ -approximation algorithm. See [102, 142] for further discussion

of problem Fra||C max . Later, Chen et al. [24] propose a heuristic algorithm

for this problem with the worst-case performance ratio of y if m is even and

y +| if m is odd. Probably the most notable theoretical achievement in the

flow shop approximation, is a PTAS for problem Fra||C max by Hall [61].

Nowicki and Smutnicki study the permutation flow shop problem and

present some approximation methods with the tight worst-case performance

ratio of \m/2\ and m / \/2 + 0(l/m), see [108, 109, 110, 111] for details.

For problem F||C max heuristic algorithms that require reasonable com-

putational effort are not known to provide even a constant worst-case per-

formance ratio p. Williamson et al. [150] prove that there does not exist

an approximation algorithm with a worst-case ratio less than 5/4, unless

P=NP. Shmoys et al. [136], Goldberg et al. [50] and Feige and Scheideler

[40] present polynomial time approximation algorithms with the worst-case

ratio of O (log m log log m) .

For F3||C max problem, Chen et al. [24]give an 0 ( n log n)-time algorithm

with a worst-case ratio p — 5/3. The same worst-case ratio is achievable in

0(n 3 logn) time for problem F2|rj|C max , see [124].

Hall [60] considers i?2|r J|C max problem and shows that it admits a polyno-

mial time approximation scheme. Kovalyov and Werner [74] present another

PTAS for F2|rj|C max problem, which improves the one due to Hall in terms



CHAPTER 1. INTRODUCTION

of computational efficiency.

For F2||C max problem, by establishing lower bounds in the algebraic com-

putation tree model, Rote and Woeginger [120] show that the time complex-

ity of Johnson's algorithm is in fact the best possible; they also develop a

fully-polynomial time approximation scheme for this problem which requires

0(n log i) time for any £ > 0.

Hoogeveen et al. [65] prove that F|| ^ Cj problem belongs to the class of

APX-hard (or Max SNP-hard) problems, and, therefore, does not possess a

PTAS, unless P—NP, see Section 1.9 for the discussion of non-approximability

and the description of the class of APX-hard problems.

1 .4 Flow Shop Algorithms

In this section we consider in details some results for the two-machine flow

shop problem which will be used further in this thesis. Recall that we are

given two machines A and B and the set of jobs N to be processed on these

two machines. All jobs have to follow the same route (A, B) of processing.

Johnson [68] shows that there exists an optimal solution for this problem in

the class of permutation schedules.

Let 7r be some permutation of indices, TT( j )be the j-th element in this

permutation and S n be the schedule associated with this permutation. Such

schedule S n can be constructed by a given permutation 7r in the following

way. We schedule the jobs on each machines according to this permutation

and make each operation to start as early as possible. Given a permutation

7rof jobs, the makespan of schedule S n can be then defined as

If n — u is an index which in fact delivers the maximum in (1.1) then we

refer to job Jn(u) as a critical job. Thus, a critical job starts its processing

on machine B as soon as it completes its processing on machine A without

Cma.x{Sn) max
1<n<n

(1.1)



CHAPTER 1. INTRODUCTION 15

A Ji J2 J3 JA

B Jx h J3 Ja

Figure 1.1: Schedule S n

any delay. The makespan of a schedule that contains a critical job Jn(u) is

determined by the length of the critical path which is the sum of the following

components:

(i) processing time of both operations of Jn(u) ' ,

(ii) total processing time of all jobs that precede Jn (u ) on machine A;

(iii) total processing time of all jobs that follow Jn(u) on machine B.

Example 1.1 We are given a set of 4 jobs J\, J2, J3 and J4 with processing

times
a\ =4, 6] = 3 ;
fl2 = 2, 62 = 1;

= 4, 63 = 2;
<24= 1, 64 = 2

Assume that schedule S n is defined by permutation ix = (Ji, J2, J$, J4), see

Figure 1.1. It is easy to see that in this schedule job J3 is critical and the

critical path is {0\ A, O2A,O3A,O3B,043), where 03A and OJB are the oper-

ations of job Jj on machines A and B, respectively. The makespan of the

schedule is determined by the length of this critical path and is equal to 14.

1 .4.1 Johnson's Algorithms

We consider problem F2||C max . This problem admits a fast polynomial-time

algorithm due to Johnson [68]. Formally we can describe this algorithm as

follows.

Algorithm J



CHAPTER 1. INTRODUCTION

INPUT: Problem F2||C max .

OUTPUT: An optimal schedule S j .

1. Partition the set of jobs N into two subsets NA and Ng as follows

NA= { i € N\a t < br} and N s - { i G N\a t > &,}.

2. Form a permutation 7r = (7r(1), 7r(2),..., i r( n ) ) in which all jobs of

set NA precede those of set NB; the jobs of set NA are sequenced in

non-decreasing order of cij while the jobs of set Nb are sequenced in

n o n - i n c r e a s i n go r d e ro f b j .

3. Denote the schedule associated with permutation TTby Sj and stop.

Since Step 2 of Algorithm J involves the sorting of jobs according to

their processing times, this step determines the overall complexity. Hence,

Algorithm J requires O(nlogn) time. The permutation ir found by the

algorithm is called a Johnson permutation of set N of jobs. If the sequence

of jobs is a Johnson permutation then we will say that the sequence obeys

the Johnson rule.

Johnson [68] shows that there exists an optimal schedule associated with

a permutation in which job Jk precedes job J/ if the condition

min{ a k , b i } < min{ a t , b k } (1.2)

is satisfied. It is easy to see that the condition (1.2) is transitive and Algo-

rithm J in fact orders all jobs according to this inequality.

1 .5 Flow Shop No-wait Problem

We are given a set of jobs N = {./i, J2,..., J n } and m machines M t, i =

1 , 2 , . . . , m . E a c hj o b J3 G N c o n s i s t so f t h e s e to f o p e r a t i o n s{ 0 \ j , . . . , O m j } ,

where OtJ denotes an operation of job J3 on machine the processing time



CHAPTER 1. INTRODUCTION

of each operation 0 r j is known in advance and is denoted by ptJ . All jobs

are assigned to the same processing route (Mi, M2,..., M m) of machines and

each job once started has to be processed on all machines without interrup-

tions and inter-stage delays until it is completed.

Goyal and Sriskandarajah [56] and Hall and Sriskandarajah [62] provide

thorough surveys of complexity and algorithms for no-wait scheduling.

Two variants of the flow shop no-wait problem are considered in the

literature regarding the way the operations with zero processing time are

treated. The first variant assumes that if the processing time of operation

Oij of job J3 on machine M% is equal to zero, i.e., ptj —0, then this job is not

processed 011 machine Mz and the corresponding operation is called a missing

operation. The other interpretation of expression pij —0 implies in fact that

pl0 = e > 0, where e is a sufficiently small value and can be disregarded.

For the no-wait flow shop scheduling, the choice of interpretation of zero

processing times appears to be essential.

Sahni and Cho [129] show that F2\no—wait\C max with missing operations

in the first stage is NP-hard in the strong sense. It is straightforward to

observe that a symmetric problem with missing operations in the second

stage is strongly NP-hard as well.

For the two-machine flow shop problem with missing operations Glass

et al. [49] describe special cases which are polynomially solvable. For

the case with missing operations on the second machine they derive 4/3-

approximation algorithm which requires 0(n log n) time.

The complexity status of the no-wait flow shop, in which zero processing

times are treated as positive but negligibly small values, is different. In this

case, any no-wait flow shop schedule is easily seen to belong to the class of

permutation schedules.

Piehler [116] shows that problem F\no—wait\C mAX can be reduced to the

special case of the asymmetric travelling salesman problem. This asymmetric

TSP has a special structure of the distance matrix and can by solved to



CHAPTER 1. INTRODUCTION

optimally by the algorithm of Gilmore and Gomory [46] in the case of two

machines. This approach has been further developed by Gilmore et al. [47]

and Papadimitriou and Kannelakis [114] and the original quadratic time

algorithm is improved and yields an 0(n log n)-time algorithm. Later, Rote

and Woeginger [120] show that the time complexity 0(n log n) in fact is

the best possible; they also develop a fully-polynomial time approximation

scheme with linear running time 0(n log for this problem.

Rock establishes NP-hardness in the strong sense of problem F3\no —

wait\C max , see [122], This result improves the previously known complex-

ity result by Papadimitriou and Kanellakis [114] for the four-machine flow

shop problem with the no-wait constraint. Rock [123] proves that problems

F2\no—wait\L max and F2\no—wait\ ^ Cj are NP-hard.

Sviridenko and Woeginger [140] present a PTAS for the permutation flow

shop no-wait problem with a fixed number of machines.

1 .6 Flow Shop No-wait Algorithms

The algorithm for the flow shop no-wait problem is due to Gilmore and

Gomory. Their algorithm uses the fact that this problem can be transformed

into a special kind of the Travelling Salesman Problem (TSP) which admits

a polynomial-time algorithm.

1.6.1 The Travelling Salesman Problem

We can formulate formally the TSP as follows. We are given a graph with

n vertices and all vertices are connected with each other by arcs. A closed

route that visits each of the vertices exactly once is called a Hamiltonian

tour. For a matrix of distances, which is not necessarily symmetric, find a

Hamiltonian cycle of minimal length in this graph.

The TSP is known to be NP-hard. Since many combinatorial problems

can be transformed into the TSP, special well-solvable cases of the problem



CHAPTER 1. INTRODUCTION

are constantly of interest. See Gilmore et al. [47] and Burkard et al. [21] for

surveys of well-solvable cases of the problem. Perhaps the most well-known

polynomially solvable variant of the TSP is the case identified by Gilmore

and Gomory [46], see Section 1.6.3 for the detailed discussion. Kabadi and

Baki [69] study the properties of this approach and have shown that it can

be generalized and applied to a larger class of the TSP.

An important relaxation of the TSP is the so-called assignment problem.

The main difference between the TSP and the assignment problem is that

subtours are allowed in the solution of the latter problem. Formally it can

be formulated as follows.
n n

*-t. E E DijXij —>min;
i=1 j=l

n

« = l , 2 , . . . , n ;
3= 1

n

y>g = 1 , 3 = 1 > 2 , . . ., n ;
1= 1

X i j G {0,1} , i = 1,2,... ,n, i = 1 , 2 , . . . , n ,

where indicates whether or not vertices z and j are connected by the arc

{ h j ) -

1.6.2 Trasformation of F2\no—wait\Cma,x to the TSP

The flow shop no-wait scheduling problem can be transformed into a special

case of the asymmetric TSP. To do this we add a dummy job J0 with zero

processing times on all machines to the given instance of the problem. Then

associating a vertex with each job we construct a graph G with the matrix

D — (Aj)( n+1 )x(„+1) °f distances between the vertices defined by formula

Cm m ^
Dij = max l y ^ P k j - Y ] P k i ) •

q=l,...,m f—' /•— \ |
^ k=q k—q+1 )

It is necessary to point out that in general DrJ ^ D3l.



CHAPTER 1. INTRODUCTION

It is possible to show that every feasible permutation schedule of the orig-

inal flow shop no-wait problem corresponds to a directed Hamiltonian cycle

in this graph G and the length of the schedule is equal to the length of this

cycle. Conversely, after deleting the vertex associated with the dummy job

J0 from a Hamiltonian cycle we obtain a Hamiltonian path that corresponds

to a feasible schedule of the same length.

For problem F2\no—wait\CmAX the makespan of a schedule S associated

with a given permutation IT = (7r(l), 7r(2),..., 7r(n)) of job indices can be

rewritten as

n—1 n

Cmax('S')fl7r(l) "I"̂ ^m^X"{®7r(fc+l) ( k ) i0} ^ ^ ^ k - (^"3)
k=1 fc=l

Since the last term in (1.3) is constant for any given instance of the

problem define

n—1
C {7r) = aw(i) 4- ^ 2 max{a 7r(fc+i) - b ^ k ) ,0}. (1.4)

k=l

It follows that in order to minimise CMAX (S) it suffices to minimise C(TT)

over the set of all permutations of the job indices.

Introduce the TSP with n + 1 vertices numbered by integers 0,1 ,..., n.

Recall that in the TSP it is required to find a tour of minimum length.

Denote the d i s tancebe tweenver t i cespand q by Dpq , where p= 0 ,1 , . . . , n ;

q = 0,1 ,... ,n- p ± g, and let r = (r(0),r(l),... ,r(n)) be a Hamiltonian

tour. Then the length D[r) of that tour can be expressed by

n

Dr( k - l ) ,T { k )+ £)r(n),r(0)- (1-5)
fc=1

We assume that city j corresponds to job Jj, j = 1, . . . , n , of the original

flow shop no-wait problem.



CHAPTER 1. INTRODUCTION

If we define

Dpp — +00 , p = 0 , 1 , . . . , Ti ] (1-6)

D qq f l g , q —1 , . . . , 71 ,

Dpq = max{a g - 6P,0}, p = 1,... ,71; q = 1 , . . . , 71 ;p ± g ,

Dpo = 0, p = 1 , . . . , n .

then (1.4) and (1.5) will coincide. This implies that permutation ir* —

(tt*(1),7r*(2),... ,7r*(n)) specifies an optimal schedule for problem F2\no —

wai t \Cmax i f and only i f the permuta t ionT*= (0 ,7 r*( l ) ,7 r* (2) , . . ., 7 r* (n) )i s

an optimal tour for the TSP with the matrix of the form (1.6).

Further, the matrix (1.6) satisfies the Gilmore-Gomory conditions:

Dpq — ^

/ u ( x ) d x ,a q >
Pp

Pv
f v ( x ) d x , ag < Pp ,

(1.7)

p = 0 ,1 , . . . , n ; q = 0 ,1 , . . . , 71 ;p ± q , (1.8)

where u and v are integrable functions such that u ( x ) + v ( x ) > 0. To see

this, we may define ao = Po = 0; <yp — aP, Pp — bp for p = 1 ,2,..., 77., and

u(x) = 1, v(x) = 0.

Hence we have shown that the two-machine no-wait flow shop problem can

be transformed to the asymmetric TSP problem which satisfies the Gilmore-

Gomory conditions and consequently can be solved by the algorithm de-

scribed in Section 1.6.3.

1.6.3 Gilmore-Gomory Algorithm

Gilmore and Gomory [46] consider the asymmetric TSP with the special

structure of the distance matrix. Assume that distance Dvq between vertices

i and j is defined in Section 1.6.2. The algorithm uses patching subtours



CHAPTER 1. INTRODUCTION

found as a solution of the associated assignment problem and finally merges

them into an optimal complete tour.

Algorithm GG

INPUT: A TSP problem satisfying (1.7).

OUTPUT: An optimal permutation ir*.

1. Renumber all the vertices in such a way that /31 < (32 — • • • — Pn anc ^

find permutation cj)= (rj, r<i,••• , r n ) such that a ri < ar2 < ... < a rn .

Def ine /yi —min { /3i ,a ri } and 6i = max { (5t ,a Ti ) fo r a lH = 1 ,2 , . . . , n .

2. Define function ( i ) such that

{ T i + l
f ( u ( x ) + v ( x ) ) d x , 5 i < 7I+1;
Si

0, otherwise.

3. Construct non-oriented graph G<pwith n vertices numbered 1, 2,..., n

such that vertex i is adjacent to vertex j if and only if i — r3 for

i — 1, 2,..., n and j = 1, 2,..., n. In fact this graph is a solution of

the associated assignment problem.

4. If graph G$ is connected then permutation <fiis the solution of the

considered TSP. Otherwise, construct graph G^ such that each con-

nected component of graph G$ is replaced by a new vertex. If vertices

i and i + 1 belong to different components of connectivity in graph G$

then vertices of graph G^ corresponding to these two components are

connec tedwi th new edge R t withleng thc^ ( i ) fo r a lH —1,2 , . . . , n— 1 .

5. Find a minimal spanning tree in graph G'^. Edges which are included

into the minimal spanning tree we split into two groups. Edge Ri

belongs to the first group if aTi < (3^ otherwise, the edge belongs to

the second group.



CHAPTER 1. INTRODUCTION 2;}

6. Let the number of edges in the first group be equal to / > 1. Define

j\ as the maximal value i such that edge R, belongs to the first group.

Analogously for the rest edges of the first group we find the values of

j'2ij'ii • • •iji- Let the number of edges in the second group be equal to

h > 1. Define j[+l as the minimal value i such that edge R, belongs to

the second group. Analogously for the rest edges of the second group

we find the values of ji +2 , ji+3, •• • Ji+h-

7. Consider permutation (1, 2 , . . . , ??,).Interchange elements j\ and ji + 1.

In the obtained permutation interchange elements j-i and J2 + 1 and so

011until we interchange elements j[+it and ji+h + I.

8. In the found permutation interchange element i by element v., for

i = 1 ,2,...,n according to permutation c/>. Denote the obtained

permutation by 7r = («i, 22,..., in)- Construct finally permutation

7T* = (1, • • • Jn) assuming that j\ = j*k = i:jl y for all

k — 2,3,..., n. Output permutation ix* and stop.

We notice that the algorithm in first three steps solves the assignment

problem (matching) for the original matrix, and then merges the obtained

partial tours into a complete optimal tour (patching). For Gilmore-Gomory

matrices the assignment problem can be solved in O (nlogn) time by a suit-

able sorting of tv^'s and /5fc's, while all patching steps can be implemented in

linear time; see, e.g., Burkard et al. [21] and Gilmore et al. [47].

Remark 1.1 Knowing a solution for a particular instance of the problem

with a qiven set of jobs one can use it for obtaining a solution for any subset of

jobs. Suppose that a solution to some instance of problem F2\no-wait\ C m;ix

is found. If now some subset Q of jobs is removed from, the instance, an

optimal solution does not have to be sought from scratch. It suffices to delete

the jobs of Q from the solution of the matching subproblcrnwith the full set



CHAPTER 1. INTRODUCTION

of jobs and then to perform the patching of the remaining subtours. The new

solution can therefore be found in 0(n) time.

Let us recall that in the open shop problem, each job has to be processed on

each machine, but the machine routes for each job are not specified in advance

and have to be chosen .Formal ly ,the re a rem machinesA/t, i —1,2 , . . . , m ,

in the system and the set of jobs N = { Ji, J 2 ,..., J n}. Each job Jj G N can

be viewed as the set of operations {Oi J7 O2J • ••, O mj }, where O tj denotes an

operation of job Jj on machine Mi, the processing time of each operation OlJ

i s k n o w n i na d v a n c ea n d i s d e n o t e db ypr J .

A11apparent lower bound on the value of the makespan for the open shop

problem to minimise the makespan is

In other words, the optimal makespan is not less than the largest machine

workload or the largest total job processing time and these bounds are called a

machine-based lower bound and & job-based lower bound, respectively. Gon-

zalez and Sahni [52] show that for 02||C max the lower bound (1.9) is at-

tainable, and provide a linear time algorithm which solves the problem, see

Section 1.8.1 for the description of their algorithm.

Since Gonzalez and Sahni [52] prove that 03||C ma x is NP-hard in the

ordinary sense, there is a little hope to find a polynomial-time algorithm

for the non-preemptive open shop problem for more than three processing

machines. The general problem 0||C max is known to be NP-hard in the

strong sense, see survey by Graham et al. [57]. Moreover, as shown in [150],

it is NP-complete to verify whether there exists a schedule of length 4 for an

instance of 0||C max where all processing times are integer. So far, it remains

an open question whether problem 03||C max is strongly NP-hard.

1 .7 Open Shop Problem

max max
l<i<m

max
j £ N

(1.9)



CHAPTER 1. INTRODUCTION

Other open shop problems that are known to be NP-hard in the strong

sense are 02|rj|C max , 02||L max , see [85], and 02\\Y^Cj, see [1]. For

the 02||L max problem when preemptions are allowed on one machine only

Borodich [15] gives an algorithm which requires 0(n 3 ) time.

In the no-wait environment, the jobs must be processed from their start

to their completion without any delays between machines. Sahni and Cho

[129] show that 02 \pij > 0, no —wait\CmSLX and 02\pZJ > 0, no —wait\C max

are NP-hard in the strong sense. Other no-wait open shop problems that

are known to be strongly NP-hard are 02\p tJ > 0, no — wait \Yl,Cj, see [1],

02\p r] > 0, no —wait \ ^ C r see [75].

Shakhlevich and Strusevich [135] consider a more general variant of the

non-preemptive two-machine open shop problem to minimise an arbitrary

monotone non-decreasing function / of two arguments: completion time on

machine A and on machine B (CA and CB, respectively). They prove that

this problem can be solved optimally in linear time. Later, van den Akker

et al. [4] propose an elegant result which says that there exist at most two

Pareto optimal points (CA-,CB) for which there exists a feasible schedule

meeting CA and CB- Recall that a solution is called a Pareto-optimal (or

efficient) solution, if there is no other solution for which at least one criterion

has a better value while values of the remaining criteria are the same or bet-

ter. In other words, one cannot improve any criterion without deteriorating

a value of at least one other criterion.

Sevastianov and Woeginger [134] consider problem Om||C max and show

that it admits a polynomial time approximation scheme (PTAS), i.e., there

exists (1 + ^-approximation algorithm for any given e > 0 and the running

time of this algorithm is polynomial for any fixed m and e. The only more

possible stronger result for this problem is the existence of a fully-polynomial

time approximation scheme, i.e., in our case (1 4- ^-approximation algorithm

which depends on e polynomially, but this question still remains open.

Raczmany observed that a greedy algorithm, see Section 1.8.2, delivers a



CHAPTER 1. INTRODUCTION

heuristic schedule for any instance of problem Om||C max with the makespan

which is at most 2 times the optimal makespan. This result was reported by

Barany and Fiala [11], It is conjectured that the greedy algorithm has the

worst-case performance ratio of (2 —1 /m). Chen and Strusevich [26] prove

this conjecture for m < 3 and Chen and Yu [28] prove it for m —4.

Williamson et al. [150] prove that for problem 0||C max it is impossible

to create an approximation algorithm with a worst-case performance better

than 5/4, unless P=NP. Hoogeveen et al. [65] prove that problem 0||

does not possess a PTAS, unless P=NP.

Since (1.9) is also a lower bound for the corresponding preemptive prob-

lem, a non-preemptive schedule that attains this bound provides an optimal

solution for the preemptive problem. Hence, problem 02\pmtn\C mAX can be

solved in linear time. Lawler et al. [85] propose polynomial-time algorithms

for problems 02\pm,tn \L max and 02 \rj ,pmtn\C max . Du and Leung [37] prove

that the sum of completion times problem 02\pmtn\ Cj is NP-hard in the

ordinary sense, and Liu and Bulfin [99] show that problem 03\pmtn\ ^ Cj is

strongly NP-hard. Problem 02\pmtn,dj\Y^Cj with the constraint that all

job have to be completed by their respective deadlines dj is shown to be NP-

hard in the strong sense, see [99]. Problem 02\pmtn\ Uj is binary NP-hard

(see [14], [75] and [85]). Moreover, as it is shown in [14], the latter problem

remains NP-hardeven i f the jobs havea common dueda te ( sotha t dj = d) .

Sriskandarajah and Wagneur [138] show that problem 02\pmtn,rj \ Cj is

NP-hard in the strong sense. In [48], Gladky presents another, more simpli-

fied, proof of the latter fact.

The first algorithm for solving problem 0\pmtn\C max had been described

before the term "open shop" was introduced. In the paper by de Werra [149]

problem 0\pmtn\C mSLX was actually formulated and was reduced to a problem

of finding the optimal edge coloring of a bipartite multigraph. This approach

has been further developed by Gabow and Kariv [43]. They introduce a

more general definition of the edge coloring of a multigraph and present an



CHAPTER 1. INTRODUCTION

algorithm of finding such a generalized coloring of a bipartite multigraph.

They show that this algorithm requires 0((n + ra)r logp max ) time, where r

is the number of non-zero operations and pmax is the maximum operation

processing time.

Gonzalez and Sahni [52] propose another approach to solving the preemp-

tive open shop problem. This approach involves the Birkhoff-von Neumann

theorem on double stochastic matrices, see [12] and [105]. This approach was

developed in [51] and [84] and the best algorithm has the running time of

0(r + min{m 4 ,n 4 ,r 2 }).

For problem 0\pmtn, rj\L max Cho and Sahni [33]derive a polynomial time

algorithm. This algorithm constructs preemptive schedule that often mix the

operations of jobs, i.e., one operation is preempted, and before this operation

is resumed and completed, another operation of the same job is started and

preempted, and so on. If the mixing of operations is forbidden (no-pass

constraint), then problem 03\pmtn,no—pass\C ma ,x becomes NP-hard in the

ordinary sense, see [33].

1 .8 Open Shop Algorithms

1 .8.1 Gonzalez and Sahni's Algorithm

We consider the two-machine open shop problem denoted by 02||C max . Here,

all jobs of set N have to be processed on the two machines A and B. The

processing routes of the jobs are not given and are part of the decision-

making. This problem admits a fast linear-time algorithm due to Gonzalez

and Sahni [52].

Let 7r(TV)be an arbitrary permutation of set N. Then we can formally

describe their algorithm as follows.

Algorithm GS

INPUT:An instance of problem 02||C max -

OUTPUT: An optimal schedule SGS•



CHAPTER 1. INTRODUCTION

1. Split the set of jobs N into two subsets

NA = N\a t < BJ} and NB = { i G N\a t > bt } .

2. If NA 7^ 0, select a job J/ £ NA such that 6/ > max{aj|z £ iV^},

otherwise, set {J/} = 0.

3. If NB ^ 0, select a job Jr £ N A such that br > max{aj|z £ NA} ,

otherwise, set { J r ] = 0.

4. If the inequality

a(N\{J , } ) > b(N\{J r } ) (1.10)

holds then the form of an optimal schedule is such that machine A

processes the jobs in sequence

( J r , n ( N B \ { J r } ) , 7 r ( N A \ { J i } ) , J i )

starting at time zero and machine B processes the jobs in sequence

( A N B \ { Jr } ) , i r ( NA \ { J i } ) , J i , J r )

starting at time max {a r + bT — 6(iV),0}. Both machines process the

jobs without any unnecessary idle time.

5. If, otherwise, (1.10) does not hold, then the form of an optimal schedule

is such that machine A processes the jobs in sequence

starting at time max {a/ + b i—a(iV),0} and machine B processes the

jobs in sequence

starting at time zero. Both machines process the jobs without any

unnecessary idle time.



CHAPTER 1. INTRODUCTION

6. Call the obtained schedule SGSand stop.

The optimality of the obtained schedule SGS is ensured by the lower

bound (1.9) on the makespan of an optimal schedule. In fact, this lower

bound means that the length of an optimal schedule is not less than the

maximum workload and the largest processing time of a job. Algorithm

GS outputs the schedule for which this bound is attained. For the output

schedule SGS we have that

r /c \ J max{a(A0 , b (N) ,at + bt} , if a(N\{J t } ) < b(N\{J r } ) ,
m GS | max {a (N), b (N), ar + br} , otherwise.

This algorithm is widely used as a base for designing heuristics for the

open shop problem, see [121] for details.

1 .8.2 Greedy Algorithms

A feasible open shop schedule S is called dense if any machine is idle if and

only if there is no job which can be processed on that machine. In a schedule

found by the greedy algorithm no machine stands idle if there is a job ready

to be processed on it and, therefore, the resulting schedule is dense. The first

greedy algorithm for the open shop problem was introduced by Raczmany

and reported by Barany and Fiala [11]. Formally the Greedy algorithm for

finding a dense schedule for the open shop problem can be implemented as

follows.

Algorithm Greedy

INPUT: An instance of problem Ora||C max -

OUTPUT: A heuristic schedule SH-

1. For each machine M n i —1 ,2,,m, define list Lt of operations to be

processedon the machineas (O t i , O x 2 , . . . 1 Oin) .

2. At any time, when some machine M% becomes available, scan the list

Li to find the first job on the list, say job Jfc, that may start on



CHAPTER 1. INTRODUCTION

earlier than the other jobs. Assign Jto be processed on A/, starting at

the earliest possible time. Remove operation Oxk from L,. If the same

job may simultaneously start on several machines, give preference to

the machine with the smaller index i.

3. Repeat Step 2 until all lists Lx are empty.

4. Call the obtained schedule SH and stop.

If implemented literally, the standard greedy algorithm requires looking

through the whole list of allowed operations on each machine, which requires

0(n 2 minjn, m}) time, where n is the number of jobs and m is the number of

machines. Aksjonov [5] presents a greedy algorithm for finding a dense open

shop schedule which requires O (nm min {n,m}). This algorithm provides a

heuristic schedule with the worst-case ratio bound of 2. Clearly that this

algorithm becomes linear for any fixed number of machines. The greedy

approach has been intensively studied in the literature, see, e.g., [73] and

[133],

Barany and Fiala [11] report the following result due to Raczmany.

Theorem 1.1 For problem Om||C max any dense schedule Sp guarantees that

for any m inequality

CmSLX{SD) - Cmax {S*) < (m - l)/w

holds and this bound is tight.

The following result for the worst-case ratio bound of dense schedules was

independently proved by Aksjonov [5] and by Wein [148].

Theorem 1.2 For problemOm\\C max any dense schedule S D guarantees that

for any m inequality
C max{Sp) , l u x

C max (S*)

holds.



CHAPTER 1. INTRODUCTION

The tightness of (1.11) was not proved. It is conjectured in [26] that the

bound (1.11) can be improved and the following inequality holds

Cmax('S'p) ^ 1
Cma x(S*) ~ m'

This bound is proved for m < 3 by Chen and Strusevich [26] and for m —4

by Chen and Yu [28].

An algorithm which employs a greedy approach with prearranged opera-

tion sequencing is developed in [139]. The algorithm creates an approximate

solution SH such that either

Cmax(S f j) < 2 _ 1
Cmax{S*) ~ m+ 1

or

Cmax(SH) < C max (S*) + (m - 2)p max .

Chen and Strusevich [26] present a linear-time algorithm that transforms

a dense schedule into a heuristic schedule with a worst-case ratio bound of

3/2 for the case of 3 machines. They prove the following property of dense

schedules which is used further in our argumentation.

Lemma 1.1 If there is some idle interval on a machine then after this idle

interval the machine processesno more than m— 1 jobs in any dense schedule.

For the two-machine case we can get a stronger result.

Lemma 1.2 In any dense two-machine open shop schedule there exists at

most one idle time interval and after this interval only one job is processed.

Proof. Since we consider dense schedules, two machines cannot be idle

simultaneously. Without loss of generality assume that the first idle time

occurs on machine A before operation OJA of job Jj. It may happen if and

only if operation 03B is being processed at this time on machine B and no

other operation requires to be processed on machine A. Hence, after the



CHAPTER 1. INTRODUCTION

time when job Jj is completed on machine B operation OJA will be the

only operation which has to be processed on machine A. This implies that

starting from the time C3B machine B processes only the jobs which have

already been processed on machine A. Hence 110idle time on machine B is

possible. This proves the lemma. •

Sevastianov and Woeginger [134] use the greedy algorithm as a part of

their PTAS for the multi-machine open shop. The properties of greedy algo-

rithms for the open shop problems were widely studied in the literature, see,

e.g., [27, 132, 136, 148].

1.8.3 Pinedo and Schrage Algorithm

Pinedo and Schrage [117] present an algorithm of constructing an optimal

schedule for the two-machine open shop problem based on the greedy ap-

proach with reserved operations. Their algorithm first splits the set of oper-

ations into 3 subsets: fixed, reserved and non-reserved. In fact, the operation

with the longest processing time becomes reserved one, the other operation

of this job is added to the set of fixed operations. After that the algorithm

schedules the fixed operations and then adds all non-reserved operations in a

greedy manner, see Section 1.8.2 for details. Finally, the reserved operations

are added to the schedule and the complete schedule is output. Formally we

can describe the algorithm as follows.

Algorithm PS

INPUT: An instance of problem 02||C max .

OUTPUT: An optimal schedule Sps-

1. Find job Jk such that

max {afc, bk } = max {a,-, bj} .
jeN

2. If ak > bk then rename machine A and B and correspondingly inter-

change not ionsa3 and bj .



CHAPTER 1. INTRODUCTION

3. On machine A start the operation of job Jk at time 0.

4. On both machines A and B schedule the operations of all jobs of set

N\ {Jk} in a greedy manner.

5. On machine B determine the earliest time r when the machine becomes

idle. If there exists job J/ such that its operation is processed on B

after r, then remove this operation from the current partial schedule

and define the sequence </>= (Jfc, Ji). Otherwise, set 0 = (J/, Jfc)-

6. Start the sequence of jobs 0 on machine B at time max {afc,r}.

7. Call the obtained schedule Sps and stop.

The running time of Algorithm PS is linear. For the length of the output

schedule we have that

It is easy to see that the lower bound (1.9) on the length of the optimal

makespan for the two-machine open shop is attained.

1 .9 Non-approximability

In this section we briefly recall basic facts on APX-hardness. The term

"APX-hardness" is used now in the literature instead of the term "Max

SNP-hardness". Papadimitriou and Yannakakis [115] study the possibility

of creating a polynomial time approximation scheme (PTAS) for NP-hard

problems. They show that there exists a class of APX-hard problems and

such problems do not admit a PTAS.

Papadimitriou and Yannakakis [115] introduce L-reduction which is used

as the main tool for dealing with problems from this class. An L-reduction

can be defined as follows.

C max (S PS )
max {a(N) , b (N)} , if ak < r;
ak 4- max {a(N\ { J k } ) , bk } , otherwise.



CHAPTER 1. INTRODUCTION

Let Pi and P2 be two optimisation problems. An L-reduction from Px to

P2 is a pair of functions R and S, both computable in polynomial time with

the following two additional properties:

1. For any instance / of Px with optimum Opt . ( I ) ,R( I ) is an instance of

P2 with optimum cost Opt(R(I )), such that

Opt(R{I ) ) < aOpt ( I ) ,

for some positive constant a.

2. For any feasible solution s of P(/), S(s ) is a feasible solution of / such

that

IOpt( I )- c (S{s ) ) \ < P |Opt{R{I ) )- c(s)|,

for some positive constant j3,where c(S(s)) and c(s) represent the cost

of S(s) and s, respectively.

In fact, Papadimitriou and Yannakakis [115] show that L-reduction has

a property of preserving an approximation. In other words, if problem P2

admits a polynomial time approximation scheme, i.e., a family of (1 + e)-

approximation algorithms, for any fixed e > 0, and if there exists L-reduction

of problem Pi to problem P2 with parameters a and f3then problem Px admits

(1 + a/^-approximation algorithm. Hence, there exists a PTAS for problem

Pi if there exists a PTAS for problem P2.

According to the definition of L-reduction Papadimitriou and Yannakakis

[115] define a class of optimisation problems which is closed under L-

reductions. The hardest problems in this class with respect to L-reduction are

called APX-complete problems. Papadimitriou and Yannakakis [115] prove

that every problem in this class admits a ^-approximation algorithm, where

p is a positive constant. An optimisation problem which is at least as hard as

any APX-complete problem with respect to L-reduction is called APX-hard.



cu . \ rn u i INIK<>/>( '(T /O, \

A uuii l l M Mol opt uuisat ion problems ai e pn >vetI I o be AI ' \ hard, c P, , I l ie

problem ol I UHI IIH\ a maximum nil in a graph, (In1 problem ol l iudinjJ I In*

vertex covei ol Iho maximum size HI a p,ra .pl i lot none ol these AI ' \ haid

prol i le tus a I ' I AS lias boon const i ucted, morn*>vei . due (»» I he pi opet I ies el

I , if t 11id ion i l I l ine cxui t . j i a I ' TAS loi ; i l least one AI ' X liaid pioNeni then

al l olhei ATX haul problems admit a I ' I AS

Arora el ; i l | S | provu the fol lowing theorem

Thooroiu I ..'t I f Ihc i r cr i s i s a I ' l AS J \>ii l l l eas tone I I'\ hold i>n>bhni.

Ih e n I ' N l '

Theorem I gives a strong tool lot proving I l ie l ion appioxiniabi l i ty ol an

opt ini isa! ion problem lb do t ins i t snl l iees to provide b red in l ion l imn an

AI ' X hard problem to the problem nndei considerat ion, then, unless I ' Nl ' ,

I l ie considered problem does not admit a I ' I AS

It has Io be pointed out that I his met hod is not I l ie only one which is used

lb i proving l ion approxi inabi l i fy ol opt ui i isal ion problems Knbiak el al |< ' (> |

introduce a very convenient method ol proving, non approxi i i iubihty resul ts

Ibi problems with machines non avai labi l i ty constraints . This approach is

widely used and can be i l lustrated by an example givnn in Sect ion I



Chapter 2

Machine availability constraints

2.1 Introduction

As mentioned in Chapter 1, this thesis mainly studies scheduling problems

with machine availability constraints, i.e., we assume that the machines may

become non-available throughout the planning time. Sometimes we will refer

to a non-availability interval as a hole. Under this circumstances, the classi-

cal scheduling algorithms may become unacceptable and produce schedules

which are far from optimal. Thereby, special consideration of such problems

is required in order to obtain optimal or near-optimal feasible schedules.

We now point out some situations when non-availability intervals may oc-

cur on machines and which properties these intervals have. At the beginning

of the scheduling period one or several of the machines may still continue

processing some jobs scheduled in the previous time horizon. In such a situa-

tion the structure of the non-availability intervals may be quite complicated

and the starting and ending times of each non-availability interval are known

in advance and cannot be changed. Another possible situation arises when

one or several machines require some maintenance throughout the planning

period. The maintenance decision may be done separately or jointly with the

job scheduling. In the first case we obtain a situation similar to the one with

the overlapping of the planning periods in which we cannot control the start-

36



CHAPTER 2. MACHINE AVAILABILITY CONSTRAIN TS

ing and ending times of these 11011-availabilityintervals. In the latter ease

the starting times of the non-availability intervals and possibly their lengths

are not given in advance and become part of the decision-making. Another

example of machine non-availability can be a consequence of machine break-

downs. It is clear that in this case we are not usually given information

regarding the starting times or lengths of snch non-availability intervals.

In this chapter we give a review of the present achievements in scheduling

with availability constraints. Creating a classification of snch problems we

first split: all variety of problems into three groups regarding machine environ-

ment: a single machine, parallel machines and multi-stage systems. 'Then for

each of these groups we recall known results for different objective functions

and for various patterns of non-availability intervals.

Following Lee [90], we study various scenarios of handling a non-

availability interval. If some operation cannot be completed on a certain

machine before a non-availability interval then we will refer to such an op-

eration as affected by the non-availability interval and we will call this job

a crossover job. Lee [90] calls the scheduling model resumable, if the total

processing time of the operation interrupted by a non-availability interval

remains equal to its original processing time, i.e., the processing of the af-

fected operation is interrupted by the hole and is resumed when the machine

becomes available again. The model is called non-resumable , if the total

processing time of the affected operation after the hole is equal to its orig-

inal processing time, as if the operation restarts from scratch. I11the semi-

resumable model, the fragment of an operation performed before the hole has

to be partially reprocessed after the hole. Thus, under the semi-resumable

scenario, the total processing time of an operation becomes greater than its

original processing time.

Assuming that a hole occupies interval \ s , t ] , operation Oj is allected and

its processing time is equal to pj we formally describe the above scenarios as



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS

Resumable Scenario. In this case the processing of operation 0 3 is

interrupted at time 5 and resumed at time t, the total processing time remains

equal to pj. This scenario can be applied to a typist who has gone to a lunch

break and then resumes the typing of a manuscript from the last typed page.

Semi-Resumable Scenario. Let x3 be the duration of the processing

of operation 0 3 i before time s. Under the semi-resumable scenario, we are

given a job-dependent value of a 3 G [0,1], such that a part of the operation

performed before the hole must be done again for a3 x3 time units to reach

the status at the point of interruption. Then the processing is resumed for

Pj —Xj time units, so that the total processing time of the operation after

the hole is equal to p3 — (1 — a 3)x 3. Notice that if all a3 = 0 the resumable

and the semi-resumable scenarios are equivalent. Our definition of the semi-

resumable scenario is slightly more general than that introduced by Lee [90]

and used so far in the literature, where the values a3 — a for all jobs. This

scenario is applicable if, e.g., the processing machine is a heating one, so that

the part being heated will cool down during the non-availability period and

will have to be re-heated to the temperature at the point of interruption, but

not from the original temperature.

Non-Resumable Scenario. Under this scenario, the total processing

time of operation 0 3 after the hole is equal to p3, as if the operation restarts

from scratch. Thus, this scenario is a special case of the semi-resumable

scenario when an operation has to be completely reprocessed (i.e., a 3 = 1

for all j = 1,...,n). This scenario can be found in the situations related

to downloading files from the Internet: if the connection is lost during the

download, one has to start the process again when the connection is restored.

We denote the scheduling problems with non-availability constraints ex-

tending the standard three-field notation introduced by Graham et al. [57].

We add two extra parameters into the second field o|o, //, Sc|o, where

H = h(qi,... ,q m ) refer to the non-availability pattern, where qx holes oc-

cur on machine i G M; Sc G {Re, S-Re, N-Re} to refer to the resumable,



CUAri'VR 2. MM 'tit.XI \ \ \ll [tut I I\ ('().XS IVM:\ TS

J2

M

M

J\

M
;

l J2M 1 l J2

(a)

(M

M

M

d[
' 1 h.

d[
' 1 h. ( < • )

( < / )

I ' ignre 2 .1 (a) Jul> t I t>t \stu>t I I Iin l l i t ; ^a|» Iu ' l iH i ' I l i t ; lu»1«*. ,(I») ieHuniahle

scenario; (e) s t ' i t t i lesninahle Htenario, ( i ! ) non resinnahie scenario

semi resnntable oi mm resmnahle scenario, respect ively

I I i t - I t t i l twing example i l lustrates al l I his scenarios ol t l ie hehavioin t •1 I l i t )

a l l t ' t I f tI o p e i a ! i t M I

I ' j xa iup i t ) 2 .1 I tV are tjiorn out' iihh hint1 AI ami turn jobs ! \ ami h un t i l

process ingh in t '* I and A, respec t i ve lyI In mat ava i lab i l i t yin terva loccup i t s

tin- tntri val |T), am! /oi tin1 semi resuiliable scenario constant* o ( ami o -j

air equa lto( ) . f» .( 'ons idr ischedu leS spec i j i rdby permuta t iono j jobs(J \ , ! • )

I'li/ure .'I demonstrates all Hcrmirios

Til t ) ni t )s l . ron in UHIIft I in I<11it-1ILproving Iion appi ox i inal l i l i ly ol a HIhot Ii l l

i n g p t o I >1 1 '1 1 1w i t h n o i i a v a i l a b i l i t y c o n s t r a i n t s i t s<1 1i t tI n K n h i a k e l « *I | ' h |

I his approach is demolish at ,ed in I In- lol lowii lg example

Hit i l h a l 11f ) |<o i in i tl t - ia s ing le111( ixh in t )s<hedn l ingproh l t ) inl <i min imise

l l i t*makespannnde i I l i enun resn inab lescena i io

Theorem 2.1 (by Bin t e l a l f l f i ] ) I ' ' o ra f i xedp > I , the eiistriire oj

a ,po lyn ,o in i .a tt r ineapp in i li l la tion a lyo i ' i th injm / i ro l ih inI \ l i ( J - ) .iN lu | (

impl iestha i / ' Nl '



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS

Proof. We show that this algorithm, if existed, would solve optimally an NP-

hard problem 1 \h(l), N—Re\ C max , see [88]. Consider an arbitrary instance

of the decision version of problem 1 |/i(l), N—Re\ C max in which it is required

to verify whether there exists a schedule S such that C max (S) < y for a given

y. Let SI be a schedule that is optimal for this problem with a single hole.

Define an instance of problem 1 \h (2 ) ,N—Re\C max which is obtained

from the taken instance of problem 1 |/i(l)| Cmax by inserting an extra hole

[y,py\. Let S%be an optimal schedule for this latter problem with two non-

availability intervals.

If Cmax(5'i) < y then C,
max(S'1*) = C max (5^); otherwise, the jobs that are

processed after time y in schedule S^ have to be processed after time py

in schedule S^- Since no preemption is allowed, it follows that Cma^S^) >

Py + Cmax('S'i) ~~V-

Apply our algorithm to the defined instance of problem

l\h(2),N—Re \ Cmax- It will find schedule 5// such that

CmaxiSn)<

Cm ax (S5) -
P

We show that by verifying the value of Cmax (£W) it is possible to solve

the decision version of problem 1 \h(l), N-Re| C max .

Suppose that C max (S H ) < py- Then the actual completion time of the

schedule is before the second hole, i.e., Cmax (S7/) < y. It is obvious then that

Cmax(sn<Cmax(S*2) < C max (S H ) < y.,

so that in problem 1 \h ( l ) ,N—Re\ C max the required schedule exists.

Suppose now that C max {S H ) > py- Then the inequality C max (5^) < y

would imply that
C max (S / i ) py

C'maX (*5*2) y

a contradiction. Therefore, C max (5i) > y . If C max (5i) < y , then we

would have Cmax(S2*) = Cmax (S*) < y, a contradiction. Thus, in problem

Hh(l), N-Rej C max the required schedule does not exist. •



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS

2.2 Single Machine

41

The resumable scenario for a single machine and one non-availability in-

terval is well studied. If the objective function is that of minimising the

makespan then it is easy to show that any schedule is optimal if it has

no idle time, moreover a preemption is necessary only if some job cannot

be totally processed before the non-availability interval, i.e. there exists a

crossover job, see [88]. Lee [88] shows that the SPT rule, which was defined

in Section 1.2.4, solves problem 1 |/i(l), Re\ ^ Cj optimally, but the more

general problem 1 |/i(l), Re\ WjCj becomes NP-hard. He presents a dy-

namic programming algorithm for the latter problem. Also, Lee [88] shows

that an optimal solution of problem 1 \h(l),Re\ L max can be found by the

EDD rule, which was defined in Section 1.2.4, and the number of late jobs

can be minimised by the modified algorithm of Moore and Hodgson [103].

Notice that minimising theweighted number of the late jobs is proved to be

NP-hard already for the continuously available machine, see [70].

For the non-resumable scenario the following results are obtained so far.

Problem l|/i (l), N—Re\CmSLX is proved to be NP-hard by Lee [88]. Moreover,

he proves that 1 |h(k), S—Re | C max and 1 \h(k), N —Re | C max are NP-hard in

the strong sense if the number of holes is part of the input. He also shows

that the LPT rule, which was defined in Section 1.2.4, leads to a tight bound

of 4/3. Lee [88] proves that since minimising the makespan is an NP-hard

problem, minimising the maximum lateness and the number of late jobs are

NP-hard as well. He proves that the algorithm of Moore and Hodgson [103]

for the problem to minimise the number of late jobs leads to a worst-case error

bound of P < P* + 1, where P is the number of tardy jobs obtained by the

algorithm and P* denotes the optimal number of tardy jobs. Moreover, Lee

[88] shows that the EDD rule for the problem 1 |/i(l), N-Re\ L max provides

the following upper bound L max < L*mSLX+ max {p?}, where L max denotes
j=l , . . . ,n

the maximum lateness obtained by the algorithm, L*nax denotes the optimal



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS 42

Cmax ZCj ZUj L max

res polynomial polynomial NP polynomial NP polynomial

s-rcs NP NP NP NP
n-res 5/4, NP 20/17, NP

Table 2.1: Results obtained for the single machine and one non-availability
interval

maximum lateness, n is the number of jobs and P j denotes the processing time

of job Jj. Lee and Liman [93] show that the problem 1 |/i(l), N— Re\ ^ Cj

is NP-hard. Lee and Liman [93] have studied the SPT rule for this problem

and have proved that this heuristic leads to a tight bound of 9/7. Sadfi et al.

[127] improve this result and propose a heuristic for the problem with a worst-

case error bound of 20/17. A pseudopolynomial-time dynamic programming

algorithm is developed for the problem by Sadfi et al. [128].

Breit et al. [18] show that problems l \h (2 ) ,N—Re\Cmax and

l\h(2), S—Re\C ma.x are not approximable within a fixed factor, unless P=NP.

Since the semi-resumable scenario is a generalization of the non-resumable

scenario, it is clear that all problems which are proved to be iVP-hard for the

non-resumable scenario remain to be /VP-hard for the semi-resumable one.

2.3 Parallel Machines

The classical scheduling problem of minimising the makespan on m parallel

machines without non-availability constraints is NP-hard. Lee [87] considers

this problem under the assumption that each machine may not be available

for processing at time zero. He proves that the LPT algorithm delivers

a heuristic solution with the worst-case ratio bound of § - Moreover

he presents a modification of this algorithms with a better performance of

§. Kellerer [72] presents a heuristic for m parallel machines and the non-

resumable scenario with the worst case ratio of He [63] proves that if a

LPT schedule has a latest finishing job that runs on a machine with at least



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS

k —1 other jobs then the ratio of the LPT makespan to the optimal one is at

most ^ for k > 1 or| — 2m'_2 for A:—1 and these bounds are tight.

Chang and Hwang [23] employ a bin-packing heuristic algorithm known as

the MULTIFIT to this problem and prove that the makespan of the output

schedule is bounded by| + 2~l times the optimal makespan, where I is the

selected number of iterations of the MULTIFIT.

Kaspi and Montreuil [71] study the problem of minimising the total com-

pletion time for the system of m parallel identical machines in which machines

may be non-available for processing in the beginning of the planning period.

They prove that the SPT rule produces an optimal solution of the problem.

If the non-availability interval starts at a prespecified time s > 0 then par-

allel scheduling problem with m machines subject to minimise the makespan

obviously remains NP-hard for each of the scenarios: resumable, semi-

resumable and non-resumable. Lee [88] presents two heuristics with a worst

case ratio of| —J- for the resumable scenario and for the non-resumable1 Zrri z

scenario and both these bounds are tight.

Problems P2 |/i(l, 0), -Re|^ WjCj and P2 |/i(l, 0), N—Re\ w jCj are

NP-hard, since the corresponding one-machine problems are proved to be

NP-hard. Lee [88] presents a dynamic programming algorithm for these

problems.

If preemptions are allowed and the number of available machines is a

function of time then the problems of minimising the makespan and the

maximal lateness are proved to be polynomially solvable, see Leung and

Pinedo [98].

Other models of machine non-availability constraints were considered in

the literature. The case of two identical parallel machines where one of the

machines is available only for a specified period of time subject to minimise

the total completion time was considered by Lee and Liman [94]. A more

general case of this problem was studied by Mosheiov [104]. He assumes that

the processing system consists of m machines and these machines become



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS

available at different times. Hwang and Chang [66] consider the parallel

machine scheduling problem with planned machine shutdowns and analyze

the performance of the LPT algorithm for this problem. They prove that

the output schedule will have the makespan as large as twice the optimal

makespan and this bound is tight provided that no more than half of the

machines are allowed to be shutdown simultaneously.

2.4 Multi-stage systems

Since in this thesis we study only shop sheduling problems with the objective

function of minimising the makespan, we make a more detailed review of the

available literature in this area.

2.4.1 Flow Shop

Without non-availability intervals the two-machine flow shop scheduling

problem can be solved in polynomial time by Johnson's algorithm in

O(nlogn) time, see [68] and Section 1.4.1. The complexity status of the

problem changes if the machines are not continuously available. Since, due to

Lee [88], the 1 \h(k), S-Re | C max and 1 \h(k),N—Re\ C max are NP-hard in the

strong sense, it is easy to see that the corresponding flow shop problems are

strongly NP-hard as well. Lee [89] considers problems F2 |/i(0,1), Re| C max

and F2 |/i(l, 0), Re\ C max and proves that they are NP-hard. He presents

a pseudopolynomial dynamic programming algorithm for these problems.

Kubiak et al. [76] study the resumable variant of the problem under the

assumption that the number of non-availability intervals is part of the input.

They prove that the problem becomes NP-hard in the strong sense even if

all non-availability intervals occur only on one of the machines. Lee [90]

provides a pseudopolynomial dynamic programming algorithm to solve the

problem with one hole under the semi-resumable scenario.

The complexity status of the problem has stimulated research on its ap-



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS

proximability. It appears that the problem allows us to establish a sharp

borderline between the conditions under which it is possible to design fast

approximation algorithms and the conditions under which to find an approx-

imate solution that is guranteed to be close to the optimum is not easier than

to determine the optimum exactly.

Lee [90] and Kubiak et al. [76] consider the resumable two-machine flow

shop problem and show that it becomes not approximate in polynomial time

within a fixed factor, unless P=NP, provided that there are either two holes

on the second machine or one hole on each machine.

It is known that the classical flow shop problem Fra||C max is symmet-

ric in the sense that the optimal makespan of the flow shop schedule with

renamed machines equals to the makespan of an optimal schedule for the

original problem, but the non-availability intervals break this symmetry. For

problem F2 |/i(l, 0), Re\ C max Lee [89] develops a heuristic with the worst-

case ratio of| and a heuristic with the worst-case ratio of| for problem

F2 |/i(0,1), Re\ C max . For the latter problem, a approximation algorithm

is due to Cheng and Wang [32], Breit [20] proposes an improved |-algorithm

for this problem. Recently, Ng and Kovalyov [107] propose an FPTAS for

problems F2 \h(l, 0), Re\ C max and F2 |h(0,1), Re\ C max . Blazewicz et al. [13]

study the problem with several non-availability intervals and develop con-

structive and local search heuristic algorithms for it.

For the semi-resumable scenario (and for the non-resumable sce-

nario as well), Lee [90] gives a §-approximation algorithm for prob-

lem F2 |/i(0,1), S—Re\ C max and a 2-approximation algorithm for problem

F2\h(l, 0), S-Re | C max . If there are two holes, one on the first machine and

the other on the second machine, and these holes are consecutive, i.e., the

second hole starts exactly when the first hole ends, Cheng and Wang [31]

give a |-approximation algorithm.

Kubiak et al. [76] show that if several non-availability intervals under

the resumable scenario occur on the first machine then Johnson's rule [68]



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS

holes h{0,1) h(1,0) h(k ,0) h(0 ,k ) MM)
Re FPTAS

Dyn.Progr.
FPTAS
Dyn.Progr.

2 —app non-app non-app

S —Re 4/3 —app
Dyn.Progr.

4/3 —app
Dyn.Progr.

non-app non-app non-app

N - Re 4/3 —app
Dyn.Progr.

4/3 —app
Dyn.Progr.

non-app non-app non-app

Table 2.2: Known results for the two-machine flow shop problem with avail-
ability constraints

delivers a heuristic schedule with the worst-case error bound of 2.

2.4.2 Flow Shop No-wait

Another flow shop problem considered in the literature is the flow shop

problem with no-wait in process. Notice, that this problem without non-

availability intervals is polynomially solvable by Gilmore-Gomory's algo-

rithm, see [46] and Section 1.6. Only the non-resumable scenario has been

considered for the problem prior to our research. First, Espinouse et al. [38,

39] show that problems F2 \h(l, 0), N—Re | C max and F2 \h(0, 1), N—Re \ C max

are NP-hard and become strongly NP-hard in the case that the number of

holes is part of input.

There are two possible interpretations of this scenario if the hole occurs

on machine B. One of these interpretations (we will call it Scenaiio Bl)

is essentially equivalent to the semi-resumable scenario with a.j —1, where

j = 1 ,..., n, so that operation OJ,B starts before the hole immediately after

Oj a is completed, is interrupted at time s and resumed from scratch at

t. The other interpretation (we will refer to it as Scenario B2) is due to

Espinouse [38, 39]. It assumes that operation 0 3i b does not start before the

hole at all and starts either at time t or at the completion time of operation

O jA , whichever is the latest. See Figure 2.2 for the two interpretations of

the non-resumable scenario and their influence on the makespan.



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS

A

B

Jn(k ) J.7r(/c-f1)

^n(k ) J.7r(fc) J.
(a)

7r(fe+l)

A

B

J n { k ) J n ( k + l )

• K { k ) ^7r(/c +l)• K { k ) ^7r(/c +l)
( b )

Figure 2.2: Non-resumable scenarios B1 (a) and B2 (b)

holes h(0,1) h(1,0) h(k ,0 ) h(0 ,k ) h(1,1)

N - Re 5/3 —app
PTAS

5/3 —app
PTAS

non-app non-app non-app

Table 2.3: Known results for the two-machine flow shop no-wait problem
with availability constraints

Further, along with h( 0,1) we may write either Sc = N-ReBl or Sc — N-

ReB 2 to distinguish between the non-resumable scenarios B1 and B2.

Espinose et al. [38, 39] prove that the problem with two or more non-

availability intervals is not approximable in polynomial time within any con-

stant factor, unless P=NP. Also, they provide two heuristics for holes on the

first machine and on the second one with tight error bounds of 2. This result

was improved by Wang and Cheng [147]. They present two heuristics with

the worst case error bounds of 5/3 for both these cases. Recently, Cheng

and Liu [30] have presented a polynomial time approximation scheme for the

two-machine flow shop no-wait problem for the case of a single hole either

on the first or on the second machine and for the problem with one hole on

each machine if these two holes overlap.



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS

2.4.3 Open Shop

The next important multi-stage scheduling system is the open shop. The

formal description of this model is given in Section 1.7. The two-machine

problem without non-availability intervals can be solved in polynomial time,

see Section 1.8.

Lu and Posner [101] consider the open shop problem with one of the

machines unavailable at time zero and present a linear time algorithm which

solves the problem to optimality.

Since we start considering the open shop problem with availability con-

straints, we should sort out an important difference between the resumable

model studied by Breit et al. [18] and the preemptive model studied by

Vairaktarakis and Sahni [143], The resumable model is similar to the open

shop with no-pass constraints analyzed by Cho and Sahni [33], where between

the interruption of processing a job and its resumption on this machine the

job cannot be processed on any other machine. In the preemptive model

the interrupted job may be processed on another machine. Vairaktarakis

and Sahni [143] present a polynomial time algorithm for finding an optimal

solution for the preemptive open shop problem with an arbitrary number

of machines and non-availability intervals. However, Breit et al. [18] and

Lorigeon et al. [100] show that the two-machine resumable open shop model

with one non-availability interval is NP-hard. For the non-resumable sce-

nario since the one-machine problem with one hole is proved to be NP-hard

(see [88] and Section 2.1), it follows that the two-machine open shop problem

is NP-hard as well.

Breit et al. [18] show that problem 02\h(k , 0), Re\ C max can be

solved in linear time with the worst case ratio of 2. However, problem

02\h(2, 1), Re | C max cannot be approximated within any finite factor in poly-

nomial time, unless P=NP. For the non-resumable scenario Breit et al. [19]

prove that the two-machine open shop problem with at least two holes on



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS

holes h(0,1) h(0 ,k ) h(1,1) h(1,2)
Re 4/3 —app

Dyn.Progr.
4/3 —app non —app

N - Re 4/3 —app non —app 2 —app non —app

Table 2.4: Known results for the two-machine open shop problem with avail-
ability constraints

one of the machines is non-approximable, unless P=NP.

Approximation algorithms with a worst case ratio of 4/3 was developed

for problem 02 |/i(l, 0), Re | C max by Breit et al. [18]. Their algorithm is based

on the Gonzalez and Sahni algorithm, see Section 1.8.1 for its description.

Without modifications the algorithm of Gonzalez and Sahni may produce

schedules which are arbitrarily bad, i.e. it does not produce schedules with a

finite error bound ratio bound on their makespan. Depending on the starting

time of the hole and the processing times of the jobs the schedule found by

the Gonzalez and Sahni algorithm is appropriately modified and a heuristic

schedule with the worst-case error bound of 4/3 is provided. For all cases

the running time of the algorithm is linear.

The model under the non-resumable scenario was considered by Breit et

al. [19]. For problem 02 |/i(l, 1), N-Re\ C max they provide a linear time 2-

approximation algorithm. For problem 02 \h(l, 0), N—Re\ C max they present

a 4/3-approximation algorithm. This algorithm combines the gieedy ap-

proach with specific scheduling of some operations.

2.5 Machine Maintenance

Another possible interpretation of machine non-availability is maintenance

restrictions. Here the decision-maker can control the starting time of non-

availability intervals and their lengths.

One of extensions of standard scheduling models is related to the so-called

machine non-availability intervals, which have been discussed so far, and has



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS

received considerable attention since the beginning of the 90s, see survey

papers by Lee [88, 91] and Schmidt [131]. We refer to a purely deterministic

interval of non-availability when the start of the interval and its duration are

known in advance as fixed.

In equipment breakdown modeling, the decision-maker is not aware when

a breakdown occurs and for how long, so that the on-line decisions have to

be taken on a possible change of plans and rescheduling. This direction of

research is closely related to the area of disruption management and, despite

its importance, so far has not been systematically studied.

Planning the intervals of preventive equipment maintenance gives the

decision-maker freedom to choose the start time for that maintenance; ad-

ditionally, the length of the maintenance period may depend on its start

time (the sooner the maintenance is started, the better the equipment con-

ditions are and less time is needed for its maintenance). This calls for study

of scheduling models with floating non-availability intervals of controllable

durations. In this thesis we address scheduling problems with both types of

non-availability, i.e. fixed and floating.

The importance of preventive maintenance for production enterprises and

service organizations has been widely recognized by both practitioners and

management scientists; see, e.g., paper by Gopalakrishnan et al. [54], the

Internet emporium at www.plant-maintenance.com and popular books by

Nyman and Levitt [112] and Palmer [113].

In scheduling literature there is a stream of papers dealing with finding a

periodic schedule for fixed length maintenance periods. Each machine incurs

an operation cost which depends on the time of the last maintenance of this

machine. The problem of scheduling maintenance intervals to reduce the

average long-term cost of running the system is considered by Anily et al.

[6, 7]. An extended version of the problem with additional fixed maintenance

cost involved is considered by Bar-Noy et al. [10] and Grigoriev et al. [59].

In another model there is an upper bound on how long a processing



CHAPTER 2. MACHINE AVAILABILITY CONSTRAINTS

machine may work without maintenance. Qi et al. [118]consider the problem

of scheduling jobs and maintenance intervals of equal duration on a single

machine to minimise various objective functions.

Graves and Lee [58] consider the problem of scheduling jobs and two

maintenance intervals of a fixed duration on a single machine to minimise

either the total weighted completion time or the maximum lateness. If the

processing of a job is interrupted because of the machine maintenance, the

job requires some additional setup time to resume. Lee and Chen [92] study

the problem in which each parallel machine has to be maintained once during

the planning period. The jobs are not allowed to be interrupted by machine

maintenance. The goal is to minimise the total weighted completion times

of the jobs. There are two different variations of the problem: (i) only one

machine can be maintained at any time, and (ii) several machines can be

maintained simultaneously.

Lee and Lin [95] consider the problem of scheduling machine mainte-

nance in the single-machine environment. They assume that after running

for a certain amount of time the machine may be in a subnormal condition

in which its processing speed is reduced. The decision-maker may either

stop the machine and start the maintenance work which brings the machine

back in the normal condition or he or she can wait and maintain the machine

later. In the case when the choice is made to continue processing the jobs the

machine can break out completely, hence the repair will be required immedi-

ately. Authors assume that all jobs processing times are deterministic while

the machine breakdown is a random process following certain distribution.

Lee and Lin [95] consider resumable and non-resumable scenarios and vari-

ous objective functions such as the expected makespan, the total expected

completion time, the maximum expected lateness and expected maximum

lateness.



Chapter 3

Flow Shop Scheduling

3.1 Introduction

In this chapter, we concentrate on the flow shop scheduling model which is

one of the classical models for multi-stage processing systems. For detailed

discussion of the flow shop problem see Section 1.3. We study the two-

machine flow shop scheduling problem with various rules of treating the jobs

affected by a non-availability interval and under various assumptions on the

structure of the non-availability intervals.

A general discussion of the machine non-availability and a review of liter-

ature are given in Chapter 2. The material of this chapter has been reported

at MAPSP'03, see [77]. An FPTAS for the two-machine flow shop problem

with a single hole either on the first machine or on the second machine was

independently proposed by Ng and Kovalyov [107]. Our FPTAS for a single

hole on machine B is simpler than the one by Ng and Kovalev, but has the

same computational complexity. Since it relies on the fact that the hole oc-

cures on machine B and it can not be easily extended to the case with a hole

on machine A, we obtain an FPTAS which is worse in terms of computational

complexity than one by Ng and Kovalev.

The remainder of this chapter is organized as follows. In Section 3.2,

a dynamic programming algorithm for the resumable scenario and several

52



CHAPTER 3. FLOW SHOP SCHEDULING

holes on one of the machines is presented. Section 3.3 demonstrates how to

convert the available dynamic programming algorithms to FPTAS's. Since

the running time of these FPTAS's is fairly large, in Section 3.4 a fast heuris-

tic algorithm with a guaranteed worst-case ratio of 3/2 is presented for the

problem with holes on the first machine. Section 3.5 describes a PTAS for

the two-machine flow shop problem with a single hole on one of the machines

under the semi-resumable scenario. Application of the developed method

of constructing a dynamic programming algorithm to a variant of the two-

machine flow shop problem is presented in Section 3.6. Some concluding

remarks are given in Section 3.7.

3.2 Resumable Scenario: Dynamic Program-
ming

In this section, we consider the two-machine flow shop scheduling problem to

minimise the makespan provided that the resumable scenario is applied. We

demonstrate that problem F2\h(q, 0), Re\C max with several non-availability

intervals on the first machine is solvable by a pseudopolynomial dynamic

programming algorithm.

Further, we briefly describe how to extend this approach to the problem

with any fixed number of holes on each machine. This is in contrast with

the strong NP-hardness of the problem with a variable number of holes, see

Kubiak et al. [76], and therefore completely settles the complexity status of

the resumable version of the problem under consideration.

From further consideration we exclude the situation that all jobs complete

before the first hole since in this case an optimal schedule can be found by

Johnson's algorithm.

Similarly to the classical flow shop problem that was considered in Section

1.3, for the two-machine flow shop problem with non-availability constraints

we consider a critical job and a critical path. A critical job starts its processing



CHAPTER 3. FLOW SHOP SCHEDULING

on machine B as soon as it completes its processing 011machine A without

any delay and the starting times of its operations on both machines cannot be

delayed without increasing the total makespan. The makespan of a schedule

that contains a critical job Jc is determined by the length of the critical path

which is the sum of the following components:

(i) processing time of both operations of Jc;

(ii) total processing time of all jobs that precede Jc on machine A\

(iii) total processing time of all jobs that follow Jc on machine B\

(iv) the sum of lengths of all non-availability intervals on machine A before

the completion time of job Jc on machine A and the total length of

all non-availability intervals 011machine B from this time to the time

when the last job in the processing sequence completes.

It is necessary to point out that this definition of a critical path differs

from the one presented in Section 1.4.1. We have to add the last term of the

sum defining a critical path due to the presence of non-availability intervals

which are absent in the classical model.

In the case of a single hole, a pseudopolynomial dynamic programming

algorithm for problem F2|/i(l, 0), Re\CmaiX is designed by Lee [89]. His scheme

is based on the observation that there exists an optimal schedule in which

all jobs that are completed on A before the hole are sequenced according to

Johnson's rule, and the rest of the jobs starting with the crossover job also

form a Johnson sequence.

For problem F2\h(q ,0), Re\ C ma x , where q > 1, following the argument

by Lee [89], we can restrict the search for an optimal schedule to the class

of schedules in which the jobs that complete before the first hole follow a

Johnson sequence. Take a feasible schedule and consider an interval / either

between two consecutive holes or after the last hole such that at least two



CHAPTER 3. FLOW SHOP SCHEDULING

jobs are completed in I. Notice that the first of these jobs is the crossover job

J. Let t be the left end-point of /, and [s', t'] be the hole that immediately

precedes /. The duration of job J on A may appear to be such that J starts

not in the interval that immediately precedes the hole [s',£'], but earlier, so

that the job spans across several intervals of availability of machine A and is

interrupted by several holes. Still, it is easy to verify that the argument by

Lee [89] carries over, so that the following statement holds.

Lemma 3.1 ( b y L e e[ 8 9 ] )F o r p r o b l e mF 2 \ h ( q ,0), Re\ C max , where q > 1,

there exists an optimal schedule such that for each interval of availability

of machine A the jobs that complete on A in the interval follow a Johnson

sequence.

For problem F 2 \ h ( l ,0), -Re|C max , the dynamic programming algorithm by

Lee [89] scans the jobs according to a Johnson sequence, assigns the next job

either as the last job to be completed on A before the hole or as the last job of

the current sequence. As state variables, the algorithm uses the completion

times of the last job before the hole on both machines and the starting times

of the crossover job on both machines.

For problem F 2 \ h ( q ,0), Re\CmSLX with q > 1, we are unable to extend

Lee's algorithm in a straightforward way, since here we have to handle the

crossover jobs that may span across several consecutive availability intervals.

Therefore, in the initialization stage of our algorithm, we generate all pos-

sible placements of the crossover jobs and store all relevant starting times

of these jobs on both machines. In the next stage, we scan the remaining

jobs according to a Johnson sequence and assign them for processing into the

existing gaps of the current partial schedule.

Consider an arbitrary assignment of the crossover jobs after the initial-

ization stage. The jobs are selected in any order and are placed around the

holes on machine A: so that no job is fully processed on A in an interval

between two consecutive holes (by convention, a job that starts at the right



CHAPTER 3. FLOW SHOP SCHEDULING

end-point of a hole is treated as if it started at the left end-point of that

hole and is interrupted by the hole). The job assignment is finished when no

other crossover job can be placed.

Suppose that r < q jobs have been selected as crossover jobs. Without

loss of generality, renumber these jobs by J\ , J 2 ,..., Jr in the order of their

appearance in the current partial schedule. For job J*., let sk denote the left

end-point of the first hole that interrupts its processing on A and tk denote

the right end-point of the last hole after which J\ is completed on A. Denote

t h e t o t a ll e n g t ho f t h eh o l e si n t h e i n t e r v a l[ sk , tk ] b y 5 k .

For each crossover job J\ define possible starting times vk
A and vk

B of

that job on machines A and J5, respectively. Given a choice of crossover

jobs and their arrangements with respect to the holes on machine A, at the

initialization stage we need to enumerate all relevant integer values of vk
A

and v B . By definition, vk
A cannot be greater than s k . Besides, to guarantee

that job Jfc cannot be completed on A earlier than time sk and produces

no conflicts with an earlier scheduled crossover job, we derive that v\ >

maxjs 1 —amax + 1,0} and vk
A > max{s fc —amax + 1, v k

A
l + a^-i + 5fc_1 } for all

k — 2,..., r. On the other hand, v B > v A + a\ + 51 and vk
B > max{i^ + a&+

5 k ,vl jf l + for all k = 2,..., r. In the class of schedules with the current

choice and placement of the crossover jobs, the completion time of job on

machine B is bounded from above by Ak + 5k + B k , where Ak denotes the

total processing time of all jobs except the jobs JK+I,•••, JR o n machine A

and B k is defined analogously with respect to machine B. This implies that

the number of possible integer values for vk
B does not exceed Ak + Bk for each

k , o r a ( N ) + b ( N ) f o r a l l k .

Given one of these initial schedules defined by the choice of the crossover

jobs Ji,..., J r and their starting times v A and v B , renumber the remain-

ing jobs so that J r+ i,..., JN form a Johnson sequence. Consider a partial

schedule that is obtained from the chosen initial schedule by assigning i jobs

J r+ 1 ,..., J r+ i+ 1- Associate with this partial schedule a state of the following



CHAPTER 3. FLOW SHOP SCHEDULING 57

form:

AIVBI • •• - IV AIVBTUAIUBI ••• IUAIUB^X) I

where

U A i s the completion time of the last job on machine A that finishes no later

than vk
A, k = 1,2,

u B is the earliest possible completion time of that job on machine B, k =

1 ,2 , . . . , r ;

x is the makespan of the current partial schedule.

The algorithm scans the remaining jobs and tries to insert the next job

Jr+i+2 to be processedas the last job between twocrossoverjobsJ^ and Jk+i,

f o r k = 1 , 2 , . . . , r . I f t h a t c a n n o t b ed o n e , i . e . , i f e i t h e ruk
A+ a r + i + 2 > v k

A
x

or max \u k
A + ci r+l+2 , uk

B} + b r+i+2 > vB
+1 , then the resulting partial schedule

becomes infeasible and is disregarded. Otherwise, the new partial schedule

is associated with the state:

{i + l\v\,vg,,... ,vr
A,vr

B',

^ A i^Bi ' " * ' ^A ®r+i+2) max { 11^ •>̂B } ^r+i+2 >

u k + \ u k + \ . . . , uA , ur
B ] x ) .

Besides, the algorithm tries to put job J r+i+2 as the last job of the cur-

rent sequence. In this case, the resulting partial schedule is associated with

following state:

i + .. .,vr
A,vr

B;

(r+i+1 r \

u\,u l
B ,...,u r

A ,u r
B -, max| ^ a j+ Y ^ v a - u A + 5 k ) , x| 4- br+l+2 J •



CHAPTER 3. FLOW SHOP SCHEDULING

Given that most of the required partial sums can be computed in advance,

the makespan of the partial schedule above can be updated in no more than

0(q) time, which is constant.

At the initialization stage we define

$\v\y Bl ...,v r
A ,v r

B \

0,0,1^ + J1 + (IITVQ + 61,... ,v A + Sr + ar,vr
B + br] vr

B + br).

In our analysis of the running time of the dynamic programming scheme,

we assume that the values of the last state are stored as the objective function

values. The number of schedules created at the initialization stage does not

e x c e e d£ ( C ) r \ a ^ ( a ( N ) + b ( N ) )r ) < £ ( ( "r ) r \ a ( N ) ' ( a ( N )+ b ( N ) ) ' ) =
r—1 r= l

0 ( nq a ( N )q ( a ( N )+ b ( N ) )q ) ,which is pseudopolynomial for a fixed q . For each

i n i t i a ls c h e d u l ew i t hr < q c r o s s o v e rj o b s ,w ed e r i v et h a t 0 < u \ < v A , v k
A

l +

cik-i + 5k~1 < u A < v A and 0 < u B < v B , v k
B

x 4- bk~\ < u B < v B for each

k = 2,..., r. This implies that u A take no more than a(N ) integer values, and

u B take at most a(N) + b(N) integer values for each k —1,2,..., r. Thus,

minimising the value of the makespan for each initial schedule requires at

most 0(na(N) q (a(N) + b(N)) q) time. Let M be max {a(N), b(N)} then the

t o t a lp r o c e s s i n gt i m ef o rt h ed y n a m i cp r o g r a m m i n ga l g o r i t h mi s0 ( n q + 1 M4 q ) .

Thus, we have proved the following statement.

Theorem 3.1 Problem F2\h(q, 0), Re\C max is solvable in pseudopolynomial

time for any fixed q > 1.

Furthermore, it can be demonstrated that the above approach carries over

for problem F2\h(q A, qs), -Re|C max with qA holes on machine A and g# holes

on machine B, where qA and g# are fixed. Lemma 3.1 can be extended for this

general problem in the following way. Let (J', a, J") be any fragment of the

job sequence that is associated with an optimal schedule, where the jobs J'

and J" are two consecutive crossover jobs, not necessarily interrupted by the



CHAPTER 3. FLOW SHOP SCHEDULING

holes on the same machine. Then the sequence (J', a) follows Johnson's rule.

It is clear that in the optimal sequence the jobs scheduled before the first

crossover job and those placed after the last crossover job also obey Johnson's

rule. This property can be used for developing a pseudopolynomial dynamic

programming algorithm for problem F2\h(q A, q B ), Re\C mAx . Here, we refrain

from presenting its formal description which may appear quite technical. It

suffices to state its main steps. First, select r& < qA potential crossover jobs

on machine A and r B < qB crossover jobs on machine D (a job can be a

crossover job on each machine). Then, to complete the initialization stage,

generate a permutation of the selected jobs and assign them into intervals so

that each crossover job is interrupted by a hole on the corresponding machine.

All permutations and all possible starting times of the crossover jobs have to

be enumerated. In the main stage of the algorithm, starting from one of the

initial schedules we assign the remaining jobs taken in a Johnson order to be

processed in the gaps of the current partial schedule.

Corollary 3.1 Problem F2\h(qA, qs), ^e|C ma x solvable in pseudopolyno-

mial time for any fixedqA > 0 and qB > 0.

In the following section we discuss the conversion of the dynamic pro-

gramming algorithm into an FPTAS.

3.3 Resumable Scenario: FPTAS

In this section we present fully polynomial approximation schemes (FPTAS)

for the two-machine flow shop problem under the resumable scenario. We

start with converting the pseudopolynomial dynamic programming algorithm

for problem F2|/i(0, l),/?e|C max designed by Lee [89] into a FPTAS for this

problem. Then we use this FPTAS as a subroutine to design a FPTAS

for problem F2|/i(l, 0), i?e|C max . Untill recently that the best approxima-

tion algorithm has been a| —approximation algorithm applicable to prob-

lems F2|/i(l, 0), Re\C max and F2\h(0, 1), Re\C max , see Lee [90] and Cheng



CHAPTER 3. FLOW SHOP SCHEDULING

and Wang [32], respectively. Ng and Kovalyov [107] propose FPTASs for

these problems.

Consider problem F2|/i(0,1), Re\C max with the hole [s,t] of length A =

t — s on machine B and the processing times cij and bj. We refer to this

problem as Problem P. To develop a FPTAS we use the well-known round-

ing technique. Given an instance of Problem P and an e > 0, define

6 = Emax{a(N),b(N)}/(n + 2).

Introduce Problem P as problem F2\h(0, 1), Re\CmAX with the processing

times defined as

a j = \ a j / 6 \ , b j= |V < 5 J, j = 1 ,2 , . . . , n , (3 .1 )

and the hole [ s , t ] of length A, where

s = , A = [A/5J , t = s + A. (3.2)

Here denotes the largest integer that does not exceed x.

Algorithm FPReB

INPUT:An instance of Problem P and £ > 0.

OUTPUT: A heuristic schedule S £.

1. Define the instance of Problem P by (3.1) and (3.2).

2. For Problem P, run the dynamic programming algorithm by Lee [89].

Call the found schedule and the associated permutation of job indices

by S and n, respectively.

3. Process the jobs from the original instance of Problem P according

to the permutation 7r, provided that each operation starts as early

as possible, interrupting one of the operations on machine D, when

required. Call the resulting schedule S £. Stop.



CHAPTER 3. FLOW SHOP SCHEDULING

Theorem 3.2 For schedule S£ found by Algorithm FPReB the inequality

Cma.x{S£)

C m «(5*) " + 6

holds. The running time of the algorithm does not exceedO (n 5/^ 4) .

Proof. Given an instance of Problem P, introduce new auxiliary problem

F2|/i(0,1), Pe|C max with the processing times aj and bj defined as

a3 = S a ^ b j= 5 b j = 1 ,2 , . . . , n , (3 .3 )

and the hole [s, t] such that

s = S s , A = 5 A , t = s + A, (3.4)

and call this Problem P.

Let 7r be a permutation of job indices that defines schedule S found in

Step 2 of Algorithm FPReB. Due to (3.3) and (3.4) we derive that a schedule

S that is optimal for Problem P is also associated with the same permutation.

Without loss of generality, we assume that the jobs are renumbered in such

a way that 7r = (1, 2,... ,n). Suppose that job Ju is critical in schedule S.

For schedule S£ for the original Problem P, we assume that job Jv is critical.

Recall that the processing times aj for Problem P are obtained by extending

the times a3 to their original values by no more than S each. The same holds

for other time parameters in these two problems.

If in schedule S job Ju either is processed on machine B before the hole

or is the crossover job in that schedule, then

u n

Cmax {S) = ^ aj + y^bj + A.
j=1 j=u

Irrespective of the position of job Jv in schedule S£ we have that

v n

Cm a x { S£ ) < ^ 2 a j + ^ +



CHAPTER 3. FLOW SHOP SCHEDULING

which implies that

v n
Cma.x{ S£ ) < + S ) + + 6) + (A + 5 )

j=1 j=v

u n

- Y,", + JLh + ^ + (n + 2)S = C m »(S) + (n + 2)4.
J=1 J=U

Suppose now that in schedule S job Ju starts on machine D after the

hole, i.e.,
u n

Cmax{ S ) — aJ + bj.
j=1 j=u

If job in schedule 5£ also starts on D after the hole, we have that

Cnax(Se) = ^ a j + ^
j=1 j= v

which implies

Cmax('S'e) 5: /* ^(U j + 5 )+ ^ ^ ( b j+ 5)
j=l j-v

u n

6j + (n + 1)5 < C max (S) + (n + 2)5.
j= l j=u

Finally, consider the situation that in schedule S£ the critical job Jv starts

011B before the hole, i.e.,

v n

C'max(Se)= ^ a j + ^ + A.
j=1 j=v

Since in schedule S job Ju is critical, the inequality

$ ^ + S < ] £ a , - ( 3 . 5 )
J = V j = V + l

obviously holds, provided that in S job Jv starts before the hole. We show

that even if job Jv starts after the hole in schedule 5, inequality (3.5) is still



CHAPTER 3. FLOW SHOP SCHEDULING

valid. To see this, it suffices to prove that in schedule S job Jv completes

on A no later than time s. Suppose that job Jv completes 011A later than

time 5. Recall that the transition of schedule S into schedule S£ will shift

the hole to the right by strictly less than 5 time units to provide a gap for

job Jv to start. On the other hand, since in Problem P all time parameters

are multiples of S, it follows that job Jv completes on A later than time s by

at least 6, so that in schedule S£ this job cannot start on B before the hole,

a contradiction.

Using inequality (3.5), we derive

The running time of Algorithm FPReB is determined by the running

time of the dynamic programming algorithm used in Step 2, that requires

0(n(a(N)+b(N)) 2smcLxbj) = 0(n (max {a (A r), b(N)}) 4) time. The definition

of a,j implies that ma,x{a(N),b(N)} < (n + 2)/e. Thus, we conclude that

the running time of Algorithm FPReB does not exceed 0(n 5 /e 4 ), and the

algorithm is a fully polynomial approximation scheme. •

Now we focus on problem F2|/i(l, 0), Re\Cm&x with the hole [s, t] of length

A on machine A and the job processing times a3 and bj. We refer to this

V 71
c ma ,(s £ ) = + + A

< | 'y ^aj + ^ ^ bj J 4- (n + 2)<5—Cmax (5') + (n + 2 ) 5
\ j = 1 j = u J

This due to the definition of 5 yields

C m a x ( S£)< C m a x ( S )+ e m < i x { a ( N ) , b ( N ) }< ( 1+ e ) Cm a x ( S * )



CHAPTER 3. FLOW SHOP SCHEDULING G4

problem as Problem Q. Notice that this problem is not a mirror image of

problem F2|/i(0,1), Pe|C max considered earlier in this section. Let SQ be a

feasible schedule for Problem Q, where C max (5 g) = A. Associate with Prob-

lem Q an instance of problem F2|/i(0,1), Pe|C max in which the processing

time of each job J} on machine A is equal to b v while its processing time

on machine B is equal to a r Define the hole [s',i'] on machine B by setting

s' — X — s and t' — s' —A. We refer to this problem as Problem P(A). If in

Problem P(A) the jobs are processed in the reverse order to that in schedule

Sq, we obtain a schedule Sp(A) that is feasible for Problem P(A) and such

that CMAX (SQ) —C'max(SP(X)) —A.

In what follows, we assume that a ( N ) > s, i.e., in Problem Q all jobs

cannot be completed on machine A before the hole, so that a(7V)+ A is a lower

bound on the optimal makespan. If a(N) < s, Problem Q is polynomially

solvable.

In order to find an approximate solution to the original Problem Q, we

use Algor i thmFPReB for f ind inganapprox imateso lu t ionto Prob lem P(A)

with an appropriate A. The value of A is chosen by binary search.

For the original Problem Q, given an e > 0, we will apply Algorithm

FPReB to Problem P( A) with e' = e/2. We call an application of Algorithm

FPReB to Problem P(A) successful if for the found schedule S£ we have that

Cmzx(S£) < A (and A can be reduced), and unsuccessful otherwise (in which

case A has to be enlarged).

In the beginning of the process, define upper and lower bounds on an

optimal makespan:

A= U B : = a ( N ) + b ( N ) + A, A= LB := mnx{a{N) + A, b { N ) } .

Define A := (A + A)/2, form the instance of Problem P(A) and run Al-

gorithm FPReB. If its application is successful redefine A := A; otherwise,

redefine A := A. Stop if A - A < £'imix{a(N) + A,6(A^)}; otherwise set

A := (A + A)/2 and repeat the process again. Upon completion of the



CHAPTER 3. FLOW SHOP SCHEDULING

process, denote the schedule found for Problem P(A) by S p( j^ and convert it

into schedule SQ for the original problem by inverting the job sequence and

starting each operations as early as possible. It follows that

Cmax^Q) < (A —A) + CMSLX(SP(^ )

< e' max{a(AT) + A, b ( N ) }+ (1 + e^C^S*)

< (1 + £)C max (S*),

as required. During this process Algorithm FPReB is called 0 { \ o g { U B - L B ) )

times, hence we obtain a FPTAS for the original Problem Q.

3.4 Resumable Scenario: Approximation

As seen from the previous sections, for problem F 2 \ h ( q ,0), R e\CMA,X the run-

ning times of the dynamic programming algorithm and that of the FPTAS

(for q — 1) are high. It is therefore reasonable to try to develop a fast

heuristic algorithm that guarantees a solution fairly close to the optimum.

For this problem with only one hole on machine A, Lee [89] presents a

| —approximation algorithm. We extend his heuristic to the case of sev-

eral holes and simplify both the algorithm and the proof. Notice that no

approximation algorithms for the flow shop problems with more than one

hole have been available so far.

Our algorithm creates two schedules and outputs the better of them as a

heuristic solution.

Algorithm HqA

INPUT: An instance of Problem F 2 \ h ( q ,0), i?e|C ma x-

OUTPUT:A heur i s t i cschedu leSH-

1. Select the job with the largest processing time on machine B and place

it into the first position in the processing sequence, followed by all

other jobs in an arbitrary order. Call the schedule associated with that

sequence by Si.



CHAPTER 3. FLOW SHOP SCHEDULING

2. Order all jobs in non-increasing order of b j / a 3 and denote the schedule

associated with that sequence by S^.

3. Among schedules S\ and S2 select the one with the smaller makespan

and outpu t i t a s a heur i s t i cso lu t ionSH-

Since Step 2 of Algorithm HqA requires sorting the set of jobs N its overall

running time is 0(n log n). We now analyze its worst-case performance and

prove that the inequality
Onax(5W) ,3
CMAX(S*) - 2

holds for any instance of problem F 2 \ h ( q ,0), Re\C max , where S* is an optimal

schedule.

Our consideration is based on the following statement.

Lemma 3.2 Suppose we schedule jobs in non-increasing order ofbj/aj and

obtain schedule S2 for problem F2\h(q, 0), Re\ Cmax . Let Jk be the critical job

of the schedule then we have

CMAX(S2) - CMAX(S*)< bk .

This lemma has been proved by Lee [89] for the problem with a single

hole. It is easy to extend his argument to the case of several holes, since the

proof uses no information regarding the lengths of the holes or their number.

Theorem 3.3 Let SH be the schedule found by Algorithm HqA for problem

F2\h(q, 0), Re\CmSLX. Then the bound (3.6) holds, and this bound is tight.

Proof. We are interested only in the case that a ( N ) > Si; otherwise John-

son's algorithm delivers an optimal solution in polynomial time.

Suppose that there is a job with the processing time on machine B greater

than |C max (5'*). Without loss of generality, call this job J\. Since bx >

^C max (5*), we have that

(3.7)



CHAPTER 3. FLOW SHOP SCHEDULING

In schedule S\ found in Step 1 of the algorithm, job J\ is processed first.

We may obtain two possible situations regarding the placement of the critical

job in this schedule.

Job Ji is critical. Since J\ is scheduled first, its completion time 011

machine B is a lower bound on the makespan of an optimal schedule, so that
n

CmaLx(S \ ) < Cmax(5 '* )4 - b j . Due to (3.7), we derive that (3.6) holds for
3=2

Sh — S\.

Job Ji is not critical. Since the completion time of the critical job on

machine A is a lower bound on the optimal makespan, we again obtain
n

Cmax(S'i) < Cm a x ( S * )+ ^ 2 b j, so that the theorem holds.
3=2

In the remaining case that b j < \ C m a x ( S * ) for all j = 1, 2,..., n, we apply

Lemma 3.2 to obtain Cmax (S ,
2) < C max (5*) + bk, which in turn implies

Cmax^) < 1 , < 3
Cmax (S*) - Cmax (S*) - 2"

To see that the bound (3.6) is tight, consider the following instance of

p r o b l e mF 2 \ h ( q , 0 ) ,H e |Cm a x . T h e r ea r e t w o j o b ss u c ht h a t d \ — k+ 1, 6 1=

k2 + 3k 4- 2 and a2 — k,b 2 = k2 + k + 1, where k is an integer greater

than 1. The hole on machine A occupies the interval [k,k 2 + k]. Since

bx = k2 + 3A;+ 2 > k2 + k + 1 = 62, it follows that in Step 1 of the algorithm

we obtain schedule S\ associated with the sequence (J 1, J2). Since for k > 1

we have that

bx /c2 + 3/c + 2 , o k2 k + 1 b2— = = k + 2 > = — ,
o,\ k 1 k 0-2

it follows that in Step 2 we obtain schedule 52 associated with the same

sequence. It is easy to verify that C max {Su) — 3k 2 + 5k + 4. On the other

hand, for the optimal schedule S* the sequence of jobs is (J 2 , Ji), so that we

h a v eCm a x ( S * )= 2k 2 + 5 ^ + 3 . T h u s , a sk a p p r o a c h e si n f i n i t yC { SH ) / C { S * )

goes to 3/2. •



CHAPTER 3. FLOW SHOP SCHEDULING

3.5 Semi-Resumable Scenario: PTAS

In this section we study the two-machine flow shop problem with a single

hole under the semi-resumable scenario. We concentrate 011 the case of the

hole on machine B, i.e., consider problem F2|/i(0,1), S-Re\C max . The case

of the hole on the other machine is symmetric. Recall that under the semi-

resumable scenario, the operation of the crossover job J^ has to be partially

redone, and e [0,1] is a given parameter that determines the size of the

required reprocessing.

For each problem F2|/i(0,1), S-Re\C max and F2|/i(l,0),S-ite|C max , we

offer a PTAS. Notice that the best results in this area available so far

are a §—approximation algorithm for problem F2|/i(0,1), S-Re\C mAX and a

2—approximation algorithm for problem F2\h(l,0), S-Re\C ma .x, see Lee [90].

Our PTAS has the following features. First, we follow the useful idea

of Sevastianov and Woeginger [134] of splitting the jobs into big, medium

and small. We look for an approximate solution in one of three classes of

schedules, depending on the position and the size of the crossover job. For

each of these classes we enumerate all schedules of the big jobs and try to

schedule the small jobs in the gaps of that schedule by solving an integer

programming problem (or rather its linear programming relaxation). Those

jobs that cannot be fully processed in the existing gaps (including all medium

jobs) are appended.

We first specify how the big, medium and small jobs are defined. Let T =

a(N) + b(N). Consider an arbitrary £, where 0 < e < 1. We define e —e/10

and in t roducethe sequenceof rea l numbers5 i ,5 2 , . •where 5t —e2 .

For each integer t , where t > 1, consider the set of jobs

N l = {JJ \J E N, b\T < aJ + b j < 6 t T } .

Note that the sets of jobs A 1̂, N 2 , . . . a re mutua l ly d i s jo in t . Thus , the re

exists arG {1,..., \l/e]} such that p{N T) < IT holds, where p{N T) is



CHAPTER 3. FLOW SHOP SCHEDULING

the makespan of the Johnson sequence of the jobs of set N T ; otherwise T >

p(N ) + • • •+ which is impossible. We define 5 — S T , and

note that

£ < 5 < £.

We now partition the jobs into big jobs Wb , medium jobs W m and small

jobs \VS by partitioning the index set N as follows:

W f e- { j l a j+ b j > 8 T } ,

W m = { j \ 62 T < cij4- bj < S T}, (3.8)

= { j \cij + bj < S2 T } .

Note that, by definition, W rn — N T , which implies

p(W m ) < IT. (3.9)

Hence complementing the partial schedule for the big and small jobs with

a Johnson's sequence of the medium jobs will increase the makespan by at

most eT.

Let n,bdenote the number of big jobs. From the definition of Wb,each big

job has a total processing time that exceeds ST. Since the total processing

t i m e o f a l l j o b s i se q u a l t oT , w e d e d u c et h a tr i b< 1 / ^ - M o r e o v e r ,l / S <

£~2 /£l , which implies that rib is fixed.

Our approximation scheme involves searching for an approximate solution

in several specific classes of schedules. For notational convenience, we denote

the big jobs by J'k for k —1 ,..., rib, and their processing times on machines

A and B by a'k and b'k, respectively. Define

iS0 - the class of schedules in which all big jobs are completed before the hole;

S v - the class of schedules in which no big job is interrupted by the hole and

a big job J'v is the first big job that starts on D after the hole;

S v - the class of schedules in which a big job J'v is interrupted by the hole.



CHAPTER 3. FLOW SHOP SCHEDULING 70

It is clear that an optimal schedule S* belongs to one of these classes.

Introduce two dummy jobs J'Q and J'nt f1 , where each dummy job has a zero

processing time on both machines. These jobs are needed for simplification

of a linear programming problem that will be a part of our algorithm.

Case 1.

We first look for an approximate solution in class <So-In a schedule of

this class the crossover job is not a big job and all big jobs are sequenced

by Johnson's rule. If necessary, renumber the big jobs in such a way that

a Johnson sequence of these jobs is given by ( J q, J{,..., J'nb, J' nb+ \) with the

two dummy jobs at the beginning and at the rear of the sequence.

Let n s denote the number of small jobs and denote the small jobs by

J \ >• • • , Jns • We def inevar iab les

_ J 1, if Jj is scheduled between jobs J'k_x and J'k,
Xjk | 0, otherwise,

for j G W s and k —1 ,..., n^+l. The following integer program is a relaxation

of the problem of finding a schedule from class <Sof° r processing the big jobs

and the small jobs. The variable C provides a lower bound on the makespan

of that partial schedule. We call this integer program IP(0).

C —>min
u / \ n b +l / \

s - t " I 2 + a'k ) + b'u + ( 5Z b i X i k + b ' k ) ~ C '
FC=i\JEWs / k=u+1 \jew s J

u — 1 , . . . ,r i b+ 1 ;
U ( \ nb /

E E d j X j k+ + K + ( X / b j X j k+ bk

k=1 \jew s J k=u+1 \jew s

n b+1

X j k= i, J ^ w s;
k=i

Xjk G {0,1} , jew„ fc = l r ..,nj + l.

Constraints (3.10) give lower bounds on the makespan, provided that big

job J'u is critical. Constraints (3.11) imply that all big jobs in the partial



CHAPTER 3. FLOW SHOP SCHEDULING 71

schedule must be completed on B before the hole. Constraints (3.12) reflect

the fact that each small job must be sequenced between some pair of big

jobs, including the dummy jobs.

We solve the linear programming relaxation of this problem in which

the constraints xl0 £ {0,1} in (3.13) are replaced by the non-negativity

constraints x7j > 0. Any small job J3 for which Xjk ^ 1 for any position

k in this solution is called a fractional job. Note that there are 2nt, + n s 4-

1 constraints, and consequently 2+ n s + 1 basic variables, including C

which must be basic. Moreover, each of the n s assignment constraints (3.12)

contains a distinct set of variables. Following the same type of analysis as

that of Potts [124], we establish that there are at most 2rib fractional jobs.

Replace each fractional job J) with several pseudo-jobs J|' for all k such

that Xjk > 0. A pseudo-job Jfc is assigned to a position between jobs J'k_1 and

J 'k ,a n d i t s p r o c e s s i n gt i m e so n m a c h i n e sAa n d B a r es e te q u a lt o a h= a j X j k

and b1* — bjXjk• Each non-fractional small job Jj with Xjk = 1 is assigned

to a position between jobs J'k_x and J'k. For k — 1 ,..., + 1, the small

non-fractional jobs and pseudo-jobs assigned to positions between jobs J'k_x

and J'k are sequenced according to Johnson's rule.

Let SQ
LP be a schedule associated with the found permutation, provided

that the crossover job, if exists, is processed in accordance with the chosen

scenario. Remove all pseudo-jobs and assign all fractional small jobs and all

medium jobs to be processed in an arbitrary order in such a way the first of

these jobs starts on machine A at time ma X{C MAX (S ^P),tj. Call the resulting

schedu leS£ .

We prove that

C„ lax (S £) < C m«(S*) + (2nb + 2)62T + IT, (3.14)

provided that S* is an optimal schedule that also belongs to class <So-Let

C° denote an optimal value of C in the linear programming relaxation of the

integer program IP( 0). Let Jr be a crossover job in schedule SQ
LP\ recall that



CHAPTER 3. FLOW SHOP SCHEDULING

in this ca.se is either a small job or a pseudo-job. Recall that according to

the senii-i estimable scenario job Jr will be reprocessed 011machine B for 110

more than a rb r extra time units.

It in schedule S" P a big job J'u is critical, then the value of C max (S° P)

exceeds that of C° by 110more than a rb r. Thus, C max (S° P) < C° + 52T <

Cmixx (S*) + 6 2 T.

Suppose that 111schedule S(}P the critical job belongs to the set W k of

small jobs and pseudo-jobs positioned between the big jobs J'k_x and J'k for

some k\ 1 < k < -f 1. Without loss of generality, we may assume that the

critical job us a 11011-fractionalsmall job Jw\ the case of a pseudo-job being

c r i t i c a li s a n a l o g o u s .C o n s i d e rt h ec o n t r i b u t i o nt o t h ev a l u e o f Cm a x ( S ®P )

that is delivered by the jobs 111W s. Job Jw contributes aw + bw, a job Jj

(or pseudo-job Jj) that precedes Jw contributes ajXj k, while a job J: (or

pseudo-job Jj) that follows Jw contributes bjX jk. If aw < bw then according

to Johnson's rule we have that (ijXjk-< bjXjk for all jobs of W s that precede

Jw \ s i m i l a r l y ,i f a w> bw t h e na j Xj k > b j X j kf o r a l l j o b so fW s t h a t f o l l o wJ w .

I11any case, the contribution of the jobs that are contained in set W s to the

makespan C max (5" P ) does not exceed aw + bw plus total processing time of

these jobs 011one of the machines. This implies that the length of the critical

path with job being critical does not exceed the length of the longer path

i s w h i c he i t h e rb i gj o b J 'k_l o r b i gj o b J 'k i s c r i t i c a lp l u st h e v a l u eo f a w + bw .

As above, the length of the critical path with a big critical job is bounded

by C° + 6 2T. Thus, if a big job is not critical in schedule S°LPl we derive that

C mm (S° LP ) <C° + 2S-T < C max (S-) + 2<52r.

When the pseudo-jobs are removed from schedule .S'Vr and the fractional

jobs and the medium jobs are appended to that schedule, for the resulting

schedule we have that

C„,«(S e) < mzx{C m USl P ),t}+2n b 6 2 T+eT < C nax (S') + (2n i+2)6 2T+eT.



CHAPTER 3. FLOW SHOP SCHEDULING 73

Case 2.

We now look for an approximate solution such that a big job J'v, where

1 < v < rib, is the first big job that completes on machine B after the hole.

As shown by Lee [89, 90], we only have to consider schedules in which the

big jobs that precede job J'v are sequenced by Johnson's rule, and so are the

big jobs that follow job J'v. Thus, to obtain a sequence of big jobs that is

associated with a certain schedule we need to split the set of the remaining

big jobs into two subsets, so that the jobs of one subset are positioned before

job J'v (we call this subset the front part) and the jobs of the other subset are

positioned after job J'v (we call this subset the rear part). Our approximation

scheme will generate all possible partitions of the set of big jobs into the front

and rear parts.

We give further description and analysis of the approximation scheme,

provided that job J'v is fixed and the partition of the remaining big jobs

into the front and rear parts is also fixed. Suppose that there are h —1 big

jobs in the front part. Sequence the jobs in the front part and those in the

rear part by Johnson's rule. For notational convenience, relabel the big jobs

i n s u c h a w a y t h a t t h e o b t a i n e ds e q u e n c ei s g i v e nb y ( /0 ,I \ , . • • ,I h - i ,h —

j;,4 +1 ,...,7 nb ,/ nb+1 ), where I0 and Inb+1 are the dummy jobs with zero

processing times on both machines (similar to J'Q and J'nb+\ used in Case 1).

Similarly to Case 1, for a big job Ij denote its processing times on machines

A and B by a'3 and b'j, respectively.

For a small job we define the variables

for k = 1 ,..., rib 4-1 .

Case 2a.

We first study the situation that an approximate solution to the origi-

nal problem is sought for in class S v. The following integer program is a

relaxation of the problem of finding a schedule from class S v for processing

1, if Jj is scheduled between jobs h-i and 4,
0, otherwise,



CHAPTER 3. FLOW SHOP SCHEDULING 74

the big jobs and the small jobs. The variable C provides a lower bound on

the makespan of that partial schedule. The variable R h corresponds to the

starting time of job / \ = J'v on machine B. We call this integer program

7 P ( v ) .

C —>min

s.t. t < Rh] (3.1.5)

(3.16)^ ( X^ a j X j k + aA: ] + a h — R h ]
k=\ \ jew s J

X ^ ( Y h a i x j k + a k j + K + X ] ( X ^ b jx j k + b 'k j — b 'h+ A < R h ,
fc=i \j€Ws / fc=u+i Vjeiy, /

u = l , . . . , / i - l ; (3 .17)

(3.18)

"6+1 / \

^/ i + K + Y fY bjx j k +K J <C \
k=h+\ \jew s J

E E d j X j k+ j + b 'u + E (E b j X j k+ b 'A < C;
fc=i \jeiy s / fc=u+i Vjeiv, /

w = / i + 1 , . . . , r ib ] (3 .19)

E E CLjXjk+ j + bu + E (E bjXjk ~t~bk j ^ s,
fc=i\jew s / fc=u+i \jew s J

u = l , . . . , / i - 1 ; (3 .20)
7l b + l

^ = 1, j € VFS; (3.21)
k=I

Xjjt €{0,1}, j G Ws, A:= 1,... ,n& + 1. (3.22)

Constraints (3.15) and (3.17) guarantee that job Ih starts on B after the

hole and not earlier than a preceding small job completes on that machine,

provided that big job Iu is critical, 1 < u < h —1. Constraint (3.16) does

not allow job I h to start on B earlier than that jobcompletes on machine A.

Constraints (3.18) and (3.19) give lower bounds on the value of makespan,

provided that job Iu is critical. Constraint (3.20) implies that all big jobs



CHAPTER 3. FLOW SHOP SCHEDULING

1 1 , . . . , Ih - i in the par t i a lschedu lemus t becomple tedon D beforetheho le .

Constraints (3.21) have the same meaning as in /P(0). Notice that in the

formulation of this integer program the resumable scenario is assumed.

As in Case 1, we solve the linear programming relaxation of this problem

in which the constraints xXJ E {0,1} in (3.22) are replaced by the non-

negativity constraints xXJ > 0. The relaxation problem may appear to be

infeasible, but that only means that a wrong partition has been used for a

given job J'v\ for further purposes we are only interested in situations that a

linear programming relaxation can be solved to optimality. Similarly to Case

1, it can be verified that a basic optimal solution of the relaxation problem

contains at most + h —1 fractional jobs, which is again no more than 2nb.

The resulting schedule S£ can be found as in Case 1, i.e., by introducing

pseudo-jobs; ordering the jobs between the big jobs according to Johnson's

rule; determining a schedule SV
LP associated with the found permutation,

provided that the crossover job, if exists, is processed in accordance with the

chosen scenario; removing all pseudo-jobs and appending all fractional small

jobs and all medium jobs in an arbitrary order starting at time C max (S^ P).

We prove that (3.14) holds, provided that S* is an optimal schedule as-

sociated with the same choice of job J'v = I/, and the same partition of the

other big jobs into the front and rear parts. Let C v denote an optimal value

o f C i n t h e l i n e a rp r o g r a m m i n gr e l a x a t i o no ft h e i n t e g e rp r o g r a mI P ( v ) .

Similarly to Case 1, it can be seen that

• C m a x ( ^ p )= C v if in schedule SV
L P a big job J'u for u > h is critical; or

• Cmax {S v
LP ) < C V + 52T if either the critical job is either a big job J'u for

u < h— 1 or one of the small jobs (or, possibly, pseudo-jobs) positioned

after job Ih\ or

• C m a x ( S l P ) < C V + 252T for any other critical job.

When the pseudo-jobs are removed from schedule S^p and the fractional



CHAPTER 3. FLOW SHOP SCHEDULING 76

jobs and the medium jobs are appended to that schedule, for the resulting

schedule we have that

C m a x { S£ ) < Cm A X( Sv
L P)+ 2nb62T + IT < Cmax (S*) + (2nb + 2)S2T + IT.

Case 2b.

We now consider the situation that an approximate solution to the orig-

inal is sought for in class S v . The following integer program is a relaxation

of the problem of finding a schedule from class S v for processing the big jobs

and the small jobs. The variable C provides a lower bound on the makespan

of that partial schedule. The variable Rh corresponds to the starting time of

j o b I h= J 'v o n m a c h i n eB . W e c a l l t h i si n t e g e rp r o g r a mI P ( v ) .

C —» min

s.t. Rh < s; (3.23)

Rh + K > s; (3.24)

^3 | 53 a j X j k+a 'kj +a'h < Rh\ (3.25)
k=i \ j e ws )

53 ( 53 a JX Jk + a' k J+ K i+ 53 ( 53 ^ 3X3k+ k ) _ ^ — ^ h )

k=i \jeWs J k=u+1 \jews )
u —1, . . . , h —1; (3.26)

n b +l / \

Rh + b'h + A + oth{s—Rh)+E £ b j Xj k+ b 'k < C; (3.27)
k=h+1\j£W s /

U / \ TLFC+ L / \

53 (53 aix ik+a 'k ) + b'u + 53 (53 bixik + b'k) - c '
fc=l \j£W s J k=u+1 \jeWs /

u = h + l , . . . , n b \ (3.28)

n6+1
£ x j k = 1, j e w , - (3.29)
k=l

x j k e { 0,1}, j e W s , k = l , . . . , n b + l . (3.30)

Notice that in the formulation of this integer program the semi-resumable

scenario is applied. Constraints (3.23) and (3.24) imply job 1^ is the ciossovei



CHAPTER 3. FLOW SHOP SCHEDULING

job. Constraints (3.2G) guarantee that job 7/t starts 011D not earlier than a

preceding small job completes 011that machine, provided that big job Iu is

critical, 1 < u < h —1 . Constraint (3.25) does not allow job //, to start on

D earlier than that job completes on machine A. Constraint (3.27) gives a

lower bound 011 the makespan, provided that job Ih is the crossover job, and

one of the jobs Iu is critical, 1 <u< h. Constraints (3.28) give lower bounds

on the value of makespan, provided that job Iu is critical, h + 1 < u < rib.

We solve the linear programming relaxation of this problem. As in the

Case 2a, ignoring the problems that appear to be infeasible, it can be verified

that a basic optimal solution of the relaxation problem contains at most 77,5+1

fractional jobs, which is again no more than 2nb.

The resulting schedule S£ can be found as in Case 2a. Let S ) [P be an

analo gue of schedule Sv
Lp defined in Case 2a. Notice that in schedule SV

LP a

crossover job is not a big job, while in schedule SV
LP the crossover job is job

Ih that starts 011 D at time /?/,, as determined by the solution of the linear

programming relaxation.

We prove that (3.14) holds, provided that S* is an optimal schedule as-

sociated with the same choice of the crossover job J'v — //, and the same

partition of the other big jobs into the front and rear parts. Let C" denote

an optimal value of C in the linear programming relaxation of the integer

p r o g r a mI P ( v ) .

Similarly to the previous case, it can be seen that either C max (S xlP) = C v

(if in schedule a big job is critical); or C max (S£ P) < C" + 62T for any

other critical job.

When the pseudo-jobs are removed from schedule S)\P and the fractional

jobs and the medium jobs are appended to that schedule, for the resulting

schedule we have that

CUte) < C m m ( S l p ) + K + 1 ) f T + I T < C m „(S*) + (2 nb + 2 )62T + IT.

The value of 5 is chosen in such a way that ni, < !/(*>and 6 < s < £, so



CHAPTER 3. FLOW SHOP SCHEDULING

that for e < 1 we have that

(2nb + 2)S2 <26 + 262 <45< 4£2 < 41.

This implies that

Cmax { S£ ) < C m a x ( S ) + 5£T < (1 + s)Cmajc (S*), (3 .31)

wheie the final inequality is obtained from T < 2C max (S*) and our choice

e —e/10.

We now provide the main result in this section.

Theorem 3.4 For problem F2\h(0, 1), S-Re\C mAX the family of approxima-

tion algorithms for finding schedule S£ is a polynomial-time approximation

scheme.

Proof. Inequality (3.31) establishes that some schedule S£ that is generated

by the algorithm provides a makespan that is no more than 1 4-£ times the

optimal makespan. Thus, it remains to show that the algorithm requires

polynomial time.

The algorithm constructs at most nb2n'' 4- 1 schedules, one in class S0

and at most 27ib_1 schedules in each class S v and S v due to partitioning the

big jobs other than job J'v. This number of schedules is fixed for a fixed

£. For each schedule, a linear programming problem is solved, the number

of variables and the number of constraints being bounded from above by a

polynomial of n s and n b. Such a linear program is solvable in polynomial

time, using the algorithm of Vaidya [144], for example. To obtain the final

schedule from the solution of the linear program, the small jobs are sequenced

using Johnson's algorithm, see Johnson [68], in 0(n s log n s) time. Thus, the

running time of the algorithm is polynomial. •

3.6 Application of the developed method

The method of constructing a pseudopolynomial dynamic programming al-

gorithm for the resumable flow shop probem, which has been described in the



CHAPTER 3. FLOW SHOP SCHEDULING 79

Section 3.2, can be used not only for scheduling problems with availability

constraints. Slightly modified, it can be applied to the flow shop problem

with regular and no-wait jobs. This section is based on the paper [16].

We consider a version of the two-machine flow shop which is, in fact,

a combination of two classical flow shop problems: F2\ |Crnax and F2\no-

wait\C max , which can be solved optimally in polynomial time, see Sections

1.4.1 and 1.6.3. In our problem, there are two types of jobs: regular jobs and

no-wait jobs. Each regular job is processed as in problem F2\ |C max , i.e.,

it starts on machine B no earlier than it is completed on A. Each no-wait

job is processed as in problem F2\no-wait\C mA x, i.e., it starts on machine D

immediately after it is completed on A.

Extending standard scheduling notation, we denote the problem under

consideration by F2\reg + no- wait\C m&x . Let N R = { J 1? ..., JNR } be the set

of regular jobs, \N R\ — n R , N nw = {/ 1? ..., I nNW } be the set of no-wait jobs,

I-WJVWH = TL̂ W- We have n = n R + n^w jobs to schedule. The processing

t i m e s o f t h e r e g u l a rj o b s o n m a c h i n e sAa n d B a r e d e n o t e db y a3 a n d b j ,

while for the no-wait jobs these times are equal to a t and /^, respectively.

If either the number of regular jobs or the number of the no-wait jobs

is bounded by a constant q, the problem is denoted either F2\reg + no-

wait,n R < q\CmAX or F2\reg + no-wait, n^w < g|Cmax, respectively.

For each of the basic problems F2\ \CmSLX and F2\no-wait\C max there

exists an optimal solution that is a permutation schedule, i.e., a schedule in

which each machine processes the jobs according to the same sequence. But

for problem F2\reg + no-wait\C max it is not sufficient to search for an optimal

schedule in the class of permutation schedules. It can be illustrated by the

following example.

Example 3.1 We are given 3 no-wait jobs I\, I2 and 1% with processing



CHAPTER 3. FLOW SHOP SCHEDULING

times
a 1= 0 , p i = 3 ;
«2 = 2, P2 ~ 2;
a 3 = 3, P l = 0;

and one regular job J\ with processingtimes

ax = 1, bx = 1.

It is clear that in the only optimal schedule machine A processes jobs in

o r d e r( / i , J i , / 2 , / 3 ) a n dm a c h i n eD p r o c e s s e sj o b s i no r d e r( / ^ / 2 , J l 7 / 3 ) .

We restrict our consideration to the class of permutation schedules. In

the case of the problem with a fixed number of no-wait jobs F2\reg + no-

wait, n^w < Cmax) the no-wait jobs can be treated as consecutive non-

availability intervals with non-fixed running times. Hence, it can be shown

that our method of constructing a dynamic programming algorithm can be

extended to this problem. By fixing the starting times of the no-wait jobs

in the first step of the dynamic programming algorithm, the problem under

consideration becomes very similar to the flow shop problem under the re-

sumable scenario and the presented dynamic programming algorithm requires

only minor revision. A detailed discussion of this problem and methods of

its solving can be found in [16].

3.7 Conclusion

In this chapter we consider the two-machine flow shop scheduling problem

with availability constraints under different scenarios. The contribution of

this chapter against the previously known results is summarized in Table 3.1

(for the resumable scenario) and Table 3.2 (for the semi-resumable scenario).

It can be seen that the chapter provides a fairly complete approximabil-

ity classification of the relevant problems. An interesting topic for future

research is whether the two-machine flow shop problem with a single hole

under the semi-resumable scenario admits an FPTAS.



CHAPTER 3. FLOW SHOP SCHEDULING

Structure
of holes

ResumableStructure
of holes Previously known In this chapter
(1,0) DP, [89];

FPTAS, [107]
FPTAS, Section 3.3

(0,1) DP, [89];
FPTAS, [107]

FPTAS, Section 3.3

(9 ,0 ) DP, Section 3.2;
p —| , Section 3.4

(0 ,9 ) Not approximable for q > 2,
[76]

DP, Section 3.2

(1,1) Not approximable, [76]

Table 3.1: Results for the two-machine flow shop sheduling problem with
availability constraints under the resumable scenario

Strucure
of holes

Semi-resumableStrucure
of holes Previously known In this chapter

(1 ,0 ) Dynamic programming, [90]
p = 2, [90]

PTAS, Section 3.5

(0,1) Dynamic programming, [90]
P=h [90]

PTAS, Section 3.5

(9,0) Not approximable for q > 2, [19, 88

(0 ,9 ) Not approximable for q > 2, [19, 88

(1,1) Not approximable, [19, 88

Table 3.2: Results for the two-machine flow shop sheduling problem with
availability constraints under the semi-resumable scenario

We also demonstrated that the developed technique can be also applied

to other flow shop problems, i.e., the flow shop problem with a fixed number

of no-wait jobs.



Chapter 4

Flow Shop No-wait Scheduling

4.1 Introduction

In this chapter we study the two-machine flow shop scheduling problem with

no-wait in process to minimise the makespan, provided that a machine is

not available for processing during a given interval. This chapter is based on

paper [81]. The results have been reported at C0'02, see [80].

For a literature review and a discussion of scheduling with machine non-

availability see Chapter 2.

The remainder of this chapter is organized as follows. In Section 4.2

we show that our problem is NP-hard irrespective the scenario. Section 4.3

contains the analysis of a 3/2-approxiamtion algorithm that is applicable to

any scenario. A 4/3-approximation algorithm for the resumable scenario is

described and analyzed in Section 4.4. Concluding remarks are contained in

Section 4.5.

4.2 Complexity and Approximability

In this section we discuss the issues of computational complexity and approx-

imability of the two-machine flow shop no-wait problem with non-availability

intervals under various scenarios.

Espinouse et al. [38, 39] prove that each of the problems F2\no -

82



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

wait, h{1 ,0) , N-Re\C max and F2\no-wait, h{0 ,1) ,N-ReB2\ C max is NP-hard.

The proof essentially uses the fact that a single machine problem with a single

hole to minimise the makespan is NP-hard under the non-resumable scenario,

see Lee [88]. That proof technique does not allow one to establish the com-

plexity status of the two-machine flow shop no-wait problems under other

scenarios. Below we give a proof which holds for any scenario. PARTITION

problem, as defined in Section 1.2.4, is used for the reduction.

Theorem 4.1 Problem F2\no —wait , /i(l,0)|C max is NP-hard irrespective of

the scenario of processingthe crossover job.

Proof. Given an instance of PARTITION, define the following instance of

problem F2\no —wait , /i(l, 0)|C max - There are n — r + 2 jobs such that

aj = 1, bj = ej, j = 1,2,
®n+l 1; ^n+1 —E
an+2 = E 2 - 1, bn+2 = E 2 + 1.

Machine A is not available during the interval [E2 + E , 2E 2 4- E\.

We show that PARTITIONhas a solution if and only if for the constructed

problem there exists a schedule So with Cmax(<So) < 2E 2 + 2E + 1.

Suppose that the subsets R\ and R2 form a solution to PARTITION. Then

the required schedule So exists and can be constructed as shown in Figure 4.1.

Each machine processes the jobs in the sequence that starts with an arbitrary

sequence of jobs J3 for j G R\, then the sequence of jobs (Jn+1, Jn +2), which is

turn is followed by an arbitrary sequence of jobs J3 for j G Ra- Each operation

starts as early as possible; in particular operation Ou+2,b is scheduled in the

t i m ei n t e r v a l\ E2+ E , 2 E2 + E + 1 ].

Suppose now that schedule So exists. Since total workload on machine

B is equal to 2E2 + 2E 4-1 and the smallest processing time on machine A

is equal to 1 it follows that in So machine B is permanently busy starting

at time 1. This implies that no operation can start or complete on machine



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING 84

A

B Jj ,j £ R\

J,n+2

J,n+1 J*n+2 J j ,J £ R ?

E-1-1 E2+E 2E2+E+\ 2E2+2E+\

Figure 4.1: Schedule So

B inside the interval of non-availability of machine A. The only operation

that may start no later than time s = E2 4- E and complete no earlier than

time t = 2E 2 + E is operation O u+ 2,b since its duration exceeds the length

of the hole. Notice that the operation that immediately follows the hole

on machine A can be completed no earlier than time t 4- 1, i.e., the oper-

ation that follows On+2 ,B cannot start earlier than time t + 1. If operation

On+2,b starts strictly earlier than time s and therefore completes strictly

earlier than time t + 1, there must be idle time on B after On+2 ,B, which

is impossible. Thus, in schedule S 0 operation On+2,B is processed in the

time interval {E2 4~E,1E 2 -4—£7—1—1]. Due to the no-wait restriction, opera-

tion O n+ 2 ,A must be processed in the interval [E 4-1, E2 + E\ . To avoid idle

time in this interval on machine B we must schedule operation On+i,B in the

interval. All other operations on machine B must be processed during two

time intervals [1, £7+1] and [2E2 + E + 1 , 2E 2 4-2E + 1]. This implies that

PARTITIONmust have a solution.

Notice that in schedule S 0 the type of scenario is irrelevant since no job

is affected by the hole. •

Theorem 4.1 can easily be modified for the case of the hole on machine

B.

Notice that the problem with a single hole is solvable in O(nlogn) time,

provided that the hole starts at time s = 0. Since m this case the first job

on the machine with the hole may only start after the hole, i.e., no earlier

than time f, it follows that only the non-resumable scenario applies. Problem

F2\no —wait, h(l, 0)|C,max
in which machine A is not available at time zero is



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING 85

trivial, the corresponding problem is equivalent to problem F2\no—wait\C max

with all starting times increased by the length A = t. of the hole.

Given an instance of problem F2\no - wait,h(0,l)\C m&x with s = 0,

introduce problem F'2\no — wait]C nmx with continuously available machines

and an extra job Jn+\ such that a n+1 = 0 and bn+ \ —A. Solve the obtained

problem by the Gilmore-Gomory algorithm and find an optimal permutation

°"i) Jn+i, C2)) where <jx and a 2 are some sequences of jobs. The nature

of the algorithm is such that an optimal permutation will start with a job

with zero processing time 011machine A, i.e., a*. = 0. If JN+1 is the first job,

then the sequence (.4, a 1) is dummy and an optimal schedule for the original

problem is defined by the sequence <72-On the other hand, if 7^ Jn+i; it

can be seen that the sequence (J TI+ i, 0*2,Jk, ci) is a l so optimal for problem

F2\no — wait\C mAX with job Jn+1, so that the sequence (<t2, Jk,o 1) specifies

an optimal schedule for the original problem.

Espinouse et al. [38, 39] prove that each of the two-machine flow shop no-

wait problems with at least two holes is not approximable within a constant

factor, unless P=NP. Although the proof is only given for the non-resumable

scenario, the same technique could be extended to any scenario and any

location of the holes (either two holes on the same machines or one hole

on each machine). The technique involves consideration of the instances in

which in an acceptable heuristic schedule 110 processing must take place after

the second hole, while the problem of completing all jobs before the second

hole is NP-hard. Similar ideas have been used for other scheduling problems

with non-availability intervals, see, e.g., [76].

From now on we restrict our attention to problems with a single hole only.

4.3 A Approximation Algorithm

In this section we consider problem F2\no — wait, h(0, 1), Sc|C, nax with an

arbitrary scenario. We design an approximation algorithm that runs in 0(n 3 )



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

time and creates a schedule with the makespan that is at most 3/2 times the

optimum.

For the non-resumable scenario B2, the problem has been considered by

Espinouse et al. [38, 39] who have come up with several 2—approximation

algorithms. Recently, Wang and Cheng [147] have given a |— approximation

algorithm, although they have failed to prove the tightness of their ratio

bound. Our algorithm not only guarantees a better worst-case performance,

but also its analysis is scenario-independent and the bound is proved tight.

The intuition behind our approach is as follows. We start with a sched-

ule associated with a Gilmore-Gomory permutation for problem F2\no —

wait\C max with continuously available machines. Inserting the hole into that

schedule, we identify the job that is affected by the hole. This job either

starts on machine B after the hole, or (for the (semi-)resumable scenario) is

interrupted by the hole. We remove that job together with a pair of other

jobs from the original instance and find an optimal schedule for these three

jobs with the hole. All possible pairs of jobs will be enumerated to be sched-

uled together with the job affected by the hole. For each choice of these three

jobs their partial schedule is complemented by the Gilmore-Gomory sequence

of the remaining jobs. Thus, the algorithm will create 0(n 2) schedules and

select the best as a heuristic solution. We guarantee that among generated

schedules there will be either an optimal schedule or at least one for which

the partial schedule of three selected jobs is complemented by a schedule of

the remaining jobs with the makespan that is at most half of the optimum.

Algorithm HI

INPUT: An instance of problem F2\no - wait, h(0,1), SclC^ax-

OUTPUT: A heuristic schedule SH-

1. Temporarily disregard the non-availability interval [s,t] on machine

B and find schedule SGG that is optimal for the resulting problem

F2\no — wait\C max using the algorithm of Gilmore and Gomory, see



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

Section 1.6 and Section 1.6.3. If necessary, renumber the jobs in such a

way that in schedule SGGthey are processed according to the sequence

J11 J2j • • •5Jn•

2. Insert the hole [s,t] on machine B into schedule SGG• Identify job JK

such that operation O^B is the first operation on machine B that starts

no earlier than time t. Call the resulting schedule Si.

3. If there is idle time before OKB, then define SH —S\ and Stop. Other-

wise, go to the next step.

4. If either the non-resumable scenario B2 applies or operation Ok -i,B

is not interrupted by the hole, then define J' — Jk; otherwise, define

J' = Jk-1.

5. For each pair of jobs Jp and Jq different from J' for 1 < p < q < n, do

the following:

(a) By enumerating all possibilities solve an auxiliary problem

F2\no —wait,h(0,l), Sc\C max with three jobs J', Jp and Jq and

the hole [s,i]. Call the obtained schedule S'pq.

(b) Solve problem F2\no - wait\CmAX for the original set of jobs with

jobs J', Jp and Jq removed. Call the obtained schedule S'^ .

(c) Find schedule Spq for the original problem by concatenating sched-

ules S'pq and S'pq.

6. Among all found schedules output schedule SH that has the minimum

makespan and stop.

Let us estimate the running time of Algorithm HI. Step 1 requires

0 (n log n) time. Due to Remark 1.1, for each pair of jobs Jp and Jq in Step 5,

we can derive the solution to the matching subproblem of the corresponding

problem F2\no —wait\CmAX with the reduced set of jobs by removing jobs Jp



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

and Jq from the solution to the matching subproblem obtained in Step 1, and

this takes constant time. In order to find schedule Spq it remains to solve the

patching subproblem, and that requires 0(n) time. Since for each Jp and Jq

Step 5(a) takes constant time, total running time of Steps 5(a)-5(c) is O(n),

and the overall complexity of the algorithm is 0(n 3 ).

We now analyze worst-case performance of Algorithm HI. We prove that

the inequality

Cmax (S*) - 2

holds for any instance of problem F2\no- wait, h( 0,1), Sc|C max , where S* is

an optimal schedule for the corresponding scenario.

First, suppose that the conditions of Step 3 hold. This implies that the

length of the hole does not exceed the length of the idle interval on machine

B before processing job J^ in schedule SGG• Thus, the insertion of the hole

does not increase the makespan and for schedule SH found in Step 3 we have

that C max (5//) = Cmax (5GG), i.e., this schedule is optimal.

In the remainder of this section we assume that C max (Sn) > Cmax (ScG):

and the insertion of the hole into schedule SGG does delay the starting times

of job Jfc and of all jobs that follow.

Lemma 4.1 Let J*, be the job found in Step 2 of Algorithm HI and in Step

4 we define J' = Jk- If the inequality

A + bk < —C max (S )

holds, then (4-1) holds for SH — S

Proof. If the non-resumable scenario B2 applies, in schedule S\ operation

OkB starts exactly at time t. For all other scenarios, since s < -R/CB̂GGOIn0

portion of job Jk can be processed before the hole in schedule Si, so that the

schedule will essentially be the same as in the non-resumable case.



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

Thus, in the obtained schedule R ks{Si) — t. Denote u = Rk,a{Sgg) anc ^

u ~ Ck-i,A\SGG) —Cfc_i^(5i). The no-wait condition implies that

u —\L + max{6 fc_! - a k , 0}. (4.2)

After the insertion of the hole into schedule SGGthe starting times of

job Jfc and of all jobs J fc+1 ,..., Jn are delayed by R k ^{Si) — RI;,A{SGG)-

Since we are only interested in the case that Rk,B{SI) = t , it follows that

RIC,A{SI) = t —a k , and the length of the delay is equal to t —ak —u, so that

Cmax(Si) - Cmax(<5(^(3)+ t —ak —u. (4.3)

Since Ric,b{Si) — t , it follows that in schedule Si there is no room to

process job Jk on both machines before the hole, i.e., before time s. This

implies that

u + max{6 fc_i,a fc} +b k > s.

Substituting into (4.3) yields

C max {Si) - C max {S GG ) + t- a k - (max{6 fc_i - a k , 0} + u)

Cmax('S'GG) t

(max{6 fc_i - a k , 0} - (s - bk - max{6 fc_i,a fc})

= C max {S GG ) + t - ma x{b k .u a k } - s + bk + max{6 fc_1,afc |

= C max (ScG) + A + bk.

The lemma follows from the fact that C max (S G c) is an obvious laser

bound on the optimal makespan Cma.x(S*). •

Lemma 4.2 Let Jk be the job found in Step 2 of Algorithm HI and, in Sep

4 we define J' = J k -\. If the inequality

A + b k-i < ICMAX (S*)

holds, then (4-1) holds for SH — S\.



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

Proof. Assume that the semi-resumable scenario with a parameter AK G

[0,1] applies. Recall that a k = 0, for all A:= 1, ...,n, corresponds to the

resumable scenario, while the case a k = 1, for all k = 1 ,... ,n, corresponds

t o t h e n o n - r e s u m a b l es c e n a r i oB l .

In schedule Si the processing of operation Ok -\,B is interrupted by the

hole, so that the operation is processed before the hole for time units

and after the hole for bk_x - (1 - afc_i)a:fc_i time units.

Denote u = Rki A{S GG ) and u' = C k-i, A (S GG ) = C k -i, A {Si). As in the

proof of the previous lemma, (4.2) holds.

After the insertion of the hole into schedule SGGthe starting times of job

Jk and of all jobs J fc+1 ,..., Jn are delayed by R ktA(Si) - Rk,A(SGG)- Since

C m (5i) = Cjfc_i,B(5i), we derive

Rk,A{S\) —u + A + bk-1 + a k -iX k -\ — ak

so that

Cmax(S'l) = Cmgx(S GG ) + 11+ A + 1 + &k-l x k-l ~ a k ~ u -

Substituting (4.2) yields

Cmax(S'i) = Cm3LX (SGG) + A + i + Oik-\X k-i —a k —max{6fc_i — , 0}

< C max (S GG ) + A + a k -\ X k -\ + min{6fc_i - a k , 0}

< Cmax(SGG) + A + 6 f c _ i ,

which proves the lemma. •

For job J' found in Step 4, denote its processing time on machine B by b'.

We need to study the algorithm's performance provided that the inequality

A + 6'>~C m »(S') (4.4)

holds.



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

A Ji

B Ji

A Ji

B Ji

J p — ]

Up-

Jn

JP-.Jp+1

J p —\ ^p+]

JP+1

Jn 'p+1

Jn

Jn

Jn

Jn
(a)

( b )

Figure 4.2: Removing the hole and job Jp from schedule S*

Lemma 4.3 Let J' be the job found in Step 4 of Algorithm HI. If (4.4)

holds, then there exist a pair of jobs Jp and Jq such that the makespan of the

flow shop no-wait schedule Spq found in Step 5(b) does not exceed|C max (S*).

Proof. Suppose that in a certain schedule S* that is optimal for the original

problem F2\no —wait, h( 0,1), SclC^x the first job that starts after the hole

on machine B is denoted by Jp. Let Jq be the job that immediately follows

job J' in schedule S*. In this proof we assume that job Jq exists and job Jp

is different from J'; otherwise the lemma holds for any job Jq or any job Jp,

respectively.

We show that by removing the jobs J', Jp and Jq together with the hole

from schedule S* we can obtain a flow shop no-wait schedule Spq for the

remaining jobs with the makespan that is at least A + b' time units less.

Remove the hole and job Jp from the schedule, see Figure 4.2. The

starting times of all jobs that followed Jp in S* can be decreased at least by

A, because in S* all these operations start later than time t and the only

operation on A that is processed in the time interval [s,t] is OpA which is

now removed. If for the (semi-)resumable scenario there exists a job that

is interrupted by the hole in schedule £*, then after the hole is removed,

that job is processed with no preemption, and the length of this processing

is equal to its original processing time. Call the resulting schedule S p. Let in

this schedule job J' be processed on machine B in the time interval [T',T"]

of length b'.



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

Remove the jobs ,/ and ,Jq from schedule S p . The starting times of all

jobs that followed Jq in Sp can be decreased at least by b' because in , all

these operations start later than time r" and the only operation on A that

is processed in the time interval \T', T"} is OqA which is now removed. Call

the resulting schedule S pq . It follows that this schedule is a feasible flow shop

no-wait schedule for the remaining jobs and continuously available machines.

Moreover, due to (4.4)

Cmax(S'pq)< Cmax(iS ) —A —I) < ~ Omax (>S*).

Schedule found in Step 5(b) is an optimal schedule for the same set

of jobs, and this proves the lemma. •

Theorem 4.2 Let Sj{ be a schedule found by Algorithm III for problem

F2\no — wait, h(0,l), Sc\C max . Then the bound (4-1) holds, and the bound

is tight.

Proof. Owing Lemmas 4.1 and 4.2, to prove that (4.1) holds we only need

to consider the case that (4.4) is valid. Taking into account Lemma 4.3, we

argue as follows. Since in Step 5 we enumerate all possible pairs of jobs ,lp

and ,Jq to be removed together with job •/' and the hole, it follows that at least

one schedule S")q satisfies Cmax {Sp q) < \C max {S*). In Step 5(a), for every pair

of jobs Jp and Jq, we have that Cma.x(S' pq) is a lower bound on the makespan

of an optimal schedule with the complete set of jobs and the corresponding

scenario. Thus, joining schedules S'pq and Spq together we obtain a feasible

schedule Sn that satisfies (4.1).

To see that the bound (4.1) is tight, consider the following instance of

problem F2\no — wait, h(0, 1), 5c|C max - There are n jobs such that «i

2+ b = h and aJ = b bJ = ^ for a11 •>= 2 ' • ••' n - The hole 011 machine

B occupies the interval [|, 1 — .

There exists a schedule S* in which no job is interrupted by the hole

and the jobs are processed in an arbitrary sequence with job ./[ in the last



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING 93

A J p J ,

B J p J q

Jl

Iftttttttfl
J2

J2

C max (S*)

Figure 4.3: Tightness example for Algorithm HI

position. It can be verified that this schedule is optimal for any scenario and

C max (S*) - 1.

Any permutation defines schedule SGG found in Step 1. We take the

sequen ce J l5 J 2 ,..., J n . Inserting the hole in Step 2 we find a schedule Si

with job J2 as job JNotice that operation OkB starts at time t. Since job

Jk-I = J\ is not interrupted by the hole, in Step 4 we define J' = J] .

In Step 5, if the triple of jobs to be scheduled in schedule S'pq does not

contain job J\, then C max (S' pq ) = t, and provided that in the Gilmore-Gomory

sequence for the remaining jobs job occupies the last position, we have

that Cmax (5 Pq) = t + a(N) - 4 (^) + ^ = 2 - Otherwise, if the triple

of job in schedule S' contains job J 1; then Ji is processed last, so that

Cma.x{S'pq) = t+bi —1. Concatenating an arbitrary sequence of the remaining

jobs we obtain that Cmax (5 p(7 ) < 1 + (n - 3)^ + ^ see Figure 4.3.

Thus, as n grows to approach infinity the ratio Cma ,x(SH)/C max (S*) goes

to 3/2.

Notice that the example above demonstrates that we cannot improve the

worst-case performance of Algorithm HI by arranging complete enumeration

of more than two jobs along with the chosen job J'. As seen from Figure 4.3,

more jobs can be processed in the gap before job Ji, however, this will not

dramatically reduce the makespan. •

It is easy to convert Algorithm HI for the case of the hole on machine

A. In the description of the algorithm the only change concerns the choice

of job J/j : now it is the job that starts on A after the hole. Besides, in Step

4 the non-resumable scenario B2 is not applicable.



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING 94

The converted version of Algorithm HI is a |— approximation algorithm

for problem F2\no —wait, h(1, 0), Sc|C max which can be proved by the state-

ments similar to Lemmas 4.1-4.3. In the formulation of the analogue of

Lemma 4.1 we should change 6*.for a*., while in the analogue of Lemma 4.2

we change &*._!for a^. The proofs of these analogues are quite similar to

the original Lemmas. In the formulation of the analogue of Lemma 4.3, we

should replace b' by a', where a' is the processing time of job J' on machine

A. In the proof of this statement, job Jp is chosen to be the job that imme-

diately precedes the hole on A in an optimal schedule S*, while SQ is the job

that immediately precedes job J' in S*.

4.4 Heuristic for the Resumable Scenario

In this section we consider problem F2\no —wait, h( 0,1), -Re|Cmax with the

resumable scenario. We design a approximation algorithm that requires

0(n 3 ) time.

A number of approximation algorithms for the two-machine shop prob-

lems with a single hole under the resumable scenario are known. The best

of these heuristics are approximation algorithms, see [32, 89] for the flow

shop without the no-wait restriction and [18] for the open shop.

Our algorithm in many aspects is quite similar to Algorithm HI. The

points of difference include a special treatment of a job with large total

processing time, as well as a different arrangement for enumeration of the

jobs to be scheduled separately with the hole.

Algorithm H2

INPUT: An instance of problem F2\no —wait, h( 0,1), Re\C max .

OUTPUT: A heuristic schedule SR.

1. Temporarily disregard the non-availability interval [ s , t ]on machine B

and using algorithm of Gilmore and Gomory find schedule SGG that is



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

optimal for problem F2\no —wait\C max with the original set of jobs N,

see Section 1.6 and Section 1.6.3 for details. Insert the hole [s,i] on ma-

chine D into schedule SGG possibly interrupting one of the operations

on B. Call the resulting scheduleSQ.

2. Find job JR such that

a r + br — m a x j o j+ b j \J j e N } .

For each choice of p and q) by enumerating all possibilities solve an

a u x i l i a r yp r o b l e mF 2 \ n o— w c i i t , h ( Q ,1) , R e \Cm a x w i t ht h e j o b s J p , Jq

and Jr and the hole Concatenate the obtained partial schedule

with the schedule that is optimal for problem F2\no —wait\C max for

the original set N of jobs with these three jobs and the hole removed.

Call the best of the obtainedschedulesS.

3. For each job JK6 N do the following:

(a) Find schedule SQG that is optimal for problem F2\no —wait]Cma.x

w i t hc o n t i n u o u s l ya v a i l a b l em a c h i n e sa n d t h e s e t o f j o b s N \ { J ^ } .

(b) Insert the hole [s, t\ on machine D into schedule SQG. Insert job

Jk in such a way that operation O^B the first operation on

machine D that starts no earlier than time t. The processing of

the operation that precedes O^B can be interrupted by the hole.

Call the resulting schedule SK. If necessary, renumber the jobs in

such a way that in Sk job Jk immediately follows job J k -i and is

immediately followed by job Jk+1-

(c) Compute

Wk —max{6fc4- A,b k -i + A,a/c+i + A}.

(d) Depending on the value of Wk, select the objects shown in

the table below. For each selection, i.e., for each choice of



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

p, by enumerating all possibilities solve an auxiliary problem

F2\no —wait, h(0, 1), Re\C max with the selected jobs and the hole

[s, t\. Concatenate the obtained partial schedule with the schedule

that is optimal for problem F2\no —wait\C mAX for the original set

N of jobs with the selected objects removed. Call the best of the

obtained schedulesS'K.

Objects to be selected
b£ + A the hole, J k , J p for p ± k
h -i + A the hole, J k_ i, Jfc, Jp for all p ^ k
ak+1 + A the hole, J k , Jk +1,Jp for all p ^ k

4. Among all found schedules output schedule SR that has the minimum

makespan and stop.

Similarly to Algorithm HI, the running time of Algorithm H2 is 0(n 3 ).

Step 2 generates 0(n 2 ) schedules, in Step 3 0(n) schedules are generated for

each k. Each of these 0(n 2 ) schedules requires finding a Gilmore-Gomory

sequence, which takes 0(n) time per schedule (as before, only the patching

is required, while the matching can be performed once and for all schedules).

Thus, the overall time complexity of the algorithm is 0(n 3 ).

We now analyze worst-case performance of Algorithm H2. We prove that

the inequality

holds for instance of problem F2\no —wait, h( 0,1), He|C max , where S* is an

optimal schedule for the resumable scenario.

In Step 1 of the algorithm, if the insertion of the hole into schedule SGG

interrupts the processing of one of the operations, this delays the completion

time of the succeeding jobs by at most A, so that

< 4

CMAX(S*) - 3
(4.5)

CmSLX(So) < Cmax {SGG) + A.

In the remainder of this section we assume that

A > (4.6)



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

since otherwise (4.5) holds for S R = S 0.

We start with schedule S found in Step 2 of the algorithm.

Lemma 4.4 If the condition

ar + br > ?C max (S*) (4.7)

holds, then for S R = S the bound (4.5) is valid.

Proof. First, we show that if (4.7) holds then job Jr is unique. Suppose

that there exists another job Jx with total processing times that exceeds

|Cmax(5' +)- In any optimal schedule, neither job Jr nor Jx can be completed

before the hole or interrupted by the hole due to (4.6). Because of the no-wait

condition, the first of these jobs cannot be completed on machine A earlier

than time t. Thus, the second job must be totally processed starting at time

t or later. This, however, is also impossible since t > |C max (5*) due to (4.6).

Consider an arbitrary optimal schedule S*. As proved above, job Jr

starts on B after the hole. Moreover, it can be seen that Jr is the first job

that starts after the hole, since otherwise it must start on machine A later

than time t. Let Jp be the job that precedes the hole and let Jq be the job

that immediately follows job Jr in schedule S*. In this proof we consider

the general case that both jobs Jp and Jq exist; otherwise the proof can be

suitable modified.

Similar to the proof of Lemma 4.3, it can be shown that by removing the

jobs J r , J p and Jq together with the hole from schedule S* and ordering the

remaining jobs according to the Gilmore-Gomory sequence we obtain a flow

shop no-wait schedule Spq for the remaining jobs with the makespan that is

at least ar + br time units less, i.e., due to (4.7)

Cmax(5pq) < C max (S ) —Or —br < —Cma,x(S ).

Since in Step 2 we enumerate all possible pairs of jobs Jp and .Jq to

be removed together with job Jr and the hole, it follows that at least one



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

max{a fc+1 A} max{a fc+ i,6 fc_i} ma x{a k,b k-i + A} LHS of (4.8)
^k+1 ftfc+i ak ak
O'k+l ak+i bk-I + A bk-1 + A
®fc+1 bk-1 ak ak

O'k+l bk~i bk-1 + A flfc+i+ A
bk ak+1 flfc ak + bk

bk ak+1 b k- I+ A bk + A
bk bk-1 ak ak + bk

bk bk-I
<1+1 bk + A

Table 4.1: The proof of Lemma 4.5

schedule Spq satisfies C max (S pq ) < |C max (5*). Furthermore, the makespan

of an optimal schedule for the jobs J r, Jp and Jq is a lower bound on the

makespan of an optimal schedule with the complete set of jobs. By appending

schedule Spq we obtain a required schedule. •

Let S* be an optimal schedule for problem F2\no —wait, h( 0,1), Re\C max

in which job Jk is the first job that starts on machine B after the hole.

The following lemmas deal with schedule Sk found in Step 3 of Algorithm

H2. Recall that in Sk the jobs are numbered in such a way that job Jk

immediately follows job J k -\ and is immediately followed by job Jk+\-

Lemma 4.5 For schedule S k , the inequality

2
m&x{a k+ i,b k} —max{ajt +i, frfc-i}+ maxja/c, b k-i + A} > -C max {S ) (4-8)

implies that either

ak + bk > ~Cm&x{S)

or
W k > ?c max (^ ,+ ), (4-9)

where W k is computed in Step 3(c) of Algorithm H2.

Proof. See Table 4.1 for the left-hand sides of (4.8), which are at least as

large as either ak + bk or W k . In several cases the values in the last column

of the table are obtained by disregarding the negative terms. •



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

/, .

h
J,

<4+i
7 J°k —1 -•'k~1

t
Jk J k -fl

Figure 4.4: Schedule Sk

Lemma 4.6 Suppose that for schedule Sk the condition (4-9) does not hold.

T h e n t h e b o u n d( 4 - 5 )i s v a l i df o r S R- S k .

Proof. Iu schedule S GG job Jk+ \ immediately follows job Jk- i- Denote

u —Ck—\ A(S GG ^. It follows that

Cma .x(S GG ) = u + max{a^ +1 , bk_1} + v,

where v is the 'tail 1 of the schedule that includes the processing of operation

Ok+\,B an d the jobs that follow job J k+ \.

Assume that the lemma does not hold, i.e., Cm&x (S k) > fC'maxlS'*).

First, suppose that the makespan of the schedule obtained after the in-

sertion of the hole remains equal to C max (S GG ). Thus, operation Ok+i,A still

starts at time u and is completed after time t, i.e., a k+ i > A. However, since

Wk > ak+1 + A the conditions of the lemma do not hold due to (4.6).

Thus, in schedule Sk operation O k-\,B is interrupted by the hole and

operation O k a is completed after time t , in fact CkA{Sk) —u + max{6fc_i +

A,ajt}, see Figure 4.4. Further, Ck+i,A {Sk) —CkA{Sk) + maxja^+i, bk} and

we can write

Cmax(SV-) = u + max{6fc_i + A, a k) + max{afc +i, bk } + v

— C m a . x { SG G)4 - m a x { 6 / c _ i+ A , a k } +

m&x{a k+ i,b k} — max{a k+ i,b k-i}.

Recall that there exists an optimal schedule S* in which job Jk is

processed on B immediately after the hole. Remove that job and the hole



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

from schedule S and reduce the starting times of the jobs that follow Jk

appropriately. According to (4.6), the makespan of the obtained schedule is

no largei than 3C max (S*). Since schedule SQG is an optimal no-wait schedule

for the same set of jobs, we derive that

Cmaxl-S1^) < ~C max (S*).

Thus, inequality (4.8) must hold to guarantee that C m a x ( Sk ) >

|Cmax(5'*). According to Lemma 4.5, this contradicts the conditions of the

lemma under consideration. •

Owing Lemmas 4.4 and 4.6, we only need to consider the case that (4.9)

holds. In this case a required schedule can be found by running Step 3 of the

algorithm. The step distinguishes between three possibilities, depending on

the value of W k . In each of these situations the actions are similar and also

resemble those in Step 2 of Algorithm H2 and Step 5 of Algorithm HI. The

proof of the correctness of the algorithm is quite similar to those of Lemmas

4.3 and 4.4.

Lemma 4.7 If for schedule Sk the inequality (4-9) is valid, then (4-5) holds

for S R — S'k.

Proof. Recall that in an optimal schedule S* the first job that starts after

t h e h o l eo n m a c h i n eB i s J k .

If W k = bk + A, then let Jp be the job that immediately follows job Jk in

schedule 5*, so that operations OK,B and 0PtA overlap.

If W k = + A, then let Jp be the job that immediately follows job

Jfc_i in schedule 5'*, so that operations Ok-^,B and 0PiA overlap.

If W k = ak+x + A, then let Jp be the job that immediately precedes job

J k+ 1 in schedule S*, so that operations 0 P)B and O k+hA overlap.

Similar to the proof of Lemmas 4.3 and 4.4, it can be shown that by

removing the jobs selected in Step 3(d) for the corresponding W k together

with the hole from schedule S* and ordering the remaining jobs according



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

to the Gilmore-Gomory sequence we obtain a flow shop no-wait schedule

w ^h CMAX (S) < -CMAX {S*). I he fact that such a schedule will be found

is guaranteed by full enumeration of jobs JP. In any case schedule S is

appended to a schedule with the makespan that serves ;is a lower bound on

the makespan ot an optimal schedule with the complete set ot jobs. •

Theorem 4.3 Let SR be a schedule found by Algorithm H2 for problem

F2\no —wait, h(0,1), Re\ClUilx . Then the bound (4-5) holds, and the bound is

tight.

Proof. Lemma 4.4 addresses the case of a job with large total processing

time. If such a job does not exists, then the algorithm is analyzed in Lemmas

4.5-4.7 proved under the assumption that job Jk is the job that follows the

hole in some optimal schedule. We have demonstrated that either schedule

SK-or S'F.delivers a heuristic solution within the required bound of 4/3. Since

Step 3 of the algorithm is organized as a loop with respect to A:,it follows

that these schedules will be found.

To see that the bound (4.5) is tight, consider the following instance of

problem F2\no — wait, //,((),1), Re\C max . There are n jobs such that

flj —77~i l>l— ^1 Ml ' 1 .1 .571 '

f l 2 = 3 + ( t ' l ) 2 = 6 ^ " '

a j = 3ri' , j —3,..., n.

The hole on machine D occupies the interval [| — 1 — •

There exists a schedule S* in which jobs J\ and J2 are processed in this

order and occupy the last two positions. Operation Oi tn starts at time|

and then is interrupted by the hole and resumed at time t.. It can be verified

that this schedule is optimal and Cmax (£'*) = 1.

Any permutation in which jobs J2 immediately follows job .J\ defines

schedule SGG found in Step 1. We take the sequence J\, J2,•••, JN-

inserting the hole in Step 1 we find a schedule SQ. In this schedule job J2



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

J1

Jl

h

• / >

~̂ h

Cmax (5*)

Figure 4.5: Tightness example for Algorithm H2

start on B at time t and completes at 1 —̂ . When the other jobs are added,

we obtain C max (5 0) = t + (n - 2) J- + ± |
v ' 6n on 3 (m

In Step 2, job J2 will be chosen as job Any triple of jobs containing

job J2 cannot be completed earlier than time t + ^ = 1 - rk For schedule
on (m

S, we obtain C max (S) >l-J- + ( n _3)i + J. = l_l

Since J 2 is the job that is processed on B after the hole in any optimal

schedule, the best schedule found in Step 3 will be as good the better of

the schedules S 2 and S'2.

In schedule S};G in Step 3(a) job ,/1 cannot be in the la.st,position, so that

CuvASgg ) = ( n - 2 )i + ^ + i + ^ == i-^=' s - Tlms > in schedule S 2 job

J2 starts on A at time s — ~ and completes on B at time

Since in S 2 job Jk = .J2, job ,7^+1does not exist and Jk-\ is one of the jobs

J 3 ,..., J n , we may assume that Wk = bk + A. In the best schedule found

by full enumeration with respect to job ,J2 will be removed along with job

Jp —J\i and these two jobs together with the hole can be completed by time

1 - jjk Schedule S 2 is obtained by appending an arbitrary sequence of the

remaining jobs, so that C max (S' 2) = 1 - ^ + (n - 2)^ + ^ see

Figure 4.5.

Thus, as n grows to approach infinity the ratio C max (Sn)/C milx (S*) goes

to 4/3. •

It is easy to convert Algorithm 112 for the case of the hole on machine A.

The converted version of Algorithm 112 is a approximation algorithm for

problem F2 \no —wait , //,(1,0), Re\C mgiX .



CHAPTER 4. FLOW SHOP NO-WAIT SCHEDULING

4.5 Conclusion

In this chapter we have studied the two-machine flow shop no-wait scheduling

problem to minimise the makespan, provided that a machine is not available

during a given time interval (the hole). We have considered all possible

scenarios of handling the job affected by the hole. One of our algorithms is

applicable to all scenarios and delivers a schedule with the makespan that

is at most 3/2 times the optimal value. For the resumable scenario we have

presented a 4/3-approximation algorithm.

It remains to find out whether the problem admits a (fully-)polynomial

approximation scheme for scenarios other than N-Res B'2.



Chapter 5

Open Shop Scheduling

5.1 Introduction

In this chapter, we concentrate on the open shop scheduling model which is

one of the classical models for multi-stage processing systems. This chapter

is based on paper [78], these results have been reported at MAPSP'03, see

[79]. A review of the literature is given in Chapter 2.

Section 5.2 contains the problem formulation and discusses various pre-

liminary matters. In Section 5.3 we present a PTAS for the open shop prob-

lem with several holes on one of the two machines. Section 5.4 describes a

PTAS for the two-machine open shop with a single hole on each machine.

We conclude with a short summary in Section 5.5.

5.2 Preliminaries

We denote the problem of minimising the makespan in the resumable two-

machine open shop by 02\h (qA, 9b), -fte|C max , provided that there are qA holes

on machine A and qs holes on machine B.

Recall that problem 02\h{qA,9b), Re\C max is NP-hard in the ordinary

sense for qA + qB > 1> an d is not approximable within a finite factor for

QA> 1, qB > 1 and qA + QB> 3; see [17].

For any schedule S* that is optimal for problem 02\h (qA, qB)-,-Re|Cmax,

104



CHAPTER 5. OPEN SHOP SCHEDULING

where qA denotes the number of holes on machine A and qB denotes the

numbei of hoes 011machine B, the following lower bound

Cmax{ S * )> i m x x { a { N ) J , ( N ) } (5.1)

holds.

For terminological convenience, let us agree that if a machine is said to be

idle in a certain time interval, this implies that it is available in this interval

and does not process a job; in other words, non-availability periods are not

included into idle periods on a machine.

In many cases, the lower bound (5.1) can be refined. For example, tf

in a schedule some machine is not idle with possible interruption of sone

operations by the holes then the completion time of any job on that machi*&

is a lower bound on the optimal makespan.

For problem 02\h ( q A , 9B),Re\C max it is sufficient to restrict the seaitk

for an optimal schedule to the class S(N) of the schedules of the follows^

structure:

• set N of jobs is partitioned into two subsets NABand NBA, one °f whifc

may be empty, where the jobs of set NAB are assigned the procesaC

route (A, B) and the jobs of set NBA are assigned the route (B, A)z

• on each machine the jobs of each set NAB an d N BA are processed as®

block without intermediate idle time with a possible interruption <#*

job by a hole;

• the jobs of set NAB on both machines follow the same sequence <p(Nji?

start on machine A at time zero and on machine B as early as possBt

• the jobs of set NBA on both machines follow the same sequence I/J(Ng&

start on machine B at time zero and on machine A as early as possft

If an optimal schedule is associated with a partition NABU NBA does#

belong to this class, then using standard interchange argument we can &



CHAPTER 5. OPEN SHOP SCHEDULING

the oidei of jobs to achieve the separation of the sets NAB and NBA into

individual blocks on each machine, and then permute the jobs within each

block NAB or NBA to achieve the same sequence on each machine.

Lemma 5.1 For problem 02\h(qA, QB),-Re|C max there exists an opti-

mal schedule such that machine A processes the sequence of jobs

{(P{NAB),iP{NBA)) and machine D processes the seqiLence of jobs

W N BA ) M N A B ) ) .

Proof. Consider an optimal schedule S* in which machine A starts process-

ing with 3 blocks:

1. Block B \ of jobs which follow route (A B ) \

2. Block B 2 of jobs which follow route { B ,A ) \

3. Block B 3 of jobs which follow route (A , B ) \

and the cardinality of B\ is maximal. If we interchange blocks B2 and B 3 on

machine A then the starting times of the jobs from block B2 will not decrease

and the completion times of the jobs from block JB3 will not increase. Hence

this schedule will obey the flowshop condition as well as the original schedule

and this interchange on machine A does not create any clashes with machine

B. Moreover, since we consider the resumable scenario the total completion

time of these blocks on machine A remains the same as in the original optimal

schedule and since this interchange does not affect the other machine we

deduce that the makespan of this schedule is equal to the makespan of the

original optimal schedule. Hence, we receive another optimal schedule and

this fact contradicts the selection of an optimal schedule S*. We can conclude

that block B3 is empty.

Analogously we can prove that a similar result holds for machine B.

We derive that there exists an optimal schedule in which machine A first

processes jobs of set NAB an d then jobs of set NBA while machine B first



CHAPTER 5. OPEN SHOP SCHEDULING

processes jobs of set N B A and then jobs of set NAB- Notice that scheduling

the jobs of set N AB (and of set N BA ) alone reduces to the corresponding flow

shop problem, for which it is known that the sequence of jobs is the same on

both machines, see Lee [89]. This fact proves the Lemma. •

A similar, but more elaborate schedule structure is used by Lori-

geon et al. [100] in their dynamic programming algorithm for problem

02\h(q A , q B ), Re |C max with qA + qB = 1. They prove an important state-

ments about the structure of an optimal schedule. An optimal schedule can

be described as follows. The set of jobs N is split into four disjoint subsets

X.P, YP, X S and YS, and for these subsets the following propositions are

true.

Proposition 5.1 ( b y L o r i g e o ne t a l . [ 1 0 0 ] )T h e r ee x i s t sa no p t i m a ls o l u t i o n

such that on machine A the sequence is defined by (XP,YP, XS,YS) and

on machine B the sequence is defined by (YP, YS, X P, XS) and the order of

jobs in XP, YP, XS and YS is the same on both machines.

Proposition 5.2 ( b y L o r i g e o ne t a l .[ 1 0 0 ] )A t l e a s to n e o f t h e t w o s u b s e t s

YP and XS is empty.

In a schedule from class S ( N ) either each machine is not idle starting at

time zero or there may be a single idle period on one of the machines, since

s o m ej o bo f s e q u e n c e< p ( NA B) m a ys t a r to n B e x a c t l yw h e nc o m p l e t e do n A

(this causes the idle period on B) or some job of sequence tp(N BA ) may start

o n A e x a c t l yw h e nc o m p l e t e do n B ( t h i si n d u c e st h e i d l e p e r i o do n A ) .

Our polynomial-time approximation schemes for problems

02\h(l, 1), Re\C max and 02\h(0, q B), Re\CmSLX have the same common

feature. Define 2 = select 2 jobs with largest processing times on

machine A and 2 jobs with largest processing times on machine B. Denote

the set of all selected jobs by Z and call the jobs of this set big. By full enu-

meration we find a schedule Sz that is optimal for the corresponding problem



CHAPTER 5. OPEN SHOP SCHEDULING

02|/i(l, 1), i?e|C max or O 2 \ h ( 0 , qB ) ,R e \Cm A X with the same distribution of

holes as in the original instance and the set of jobs Z. Schedule S z will

be sought for in class S(Z). Our approximation schemes use the sequences

v{Zab ) and ip(Zg A) associated with S z to construct an approximate solution

to the problem with the original set of jobs.

Define Y = N\ Z and call the jobs of this set small. For each job J3 £ Y

w e h a v et h a t a3 < \ a ( N ) a n d b j < * b ( N ) . F o ra g i v e n£> 0 , t h ec h o i c eo f z

implies that

max{a jt bj} < iC max (5 * ) < e Cm £ L X{ S * ) (5.2)

for each job J) G Y.

5.3 Several Holes on One Machine

In this section we present and analyze a PTAS for problem

02\h(0, qs), Re\C max . Our algorithm starts with splitting the set of

jobs N into two subsets of big and small jobs and finding an optimal

schedule for the big jobs. The length of that schedule produces a lower

bound on the optimal makespan. The purpose of the subsequent steps is to

create a schedule in which the completion time of any job on machine B

does not exceed the optimal makespan. The completion time of machine

A never exceeds the optimal makespan by more than the length of a small

operation.

In the description of our algorithms the phrase "a sequence of jobs is

processed on machine L starting at time r" means that the jobs of that

sequence are processed without intermediate idle time with possible inter-

ruptions by the holes.

Algorithm HOKB

INPUT: Problem 02|/I (0, q s ) ,R e \Cm a i X and an e > 0

OUTPUT:A heuristic schedule SH



CHAPTER 5. OPEN SHOP SCHEDULING

1. Define z = |"i"Jand determine the sets Z and Y of big and small jobs.

2. By full enumeration find a schedule S z from the class S ( Z ) that is

optimal for problem O2\h(0,q B), Re\C max with Z as the set of jobs.

A s s u m et h a t t h i ss c h e d u l ei sc h a r a c t e r i z e db y t h e p a r t i t i o nZ A B U Z ^ ,

a n d d e n o t et h ec o r r e s p o n d i n gs e q u e n c e so fj o b sb y i p ( ZA B ) a n d i p ( ZB A ) .

3. Construct schedule SH as follows:

(a) If necessary, renumber the jobs of set N so that Y =

{ Ji, J2> • ••, J y}, where y = |y|. On machine D process the se-

quence (II>(ZBA), (<A,J2, •• -, J y )) of jobs starting at time zero.

O11machine A start the sequence (J y, Jy~i, •••, Jk+1) of jobs at

time zero, where either k = 0, if scheduling the block of jobs

(J y , J y - 1,..., J\ ) on A produces no clashes, i.e.,

CiTA < RI,B

for all i = 1, 2 , . . . , ? / , or k > 1 is the largest integer such that job

k cannot be started on machine A at time C^+\,a due to the clash

with the processing of that job on machine B. Call the obtained

partial schedule S'. Denote r' = Cfc+i„4(S")and r" — CYB (S'). For

time t, t < T", let 6(t) denote the total length of the availability

periods of machine A during the interval [£,r"}.

(b) If all jobs of sequence i p ( ZA B ) can be completed on machine A

i n t h e i n t e r v a l[ r7,r " ] , i . e . ,a ( ZA B ) < 6 {T' ) , t h e n o n m a c h i n eA

process the sequence of jobs ip{Z AB ) starting at time r', followed

by the sequence (ip{Z BA ), . ••, J\)) which starts as early as

possiVjle.Complete schedule S B by assigning job k to start on A

as early as possible and the sequence <P(ZAB) to start on B at time



CHAPTER 5. OPEN SHOP SCHEDULING

(c) If ay + a(Z,4 S) > <S(0)then start the sequence ip(Z,\B) 011A at time

zero followed by any sequence of jobs of set Z BA U{Ji, ..., ,Jy} that

starts at time max{a(Z i4e), T"). Complete schedule SH by starting

the sequence cp(Zab ) 011machine D iis early as possible after time

T".

(d) Otherwise, i.e., if 5(0) > (I(ZAB)+ A
Y > (Kr')> determine a job J/,

k + 1 < I < y, such that

y y

"J + °-(ZAB)< <5(0), AJ + "(Z AB) > -5(0). (5.3)
j=l+1 j=l

On machine A , process the sequence (J y, J y - i , • • • , J 1 + 1 )of jobs

starting at time zero. Complete schedule Sn by assigning the

sequence ((^(Z^s), IP(ZBA),( J1-1, •••, JI)) hi such a way that

the last job in sequence ip(Z A[} ) completes 011A at time r", and

start the sequence <p{Zab) on machine D at time r".

4. Output schedule SH and stop.

Notice that although machine A is continuously available in the problem

under consideration, in the description of Step 3 of the algorithm we define

S(t) in terms of the total length of the availability periods of machine A. This

is done in order to be able to use Step 3 of Algorithm HOKB as a part of the

PTAS for problem 02|/i(l, l)| C max in the following section.

Theorem 5.1 For problem 02|/i(0, </#),Re\C mAX , Algorithm HOKB v> a

polynomial approximation scheme.

Proof. We prove that

<1 + 1 (5.4)
C max (S*) *

Suppose that the condition of Step 3(b) holds. All jobs of set ZAB are

completed on A earlier than any of them starts 011D. I11this case the total

idle time on machine D is not longer than in any optimal schedule.



CHAPTER 5. OPEN SHOP SCHEDULING I I I

Jk-A'.-f-1

A

D

k.+1 J k -A:-1

A

B

J y \ \ J i J kA

B i, J i J k J y

A

J y \ J i J k

J J k J y

( a )

( b )

Figure 5.1: Schedule Su found in Step 3(b) for k > 0.

If k — 0, then in schedule Su either there is no idle time on A or machine

A is idle before processing a job of set Z BA - In the latter case, all jobs of set

Y and all jobs of set ZAB are completed on A earlier than the jobs of set

Z BA complete on B. This implies that CA(SU) = CA{S Z) < CMAX (S*). Thus,

if A;= 0 schedule S B is optimal.

Assume that k > 0, i.e., there is no idle time on A until all jobs other

than job Jk are completed. Determine the earliest starting time r of job Jk

on machine A.

If C \A{ SU) > C k B { S H ) , then job J/,, can start on A at time R = CM(5//).

This produces no clashes, machine A has no idle time and S B is optimal;

see Figure 5.1(a). Otherwise, define r = CV#(5//), so that C max (Sn) <

C kB (S H ) + ak < C max (S*) + a k. Since Jk G Y, due to (5.2) we obtain (5.4);

see Figure 5.1(b). Notice that this figure and the following figure do not show

the non-availability intervals on machine Z?, except one drawn as a shaded

rectangle.

Suppose now that the condition of Step 3(c) holds. In schedule S/y, if the

jobs of set ZAB start on machine B at time r", then there is no idle time on

B; otherwise, C B (S H ) = C B{S Z) < Cmax (S*). On machine A, either there

is no idle time and the schedule is optimal or the sequence of jobs of set

ZB Au { J i , . . . , J y ] s t a r t sa t t i m eR ". I n t h el a t t e rc a s e , t o t a li d l e t i m eo n A



CHAPTER 5. OPEN SHOP SCHEDULING

J,i±_L

A

D

'y \

i f ) JI J i,

\JI JL

Figure 5.2: Schedule SH found in Step 3(d)

does not exceed a y , i.e., C max (S H ) < a{N) + ay < Cmax {S*) 4- ay and (5.4)

f o l l o w sf r o m ( 5 . 1 )a n d( 5 . 2 )f o r J3— J y .

Finally, assume that the condition of Step 3(d) holds. In schedule SH

machine D is not idle, while machine A is permanently busy starting at time

T", and the idle time on A in the interval [0,r"] does not exceed a/ due to

(5.3). Thus, CA{SH) < Cmax (S*) + CIIand (5.4) holds; see Figure 5.2.

The number of jobs of set Z does not exceed 2 . Thus, finding a

schedule Sz in Step 2 by full enumeration requires constant time for a fixed

e. The other steps of the algorithm require 0(n) time. We conclude that

Algorithm HOKB is a polynomial-time approximation scheme. •

It is evident that Algorithm HOKB can be converted to a PTAS for prob-

lem 02|/i(g A,0), JRe|C max .

5.4 One Hole on Each Machine

In this section we present and analyze a PTAS for problem

02\h(l, 1), Re\C max with a single hole on each machine. Let [s A,tA\

and [SB,£B] be the holes on machine A and machine B , respectively.

Without loss of generality, assume that ts > ^a] otherwise, the machines

can be appropriately renamed.

The PTAS for problem 02|/i(l, 1), /?e|C max is organized similarly to that

for problem 02|/i(O, q B ), Re\C m&x given in the previous section. In fact, not

only the idea of splitting the jobs into big and small is used, but also one of



CHAPTER 5. OPEN SHOP SCHEDULING

the steps of Algorithm HOKB is directly included.

For finding one of the schedules our PTAS relies on greedy open shop

scheduling. For a detailed discussion of greedy algorithms for the open shop

problem see Section 1.8.2. Additionally, our PTAS uses a linear-time proce-

dure that verifies whether there exists a schedule S such that for given values

DA and D^ the inequalities CA{S) < DA and CN(S) < DN hold simultane-

ously. The first version of this procedure is given in [135], and it has been

significantly simplified by van den Akker et al. [4]. Shakhlevich and Struse-

vicli [135] consider two-machine open shop problem subject to minimise an

arbitrary non-decreasing non-negative function <&(CA{S),CN(S)). Their al-

gorithm creates 11 heuristic schedules in linear time and at least, one of them

delivers the minimum to this function. Van den Akker et al. [4] formulate

4 conditions 011 D4 and D^, which can be verified in linear time. These

conditions are necessary and sufficient for the existence of a feasible schedule

which satisfies the inequalities CA(S) < DA and CB(S) < DU. They also

describe the process of constructing such a schedule which requires linear

time. Both these approaches use the algorithm of Gonzalez and Salmi which

is described in Section 1.8.1.

Algorithm HLL

INPUT: Problem 02|/I ( l , 1) , Re\C max with t B > t A and an e > 0

OUTPUT: A heuristic schedule S F

1. Run the algorithm by van den Akker et al. [4] to verify whether there

exists a schedule SF with CA{SI.•) < SA and CB(SJ.•) < s B . If such at

schedule exists, stop; otherwise, go to Step 2.

2. Define z = \\~\ and determine the sets Z and Y of big and small jobs.

3. By full enumeration find a schedule SZ from the class S( Z ) that is opti-

mal for problem 02|/i(l, 1), Re\C m;ix with Z as the set of jobs. Assume



CHAPTER 5. OPEN SHOP SCHEDULING 114

that this schedule is characterized by the partition ZABU ZB.4, and

d e n o t et h ec o r r e s p o n d i n gs e q u e n c e so f j o b sb y ( p ( ZA B ) a n d i p ( ZB A ) .

4. Construct schedule SG as follows:

(a) If 110machine is idle in schedule SZ until it completes all its jobs,

then denote S'Z —SZ and go to Step 4(b). Otherwise, find the idle

interval [d',d"]either on machine A before the sequence TJJ(ZBA)

or on machine B before the sequence ip(Z,AB)- Scanning the jobs

of set Y in an arbitrary sequence, assign them to be processed on

the corresponding machine in the interval [d',d") one after another

until the job J is found that completes after time d". Increase the

starting times of all jobs in the sequence IP(ZBA) (or ^>{ZAB)I

respectively) so that the first job in the sequence starts at the

completion time of job J. Call the resulting partial schedule S'Z.

(b) Construct schedule SG by assigning the remaining jobs to be

processed on machine A starting at time CA(S'Z) and on machine

B at time CB{S'Z) in the greedy manner, i.e., never leaving a ma-

chine idle if there is a job ready to start processing on it.

5. Construct schedule SJI as described in Step 3 of Algorithm HOKB.

6. Determine the best of the found schedules SG and SH. Call this sched-

ule Sp and stop.

We now analyze Algorithm Hll.

Theorem 5.2 For problem 02|/i(l, l)|C max , Algorithm Hll is a polynomial

approximation scheme.

Proof. First, suppose that the algorithm stops having found schedule SF

in Step 1. Notice that in this case the algorithm by van den Akker et al.

[4] guarantees that SF has the smallest makespan. This implies that if for



CHAPTER 5. OPEN SHOP SCHEDULING

problem 02|/i(l, l),i?e|C max there exists an optimal schedule in which each

machine completes its jobs before the corresponding hole, that schedule will

be found and output in Step 1. Notice that Step 1 requires 0(n) time.

Thus, in further analysis we assume that in any optimal schedule at least

one machine does not complete all jobs before the hole.

We start with schedule SG found in Step 4 and prove that

C m a ( S G ) 1

CMAX(S*) S + 2 (5 ' 5)

under the assumption that in any optimal schedule there are jobs processed

on machine B after the hole. This assumption gives rise to the lower bound

Cm a x ( S * )> t B > t A . (5.6)

Without of loss of generality, assume that in schedule S z the idle interval

[d',d"\ occurs on machine B\ otherwise, the proof is symmetric. The actions

described in Step 4(a) are aimed at reducing this idle period.

If the interval [d\ d"}is long enough to accommodate all jobs of set Y then

i n s c h e d u l eS 'Za l l t h e s e j o b sa r e c o m p l e t e do n B e a r l i e rt h a n t i m eCA( SZ)

and in Step 4(b) the jobs of set Y can be processed on A as a block starting

at time CA{SZ). In the resulting schedule machine A is permanently busy

and CB{SG) = CB{SZ) < CMAX (S*), so that schedule SG is optimal.

In the alternative situation, job J is the last job inserted on B between

the sequences IP(ZBA) and </?(ZAB), an d in schedule S'Z no machine is idle.

Assume that in schedule SG a new idle period appears on one of the

machines P G {A, B}; otherwise, this schedule is optimal. Due to the greedy

nature of Step 4(b) and Lemma 1.2, only one job, say, job JK G Y, can

be processed on P after the idle interval, and, moreover, during that idle

interval the other machine Q is either unavailable or processes job JKand is

permanently busy till job Jk is completed. We only need to consider the case

that machine P terminates schedule SG-



CHAPTER 5. OPEN SHOP SCHEDULING

J k + ] J k -

A

B

A

B

J11 \ ip\

Jk.+ \ s *A-l

t/ji \ t f j\

Ji

JL

Jk

Jk

Jk

J11

Jk\ \h
J11

( a )

( b )

Figure 5.3: Schedule SH with job Jk affected by the hole on machine A

If job Jk on machine P is interrupted by the hole, then CMA.X(SC) < t P + p k ,

where is the processing time of job Jk on machine P, and (5.5) holds due

to (5.2) and (5.6) .

If job J k on machine P is not interrupted by the hole, then C max (5c) <

CQ(SG)+P/C•Sincemachine Q ispermanentlybusy,it followsthat CQ(SG)<

CMAX (S*) and (5.5) holds due to (5.2).

We now consider schedule SH found as described in Step 3 of Algorithm

HOKB and prove that (5.4) holds under the assumption that in any optimal

schedule there are no jobs processed on machine B after the hole and on

machine A there are jobs processed after the hole, i.e., ^ < CMA,X(S*). The

proof remains identical to that of Theorem 5.1. Here, however, we need to

consider two extra cases, which arise when the condition of Step 3(b) holds

and job Jk on machine A is affected by the hole. It is possible that job Jk

cannot start on A before the hole since it is processed on B , and starts at

time t^'i see Figure 5.3(a). Alternatively, job Jk starts on A at CkB(Sn) and

is then interrupted by the hole, so that CA{SH) = C/CB(5'//)+ A A + ak] see

Figure 5.3(b). In either case, CA(SH) < IA + AK, so that (5.4) holds.

As in the proof of Theorem 5.1, finding a schedule SZ in Step 3 requires

constant time for a fixed e and the other steps take 0(n) time. Thus, Algo-

rithm Hll is a polynomial-time approximation scheme. •



CHAPTER 5. OPEN SHOP SCHEDULING

5.5 Conclusion

117

This chapter describes two polynomial-time approximation schemes for two

problems of scheduling jobs in a two-machine open shop subject to machine

non-availability constraints under the resumable scenario. Notice that all

two-machine open shop problems with a more elaborate structure of non-

availability intervals are not approximable in polynomial time, unless P=NP.

Our schemes rely on a popular idea of classifying jobs according to their

sizes. However, we do not use linear programming or integer programming,

but rather exploit combinatorial properties of the relevant schedules.

No PTAS has been previously known for shop scheduling problems with

non-availability constraints, the best known algorithms provide a ratio of

4/3, and only for problems with a single hole. Being a considerable im-

provement, our results, however, do not resolve the approximability issue of

the two-machine open shop completely. In particular, it remains unknown

whether problem 02|/?,(0,1), Re |C max admits a fully polynomial-time approx-

imation scheme (FPTAS). For example, it is worth studying whether a dy-

namic programming algorithm by Lorigeon et al. [100] can be converted into

an FPTAS.

If we increase the number of machines, then extending the traditional

technique used by Breit [17] and Kubiak et al. [76], it is not difficult to

prove that the three-machine open shop problem with one hole on each ma-

chine is not approximable in polynomial time, unless P=NP. This means that

polynomial-time approximation algorithms may only exist for the extensions

of our basic models 02|/i(l, 1), i?e|C max and 02\h(0, q B ), Re\C m&x obtained

by adding several continuously available machines. Using our PTAS's as well

as the PTAS by Sevastianov and Woeginger [134] for the general open shop

with no constraints, each of these extended problems can be approximated

within a factor of 2 + e. It is an interesting research goal to reduce this ratio

bound.



Chapter 6

Scheduling machine
maintenance

6.1 Introduction

I he main trend in the development of deterministic Scheduling Theory has

always been that of increasing the complexity and practical relevance of the

models. The so-called classical models are too ideal to handle various re-

strictions that may occur in practical scheduling, thus, their extensions that

involve additional constraints (precedence, resource, transportation, etc.) arc

of permanent strong interest. This chapter is based on papers [82] and [8.'i].

We study two-machine open shop and (low shop scheduling models and

concentrate on the case that each machine has to be maintained exactly

once during the planning period. Additionally we present a PTAS for the

two-machine flow shop problem with no-wait in process in which one of the

machines is subject to maintenance. The objective for all considered prob-

lems is to minimise the makespan, i.e., the maximum completion time of

the activities to be scheduled. A review of the recent literature and the

considered scheduling models can be found in Section 2.5.

In this chapter, we study these three basic two-machine models and con-

centrate on the case that each machine has to be maintained once during

the planning period, and the objective is to minimize the makespan. Un-

118



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

like the classical scheduling models, here we define the makespan not as the

completion time of the last job, but as the maximum completion time of all

activities to be scheduled, including the maintenance periods.

As always the case with a new problem, the issue of our primary concern

will be to establish its complexity status, i.e., to find out whether the prob-

lem admits a polynomial time algorithm or is NP-hard. In the latter case,

an appealing goal is to design approximation algorithms and analyze their

performance.

Our study is relevant not only to the scheduling models with fixed ma-

chine non-availability intervals as discussed above, but also to the models

with variable (or time-depe: processing times. In the latter type of

models, the durations of opt. .^ons are not constants but depend on the

start time and are represented by functions similar to a + f(t). The case of

non-decreasing functions / (t) has received special attention; the jobs of this

type are normally called deteriorating. See a recent survey by Cheng et al.

[29] for a literature review on scheduling with variable processing times.

The models we consider can be given an additional meaningful inter-

pretation in terms of multi-agent scheduling recently studied by Agnetis et

al. [3]. We may assume that the jobs belong to one agent and treat the

maintenance periods as operations that belong to the second agent. The

goal is to minimize the completion time of all jobs on all machines, provided

that the processing times of the operations owned by the second agent are

time-dependent.

We denote the considered problems by F2|m(l, l)|C max , 02|m(l, 1)|C Hax ,

F2\no—wait, m(l, 0)|C max and F2\no-wait, m(0, l)|C max where 'ra(LO)'

and lm( 0,1)' in the middle field denote the fact that there is only one main-

tenance period (MP) on the first machine or second machine, respectively,

'm(l, 1)' denotes the fact that there is exactly one MP on each machine. No-

tice that, without loss of generality we may restrict our search for an optimal

schedule to the class of schedules in which no processing operation is inter-



CHAPTER 6. SCHEDULING MACHINE MAIN TENANCE

rupted by an MP, since it is always possible to start the MP earlier, right

before the affected operation, without increasing the objective function.

Since in the considered problems the length and position of each MP

depends on scheduling decisions, we call the resulting intervals of machine

non-availability floating.

The remainder of this chapter is organized as follows. In Section 0.2 we

demonstrate that the two-machine open shop problem with one maintenance

interval 011 each machine is polynoniially solvable for quite general funct ions

defining the length ot these intervals. By cont rast, the (low shop counterpart

studied in Section (>.;{is proved binary NP-hard even if the length of the

maintenance interval depends linearly on its starting time. We also give a

pseudopolynomial dynamic programming algorithm and two approximation

algorithms, including a fully polynomial approximation scheme. The ob-

tained results completely resolve the issues of complexity and approximation

for the problems under consideration. In Section (i.4 we design and ana-

lyze a PTAS for the two-machine (low shop problem wit h no-wa.it in process.

Section 6.5 contains concluding remarks.

6.2 Open Shop

In this section we consider problem 02|m(l, l)|C m(lx with a single mainte-

nance period 011 each of the machines. We show that the problem ol finding

a schedule S* that minimizes the makespan can be solved in ()(n) time in

the general case that the length of an MP on machine L G {A, />'} is equal

to A L (t) - a L 4- /L(0> where a L > 0 and fL(t) is a non-decreasing function

such that //,(0) —0, provided that computation ol a function .//,(/•) requires

at most linear time for each /.. In this section, without loss ol generality we

assume that

a A ( \ / i - (6*1)

In the case that the maintenance interval is required only on OIK; machine,



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE 121

we assume that this machine is machine A , while cv/j= 0, f n ( t . )= 0.

We start with deriving global lower bounds on the length of a feasible

schedule, that hold irrespective of the position of the MPs. The global

machine-based bound

LB { = ma x { a A + a ( N ) , a B + 1 > { N ) } (6.2)

holds because it is required to complete the jobs and the MP on each machine.

Similarly, the global job-based bound

LD2 — max {a, + b , \ (0.3)
j e N J J K '

holds due to the fact each job must be completed.

For any schedule S , the inequality

Cmax(S) > max { L B l , L B 2 }

always holds, and if it holds as equality, the corresponding schedule is opti-

mal.

In our consideration we will make use of an 0(n)-time algorithm by Lu

and Posner [101]. The algorithm of Lu and Posner finds an optimal schedule

for problem 02|/i(l,0), N-Re\C lu;xx with a single fixed non-availability interval

on machine A that starts at time zero. The latter auxiliary problem will be

called Problem R(S), provided that the length of the non-availability period

o n m a c h i n eA i s e q u a lt o S .

Define

6 = a A ~ (( 5-4)

and run the algorithm of Lu and Posner for the resulting Problem R ( S ) . Let

S u > b e a f o u n ds c h e d u l et h a t i s o p t i m a lf o r p r o b l e mR ( S ) .

Convert schedule S[JJ for problem R{fi) into schedule 6'(*0 for the original

problem 02|ra(l, l)|C ma x by increasing all starting times by rv«. As will be

seen later, for many instances schedule S*) {) appears to be the global optimal

solution, since its makespan often meets the global lower bound.



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

There are, however, two cases in which we may want to compare schedule

5 00 with other candidate schedules, in which on one of the machines the MP

starts later than time zero. The first case arises, if there exists a job r such

t h a t f o r p r o b l e mR { 6 )

CmaX(*SLP) — Qt + br. (6-5)

Schedule Sq 0 derived from SL P need not be the optimal solution of the

original problem 021777 (1. l)[C maxi and we create two candidate schedules by

starting job r at time zero on one of the machines.

To present the second case, define

H —U IQ. 4+ Q j+ f r j>Q B+ b { N ) }. (6.6)

If set H is not empty, define a job p E H such that

a p = min{ a 3 \ j G H } (6.7)

and job q G H such that

a q + bq = min {a^ + b j \ j € H } . (6.8)

For problem R ( 6), there are two obvious lower bounds on the optimal

makespan: the machine-based lower bound max{<5+ a(N).b(N) } and the

job-based lower bound (6.3) As proved by Lu and Posner 101 , the value of

Cmax{SLP) may appear to be larger than the strongest of these lower bounds.

This situation arises if \H\ > 2 and b{H) + ap > max{d + a(N).b(N)}. so

that

C m a x { SL p )= min { b ( H )+ ap i 6 + aq + bq } . (6.9)

If this happens, then schedule SQ0 derived from SLP need not be the

optimal solution of the original problem 02im(1. l)|C max . We create two ad-

ditional candidate schedules: one by processing job p immediately before the

MP on machine A. and the other by processing all jobs of set H immediately

before the MP on machine B. In both of these candidate schedules the MP



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

on the other machine still starts at time zero, and there is no need to consider

the schedules in which both MP start later than zero.

The formal statement of the algorithm is given below. In the description

of the algorithm 7r(Q) denotes an arbitrary permutation of the jobs of a non-

empty set Q C TV;if Q is empty then 7r(Q) is a dummy permutation. If a

sequence 7r(Q) is said to be processed on a machine L € {A, B} : then this

means that the jobs of set Q are processed as a block, one after another

without intermediate idle time.

Algorithm 02

1. Given an instance of problem 02|m(l, l)|C max , compute 5 according to

(6.4) and define Problem R(6) as the two-machine open shop problem

to minimize the makespan, provided that the processing times are re-

spectively equal to those in the original instance and machine A is not

available before time 5. Run the algorithm by Lu and Posner [101]and

find schedule SLP that is optimal for Problem R(5). Convert sched-

ule SIP into schedule SQ0 for the original problem 02|ra(l, l)|C mai by

delaying the starting time of each job by 6.

2. If there exists a job r for which schedule SL P satisfies (6.5), then goto

Step 3; otherwise go to Step 4.

3. If a B — 0 and f B { t ) = 0, then output schedule SQ0 as the optimal sched-

ule S* and stop; otherwise, for the original problem 02|ra(l, l)|C,»x,

find the following two schedules SQr and S* 0. In schedule SQt , maclaae

B starting at time zero processes job r, the MP on B starts at tirae6 r

and is immediately followed by the block of jobs ir(N\{r}). The MP

on machine A starts at time zero and is immediately followed by the

block of jobs 7r(7V\{r}). Job r starts on A as early as possible, i.e.,at

time max {aA + a (N\ {V}), br}. Schedule S*Q can be seen as the minor

image of S^ r . In 5* 0, machine A starting at time zero processes job



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

r , the MP on A starts at time ar and is immediately followed by the

block of jobs 7T (N\{r}). The MP on machine B starts at time zero and

is immediately followed by the block of jobs n(N\{r}). Job r starts on

B as early as possible, i.e., at time max{a B 4-b(N\ {r }), a r). Output

the best of the schedules S q 0, SQT and S*0 as the optimal schedule 5*

and stop.

4. Find the set H of jobs according to (6.6), and if that set is not empty,

find the jobs p E H and q E H that satisfy (6.7) and (6.8), respectively.

If \H\ > 2 and the inequality b(H) + ap > max{d 4-a(N),b(N)} holds,

then go to Step 5; otherwise, output S' = SQ0 and stop.

5. For the original problem 0 2 \ m ( l .l ) jCmax- find the following schedule

S* 0. Machine .4 processes job p starting at time zero. The MP on that

machine starts at time ap and is immediately followed by a sequence

7i~{N\{p}). On machine B the MP starts at time zero and is is imme-

diately followed by a sequence TT(A'\{P})..Job p starts on B as early as

p o s s i b l e ,i . e . ,a t t i m em a x { ap , Q £ + b ( N \ { p } ) } .

6. If there is the MP on machine B and if the set H of jobs such that

is not empty, then find the following schedule SQH . Determine the job

u. such that

Machine B starting at time zero processes the block of jobs

(7T(H\{U}),U). The MP on B starts at time b(H) and is im-

mediately followed by TT(N\H). The MP on machine A starts

at time zero and is immediately followed by the block of jobs

(TT(N\H),TT{H\{U})). Job u starts on A as early as possible, i.e.. at

t i m em a x{ a # + a ( -Y { i t } ) ,b ( H ) } .

H = { j € H \ b ( H \ { j } )< a A } , (6.10)

mm



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE 125

7. Output the best of the schedules found in Steps 1, 5 and G as the

optimal schedule S* and stop.

Since the algorithm by Lu and Posner requires O ( n ) time, and all other

steps of Algorithm 02 can be implemented in linear time, we conclude that

overall running time of our algorithm is 0(n), provided that each of the

values fA (a r), fB(b r), fA(a p) and fB(b(H )) can be found in at most linear

time. We now prove the correctness of the algorithm.

Theorem 6.1 Algorithm 02 finds schedule S* that is optimal for problem

02|m(l, 1)|C max .

Proof. Assume first that job r satisfying (C.5) exists. This implies that

ar > b ( N \ { r } ) (6.11)

and br > 5 + a ( N \ {r}), which is equivalent to

br + OLB> AA+ a ( N \ {r}). (6.12)

If a B = 0 and f / j ( t ) = 0 (no MP on machine D ) then Cm a x ( S L p ) —

Cmax(5o,o) ~ a r + K, and this schedule is optimal for the original problem

due to (6.3). Otherwise, Cmax(«Soo) = a B + ar + br. It follows that this

makespan can only be reduced if job r starts before an MP on one of the

machines. We create schedules SQ and S*0 as described in Step 3.

To see that S*)r exists, notice that scheduling job r on machine A

produces no clashes. The block of jobs N\ {r} completes on A at time

a a + a(N\ {r}) and starts on B at time br + cvl3+ fs{b r) > br + Qg, so that

(6.12) ensures feasibility. In 5g r, machine A completes all its work at time

maxjcf/i +a(N),a r + 6r}, which cannot be reduced due to (6.2) and (6.3).

O n t h e o t h e r h a n d , m a c h i n eBc o m p l e t e sa tbT + a s + f n { br )+ b ( N \ { r } ) ,

and this time cannot be reduced in the class of schedules in which job r is

processed before the MP on machine B. See Figure 6.1.



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

A

B

A

B

N\{r}

N\ { r }

N \ { r }

N \ { r }

(a )

( b )

Figure 6.1: Schedule S{
*

0,r

Similarly, it can be proved that schedule S* 0 exists. Scheduling job r on

machine B produces no clashes. The block of jobs N\ {r} completes on B at

time a B + b(N\ {R}) and starts on A at time ar 4-aa + fA{ar)> ar + CM,SO
that (6.1) and (6.11) guarantee feasibility. In S* 0, machine B completes all its

work at time max {a B + b(N),a r 4-6r}, which cannot be reduced due to (6.2)

and (6.3). On the other hand, machine A completes at + /^(flr) + CL{N),

and this time cannot be reduced in the class of schedules in which job r is

processed before the MP on machine A.

Algorithm 02 outputs schedule S* such that

Cmax('S'*)—min { a B + a r + br ,

max { a A + a ( N ) , ar + br ,a B + /B( ^ ) + b ( N ) },

max {a B + b(N),a r + br,a.A + /^(«r) + a(A^)}}

Analyzing the conditions in Step 4, notice that Lu and Posner [101] prove

that if either \H\ < 1 or b(H) + ap < max {<5+ a(N),b(N )}, then for Prob-

lem R(S) their algorithm finds an optimal schedule S lp with Cmax (SLp) —

max {(5+ a(N), b(N)}. This schedule converts into schedule SQ0 for the orig-

inal problem and is optimal due to (6.2), since Cmax(5'o,o) = LB\.

Thus, we need to consider the case that (6.9) holds, which implies that

schedule SLP converts into schedule SQ0 for the original problem such that

Cmax(5*0,0)= nrinjau + aq + b q,a B + b{H) + ap} > LB V (6.13)



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE 127

Schedule SQ0 need not be the global optimal solution and the purpose of

Steps 5 and 6 of our algorithm is to find a schedule with a smaller makespan.

We split our further consideration into two parts, depending on the ma-

chine on which the MP starts later than time zero.

Part A. Assume that there exists an optimal schedule in which the MP

on machine B starts at time zero. If all jobs of set H are processed on

A after the MP on that machine, then the value of Cmax('Soo)of the form

(6.13) cannot be reduced. Indeed, if in such an optimal schedule S* a job

j G H had the processing route (A, D), then due to (6.8) we would have

C mAX (S*) > a A + a3 + bj > a A + aq + bq > Cmax (S,Q0). Alternatively, if each

job of set H had the processing route (B , A), then for a job j G H that was

scheduled on B later than the other jobs of that set we would have due to

(6.7) that C m&x (S*) > cxb + b(H) + cij > c\b + b{H) 4- ap > C,
max(5,o,o)-

Thus, our only hope to find a schedule better than SQ0 among those

schedules in which the MP on machine B starts at time zero is to search

the class of schedules in which at least one job of set H is processed before

the MP on machine A. Schedule S* 0 belongs to that class. To see that

this schedule exists, notice that scheduling job p on B produces no clashes.

Besides, it follows from the definition of set H given by (6.6) that the block of

j o b s N \ { p } s t a r t so n A n o e a r l i e rt h a nt h a t b l o c kc o m p l e t e so n m a c h i n eB .

We have that machine A completes its jobs at time a a + /^(a P) + o,(N), and

this value cannot be reduced in the class of schedules under consideration

due to (6.7). On the other hand, machine B completes all its work at time

max {a B + b(N), dp + bp} and reaches at least one of the global lower bounds

LBi or LB 2. It is clear that there is no advantage to delay the MP on machine

B, i.e., start it later than time zero. See Figure 6.2.

Part B. Assume now there exists an optimal schedule in which the MP on

machine A starts at time zero. Similarly to Part A, the value of Cmax(S'o 0) of

the form (6.13) could not be reduced if in an optimal schedule a job j G H had

the processing route (A, B). Thus, we focus on the situation that each job of



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

A

D

A

B

V N\{p}

N\{p} V

p N\{p}

] j v \M p] jv \M p

a

( b )

A

B

A

B

H\{u}

H\{u}

Figure G.2: Schedule S P,O

N\ H H\{u}

u

u

N\ H

N\ H H\{u}

u

u

J (a)

N\ H

1
- ( b )

Figure G.3: Schedule SQH

set H has the processing route (B , A ) . If t h e r ee x i s t sa non-empty subset H'

of jobs of set H that are processed on B after the MP on that machine, then

the value of Cmax (S'o 0) again cannot be reduced, since due to (6.7) we would

have C max (S*) > b{H\H') +a B + b(H') + a, > a B + b(H) + ap > Cmax (5 0*0).

Thus, we need to search for a schedule better than S^Q among those

schedules in which the MP on machine A starts at time zero and all jobs

of set H are processed before the MP on machine B and follow the route

( B , A ) .

If set H defined by (6.10) is empty, then in any optimal schedule ,S*of

the required structure there is a job j (E H that starts on B after time a^,

so that C m!lx (S*) > a A + a3 + bj, and the value of Cmax(So o) < + a,, + bq

cannot be reduced.

For a non-empty set /7, consider schedule SQH found in Step 6 of the algo-

rithm; see Figure 6.3. To see that this schedule exists, notice that scheduling

job u on A produces no clashes. Further, since u G H, we deduce that the



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

block of jobs H\ {u} completes 011 D no later than it starts 011 A. Besides,

it follows from (6.13) that

otB + b{H) > LBi —ap,

which due to (6.2) and (6.7) leads to

a B + b ( H )> 0 - ^ 4+ a ( N ) — a u .

This ensures that the block of jobs N \ H completes on A no later than it

starts on B. We have that machine B completes its jobs at time ag +

fB{b{H)) + b(N), and this value cannot be reduced in the class of schedules

under consideration. On the other hand, machine A completes all its work

at time max + a(N),a u + b(H)}, which cannot be reduced due to (6.2)

and the choice of job u. It is clear that there is no advantage to delay the

MP on machine A.

Having completed Steps 5 and 6, Algorithm 02 outputs schedule S* such

that

Cmax(5**) = mill {minjcu + aq + bq, a B + b(H) + ap},

max { a A + f A { aP)+ a { N ) ,a p + bp,a B + b ( N ) },

max { a a + a ( N ) , au + b ( H ) ,a B + f B { b { H ) )+ b ( N ) } }.

This proves the theorem. •

As can be seen from the next section, the corresponding flow shop problem

is harder to solve.

6.3 Flow Shop

In this section we consider the flow shop problem F2|m(l, l)|C max with a

single maintenance period on each of the machines, provided that the length

of an MP on machine L G {A, B} is equal to A L(t) = CXL+ /L(£), where

h( 0) = 0.



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

It is obvious that there exists an optimal schedule in which the MP on

machine B starts at time zero; otherwise, the MP can be interchanged with

the preceding operation and that will not increase the makespan.

Unlike its open shop counterpart, the flow shop problem under consider-

ation is NP-hard, as stated in the following theorem.

Theorem 6.2 Problem F2|m (l, 0)|C max with one maintenance period on

m a c h i n eA i s N P - h a r de v e ni f f A ( t )= f i A t .

Proof. In order to show that problem F2|ra(l,0)|C max is NP -hard, we use

the PARTITION problem for the reduction. This problem is defined in Section

1.2.4.

Given an arbitrary instance of PARTITION define the following instance

of problem F2|ra(l, 0)|C max . There are n = r + 3 jobs such that

a j b j= 2 c j , j — 1 ,2 , . . . , r ,

®r+ l 0) br+1
®r+2 2£/, br+2 0,
ar+3 = 2E, br+3 = 5 E.

The length of the MP on machine A is equal to A( t , )= E + t , where t ,is

the starting time of the MP.

We show that for the constructed instance a schedule So such that

CMAX(5"o)< 10E exists if and only if PARTITION has a solution.

Suppose that set R \ and R 2 form a solution to PARTITION. Schedule S o

exists and can be constructed as follows. Each machine starts at time zero

and processes the jobs in the sequence (r + 1, R\, r + 3, R 2, r + 2), where the

jobs of sets R.\ and R2 are scheduled in any order. The MP on machine A

s t a r t sa f t e r j o br + 3 a t t i m e3 E , s o t h a t i t sl e n g t hi s 4 E .

Suppose now that schedule S0 exists. Since the total workload on machine

D is equal to 10E, it follows that D is permanently busy in the time interval

[0,10£]. Thus, job r + 1 must be the first in the processing sequence. The

MP cannot start on A at time zero, since this generates idle time on B after



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

job r + 1. Due to the same reason neither job r + 2 nor job r + 3 can start

on A at time zero. Thus, machine A after job r + 1 processes a sequence

a of jobs of set R. Let X be the total processing time of the jobs of that

sequence on machine A. If sequence a is immediately followed by the MP,

then the MP completes at time X + (E + X), and the last job of sequence

a completes on B at time E 4- 2X. This implies that none of the remaining

jobs can start on B at time E + 2X, which is impossible.

If sequence a is followed by job r + 2, this also generates idle time on

B after time E + 2X. Thus, sequence a must be followed by job r + 3. If

X < E, then the last job of sequence a completes on B earlier that job r + 3

c o m p l e t e so n A , t h e r e b yg e n e r a t i n gi d l et i m eo n B . W e d e d u c et h a t X > E .

The MP completes at time X + 2 E + (3E + X ) — 5 E + 2 X and total

pro c e s s i n gt i m eo f t h er e m a i n i n gj o b so n m a c h i n eA i s e q u a lt o ( 2E — X ) +

2 E, so that the last job is completed on A at time 9E + X. Since 10 E —

Cmax(So) > 9E 4- X and X > E, we derive that X — E. Thus, the set of

jobs in sequence a and the set of the remaining jobs of set R form a solution

to PARTITION. •

We resolve the exact complexity status of problem F2|m(l, l)|C max by

providing a dynamic programming algorithm for its solution. The running

time of the algorithm is pseudopolynomial with respect to the length of input,

provided that

• all processing times and values a a and as are integers;

• function /A(£) has integer values for all integer times t , 0 < t < a ( N ) .

Consider an optimal schedule for problem F2|m(l, l)| C max in which the

MP on machine A starts at time to. Without loss of generality, we may

assume that the jobs processed on machine A in the time interval [0, to] are

sequenced according to Johnson's rule; otherwise these jobs can be rearranged

accordingly without increasing the makespan. Due to a similar reason, the



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

jobs that follow the MP on machine A are also ordered according to the

Johnson s rnle. Notice that a similar property is observed for the two-machine

flow shop problem with a fixed non-availability interval, see Lee [89].

Without loss of generality, assume that all jobs of set N are numbered

according to Johnson's rule. Our algorithm for problem F2|ra(l, l)|C max

scans the jobs in the order of their numbering and builds two (partial) flow

shop schedules. One of them, which we call left, handles the jobs that are

processed before the MP on machine A, provided that their processing starts

at time zero and the MP on machine B also starts at zero. The other one,

which we call right, handles the jobs to be processed after the MP on ma-

chine A, provided that their processing starts at time zero. Once each job

is assigned to one of these schedules, either left or right, the two schedules

can be concatenated together with the MP 011machine A of an appropriate

length placed between them. As a result, a feasible schedule for the original

problem is constructed.

Suppose k jobs have been assigned to the left or right schedule. A typical

state is described by the string

[ k ] u i , u2 ]V i , v 2 ) , (6.14)

where

k - the number of scheduled jobs, 0 < k < n;

U\ —total processing time of the jobs in the current left schedule on machine

A;

U2- the makespan of the current left schedule;

V\ —total processing time of the jobs in the right schedule on machine />,

v 2 - the makespan of the current right schedule;



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

A

B

ui

O I B

A

B

u 2 (a)

V2 (b)

Figure 6.4: A partial schedule: (a) left schedule; (b) right schedule

These values are illustrated in partial schedules shown in Figure 6.4.

At the initialization stage, we define

(0;0, ftg;0,0),

and scan the jobs in accordance with their numbering. Define v4o= 0 and

compute the partial sums A k — i a j f° r all /c —1 ,..., n.

Given a partial schedule associated with state (6.14), the algorithm gen-

erates two new states, depending on whether the next job k + 1 is inserted

into the left schedule or the right schedule.

If job k + 1 is assigned as the last job of the left schedule then either

this job becomes critical so that the makespan of the left schedule is equal

to U\ 4-dfc+i + bk+1, or the critical job remains the same, i.e., the makespan

increases by b k+ \. Thus, the new state is described by

( k + l;iii + afc+ i,max{ui + a k + i , u 2 } + bk +i;ui,u 2) •

Otherwise, if job k 4- 1 is assigned as the last job of the right schedule

then the new state is described by

( k + l ;u i ,u 2 ; v \ + 6fc+i ,max{Ajfc+i- u i , v2 } + bk + i )•

In any case, if the resulting state coincides with an existing state, it is

discarded, i.e., only one state corresponds to the same values of k,u\,u2-,vi

and v2-



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

Q B

& B U2 U2 + V \

Figure 6.5: A feasible schedule S : (a) a critical job in the right schedule; (b)
a critical job in the left schedule

The process is continued until all jobs are assigned. The left and rght

schedules related to a final state

( n ; u u u 2 ; v u v 2 )

are converted into a feasible schedule S for the original problem by placingthe

MP on machine A of length AA(U\) between them. The resulting makespan

depends on the position of a critical job, i.e., whether it is located in thefeft

schedule or in the right schedule. It follows that

Cmax(S) = max { u 2 + v u u i + AA ( u i ) + v2 } , (615)

as illustrated in Figure 6.5.

The optimal makespan can be found by minimizing (6.15) over all feal

states. The sequence of jobs in the corresponding optimal schedule canbe

found by backtracking. It follows from (6.15) that all four state variaMes

u x ,u 2 ,vi and v2 are essential, and no information is lost by keeping onlyme

state corresponding to their equal values.

Besides, the number of different values of u\ and u2 does not exoed

a(N) and max {a B , a{N)} +b{N), respectively, while the number of diffwnt

values of V\ and v2 does not exceed b(N) and a(N) + b(N). Assuming M—

ma x{a(N),a B + b(N)} we finally derive that the total running time oflhe

s c h e m ei s 0 ( n M 4 ) .



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

Thus, we have proved the following statement.

Theorem 6.3 Problem F2 |m(l, 1)| C max admits a pseudopolynomial time

algorithm.

We now convert the pseudopolynomial dynamic programming algorithm

above into a FPTAS for problem F2 |m(l, 1)| C max , provided that the length

of the MP on machine A is described by a linear function.

Consider problem F2 |m(l, 1)| C max with the processing times aj and bj

in which the length of an MP on machine L is equal to A ^(t) = a L + /L(^),

L G {A, B}, provided that /U(£) = (3At. We refer to this problem as Problem

P. To develop a FPTAS, we use the well-known rounding technique. Given

an instance of Problem P and an E > 0, define S = EM/(TI((3A + 3) + 1).

Introduce Problem P as problem F2|ra(l, 1), Re\CMAX with the processing

times defined as

a j = [ a j / 6 \, b j - [ b j / 5 \ ,j = 1,2 , . . . , n , (6 .16)

and

a A = L<W<5J, a B = [a B /6\ . (6.17)

Here [_xj denotes the largest integer that does not exceed x .

Algorithm FP

1. Given an instance of Problem P and an £ > 0, define the instance of

Problem P by (6.16) and (6.17).

2. For Problem P, run the dynamic programming algorithm. Call the

found schedule and the associated permutation of jobs indices by S

and 7r, respectively. Let the MP in schedule S be positioned after the

v —t h j o b i n p e r m u t a t i o nn .



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

3. Process the jobs from the original instance of Problem P according

to the permutation 7T, provided that each operation starts as early as

possible, and the MP on machine A starts after the first v jobs. Call

the resulting schedule S£. Stop.

Theorem 6.4 For problem F2 |m(l, 1)| C max , Algorithm FP is a FPTAS,

provided that function fA(t) is linear.

Proof. Given an instance of Problem P, introduce problem F2|m(l, l)|C max

with the processing times a,j and bj defined as

a j = S a j , b j= 6 bj t j = 1 ,2 , . . . , n , (6 .18)

and with

ola — —b&B, (6.19)

and call this Problem P .

Let 7r be a permutation of jobs that defines schedule S found in Step 2 of

Algorithm FP. Due to (6.18) and (6.19) we derive that a schedule S that is

optimal for Problem P is also associated with the same permutation. Since

/a(0 is linear, we derive that CmSLX (S) for Problem P is 5 times the makespan

Cmax(S') for Problem P. Without loss of generality, we assume that the jobs

are renumbered in such a way that n —(1,2,..., n).

Recall that the processing times a3 for Problem P are obtained by ex-

tending the times a3 to their original values by no more than 5 each. The

same holds for the values of bj, a A and a^. The total increase of durations

of all 2n operations does not exceed 2nS. Additionally, in the worst case

the MP on machine A in schedule S£ can be delayed by at most n5 time

units compared to its starting time in schedule 5, so that the increase of the

completion time of the MP on A does not exceed n5+ 8+ ftAnd. This implies

that

C max (S e) < C mm (S) + S (3n + 1 + P A n ) .



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

This due to the definition of 5 yields

C*max { S£)< C m a x { S )4-e M .

Since each M and C,
max (5) are lower bounds on the optimal makespan

for the original Problem P, we deduce that

C m USe)
C m«(S*) -

The running time of Algorithm FP is determined by the running time

of the dynamic programming algorithm used in Step 2. In our case

the dynamic programming algorithm takes O (nM 4~\ time, where M =

max |a(7V), olb + b(N) j. The definition of S implies that M — O ^ n / e ) .

Thus, we conclude that the running time of Algorithm FP does not exceed

0(n°/e: 4), and the algorithm is a fully polynomial approximation scheme. •

The running time of our FPTAS coincides with that of a recent approx-

imation scheme by Ng and Kovalyov [107] for the two-machine flow shop

scheduling problem with a single fixed non-availability interval under the re-

sumable scenario. Recall that in the latter settings, the problem with one

non-availability interval on each machine is not approximable within a con-

stant factor unless P=NP.

The running time of our FPTAS is quite large. We therefore describe an

algorithm that requires only 0(n log n) time and finds a schedule with the

makespan that is at most 3/2 times the optimum value, provided that the

function /^(t) is linear, i.e., /^(t) = + (3At.

Let S* be an optimal schedule. The following lower bounds on the optimal

makespan obviously hold:

Cmax (S*) > a A + a ( N ) ,

Cm a x ( S * ) > a B + b ( N ) ,

C mlx (S*) > Cmax (S}),

(6.20)

(6.21)

(6.22)



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

wheie Sj is the schedule obtained by Johnson's algorithm with both MP

ignored.

Define the sets of jobs

N x = { j e N \ { l + / 3A ) a j < b j } , N 2 = N \ N i .

We prove an additional lower bound

Cmax(S*) > (1 + / 3A) a ( N i )+ a A + b { N2 ) . (6.23)

To see that (6.23) holds, consider an optimal schedule S* and assume

that X\ is the set of jobs scheduled on A before the MP, while X 2 is the set

of jobs that are processed on A after the MP. It is clear that the MP starts

at time a(Xi) and the jobs of set X 2 cannot start on B earlier than time

a (^\) + ola + P Aa (Xi), the completion time of the MP on A. Thus,

C m a x { S * )> ( 1+ ( 3A ) a ( X i )+ a A + b ( X - 2 ) ,

so that (6.23) holds, since by definition (1 + / 3A ) a ( N i )+ a A + b ( N2 ) < (1 +

(3A)a(X 1) + a A + b(X 2) for any partition of set N into two subsets X\ and

X 2 .

Our approximation algorithm finds two schedules and outputs the best

of them as a heuristic solution. Formally it can be described as follows.

Algorithm F2H

1. Create a schedule S \ in which both MP start at time 0, and the jobs

are sequenced according to Johnson's algorithm.

2. Create a schedule S 2 in which on each machine an arbitrary sequence

of jobsof se t N\ i s fo l lowedbyan arb i t ra rysequenceof jobsof se t N 2 .

The MP on B starts at time zero, while on A the MP starts right after

the last job of set Ni is completed.

3. Call the best of the found schedules SH and output SH•



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

It is obvious that the running time of Algorithm F2H is determined by

the time complexity of Johnson's algorithm used in Step 1. Thus, the al-

gorithm requires at most 0(n log n) time. Below we analyze its worst-case

performance.

Theorem 6.5 For problem F2|m(l, 1)|C max with a linear function /^(t ) Al-

gorithm F2H finds a schedule SH such that

Cmax( S H ) ^ 3

CZ&) ~ r ( 6 ' 2 4 )

and this bound is tight.

Proof. Throughout the proof, we assume that in each schedule .Si or S 2

there is idle time on machine B\ otherwise C max (S//) = c*b + b(N), so that

SH is optimal due to (6.21).

Take schedule S\. It follows that

Cmax(Sl) < OtA+ C'max(5'}),

and in the remainder of this proof we assume that a a > \C max (S*); otherwise

due to (6.22) we obtain that the theorem holds for S7/ = 5i. This along with

(6.20) implies that

«(A0 < \c max (S")- (6-25)

Take schedule S 2- Without loss of generality, we may assume that in

S2 the jobs on machine B are partitioned into two blocks N1 and N 2, each

processed without intermediate idle time and with no clashes with the same

block of jobs on machine A. It follows that

C max ( £ 2 ) < max M-^i) + (1 + ( 3A ) a { N i )+ a A + a ( N2 ) 4- b ( N2 ) }.

Using (6.21) and (6.23) we derive

Cmax{S 2) < Cmax (5*) + max{ a ( N \ ) , a ( N2 ) } ,



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE 140

which due to (6.25) yields (6.24) for S„ = S 2.

To see that the bound is tight, consider the following instance of problem

F2|m(l, l)|C max . There is one job with both operations of unit length. The

length of the MP on machine B is equal to 1. The length of the MP on

machine A is given by the function 1 + et, where £ > 0 is a small number.

For schedule S\ we have that the MP on machine A starts at time zero,

so that C max (Si) = 3. Besides, since e > 0, we have that N\ = 0 and

N2 = {1}, so that schedule S2 coincides with S\. On the other hand, in

the optimal schedule 51*, the MP on machine A is scheduled after the job,

so that C max (S*) = 1 + (1 + e) — 2 4- e. As e tends to zero, the ratio

C max (S H )/C max (S*) goes to 3/2. •

Theorem 6.5 shows that the makespan of a schedule found by Algorithm

F2H may happen to be 50% worse than the optimal value. However, in

practice Algorithm F2H exhibits a much more accurate performance.

We have conducted computational experiments to test the behaviour of

the algorithm on simulated data. The purpose of the first experiment has

been to track the performance ratio depending on the number of jobs. For

each value n of the number of jobs 100, 200, 500 and 1000 we generaied

100 instances. The processing times of the jobs have been drawn from the

uniform distribution over the interval [1,100]. The lengths of the MPs on

m a c h i n eL E { A , B } h a v eb e e nd e f i n e db yl i n e a rf u n c t i o n sAL { t )= £ *L+ f iL t

where and fiL have been drawn from the uniform distribution over the

interval [1,1000] and [0,1], respectively. For each generated instance the

performance ratio has been computed as the ratio of the makespan found by

Algorithm F2H over the strongest of the lower bounds (6.20)-(6.22).

The results of this experiment are shown in Table 6.1. We see thai in

almost 80% of instances the algorithm finds a global optimum solution. The

average relative error is less than 1%. The worst-case relative error is rarer

larger than 7%. The performance of the algorithm improves as the nunfcer

of jobs grows.



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE 141

n % Optimum Found Average Error Maximum Error
100 62 1.0084 1.0616
200 75 1.0036 1.0486
500 83 1.0018 1.0307

1000 77 1.0008 1.0144

Table 6.1: Results of Experiment 1

p A = 0.01
>>

II o I-
* T-H

II
PA — 10

Pmax

Q-A 1OPmax

&a 100p max

1.0001
1.0014
1.0007

1.0001
1.0125
1.0039

1.0001
1.0291
1.0079

1.0001
1.0218
1.0069

Table 6.2: Results of Experiment 2

The second experiment has been carried out to verify the performance

of the algorithm for various values of parameters cv/i and [3A that define the

length of the MP on machine A. Recall that the MP on machine B starts

at time zero in any optimal schedule. We have tested the algorithm for

twelve combinations of the values of a A and (3 A, and for each combination

100 instances of n — 100 jobs have been generated. Table 6.2 reports the

performance ratio values. Here pmAX denotes the largest processing time.

The results show the robust performance of the algorithm. The most

difficult instances correspond to the medium values of a A and (3A. This is

due to the fact that for these values a heuristic schedule is likely to position

the MP on machine A in the middle part, while the lower bounds assume

the MPs placed in the beginning of the schedule.

The algorithm has been coded in C++ and run on the Pentium IV 2.8GHz

workstation. We do not report the computation time since the two expc i i-

ments have taken several milliseconds to complete.

6.4 Flow Shop No-Wait

For problem F2\no - wait, m(l, 0 )|C ma x, the length of the MP that starts on

A at time t is defined as A (t) = a + f{t), where a is a given positive constant



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

and / is a non-decreasing function such that /(0) = 0 and its computation

for a given t takes constant time.

To demonstrate the difficulty of problem F2\no — wait,m(l, 0)|C max we

present an instance of the problem with only two jobs. The example demon-

strates that (i) an optimal sequence of jobs may be different from an optimal

sequence for the related problem F2\no —wait.\C max with no maintenance

period and (ii) in an optimal schedule the maintenance period can be not in

the beginning of the schedule where its length is minimal but in the middle

of the schedule to fill a suitable idle period on machine A. Consider problem

F2\no —wait, m(l, 0)|C max with two jobs with the processing times

fli = 1, &i= 2; a2 = 2, b2 = 9.

The length of the MP that starts on machine A at time t . is given

by A (t) = 2 + 31. Figures G.G(a-c) show the possible placements of

the MP, provided that the jobs are kept in the sequence that is opti-

mal for problem F2\no — wait\C max with the MP ignored. The schedule

in Figure 6.6(d) is a unique optimal schedule for the instance of problem

F2\no —wait., rn( 1, 0)|C max under consideration.

The Gilmore-Gomory algorithm is used as a subroutine in our PTAS for

problem F2\no — wait, m(l, 0)|C max . This algorithm is discussed in details

in Section 1.6.3.

For our further purposes, we need the following statement.

Lemma 6.1 Suppose that a solution to some instance of problem F2\no —

wait\C max is found. If now some subset Q of jobs is removed from the in-

stance, an optimal solution for the remaining jobs can be f'ound in 0(n) time.

Proof. Recall that the Gilmore-Gomory algorithm consists of two parts: first,

it solves the assignment problem (matching) with the original matrix, and

then merges the obtained partial tours into a complete optimal tour (patch-

ing) . The match ingpar t o f thea lgor i thmissor t ingof eachar ray(« i , . . . , a n )



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

and ( /? j , . . . , / 3n) in non-decreas ingorder . Th is requ i res0 ( n log n ) time. All

patching steps can be implemented in linear time; see, e.g., [21]. If the jobs

of set Q are removed, to solve the matching subproblem it suffices to remove

these jobs from the sorted arrays available after a solution with the full set

of jobs is found. The patching part will require 0(n —|Q|) time. •

Remark 6.1 We have not been able to establish the exact complexity status

of problem F2\no —wait,m(l,0)\C max . We have developed our approximation

scheme assuming that the problem is NP-hard, as is NP-hard its counterpart

with a single fixed non-availability interval. If our problem had admitted a

polynomial-time algorithm, that algorithm would have been able to solve a

generalization of the Gilmore-Gomory TSP with some distances of variable

length. The latter seems highly unlikely; see a recent survey on solvable cases

of the TSP [21].

Given an instance of problem F2\no — wait,m(l,0)\C max , let problem

F2\no —wait\C max with the same set of jobs and continuously available ma-

chines be called the associated Problem GG (for Gilmore-Gomory).

Without loss of generality, we may assume that in any schedule that is

optimal for problem F2\no — wait,m(l,0)\C max the maintenance period on

machine A starts later than time zero; otherwise, such a schedule can be

found by starting an optimal schedule for the associated Problem GG at

time a.

Suppose that the jobs are numbered in the order of

their processing in schedule S* that is optimal for problem F2\no —

wait , m(1, 0)|C max , and job Jp is the job that immediately precedes the MP.

During the MP on machine A, machine B processes only operation 0PiB- If

job Jp and the MP are removed from S* then the starting times of all oper-

ations that follow the MP in S* can be reduced by at least a. Thus, there

exists a flow shop no-wait schedule S' for the remaining jobs and continuously

available machines such that C max (S') < CmSLX (S*) —a. Given a solution to



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

the associated Problem GG with the full set of jobs (in fact, only solution to

the matching subproblem is needed; see Remark 6.1), we can find schedule

S' in 0(n) time.

This argument can be extended to a removal of more than one job along

with the MP from an optimal schedule. Given an optimal schedule S*, con-

sider the sequence of jobs J p _ k , ..., J p ,..., Jp+l for k > 0 and I > 0 such

that the MP on machine A is placed after job Jp. We call the sequence

J p — k t• • •i Jp i M P , . . • i Jp+i8-block of schedule S* and denote it by cr*(yQ,AIP),

where Q = { Jp_*.,..., J p ,..., Jp+i }; see Figure 6.7. Notice that the case that

I = 0 corresponds to the situation that the MP is the last element of the

block.

We call the sequence a*(Q', MP) the interior of block a*(Q , M P ) if Q ' =

{ J p _fc +1 ,..., J p ,..., Jp+ /_ 1}. The length of the time interval that starts at

time R p_ k+1 A(S*) and completes either at the end of the MP (if I = 0)

or at time ma.x{CMP^{S*), CP> B(5*)} (if I = 1) or at time Cp+i -i ^S*) (if

I > 1) defines the length IQ of the interior of block cr*(Q,MP). Notice,

that in schedule S1*, the elements of the interior of a block can be processed

simultaneously only with the elements of that block. If block er*(Q, MP) is

removed from S*, then the starting times of all operations that follow the

b l o c kc a n b e r e d u c e db ya t l e a s t I Q .

Lemma 6.2 If blockcr*(Q, MP) is removed from schedule S* that is optimal

for problem F2\no — wait, m (l, 0)| C max; the starting times of all operations

in schedule S* that follow the block can be reduced by at least IQ. There

exists a flow shop no-wait schedule S' for the remaining jobs and continuously

available machines such that CmSLX (S') < Cma,x(S*) — IQ. Given a solution to

the associated Problem GG with the full set of jobs, schedule S' can be found

in 0{n) time.

Proof. This lemma immidiately follows from Lemma 6.1 and the definition

of the interior of a block. •



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

For problem F2\no —wait,m(l,0)\C max the following lower bound on the

makespan of an optimal schedule

Cmax{S ) > Cmax (Sqq) (6.26)

obviously holds, where SGG is an optimal schedule for the associated Problem

GG.

Assume that e < 1 and the number of jobs is sufficiently large, e.g.,

n > 2 [i] +3.

Algorithm FNWA

1. Given an instance of problem F2\no — wait,m(l,0)\C max and e > 0,

define 2 equal to |~^].

2. Assign the MP to start at time zero and append all jobs in the sequence

that defines schedule S GG . Denote the obtained schedule S 0.

3. For each k taking odd values from 1 to 2z —3 do the following:

Enumerate all possibilities of a selection of k jobs from set N. For each

selected set N^ do the following:

(a) By enumerating all possibilities, solve an auxiliary problem

F2\no - wait,m(l,0)\C max with the set of jobs N k. Call the ob-

tained schedule Sjvfc-

(b) Solve to optimality problem F2\no —u>ait\C max for the set N\Nk

of the remaining jobs by the Gilmore-Gomory algorithm. Call the

obtained schedule S]v\Nk.

(c) Find schedule SNk for the original problem by concatenating

schedules S^ k and SN\Nk-

4. Among all found schedules output schedule SH with the minimum

makespan.



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

Let us estimate the running time of Algorithm FNWA. According to

Remark 6.1, we can perform the matching part of the Gilmore-Gomory al-

gorithm beforehand, hence running this algorithm in Step 3b requires only

linear time for each set N^. It is clear that the time required for the last run

of the loop in Step 3 for k — 2z —'i determines the overall time complexity

of the algorithm. There are 0(n 2z ~ 3) options of selecting the set A^-a, and

for each selection Steps 3a-3c can be implemented in linear time. Hence, the

total running time of Algorithm FNWA does not exceed 0(n 2 ^1 -2 ).

We now analyze the worst-case performance of Algorithm FNWA.

Theorem 6.6 For a given e > 0 Algorithm FNWA outputs a schedule S//

such that the inequality
Cmax(Sn )

U ?) " +£

holds for any instance of problem F2\no —wait,m(l,0)\C max , where S* is an

optimal schedule for the instance.

Proof. If a < iC max (S*) then clearly C max (5 0) < (1 + \)C max (S*) due

to (6.26). Therefore, further we concentrate only on the case that a >

"Cmax(S*) and C max (So) > (1 + ^)C max (S*).

Since C max (So) > (l + ^)C max (S*) we conclude that in any optimal sched-

ule at least one job is processed before the MP.

In the first iteration of the loop in Step 3 for A;= 1, any selected set

Ni consists of exactly one job. Schedule S^ l is an optimal flow shop no-

wait schedule for processing the job in Ni together with the MP. Schedule

Sn\NI 1S an optimal flow shop no-wait schedule of the jobs of set N\N\.

If these two schedules are concatenated, we obtain schedule S^ 1 such that

C'max(S'Ar1) < Cmax(S'jv1) + C max ^S/v\w,y Due to full enumeration, among

the generated sets N\ there will be set N\ that consists of a job that is

located immediately before the MP in a certain optimal schedule S*, i.e.,

(T*(NX,MP) is a block of schedule S*. Due to Lemma 6.2 applied for k = 0



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

and / — 0, when this block is removed from schedule S* the makespan of

that schedule deci eases by at least o?. Thus, for N\ — N\ we derive that

Cmax[SN\NI^ —^ max(5*) —a < (l — Cmax (S*). In the reminder of this

proof we assume that Cmax ( s Nl } > fC max (S*) for Nx = JVl5 otherwise the

theorem holds for SH ~ S$ .

Notice that in the sequence of jobs that defines an optimal schedule S*

one of the following three configurations are possible:

( i ) there is at least one job located immediately before block a*(N l , MP)

and one job located immediately after;

( i i ) there are 1 1 0jobs located before block a*(N u A/P);

( i i i ) there are no jobs located after block a*(N\ , MP) .

Consider the next iteration of the loop in Step 3. Among the sets 7V3

generated in this iteration there will be a set, which we call /V3, such that

iV3 = iV[ U{Jin Jv} and, moreover, in the sequence that defines an optimal

schedule S* job Ju is processed immediately before block a*(N\, MP) while

job Jv immedia te lyfo l lowsb lockCT*(TV1,MP), prov idedtha t schedu leS*

admits configuration (a) above. In the case of configuration (b), both Ju

and Jv are sequenced in S* immediately after block cr*(Ni, MP), and in

the case of configuration (c), the jobs Ju and Jv are sequenced immediately

beforeb lock a*(N\ ,MP) . I11o ther words ,the a lgor i thmf indsse t N 3D N{

of three jobs and such that a*(N3, MP) is a block of an optimal schedule S*.

Moreover, in schedule S* block a*(N u MP) belongs to the interior of block

a*{Nz ,MP) .

If now block a*{N3 , MP) is removed from S\ the starting time of all jobs

that follow the block in schedule S* can be reduced by at least the length of its

interior, which in turn is no smaller than Cmax > ^C max (5"*). Due to

Lemma 6.2, this implies that C m ax (^SN\N.j) < ( ! " § ) C m „ (5*) for N3 = N 3.



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

In the reminder of this proof we assume that Cmax > fC max (S*) for

W3 = iV3; otherwise the theorem holds for SH = S^ r

Extending this argument, we can prove that for any odd A:,1 < k < 2z-3,

either C max > ^C max (5*) for some set Nk = Nk D Nk_x D ... D N l

oi the theorem holds for Su — S^ k. However, for A:= 2z —3 we obtain

Cmax > C max (S*) which is impossible.

This proves that the algorithm generates at least one schedule which

sa t i s f i e sthe inequa l i tyC max {S H ) < (1 + i )Cmax (S*) < (1 + e)Cmax (S*)

according to the definition of 2. •

A PTAS for problem F2\no —wait,m(0, l)|C max with the MP 011machine

D can be obtained from Algorithm FNWA by making simple symmetric

changes, e.g., replacing the references to problem F2\no —wait, m(l, 0)|C max

in Step 1 and Step 3a by F2\no —wait , ra(0,1)|Cmax. The removal argument

and Lemma 6.2 can be modified accordingly.

6.5 Conclusion

We have studied the two-machine open shop, flow shop and flow shop 110-

wait problems to minimise the makespan in which machines are subject to

preventive maintenance, and the length of each maintenance period depends

011its starting time. The open shop problem can be solved in linear time,

while the flow shop problem is NP-hard, but admits a pseudopolynomial algo-

rithm and a fully polynomial approximation scheme. The flow shop problem

with 110-wait in process constraint admits a polynomial time approximation

scheme.

Not only the complexity gap between the first two models is interesting

to notice, but also the fact the two-machine open shop problem with a single

fixed non-availability interval is NP-hard, while in our settings it is polyno-

mially solvable.As topics for further research we mention the clarification of

the complexity status of the flow shop no-wait problem subject to preventive



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

maintenance and study of approximability issues of its extended versions,

e.g., with more machines or more maintenance intervals. Similar problems

for other shop scheduling problems also are worth of investigating.

The obtained results should be seen as the first steps towards more com-

plex models capable of handling more general types of machine environment

and multiple machine maintenance intervals. The methods described in this

chapter may serve as subroutines for possible constructive heuristics and

metaheuristic algorithms for those generalized problems.



CHAPTER 6. SCHEDULING MACHINE MAINTENANCE

A

B

Jl h MP

Jl Ji

0 1 3 12 14

A

B

\ IF Ji J2

Jl J2

0 2 3 5 14

H i 1 h
0 1 3 6 8

A

B

J2 MP Ji

J2 Ji

+-+
0 2 1011 13

(a)

A Ji MP J2

B Ji J2

17

( b )

(c)

( d )

Figure 6.6: Schedules with the optimal Gilmore-Gomory permutation (J u

with the MP placed (a) after the last job, (b) before the first job and
between the jobs; (d) optimal schedule with the sequence (J2,<A) and
MP between the jobs

a*(Q,MP)

A

B

Jp—kJp—k+-

Jp—kJp—k+]

Jr MP

Jr)

J,p+i-I Jp+i

Jp+i- •lP+I

interior

Figure 6.7: Block a* (Q,MP)



Chapter 7

Summary

The main topic of this research is the shop scheduling problems in which the

processing machines may become non-available during the scheduling period.

A number of such scheduling problems are considered. For some problems

their complexity statuses are established and pseudopolynomial time algo-

rithms are presented. For one problem a polynomial algorithm is developed

which solves the problem optimally For problems which are proved to be

NP-hard either a polynomial time approximation algorithms with a finite

worst-case ratio bound or (fully-)polynomial time approximations schemes

are developed. Below we outline the obtained results as well as some possible

directions for the future research. For all problems considered the objective

is to minimise the makespan.

• For problem F 2 \h (q ,0 ) ,Re| C max we have developed a pseudopolyno-

mial dynamic programming algorithm and showed that this algorithm

can be extended for more general problem F2 \h(q A ,q B), Re\ C max , see

Section 3.2. This result improves the known pseudopolynomial dy-

namic programming algorithm for this problem with a single non-

availability interval due to Lee [89].

• For problems F2 \h( l ,0), Re\ Cma.x and F2 |/i(0,1), Re | C max the corre-

spondent pseudopolynomial dynamic programming algorithm by Lee

151



CHAPTER 7. SUMMARY

[89] is transformed into an FPTAS using the rounding technique. The

same result was obtained independently by Ng and Kovalyov [107].

This result improves the known 4/3-approximation algorithms for the

cases of one hole on one of the machines due to Lee [90] and Cheng

and Wang [32], The problem with several non-availability intervals on

the second machine cannot be approximated within any finite factor,

unless P=NP.

• Since the presented FPTAS has a high running time we propose a fast

3/2-approximation algorithm for the case of several non-availability

intervals on the first machine, see Section 3.4. This algorithm im-

proves and simplifies the known 3/2-approximation algorithm due to

Lee [90] for the case of one hole on the first machine and it handles a

more common case of several holes on the first machine. Cheng and

Wang [32] have presented a 4/3-approximation algorithm for problem

F2 \h(l, 0), Re | C max but it cannot be used for the problem with several

holes on the first machine.

• For problems F2 |/i(0,1), S—Re | C max and F2 |/i(l, 0), S—Re | C max we

present a polynomial time approximation scheme, see Section 3.5. This

result improves the known 2-approximation algorithm for the problem

with one hole on the first machine and 3/2-approximation algorithm

for the problem with one hole on the second machine, see Lee [90]. It

remains an open question whether the problem with a single hole under

the semi-resumable scenario admits an FPTAS.

• For scheduling problems F2 |/i(0,1), no—wait, Re\ C max and

F2\h{l, 0), no-wait, Re| C max , F2 |/i(0,1 ),no-wait, S-Re| Cmax

and F2\h{l,0), no-wait, S-Re\C max we establish their NP-hardness,

see Section 4.2. Previously, this complexity result was estab-

lished only for problems F2 |/t(0,1), no—wait, N —Re\ Cmax and



CHAPTER 7. SUMMARY

F2\h (l,0), no-wait, N -Re \C max , see [38, 39],

• We piesent 3/2-approximation algorithm for the two-machine flow

shop problem with no-wait in process under any scenario, see

Section 4.3. Only the non-resumable scenario has been consid-

ered for this problem in the literature. Thus, we obtained an

improvement upon the best previously known 5/3-approximation

algorithm for the non-resumable scenario due to [32]. Re-

cently Cheng and Liu [30] present a polynomial time approxima-

tion algorithm for problems F2 |/i(0,1), no—wait, N—Re\ Cmax and

F2\h(l, 0) ,no—wait, N —Re\ C max . It remains an open question

whether this problem with a single non-availability interval under any

scenario admits an FPTAS.

• In Section 4.4 we consider problems F2 \h (0 ,1 ) ,no—wai t ,Re | Cmax
an d

F2\h(l,0),no—wait.,Re\C mSLX which have not been considered in the

literature before. We propose a 4/3-approximation algorithm for each

of these problems.

• For the two-machine open shop problem we have developed a PTAS

for the cases with either several holes on one of the machines or with

a single hole on each of the machines under the resumable scenario. It

significantly improves the known 4/3-approximation algorithm by Breit

et al. [18] which can deal only with problems 02 |/i(0,1), Re\ Cmax

and 02 |/i(l, 0), Re\ Cmax - Further, it is worth studying whether this

problem with a single hole on one of the machines admits an FPTA.S.

Also, it is interesting to study the open shop problem with more tiian

two processing machines and a non-availability interval on one of the

machines.

• We try to initiate the study on scheduling problems in which machines

have to be maintained during the planning period where the lengths of



CHAPTER 7. SUMMARY 154

each maintenance period is not fixed and depends on the start time of

this maintenance. We concentrate on two-machines scheduling prob-

lems in which each machine has to be maintained exactly once dur-

ing the scheduling period. For problem 02 |m(l, 1)| C max we present a

polynomial-time optimal algorithm.

• For problem F2 |ra(l, 1)| C max we prove that this problem becomes NP-

liard even if the length of the maintenance interval depends linearly on

its starting time. We also give a pseudopolynomial dynamic program-

ming algorithm and two approximation algorithms, including a fully

polynomial approximation scheme.

• A polynomial-time approximation scheme is designed for problems

F2 |m(l, 0), no—wait\ Cmax and F2 |m(0, l),no—wait\ C max .



Index

Algorithm

Gilmore and Gomory, '21

Gonzalez and Sahni, 27

greedy, 29

Johnson, 15

Pinedo and Schrage, 32

APX-complete problem, 34

APX-hard problem, 33

Assignment problem, 19

EDD rule, 10

Flow shop, 6, 11, 14, 44, 52

no-wait, 6, 16, 18, 46, 82

Hamiltonian tour, 18

Job

completion time, 9

critical, 14, 53

crossover, 37

deadline, 5

due date, 5

earliness, 9

fractional, 71

lateness, 9

no-wait, 79

processing time, 5

regular, 79

release date, 5

tardiness, 9

weight, 5

Johnson rule, 16

L-reduction, 33

LPT rule, 10

Maintenance, 49

Maintenance period, 119

Makes pan, 9

Maximum lateness, 9

Open shop, 6, 24, 27, 48, 104

Operation

affected, 37

missing, 17

Parallel machine, 5

Pareto-optimal, 25

Partition, 11

Path

critical, 15, 53

Ratio bound



INDEX 156

tight, 11

Scenario

non-resumable, 37

resumable, 37

semi-resumable, 37

Schedule

busy, 13

dense, 29

permutation, 6

time optimal, 10

Shop scheduling, 5

SPT rule, 10

Total completion time, 9

Total cost, 10

Total earliness, 9

Total tardiness, 9

TSP, 18

Workload, 5



Bibliography

[1] J.O. Achugbue and F.Y. Chin, Scheduling the open shop to mininiise moan

flow time, SI AM Journal on Discrete Mathematics , 11 (1982), 709-720.

[2] I. Adiri, J. Brnno, E. Frostig and A.H.G. Rinnooy Kan, Single machine flow-

time scheduling with a single breakdown, Acta Informatica , 26 (1989), (>79-696.

[J] A. Agnetis, P.B. Mirchandani, D. Pacciarelli and A. Pacifici, Scheduling prob-

lems with two competing agents, Operations Research, 52 (2004), 229 242.

[4] J.M. van den Akker, J.A. Hoogeveen and G..1. Woeginger, The two-machine

open shop problem: To fit or not to fit, that is the question, Operations

Research Letters , 31 (2003), 219 224.

[5] V.A. Aksjonov, A polynomial-time algorithm of approximate solution of a.

scheduling problem, Upravlyaemye Sistemy , 28 (1988), 8-11, (in Russian).

[G] S. Anily, C.A. Glass and R. Hassin, The scheduling of maintenance service,

Discrete, Applied Mathematics , 82 (1998), 27-42.

[7] S. Anily, C.A. Glass and R. Hassin, Scheduling maintenance services to three

machines, Annals of Operations Research, 86 (1999), 375-391.

[8] S. Arora, C. Lnnd, R. Motwani, M. Sudan and M. Szegedy, Proof verification

and hardness of approximation problems, Journal of the ACM , 45 (1998),

501-555.

157



B I B L I O G R A P H Y
15o

[9] K.R. Baker, Introduction to Sequencing and Scheduling , Wiley, New York,

1974.

[10] A. B<u-Noy, R. Bhatia, J.S. Naor and B. Schiber, Minimising service and

opeiation cost, ot periodic scheduling, Mathematics of Operations Research, 27

(2002), 518-544.

[11] I. Bar Any and l\ Fiala, Nearly optimum solution of multimachine scheduling

problems, Szigrna, 15 (1982), 177-191, (in Hungarian).

[12] (.. 1). BirkliolF, Ties observaciones sobre el algebra lineal, Universidad Nacional

de Tncuman Revista, Serie A, 5 (194G), 147 151.

[13] J. Blazewicz, J. Breit, P. Formanowicz, W. Kubiak and G. Schmidt, Heuristic

algorithms for the two-machine flowshop with limited machine availability,

Omega, 29 (2001), 599-608.

[14] S.A. Borodich, On intractability of problems of minimisation of the number of

tardy jobs in a two-machine open shop. In: Complexity and Solution Methods

of Optimization Problems, Minsk (1984), 4-8 (in Russian).

[15] S.A. Borodich, On a problem of minimising the maximum lateness in

a two-machine open shop, Izvestia Akadcmii na.uk USSR , Seria Fiziko-

Matematicheskikh Nauk, 5 (1985), 109 (in Russian).

[16] J.-L. Bouqard, J.-C. Billant, M.A. Kubzin, V.A. Strusevich, Two-machine (low

shop scheduling problem wit h no-wait, jobs, Operations Research Letters, .'W

(2005), 255-262.

[17] .1. Breit, Heuristisclie Ablaufplanungsverfahren fUr Flowshops und Openshops

mit beschr&nkt verfilgbaren Prozessonm, Ph.D. 'Thesis, University ol Saarland,

Saarbrticken, 2000.

[18] J. Breit, G. Schmidt and V.A. Strusevich, Two-machine open shop scheduling

with fin availability constraint, Operations Li search Lctteis , 2!) (2001), 0<>-77.



BIBLIOGRAPHY
159

[19] J. Breit, G. Schmidt and V.A. Strusevich, Non-preemptive two-machine open

shop scheduling with non-availability constraints, Mathematical Methods of

Operations Research, 57 (2003), 217-234.

[20] J. Bieit, An improved approximation algorithm for two-machine flow shop

scheduling with an availability constraint, Information Processing Letters , 90

(2004), 273 - 278.

[21] R.E. Burkard, V.G. Daineko, R. van Dal, ,J.A.A. van der Veen and G.J. Woeg-

inger, Well-solvable cases of the travelling salesman problem: A survey, SI AM

Reviews , 40 (1998), 496-546.

[22] B. Carr and S. Vempala, Towards a 4/3-approximation for the asymmetric

travelling salesman problem, In: Proceedings of the 11th ACM-SIAM Sympo-

sium on Discrete Algorithms , (2000), 116-125.

[23] S. Y. Chang, H.-C. Hwang, The worst-case analysis of the MULTIFIT al-

gorithm for scheduling nonsimultaneous parallel machines, Discrete Applied

Mathematics , 92 (1999), 135-147.

[24] B. Chen, C.A. Glass, C.N. Potts and V.A. Strusevich, A new heuristic for

three-machine flowshop scheduling, Operations Research, 44 (1996), 891 898.

[25] B. Chen, C.N. Potts and G.J. Woeginger, A review of machine scheduling:

complexity, algorithms and approximability. In: D.-Z. Du and P.M. Pardalos

(Eds.), Handbook of Combinatorial Optimization, Kluwer, Dordrecht, 1998,

pp. 21-169.

[26] B. Chen and V.A. Strusevich, Approximation algorithms for three machine

open shop scheduling, ORSA Journal on Computing , 5 (1993), 321-326.

[27] B. Chen and V.A. Strusevich, Worst-case analysis of heuristics for open shops

with parallel machines, European Journal of Operational Research , 70 (1993),

379-590.



BIBLIOGRAPHY 1(30

[28] B. Chen and W. Yu, How good is a dense shop schedule?, Acta Mathematicae

Applicatae Sinica, 17 (2001), 121-128.

[29] T.C.E. Cheng, Q. Ding and B.M.T. Lin, A concise survey of scheduling with

time-dependent processing times, European Journal of Operational Research,

152 (2004), 1-13.

[30] T.C.E. Cheng, Z. Liu, Approximability of two-machine no-wait flowshop

scheduling with availability constraints, Operations Research Letters, 31

(2003), 319-322.

[31] T.C.E. Cheng, G. Wang, Two-machine flowshop scheduling with consecutive

availability constraints, Information Processing Letters, 71 (1999), 49-54.

[32] T.C.E. Cheng and G. Wang, An improved heuristic for two -machme flow-

shop scheduling with an availability constraint, Operations Research Letters

26 (2000), 223-229.

[33] Y. Cho and S. Sahni, Preemptive scheduling of independent jobs wfth release

and due dates times on open, flow and job shop, Operations HeswTch, 29

(1981), 511-522.

[34] E.G. CofFman Jr. (Ed.), Scheduling in computer and job shop system J- Wil-

ley, New York, (1976).

[35] R.W. Conway, W.L. Maxwell and L.W. Miller, Theory of Schedulin jiAddison-

Wesley, Reading (1967).

[36] S.A. Cook, The complexity of theorem proving procedures, in: Breedings

of the 3rd Annual ACM Symposium on Theory of Computing, A04-Press,

New-York, (1971), 151-158.

[37] J. Du and J.Y.-T. Leung, minimising mean flow time in two-madPie open

shops and flow shops, Journal of Algorithms, 14 (1993), 341-364.



BIBLIOGRAPHY 161

[38] M.L. Espinouse, P. Formanowicz, B. Penz, minimising the makespan in the

two-machine no-wait flow-shop with limited machine availability, Computers

& Industrial Engineering, 37 (1999), 497-500.

[39] M.L. Espinouse, P. Formanowicz, B. Penz, Complexity results and approxima-

tion algorithms for the two machine no-wait flow-shop with limited machine

availability, Journal of the Operational Research Society, 52 (2001), 116-121.

[40] U. Feige and C. Scheideler, Improved bounds for acyclic job shop scheduling,

Proceedings of the 30th Annual ACM Symposium, on the Theory of Computing

(STOC'98), 624-633.

[41] S. French, Sequencing and scheduling: An introduction to the mathematics of

the job-shop, Horwood, Chichester, (1982).

[42] A. Frieze, G. Galbiati and F. MafRoli, On the worst case performance of

some algorithms for the symmetric travelling salesman problem, Networks,

12 (1982), 23-39.

[43] H.N. Gabow and O. Kariv, Algorithms for edge coloring bipartite graphs and

multigraphs, SIAM Journal on Computing, 4 (1982), 117-129.

[44] M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and

jobshop scheduling, Mathematics of Operations Research, 1 (1976), 117-129.

[45] M.R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the

Theory of NP-Completeness. Freeman, (1979).

[46] P.C. Gilmore, R.E. Gomory, Sequencing a one-state variable machine: a solv-

able case of the traveling salesman problem, Operations Research, 12 (1964),

655-679.

[47] P.C. Gilmore, E.L. Lawler, and D.B. Shmoys, Well-solved special cases, in:

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys(eds.) The

Travelling Salesman Problem, John Wiley, Chichester, 1985, 87-143.



BIBLIOGRAPHY 162

[48] A.A. Gladky, A two-machine preemptive openshop scheduling problem: an

elementary proof of NP-completeness, European JoiLrnal of Operational Re-

search , 103 (1997), 113-116.

[49] C.A. Glass, J.N.D. Gupta and C.N. Potts, Two-machine no-wait flow shop

scheduling with missing operations, Mathematics of Operations Research, 24

(1999), 911-924.

[50] L.A. Golberg, M. Paterson, A. Srinivasan and E. Sweedyk, Better approx-

imation guarantees for job-shop scheduling, Proceedings of the 8th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA'97), 599-608.

[51] T. Gonzalez, A note on open shop preemptive schedules, Unit execution time

shop problems, IEEE Transactions on Computing, 28 (1979), 782-786.

[52] T. Gonzalez and S. Sahni, Open shop scheduling to minimise finish time,

Journal of the Association of Computing Machinary, 12 (1976), 665-679.

[53] T. Gonzalez and S. Sahni, Flowshop and jobshop schedules: complexity and

approximation, Operations Research, 26 (1978), 36-52.

[54] M. Gopalakrishnan, S.L. Ahire and D.M. Miller, Maximizing the effectiveness

of a preventive maintenance system: an adaptive modeling approach, Man-

agement Science , 43 (1997), 827-840.

[55] S.K. Goyal, A note on paper: On the flowshop sequencing problem with no-

wait in process, Operational Research Quarterly , 24 (1973), 130-133.

[56] S.K. Goyal and C. Sriskandarajah, No-wait scheduling: computational com-

plexity and approximation algorithms, Opsearch, 25 (1988), 220-244.

[57] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimiza-

tion and approximation in deterministic sequencing and scheduling: a survey,

Annals of Operations Research, 5 (1979), 287-326.



BIBLIOGRAPHY 163

[58] G.H. Graves, and C.-Y. Lee, Scheduling maintenance and semiresumable jobs

on a single machine, Naval Research Logistics , 46 (1999), 845-863.

[59] A. Grigoriev, J. van de Klundert and F.C.R. Spieksma, Modelling and solving

periodic maintenance problem, Working paper, Maastricht University, Maas-

tricht, The Netherlands, (2002).

[60] L.A. Hall, A polynomial time approximation scheme for a constrained flow-

shop scheduling problem, Mathematics of Operations Research, 19 (1994), 68-

85.

[61] L.A. Hall, Approximability of flow shop scheduling, Mathematical Program-

ming, 82 (1998), 175-190.

[62] N.G. Hall and C. Sriskandarajah, A survey of machine scheduling problems

with blocking and no-wait in process, Operations Research , 44 (1996), 510-525.

[63] Y. He, Parametric LPT-bound on parallel machine scheduling with nonsimul-

taneous machine available time, Asia-Pacific Journal of Operational Research,

15 (1998), 29-36.

[64] J.A. Hoogeveen and T. Kawaguchi, Minimising total completion time in a

two-machine flowshop: analysis of special cases, Mathematics of Operations

Research, 24 (1999), 887-910.

[65] J.A. Hoogeveen, P. Schuurman and G.J. Woeginger, Non-approximability re-

sults for scheduling problems with minsum criteria, Technical Report Woe-15,

Department of Mathematics, TU Graz, Graz, Austria (1997).

[66] H.-C. Hwang and S.Y. Chang, Parallel machines scheduling with machines

shutdowns, Computers and Mathematics with Applications , 36 (1998), 21-31.

[67] J.R. Jackson, An extension of Johnson's results on job lot scheduling, Naval

Research Logistics Quarterly, 3 (1956), 201-203.



BIBLIOGRAPHY 164

[68] S.M. Johnson, Optimal two- and three-stage production schedules with setup

times included, Naval Research Logistics Quarterly , 1 (1954), 61-68.

[69] S.N. Kabadi, M.F. Baki, Gilmore-Gomory type travelling salesman problems,

Computers and Operations Research, 26 (1999), 329-351.

[70] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller,

J.W. Thatcher (eds.), Complexity of Computer Communications, New York:

Plenum Press, (1972), 85-103.

[71] M. Kaspi and B. Montreuil, On the scheduling of identical parallel processes

with arbitrary initial processor available time, Research Report 88-12, School

of Industrial Engineering, Purdue University, (1988).

[72] H. Kellerer, Algorithms for multiprocessor scheduling with machine release

time, HE Transactions , 30 (1998), 991-999.

[73] A. Kononov, S. Sevastianov and I. Tschernykh, Polynomially solvable classes

of the open shop problem on the base of different machine loads, submitted

to Annals of Operations Research, 92 (1999), 211-239.

[74] M.Y. Kovalyov and F. Werner, A polynomial approximation scheme for prob-

lem F2 \rj\C max , Operations Research Letters , 20 (1997), 75-79.

[75] W. Kubiak, C. Sriskandarajah and K. Zaras, A note on the complexity of

openshop scheduling problems, IN FOR, 29 (1991), 284-293.

[76] W. Kubiak, J. Blazewicz, P. Formanowicz, J. Breit and G. Schmidt, Two-

machine flow shops with limited machine availability, European Journal of

Operational Research, 136 (2002), 528-540.

[77] M.A. Kubzin, C.N. Potts and V.A. Strusevich, Approximation schemes for

the flow shop scheduling problems with non-availability constraints, Book of

abstracts, MAPSP'03, (2003), 76-77.



BIBLIOGRAPHY 165

[7b] M.A. Kubzin, V.A. Strusevich, J. Breit and G. Schmidt, Polynomial-time

approximation schemes for the open shop scheduling problem with non-

availability constraints, Paper No. 02/1M/100, CMS Press, University of

Greenwich , (2002); to appear in Naval Research Logistics.

[79] M.A. Kubzin, V.A. Strusevich, J. Breit and G. Schmidt, The open shop

scheduling problem with non-availability constraints: polynomial-time approx-

imation schemes, Book of abstracts, MAPSP'03, (2003), 141-142.

[80] M.A. Kubzin and V.A. St rusevich, An approximation algorithm for the two-

machine flow shop no-wait scheduling problem with a non-availability interval,

Book of abstracts, CO'02, (2002), 73.

[81] M.A. Kubzin and V.A. Strusevich, Two-machine flow shop no-wait scheduling

with a nonavailability interval, Naval Research Logistics, 51 (2004), (>13-631.

[82] M.A. Kubzin and V.A. Strusevich, Planning machine maintenance in two-

machine shop scheduling, Paper No. 04/IM/lll, CMS Press, University of

Greenwich , (2004).

[83] M.A. Kubzin and V.A. Strusevich, Two-machine flowshop no-wait scheduling

with machine maintenance, to appear in J,OR.

[84] E.L. Lawler and J. Labetoulle, On preemptive scheduling of unrelated parallel

processors by linear programming, Journal of the ACM, 25 (1978), 612-619.

[85] E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, minimising maximum

lateness in a two-machine open shop, Mathematics of Operations Research,

6 (1981), 153-158. Erratum: Mathematics of Operations Research, 7 (1982),

635.

[86] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, "Sequenc-

ing and scheduling: algorithms and complexity," in Handbooks in Operations



BIBLIOGRAPHY 1G(;

Research and Management, Science , vol. 4, Logistics of Production and In-

ventory, S.C. Graves, A.H.G. Rinnooy Kan, P.H. Zipkin (Editors), North

Holland, Amsterdam, (1993), 455-522.

[87] C.-Y. Lee, Parallel machines scheduling with non-simultaneous machine avail-

able time, Discrete Applied Mathematics , 30 (1991), 53-61.

[88] C.-Y. Lee, Machine scheduling with an availability constraint, Journal of

Global Optimization , 9 (1996), 395-416.

[89] C.-Y. Lee, minimising the makespan in the two-machine flowshop schedul-

ing problem with an availability constraint, Operations Research Letters , 20

(1997), 129-139.

[90] C.-Y. Lee, Two-machine flowshop scheduling with availability constraints, Eu-

ropean Journal of Operational Research, 114 (1999), 420-429.

[91] C.-Y. Lee, Machine scheduling with availability constraints, in Handbook of

Scheduling: Algorithms, Models and Performance Analysis , J. Leung (Editor),

Chapman & Hall/CRC, London, (2004), pp. 22-1 22-13.

[92] C.-Y. Lee, and Z.-L. Chen, Scheduling jobs and maintenance activities on

parallel machines, Naval Research Logistics, 47 (2000), 145-165.

[93] C.-Y. Lee and S.D. Liman, Single machine flow-time scheduling with scheduled

maintance, Acta informatica 29 (1992), 375-382.

[94] C.-Y. Lee and S.D. Liman, Capacitated two-parallel machine scheduling to

minimise sum of job completion times, Discrete Applied, Mathematics, 41

(1993), 211-222.

[95] C.-Y. Lee and C.-S. Lin, Single-machine scheduling with maintenance and

repair rate-modifying activities, European Journal of Operational Research,,

135 (2001), 493-513..



BIBLIOGRAPHY 167

[96] J.K. Lenstra, Sequencing by enumerative methods, Mathematical Centre Tract

69, Amsterdam, (1977).

[97] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, Complexity of machine

scheduling problems, Annals of Operations Research, 1 (1977), 343-362.

[98] J.Y.-T. Leung and M. Pinedo, A note on scheduling parallel machines subject

to breakdown and repair, Naval Research Logistic, 51 (2004), 60-71.

[99] C.Y. Liu and R.L. Bulfin, On the complexity of preemptive open-shop schedul-

ing problems, Operations Research Letters, 4 (1985), 71-74.

[100] T. Lorigeon, J.-C. Billaut and J.-L. Bouquard, A dynamic programming al-

gorithm for scheduling jobs in a two-machine open shop with an availability

constraint, Journal of the Operational Research Society, 53 (2002), 1239-1246.

[101] L. Lu and M.E. Posner, An NP-hard open shop scheduling problem with

polynomial average time complexity, Mathematics of Operations Research , 18

(1993), 12-38.

[102] C.L. Monma and A.H.G. Rinnooy Kan, A concise survey of efficiently solv-

able special cases of the permutation flow-shop problem, RAIRO Recherche

operationnelle, 17 (1983), 105-119.

[103] J.M. Moore, An n job one machine sequencing algorithm for minimising the

number of late jobs, Management science, 15 (1968), 102-109.

[104] G. Mosheiov, Minimising the sum of job completion times on capacitated

parallel machines, Mathematics of Computer Modelling, 20 (1994), 91-99.

[105] J. von Neumann, A certain zero-sum two-person game equivalent to an optimal

assignment problem, Contributions to the Theory of Games, 28 (1953), 5-12.

[106] Y.D. Neumytov and S.V. Sevastianov, An approximation algorithm with an

exact bound for the three-machine problem with the opposite routes, Up-

ravlyaemye Sistemy, 31 (1993), 53-65 (in Russian).



BIBLIOGRAPHY 168

[107] C.T. Ng and M.Y. Kovalyov, An FPTAS for scheduling a two-machine flow-

shop with one unavailability interval, Naval Research Logistics , 51 (2004),

307-315.

[108] E. Nowicki and C. Smutnicki, Worst-case analysis of an approximation algo-

rithm for flow-shop scheduling, Operations Research Letters , 8 (1989), 17L-177.

[109] E. Nowicki and C. Smutnicki, Worst-case analysis of Dannenbring's algorithm

for flow-shop scheduling, Operations Research Letters , 10 (1991), 473-480.

[110] E. Nowicki and C. Smutnicki, New results in the worst-case analysis for flow-

shop scheduling, Discrete Applied Mathematics , 46 (1993), 21-41.

[111] E. Nowicki and C. Smutnicki, A note on worst-case analysis of an approxi-

mation algorithms for a scheduling problem, European Journal of Operational

Research , 74 (1994), 128-134.

[112] D. Nyman, and J. Levitt, Maintenance Planning, Scheduling and Coordina-

tion , Industrial Press, (2002).

[113] D. Palmer, Maintenance Planning and Scheduling Handbook, McGraw Hill,

(1999).

[114] C.H. Papadimitriou and P.C. Kannelakis, Flow shop scheduling with limited

temporary storage, Journal of the ACM , 27 (1980), 533-549.

[115] C.H. Papadimitriou and M. Yannakakis, Optimisation, approximation and

complexity classes, Journal of Computer and System Sciences , 43 (1991), 425-

440.

[116] J. Piehler, Ein Beitrag zum Reinhenfolgeproblem, Unternehmensforschung , 4

(1960), 138-142.

[117] M. Pinedo and L. Schrage, Stochastic shop scheduling: a survey, Deterministic

and Stochastic Scheduling , M.A.H. Dempster et al. (eds.), Riedel, Dordrecht,

(1982), 181-196.



BIBLIOGRAPHY 16g

[118] X. Qi, T. Chen and F. Tu, Scheduling the maintenance on a single machine,

Journal of Operatmal Research Society , 50 (1999), 1071-1078.

[119] A.H.G. Rinnooy Kan, Machine scheduling problems: classification, complexity

and computations, Martinus Nijhoff, Hague, 1976.

[120] G. Rote and G.J. Woeginger, Time complexity and linear-time approximation

of the ancient two machine flow shop, Journal of Scheduling, 1 (1998), 149-155.

[121] H. Rock and G. Schmidt, Machine aggregation heuristics in shop-scheduling,

Methods of Operations Research, 45 (1983), 303-314.

[122] H. Rock, The three-machine no-wait flow shop is NP-complete, Journal of the

ACM, 31 (1984), 336-345.

[123] H. Rock, Some new results in flow shop scheduling, ZOR - Mathematical Meth-

ods of Operations Research , 28 (1984), 1-16.

[124] C.N. Potts, Analysis of heuristics for two-machine flow-shop sequencing sub-

ject to release dates, Mathematics of Operations Research , 10 (1985), 576-584.

[125] C.N. Potts, D.B. Shmoys and D.P. Williamson, Permutation vs. non-

permutation flow shop schedules, Operations Research Letters, 10 (1991), 281-

284.

[126] S.S. Reddi, C.V. Ramamoorthy, On the flow shop sequencing problem with

no-wait in process, Operational Research Quarterly, 23 (1972), 323-331.

[127] C. Sadfi, B. Penz, C. Rapine, J. Blazevich and P. Formanowicz, An improved

approximation algorithm for the single machine total completion time schedul-

ing problem with availability constraints, European Journal of Operational

Research , 161 (2005), 3-10.

[128] C. Sadfi, B. Penz and C. Rapine, A dynamic programming algorithm for the

single machine total completion time scheduling problem with availability con-



BIBLIOGRAPHY 170

straints, 8th International Workshop on Project Management and Scheduling

- PMS, Valencia, Spain, (2002).

[129] S. Sahni and Y. Cho, Complexity of scheduling shops with no wait in process,

Mathematics of Operations Research , 4 (1979), 448-457.

[130] E. Sanlaville and G. Schmidt, Machine scheduling with availability constraints,

Acta Informatica , 35 (1998), 795-811.

[131] G. Schmidt, Scheduling with limited machine availability, European Journal

of Operational Research, 121 (2000), 1-15.

[132] S.V. Sevatianov, Efficient scheduling in the open shop systems, Siberian Jour-

nal of Operations Research, 1 (1994), 20-42 (in Russian).

[133] S.V. Sevast'janov, On some geometric methods in scheduling theory, Discrete

Applied Mathematics, 55 (1994), 59-82.

[134] S.V. Sevastianov and G.J. Woeginger, Makespan minimisation in open shops:

a polynomial time approximation scheme, Mathematical Programming , 82

(1998), 191-198.

[135] N.V. Shakhlevich and V.A. Strusevich, Two machine open shop scheduling

problem to minimise an arbitrary machine usage penalty function, European

Journal of Operational Research, 70 (1993), 391-404.

[136] D.B. Shmoys, C. Stein and J. Wein, Improved approximation algorithms for

shop scheduling problems, SIAM Journal on Computing , 23 (1994), 617-632.

[137] W.E. Smith, Various optimizers for single state production, Naval Research

Logistics Quarterly, 3 (1956), 69-66.

[138] C. Sriskandarajah and E. Wagneur, On the complexity of preemptive open

shop scheduling problems, Cahier du GERAD, G-90-36, Ecole des Hautes

Etudes Commerciales, Montreal, Canada (1990).



BIBLIOGRAPHY m

[139] V.A. Strusevich, A greedy open shop heuristic with job priorities, Annals of

Operations Research, 83 (1998), 253-270.

[140] M. Sviridenko and G.J. Woeginger, Makespan Minimization in No-Wait Flow

Shops: A Polynomial Time Approximation Scheme, SI AM Journal on Discrete

Mathematics, 16 (2003), 313-322.

[141] W. Szwarc, The flow-shop problem with mean completion time criterion, HE

Transactions , 15 (1983), 172-176.

[142] V.S. Tanaev, Y.N. Sotskov and V.A. Strusevich, Scheduling Theory. Multi-

Stage Systems , Kluwer, Dordrecht, 1994.

[143] G. Vairaktarakis and S. Salmi, Dual criteria preemptive open -shop problems

with minimum makespan, Naval Research of Logistics, 42 (1995), 103-121.

[144] P.M. Vaidya, Speeding up 1inear programming using fast matrix multiplica-

tion, In: Proceedings of IEEE 30th Annual Symposium on Foundations of

Computer Science, (1989), 332 337.

[145] J.A.A. van der Veen and R. van Dal, Solvable cases of the no-wait flow-shop

scheduling problem, Journal of the Operational Research Society, 42 (1991),

971-980.

[146] S.L. van de Velde, minimising the sum of the job completion times in the two-

machine flow shop by Lagrangian relaxation, Annals of Operations Research,

26 (1990), 257-268.

[147] G. Wang, T.C.E. Cheng, Heuristics for two-machine no-wait flowsliopschedul-

ing with an availability constraint, Information Processing Letters 80 (2001),

305-309.

[148] J.M. Wein, Algorithms for Scheduling and Network Problems , PhD. Thesis,

Cambridge, USA (1991).



BIBLIOGRAPHY 172

[149] D. de Werra, On some combinatorial problems arising in scheduling, CORS

Journal , 8 (1970), 165-175.

[150] D.P. Williamson, L.A. Hall, J.A. Hoogeveen, C.A.J. Hurkens, J.K. Lenstra,

S.V. Sevast'janov and D.B. Shmoys, Short shop schedules, Operations Re-

search, 45 (1997), 288-294.

[151] D.A. Wismer, Solution of the flow shop scheduling problem with no interme-

diate queues, Operations Research, 20 (1972), 689-697.


