
MAPPING UNSTRUCTURED MESH CODES ONTO LOCAL

MEMORY PARALLEL ARCHITECTURES

Beryl Wyn Jones

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich

for the degree of Doctor of Philosophy.

September 1994

This research programme was funded by SERC

Centre for Numerical Modelling and Process Analysis

School of Mathematics, Statistics and Computing

University of Greenwich

London U.K.

Contents

Table of Contents
Acknowledgements v

Abstract vi

Chapter 1: Introduction 1

1.1 Introduction 2

1.2 Outline of Thesis 3

1.3 Graph Theory 4

1.4 Parallel Architectures 7

1.5 MIMD Multiple Instruction Stream, Multiple Data Stream 8

1.6 Processor Configurations 12

1.7 Parallel Performance Measurement 13

1.8 Unstructured Control Volume Grid Methods 14

1.8.1 Introduction 14

1.8.2 Vertex Centred Approach 15

1.8.3 Cell Centred Approach 17

1.9 The Mapping Problem 18

1.9.1 Statement of Problem 18

1.9.2 Objectives 19

1.9.3 Complexity 19

1.10 Summary of Existing Methods 21

1.10.1 Graph Partitioning Problem 21

1.10.2 Graph Embedding Problem 23

1.10.3 Prior Work on the Mapping problem 26

Chapter 2: Overview of Existing Techniques 32

2.1 Introduction 33

2.2 Nearest neighbour 33

2.2.1 Introduction 33

2.2.2 Regular Grids 34

2.2.2.1 One Dimensional Strip Partitioning 34

Contents

2.2.2.2 Two Dimensional Strip Partitioning 36

2.2.3 Non Regular Grids 38

2.2.4 Analysis of Method 39

2.3 Recursive Spectral Bisection 41

2.3.1 Introduction 41

2.3.2 The Laplacian Matrix 41

2.3.3 The Feidler vector 42

2.3.4 Analysis of method 44

2.3.5 Multilevel Recursive Spectral Bisection 44

2.4 Combinatorial Optimisation Methods 45

2.4.1 Introduction 45

2.4.2 General Formulation 46

2.4.3 General Purpose Algorithms 47

2.4.4 Simulated Annealing 49

2.4.4.1 Introduction 49

2.4.4.2 Methodology 49

2.4.4.3 Addressing Graph Partitioning .. 50

2.4.4.4 Analysis of Method 51

2.4.5 Tabu Search 52

2.4.5.1 Introduction 52

2.4.5.2 Methodology 52

2.4.5.3 Analysis of Method 55

Chapter 3: Recursive Clustering Algorithm 57

3.1 Introduction 58

3.2 Kerninghan-Lin Graph Bisection Method 58

3.2.1 Definition of Problem 58

3.2.2 Analysis of Method 68

3.2.3 Running Time of the Algorithm 69

3.3 Using Recursive Clustering to Partition Unstructured Meshes 69

3.4 Cost Function 72

n

_____ ______________ ____________Contents

3.5 The Algorithm 73

Chapter 4: Extension of the Recursive Clustering Algorithm .. 79

4.1 Introduction 80

4.2 Eliminating Constraint of 2" Sub-meshes 80

4.3 Local Minima Trap 81

4.3.1 Type 1 81

4.3.2 Type 2 81

4.3.3 Renumbering Elements 83

4.3.4 Cuthill-McKee Algorithm 88

4.4 Specifying Processor Topology 94

4.5 The Algorithm 102

4.5.1 Routine "Input" 103

4.5.2 Routine "Form_Clusters" 104

4.5.3 Routine "Swapset" 105

4.5.4 Routine "Findg" 108

4.6 Test Cases 109

4.7 Larger Meshes 113

Chapter 5: Dealing with Large Meshes 117

5.1 Introduction 118

5.2 Creating Super-Elements 119

5.2.1 Recusive Graph Bisection 120

5.2.2 Image Network 124

5.3 Level of Granualarity 133

5.4 Conclusion 142

Chapter 6: Computational Results and Conclusions 143

6.1 Introduction 144

6.2 Parallelisation of UIFS 144

in

__ _______________ ______________Contents

6.3 Mesh Division 145

6.4 Efficiency of Parallel Solution 147

6.4.1 Simple 2D problem 147

6.4.2 Larger Meshes 151

6.5 Conclusions and Further Work 154

Appendix A 159

References 163

IV

Acknowledgements

I would like to thank my supervisors Professor Martin Everett and Professor Mark Cross

for their invaluable advice, encouragement and guidance received during the course of

this research.

I would also like to thank Steve Johnson for the indispensable discussions and assistance

at various stages of the research.

Peter Lawrence and Kevin McManus are also gratefully acknowledged.

Thanks also go to the staff at the School of Mathematics, Statistics and Computing and

to the postgraduates at the Centre for Numerical Modelling and Process Analysis of the

University of Greenwich for providing a good working environment.

Thanks also to Frank for those unforgettable three days at Prague.

Finally, the financial support provided by the Science and Engineering Research Council

is gratefully acknowledged.

Abstract

Initial work on mapping CFD codes onto parallel systems focused upon software which

employed structured meshes. Increasingly, many large scale CFD codes are being based

upon unstructured meshes. One of the key problem when implementing such large scale

unstructured problems on a distributed memory machine is the question of how to

partition the underlying computational domain efficiently. It is important that all

processors are kept busy for as large a proportion of the time as possible and that the

amount, level and frequency of communication should be kept to a minimum.

Proposed techniques for solving the mapping problem have separated out the solution into

two distinct phases. The first phase is to partition the computational domain into cohesive

sub-regions. The second phase consists of embedding these sub-regions onto the

processors. However, it has been shown that performing these two operations in isolation

can lead to poor mappings and much less optimal communication time.

In this thesis we develop a technique which simultaneously takes account of the processor

topology whilst identifying the cohesive sub-regions. Our approach is based on an

unstructured mesh decomposition method that was originally developed by Sadayappan

et al [SER90] for a hypercube. This technique forms a basis for a method which enables

a decomposition to an arbitrary number of processors on a specified processor network

topology. Whilst partitioning the mesh, the optimisation method takes into account the

processor topology by minimising the total interprocessor communication.

The problem with this technique is that it is not suitable for dealing with very large

meshes since the calculations often require prodigious amounts of computing processing

power.

The problem can be overcome by creating clusters of the original elements and using this

to create a reduced network which is homomorphic to the original mesh. The technique

vi

can now be applied to the image network with comparative ease. The clusters are created

using an efficient graph bisection method. The coarseness of the reduced mesh inevitably

leads to a degradation of the solution. However, it is possible to refine the resultant

partition to recapture some of the richness of the original mesh and hence achieve

reasonable partitions.

One of the issues to be addressed is the level of granuality to obtain the best balance

between computational efficiency and optimality of the solution. Some progress has been

made in trying to find an answer to this important issue.

In this thesis, we show how the above technique can be effectively utilised in large scale

computations. Results include testing the above technique on large scale meshes for

complex flow domains.

vn

To Dad

Gresyn blodeuyn mor deg

Ei ffoi cyn fo'i adeg

Vlll

Chapter 1

Chapter 1

Introduction

page 1

__Chapter 1

1.1 Introduction

Many large scale computational problems are based on unstructured computational

domains. By using unstructured meshes, this allows the code to cater for completely

general geometries and hence a wide range of problems in both two and three space

dimensions. Examples include unstructured grid calculations based on finite volume

methods in computational fluid dynamics, or structural analysis problems based on finite

element approximations.

Software packages have been developed with the intention of using the results of the

analysis for solving such problems. Analysis is carried out for the selected input

parameters and the results are interpreted for optimising a design. This iterative procedure

requires interpretation of results and also uses a vast amount of time for solving a given

problem. To reduce the computation time, various optimisation procedures have been

incorporated into the code. One practicable approach is to use parallel computation

techniques. Therefore, there is a demand for parallel computers and the development of

parallel algorithms to execute on these computers.

One of the important problems to be addressed in this situation is to devise means of

actually employing a sufficiently high fraction of the raw computational power of a

parallel computer. Overheads due to interprocessor synchronisation and communication,

processors sitting idle due to contention for shared hardware resources, and uneven load

balancing in the distribution of computational load can lead to poor overall performance.

To optimise the speedup of a parallel program on a parallel computer requires the

mapping of the parallel tasks of the program among the processors such that the

computational load is distributed as evenly as possible and at the same time minimising

the amount of communication between the processors.

This thesis investigates mapping the tasks associated with the solution of unstructured

grid problems to the processors of a parallel computer such that the execution time is

minimised.

page 2

__Chapter 1

1.2 Outline of Thesis

In the remainder of Chapter 1, we define terminology and notation for graph theory that

is used throughout the thesis. We then discuss various parallel architectures and various

configurations that can be used. The mapping problem is discussed with a short summary

of existing methods.

In Chapter 2, we give a brief outline of some of the existing techniques for graph

partitioning and embedding. These are methods that we have looked at extensively and

discussions of the analysis of each method is given.

Chapter 3 discusses the Recursive Clustering algorithm which is a method based on the

Kerninghan-Lin mincut algorithm [KL70]. We have modified the Recursive Clustering

algorithm so that our needs are catered for and descriptions of these modifications are

discussed in Chapter 4.

This new modified algorithm gives reliable decompositions but one drawback is the time

taken to decompose the meshes. We have overcome this problem and discussions of how

this is done can be seen in Chapter 5.

Finally, Chapter 6 shows the parallel efficiency of the decompositions used together with

conclusions and discussions of further work.

page 3

____________ ______ Chapter 1

1.3 Graph Theory

The following terminology and notation is used throughout this thesis [Wil85], [BM76].

A graph G is a pair of sets [V,E] where V is non-empty and E is a set of unordered pairs

of elements of V. The elements of V are called the vertices of G and the elements of E

are called the edges of E. VG is used to represent the vertices of G and EG is used to

represent the edges of G. The symbols i)G and eG are used to denote the number of

vertices and edges in G. If only one graph is being considered, then the letter G will be

omitted from the symbols, and therefore we use V, E, \) and e instead of VG , EG , 1)G and

Two graphs G and H are said to be isomorphic if there is a one-one correspondence

between their vertices which has the property that two vertices are joined by an edge in

one graph if and only if the corresponding vertices are joined by an edge in the other.

Two vertices u, v of a graph G are adjacent if there is an edge joining them i.e. <u,v>

e E.

With each <u,v> e EG , let there be associated an integer c(<u,v>), called its edge weight,

and with each v e VG , let there be associated an integer w(v) called its vertex weight.

Then G, together with these edges and vertex weights is called a weighted graph.

A vertex v and an edge e are incident if v is one of the vertices of e.

The degree pG(v) of a vertex v in G is the number of edges incident with v.

Figure 1.1 shows a graph G where i) = 8 and e = 14.

page 4

Chapter 1

Figure 1.1: A graph G with 8 vertices

To any graph G, there corresponds an adjacency matrix. This is the i) x \) matrix

A(G)=[ajj], where a^ is the number of edges joining YJ and YJ. The Laplacian matrix of

a graph G is defined as L(G)=[ljj] where lij=aij for i^j and ly =-pG(Vi) for each YJ e V.

Figure 1.2 shows the adjacency matrix and the Laplacian matrix for the graph G shown

in Figure 1.1.

A(G) =

01011000

101 10000

01010001

11101111

10010100

00011010

00010101

001 10010

-3

1

0

1

1

0

0

0

1
-3

1

1

0

0

0

0

0

1
-3

1

0

0

0

1

1
1
1
-7

1

1

1

1

1

0

0

1
-3

1

0

0

0

0

0

1
1

-3

1

0

0

0

0

1
0

1
-3

1

0

0

1

1

0

0

1
-3

Figure 1.2 Adjacency matrix and Laplacian matrix of the graph G shown in

Figure 1.1

page 5

____________ ____________Chapter 1

A directed graph (digraph) D=(V,E) is a graph whose edges are ordered pairs of vertices.

With each digraph D we can associate a graph G on the same vertex set; corresponding

to each directed edge of D, there is an edge of G with the same ends.

A network N is defined to be a weighted digraph with two distinguished subsets of

vertices, X and Y, which are assumed to be disjoint and nonempty.

The vertices in X are the sources and those in Y are the sinks of N. The edge weight C

of each edge is a non-negative integer called the capacity.

A cutset in a network N is a set of edges which when removed disconnects the source

nodes from the sink nodes.

The weight of a cutset is equal to the sum of the capacities of the edges in the cutset.

The Max-Flow Min-Cut theorem [FF62] states that the value of a maximum flow in a

network is equal to the weight of a minimum cutset of that network.

page 6

___________ __________Chapter 1

1.4 Parallel Architectures

The availability of relatively cheap and efficient microprocessors has produced a

tremendous upsurge in the development of parallel computers [Car88], [Cri88], [Duc86].

These computers now consist of numerous (up to thousands) of processors. These

processors usually have reduced instruction sets and are frequently referred to as

processing elements (PEs). This section gives a brief overview of some of the models

that exist.

The SISD (Single Instruction Stream, Single data Stream) is the original von Neumann

model of computation where only one instruction is processed at a time on a single item

of data. Some parallelism may occur in the internal operations of such machines, for

example, parallel loading and storing of data items along with actual arithmetic

operations.

The MISD (Multiple Instruction Stream, Single Data Stream) performs several

instructions simultaneously on a single stream of data. Strictly speaking, this category

could contain the operation of internally parallel SISD architectures and pipeline

processors, but since the user's understanding of computer architectures is in our interest,

neither is included.

Computer architectures such as the SIMD (Single Instruction Stream, Multiple Data

Stream) commonly known as vector or pipeline computer architectures. A SIMD

computational model corresponds to a single stream of instructions each of which is

applied to multiple data items.

A broad definition of a vector processor is where each processing element allows a

sequence of identical operations at the same time but acts upon different sets of data.

This type of operations is often featured in operations involving vectors of data.

page 7

___Chapter 1

With pipeline processors, overlapping in the execution of instructions is permitted. The

data enters the pipeline at the processing element performing the first stage of the

operation, passing through the other processing elements until finally arriving at the last

one for the final stage of the operation. Parallelism is achieved when several data items

pass through such a pipeline, but with each item passing through different stages at the

same time. It is important that every processing element in the pipeline is kept busy in

order to achieve a significant speed-up. This is accomplished by passing several data

items that need the same overall operation to be performed on them through the same

pipeline. This is typical for vector operations where the data passing through the pipeline

consists of each consecutive element of the vector(s) concerned.

1.5 MIMD Multiple Instruction Stream, Multiple Data Stream

This type of machine is the one that we are focusing on and it typically consists of a

number of processing units each capable of executing its own program on separate sets

of data. All the processing units are interconnected and to achieve parallelism, the overall

task must be broken down into a group of many sub-tasks .

There are various designs of MIMD machines with a major distinguishing feature being

the interconnection network. The two extreme classes of machines are discussed, namely

the shared memory systems and distributed memory systems [Cri88].

Shared memory systems use a shared global memory that is accessible from every

processing unit via a communication bus. The processors can be considered identical

(providing the processors are of the same type) and the programmer need not be

concerned with the issue of mapping which task of the computation onto which processor

since communication between any pairs of processors is the same. Problems occur with

such systems when large number of processors are used since the communication bus

hardware becomes a bottleneck when many processors request access to the global

memory. Another disadvantage is that the bus only permits one processor to access the

page 8

____________ __________Chapter 1

global memory at any time. Thus if many pairs of processors require interaction on a

pair-wise basis, they will have to do so in sequence rather than in parallel. Figure 1.3

shows an example of a shared memory system.

Distributed memory systems consists of processing elements which have their own local

memory unit. The processors are joined by an interconnection network so an overall task

can be performed on by many processors and data can be sent from one processor to

another. With this type of machine, the processors do not have to fight for access to the

shared global memory and the communication bus does not become a bottleneck, but data

traffic bottlenecks can occur with a large processor network. Unlike the shared memory

system, task to processor allocation is not arbitrary and a task should be placed on a

processor that either holds the data to be accessed or can access the data through as short

as possible a communications route. The program data should, if possible, be divided

over all the local memories with a minimum of duplication to ensure efficiency of such

a system. Figure 1.4 shows an example of a distributed memory system.

PVM (Parallel Virtual machine) [SHH94] from ORNL has become a de-facto standard

for message-passing systems and because it is freely available, it has spread all over the

academic community and beyond. PVM has been ported to a big variety of currently

available machines ranging from workstations to MPP-systems. The highlight of PVM

is its usability in heterogeneous environments. However, its functionality is limited.

As a consequence, the international initiative MPI (Message Passing Interface) [Hem94]

was started in 1992 by the Center for Research in Parallel Computing at Rice University

and Oak Ridge National laboratory. The goal is to define a message passing interface

which will then be implemented and supported by all hardware manufacturers. It was not

the design goal to support low-level features to be used by parallelising compilers. The

focus of MPI is the point-to-point communication between pairs of processors, and

collective communication within process groups. More advanced concepts allow creating

those groups, and giving them topological structure.

page 9

Communication Bus

Global
Memory

P E : Processing Element

Figure 1.3: Shared Memory System

Chapter 1

page 10

Chapter 1

Interconnection Network

P E : Processing Unit

M : Memory

Figure 1.4: Distributed Memory System

page 11

Chapter 1

1.6 Processor Configurations

The processor network used can be in a number of different configurations [Car88]. The

configuration chosen should be influenced by the data access structure of the code

concerned. The amount of communication time acquired can be minimised by a sensible

choice of network configuration. Examples of network configurations are shown in Figure

1.5.

(a)

(b)

(c)

Figure 1.5: Processor Configurations

(a) Chain; (b) Grid; (c) 3 Way Hypercube

page 12

__________ _______________Chapter 1

1.7 Parallel Performance Measurement

There are two practical ways in which performance of software on parallel systems can

be measured. The first is speedup (Sp) which is defined as:-

~ _ Time on a single processor
Time on p processors

Sp gives the number of times faster the software executes on p processors as opposed to

the execution on a single processor [HJ81], However, there are two possible single

processor times that can be used, both carrying slightly different information about the

software.

Firstly, if the single processor time is that of the best serial version, using optimal serial

algorithms, then the speedup signifies the advantage of using a parallel machine rather

than a serial machine. If the algorithms used for the parallel version are different to those

in serial, then the speedup figure can be reduced because the serial performance may be

sacrificed for the parallel nature of the new algorithm. The second single processor time

that can be used is that of the parallel version being run on a single processor. This

speedup represents the performance of a parallel machine as more processors are used

and not performance over serial because any serial version should always use the best

serial algorithms available.

Efficiency is the second measure of performance of software on MIMD machines and

this is a measure of how well an application uses the available computer power. Again,

there are two types that can be used. The first is known as efficiency percentage (Ep) and

it is given by :

Ep = * 100 = sPeeduP on P processors

Ep indicates the percentage of available processor time which has been beneficially used,

page 13

__Chapter 1

providing that the speedup uses the best serial execution time. Some of the efficiency that

is lost here is mainly due to processor idle time, communication time and less efficient

parallel algorithms.

The second type of efficiency is calculated using processor time and is given by :-

j-, , 1 Total Idle Time , ^ ^ Ep = \ 1 - ————————————— | * 100
Total Processor Time

Ep gives the measure of the percentage of time spent performing some form of operation.

1.8 Control Volume Unstructured Grid Methods

1.8.1 Introduction

In order to solve continuous partial differential equations (PDE's) using computational

methods, the equations under consideration need to be transformed into algebraic

difference equations using a discretisation scheme. Many discretisation schemes are

available among which the most well known are the Finite-Element (FE), Boundary-

Element (BE) and the Control-Volume (CV). Of these methods the CV is probably the

most widely used in the context of fluid flow problems, because it is computationally

cheap and it preserves continuity of the dependent variables over cells.

In the following sections, control volume based unstructured mesh methods are

considered because the aim of this study is to produce meshes on which other researchers

at the University of Greenwich can use their CV based methods.

In general the CV-UM method can be categorised into two approaches, one being a

vertex centred approach, the other cell centred. The classification of the two methods

lying somewhere between the finite element method (in terms of mesh) and the CV

page 14

___________ _________________Chapter 1

method in terms of numerical integration.

1.8.2 Vertex Centred Approach

This approach is also generally known as the control-volume based finite element mesh

(CV-FE), [BP83],[BP88],[Sch88],[LW89]. Domain discretisation involves subdividing the

solution domain into a number of smaller regions. The connections between the nodes

and the subregions is known as a mesh. The subregions of the domains are called

elements and the vertices of these elements nodes. There are many possible element

configurations using a FE mesh of which the most commonly used are quadrilaterals and

triangles, using four or three nodes respectively. In fact a combination of the two element

types or more can be used when discretising a problem domain, giving excellent

flexibility in representing complex problem geometries.

A typical finite element mesh is shown in Figure 1.6. As previously mentioned nodes are

located at every element corner, where all of the problem unknowns are located,

(velocity, temperature, etc).

Figure 1.6: Finite element mesh

When working with finite elements, it is convenient to use local co-ordinates in order to

homogenise the treatment of individual classes of elements irrespective of how distorted

any element is in terms of the global co-ordinates. Conservation in the finite element

method is expressed over the global domain and hence these elements need to be related

page 15

__Chapter 1

to their global positions. This is done using 'shape functions', which relate local
variations to their global equivalent [Zie77].

In the vertex-centred solution mesh, each node is associated with one control volume,

whilst the surface of a control volume (CS), is defined from the centroid of an element

to the midpoint of one of its sides, as shown in Figure 1.7.

Control Volume

Node

Fig 1.7: Vertex-Centred Mesh-Control Volume

Every element is therefore divided into a number of quadrants by these control surfaces.
The quadrants are called sub-control-volumes (SCV's), and a control volume is therefore
made up of a number of sub-control volumes of polygonal shape. A CV based

discretisation on this mesh involves expressing fluxes across these control surfaces. In

algebraic form these fluxes are determined by evaluating integrals at the midpoints of

the control surfaces, these are known as integration points and are illustrated in Figure

1.7 above.

page 16

___________ ____________Chapter 1

1.8.3 Cell-Centred Approach

This method is known as the Irregular control volume method (ICV) and is an extension

of the standard control volume method [CC92]. In order to distinguish between the vertex

centred approach the previous terminology is replaced by a more control volume

orientated terminology. The element is now called a cell or control volume and the

vertices of the elements are now called grid points, see Figure 1.8. Nodes are now

defined to be at the cell centroids, where all relevant information concerning the

dependant variables are stored.

Discretisation of any transient terms in the equation follows the same procedure as that

for the vertex centred method. However discretisation of terms involving spacial

derivatives differs from that of the previous method in that these fluxes will be evaluated

at the midpoints of the control volume surfaces, which are in different positions since the

control volume is not subdivided into a number of sub-control volumes.

Control Volume

Grid Point

Fig 1.8: Cell-Centred Mesh-Control Volume

Whilst both methods have their relative advantages and disadvantages, they share the

finite element quality of excellent geometric representation and the control volume

benefits associated with cell-wise conservation of the dependent variables. For a

comprehensive description of the discretisation involved using both methods see p32-60

of reference [Cho93] and reference [CC92].

page 17

_________________________Chapter 1

1.9 The Mapping Problem

1.9.1 Statement of Problem

The processor allocation problem is one of utmost importance in the effective utilization

of large-scale parallel computers and distributed computer networks. The task allocation

problem requires the allocation of multiple interrelated tasks of a single application

program in order to minimize the completion time of the parallel program on the parallel

computer system. Execution of the parallel program involves a number of iterations,

where each iteration involves some computation by each node followed by

communication by each node to other nodes.

In many multi-processor systems, there is no direct link between every pair of processors.

When assigning nodes of large computational problems onto processors, pairs of nodes

that have to communicate with each other should be placed on processors that are directly

connected. The mapping problem consists of minimising the number of pairs of

communicating nodes that fall on pairs of disconnected processors.

Let the graph of a problem be characterized by a task graph G = (VG,EG), whose vertices

VG represent the tasks of a program, and edges EG characterize the data communication

between tasks.

The parallel computer is represented as a graph P = (VP,EP) where the vertices represents

the processors and the edges represents the communication between the processors.

The mapping problem consists of finding O : VG —> Vp such that we minimize

= timecomn + iimecomp

Undoubtedly, if <£ maps all tasks onto one processor, then the communication cost would

be zero but the computational costs would be extremely high.

Assumptions that we make is that all tasks have equal amounts of computations, all data

communicated between tasks is equal and the computer is assumed to be homogeneous

i.e. tasks execute equally well on all processors.

page 18

__Chapter 1

These are reasonable assumptions since the application area to which this work applies
include computational fluid dynamics and structural mechanics. The problems to be
solved are nearly always initial or boundary value problems for coupled systems of
PDE's. We associate a task with each point in the discretizing grid. The tasks have
similar communication and computation requirements and the amount of computation
exceeds the communication. Finally, many of the parallel computers being developed
today are networks of homogeneous processors.

1.9.2 Objectives

Since parallel architectures provide significant raw processing power it is not surprising
that there has been a significant effort by the CFD community to exploit such systems.
It is self-evident that in mapping any scalar application onto a local memory parallel
architecture it is vital to decompose it in such a way as to:

• Keep all processors busy for as large a proportion of the time as possible (i.e.
balance the computational load). It is important that all the processors have
approximately the same amount of work to do. We don't want processors having
to sit idle waiting for the other processors to finish their jobs.

• Minimise the amount, level and frequency of communication between
processors and wherever possible constrain the distance of communication to
nearest neighbours,

• Distribute the data evenly over the whole processor array.

1.9.3 Complexity

Bokhari [BokSl] showed that it is unlikely that an exact polynomial time algorithm exists
for solving the mapping problem. For a mapping algorithm to be practical, the time taken
to decompose the mesh should be a small percentage of the time taken to solve the
application in parallel. This will ensure a gain over solving the application in serial.

page 19

__Chapter 1

Initial work on mapping CFD codes onto parallel systems focused upon software which
employed structured meshes. Effectively, the approach involved decomposing the mesh
and mapping the constituent submeshes onto the processor array in such a way that
communication was usually restricted to nearest neighbour. Various approaches for two
and three dimensional mapping are described by a number of groups in reference
[RSEHP92], One such approach is described by Johnson and Cross [JC92] who
implemented the CFD code, FLOW3D, onto transputer and i860 based systems. Here, the
mesh is decomposed into (i,j) slabs such that each processor has an equal number. The
processors are then configured as a simple pipeline and the solution proceeds as in scalar,
except that periodically information is exchanged between neighbouring processors to
send or receive latest values of solution variables on adjacent (i,j) slabs. Because, each
processor has (roughly) the same amount of work to do at each stage, the
communications can be synchronised at very little cost to the efficiency of the parallel
implementation. On transputer based systems efficiencies of 80%+ have been reported
on 50 processor systems running problems with 40,000+ nodes [JC92].

The next stage in exploiting parallel architectures for CFD involves codes based upon
unstructured meshes. Although, the approach for such codes should be analogous, the key
new problem to be addressed involves the strategy for decomposing the mesh. For
structured meshes (even block structured meshes) the strategy is fairly obvious. However,
for unstructured mesh codes the decomposition is problem dependent and so algorithms
are required which will partition the mesh onto a given processor topology to meet the
objectives stated in section 1.9.2.

page 20

___Chapter 1

1.10 Summary of Existing Methods

It is known that finding an exact solution to the mapping problem is NP-complete and

so any method for finding an exact solution will almost certainly require an exorbitant

amount of computation. Heuristics attempt to find a sub-optimal solution in a reasonable

amount of time.

Proposed techniques for solving the mapping problem have separated out the solution into

two distinct phases. The first phase is to partition the computational domain into cohesive

sub-regions. The second phase consists of embedding these sub-regions onto the

processors. Partitioning followed by embedding can be viewed as a heuristic or as an

initial mapping to be improved by an iterative heuristic.

1.10.1 Graph Partitioning Problem

Let G = (V,E) be an undirected graph with a cost C(u,v) associated with each edge (u,v)

e E. The graph partitioning problem is to partition the vertices of G into two subsets

such that the cut set has minimum cost. i.e. the sum of the cost of all those edges with

end points in different subsets is minimum. The graph partitioning problem is known to

be NP-Complete [GJ79] therefore heuristics have been used to find acceptable solutions.

Kerninghan and Lin [KL70] consider the problem of partitioning the nodes of a graph

into subsets of given sizes to minimize the sum of the costs of all edges cut. The work

is influenced by two applications. The first problem is placing the components of an

electrical circuit onto printed circuit boards so as to minimise connections between the

boards. The other application is an attempt to improve the paging properties of programs

for use in computers with paged memory organisation. Objects such as subroutines,

procedure blocks, data items etc. are assigned to pages of memory and the problem is to

minimise the reference to objects that reside on different pages. Experimentally, they

determine that the time complexity of this heuristic for finding a 2-way partition of a

graph with n nodes is O(«2). The technique is also extended to perform fc-way partitions,

using the 2-way procedure as a tool.

page 21

__Chapter 1

Fiduccia and Mattheyses [FM82] improved the Kerninghan-Lin algorithm. They use

efficient data structures and vertex displacements instead of exchanges to derive a linear

time heuristic for improving 2-way graph partitions.

Gilbert and Zmijewski [GZ87] found low cost partitions for factorisation of sparse

matrices by developing a parallel version of the Kerninghan-Lin algorithm. These

partitions are used to compute ordering for factoring matrices and the resulting orderings

lead to good processor utilization and low communication overhead.

Pothen , Simon and Lieu [PSL90] partition the graphs of sparse matrices using the

Recursive Spectral Bisection (RSB). The RSB method for graph partitioning uses the

eigenvector x2 corresponding to the largest eigenvalue X2 of the Laplacian matrix of the

graph to find vertex separators (see Section 2.3). The special properties of the eigenvector

x2 have been investigated by Feilder [Fei73], [Fei74]. Their results show that the spectral

partitions obtained compare favourably with partitions obtained by previous algorithms.

Simon [Sim91] investigates three algorithms for the partitioning problem for unstructured

domains. All three algorithms considered are recursive and are Recursive Coordinate

Bisection (RGB), Recursive Graph Bisection (RGB) and Recursive Spectral Bisection

(RSB). The main result is that RSB is a significant improvement over the other two

algorithms.

Simulated Annealing is a combinatorial optimization technique to minimise/maximise an

objective function (see section 2.4.3). Johnson et al [JH89] made a critical evaluation for

the performance of simulated annealing to the graph bisection problem and compared its

performance with that of the Kerninghan-Lin approach. In general, simulated annealing

is time consuming, but it has been successfully applied to many combinatorial

optimization problems.

Tabu Search is a fairly new approach to combinatorial optimization (see Section 2.4.5).

Tabu search algorithms are generally slower than other problem-specific heuristics but

they have been successfully applied to many problem domains. Tao et al [TZTS92]

~page 22

__Chapter 1

propose two new algorithms based on Simulated Annealing and Tabu Search and
compare the effectiveness of these two algorithms with that of an algorithm based on the
Kerninghan-Lin method. They show that their two algorithms provide better solutions
than the Kerninghan-Lin based algorithm but with longer running time.

Lim and Chee [LC91] consider a graph partitioning approach based on the tabu search
heuristic. Their experimental results show that their algorithm consistently out-performed
the Fiduccia-Matheyeses [FM82] version of the Kerninghan-Lin method. The speed of
their algorithm is also comparable. They also compared their tabu search algorithm with

the simulated annealing algorithm and they state that their algorithm does not perform
well in terms of quality of solution on random graphs.

1.10.2 Graph Embedding Problem

Let the graph of the problem to be mapped be denoted by G = (VG,EG) where VG
represents the tasks of the problem and edges EG characterize the data communication
between tasks. Let the processor graph be denoted by P = (VP,EP) where Vp represents
the processors and EP the communication between processors. The graph embedding
problem is to map G onto P such that the maximum distance that data travels should be
minimsed.

One can first partition the task graph which can then be embedded onto the processor
graph. Ercal et al [ERS88] argue that this may not be a good approach to solving the
mapping problem. They claim that performing the two operations in isolation can lead
to poor mappings and much less than optimal communication time. Ercal et al uses the
following example to illustrate the disadvantage of performing the partitioning and
processor assignment independently in two phases. Consider a simple regular task graph
with 800 nodes, interconnected in a 20 x 40 rectangular mesh. The first partition to
minimise the cut separates it into two 20 x 20 meshes. After the first partition is made,
there are 4 possible choices for the second level partitions. Three of these choices can
be seen in Figures 1.9(a-c). All four partitions are optimal - the load is balanced and they
share the same number of nodes. However, they are not equal from the embedding

page 23

__________ ___________________Chapter 1

perspective. With the partitions obtained In Figure 1.9(a), it is impossible to assign the

clusters to processors of a 2-dimensional hypercube so that all communication is between

directly connected neighbouring processors. Therefore, the minimum total communication

cost that can be achieved is 70. However, the two second level bisections shown in

Figures (b) and (c) performed identical cuts and the total communication cost that results

is only 60.

page 24

Chapter 1

(a) Communication cost = 70

(b) Communication cost = 60

(c) Communication cost = 60

Figure 1.9: Possible 4-way partitions of a 40x20 grid with processor topology.

page 25

___Chapter 1

1.10.3. Prior work on the Mapping Problem

This section gives a brief overview of some of the more important work on the mapping

problem presented in chronological order.

Stone [Sto77] develops a heuristic for the mapping problem using the Ford-Fulkerson

algorithm [FF62] as modified by Edmonds and Karp [EK72]. He uses a network flow

algorithm as a "black box" utility to map a task graph onto a two-processor system. A

network representation of the mapping problem is produced and fed to a network flow
algorithm.

The construction of a network representation N of the two-processor mapping problem

is as follows:

1. N = G.

2. Add nodes labelled s t and s2 to VG representing the two processors. s t is the

unique source and s2 is the unique sink [FF62].

3. For each v e VG , add an edge (v,Sj) and (v,s2) to EN .

4. Let C((v,S!)) be the estimated time to execute task v on processor s2 and
C((v,s2) be the estimated time to execute task v on processor Sj.

Figure 1.10: A network flow graph constructed from a task graph with two vertices.

page 26

_________^^^ _____________________Chapter 1

The edge weights are chosen so that the weight of a cutset of N is equal to the execution

time of the corresponding task-to-processor mapping. An optimal mapping of tasks to two
processors is found by finding a minimum weight cutset, and assigning tasks to the
processor on the same side of the cut,

For example, in Figure 1.10, a task graph G=(VG,EG) is shown where VG={u,v} and

EG={(u,v),(v,u}}. The edge weights are C((u,v))=2 and C«v,u»=2. A network is
constructed by adding the vertices s l and s2 and the edges (u,Sj), (u,s2>, (v.s^ and

<v,s) with weights C((u,S!»=10, C((u,s2»=10, C«v,s,»=10 and C((v,s2»=10.

Therefore, the tasks execute equally well on either processor and five times as much time
will be spent computing as communicating.

However, good solutions to the mapping problem are not always provided by using
network flow algorithms. In the above example, the maximum flow algorithm assigns
both u and v to the same processor since there are two minimum weight cutsets with
weight 20, {(u,s 1),(v,s 1)} and {{(u,s2),(v,s2». Putting both tasks onto one processor
results in a running time of 20; only one task computes at a time. The communication
time is zero since both tasks are on the same processor. However, if the computations can

be done in parallel and the communications are completed serially, then the running time
when the tasks are mapped to different processors is 14. Constructing a network in this
manner does not account for the concurrency in the two tasks. The result is a mapping
that requires more execution time than if the tasks were mapped onto different
processors. Also, using a network flow based algorithm heuristic to solve the mapping
problem is computationally expensive. Efficient Max-Flow Min-Cut algorithms are of

complexity O(eNvNlogvN). [GMG82]
Stone [Sto77] generalizes this approach to \)P processor networks. Although he does not
give a complete efficient algorithm. He shows that a single source network flow
algorithm can give information about the minimal weight cutset in a \)P processor graph.
Let S={s,,...,sv) be the distinguished nodes representing \)P processors. For i=l,...,DP, run
a single source network flow algorithm using s} as the source node and S\Sj sinks. Stone
proves that if some v is associated with Sj by the two-processor flow algorithm then v is
associated with s; in a minimum cost cutset in a \)P processor network. Unfortunately, one
can construct examples in which some v is mapped onto a processor in the \)P processor

page 27

___________________________________Chapter 1

cutset, but fails to be associated with that processor by the two-processor cutset.

Therefore, even after vp applications of the two-processor network flow algorithm, some

subset of VN may not be mapped to a processor.

Bokhari [BOK81] develops a heuristic algorithm which consists of pairwise interchanges

alternating with random interchanges. The quality of a mapping is determined by the

number of graph edges EG that fall on processor edged Ep. This number is called the

cardinality of the mapping.

First, an initial assignment of tasks to processors is made.

Next, loop for each node:

1. Examine the pairwise exchange of this node with all other nodes.

2. Select the one which leads to the largest gain in the cardinality of the mapping.

In this loop, only one pair of nodes can be exchanged at each iteration. If at least one

exchange is made through the loop over all nodes, then the loop is repeated. If no

exchange is made, the current mapping is saved and a random jump to a nearby

mapping is made by interchanging n randomly selected pairs of nodes. If the new

mapping is poorer than the saved mapping, then the saved mapping is kept and the

heuristic stops. If the new mapping gives better results than the saved mapping, the new

mapping replaces the saved mapping and the loop is repeated until no further

improvement is made. The complexity of the outer iteration for this heuristic is O(n2) and

may not be suitable for large problems.

Lee and Aggarwal [LA87] develop a deterministic-iterative heuristic mapping strategy

for parallel processors using a more accurate quantification of the communication

overhead. Their mapping scheme has been tested using the hypercube as the processor

graph. They introduce three objective function to evaluate the quality of a mapping. The

first objective function is the sum of the communication overheads of all problem edges.

However, this in only appropriate if no two communications occur at the same time. The

second objective function is the maximum number of communication overheads which

is appropriate if all communication occur simultaneously. The third objective function is

the sum of the maximum number of communication overheads at each stage which is

page 28

__Chapter 1

appropriate if the communications occur at different stages. To evaluate the objective

function, one must assign task graph edges to processors graph edges every time the

mapping is changed. An initial assignment of tasks to processors is made using a one-

pass approach which attempts to match the communication requirements of tasks to the

communication capacities of the processors. The execution of this initial procedure takes

O(vc2) time [LA87]. They then try to improve the mapping by performing serial pairwise

exchanges and checking whether it gives a better mapping, or not, using the appropriate

objective function. The pairwise exchange used is similar to the one used by

Bokhari[Bok81]. The objective function is evaluated for every exchange and the pairwise

exchange that results in the largest decrease in the objective function is made.

Berger and Bokhari [BB87] consider mapping refined grids onto different

multiprocessors, namely a mesh-connected array, a binary tree machine and a hybercube.

The task graphs that they consider are initially regular grids and are refined by

superimposing fine grid patches over an underlying global coarse grid. The objective
function used here is to maximise the cardinality of the mapping and a one-pass

algorithm to map tasks to processors. The task graphs are partitioned into load balanced,
disjoint subgraphs. This is done by placing a horizontal or vertical line such that half the

vertices lie on either side of it. Each half is then bisected in the same manner by a line
orthogonal to the previous partitioning line. This is done recursively until the number of
partitions equals the number of processors. The partitions are then embedded in the

processor graph. They achieve lower cost mappings on the hypercubes and meshes than
the binary tree interconnections. However, the results for the hypercube are only

marginally better than the results for the mesh.

Ercal et al [ERS88] use a recursive task-allocation scheme based on the Kerninghan-Lin

mincut bisection heuristic. They compare simulated annealing to their recursive bisection
method and their objective function is to minimise the number of adjacent vertices in the

task graph that are mapped onto processor graph vertices. They show that, on average,

their recursive bisection scheme reduces the objective function almost as well as the

simulated annealing approach, but requires approximately two orders of magnitude less

time to achieve the results.

page 29

__Chapter 1

Williams [Wil91] compares three parallel algorithms for mapping unstructured meshes
among the processors of a distributed-memory machine. The three algorithms are
orthogonal recursive bisection (ORB), recursive spectral bisection (RSB) and a simple
parallelization of simulated annealing which is a well known heuristic. These have been
implemented for load balancing a dynamic unstructured triangular mesh on 16 processors
of an NCUBE machine. He shows that execution time of the RSB is larger than the ORB
and the parallel implementation of simulated annealing takes 20 times longer to run than
RSB for his test cases. After mapping the three methods, the running time of each
application is measured and using a mesh with 5772 nodes, the execution time using the
simulated annealing is the fastest and the ORB mapping is the slowest. Even though
simulated annealing ran significantly longer that ORB, the running time for the
simulated-annealing partitioned (best mapping) was only 21 % less than the running time
for the ORB partitioned application (worst mapping).

Sadayappan et al [SER90] compare two heuristic approaches for mapping grids onto
hypercubes, a nearest-neighbour approach and a recursive clustering scheme. The
recursive clustering method is based on the Kerninghan-Lin algorithm. They show that
the nearest-neighbour approach is found to be more effective when using regular grids
and that the recursive clustering approach is more effective than the nearest-neighbour
at reducing communications for systems with high message start-up costs.

Search techniques are exact algorithms that have been used to solve the mapping
problem.
Shen [ST85] considers an optimal task assignment in which communicating tasks are
required to reside in the same or neighbouring processors. An ordered search is used to
search the space of feasible assignments.

Sinclair [Sin87] uses a state space reduction technique (branch-and-bound-with
underestimates) to find optimal assignments. The disadvantage with search techniques is
if we have V tasks and P processors, then there are Vp possible assignments of tasks to
processors. For very large problems, searching is not very feasible since in the worst case
it needs a completer enumeration of all possibilities and this can prove to be very

page 30

___Chapter 1

expensive.

Lo [Lo88] extends Stone's network approach. Recall that in a homogeneous system, an

optimal network solution will map all tasks to one processor, here, a penalty function is

incurred to distribute the tasks to multiple processors. This approach is not very practical

for very large problem since repeated use of the Max-Flow Min-Cut algorithm is too

expensive.

page 31

Chapter 2

Chapter 2
Overview of Existing Techniques

page 32

Chapter 2

2.1 Introduction

In Chapter 1, a brief outline of existing techniques to graph partitioning and embedding

was given. In this chapter, some of the methods that we looked at extensively are

described in more detail. At the end of each section, we discuss the analysis of the
method described.

2.2 Nearest Neighbour

2.2.1 Introduction

The nearest neighbour algorithm was proposed in [SE87] as an approach to mapping
finite element meshes onto processors. A nearest neighbour mapping is one where
elements which share a node are mapped onto the same or neighbouring processors. The
idea behind the nearest neighbour mapping is that if neighbouring elements are mapped
onto neighbouring processors then the total communication costs should be low.
Furthermore, by aiming at a load-balanced distribution, computation costs can also be
minimized. Starting with an initial nearest neighbour mapping, successive incremental
modification of the mapping is done to improve the load balancing whilst still
maintaining the nearest neighbour property.

The nearest neighbour mapping uses a two-step procedure :

1) Creation of an initial nearest-neighbour partition by grouping nodes into clusters and
the clusters allocated to processors so that any two nodes which share an edge are
mapped onto the same or neighbouring processors.
2) Iterative boundary refinement involving modification of the initial mapping where
nodes are reassigned among the processors to improve the load balancing but maintaining

the nearest neighbour property.

page 33

_______ _______Chapter 2

2.2.2 Regular Grids

We first describe a scheme for creating nearest neighbour mappings for regular graphs.

These are graphs that are made up of four-node finite elements that can be embedded

onto a uniform two-dimensional grid in such a way that any two vertices of the finite

element graph which share an edge are mapped onto adjacent (vertically or horizontally)
mesh points. There are two types of partitioning methods for the regular graphs. The first

is a one dimensional strip partitioning which provides perfectly load-balanced nearest
neighbour partitions. The second is a two dimensional strip partitioning which satisfies

the nearest neighbour property but does not always satisfy the load-balancing property.
It is with the two dimensional scheme where the boundary refinement procedure is

applied. One example of nearest neighbour partitioning is strip partitioning.

2.2.2.1 One Dimensional Strip Partitioning

The essential idea behind this method is to partition the graph into "strips", where each
column (or row) encompasses one or more contiguous columns (or rows) of the graph.
The graph is covered by strips in such a way so that each strip is adjacent to at most two
other strips, one on either side of it. The number of strips equals the number of
processors and each strip can be made so that each strip contains the same number of

vertices.

page 34

Chapter 2

Precmon

Fig 2.1: Example of one-dimensional strip partitioning

It is easy to assign the strip partitions of the finite element mesh to the processors.

Starting with the leftmost node in the uppermost row of the regular graph, the nodes are

assigned to a processor by proceeding across the row of the regular graph. When the first

row is completely exhausted we then move on to the left end of the next row and

continue assigning nodes to the processors. When the processor has been assigned the

required number of nodes, we begin assigning the remaining nodes to the next processor

in the linear chain of processors. Proceeding in this manner, all nodes are assigned to the

processors.
An example of the one dimensional strip partitioning is given in Figure 2.1. Here, we

have a graph with 48 nodes which has been partitioned into 4 strips, each strip containing

12 nodes and is mapped onto a 2 x 2 processor mesh by treating it as a 1 x 4 linear

chain. A similar procedure can be used to create a vertical one dimensional strip

partitioning of the same graph.

page 35

__Chapter 2
2.2.2.2 Two Dimensional Strip Partitioning

When the regular graph is not one dimensional strip partitionable into as many strips as
the number of processors (i.e. when we have a matrix of processors rather than a chain
of processors), it is often possible to partition the graph into the number of processors
on one side of the processor mesh. The idea behind the two dimensional strip partitioning
is to create two independent one-dimensional strip partitios, one in the horizontal
direction and the other in the vertical direction. This is illustrated in Figure 2.2 with a
mesh graph with 40 nodes to be mapped onto a 4 x 2 processor mesh. Figure 2.2(a)
shows the graph partitioned into 4 strips in the horizontal direction and each strip
contains 10 nodes.

A similar procedure is used to partition the graph in the vertical direction and it is
partitioned into two vertical strips, each strip containing 20 nodes. By overlapping the
two orthogonal strip-partitions generated, and forming the intersections, we can generate
a number of regions which equals the number of processors in the processor mesh. The
nature of the construction guarantees that the partitions generated satisfy the nearest-
neighbour property. Even though the two independent partitions are each individually
balanced, the intersection partitions are not generally load balanced as can be seen in
Figure 2.2(c). However, this partition is used as an initial partition and is then refined by
the load-balancing boundary refinement procedure.
One way of balancing the computational loads between the processors is to reassign some
of the nodes among the processors and this is done by transferring nodes from overloaded
processors to underloaded processors. For example by transferring one task from P22 to
P 12 and one task to P21 , and also transfer one task from P31 to P32 as shown graphically
in Figure 2.2(d) as a Load Transfer Graph (LTG).

page 36

Chapter 2

Processors Processors

:-.ltial Loads
' a . _cac

Fig 2.2: Two dimensional strip partitioning

(a) Horizontal strip partitioning; (b) Vertical strip partitioning

(c) Initial two dimensional mapping (d) Load transfer graph

(e) Final mapping after boundary refinement

page 37

___Chapter 2

A heuristic boundary-refinement procedure which is described in detail in [SE87]

iteratively attempts to transfer tasks between the processors using the load transfer graph.

An "active" processor list is formed and is sorted in decreasing order of current task-load,

containing all processors that source an edge in the LTG. Looking at the processor which

has the greatest load, a task is found (preferably on the partition boundary) which can be

transferred to a neighbouring processor in the LTG. At this stage we must make sure that

the nearest neighbour constraint is not violated. If a task cannot be found, then we scan

the sorted active processor list in decreasing order of processor loads until a processor

which has a transferable task is found. The task is transferred and the LTG is updated

by decreasing the relevant edge-weight by one and removing it if its edge-weight

becomes zero.

The algorithm proceeds iteratively in an incremental fashion to refine the mapping by

rearranging the boundaries of the partitions to improve the load balancing. With the

example used in Figure 2.2, the final mapping after using the boundary-refinement

procedure can be seen in Figure 2.2(e).

2.2.3 Non Regular Grids

This section describes methods for generating nearest neighbour partitions for general

finite element graphs. A generalization of the one dimensional strip partitioning used for

regular graphs is possible for non-regular graphs. The basic idea is to cover the graph

with strip-like regions, so that if a node lies on a certain strip then all other nodes which

share an edge with this node lie on the same or adjacent strip. Due to the regularity of

the regular graphs, the process of generating strips was simplified and the nodes could

easily be grouped into columns and rows. Unfortunately, this is not possible with the

non-regular graphs. The nodes have to be grouped by using a levelization process and

each node is assigned a level, this is illustrated in Figure 2.3. Starting with a randomly

selected node or set of nodes (preferably on the boundary) these are assigned a level 1.

All nodes which are connected to these level 1 nodes and which have not previously been

assigned a level are assigned a level 2. The same procedure is carried out with these level

2 nodes until all the nodes in the graph have been assigned a level.

page 38

Chapter 2

Figure 2.3: Example of a one-dimensional non-regular graph

The nature of this levelization procedure ensures nearest neighbour communication since

if any node is assigned a level i, then any neighbouring node will be assigned a level /,

i - I or i + 1. The strip partitioning can now be achieved using the levels similar to using

the rows or columns used for mesh graphs as described earlier. Figure 2.3 shows a non-

regular graph containing 60 nodes and this is partitioned into 4 strips, each containing

15 nodes. We start with the level 1 nodes and allocate these to the first strip and when

all level 1 nodes have been used we move on to level 2 nodes and so on until we have

allocated 15 nodes to the first strip.

In the case of regular graphs, mapping onto an m X n processor mesh was achieved by

performong two independent partitions, one in the vertical direction and the other in the

horizontal and overlapping these two partitions.

2.2.4 Analysis of Method

We investigated the nearest neighbour method and wrote code to perfrom the partitioning

strategies.Even though the method can be quite effective, unfortunately, the strip

partitioning procedure does not always work well, particularly on meshes that are very

unstructured. As such, its partitions can be arbitrarily poor. The key reason for this poor

performance, is that essentially the nearest neighbour strategy is a geometric approach,

page 39

Chapter 2

whereas in reality the task of mesh decomposition is a topological one.

WWW\A/ AAAAAAAA

a) Original mesh

77
I/I/1A/I7171/1/77

77
77

77

77
77

b) Split into two using nearest neighbour

\AAAAAAAA WWWVV\

c) Ideal decomposition with minimal communicaton cost

Figure 2.4: A simple mesh illustrating the limitation of

the nearest neighbour technique

This is demonstrated in the example shown in Figure 2.4. Figure 2.4(b) shows the simple

split into two equal sub-meshes produced by the nearest neighbour approach of the mesh

shown in Figure 2.4(a). Unfortunately, this split, though viable, does not minimise the

communication cost between the sub-meshes. The split that achieves this is shown in

page 40

Chapter 2

Figure 2.4(c). Although, the two arms are located on the same processor and have no

connection, the total amount of communication is less than the nearest neighbour split.

However, the split shown in Figure 2.4(c) is also nearest neighbour because we can see

that all neighbouring elements are placed on the same or neighbouring processors. Even

though the split contains a disconnected sub-mesh, the two arms do not have to

communicate with each other and only have to communicate with the other sub-mesh

which is placed on a neighbouring processor. Although the mesh in Figure 2.4 is trivial,

it demonstrates the one type of limitation experienced by all approaches which are

essentially based upon geometrical rather than topological considerations.

2.3 Recursive Spectral Bisection

2.3.1. Introduction

The recursive spectral bisection algorithm is derived from a graph bisection strategy
developed by Pothen, Simon and Lieu (PSL90) and has been developed and explored

separately by both Williams (Wil91) and Simon et al (S91), (VSB91). The approach is

based on the computation of a specific eigenvector of the Laplacian matrix of the

connected graph G.

2.3.2 The Laplacian Matrix

Recall that the Laplacian matrix L(G) = (lyXij = l....n is defined by

+ 1 if (VpVj) 6 E
- deg (Vj) if i=j
0 otherwise

The Laplacian matrix L(G) = -D + A where A is the adjacency matrix of the graph and

page 41

____ ____ ̂ ^ _______________________ Chapter 2

D is the diagonal matrix of the vertex degrees. This matrix has a number of important
algebraic properties [Moh88] which reflect some of the basic structure of the graph. For
example, all the cofactors are equal and have a value whose modulus equals the number
of spanning trees. Since the matrix is obviously singular, then zero is an eigenvalue. In

fact, the largest eigenvalue Xt is zero and that the associated eigenvector xlt is the vector

of all ones. If G is connected then A^, the second largest eigenvalue is negative. The
magnitude of A^ is a measure of connectivity of the graph.

2.3.3 The Fiedler Vector

The eigenvector x2 associated with X^ gives some directional information on the graph.
If the components of x2 are associated with the corresponding vertices of the graph, they
yield a weighting for the vertices. Differences in this weight gives a distance information
about the vertices of the graph. The graph can then be partitioned by sorting the vertices
according to their weight. This eigenvector is called the Fiedler vector since the special
properties of x2 have been investigated by Fiedler (Fei73), (Fei75).

The RSB algorithm works as follows:
1. Compute the second largest eigenvalue ^ and corresponding eigenvector x2 (the

Fiedler vector).
2. Sort the vertices of the graph so that they correspond monotonically to their

entries in the Fiedler vector.
3. Half of the vertices are assigned to each subdomain.

4. Repeat recursively.

page 42

Chapter 2

a) Original mesh b) Partition into two using RSB

Figure 2.5: A simple mesh illustrating the RSB producing disconnected sub-domains

To find a 2" way parition of a graph G
P°o = VG

do i = 0,..., n - 1

doj = 0, 1,..., 2i+1 -1

compute x2 of Pj

sort out the components of x2

assign half of the vertices and edges corresponding to the smallest

component in x2 to PI+1 2j and those corresponding to the other half
tn Pi10 r

enddo

enddo

Pn , i =0, 1, 2,..., 2" - 1 are the subgraphs of G.

Figure 2.6: Recursive Spectral Bisection Algorithm.

page 43

__Chapter 2

2.3.4 Analysis of Method

Venkatakrishnan et al [VSB91] show impressive mesh decomposition produced by the

RSB algorithm, notably for external flow regions.

The RSB algorithm assumes that the decomposition will produce connected sub-meshes

but this is not always guaranteed. For example, using the mesh given in Figure 3.5(a) and

splitting into two we can see by looking at Figure 3.5(b) that one of the sub-meshes is

disconnected. The theory applies to connected sub-meshes but disconnected sub-meshes

can be re-connected but it is unclear what effect this has since in a sense, it is against the

'spirit' of the method.

Moreover, when the domains are connected then the resultant partition is obviously

nearest neighbour and has all the advantages and suffers the same disadvantages as the

general nearest neighbour strategy. So, for example, if the RSB is applied to the graph

in Figure 2.5(a) then it cuts the graph into two blocks down the central block as in Figure

2.5(b).

2.3.5 Multilevel Recursive Spectral Bisection

Barnard and Simon [BS93] describe a multilevel implementation of RSB that achieves

about an order-of-magnitude improvement in run time.

The multilevel RSB method requires three components to be added to the basic single-

level RSB algorithm. The first component is contraction where a series of smaller graphs

are created such that the global structure of the original large graph is retained.

The second is interpolation where given a Fiedler vector of a contracted graph, this

vector is interpolated to the next larger graph in a way that provides a good

approximation to next Fiedler vector. The last component is refinement. Given an

approximate Fiedler vector for a graph, a more accurate vector is computed efficiently.

The performance advantage of the multilevel algorithm over the single level algorithm

is dependent on the problem size. The speedup decreases as the number of domains

increases because the multilevel algorithm must spend more time partitioning smaller

subproblems.

page 44

___Chapter 2

2.4 Combinatorial Optimisation Methods

2.4.1 Introduction

Solving a combinatorial optimization problem [Law76] amounts to finding the best

solution among a finite collection of alternative solutions. At first it may seem that this

is a simple problem; the solution can be found by just examining each of the alternatives

in turn and selecting the best. The problem is that the number of alternatives can be

numerous.

A classic example of a combinatorial optimisation problem is the travelling salesman

problem [GJ79]. Given a list of TV cities and a means of calculating the cost of travelling

between any two cities, one must plan a route, which will pass through each city only

once and return finally to the starting point, minimising the total cost.

All exact methods for determining an optimal route require a computing effort that

increases exponentially with N, so that in practice exact solutions can be attempted only

on problems involving a few hundred cities or less. An algorithm which depends upon

a power of N is called a polynomial time algorithm.

Theoretically combinatorial optimization problems can be divided into two classes: those

which can be solved by a polynomial time algorithm and those which cannot. In principle

polynomial time algorithms are easy to solve on a computer and those which are not

polynomial are very difficult. The theory of NP-completeness [GJ79] has been developed

in an effort to gain insight into this mysterious class of problems.

A non-deterministic algorithm is an algorithm in which there are choices. We assume that

when such an algorithm is executed, the computer fortunately makes the right choice on

each occasion.(It goes without saying that no such machine exists). If a problem can be

solved in polynomial time by such an algorithm then we say it is in the class NP (Non-

deterministic Polynomial). The travelling salesman problem belongs to this class. An

alternative way of thinking about this classification is that a problem belongs to the class

NP if, given a possible solution to the problem, we can check whether it is a solution or

not in polynomial time.

We say that any problem which can be solved by a polynomial time algorithm is in the

page 45

__Chapter 2

class P. Obviously PeNP. It is not known whether P=NP or not. A problem is said to be

hard if finding a polynomial time algorithm for a hard problem we are at the same time

looking for a solution to all the problems in NP. It can be shown that certain hard

problems are also in NP, these are called NP-complete problems. Unfortunately, it is not

possible to find complete solutions to these problems in reasonable amounts of

computation time. In trying to solve such problems we have two choices, either go for

an exact optimal solution and restrict the size of the problem which can be solved or look

for approximate or nearly optimal solutions for a larger class of problem. We are

interested in this second class of algorithms and these are known as heuristic algorithms.

The mapping problem can be regarded as a combinatorial optimization problem. Two

heuristic algorithms that have been used to try and solve the mapping problem are

Simulated Annealing [RGV83] and Tabu Search [Glo89], [Glo90].

2.4.2 General Formulation

In this section we give a general formulation of combinatorial optimization problems and

give examples relating to graphs.

Formally, a combinatorial optimisation problem consists of a cost function f with domain

S and co-domain R the set of real numbers

f: S ->

S is a finite set and is called the solution space. Problems can either be maximisation or

minimisation problems.

For minimisation the problem is to find x* e S such that f(x*) < f(x), for all x e S.

In the case of maximisation we require f(x*) > f(x).

Since we can transform a maximisation problem into minimisation by multiplying the

cost function by -1, it is sufficient to think of all problems as minimisation problems.

Whilst this formulation gives the general structure, certain consideration must be given

to the construction of S and F.

page 46

____ ____ __________________________________ Chapter 2

To illustrate this, consider the problem of partitioning a graph into two. Let G be a graph

where G = (V,E) with a cost of 1 i.e. c(u,v) = 1 associated with each edge (u,v) e E.

The problem is to partition the vertices of G into two subsets of equal sizes such that the

cut set has minimum cost i.e. the sum of the cost of all those edged with end points in

different subsets is minimum.

Therefore, we can define the set of feasible solutions S to be

and the cost function f(x), x=(S 1 ,S2) e S to be

f(x) = E c(u,v)

U 6 S,, V € S2

2.4.3 General Purpose Algorithms

One important problem shared by all combinatorial optimisation problems is that the

solution space is ragged and unpredictable. Classical optimisation problems can often be

solved by hill climbing techniques. We optimise a function by always going up, when

we can no longer go up we have reached the summit and this we hope, is the best

solution. In a complex landscape we may have chosen the wrong hill to climb and

although we have reached the top, there is a higher hill elsewhere. The complexity of the

landscape for combinatorial optimisation problems makes the scenario almost inevitable.

We are therefore forced to search for our optimum value by taking a more heuristic

strategy. We shall now examine the general principles of the most successful techniques.

In examining general methods, we require the concept of a neighbourhood. Given a cost

function f and a member x of the solution space S then a neighbourhood N(x) of x is a

member of S which is close to x in some sense. A neighbourhood structure is a mapping

which defines a set of neighbourhoods for every x in S. To illustrate how this may work,

consider again the problem of partitioning a graph. A neighbourhood N(x) can be reached

page 47

_________ ___________________Chapter 2

from x via a single pair-exchange between members of the two different subsets of x.

Naturally, the best neighbour of x corresponds to the member in N(x) that gives us the

highest decrement in cost.

It is illuminating to consider how the concept of a neighbourhood can be applied to

obtain a standard hill climbing method. We first generate a random start and evaluate the

cost. We next examine a neighbourhood of the random start and see if the cost has

improved. If there is an improvement, we move to that position and examine the

neighbourhood of the new position. If the cost deteriorates, then we examine a different

neighbourhood. We repeat this strategy iteratively until there is no improvement. The

problem with this method is that we can easily find ourselves in a position in which no

improvement is possible but we have reached an optimum. The method is rather like

trying to find the lowest point in a range of mountains. First randomly pick a starting

point and select a direction to walk. Check that the direction is downhill, then walk in

that direction until you are no longer going down. Repeat the procedure until you are

forced to stop. The chances of this method getting you to the lowest point are virtually

zero. The most likely is that you would be trapped in the bottom of a small valley. To

find a way out of the solution it would be necessary to climb upwards in order to go

down further in the future. The methods of Simulated Annealing [KGV83] and Tabu

search [GloSO], [Glo90] are based on this concept.

page 48

__Chapter 2

2.4.4 Simulated Annealing

2.4.4.1 Introduction

The Simulated annealing approach is based on ideas from statistical mechanics. It can be

viewed as an enhanced version of the iterative improvement, in which an initial solution

is repeatedly improved by making small local changes until no such change gives a better

solution. Simulated Annealing randomizes this procedure in a way that allows for

occasional uphill moves (changes that worsen the solution) in an attempt to reduce the
probability of becoming stuck in a poor but locally optimal solution.

2.4.4.2 Methodology

The difficulty with local optimisation is that it has no way of backing out of unattractive
local optima. A move to a new solution is never made unless the direction is downhill,

that is, a better value of the cost function.

Simulated Annealing is an approach that avoids getting trapped in local minima by

allowing an occasional uphill move. This is done using a random number generator and

a control parameter called the temperature. As typically implemented, the Simulated

Annealing approach involves a pair of nested loops and two additional parameters, a

cooling ratio r, 0 < r < 1, and an integer temperature length L. Figure 2.7 shows the
steps of the Simulated Annealing algorithm. In Step 3 of the algorithm, the term "freezes"

refers to a state in which no further improvement in cost S seems likely.
The core of this procedure is the loop at Step 3.1. The random number e^ will be a

number between 0 and 1, where A and T are positive, and can rightfully be interpreted

as a probability that depends on A and T. The probability that accepting an uphill move

of size A decreases as the temperature cools down, and, for a fixed temperature T, small

uphill moves have higher probabilities of being accepted than larger ones.

page 49

Chapter 2

1. Obtain an initial solution S.

2. Obtain an initial temperature T > 0.

3. While not yet frozen do :

3.1 Perform the following loop L times.

3.1.1 Let S' be a random neighbour of S.

3.1.2 Let A = cost (S'} - cost (S).

3.1.3 If A < 0 (downhill move)

Then set S = S'.

3.1.4 If A > 0 (uphill move)

Then set S = S' with probability e

3.2 set T = rt (reduce the temperature)

4 Goto Step 1

Figure 2.7: Simulated Annealing algorithm

2.4.4.3 Addressing Graph Partitioning using Simulated Annealing

Recalling that in a graph partitioning problem, we have a graph G = (V, E) and we want

to partition the graph such that the partition V = V} u V2 of V into two equal sized sets

has the minimum number of edges being shared by the sets V7 and V2. Using the

simulated annealing method, a solution will be any partition V = Vj u V2 of the vertex

set and not just a partition into equal sizes sets. Two partitions are neighbours if one can

be obtained from the other by moving a single vertex from one of its sets to the other

set.

Therefore, if (V,,V2) is a partition and v e V; , then (V} - M, V2 u fW) and (V,, V2) are

neighbours.

page 50

___Chapter 2
The cost of a partition (VJt V2) is defined to be :

Cost (V,,V2)= I (i ii, v ; E£ : u G V; , v e V2) I + a (| V, I - I V2 \) 2

where I V, \ is the number of elements in set V} and a is a parameter known as the
imbalance factor.

Although this method allows infeasible partitions to solutions, it carries a penalty cost
according to the square of the imbalance. Consequently, at low temperatures, the sets
tend to be perfectly balanced. The penalty function approach is common to many
implementations of simulated annealing and it is often effective because the extra
solutions that are allowed give new escape routes out of local optima.
The initial solution is randomly generated. If the final solution stays unbalanced, then a
greedy heuristic is used to put it into balance. The heuristic then repeats the following
operation until the two sets of the partition contain the same number of vertices: find a
vertex in the larger set with the least increase in cutsize, and move it. The best feasible
solution found is noted, be it the modified final solution or some earlier feasible solution
encountered earlier on.

2.4.2.4 Analysis of Method

Simulated annealing has proved succesful in certain practical domains. However, there
are certain areas of potential difficulties for the approach.
One question that needs to be addressed is the running time of the algorithm. It has been
observed by many researchers that the simulated annealing requires large amounts of
computational time to perform well. For partitioning unstructured meshes, the
computational time for partitioning is just as important as the sub-meshes obtained since
the time taken to partition the mesh must be a small fraction of the overall solution time
of the problem.
Johnson et al [JAMS89] discusses simulated annealing for graph partitioning. They
showed that for sparse random graphs, it tended to outperform the Kerninghan-Lin
method [KL70]. However, it did not perform so well on a graph that was generated with

page 51

__Chapter 2
a built-in geometric structure.

Williams [Wil91] also compared the simulated annealing method with two other methods.

One method was the recursive spectral bisection and the other was recursive orthogonal

bisection. Recursive Orthogonal Bisection partitions a planar graph by placing a

horizontal or vertical line such that half the vertices lie on either side of it. Williams

showed that the parallel implementation of simulated annealing took 20 times longer than

the recursive spectral bisection for the test cases that he used. The running time of an

application was measured after being mapped by the three methods he was comparing.
Using a graph with 5722 nodes, the running time of an application was fastest using
simulated annealing. Even though simulated annealing ran significantly longer than the

recursive orthogonal bisection method, the running time for the simulated annealing
partitioned application (which was the best mapping) was only 21 % less than the running

time for the recursive orthogonal bisection (which was the worst mapping).

2.4.5 Tabu Search

2.4.5.1 Introduction

Tabu search is a fairly new approach to combinatorial optimisation where it is very
similar to Simulated annealing in that it accepts "bad" moves in hope that there exits a
better solution later on. It is characterised by aggressive local search during each
iteration, and avoiding cycling in the solution space by keeping a short history of the

recent solution [Glo89],[Glo90].

2.4.5.2 Methodology

There are two aspects in which Tabu search differs from Simulated annealing.

1. It is more aggressive. The whole neighbourhood is searched for each iteration of the
current solution and it is usually searches exhaustively to find the best candidate moves.

page 52

__Chapter 2

2. It is deterministic. The above exhaustive search for best candidate moves is repeated

for each iteration. If a candidate move does not cause cycling in the solution space then

this candidate move is made to avoid cycling no matter what sign its gain has. A "tabu

list" is usually used to record the most recent move history.

Figure 2.8 shows the general framework of tabu search where S is used to represent the

solution. C is used to represent the cost function and t is the length of the tabu list. The

first solution is a random solution, and the algorithm repeats the loop at step 2 until some

criteria for stopping has been met. During each iteration, the algorithm makes an

exhaustive search of the solution space in the neighbourhood of the current solution

which has not been traversed in the last t (t > 1) iterations. The current solution with the

best cost. Some of the main points for the tabu search algorithms are :

1. The design of the neighbourhood system effects the selection procedure. Usually, each

iteration is made more aggressive if there is a large neighbourhood and this can prove

to be very time consuming.

2. The design of the contents of the tabu list. If a current solution is transformed to S by

a move m, then some attributes of S or m should be captured by the corresponding cell

of the tabu list, so that S will not be traversed again in the next t steps. At one extreme,

the solution S can be stored directly in the tabu list. However, in practice, in order to

save memory space and checking time, some attributes of S will be stored in the tabu list

to prevent m or m" 1 to be used in the next t iterations. If a more detailed set of attributes

of a solution or of a move in each cell of the tabu list is used, then more memory space

and checking time will be incurred during the search of the solution space, and the

searches will be less restrictive because less solutions (as well as the ones visited in the

last t iterations) will be tabued. However, if a more simplified set of attributes of a

solution or move in each cell of the tabu list is used, then the implementation will make

more efficient use of space and time for each iteration, and since extra solutions will be

tabued, the searches will be more restrictive.

3. The design of the aspiration level function. To make more efficient use of space and

time, most designs of the contents of the tabu list will tabu too many solutions as well

page 53

__________Chapter 2

as those that have been visited in the last t iterations therefore increasing the risk of

losing good move candidates. However, an aspiration level A(m,S) can be defined for

each pair of move m and solution S such that if C3 (m(S)) > A(m,S) the tabu status of

m for the current solution S can be outweighed to capture the common properties of the

earlier applications of m to solutions sharing the same attribute values of S.

4. The design of the length t of the tabu list. The length of the moved history that is

saved in the tabu list is determined by the parameter t. Suppose that we have a local

optimum S and that it needs at least t 1 consecutive "downhill" moves to get to another

local optimum S 1 . Therefore, a necessary condition for S to reach S 1 is that t > t 1 .

Generally, the longer the tabu list, the more time for tabu status checking for each move,

and the more restrictive the search process. However, by having a tabu list that is too

short can risk introducing cycling in the solution space. The parameter t can be a constant

or a variable during the execution of the algorithm. Glover [Glo89] states that a tabu list

of length 7 is appropriate for many applications.

1. Get a random initial solution S

2. If stop criteria not met, DO

2.1 Let S 1 be neighbouring solution of S maximising

A = C3 (S 1) - C3 (S) and that

this neighbourhood has not been visited in the last t iterations.

2.2 Let S = S'

3. Return the best solution S visited.

C3 : Objective function

Figure 2.8: Tabu search algorithm

page 54

__Chapter 2

Tao et al [TZTS92] propose the following description for their tabu search algorithm for
multiway graph partition:

For the tabu list design, they use a circular list to maintain vertices that have been

moved in the last t (t > 1) iterations. They find that by having a more detailed

characterization of past known moves commonly traps the search process in a small

subspace of the solution space. For their problems, a constant tabu list of length 5 gave

the best performance.

For their aspiration level A (m,s) for all pairs of m and s, they used the cost of the best

visited solution, based on the same observation as pointed out above, more "flexible"

searches implemented by a more sophisticated aspiration level definition tend to limit the
real search freedom in the solution space.

2.4.5.3 Analysis of Method

Lim et al [LC91] compare the tabu search algorithm with the Simulated annealing

algorithm for graph partitioning. They found that tabu search did not perform as well in

terms of quality of solutions on random graphs, even though in most cases the results

were close. However, they found that their tabu search algorithm was faster by two to

three orders of magnitude.
Tao et al [TZTS92] studies show the importance of the design of the solution

neighbourhood structure. They believe that the running time of their algorithms can be

greatly reduced if they combine the aggressive search in the tabu search approach with

the stochastic search in the simulated annealing approach. While the former is critical to

finding "good" solutions in practical time frames, the latter is effective in avoiding

cycling in the solution space.
As well as combining Tabu search with simulated annealing, other approaches have been

looked at. For example, Tabu search has been modified so that recent implementations

do not search the whole solution space but accept the first downhill move encountered.

This improves speed but does not detract from the solution process.

page 55

______ _ _ ___________________________________ Chapter 2

In general, Tabu search algorithms are slower than other problem-specific heuristics, but

they have been successfully applied to many problem domains. The relative performance

of Simulated annealing and Tabu Search is primarily problem dependent.

We experimented with different neighbourhood structures and cost function with some

of our simple meshes. Our preliminary findings were in accord with those mentioned

above [ELJC93].

For example, one strategy taken was to use a cost function which was the correlation of

the adjacency matrix of the mesh with an ideal structure matrix. In particular, if we wish

to split the mesh into two sub-meshes, the ideal structure matrix has the form

,0 E

where E is matrix of all 1's

and 0 is a matrix of all O's

Given a particular partition of a mesh the correlation between the re-arranged partitioned

matrix and the ideal structure matrix gives a measure of how good a partition we have

achieved.

This process was used on the example shown in Figure 2.4(a) and we obtained the

partition that is shown in Figure 2.4(c).

Unfortunately, the time taken to achieve this partition on a 486 PC was approximately

20 minutes. Clearly, this method, whilst capable of producing excellent partitions is not

feasible for any realistic problems.

page 56

Chapter 3

Chapter 3
Recursive Clustering Algorithm

page 57

_____________ __________________________Chapter 3
3.1 Introduction

The recursive clustering method was devloped by Sadayappan et al [SER90] in order to
split and map graphs onto a local memory machine with a hypercube interconnection
tolopgy. The algorithm explicity attempts to minimise the communication volume through
the use of an iterative improvement heuristic based on the Kernighan-Lin mincut
algorithm [KL70]. Kerninghan-Lin propose an efficient mincut bisection heuristic with
an experimental determined time complexity of O(n24). Their algorithm is based on
finding an advantageous series of vertex-exchanges between the two partitions to
minimise the communication between the two. The method is considered superior to
other simple local search heuristics since it is endowed with the "hill-climbing" ability
because of the swapping of a series of vertex-exchanges as opposed to simple
perturbations.

The Kerninghan-Lin method is described in the next section.

3.2 Kerninghan-Lin Graph Bisection method

3.2.1 Definition of Problem

Given a graph G with costs on its edges, partition the nodes of G into subsets so as to
minimise the total costs of the edges cut. The simplest problem to be partitioned is that
of a graph G with 2n vertices which is to be split into 2 sub-sets with minimal cost
between the subsets which will both contain n vertices each.

Let G be a set with 2n vertices and an associated cost Cy, for each edge connecting
vertices i and j.
We wish to partition G into 2 subsets A and B, each with n vertices, such that the
"external cost" (i.e. cost between the two subsets)

K = Z Cab for all ae A and b e B is minimised.

page 58

_________ ________________Chapter 3

The method is as follows :

1. Arbitrarily assign each vertex to one of two subsets A and B of G.

2. Try to decrease the initial external cost between the two subsets by a series of
interchanges of subsets A and B.

The subsets to be chosen are to be described . When it is not possible for further

improvements, the resulting subsets A' and B' have a local minimum cost between
them. Kerninghan and Lin state that the resulting partition also has a fairly high
probability of being a globally maximum partition.

The procedure can then be repeated in a recursive manner, so that we can obtain 2"
subsets.

Given G and C^, suppose A* and B* is a minimum cost 2-way partition. Suppose A and
B is any initial arbitrary 2-way partition. It is clear therefore that there exists XczA, YcB
with |X| =|Y| < n/2 such that interchanging X and Y produces A* and B* as shown
in Figure 3.1.

A* = A-X+Y

B* = B-Y+X

Figure 3.1: Interchanging sets X and Y between two subsets A and B.

page 59

__________ ________________________Chapter 3

However, the problem is to identify X and Y from A and B without having to consider

all possible choices.

The process to identify X and Y is described below:

For each a e A, we define an external cost Ea by

E =a / -; av
yeB

and an internal cost by

a ' -> ax.
xeA

Similarly, for each be B, we define an external cost Ef, by

^bx

xeA

and an internal cost by

'» = £ by
V€fi

Let the difference between external and internal costs be

Dz = Ez - Iz for all z e G

page 60

_________ Chapter 3

It is stated that by considering any a G A, b e B, if a and b are interchanged, then the

gain (i.e. the reduction in cost) is precisely

Da + Db - 2Cab

This can easily be seen as follows:

Let t be the total cost for all connections between A and B that do not involve a or b.

Then the external cost K is

K = t + Ea + E, - Cab

Exchange a and b; let K 1 be the new cost. We obtain

K" = t + Ia + Ib + Cab

Therefore,

Gain = old cost - new cost
= K- K 1

= Ea + Eb + Ia + Ib - Cab - Cab

= Da + Db - 2Cab

This is illustrated in the example given below:

Example
Suppose we have a graph with 18 vertices, whose initial arbitrary split can be seen in

Figure 3.2, each subset containing 9 vertices. If we assume that each edge carries a cost

of 1, then the external cost (i.e number of edges shared) between A and B is 6.

page 61

Chapter 3

A = {1,5, 6,7, 8,9, 10, 11, 12}

B = {2, 3,4, 13, 14, 15, 16, 17, 18}

Figure 3.2: Example of graph with initial arbitrary split

If vertices numbered 2 and 8 are interchanged then calulating

E2 = 2 I2 = 1 So, D2 = 2-1 = 1

and E8 = 2

Hence, using

I8 = 2

Gain = D2 + D8 -
=1+0-0

= 1

So, Do = 2-2 = 0

Therefore, there is a gain i.e reduction in cost of 1 by interchanging vertices numbered

2 and 8. This can be seen in figure 3.3, where the vertices have been swapped and we

can see that the number of edges shared by subsets A and B is now 5, i.e. a reduction

in cost of 1 from the split shown in Figure 3.2

page 62

A= {1,2,5,6,7,9, 10, 11, 12}

B = {3, 4, 8, 13, 14, 15, 16, 17, 18}

Chapter 3

Figure 3.3: A reduction in cost of 1 by interchanging vertices 2 and 8

The algorithm proceeds as follows:

1 . Compute the D values for all vertices of the graph.

2. Choose a; e A, bj e B such that

gl = Dai + Dbj - 2CaibJ

is maximum.

a; and bj correspond to the largest possible gain from a single interchange.

3. aj and bj are set aside temporarily, and are called a, and b! respectively.

4. Recalculate the D values for the vertices of A - 'I a! }• and for B - \ b {

by using :

page 63

Chapter 3

Dx ' = Dx 4- 2Cxai - 2CxbJ A - ^ a, !>

= Dy + 2Cybl - 2Cyai B -

These expressions can be easily verified:

The edge connecting vertices x and a; is counted as internal in Dx . It is counted as being

external in Dx ', therefore Cxai must be added twice to make this correct.

Similarly, Cxbj must be subtracted twice to convert the edge joining x and bj from external

to internal.

5. The second step is now repeated by choosing a^b^ from A - •{ a. { I and

B - \ bj }• such that :
82 = Da2 ' + Dbz 1 - 2Ca2|b2| is maximum

(aj and bj are not considered in this choice)

Therefore, g2 is the additional gain when the vertices a2 ' and b2 ' are interchanged as

well as having exchanged aj and bj.

This additional gain is maximum, given the previous choices.

6. 82' and b2 ' are set aside and the algorithm continues until all the vertices are

exhausted, identifying (a3 ',b3),....(an ,bn l) and the corresponding maximum gains g3 ,

As each pair (a',b') is identified, it is removed from contention from further choices.

Therefore, the size of the subsets decrease by one each time a pair (a',b') is chosen.

If X = a,', a, 1 , aj,

and Y = b, 1 , b, 1 ,...., bj

page 64

__________ ______________________Chapter 3

then the decrease in cost when sets X and Y are interchanged is

Cost = gl + g2 + + gn .

Of course, if every pair of elements were swapped then the cost would be 0 i.e.

n

Cost =
A 1

Obviously, some of the gj's are negative because by swapping certain vertices can

increase the cost. i.e. a reduction in cost of -2 means that there is an extra cost of 2.

7. kbest is chosen to maximise the partial sum :

kbest

E r* O ~~ I •*•
°i

If G > 0, then a reduction in cost of value G can be made by interchanging the sets X

and Y.

8. When this is done, the resulting partition is treated as the initial partition and the

algorithm is repeated from Step 1.

If G = 0 (i.e. not worthwhile to make any more swaps), then we have arrived at a locally

optimum partition.

Figure 3.4 shows a flow-chart for the algorithm described above.

page 65

Chapter 3

Compute D values for A and B

a 4- 1

Act <— A, Bet <— B

Choose ^ e aa, bj e B a such that

ga = DU + Dbj - 2Caibj is maximum

<-

i «- Aa

B a-t- 1

Isa=n ?
No

Yes

a
Update the D values

for Aa, Ba

Choose kbest to maximise

kbest

Yes
Is G > 0 ?

No

move a, 1 ,....^^, 1 to B

move b,',....,bkbest ' to A

Figure 3.4: Flow chart showing steps of recursive clustering method

page 66

__Chapter 3

For example, using the graph which contains 18 vertices that is given in Figure 3.2

i

1

2

3

4

5

6

7

8

9

a. 1

2

12

11

7

10

6

1

5

9

b, j

8

3

4

13

16

17

14

18

15

gi

1

2

-1

_2

-1

-1

1

-1

0

G=Ig,

1

3

2

0

-1

-2

-1

-2

-2

kbest

1

2

2

2

2

2

2

2

2

Table 3.1: Table showing best interchanges

As we can see from Table 3.1, the value of G, which means a reduction in cost of 3, it

at its highest when i = 2, therefore kbest = 2. Hence, for this particular example, the

subsets X and Y contain the following vertices :

X = 8, 3

Y = 2, 12

page 67

__Chapter 3

And these two subsets are interchanged between A and B which gives us the partitions:

A= {1, 5, 6,7, 9, 10, 11, 8, 3}

B = {4, 13, 14, 15, 16, 17, 18, 2, 12}

The resulting partition can be seen in Figure 3.5:

A= {1,2,3,5,6,7,9, 10, 11}

B = [4, 13, 16, 8, 14, 17, 12, 15, 18}

Figure 3.5: Resulting partition

If the algorithm is run again, then the value of G is equal to 0 since the partition shown

in Figure 3.5 is optimal and a smaller cost could not be found.

3.2.2 Analysis of Method

Given such problems as above, one approach to solve these problems is to find the best

page 68

__Chapter 3

exchange involving, say, p pairs of vertices, for some p that has been specified in

advance. By using a small value of P, the difficulty that is met is to identify good
exchanges, but as p increases, the computational effort required grows rapidly.

The Kerninghan-Lin method sequentially finds an approximation to the best exchange of

P pairs. To make the improvement as large as possible, p is chosen and is not specified
in advance.

Since a sequence of gains gi5 i = 1,..., n is constructed and the 'maximum' partial sum

is found, the process does not terminate immediately if any gs is negative. Therefore, the

process can sequentially identify sets for which the exchange of only a few vertices

would actually increase the cost, while the interchange of the entire sets produces a net

gain.

3.2.3 Running Time of The Algorithm

The operations involved in making one cycle of identification (aj, b, 1),...,^ 1 , bj) and

the selection of the subsets X and Y that are to be exchanged can be defined as a 'pass'.
The total time taken to make a pass can be recalculated as follows:

The initial calculation of the D values is an n2 procedure, because for each vertex of G,
all other vertices of G have also to be considered.
To update the values of D, the time required is proportional to the number of values that
need to be updated. Therefore, the total updating time in one pass grows as

(n - 1) + (n - 2) ++ 2 + 1

which is proportional to n2 .

3.3 Using Recursive Clustering to Partition Unstructured Meshes.

In the above section, the recursive clustering technique was described for partitioning

graphs. However, we want to be able to partition unstructured meshes so we need to be

able to view an unstructured mesh as a graph.

page 69

_______^^ ________Chapter 3

Since elements of the mesh communicate via shared nodes, then the cost between
submeshes depends on the number of nodes shared by these two submeshes.

The unstructured mesh can be viewed as a Task Interaction Graph (TIG). The vertices
of the TIG represent the elements of the mesh and the edges represent communication
requirements between elements with edge-weights reflecting the relative amounts of
communication involved.

This is demonstrated using the simple mesh shown in Figure 3.6. This can be transformed
into a Task Interaction graph which can be seen in Figure 3.7.

X
X

3/
/*

/8

Figure 3.6: Simple mesh containing 8 elements

page 70

Chapter 3

Figure 3.7: Task Interaction Graph

The information of the Task Interaction Graph can be stored in matrix form where the

number of rows and columns equals the number of elements. For example, the TIG

shown in Figure 3.7 could be stored as the following matrix:

[02101000

20212110

12021110

01201121

12110210

01112021

01121202

00010120

page 71

________ ____________Chapter 3

In order to find the amounts of data communication between two elements, for example,

elements numbered 3 and 4, we can look up row 3, column 4 in the above matrix and

we can see that the amount of data communication between these two elements is 2. i.e.
they share 2 nodes.

3.4 Cost Function

An assumption that is made throughout this thesis is that the amount of data

communiated via each node is homogeneous.

The cost function in our recursive clustering algorithm is slightly different to the one

described for the Kerninghan-Lin algorithm.

The cost function is calculated by counting the number of nodes shared by the two

submeshes.

If a mesh M with n elements has ben split into two submeshes A and B. We have a

matrix C(a,b) = 1 if node a e A is the same node as node b e B, else C(a,b) = 0.

Therefore,

n

Cost = £ C(a.Jb)
1=1

This is illustrated in the example given in Figure 3.8. Looking at Figure 3.8(a), we can

see that eight nodes are being shared between the two submeshes, therefore the

communication cost between the two is equal to eight. However, if elements numbered

2 and 3 are swapped, then by looking at Figure 3.8(b), we can see that now only six

nodes are being shared by the two submeshes. Hence, the communication cost has been

reduced by two from eight to six. Therefore, it would be advantageous to implement this

swap .

page 72

Chapter 3

A

\/\
\/\\/\

\/\

\/\ /\/
\

\/

a) Cost=8 b) Cost=6

Figure 3.8: An example of the local cost function used in the

recursive clustering method

3.5 The Algorithm

The recursive clustering algorithm proceeds as follows :

1. Arbitrarily assign each element to one of two clusters A and B, such that there is an

approximately equal number of element on each.

2. Evaluate the communication cost of this partition and find which pairs of elements

when swapped give the maximum reduction in costs. (This is done as described for the

Kerninghan-Lin method).

3. Temporarily removing the previously swapped pair, find the next best pair and

continue until no more pairs remain.

4. From the set of all swaps, find the subset which minimises the communication costs.

Provided this reduces the cost, make the swap.

The procedure is repeated in a recursive manner, so that we obtain 2n partitions.

page 73

_______ ______________Chapter 3

When applied to the simple problem shown in Figure 3.9(a), the division into four

domains is straightforward and can be seen in Figure 3.9(b). Using another simple

example shown in Figure 3.10(a), the division into four and eight can be seen in Figure

3.10(b) and Figure 3.10(c).

It appears that the recursive clustering method works well on a variety of simple meshes

and that the partitions obtained are well-clustered.

Figure 3.9(a): Unpartitioned mesh

page 74

Chapter 3

Figure 3.9(b): Decomposition into four

page 75

Chapter 3

Figure 3.10(a): Unpartitioned mesh

7XX7X

7XX/X

X/X/X

X/XZX

Figure 3.10(b): Decomposition into four

page 76

Chapter 3

/l/l/l/l
ZZZ

ZZZ

77

ZZ
ZZzz

zz
zz

zzz

Figure 3.10(c): Decomposition into eight

page 77

__________ _____________________Chapter 3

However, the recursive clustering method does have its limitations.

1. The mesh can only be partitioned into 2" sub-meshes.

2. Each split, even if perfect (i.e. optimal) does not imply an overall optimal solution.

3. The processor topology is not taken into account.

4. The optimisation procedure tends to get caught in local minima.

We have attempted to overcome some of these limitations and Chapter 4 describes the

modifications that we have made to the standard recursive clustering.

page 78

Chapter 4

Chapter 4
Extension of the Recursive Clustering Algorithm

page 79

_____ ^_____ ___________________________Chapter 4

4.1 Introduction
The examples demonstrated in Chapter 3 show that the recursive clustering method can

perform well on a variety of simple meshes and that the partitions obtained are

adequately clustered. Despite its limitations (some of which are shared by other

approaches anyway) it seems to have the potential to be very effective at mesh

decomposition with minimal inter-processor communication. In this chapter, we describe

modifications to the standard recursive clustering algorithm to provide a more flexible

and robust mesh decomposition software tool.

4.2 Eliminating Constraint of 2n sub-meshes.
As mentioned in the previous chapter, the recursive clustering algorithm, because of its

recursive nature, is limited to splits of 2n clusters. Since we only obtain 2" sub-meshes,

we can only map onto a multi-processor system with 2" processors, but for our purposes

this is a severe limitation, since we want to be able to map onto any number of

processors. However, it is a straightforward matter to eliminate this constraint of splitting

into 2" sub-meshes and obtaining k sub-meshes.. The solution to this limitation is to use

an iterative technique for any number of processors. The essential idea is to start with an

arbitrary split into k sub-meshes with equal load. Then, every pair of sub-meshes is

operated on to minimise the communication costs between the pair as in the conventional

recursive clustering algorithm. We shall now call this algorithm the iterative clustering

algorithm.

page 80

___Chapter 4

4.3 Local Minima Trap
Unfortunately, as with the recursive clustering algorithm, this method taking any number
of processors into account is still susceptible to local minima trap.
There are two types of local minima traps which are described below:

4.3.1 Type 1
This is the standard local minima trap i.e the method fails to find a minima of the given
objective function and gets stuck in local optima.

Local optima by R.C

Figure 4.1: Local minima trap

4.3.2 Type 2
The other type of local minima trap is that the method uses a pairwise optimisation
technique. Even if the method finds a global minimum at each stage, the solution found

will not be a global minimum.
For example, looking at the simple mesh shown in Figure 4.2(a), if we wanted to
partition this mesh into five, the minimum cost solution would be 12 and an optimum
result can be seen in Figure 4.2(b). However, when using the method above, the result
of partitioning into five can be seen in Figure 4.2(c). At this point the sub-meshes are
allocated onto any processor. The cost of this split is 15. By looking at this split, we can

page 81

____________Chapter 4

see that the elements that have been assigned to processor 3 are not all connected (even

though sometimes a disconnected sub-domain is more desirable, in this example it is not).

It finds the local minima between the pair but does not find an overall global minimum.

Unfortunately, it is the optimisation of the local cost measure using the swapping strategy

that leads to the undesirable disconnected domains in Figure 4.2(c). For example, the

number of nodes shared by processor 3 and 4 is 3, and hence the cost between these two

is 3. An optimum cost between two processors for this particular mesh is 3. When the

algorithm tries to optimise the cost between processors 3 and 4 it does not take into

account the fact that processor 3 also shares nodes with processor 5. Since the cost

between processors 3 and 4 is already 3, the algorithm will not be able to overcome the

problem of the disconnected sub-domain because it has no way of knowing how the other

sub-meshes are connected.

Since the initial partition into k sub-meshes is arbitrary, the resulting sub-meshes obtained

obviously depends on the starting sub-meshes. By choosing good starting sub-meshes, it

may make the probability of an optimal solution higher, although this tendency is very

difficult to evaluate. Another reason for choosing good starting sub-meshes is that is can

reduce the amount of work required to make the system pairwise optimal.

page 82

Chapter 4

a) Simple mesh

b) Optimal solution cost=12

Processor 1 Processor 2 Processor 4 Processor 5

Processor 3

c) Solution using Iterative Clustering with random initial partition, cost=15

Figure 4.2: Limitation of the iterative clustering algorithm

4.3.3 Renumbering Elements
One technique that can be used to create good starting sub-meshes is to renumber the

elements. With the iterative clustering algorithm, the initial split is arbitrary and if we

have a mesh with n elements and we want to split into k sub-meshes, then elements

page 83

________^^ ______________________Chapter 4

numbered 7 to k/n are set aside for one sub-mesh, elements numbered k/n+l to 2k/n are

set aside for another sub-mesh, and so on.

Figure 4.3(a) shows a simple example with only 16 elements and the figure shows the

elements numbered arbitrarily. Say, for example, we wish to partition this mesh into two,

elements numbered 1 to 8 are in one sub-mesh and elements numbered 9 to 16 in the

other. Figure 4.3(b) shows the initial split into two.

13

14

15

16

12

11

10

Figure 4.3(a): Simple mesh with random element numbering

Proceeding with the algorithm, we identify two elements a[i] and b[j], one from the sub-

mesh A and the other from sub-mesh B. These two elements when interchanged produce

the largest possible reduction in cost. The elements a[i] and b[j] are temporarily set aside,

and the algorithm proceeds to find the next two elements from the remaining sub-meshes

that again reduce the cost the most. This is continued until all the elements are exhausted.

Table 4.2 shows the elements that have been chosen from each sub-mesh for each step.

page 84

Chapter 4

Sub-mesh A Sub-mesh B Sub-mesh A

8

Figure 4.3(b): Simple mesh split into two sub-domains

a[i]

4

3

2

1

8

7

5

6

b[j]

16

12

9

11

10

15

13

14

MaxG

-2

-2

-2

6

-2

1

-2

6

SumG

-2

-4

-6

0

-2

-1

-3

3

BigG

-2

-2

-2

0

0

0

0

3

kbest

1

1

1

4

4

4

4

8

Table 4.1: Table to show the best pairs to be swapped

KEY:
a[i] and b[j] : Elements that when swapped give the largest reduction in cost.

MaxG : The reduction (or increase) in cost when elements a[i] and b[j] are swapped.

SumG : The reduction in cost so far when k elements have been swapped.

BigG : The best reduction in cost so far.

Kbest : The number of pairs of elements in the sub-meshes that need to be swapped.

page 85

_____ ______________Chapter 4

We can see by looking at Table 4.1 that the number of pairs of elements that need to be

swapped is 8. Since we only have eight pairs of elements that are considered for

swapping, it is obvious that all pairs of elements have been swapped. So all the elements

that were in sub-mesh A are now in sub-mesh B, and all the elements that were in sub-

mesh B are now in sub-mesh A. Figure 4.4 illustrates the elements that were removed

for each step.

(a) Step 1 (b) Step 2

.13

14
15

(e) Step 5

(c) Step 3

B A

.13

15

10

(d) Step 4

B

(f) Step 6

B B

(f) Step 7 (g) Step 8
Figure 4.4: Illustration of elements that were removed at each step.

page 86

__________^^ _______________Chapter 4

Figure 4.5 shows the resultant sub-meshes after the swapping has been made. Despite the

fact that eight swaps have been made, it is clear that the algorithm has made no

difference whatsoever to the cost between the sub-meshes.

Sub-mesh B Sub-mesh A Sub-mesh B

6

8

Figure 4.5: Sub-meshes after swapping

Figure 4.3 shows one example with the elements numbered randomly. Suppose we take

the same mesh and number the elements differently to the way they are numbered in

Figure 4.3. The element numbers can be seen in Figure 4.6(a). The initial arbitrary

partition can be seen in figure 4.6(b), where the shaded elements are in sub-mesh A and

the unshaded elements in sub-mesh B. We then continue with the algorithm until all pairs

of elements are considered for swapping. The results can be seen in Figure 4.6(c) and we

can see that an optimum cost of 3 between the two-submeshes has been found, with no

disconnected sub-domains.

12

14

15

B

1 D

7

16 1 1

Fig 4.6(a): Simple mesh with numbered elements

page 87

Chapter 4

12 11

14

15

10 13

16

Figure 4.6(b): Initial arbitrary split

12

1 5

8

10 13
16 11

Figure 4.6(c): Final split, cost=3

Using the simple mesh shown in Figures 4.4(a) and 4.6(a) with two different sets of

element numbers, it is obvious that the element numbers can be important. If we number

the elements in such a way so that the starting partitions are fairly well connected, then

we might be able to overcome the problem of obtaining final sub-meshes which are

disconnected as shown in Figure 4.4(c). We looked at various techniques that can be used

to renumber the elements and the one that we found to be most satisfactory is the Cuthill-

McKee algorithm [CM69].

4.3.4 Cuthill-Mckee Algorithm

The Cuthill-McKee method provides a simple scheme for renumbering elements [CM69].

This algorithm was developed to number nodes in order to reduce the bandwidth of

sparse symmetric matrices [AM65]. Our investigations show that it is also reliable for

page 88

__________ ____________Chapter 4

renumbering elements since we achieve good starting partitions when the elements are
renumbered in this way.

The renumbering scheme is given below :

1. Choose an element to be relabelled 1. This element should be located at the

extremity of the mesh and should, if possible, have few connections with other

elements.

2. The elements which share a node (i.e those which are connected) with this

element number 1 are relabelled 2,3, etc,, in the order of their increasing degree.

(The degree of an element is the number of elements which share a node with this

element).

3. The procedure is repeated by relabelling elements which are connected to element

number 2 and which have not previously been relabelled.

4. The above procedure is repeated for each of the new element numbered 3,4 etc.,

until the renumbering is complete.

Figure 4.7(a): Mesh with original element numbers

The algorithm is applied to the simple mesh given in Figure 4.7(a), which is the same

as the mesh shown in Figure 4.2(a). The element numbers that were used to obtain the

sub-domains shown in Figure 4.2(c) can also be seen in Figure 4.7(a). The renumbering

will yield the mesh with numbered elements shown in Figure 4.7(b). The element which

has been relabelled 1 was previously element number 6 since it is one element which has

fewer connections. Table 4.2 shows an element connection lists which can easily be

page 89

______^^ _____________Chapter 4

constructed. The Cuthill-McKee algorithm may be more easily implemented by referring

to such an element connection list. Consider the renumbering of elements using the

information presented in Table 4.2 and starting with element number 6 since this element

has fewer connections. By referring to row 6 of the connection list it is apparent that

elements 3, 13 and 22 need to be renumbered 2, 3 and 4. Element numbers 3 and 22

should be renumbered first since both these elements have fewer connections than

element number 13. Since it makes no difference which one of these two elements is

renumbered first, the choice is arbitrary, hence we may renumber element number 3

before element number 22 . An examination of row 3 show that elements numbered 7,10

and 17 should be renumbered 4,5 and 6. According to the number of connections to

element number 3, the first element that should be renumbered is element number 10.

Element

1

2

3

4

5

6

7

8

9

10

11

12

13

14

No of Connections

6

9

6

6

7

3

9

9

9

6

7

9

7

9

Connection List

4,15,30,31,35,38

5,12,16,18,24,25,29,32,39

6,7,10,13,17,22

1,15,30,31,35,38

2,16,20,24,25,32,39

3,13,22

3,8,10,13,17,21,22,23,37

7,11,12,17,21,23,29,33,37

14,19,26,27,30,31,34,36,40

3,7,13,17,22,37

8,12,18,21,29,33,37

2,8,11,18,21,25,29,32,33

3,6,7,10,17,22,23

14,19,26,27,30,31,34,36,40

etc.
Table 4.2: Connectivity list for mesh shown in Figure 5.7(a)

page 90

Chapter 4

7
1 1

8

15

12

1 9

16

23 2B 31 35 38

3 9/

/ /36

Figure 4.7(b): Cuthill-McKee renumbering

We now apply the iterative clustering algorithm to the mesh shown in Figure 4.7(a). If

we choose to partition this mesh into five then the result can be seen in Figure 4.7(c). We

can see by looking at Figure 4.7(c) that by renumbering the elements before applying the

iterative clustering algorithm, we generate an optimum decomposition where a minimum

cost of 12 is achieved as opposed to a cost of 15 with the decomposition of the same

mesh with random element numbering as shown in Figure 4.2(c)

Figure 4.7(c): Split into five using renumbered elements, cost=12

Obviously, this is a very simple mesh to demonstrate the effectiveness of renumbering

elements. Due to its rectangular shape, the renumbering scheme will work very well for

any mesh of this shape therefore it is important to demonstrate the effectiveness of the

algorithm on meshes without a rectangular-based shape. Figure 4.8(a) shows a Y-shaped

mesh which has been partitioned into three sub-domains and the decomposed mesh is

page 91

^______^^ ____________________Chapter 4

shown in Figure 4.8(b). Another example is shown in Figure 4.9(a) and this cross-shaped

mesh has been decomposed into four sub-domains which is shown in Figure 4.9(b). It can

be seen in both Figures 4.8(b) and 4.9(b) that the sub-domains achieved are well-

clustered sub-domains with fairly low costs between each pair of sub-domains.

Figure 4.8(a): Y-shaped mesh.

Figure 4.8(b): Y-shaped mesh split into three.

page 92

Chapter 4

7777

Figure 4.9(a): Cross-shaped mesh.

zzzz
7777

7777

ZZZZZ
ZZZZZZ
ZZZZZ
ZZZZZ

Figure 4.9(b): Cross-shaped mesh split into four.

page 93

_________Chapter 4

4.4 Specifying Processor Topology
Another feature required in the iterative clustering method is the influence of the

processor topology on the partition calculation (this is true for other methods too). For

the recursive clustering method, the problem is not so acute when mapping onto a

hypercube topology due to the high connectivity of the processor network, but when we

have modified this to account for any number of processors, it doesn't take into account

the processor topology at all. Therefore, a version is required which will account explicity

for a given processor topology.

One way of modifying the iterative clustering method to account for the processor

topology is to exploit the flexibility of the method by changing the cost function in the

optimisation procedure. As we recall from Chapter 3, the cost between two sub-meshes

is the number of nodes they shared.

The simplest function to minimise is the total inter processor distance travelled over the

topology which enables all relevant communicaton to take place. Let's take the simple

mesh illustrated in Figure 4.10(a) and suppose the processor topology that we wanted to

map this mesh onto is configured as a simple chain of five processors as in Figure

4.10(b). Obviously we would not want an element on processor 1 to have its neighbour

on processor 5 as they would have to communicate via 4 other processors. The mesh

illustrated in Figure 4.10(a) shows a simple 40 element mesh together with an

assignement of element numbers. The element numbers have been randomly generated

and we assign elements numbered 1 to 8 to the first processor, elements numbered 9-16

to the second, etc. The unmodified cost function is based upon the number of shared

nodes and hence takes no account of the location of neighbouring elements. In contrast

the modified cost function contains a distance measure of communication cost which

becomes part of the optimisation procedure.

Figure 4.10(a): Simple 40 element mesh.

page 94

Chapter 4

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

Figure 4.10(b): Processor pipeline.

Suppose an element on processor 1 shares a node with an element on processor 5, then

the cost of this node is now 4 (not 1) since it has to be communicated via 4 other

processors. An example of such a pair of elements is shown in Figure 4.10(c) which are

two elements taken from the mesh shown in Figure 4.10(a). Since element 4 is on

processor 1 and element 38 is on processor 5, they have to communicate via 4 processors

and they share 2 nodes; we therefore assign each node a cost of 4. The cost of each node

in the mesh is calculated and summed to give what we shall call the global cost.

Cost between element 4 and

element 38 = 2 x 4 = 8

Figure 4.10(c): Two elements taken from mesh shown in Figure 4.10(a).

The basis of this global cost is to force elements to be on the same or neighbouring

processors. If two neighbouring elements are on different processors which are some

distance away, then it obviously makes the value of the global cost much higher.

However, if one of the elements was moved to the same processor as its neighbour, then

the global cost is greatly reduced. The global cost now reflects the processor topology

and we proceed with a standard minimisation procedure. If we use the mesh given in

Figure 4.10(a), then we can see by looking at Figure 4.10(d) that by using this global

page 95

_________ ____________________Chapter 4

cost method, we generate an optimum decomposition (without renumbering the elements

first) where all neighbouring elements are on the same or neighbouring processors and

the minimum cost of 12 is achieved.

Figure 4.10(d): Split into 5 using the global cost method, cost=12.

zzzzZ//Z

zz/zzzzz
zz/z

Figure 4.11(a): Original mesh.

page 96

_____^^^ ______________Chapter 4

Figure 4.11 (a) shows a simple example of a geometry that has a key feature of internal

flows (i.e. the external boundary is much more complex than in external flows). If we

split this mesh into five using the iterative clustering technique, a total communication

cost of 29 (see Table 4.4) is achieved. The sub-domains can be seen in Figure 4.11(c)

together with a processor topology that would be required for nearest neighbour

communications. Obviously, this is a very simple mesh to use as an example and the

processor connections required is not too bad, but if larger meshes were partitioned using

the iterative clustering method, then the processor topologies required would be much

more complex. This would be a severe limitation since the cheaper multi-processor

systems don't have such flexibility and are limited to the number of connections they can

have.

Say, for example, we have a simple processor topology with a pipeline of 5 processors.

If we partition the same mesh into five using the global cost method and taking this

processor topology into account, then the sub-meshes obtained can be seen in Figure

4.1 l(b). Looking at this figure, we can see that all neighbouring elements are on the same

or neighbouring processors. Table 4.3 gives a breakdown of the communication costs

between every pair of processors and we can see that the total communication cost is

now 34. Even though this cost is slightly higher than with the iterative clustering

technique, it has used a simple processor topology.

If we now take the sub-domains obtained when using the iterative clustering technique

and map them onto the chain of 5 processors, then by looking at Table 4.5, we see that

the cost has now increased to 40. This is fairly high compared to the total cost achieved

using the global cost method, and there is even a node being shared by processor 1 and

5, which means that two processors have to communicate via four other processors, and

hence adds a cost of 4 to the total communication cost.

page 97

Chapter 4

Pairs of Processors Cost

1 and 2 5

2 and 3 12

3 and 4 10

4 and 5 7

Total 34

Table 4.3: Communication costs between processors when using global cost method.

Pairs of Processors

1 and 2

1 and 5

2 and 3

2 and 5

3 and 4

3 and 5

4 and 5

Total

Table 4.4: Communication costs

into account.

Cost

5

1

9

2

5

4

3

29

between processors not taking processor topology

page 98

Chapter 4

Pairs of Processors Shared nodes X Distance travelled

= Cost

1
1
2

2

3

3

4

and 2

and 5

and 3

and 5

and 4

and 5

and 5

Total

5 X 1

1 X4

9X 1

2X3

5X 1

4X2

3X1

= 5

= 4

= 9

= 6

= 5

= 8

= 3

40

Table 4.5: Costs achieved using the iterative clustering method and mapping onto
a pipeline of processors. (Having not taken processor topology into

account).

page 99

Chapter 4

V

A/WV
/yv\A

zzzzzz
A

1

Processor Topology

1 ? 3 4 5

Figure 4.11(b): Mapping the cross-shaped mesh onto a chain of 5 processors.

page 100

Chapter 4

1

Processor Topology :

Figure 4.1 l(c): Partition of cross-shaped mesh into five not taking processor

topology into account.

page 101

_____ _______________Chapter 4

4.5 The Algorithm
In this chapter, we have shown how the iterative clustering method has been modified

to cater for our needs, and have also shown how we have overcome some of the

problems that we encountered. In this section, the algorithm used is described. We have

been working with an unoptimised proto-type code which is not intended for practical use

and was just a development tool. Figure 4.12 shows the flow chart of the routines called

within this algorithm. An explanation of each routine called is given in sections 4.5.1 to

4.5A

Input

Form clusters

I
Swapset

1
Findg

1
Output
Results

Figure 4.12: Flow chart showing routines called within the algorithm.

page 102

_______^^ ____________________Chapter 4

4.5.1 Routine "Input"

The purpose of this routine is to enter all the relevant data about the mesh.

Reads the data from <filename>.dat

<filename>.dat contains information about the nodes of each element. The first line gives

the total number of elements and each line then on gives the node numbers for each

element.

e.g. for the simple mesh shown in Figure 4.13, <filenamexdat would contain the

following data:

4
1 2 4
245
235
563

Node number

Element number
56

Figure 4.13: Simple 4 element mesh.

The first line tells us that there are 4 elements in the mesh. The second line corresponds

to element number 1, so we can see that the node numbers for this element is 1 2 4. The

third line corresponds to element number 2 and so on.

The nodal data is put into a one dimensional array mesh, where maxnode (the maximum

number of nodes per element) columns are assigned to each element. The number of

nodes per element should not be equal to or greater than maxnode, and the rest of the

columns are filled with zeros. For the simple mesh given in Figure 4.13, the array mesh

would hold the following data (where maxnode=5):

[1,2,4,0,0,2,4,5,0,0,2,3,5,0,0,5,6,3,0,0......]

Columns 1 to 3 represent the nodes of element number 1 , columns 6 to 8 represent the

nodes of element number 2 and so on.

page 103

Chapter 4

4.5.2 Routine "Form Clusters"

In this routine the number of processors is entered and the value is assigned to the

variable ntransp,

It then allocates sets of elements to processors and the data is held in records

sett[i].elemts[j], where i is the processor number and j is theyf/i element in processor i.

For example using the mesh in Figure 4.13 again,

sett[l].elemts[l]=\\

sett[l].elemts[2]=2\

sett[l].elemts[3]=3',

sett[2].elemts[l]=4\

sett[2].elemts[2]=5\

sett[l].elemts[3]=6;

... and so on

Loop over processors for all pairs of processors and count the node uses for all

processors and store in the record inter[k].incl[j], where k is the processor number and

j is the node number. For example, if elements numbers 1 and 4 from the mesh in Figure

4.13 were assigned to processor 1 and elements numbers 2 and 3 were assigned to

processor 2 then

inter[l].incl[l]=l\ Node number 1 is used once in processor 1

inter[l]. incl[2]= 1;

inter[l]. incl[3]= 1;

inter[2].incl[l]=Q\ Node number 1 is not used in processor 1

inter[2]. incl[2]=2\

inter[2].incl[3]=l;

and so on.

page 104

______ Chapter 4

4.5.3 Routine "Swapset"
This routine finds the best pairs of elements that can be swapped in order to reduce the

communication costs between a pair of processors.

Reads the shortest distance matrix which gives the shortest path between processors and

this is held in the variable d[ij], where i and; are processor numbers. For example if we

have a processor topology as shown in Figure 4.14, then the shortest path matrix is :

0112

1011

1101

2110

where column i and row j correspond to the shortest path between processor i and

processor;. With the example given, the shortest path between processor 1 and processor

4 is 2.

Figure 4.14: A simple processor topology.

Loop with every pair of processors and for each loop do:

Find all possible swaps in order of cost reduction by looping n/ntransp (the

number of elements in each partition) times:

Calculate glocost which is the total communication cost. This is calculated

page 105

_________________Chapter 4

by looping over all pairs of processors, checking to see if a particular

node is shared.If it is shared between processor achip and processor bchip,

find the shortest path by looking at d[achip,bchip], square this value and

add it onto glocost.

Call routine "findg", which finds the pair of elements that minimise the

global cost the most when swapped, (see section 4.5.4)

These two elements, say a and b are passed back to swapset. The variable

maxG which is the reduction in cost by swapping these two elements, is

also passed back.

The node usage of these elements are changed. For example, the nodes of

element a are removed from the node usages of processor achip and added

onto the node usage of processor bchip. The same is done for element b.

The elements are now swapped by finding the end of the list of elements

for processor achip. The chosen element a is moved from the list and the

list is shortened. The other chosen element b is also removed from the list

of elements of processor bchip and the list is shortened. For example,

Before moving elements :

Processor achip [1,2,3,4,0,0,...]

Processor bchip [5,6,7,8,0,0,...]

If elements number 3 is chosen from processor achip and element number

5 is chosen from processor bchip then the lists will now look like this :

Processor achip [1,2,4,0,5,0,...]

Processor bchip [6,7,8,0,3,0,...]

We now calculate sumG which is the summation of all maxG so far.

If this summation is the first or the maximum so far, then bigG = sumG

page 106

____^^^ _____________________Chapter 4

and kbest becomes the number of elements that have been considered for

swapping so far.

We now swap the first kbest pairs of chosen elements and returning all others to

their original partition sets.

Pointers are calculated for processors achip and bchip to check to see where the

kbest pairs of elements are in the list. The elements that were last found, which

are the unrequired swapped elements are returned to their original processor lists.

The node usages are adjusted as the elements are replaced. The swapped elements

which we want to remain swapped are now connected fully to the other elements

in the list.

For example, if our original lists contained eight elements each and originally

looked liked this

Processor achip [1,2,3,4,5,6,7,8,0]

Processor bchip [9,10,11,12,13,14,15,16,0]

and after finding eight pairs of elements to swap the lists now look like :

Processor achip [0,12,11,16,9,14,10,13,15]

Processor bchip [0,1,4,6,3,5,2,7,8]

The pointers are calculated to find the position in the list where elements are to

remain swapped. In this case, since kbest = 2, the pointer will be at position 7,

so all elements from position 1 to 6 are to be returned to their original lists.

This is done by moving the element in position 2 of the first list is moved to

position 1 of the other list and so on. With the above example, the lists now look

like

page 107

__________________Chapter 4

Processor achip [1,4,6,3,5,2,10,13,15]

Processor bchip [12,11,16,9,14,10,2,7,8]

As the elements are swapped, the node usages are also adjusted.

Note that elements numbers 2 and 10 are contained in both lists, but this is taken

care of when the elements that are to remain swapped are connected to the list by

being moved up. The lists now look like :

Processor achip [1,4,6,3,5,2,15,13]

Processor bchip [12,11,16,9,14,10,8,8]

If on the other hand, bigG is negative, i.e. there is no reduction in cost when pairs

of elements are swapped, then all the elements that have been swapped are

returned to their original lists.

4.5.4 Routine "Findg"

This routine finds a pair of elements that reduces the overall communication costs the

most.

Loop over elements in partition achip and for each loop do:

Loop over elements in partition bchip and for each loop do:

Reduce the global cost assuming that element achip[p] is removed.

Reduce the global cost assuming that element bchipfr] is also removed.

Assuming element achip[p] is added to list bchip, the global cost is

increased, looking at each node of the element. The same is done assuming

element bchip[r] is added onto list achip.

—————————————— page 108

_________________Chapter 4

The minimum global cost found is saved as minglob together with the
relevant elements.
MaxG which is the reduction in cost so far is also calculated.

4.6 Test Cases
In this section, we will show some examples of some simple meshes decomposed with
the iterative clustering method.
Figure 4.15(a) was partitioned into four onto a chain of four processors and the resulting
split can be seen in Figure 4.15(b). We can see that the algorithm has succeeded to map
neighbouring elements onto the same or neighbouring processors. None of the elements
need to communicate via more than one processor.

Figure 4.15(a): Y-shaped mesh.

page 109

Chapter 4

Proc
1

Proc
2

Proc
3

Proc
4

Figure 4.15(b): Y-shaped mesh mapped onto a chain of four processors.

page 110

_ ____ _____________________Chapter 4

So far, only examples of meshes mapped onto a chain of processors have been given. We

now give an example of a mesh split into five with the processor topology specified in
Figure 4.16(a).

Figure 4.16(a): Processor topology.

The mesh (which is illustrated in Figure 4.16(b)) was split into five with the above

processor topology in mind. The sub-meshes obtained can be seen in Figure 4.16(c).

From the processor topology above, we can see that there are no connections between

processors 2 and 5, and processors 4 and 3. Looking at the sub-meshes obtained, there

are no communications between sub-meshes allocated to processors 2 and 5, and

processors 3 and 4. Again, we see that only neighbouring elements are mapped onto the

same or neighbouring processors.

page 111

Chapter 4

7777
7777

Figure 4.16(b): Cross shaped mesh.

Figure 4.16(c): Cross shaped mesh split into five and mapped onto processor toplogy

shown in Figure 4.16(a).

page 112

Chapter 4

4.7 Larger Meshes

So far in this chapter we have shown that the algorithm can work successfully but most
of the examples used were very simple. In this section the algorithm is applied to real
life problems.

The mesh shown in Figure 4.17 has 516 elements which is used to simulate the resulting
convection currents due to a moving lid as shown in Figure 4.18.

VYYVV

Figure 4.17: Mesh with 516 elements.

**•' • rf J^-* —

i * » '*.'*• •*•-*..• • * » x S^.^ ~**~—— ""—— *~~ '

.. • * *" " • "•*«-*" »- *" J" _.s S r"s ~**^~~ *~"~~

Figure 4.18: Flow of vectors due to moving lid.

page 113

__ _________________________Chapter 4

The mesh shown in Figure 4.17 was partitioned into 3, 4, 5 and 6 sub-meshes, all being

mapped onto a chain of processors. The results can be seen in Figure 4.19 and it is clear

that by using this modified cost function, a reliable decomposition is generated where all

neighbouring elements are on the same or neighbouring processors.

&AAAA
[ZXYVYWS

Figure 4.19: Mesh partitions for 516 element mesh.

page 114

______ _________________Chapter 4

A mesh containing 3034 elements as shown in Figure 4.20(a) was partitioned into 5

taking into account a processor topology of a chain of 5 processors. The decomposition

achieved can be seen in Figure 4.20(b) and again, we can see that this decomposition is

a reliable one where all neighbouring elements are on the same or neighbouring
processors.

mmm

Figure 4.20(a): Mesh containing 3034 elements.

Figure 4.20(b): Decomposition of 3034 element mesh into five.

page 115

___Chapter 4

Another example which is shown in Figure 4.21 is the graph of Great Britain with over

5000 elements. This mesh was split into four taking into account a processor topology
of a chain of four processors. We can see that neighbouring elements are placed on the
same or neighbouring processors. Again, we can see that we have a disconnected sub-
domain (red area). It seems that the cost along the boundaries of the red and green areas
are lower than a cost along the boundary if the red area was not disconnected.

However, despite obtaining a reliable decomposition, the time taken to decompose the

mesh was approximately 15 minutes. It is vitally important that the time taken to
decompose a mesh is a small fraction of the overall solution time. Although the time

taken to decompose the 3034 element mesh is not very large, it would increase greatly
if we were dealing with a mesh containing millions of elements.

One way to overcome this problem is to reduce the number of elements in the mesh. This
can be done by grouping together clusters of elements to create what we call 'super-
elements' and then applying the decomposition algorithm onto this mesh of super-
elements.

Chapter 5 describes how these super-elements are created and some of our results will
be demonstrated.

page 116

CNCD00
•H

Chapter 5

Chapter 5
Dealing with Large Meshes

page 117

Chapter 5

5.1 Introduction

As we have seen in Chapter 4, the clustering method is not suitable for dealing with large
scale meshes since the calculations often require prodigious amounts of computer power.
It is important that the time taken to decompose these large meshes must be a small
proportion of the overall solution time.

This problem can be overcome by creating clusters of the original elements and using
these to create a reduced network which is homomorphic to the original mesh. These
clusters will be known as 'super-elements'. By creating these super-elements, we are
reducing the number of elements in the mesh and hence reducing the computational time
to decompose the mesh. For example, the mesh in Figure 5.1(a) has 516 elements, but
after we have clustered the elements to create the super-elements, the mesh now has 64
super-elements and the mesh can be seen in Figure 5.1(b).
In this chapter, we describe how these super-elements are created and what impact it has
on the time taken and the decomposition achieved.

W9999999&v/VVVVVVVVvWvVwVvVv

Figure 5.1 (a): Original mesh with 516 elements

page 118

Chapter 5

Figure 5.1(b): The same mesh with 64 super-elements

5.2 Creating Super-Elements

Since the super-elements are created in order to speed up the decomposition, it is vitally
important that the time taken to create these super-elements is very quick. A method that
we have used to create the super-elements is the graph bisection method which is
described in section 5.2.1. Obviously, a number of alternative methods can be used to
create the super-elements. Ideally, they should be connected and compact i.e. have small
diameters but this is not essential.

page 119

________ __________________ _________Chapter 5
5.2.1 Recursive Graph Bisection

The recursive graph bisection method works as follows:

1. Find two elements (from a set of n elements) which are a maximal or near maximal
distance away.

2. Assign one of these elements to a set.

3. Find an elements which shares an edge with this element and assign these to the same
set.

4. Repeat the procedure by finding elements adjacent to the newly assigned elements.

5. Stop when the set contains n/2 elements. The other unassigned elements are assigned
to the other set.

This algorithm is repeated recursively so as to achieve the required number of super-
elements. By using the above algorithm, we can illustrate how the super-elements are
created. Figure 5.1 shows a mesh containing 160 elements and we shall create 32 super-
elements each containing 5 of the original elements.

page 120

Figure 5.1: Original mesh

Figure 5.2(a): 2 super-elements

Chapter 5

page 121

Chapter 5

7ZZI7
77
/

ZZZ
ZZZZ77

777
77

17 Z0ZZ

7

£ 77

ZZZ

Figure 5.2(b): 4 super-elements

Z7

V 7171717177

Figure 5.2(c): 8 super-elements

page 122

Chapter 5

A

f

Z 7
//

Z

Z
ZZ

7

\Z\

ZZ

7
7
Z

Z1ZZZI7
/

Figure 5.2(d): 16 super-elements

/
7

XT7I7I

Z
K

Z

Z

Z
7
Z

7
Z

Figure 5.2(e): 32 super-elements

page 123

Chapter 5

rigure 5.2(f) shows the mesh now with only 32 super elements.

Figure 5.2(f): Mesh shown with 32 super-elements

5.2.2 Image Network

We now need to form an image network which will hold the details of the cost between
the super-elements. Obviously, the cost between each super-element will be greater than
one since we need to take into account the shared nodes of the original elements since
these are the nodes that will eventually be used.
To illustrate the image network, we shall use a simpler mesh than the cross given above.
We only have to consider the nodes on the boundaries of the super-elements.
Take the mesh shown in Figure 5.3. The same mesh can be seen with its super-elements
in Figure 5.4 with the original nodes on the boundaries clearly visible.

page 124

Chapter 5

Figure 5.3: Y shape with original elements

Figure 5.4: Y shape with super-elements shown.

page 125

__________________ _________Chapter 5

The nodes of the original elements can be seen in Figure 5.4. Note that only nodes that

are on the boundaries of the super-elements are shown. There is no need to use the

internal nodes since they are not included in the cost function. We are only attempting

to minimise the communication between the boundaries of the super-elements for the
time being.

From Figure 5.4, we can see that super-elements 1 and 2 share 3 nodes, hence there is

a communication cost of 3 between these two. Figure 5.5 shows the image network of

the mesh and each node corresponds to the cost between the two super-elements. Hence

node 1 corresponds to super-element 1, node 2 corresponds to super-element 2 and the

edge between the two which has a weight of 3 corresponds to a communication cost of
3 between the two super-elements.

Figure 5.5 shows the complete image network for the mesh shown in Figure 5.4.

Figure 5.5: Image network for mesh shown in Figure 5.4

page 126

Chapter 5

The bisection algorithm is then applied to the mesh and the cost between super-elements

can be found by referring to the image network. Using the example of the cross shown

in Figure 5.1(a) with 32 super-elements (illustrated in Figure 5.1(f)), the algorithm is

applied taking into account a processor topology of a chain of 5 as shown in Figure 5.6.

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

Figure 5.6: Processor pipeline

KEY:

Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

Figure 5.7(a): Decomposition of mesh using super-elements

page 127

____ _________Chapter 5

Figure 5.7(a) shows the decomposed mesh after the algorithm has been applied. It can

be seen that the algorithm has made some attempt to obtain a decomposition to map onto

a chain of 5 processors. Table 5.1 shows the number of nodes that are being shared by

each pair of processors. From the table we can see that non-neighbouring processors have

to communicate. For example, processors 1 and 3 have four shared nodes and processors
3 and 5 have five shared nodes. This communication between non-neighbouring
processors will incur a large overall communication cost. The reason that we have shared

nodes between non-neighbouring processors is because of the shape of the super-

elements. Obviously, they are not always smooth around the edges, and since this is a

very simple example with not many super-elements, this type of problem cannot be

avoided at this stage. The boundaries need to be tidied up so that we have less nodes
being communicated. This is done by looking at the original elements that are on the

boundaries of the processors and applying the algorithm to these boundary elements.

Pairs of processors Number of shared nodes

1 and 2

1 and 3

1 and 4

1 and 5

2 and 3

2 and 4

2 and 5

3 and 4

3 and 5

4 and 5

6

4

0

0

5

0

0

9

5

5

Table 5.1: Number of shared nodes of every pair of processors for decomposition

shown in Figure 5.7(a)

page 128

Chapter 5

Figure 5.7(b): Decomposition after tidying up boundary once

Pairs of processors Number of shared nodes

1 and 2

1 and 3

1 and 4

1 and 5

2 and 3

2 and 4

2 and 5

3 and 4

3 and 5

4 and 5

6

1

0

0

8

0

0

10

0

7

Table 5.2: Number of shared nodes of every pair of processors for decomposition
shown in Figure 5.7(b)

page 129

_________________________________Chapter 5
Having done this to the above example, we can see the results in Figure 5.7(b). It can

be seen that the decomposition looks much better with very smooth boundaries and that
nearly all neighbouring elements have been placed on the same or neighbouring
processors. Table 5.2 shows which processors have to communicate. However, we still

have one node being shared by non-neighbouring processors, namely processors 1 and
3. The reason for this is that when we were tidying up the boundaries we were only
looking at one layer of original elements.

To overcome this problem, we need to iterate the application of the algorithm to the
original elements on the boundaries until no further changes are made. For this example,
it only had to be done once again and the decomposition can be seen in Figure 5.7(c).
This might not be such a problem with very large meshes with small super-elements.
Looking at Figure 5.7(c) we can now see that all neighbouring elements are mapped onto
the same or neighbouring processors and this would be a good mapping onto a chain of

5 processors.
Table 5.3 shows the number of shared nodes for every pair of processors. We can see
from this table that only neighbouring processors have to communicate.

Figure 5.7(c): Decomposition after tidying up boundary iteratively

page 130

Chapter 5

Pairs of processors Number of shared nodes

1 and 2

1 and 3

1 and 4

1 and 5

2 and 3

2 and 4

2 and 5

3 and 4

3 and 5

4 and 5

7

0

0

0

8

0

0

10

0

7

Table 5.3: Number of shared nodes of every pair of processors for decomposition

shown in Figure 5.7(c)

However, for this particular example, using the graph bisection method in a recursive

way may not be the best way to create the super elements. If we examine the results

obtained in Figure 5.7(c), we see that processors 1, 2 and 3 have all got 30 of the

original elements, whereas processors 4 and 5 have 35 original elements. This has

happened because we were mapping 32 super-elements (each containing five of the

original elements) onto 5 processors. Six of the super-elements were assigned to

processors 1, 2 and 3 with seven super-elements being assigned to processors 4 and 5.

Therefore, load balancing has not been achieved. Even though this is only a small

problem and the difference in the number of elements is only 5, the problem of load

balancing would worsen considerably when using larger meshes.

page 131

____ ___ _______________________Chapter 5

This problem can easily be overcome by applying the graph bisection in a non-recursive
manner. The method used is described below:

1. From a set of n elements, find 2 elements which are a maximal or near maximal
distance away.

2. Create a list where one of these elements is assigned to the top of the list.

3. Repeat the procedure by finding elements adjacent to the newly assigned elements
adding these elements to the list.

4. Stop when the list contains n elements.

5. The first n/p (p is the number of processors) is assigned to one set, the second n/p
elements is assigned to another set, and so on, until we obtain p sets each containing
n/p elements.

6. Repeat for each set until the required number of super-elements is obtained.

This method can be used to create super-elements for any number of processors.

Therefore to summarise, Figure 5.8 shows a flow diagram to illustrate the steps involved
when creating the super-elements.

page 132

Chapter 5

STEP 1 :Create super-elements using a
Graph Bisection Method.

_V
STEP 2: Apply algorithm to super-elements

V
STEP 3 identify Original elements on the

boundaries and re-apply algorithm
to these elements.

Repeat Step 3 until no
further changes are made.

Figure 5.8: Flow diagram illustrating creation of super-elements

5.3 Level of Granularity

Now that super-elements can be used to reduce the time taken to decompose the meshes,

one question that needs to be answered is 'What level of granualarity should be taken ?'

i.e. How many super-elements should be created and what impact various numbers of

super-elements have on the time taken and the overall communication costs of the

page 133

____^_ _________________________Chapter 5
decomposition achieved.

The mesh shown in Figure 5.9 will be used as an example and this mesh has 3034
elements.

Figure 5.9: Mesh with 3034 elements.

This mesh was reduced to meshes containing 32, 64, 128, 256 and 512 super-elements

respectively. These meshes were then decomposed taking into account a processor

topology of a chain of 4 processors. The decomposition achieved can be seen in Figures

5.10(a)-5.10(e).

page 134

Chapter 5

Figure 5.10(a): Decomposition of 32 super-element mesh

Figure 5.10(b): Decomposition of 64 super-element mesh

page 135

Chapter 5

Figure 5.10(c): Decomposition of 126 super-element mesh

Figure 5.10(d): Decomposition of 256 super-element mesh

page 136

Chapter 5

Figure 5.10(e): Decomposition of 512 super-element mesh

Figure 5.10(f): Decomposition with no super elements

page

_______________Chapter 5

Looking at the decompositions achieved we can see that they look very similar but that

there seems to be two different patterns. For example, Figures 5.10 (a), (c) and (e) are

simliar and Figures 5.19(b) and (d) are similar to each other. It is possible that the

problem converges into two different minimas and we can speculate that the reason for

this will be different starting partitions. However, the size and shape of the super

elements could also be the cause of this.

However, it is important that we look at the actual communication costs and the time

taken to decompose the mesh.

Table 5.4 shows the number of super-elements used and the communication costs

between each processor and the total communication costs. This can also be seen

graphically in Figure 5.11. We can see that the communication costs do decrease when

we use a larger number of super-elements.

However, Table 5.5 shows the time taken to create the super-elements and the time taken

to decompose the mesh into four using various sizes of super-elements. This can also be

seen graphically in Figure 5.12 and from this graph we can see that the time taken to

decompose the mesh increases exponentially with a larger number of super-elements.

page 138

Chapter 5

Communication between pairs of processors

No of super-elements

32

64

128

256

512

No super elements

1 and 2

38

38

35

38

30

27

2 and 3

43

36

36

29

30

30

3 and 4

19

19

19

19

17

17

Total

100

93

90

86

77

77

Table 5.4: Communication costs between processors for different sizes of super-
elements

No of super-elements

32

64

128

256

512

No super elements

Time taken to partition (s) *

0.8

1.4

11.2

32.3

59.0

>600

Run on a Sun SPARC station

* Time taken to partition includes time taken to create the super-elements.

Table 5.5: Time taken to partition different sizes of super-elements

page 139

Chapter 5

100-

90-
Comm

cost
80-

70-

32 64 128 256 512
Number of super-elements

Figure 5.11: Graph showing communication costs against no. of super-elements

Time

taken to

decompose

(sees)

50-

40

30

20-

10-

32 64 128 256 512

Number of super-elements
Figure 5.12: Graph showing time taken against no. of super-elements.

page 140

_____________Chapter 5

From these two graphs we can conclude that it would be best to use a smaller number

of super-elements, even though the communication costs might be slightly higher.

However, there will be a huge saving in time taken to achieve the decomposition. Whilst

saying this, there must be a minimum number of super-elements that can be used.

Obviously, if the super-elements are too large and there are only a few of them, then it

will not be possible to take the processor topology into account. Of course, many factors

need to be taken into account. For example, the shape and size of the mesh used.

Using the cross shape shown in Figure 5.1, it would be very difficult to map onto the

topology shown in Figure 5.13 without using at least 32 super-elements.If any less is

used, then it will not be possible to map onto such a topology without having non-

neighbouring processors communicating.

Figure 5.13: Processor Topology

The number of super-elements to be used must be decided by the user but care must be

taken in his choice. The processor topology, along with the size and shape of the mesh

must be taken into consideration.

page 141

________Chapter 5

5.4 Conclusion

This chapter has dealt with the creation of super-elements in order to minimise the time

taken to decompose the meshes. We have shown that by using this method, we can

generate reliable decompositions with a huge reduction in time.

However, we have not yet addressed the effectiveness of the parallelisation of the code.

Chapter 6 shows some more test cases and some results obtained of the parallel

efficiency using the sub-domain achieved using our decomposition technique.

page 142

Chapter 6

Chapter 6
Computational Results and Conclusions

page 143

____Chapter 6

6.1 Introduction

In chapters 4 and 5 we have demonstrated the success of obtaining reliable mesh

decompositions using the iterative clustering algorithm and also by creating super-
elements to obtain time-effective sub-meshes. We have not yet demonstrated the
effectiveness of the parallelisation using the sub-meshes obtained with our algorithm. In
this chapter some examples showing parallel efficiency will be shown.

6.2 Parallelisation of UIFS

UIFS is a control volume unstructured mesh flow and unstructured stress analysis code
developed at the University of Greenwich with the intention of modelling metal casting

and other processes [CHOW93], [CCP93], [CROSS92]. This is a fully unstructured mesh
2D and 3D code which uses a cell centred Rhie and Chow interpolation [RC82] with a
pressure correction solution procedure and false time stepping. The procedure for solving
the discrete equations is iterative using the SIMPLE algorithm. Iterations are repeated
until changes are small enough to satisfy convergence criteria. Three types of solvers are
available; Jacobi, Gauss Seidel SOR and the Conjugate Gradient method.

This code has been parallelised using domain decomposition [MKCJ94], [JMCEJ93] with
explicit message passing in Fortran to fulfil the following objectives:

i) Minimise changes to the original serial code. Ideally the parallel code should produce
identical results to the serial. This is a necessary requirement for user acceptability.

ii) Minimise visibility of parallel code. The code is under continual development so the
parallel code should be hidden from the serial code developers and the serial code users.

iii) Maximise parallel efficiency to take full advantage of DM parallel hardware.
The motivation for parallelisation is to reduce the run time.

page 144

Chapter 6

iv) Be portable to a variety of DM MIMD platforms.

v) It should be automatable. Human intervention should be minimised in the

parallelisation process as in the Computer Aided Parallelisation Tools [JCIL93] used at

the University of Greenwich.

6.3 Mesh Division

The mesh is split into the required number of domains using the method described in

Chapter 5, where each node or element is allocated to only one region. Each processor

works on these core nodes or elements in its own domain. At the edge of a domain, there

will be a mixed element where the nodes belong to a different domain. So that each

region has a complete mesh discretisation, halo nodes/elements are added to the domain.

These are copies of nodes/elements from neighbouring domains as illustrated in Figure

6.1.

PrcDienn
Mesh

Aac ^-aic Elements

Figure 6.1 : Halo Elements

page 145

_________________Chapter 6

Each processor calculates only the values of variables for points and elements inside its

own domain, no computation is performed on the haloes. Variable values are swapped

into the halo from the processors on which the variables are calculated, as shown in

Figure 6.2. There is an obvious exception however, where data operations are so trivial

that it is faster to perform the operation locally on the halo than to import the new values

from a neighbour. Halo values are exchanged between processors as soon as practically

possible, for example, at each iteration of the solver. This exchange of data between

processors is synchronised on an odd-even alternate pair basis which allows the exchange

to be carried out as a parallel process.

Figure 6.2 : Halo swapping scheme.

page 146

________Chapter 6

Variation between serial and parallel code is sometimes inevitable. Like many CFD

codes, UIFS builds a system matrix which is solved using a variety of iterative schemes.

The main change to the serial algorithm is the order of coefficient evaluation within the

solvers. Using a Jacobi type solver the parallel solution variables remain identical to

those of the serial code at each step of the solution procedure. It is however impractical,

if not impossible, to identically parallelise a Gauss-Seidel iterative solver. Such

algorithms are dependent on the order of evaluation of the coefficients and must be

modified to achieve a parallel scheme. The resulting parallel algorithm becomes a near

Gauss-Seidel hybrid of Gauss-Seidel and Jacobi. The results so far have shown that

variations in the serial and parallel variables and differences in the number of iterations

required to converge are both minimal.

6.3 Efficiency of Parallel Solution

6.4.1 Simple 2D Problem
The effectiveness of the parallelisation approach is first demonstrated on the simple 2D

problem. The problem is a simple modification to the moving lid problem which

produces a flow filled with a number of recirculation zones, as shown in Figure 6.3.

Figure 6.3: Flow vectors due to moving lid

page 147

____ _________________Chapter 6

The mesh contains 516 elements and has been split into 3, 4, 5 and 6 sub-meshes as

shown in Figure 6.4.

\/w\
&7\7\/

Figure 6.4: Mesh containing 516 elements split into 3, 4, 5 and 6 sub-meshes

page 148

__________Chapter 6

The parallel UIFS code was run on the above problem on an array of T800-20 transputers

with a 3L FORTRAN compiler, and on a TRANSTECH parallel system where each node

uses a T800 for communications and an i860 processor for processing. Here the Portland

FORTRAN compiler is used with the CTOOLSET to handle interprocessor

communications. Results for parallel efficiencies are shown on 1-6 processors on both

the transputer and i860 systems in Table 6.1 and Figure 6.5.

The proportion of the mesh decomposition time of the simulation time is approximately

4% for this particular problem. However, this can vary with different problems sizes.

Parallel Efficiency (%)

No of processors

1

2

3

4

5

6

T800

100

98

97

96

94

90

i860

100

92

81

76

70

66

Table 6.1: Parallel Efficiency for 516 element mesh

page 149

Chapter 6

50 -|
40
30 -

20 _

10

1

T800

Efficiency 70 _

2345
Number of Processors

6
\

Figure 6.5: Parallel efficiency

In reality the problem is a small one and the efficiencies on the transputer system are

reasonably consistent with what would be expected from a structured mesh code

employing otherwise similar solution procedures. It is anticipated [JC91] that as the

problem size increases, then the efficiency will rise and remain above 90% on transputer

systems beyond 20-30 processors. The efficiency results for the i860 system is much

worse - at the 65% level for 6 processors compared with 90% on the transputer system.

The reason for this degradation in performance is simply a function of the parallel system

characteristics [GCCHI92]. Although an i860 processor is about 10-15 times faster than

a T800-20 transputer, the latency of the T800-i860 node is around 10 times that of a

T800-20 processor. This is due to the interrupt overhead between the i860 and T800

page 150

__________________Chapter 6

processors. As such, the interprocessor communication time between the i860 nodes is

relatively much larger than between T800 nodes and leads to the degradation in parallel

efficiency. The efficiencies are still consistent with structured mesh codes with otherwise

similar solution procedures.

6.4.2 Larger meshes

Figure 6.6 shows a solidifying metal problem which has been meshed into 3034 and

10000 elements as shown in Figure 6.7 and Figure 6.8. Both meshes were partitioned

using the method described in Chapter 5.

Figure 6.6: Solidifying metal

page 151

Chapter 6

Figure 6.7: Mesh containing 3034 elements

Figure 6.8: Mesh containing 10000 elements

page 152

_______Chapter 6

Figure 6.9 is a graph showing parallel efficiency and speed-up using between one and

twelve processors for both the meshes shown in Figures 6.7 and 6.8. We can see that

parallel efficiency decreases to 60% if twelve processors are used for the smaller size

mesh but only decreases to 83% for the larger mesh. Speed up is also very good for the

larger mesh and increases if more processors are used.

Efficiency 70 J

Mesh Size

10000

3034

3 5 7 9 11
Number of i860 Processors

Speed

Figure 6.9: Parallel efficiency and speed-up

page 153

________Chapter 6

6.5 Conclusions and Further Work

In this thesis we have investigated mapping unstructured meshes onto distributed memory

parallel architectures. We have discussed various techniques used to solve the mapping

problem and we conclude that an extension of the recursive clustering method was most

suitable for our needs. This method was extended so that any number of processors can

be mapped onto and that the processor topology is also taken into account whilst

decomposing the meshes. Results have shown that this method can work successfully.

Our preliminary results shown in Figure 6.9 is an early indication that the method is

scalable but further experiments need to be performed since our experiments have not

dealt with a parallel machine containing more than twelve processors.

We need to investigate further the efficiencies and speed-up if very large meshes and a

large number of processors is used.

Decomposing very large meshes can be very time consuming, so we have developed a

method to reduce this time. This is done by clustering elements together to form super-

elements and we have demonstrated that by using this method,the time taken to

decompose the meshes can be reduced dramatically. Hence, super-elements provide a

good method of 'speeding-up' domain decomposition algorithms. The unstructured CFD
codes which have been decomposed using the above methods can be effectively mapped

onto distributed memory parallel architectures with efficiencies that are equivalent to

structured mesh codes.

There are many extensions that can be made to the work presented here. The graph

bisection method may not necessarily be the best method used to create the super-

elements, therefore other methods will need to be examined. For example, Chris Walshaw

et al [WCJE94] uses a variant of the Greedy algorithm [FA88] which he uses recursively.
In addition, the current method we use for boundary refinement may not be the best

therefore other methods can be investigated.

page 154

___________Chapter 6

The shape, design and properties of the super-elements will be investigated. There are

many issues that need to be addressed. For example, should the super-elements be

connected and have small diameters? Should the size of the super-elements be determined

with respect to the size of the mesh and should their shape be similar to the shape of the

mesh?

Another important issue is the overall computation time. We have seen that by creating

super-elements we can reduce the time taken for mesh decomposition but how much time

should we spend on creating super-elements? Further investigations need to be carried

out in order to answer these questions. We need to ask ourselves to what extent is mesh

decomposition important? When solving a real problem on a parallel system, we need to

know what the difference is in decomposing using a random technique, using a quick and

dirty method, a fairly good but long method and an exact one. Comparisons of solutions

obtained and time taken to obtain a solution using different techniques can be made.

The current implementation of our method assumes that all node weights in the task

graph are equal and that the edge weights are equal. Additionally, the iterative clustering

method assumes that the computer is homogeneous. Our method can be extended to

operate on heterogeneous task and processor graphs. With many problems this is not

always the case. However, we could overcome this problem by taking into account the

weights of the task at the initial partition stage and also during the optimisation stage.

Currently, our mesh decomposition method used has only been implemented sequentially.

However, if the mesh decomposition could be done in parallel, this would increase the

speed-up. The initial partition, which need to be quick and cheap, would have to be done

sequentially and the optimisation could then be done in parallel. However, only elements

on the boundaries could be swapped between the processors, hence the final partition will

not deviate too far from the initial one. Again, we would attempt to ensure load-balancing

in the initial partition and only swapping of elements would be allowed. Chris Walshaw

et al [WCJE94] are developing a parallelisable algorithm for partitioning unstructured

meshes. Their method, encapsulated in a software tool, JOSTLE, uses a combination of

techniques including the Greedy algorithm to give an initial partition, together with some

page 155

_______Chapter 6

optimisation heuristics, including a localised version of the Kerninghan-Lin algorithm

[KL70]. However, as mesh and machine sizes grow, the need for parallel mesh

partitioning becomes increasingly acute, since an O(N) overhead is simply not scalable.

Developing techniques such as parallel mesh generation should also be taken into

account. These methods result in meshes which are already distributed among the

processors of a parallel machine. If this is the case, then it can be very expensive to

transfer the whole mesh back to a single processor for sequential load-balancing.

However, if the parallel mesh generation could be done so that load balancing and

nearest neighbour communication is achieved, then parallel mesh decomposition could

be applied locally.

The creation of super-elements could also be done in parallel. If the initial partition could

be done using the original elements of the mesh, then the super-elements could be created

in parallel and optimisation could be done locally in parallel using the super-elements.

The tidying up of the boundaries could also be done locally in parallel.

Another idea for creating super-elements is to make use of recursive mesh generation.

The coarser mesh could be used for the creation of the super-elements and tidying up

could be done on the more refined mesh. The parallelisation of CFD codes using

adaptively refined grids also needs to be explored and these require automatic load

balancing at run-time. After grid-refinement, re-partitioning and re-mapping of the grid

can be necessary to obtain again a satisfactory load balance. Therefore, this requires fast

(parallel) mesh partitioning and mapping algorithms acting on the already distributed grid.

Ideally, these algorithms should take into account the existing mapping of the grid in

order to avoid excessive data transport during mapping.

The order of the methods used for decomposition is also very important. As mentioned

previously, the time taken to decompose a mesh should be a fraction of the overall

solution time. From our experience, the computation time is very large so we would

suggest that the decomposition algorithm should be one order of magnitude less to be

sufficient. The decomposition achieved could also be stored and used more than once if

many runs need to be done.

page 156

_______________Chapter 6

Investigations also need to be done on whether the overall solution time is dependent on

the decompositions. Figures 5.20(a)-(f) shows that the problem can converge into two

different minimas (these figures have used a different number of super-elements). If we

had the same number of super-elements and used a different initial partition, then it is

probable that we would obtain different decompositions. These two decompositions may

have the same cost or may have different costs therefore experimental work needs to be

done to see whether or not two decompositions would produce similar characteristics. It

is likely that the solution would be different.

Finally, the domain decomposition method that has been developed in this thesis is for

mapping onto message-passing multiprocessors. A network of computers would also be

appropriate. For this type of machines, the communication of shared data is achieved via

messages exchanged directly between processors. This requires mapping neighbouring

elements onto the same or neighbouring processors so as to avoid large latency. However,

the future of parallel architectures include mesh-connected machines such as a Cray T3D

or Intel Paragon, which use wormhole routing. This means that a processor can pass a

message on without interrupting the work it is doing or slowing down the message too

much. The implication is that a message travelling between two processors far apart has

hardly any more latency than a message passing between two adjacent processors. If such

a machine is used, then we wouldn't have to worry too much about mapping

neighbouring elements onto the same or neighbouring processors. It seems that this type

of machine is the future of parallel architectures but such machines are extremely

expensive to purchase. Because of their high costs, not everyone will be able to afford

such machines and will be using the cheaper message-passing multiprocessors or

computer networks.

The experience of computing technology has shown that high performance machines that

were once used by certain specialist only. However, many of these machines are now

being used by a more general group and are therefore becoming more affordable. It

would also be a reasonable assumption that this pattern will be repeated for parallel

machines and there are many computation-intensive applications today for which parallel

processing makes or will make a significant difference.

page 157

______ ________________________ Chapter 6
or these two reasons, there will always be a need for domain decomposition algorithms

which insist on achieving nearest neighbour communication.

page 158

Appendix A

Appendix A
Further Results

page 159

__________________Appendix A

The mesh shown in Figure 6.8 contains 10000 elements and the PARC mesh (supplied
by H.Simon) contains 4320 elements. Both these meshes were partitioned (on a Sun
SPARC station) into 5, 7, 9 and 12 sub-meshes and the sub-meshes were to be mapped
onto a chain of processors.

The 10000 was partitioned using 512 and 256 super-elements and the results can be seen
in Tables 1A and 2A.

The PARC mesh was partitioned using 256 and 128 super-elements and the results can
be seen in Tables 3A and 4A.
The tables show the communication between the processors i.e. the total number of nodes
shared by all processors. The tables also show the time taken to partition the meshes and
the times given include the time taken to produce the super-elements.

No of Processors

5

7

9

12

Communication between
processors

208

332

448

621

Time taken to

partition (s)

66.2

89.3

106.7

132.1

Table 1A: Results for 10000 element mesh using 512
super-elements

page 160

Appendix A

No of Processors

5

7

9

12

Communication between

processors

219

337

450

633

Time taken to

partition (s)

39.0

66.2

83.5

112.7

Table 2A: Results for 10000 element mesh using 256
super-elements

No of Processors

5

7

9

12

Communication between

processors

71

97

122

161

Time taken to

partition (s)

37.6

52.9

66.8

88.4

Table 3A: Results for PARC mesh using 256
super-elements

page 161

Appendix A

No of Processors

5

7

9

12

Communication between

processors

75

100

132

171

Time taken to

partition (s)

14.2

22.8

31.1

45.9

Table 4A: Results for PARC mesh using 128
super-elements

Looking at the above tables, we can see that there is a difference in the total number of

nodes shared for the same mesh using a different number of super-elements and we can

see that this varies from 10% to a factor of 2. This difference is relatively small and a

saving in the time taken to partition the mesh is made compared to partitioning the

meshes without using super-elements (which were measured in hours!).

As mentioned in Chapter 6, the graph bisection method may not necessarily be the best

method used to create the super-elements and other methods need to be investigated.

This could make a significant difference in the variation of communication costs using

different number of super-elements.

page 162

REFERENCES

[AM65] G. G. Alway and D. W. Martin. An algorithm for reducing the bandwidth of
a matrix of symmetrical configuration. Computer Journal, 8:264-272. 1965

[BB87] M. J. Berger and S. H. Bokhari. A partitioning strategy for non-uniform
problems on multi-processors. IEEE Trans. Comp., 36(5):570-580. 1987.

[BM76] J. A. Bandy and U. S. R. Murty. Graph Theory with Applications. North
Holland. 1976.

[BokSl] S. H. Bokhari. On the mapping problem. IEEE Trans. Comput. 30(3):207-2tt
1981.

[BP83] B. R. Baliga and S. V. Patankar. A control-volume finite-element method for
two-dimensional fluid flow and heat transfer. Numerical Heat Transfer
(6):245-261. 1983.

[BP88] B. R. Baliga and S. V. Patankar. Elliptic system: Finite Element Method I.
Handbook of Numerical Heat Transfer. Edited by W. J. Minkowycz et al, pub
Wiley. 1988.

[BS93] S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. In R. F. Sinovec et
al ed., Parallel Processing for Scientific Computing, Siam:l\\-l\%. 1993.

[Car88] A. Carling. The Transputer and Occam. Sigma, Wilmslow. 1988.

[CC92] P. Chow and M. Cross. An enthalpy control volume unstructured mesh
algorithm for solidification by conduction only. International Jnlfor Numerical
Methods in Engineering (35): 1849-1870. 1992.

[CCP93] P. Chow, M. Cross and K. Pericleous. A natural extension of the classical
control volume method into unstructured meshes for CFD application.
(In press).

163

[Chow93] p. Chow. Control volume unstructured mesh procedure for convetion diffusion
solidification processes. PhD Thesis, University of Greenwich. 1993,

[CM69] E. Cuthill and J, McKee. Reducing the bandwidth of sparse symmetric
matrices. Proc 24th ACM National Conference. Brandon Systems Press, New
York: 157-172. 1969.

[Cri88] J. M. Crichlow. An Introduction to Distributed and Parallel Computing.
Prentice Hall, London. 1988.

[Cross92] M. Cross. Towards an integrated control volume unstructured mesh code for
the simulation of all the macroscopic processes involved in shape casting. In
Numerical Methods in Industrial Forming Processes (NUMIFORM 92):787-
792. Edited by J. Chenon et al, pub A. A. Balkema. 1992.

[Duc86] P. G. Ducksbury. Parallel Array Processing. Ellis Harwood, Chichester. 1986.

[EK72] J. Edmonds and R. M. Karp. Theoretical improvements in algorithm efficiency
for network flow problems. J. Ass. Comput Mach. 19:248-264. 1972.

[ELJC93] M. G. Everett, P. Lawrence, B. W. Jones and M. Cross. Software tools for
aspects of computational modelling codes for materials processing.
Mathematical Modelling for materials Processing:529-53&. edited by M. Cross,
J. F. T Pittman and R. D. Wood. Oxford U. Press. 1993.

[ERS88] F. Ercal, J. Ramanujam and P. Sadayappan. Task allocaton onto a hypercube
by recursive mincut bipartitioning. In Proceedings of the 3rd Hypercube
Concurrent Computers and Applications Conference. Pasadena, Ca. Jan 1988.

[Far88] C. farhat. A simple and efficient FEM domain decomposer. Comp. and Struct.,
28:579-602. 1988.

[Fei73] M. Fiedler. Algebraic connectivity of graphs. Czech. Maths. Journal.
23:298-305. 1973.

[Fei75] M. Feidler. A property of eigenvectors of non-negative symmetric
matrices and its application to graph theory. Czech, maths. Journal. 25:619-633.

164

1975.

[FF62] L. R. Ford Jr and D. R. Fulkerson. Flows in Networks. Princeton, N.J.
Princeton Univ. Press. 1962.

[FM82] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving
network partitions. IEEE Design Automation Conference, Las Vegas, Nevada,
IEEE Press: 175-181. 1982.

[GCCHI92] E.R. Galea, A. Chan, M. Cross, N. Hoffman, C. lerotheou, S. Johnson and K.
Pericleous. Application of aparallel CFD code to large scale practical problems.
Parallel CFD 92:147-159. 1992.

[Glo89] F. Glover. Tabu search - Part 1. ORSA J. Comput. 1:190-206. 1989.

[Glo90] F. Glover. Tabu search - Part 2. ORSA J. Comput. 2:4-32. 1990.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the
Theory of NP-Completeness. (Freeman, San Francisco). 1979.

[GMG82] Z. Galil, S. Micali and H. Gabow. Priority queues with variable priority and
an O(evlogv) algorithm for finding a maximal weighted matching in general
graphs. In Proc 23rd IEEE Symp. on Foundations of Computer Science:255-
261. 1982.

[GZ87] J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a
message-passing multiprocessor. Int Journal Parallel processing. 16(6):427-
449. 1987.

[HJ88] R. W. Hockney and C. R. Jesshope. Parallel Computers. Institute of Physics
Publishing, Bristol. 1988.

[JAMS89] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Scheron. Optimisation
by simulated annealing: An experimental evaluation; Part 1, Graph
partitioning. Operational ^5.37:865-892. 1989.

165

[JC92] S. P. Johnson and M. Cross. Mapping structured grid 3D CFD codes onto
parallel architectures. Appl. Math. Modelling. 15:394-404. 1992

[JCIL93] s. P. Johnson, M. Cross, C.S. lerotheou. CAPTools- Computer Aided
Parallelisation Tools. Technical Description. University of Greenwich. 1993.

[JH89] S. L. Johnson and C. T. Ho. Optimum broadcasting and personalized
communication in hypercubes. IEEE Trans. Comp. 38:1249-1268. 1989.

[JMCEJ93] B. W. Jones, K. McManus, M. Cross, M. G. Everett and S. Johnson. Parallel
unstructured mesh CFD codes: A role for recursive clustering techniques in
mesh decomposition. Parallel CFD 93, North Holland (1993).

[KGV83] S. Kirkpatrick, C. D. Gelatt Jr and M. P Vecchi. Optimisation by simulated
annealing. Science. 220:671-680. 1983.

[KL70] B. W. Kerninghan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell System Tech. Journal. 49:291-307. 1970.

[LA87] S-Y. Lee and J. K. Aggarwal. A mapping strategy for parallel processing. IEEE
Trans. Comp. C-36(4):433-442. 1987.

[Law76] E. L. Lawlor. Combinatorial optimisation. Holt, Rinehart and Winston, New
York. 1976.

[LC91] A. Lim and T-M. Chee. graph partitioning using tabu search. IEEE
International Symposium on Circuits and Systems. 2:1164-1167. 1991.

[Lo88] V. M. Lo. Heuristic algorithms for task assignment in distributed systems. IEEE
Trans. Comp. 37(11): 1384-1397. 1988.

[LW89] R. D. Lonsdale and R. Webster. The application of finite volume methods for
modelling three dimensional imcompressible flow on an unstructured mesh.
Methods in Laminar and and Turbulent Flow. Edited by C. Taylor et al, pub
Pineridge Press: 1615. 1989.

166

[MCJ94] K. McManus, M. Cross and S. Johnson. Integrated flow and stress on an
unstructured mesh. Parallel CFD 94. (In press).

[Moh88] Eigenvalues, diameter and mean distance in graphs, preprint series Dept math
No 259, University E. K. of Ljubljana, Yugoslavia. 1988.

[PSL90] A. Pothen, H. D. Simon and K-P Liou. Partitioning sparse matrices eith
eigenvectors of graphs. SIAM J. Matrix Anal. Appl. ll(3):430-452. 1990.

[RSEHP92]

[RC82]

K.G. Reinsch, W.schmidt, A. Ecer, J. Hauser and J. Periaux. Parallel CFD
97.North Holland, Amsterdam. 1992.

C. M. Rhie and W. L. Chow. A numerical study of the turbulent flow past an
isolated airfoil with trailing edge seperation. AIAA Journal 21:1525-1532. 1982.

[Ros68] R. Rosen. Matrix bandwidth minimization. Proceedings of 23rd National
Conference ACM, ACM Publication P-68, Brandon/Systems Press, Princeton,
NJ.:585-595. 1968.

[Sch88] G. E. Schneider. Elliptic System: Finite element method II.
Handbook of Numerical Heat Transfer. Edited by W. J. Minkowycz et al, pub
Wiley. 1989.

[Sim91] H. D. Simon. Partitioning of unstructured problems for parallel
processing. Computing Systems in Engineering. 2(2/3): 135-148. 1991.

[SE87] P. Sadayappan and F. Ercal. Nearest neighbour mapping of finite element
graphs onto processor meshes. IEEE Trans. Comput. 36(12): 1408-1424. 1987.

[SER90] P. Sadayappan, F. Ercal and J. Ramanujam. Cluster partitioning approachesct
mapping parallel programs onto a hypercube. Parallel Computing. 13:1-

16.1990.

[Sin87] J. B. Sinclair. Efficient computation of optimal assignment for distributed tasks.
J. Parallel and Dist. Comput. 4(4):342-362. 1987.

[ST85] C-C. Shen and W-H. Tsai. A graph matching approach to optimal task

167

assignment in distributed computing systems using a minimax criterion. IEEE
Trans. Comp. 34(3): 197-203. 1985.

[Sto77] H. S. Stone. Multiprocessor scheduling with the aid of network flow
algorithms. IEEE Trans. Soft. Eng, SE-3(l):85-93. 1977.

[TZTS92] L. Tao, Y. C. Zhao, K. Thulasiraman and M. N. Swamy. Simulated annealing
and tabu search algorithms for multiway graph partition. Jnl of Circuits,
Systems and Computers . 2(2):159-185. 1992.

[VSB92] V. Venkatakrishnan, H. D. Simon and T. J. Earth. A MIMD
implementation of a parallel Euler solver for unstructured grids. Journal of
Supercomputing 6(2): 117-127. 1992.

[WCJE94] C. Walshaw, M. Cross, S. Johnson and M. Everett. A parallelisable algorithm
for partitioning unstructured meshes. In Proc. Irregular '94: Parallel
Algorithms for Irregularly Structured Problems. 1994.

[Wil85] Robin J. Wilson. An introduction to graph theory.Longman, London. 1985.

[W1191] R. D. Williams. Performance of dynamic load balancing algorithms
for unstructured mesh calculations. Concurrency .-Practice and Experience.
3(5):457-481. 1991.

[Zie77] O. C. Zienkiewic. The Finite Element Method. Me Graw-Hill UK. 1977.

168

