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Abstract

Initial work on mapping CFD codes onto parallel systems focused upon software which 

employed structured meshes. Increasingly, many large scale CFD codes are being based 

upon unstructured meshes. One of the key problem when implementing such large scale 

unstructured problems on a distributed memory machine is the question of how to 

partition the underlying computational domain efficiently. It is important that all 

processors are kept busy for as large a proportion of the time as possible and that the 

amount, level and frequency of communication should be kept to a minimum.

Proposed techniques for solving the mapping problem have separated out the solution into 

two distinct phases. The first phase is to partition the computational domain into cohesive 

sub-regions. The second phase consists of embedding these sub-regions onto the 

processors. However, it has been shown that performing these two operations in isolation 

can lead to poor mappings and much less optimal communication time.

In this thesis we develop a technique which simultaneously takes account of the processor 

topology whilst identifying the cohesive sub-regions. Our approach is based on an 

unstructured mesh decomposition method that was originally developed by Sadayappan 

et al [SER90] for a hypercube. This technique forms a basis for a method which enables 

a decomposition to an arbitrary number of processors on a specified processor network 

topology. Whilst partitioning the mesh, the optimisation method takes into account the 

processor topology by minimising the total interprocessor communication.

The problem with this technique is that it is not suitable for dealing with very large 

meshes since the calculations often require prodigious amounts of computing processing 

power.

The problem can be overcome by creating clusters of the original elements and using this 

to create a reduced network which is homomorphic to the original mesh. The technique

vi



can now be applied to the image network with comparative ease. The clusters are created 

using an efficient graph bisection method. The coarseness of the reduced mesh inevitably 

leads to a degradation of the solution. However, it is possible to refine the resultant 

partition to recapture some of the richness of the original mesh and hence achieve 

reasonable partitions.

One of the issues to be addressed is the level of granuality to obtain the best balance 

between computational efficiency and optimality of the solution. Some progress has been 

made in trying to find an answer to this important issue.

In this thesis, we show how the above technique can be effectively utilised in large scale 

computations. Results include testing the above technique on large scale meshes for 

complex flow domains.
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__________________________________________Chapter 1

1.1 Introduction

Many large scale computational problems are based on unstructured computational 

domains. By using unstructured meshes, this allows the code to cater for completely 

general geometries and hence a wide range of problems in both two and three space 

dimensions. Examples include unstructured grid calculations based on finite volume 

methods in computational fluid dynamics, or structural analysis problems based on finite 

element approximations.

Software packages have been developed with the intention of using the results of the 

analysis for solving such problems. Analysis is carried out for the selected input 

parameters and the results are interpreted for optimising a design. This iterative procedure 

requires interpretation of results and also uses a vast amount of time for solving a given 

problem. To reduce the computation time, various optimisation procedures have been 

incorporated into the code. One practicable approach is to use parallel computation 

techniques. Therefore, there is a demand for parallel computers and the development of 

parallel algorithms to execute on these computers.

One of the important problems to be addressed in this situation is to devise means of 

actually employing a sufficiently high fraction of the raw computational power of a 

parallel computer. Overheads due to interprocessor synchronisation and communication, 

processors sitting idle due to contention for shared hardware resources, and uneven load 

balancing in the distribution of computational load can lead to poor overall performance. 

To optimise the speedup of a parallel program on a parallel computer requires the 

mapping of the parallel tasks of the program among the processors such that the 

computational load is distributed as evenly as possible and at the same time minimising 

the amount of communication between the processors.

This thesis investigates mapping the tasks associated with the solution of unstructured 

grid problems to the processors of a parallel computer such that the execution time is 

minimised.
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__________________________________________Chapter 1

1.2 Outline of Thesis

In the remainder of Chapter 1, we define terminology and notation for graph theory that 

is used throughout the thesis. We then discuss various parallel architectures and various 

configurations that can be used. The mapping problem is discussed with a short summary 

of existing methods.

In Chapter 2, we give a brief outline of some of the existing techniques for graph 

partitioning and embedding. These are methods that we have looked at extensively and 

discussions of the analysis of each method is given.

Chapter 3 discusses the Recursive Clustering algorithm which is a method based on the 

Kerninghan-Lin mincut algorithm [KL70]. We have modified the Recursive Clustering 

algorithm so that our needs are catered for and descriptions of these modifications are 

discussed in Chapter 4.

This new modified algorithm gives reliable decompositions but one drawback is the time 

taken to decompose the meshes. We have overcome this problem and discussions of how 

this is done can be seen in Chapter 5.

Finally, Chapter 6 shows the parallel efficiency of the decompositions used together with 

conclusions and discussions of further work.
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____________ ______ Chapter 1

1.3 Graph Theory

The following terminology and notation is used throughout this thesis [Wil85], [BM76]. 

A graph G is a pair of sets [V,E] where V is non-empty and E is a set of unordered pairs 

of elements of V. The elements of V are called the vertices of G and the elements of E 

are called the edges of E. VG is used to represent the vertices of G and EG is used to 

represent the edges of G. The symbols i)G and eG are used to denote the number of 

vertices and edges in G. If only one graph is being considered, then the letter G will be 

omitted from the symbols, and therefore we use V, E, \) and e instead of VG , EG , 1)G and

Two graphs G and H are said to be isomorphic if there is a one-one correspondence 

between their vertices which has the property that two vertices are joined by an edge in 

one graph if and only if the corresponding vertices are joined by an edge in the other.

Two vertices u, v of a graph G are adjacent if there is an edge joining them i.e. <u,v> 

e E.

With each <u,v> e EG , let there be associated an integer c(<u,v>), called its edge weight, 

and with each v e VG , let there be associated an integer w(v) called its vertex weight. 

Then G, together with these edges and vertex weights is called a weighted graph.

A vertex v and an edge e are incident if v is one of the vertices of e.

The degree pG(v) of a vertex v in G is the number of edges incident with v.

Figure 1.1 shows a graph G where i) = 8 and e = 14.
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Chapter 1

Figure 1.1: A graph G with 8 vertices

To any graph G, there corresponds an adjacency matrix. This is the i) x \) matrix 

A(G)=[ajj], where a^ is the number of edges joining YJ and YJ. The Laplacian matrix of 

a graph G is defined as L(G)=[ljj] where lij=aij for i^j and ly =-pG(Vi) for each YJ e V.

Figure 1.2 shows the adjacency matrix and the Laplacian matrix for the graph G shown 

in Figure 1.1.
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Figure 1.2 Adjacency matrix and Laplacian matrix of the graph G shown in 

Figure 1.1
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____________ ____________Chapter 1

A directed graph (digraph) D=(V,E) is a graph whose edges are ordered pairs of vertices. 

With each digraph D we can associate a graph G on the same vertex set; corresponding 

to each directed edge of D, there is an edge of G with the same ends.

A network N is defined to be a weighted digraph with two distinguished subsets of 

vertices, X and Y, which are assumed to be disjoint and nonempty. 

The vertices in X are the sources and those in Y are the sinks of N. The edge weight C 

of each edge is a non-negative integer called the capacity.

A cutset in a network N is a set of edges which when removed disconnects the source 

nodes from the sink nodes.

The weight of a cutset is equal to the sum of the capacities of the edges in the cutset. 

The Max-Flow Min-Cut theorem [FF62] states that the value of a maximum flow in a 

network is equal to the weight of a minimum cutset of that network.
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1.4 Parallel Architectures

The availability of relatively cheap and efficient microprocessors has produced a 

tremendous upsurge in the development of parallel computers [Car88], [Cri88], [Duc86]. 

These computers now consist of numerous (up to thousands) of processors. These 

processors usually have reduced instruction sets and are frequently referred to as 

processing elements (PEs). This section gives a brief overview of some of the models 

that exist.

The SISD (Single Instruction Stream, Single data Stream) is the original von Neumann 

model of computation where only one instruction is processed at a time on a single item 

of data. Some parallelism may occur in the internal operations of such machines, for 

example, parallel loading and storing of data items along with actual arithmetic 

operations.

The MISD (Multiple Instruction Stream, Single Data Stream) performs several 

instructions simultaneously on a single stream of data. Strictly speaking, this category 

could contain the operation of internally parallel SISD architectures and pipeline 

processors, but since the user's understanding of computer architectures is in our interest, 

neither is included.

Computer architectures such as the SIMD (Single Instruction Stream, Multiple Data 

Stream) commonly known as vector or pipeline computer architectures. A SIMD 

computational model corresponds to a single stream of instructions each of which is 

applied to multiple data items.

A broad definition of a vector processor is where each processing element allows a 

sequence of identical operations at the same time but acts upon different sets of data. 

This type of operations is often featured in operations involving vectors of data.
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With pipeline processors, overlapping in the execution of instructions is permitted. The 

data enters the pipeline at the processing element performing the first stage of the 

operation, passing through the other processing elements until finally arriving at the last 

one for the final stage of the operation. Parallelism is achieved when several data items 

pass through such a pipeline, but with each item passing through different stages at the 

same time. It is important that every processing element in the pipeline is kept busy in 

order to achieve a significant speed-up. This is accomplished by passing several data 

items that need the same overall operation to be performed on them through the same 

pipeline. This is typical for vector operations where the data passing through the pipeline 

consists of each consecutive element of the vector(s) concerned.

1.5 MIMD Multiple Instruction Stream, Multiple Data Stream

This type of machine is the one that we are focusing on and it typically consists of a 

number of processing units each capable of executing its own program on separate sets 

of data. All the processing units are interconnected and to achieve parallelism, the overall 

task must be broken down into a group of many sub-tasks .

There are various designs of MIMD machines with a major distinguishing feature being 

the interconnection network. The two extreme classes of machines are discussed, namely 

the shared memory systems and distributed memory systems [Cri88].

Shared memory systems use a shared global memory that is accessible from every 

processing unit via a communication bus. The processors can be considered identical 

(providing the processors are of the same type) and the programmer need not be 

concerned with the issue of mapping which task of the computation onto which processor 

since communication between any pairs of processors is the same. Problems occur with 

such systems when large number of processors are used since the communication bus 

hardware becomes a bottleneck when many processors request access to the global 

memory. Another disadvantage is that the bus only permits one processor to access the
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global memory at any time. Thus if many pairs of processors require interaction on a 

pair-wise basis, they will have to do so in sequence rather than in parallel. Figure 1.3 

shows an example of a shared memory system.

Distributed memory systems consists of processing elements which have their own local 

memory unit. The processors are joined by an interconnection network so an overall task 

can be performed on by many processors and data can be sent from one processor to 

another. With this type of machine, the processors do not have to fight for access to the 

shared global memory and the communication bus does not become a bottleneck, but data 

traffic bottlenecks can occur with a large processor network. Unlike the shared memory 

system, task to processor allocation is not arbitrary and a task should be placed on a 

processor that either holds the data to be accessed or can access the data through as short 

as possible a communications route. The program data should, if possible, be divided 

over all the local memories with a minimum of duplication to ensure efficiency of such 

a system. Figure 1.4 shows an example of a distributed memory system.

PVM (Parallel Virtual machine) [SHH94] from ORNL has become a de-facto standard 

for message-passing systems and because it is freely available, it has spread all over the 

academic community and beyond. PVM has been ported to a big variety of currently 

available machines ranging from workstations to MPP-systems. The highlight of PVM 

is its usability in heterogeneous environments. However, its functionality is limited. 

As a consequence, the international initiative MPI (Message Passing Interface) [Hem94] 

was started in 1992 by the Center for Research in Parallel Computing at Rice University 

and Oak Ridge National laboratory. The goal is to define a message passing interface 

which will then be implemented and supported by all hardware manufacturers. It was not 

the design goal to support low-level features to be used by parallelising compilers. The 

focus of MPI is the point-to-point communication between pairs of processors, and 

collective communication within process groups. More advanced concepts allow creating 

those groups, and giving them topological structure.
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Interconnection Network

P E : Processing Unit 

M : Memory

Figure 1.4: Distributed Memory System
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1.6 Processor Configurations

The processor network used can be in a number of different configurations [Car88]. The 

configuration chosen should be influenced by the data access structure of the code 

concerned. The amount of communication time acquired can be minimised by a sensible 

choice of network configuration. Examples of network configurations are shown in Figure 

1.5.

(a)

(b)

(c)

Figure 1.5: Processor Configurations 

(a) Chain; (b) Grid; (c) 3 Way Hypercube
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1.7 Parallel Performance Measurement

There are two practical ways in which performance of software on parallel systems can 

be measured. The first is speedup (Sp) which is defined as:-

~ _ Time on a single processor 
Time on p processors

Sp gives the number of times faster the software executes on p processors as opposed to 

the execution on a single processor [HJ81], However, there are two possible single 

processor times that can be used, both carrying slightly different information about the 

software.

Firstly, if the single processor time is that of the best serial version, using optimal serial 

algorithms, then the speedup signifies the advantage of using a parallel machine rather 

than a serial machine. If the algorithms used for the parallel version are different to those 

in serial, then the speedup figure can be reduced because the serial performance may be 

sacrificed for the parallel nature of the new algorithm. The second single processor time 

that can be used is that of the parallel version being run on a single processor. This 

speedup represents the performance of a parallel machine as more processors are used 

and not performance over serial because any serial version should always use the best 

serial algorithms available.

Efficiency is the second measure of performance of software on MIMD machines and 

this is a measure of how well an application uses the available computer power. Again, 

there are two types that can be used. The first is known as efficiency percentage (Ep) and 

it is given by :

Ep = * 100 = sPeeduP on P processors

Ep indicates the percentage of available processor time which has been beneficially used,

page 13



__________________________________________Chapter 1

providing that the speedup uses the best serial execution time. Some of the efficiency that 

is lost here is mainly due to processor idle time, communication time and less efficient 

parallel algorithms.

The second type of efficiency is calculated using processor time and is given by :-

j-, , 1 Total Idle Time , ^ ^ Ep = \ 1 - ————————————— | * 100
Total Processor Time

Ep gives the measure of the percentage of time spent performing some form of operation.

1.8 Control Volume Unstructured Grid Methods

1.8.1 Introduction

In order to solve continuous partial differential equations (PDE's) using computational 

methods, the equations under consideration need to be transformed into algebraic 

difference equations using a discretisation scheme. Many discretisation schemes are 

available among which the most well known are the Finite-Element (FE), Boundary- 

Element (BE) and the Control-Volume (CV). Of these methods the CV is probably the 

most widely used in the context of fluid flow problems, because it is computationally 

cheap and it preserves continuity of the dependent variables over cells.

In the following sections, control volume based unstructured mesh methods are 

considered because the aim of this study is to produce meshes on which other researchers 

at the University of Greenwich can use their CV based methods. 

In general the CV-UM method can be categorised into two approaches, one being a 

vertex centred approach, the other cell centred. The classification of the two methods 

lying somewhere between the finite element method (in terms of mesh) and the CV
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method in terms of numerical integration.

1.8.2 Vertex Centred Approach

This approach is also generally known as the control-volume based finite element mesh 

(CV-FE), [BP83],[BP88],[Sch88],[LW89]. Domain discretisation involves subdividing the 

solution domain into a number of smaller regions. The connections between the nodes 

and the subregions is known as a mesh. The subregions of the domains are called 

elements and the vertices of these elements nodes. There are many possible element 

configurations using a FE mesh of which the most commonly used are quadrilaterals and 

triangles, using four or three nodes respectively. In fact a combination of the two element 

types or more can be used when discretising a problem domain, giving excellent 

flexibility in representing complex problem geometries.

A typical finite element mesh is shown in Figure 1.6. As previously mentioned nodes are 

located at every element corner, where all of the problem unknowns are located, 

(velocity, temperature, etc).

Figure 1.6: Finite element mesh

When working with finite elements, it is convenient to use local co-ordinates in order to 

homogenise the treatment of individual classes of elements irrespective of how distorted 

any element is in terms of the global co-ordinates. Conservation in the finite element 

method is expressed over the global domain and hence these elements need to be related
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to their global positions. This is done using 'shape functions', which relate local 
variations to their global equivalent [Zie77].

In the vertex-centred solution mesh, each node is associated with one control volume, 

whilst the surface of a control volume (CS), is defined from the centroid of an element 

to the midpoint of one of its sides, as shown in Figure 1.7.

Control Volume

Node

Fig 1.7: Vertex-Centred Mesh-Control Volume

Every element is therefore divided into a number of quadrants by these control surfaces. 
The quadrants are called sub-control-volumes (SCV's), and a control volume is therefore 
made up of a number of sub-control volumes of polygonal shape. A CV based 

discretisation on this mesh involves expressing fluxes across these control surfaces. In 

algebraic form these fluxes are determined by evaluating integrals at the midpoints of 

the control surfaces, these are known as integration points and are illustrated in Figure 

1.7 above.
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1.8.3 Cell-Centred Approach

This method is known as the Irregular control volume method (ICV) and is an extension 

of the standard control volume method [CC92]. In order to distinguish between the vertex 

centred approach the previous terminology is replaced by a more control volume 

orientated terminology. The element is now called a cell or control volume and the 

vertices of the elements are now called grid points, see Figure 1.8. Nodes are now 

defined to be at the cell centroids, where all relevant information concerning the 

dependant variables are stored.

Discretisation of any transient terms in the equation follows the same procedure as that 

for the vertex centred method. However discretisation of terms involving spacial 

derivatives differs from that of the previous method in that these fluxes will be evaluated 

at the midpoints of the control volume surfaces, which are in different positions since the 

control volume is not subdivided into a number of sub-control volumes.

Control Volume

Grid Point

Fig 1.8: Cell-Centred Mesh-Control Volume

Whilst both methods have their relative advantages and disadvantages, they share the 

finite element quality of excellent geometric representation and the control volume 

benefits associated with cell-wise conservation of the dependent variables. For a 

comprehensive description of the discretisation involved using both methods see p32-60 

of reference [Cho93] and reference [CC92].
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1.9 The Mapping Problem

1.9.1 Statement of Problem

The processor allocation problem is one of utmost importance in the effective utilization 

of large-scale parallel computers and distributed computer networks. The task allocation 

problem requires the allocation of multiple interrelated tasks of a single application 

program in order to minimize the completion time of the parallel program on the parallel 

computer system. Execution of the parallel program involves a number of iterations, 

where each iteration involves some computation by each node followed by 

communication by each node to other nodes.

In many multi-processor systems, there is no direct link between every pair of processors. 

When assigning nodes of large computational problems onto processors, pairs of nodes 

that have to communicate with each other should be placed on processors that are directly 

connected. The mapping problem consists of minimising the number of pairs of 

communicating nodes that fall on pairs of disconnected processors.

Let the graph of a problem be characterized by a task graph G = (VG,EG), whose vertices 

VG represent the tasks of a program, and edges EG characterize the data communication 

between tasks.

The parallel computer is represented as a graph P = (VP,EP) where the vertices represents 

the processors and the edges represents the communication between the processors. 

The mapping problem consists of finding O : VG —> Vp such that we minimize

= timecomn + iimecomp

Undoubtedly, if <£ maps all tasks onto one processor, then the communication cost would 

be zero but the computational costs would be extremely high.

Assumptions that we make is that all tasks have equal amounts of computations, all data 

communicated between tasks is equal and the computer is assumed to be homogeneous 

i.e. tasks execute equally well on all processors.
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These are reasonable assumptions since the application area to which this work applies 
include computational fluid dynamics and structural mechanics. The problems to be 
solved are nearly always initial or boundary value problems for coupled systems of 
PDE's. We associate a task with each point in the discretizing grid. The tasks have 
similar communication and computation requirements and the amount of computation 
exceeds the communication. Finally, many of the parallel computers being developed 
today are networks of homogeneous processors.

1.9.2 Objectives

Since parallel architectures provide significant raw processing power it is not surprising 
that there has been a significant effort by the CFD community to exploit such systems. 
It is self-evident that in mapping any scalar application onto a local memory parallel 
architecture it is vital to decompose it in such a way as to:

• Keep all processors busy for as large a proportion of the time as possible (i.e. 
balance the computational load). It is important that all the processors have 
approximately the same amount of work to do. We don't want processors having 
to sit idle waiting for the other processors to finish their jobs.

• Minimise the amount, level and frequency of communication between 
processors and wherever possible constrain the distance of communication to 
nearest neighbours,

• Distribute the data evenly over the whole processor array.

1.9.3 Complexity

Bokhari [BokSl] showed that it is unlikely that an exact polynomial time algorithm exists 
for solving the mapping problem. For a mapping algorithm to be practical, the time taken 
to decompose the mesh should be a small percentage of the time taken to solve the 
application in parallel. This will ensure a gain over solving the application in serial.
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Initial work on mapping CFD codes onto parallel systems focused upon software which 
employed structured meshes. Effectively, the approach involved decomposing the mesh 
and mapping the constituent submeshes onto the processor array in such a way that 
communication was usually restricted to nearest neighbour. Various approaches for two 
and three dimensional mapping are described by a number of groups in reference 
[RSEHP92], One such approach is described by Johnson and Cross [JC92] who 
implemented the CFD code, FLOW3D, onto transputer and i860 based systems. Here, the 
mesh is decomposed into (i,j) slabs such that each processor has an equal number. The 
processors are then configured as a simple pipeline and the solution proceeds as in scalar, 
except that periodically information is exchanged between neighbouring processors to 
send or receive latest values of solution variables on adjacent (i,j) slabs. Because, each 
processor has (roughly) the same amount of work to do at each stage, the 
communications can be synchronised at very little cost to the efficiency of the parallel 
implementation. On transputer based systems efficiencies of 80%+ have been reported 
on 50 processor systems running problems with 40,000+ nodes [JC92].

The next stage in exploiting parallel architectures for CFD involves codes based upon 
unstructured meshes. Although, the approach for such codes should be analogous, the key 
new problem to be addressed involves the strategy for decomposing the mesh. For 
structured meshes (even block structured meshes) the strategy is fairly obvious. However, 
for unstructured mesh codes the decomposition is problem dependent and so algorithms 
are required which will partition the mesh onto a given processor topology to meet the 
objectives stated in section 1.9.2.
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1.10 Summary of Existing Methods

It is known that finding an exact solution to the mapping problem is NP-complete and 

so any method for finding an exact solution will almost certainly require an exorbitant 

amount of computation. Heuristics attempt to find a sub-optimal solution in a reasonable 

amount of time.

Proposed techniques for solving the mapping problem have separated out the solution into 

two distinct phases. The first phase is to partition the computational domain into cohesive 

sub-regions. The second phase consists of embedding these sub-regions onto the 

processors. Partitioning followed by embedding can be viewed as a heuristic or as an 

initial mapping to be improved by an iterative heuristic.

1.10.1 Graph Partitioning Problem

Let G = (V,E) be an undirected graph with a cost C(u,v) associated with each edge (u,v) 

e E. The graph partitioning problem is to partition the vertices of G into two subsets 

such that the cut set has minimum cost. i.e. the sum of the cost of all those edges with 

end points in different subsets is minimum. The graph partitioning problem is known to 

be NP-Complete [GJ79] therefore heuristics have been used to find acceptable solutions.

Kerninghan and Lin [KL70] consider the problem of partitioning the nodes of a graph 

into subsets of given sizes to minimize the sum of the costs of all edges cut. The work 

is influenced by two applications. The first problem is placing the components of an 

electrical circuit onto printed circuit boards so as to minimise connections between the 

boards. The other application is an attempt to improve the paging properties of programs 

for use in computers with paged memory organisation. Objects such as subroutines, 

procedure blocks, data items etc. are assigned to pages of memory and the problem is to 

minimise the reference to objects that reside on different pages. Experimentally, they 

determine that the time complexity of this heuristic for finding a 2-way partition of a 

graph with n nodes is O(«2). The technique is also extended to perform fc-way partitions, 

using the 2-way procedure as a tool.
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Fiduccia and Mattheyses [FM82] improved the Kerninghan-Lin algorithm. They use 

efficient data structures and vertex displacements instead of exchanges to derive a linear 

time heuristic for improving 2-way graph partitions.

Gilbert and Zmijewski [GZ87] found low cost partitions for factorisation of sparse 

matrices by developing a parallel version of the Kerninghan-Lin algorithm. These 

partitions are used to compute ordering for factoring matrices and the resulting orderings 

lead to good processor utilization and low communication overhead.

Pothen , Simon and Lieu [PSL90] partition the graphs of sparse matrices using the 

Recursive Spectral Bisection (RSB). The RSB method for graph partitioning uses the 

eigenvector x2 corresponding to the largest eigenvalue X2 of the Laplacian matrix of the 

graph to find vertex separators (see Section 2.3). The special properties of the eigenvector 

x2 have been investigated by Feilder [Fei73], [Fei74]. Their results show that the spectral 

partitions obtained compare favourably with partitions obtained by previous algorithms.

Simon [Sim91] investigates three algorithms for the partitioning problem for unstructured 

domains. All three algorithms considered are recursive and are Recursive Coordinate 

Bisection (RGB), Recursive Graph Bisection (RGB) and Recursive Spectral Bisection 

(RSB). The main result is that RSB is a significant improvement over the other two 

algorithms.

Simulated Annealing is a combinatorial optimization technique to minimise/maximise an 

objective function (see section 2.4.3). Johnson et al [JH89] made a critical evaluation for 

the performance of simulated annealing to the graph bisection problem and compared its 

performance with that of the Kerninghan-Lin approach. In general, simulated annealing 

is time consuming, but it has been successfully applied to many combinatorial 

optimization problems.

Tabu Search is a fairly new approach to combinatorial optimization (see Section 2.4.5). 

Tabu search algorithms are generally slower than other problem-specific heuristics but 

they have been successfully applied to many problem domains. Tao et al [TZTS92]

~page 22



__________________________________________Chapter 1

propose two new algorithms based on Simulated Annealing and Tabu Search and 
compare the effectiveness of these two algorithms with that of an algorithm based on the 
Kerninghan-Lin method. They show that their two algorithms provide better solutions 
than the Kerninghan-Lin based algorithm but with longer running time.

Lim and Chee [LC91] consider a graph partitioning approach based on the tabu search 
heuristic. Their experimental results show that their algorithm consistently out-performed 
the Fiduccia-Matheyeses [FM82] version of the Kerninghan-Lin method. The speed of 
their algorithm is also comparable. They also compared their tabu search algorithm with 

the simulated annealing algorithm and they state that their algorithm does not perform 
well in terms of quality of solution on random graphs.

1.10.2 Graph Embedding Problem

Let the graph of the problem to be mapped be denoted by G = (VG,EG) where VG 
represents the tasks of the problem and edges EG characterize the data communication 
between tasks. Let the processor graph be denoted by P = (VP,EP) where Vp represents 
the processors and EP the communication between processors. The graph embedding 
problem is to map G onto P such that the maximum distance that data travels should be 
minimsed.

One can first partition the task graph which can then be embedded onto the processor 
graph. Ercal et al [ERS88] argue that this may not be a good approach to solving the 
mapping problem. They claim that performing the two operations in isolation can lead 
to poor mappings and much less than optimal communication time. Ercal et al uses the 
following example to illustrate the disadvantage of performing the partitioning and 
processor assignment independently in two phases. Consider a simple regular task graph 
with 800 nodes, interconnected in a 20 x 40 rectangular mesh. The first partition to 
minimise the cut separates it into two 20 x 20 meshes. After the first partition is made, 
there are 4 possible choices for the second level partitions. Three of these choices can 
be seen in Figures 1.9(a-c). All four partitions are optimal - the load is balanced and they 
share the same number of nodes. However, they are not equal from the embedding
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perspective. With the partitions obtained In Figure 1.9(a), it is impossible to assign the 

clusters to processors of a 2-dimensional hypercube so that all communication is between 

directly connected neighbouring processors. Therefore, the minimum total communication 

cost that can be achieved is 70. However, the two second level bisections shown in 

Figures (b) and (c) performed identical cuts and the total communication cost that results 

is only 60.
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(a) Communication cost = 70

(b) Communication cost = 60

(c) Communication cost = 60

Figure 1.9: Possible 4-way partitions of a 40x20 grid with processor topology.
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1.10.3. Prior work on the Mapping Problem

This section gives a brief overview of some of the more important work on the mapping 

problem presented in chronological order.

Stone [Sto77] develops a heuristic for the mapping problem using the Ford-Fulkerson

algorithm [FF62] as modified by Edmonds and Karp [EK72]. He uses a network flow

algorithm as a "black box" utility to map a task graph onto a two-processor system. A

network representation of the mapping problem is produced and fed to a network flow
algorithm.

The construction of a network representation N of the two-processor mapping problem

is as follows:

1. N = G.

2. Add nodes labelled s t and s2 to VG representing the two processors. s t is the 

unique source and s2 is the unique sink [FF62].

3. For each v e VG , add an edge (v,Sj) and (v,s2) to EN .

4. Let C((v,S!)) be the estimated time to execute task v on processor s2 and 
C((v,s2) be the estimated time to execute task v on processor Sj.

Figure 1.10: A network flow graph constructed from a task graph with two vertices.
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The edge weights are chosen so that the weight of a cutset of N is equal to the execution 

time of the corresponding task-to-processor mapping. An optimal mapping of tasks to two 
processors is found by finding a minimum weight cutset, and assigning tasks to the 
processor on the same side of the cut,

For example, in Figure 1.10, a task graph G=(VG,EG) is shown where VG={u,v} and 

EG={(u,v),(v,u}}. The edge weights are C((u,v))=2 and C«v,u»=2. A network is 
constructed by adding the vertices s l and s2 and the edges (u,Sj), (u,s2>, (v.s^ and 

<v,s) with weights C((u,S!»=10, C((u,s2»=10, C«v,s,»=10 and C((v,s2»=10. 

Therefore, the tasks execute equally well on either processor and five times as much time 
will be spent computing as communicating.

However, good solutions to the mapping problem are not always provided by using 
network flow algorithms. In the above example, the maximum flow algorithm assigns 
both u and v to the same processor since there are two minimum weight cutsets with 
weight 20, {(u,s 1 ),(v,s 1 )} and {{(u,s2),(v,s2». Putting both tasks onto one processor 
results in a running time of 20; only one task computes at a time. The communication 
time is zero since both tasks are on the same processor. However, if the computations can 

be done in parallel and the communications are completed serially, then the running time 
when the tasks are mapped to different processors is 14. Constructing a network in this 
manner does not account for the concurrency in the two tasks. The result is a mapping 
that requires more execution time than if the tasks were mapped onto different 
processors. Also, using a network flow based algorithm heuristic to solve the mapping 
problem is computationally expensive. Efficient Max-Flow Min-Cut algorithms are of 

complexity O(eNvNlogvN). [GMG82]
Stone [Sto77] generalizes this approach to \)P processor networks. Although he does not 
give a complete efficient algorithm. He shows that a single source network flow 
algorithm can give information about the minimal weight cutset in a \)P processor graph. 
Let S={s,,...,sv ) be the distinguished nodes representing \)P processors. For i=l,...,DP, run 
a single source network flow algorithm using s} as the source node and S\Sj sinks. Stone 
proves that if some v is associated with Sj by the two-processor flow algorithm then v is 
associated with s; in a minimum cost cutset in a \)P processor network. Unfortunately, one 
can construct examples in which some v is mapped onto a processor in the \)P processor
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cutset, but fails to be associated with that processor by the two-processor cutset. 

Therefore, even after vp applications of the two-processor network flow algorithm, some 

subset of VN may not be mapped to a processor.

Bokhari [BOK81] develops a heuristic algorithm which consists of pairwise interchanges

alternating with random interchanges. The quality of a mapping is determined by the

number of graph edges EG that fall on processor edged Ep. This number is called the

cardinality of the mapping.

First, an initial assignment of tasks to processors is made.

Next, loop for each node:

1. Examine the pairwise exchange of this node with all other nodes.

2. Select the one which leads to the largest gain in the cardinality of the mapping. 

In this loop, only one pair of nodes can be exchanged at each iteration. If at least one 

exchange is made through the loop over all nodes, then the loop is repeated. If no 

exchange is made, the current mapping is saved and a random jump to a nearby 

mapping is made by interchanging n randomly selected pairs of nodes. If the new 

mapping is poorer than the saved mapping, then the saved mapping is kept and the 

heuristic stops. If the new mapping gives better results than the saved mapping, the new 

mapping replaces the saved mapping and the loop is repeated until no further 

improvement is made. The complexity of the outer iteration for this heuristic is O(n2) and 

may not be suitable for large problems.

Lee and Aggarwal [LA87] develop a deterministic-iterative heuristic mapping strategy 

for parallel processors using a more accurate quantification of the communication 

overhead. Their mapping scheme has been tested using the hypercube as the processor 

graph. They introduce three objective function to evaluate the quality of a mapping. The 

first objective function is the sum of the communication overheads of all problem edges. 

However, this in only appropriate if no two communications occur at the same time. The 

second objective function is the maximum number of communication overheads which 

is appropriate if all communication occur simultaneously. The third objective function is 

the sum of the maximum number of communication overheads at each stage which is
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appropriate if the communications occur at different stages. To evaluate the objective 

function, one must assign task graph edges to processors graph edges every time the 

mapping is changed. An initial assignment of tasks to processors is made using a one- 

pass approach which attempts to match the communication requirements of tasks to the 

communication capacities of the processors. The execution of this initial procedure takes 

O(vc2) time [LA87]. They then try to improve the mapping by performing serial pairwise 

exchanges and checking whether it gives a better mapping, or not, using the appropriate 

objective function. The pairwise exchange used is similar to the one used by 

Bokhari[Bok81]. The objective function is evaluated for every exchange and the pairwise 

exchange that results in the largest decrease in the objective function is made.

Berger and Bokhari [BB87] consider mapping refined grids onto different 

multiprocessors, namely a mesh-connected array, a binary tree machine and a hybercube. 

The task graphs that they consider are initially regular grids and are refined by 

superimposing fine grid patches over an underlying global coarse grid. The objective 
function used here is to maximise the cardinality of the mapping and a one-pass 

algorithm to map tasks to processors. The task graphs are partitioned into load balanced, 
disjoint subgraphs. This is done by placing a horizontal or vertical line such that half the 

vertices lie on either side of it. Each half is then bisected in the same manner by a line 
orthogonal to the previous partitioning line. This is done recursively until the number of 
partitions equals the number of processors. The partitions are then embedded in the 

processor graph. They achieve lower cost mappings on the hypercubes and meshes than 
the binary tree interconnections. However, the results for the hypercube are only 

marginally better than the results for the mesh.

Ercal et al [ERS88] use a recursive task-allocation scheme based on the Kerninghan-Lin 

mincut bisection heuristic. They compare simulated annealing to their recursive bisection 
method and their objective function is to minimise the number of adjacent vertices in the 

task graph that are mapped onto processor graph vertices. They show that, on average, 

their recursive bisection scheme reduces the objective function almost as well as the 

simulated annealing approach, but requires approximately two orders of magnitude less 

time to achieve the results.
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Williams [Wil91] compares three parallel algorithms for mapping unstructured meshes 
among the processors of a distributed-memory machine. The three algorithms are 
orthogonal recursive bisection (ORB), recursive spectral bisection (RSB) and a simple 
parallelization of simulated annealing which is a well known heuristic. These have been 
implemented for load balancing a dynamic unstructured triangular mesh on 16 processors 
of an NCUBE machine. He shows that execution time of the RSB is larger than the ORB 
and the parallel implementation of simulated annealing takes 20 times longer to run than 
RSB for his test cases. After mapping the three methods, the running time of each 
application is measured and using a mesh with 5772 nodes, the execution time using the 
simulated annealing is the fastest and the ORB mapping is the slowest. Even though 
simulated annealing ran significantly longer that ORB, the running time for the 
simulated-annealing partitioned (best mapping) was only 21 % less than the running time 
for the ORB partitioned application (worst mapping).

Sadayappan et al [SER90] compare two heuristic approaches for mapping grids onto 
hypercubes, a nearest-neighbour approach and a recursive clustering scheme. The 
recursive clustering method is based on the Kerninghan-Lin algorithm. They show that 
the nearest-neighbour approach is found to be more effective when using regular grids 
and that the recursive clustering approach is more effective than the nearest-neighbour 
at reducing communications for systems with high message start-up costs.

Search techniques are exact algorithms that have been used to solve the mapping
problem.
Shen [ST85] considers an optimal task assignment in which communicating tasks are
required to reside in the same or neighbouring processors. An ordered search is used to
search the space of feasible assignments.

Sinclair [Sin87] uses a state space reduction technique (branch-and-bound-with 
underestimates) to find optimal assignments. The disadvantage with search techniques is 
if we have V tasks and P processors, then there are Vp possible assignments of tasks to 
processors. For very large problems, searching is not very feasible since in the worst case 
it needs a completer enumeration of all possibilities and this can prove to be very
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expensive.

Lo [Lo88] extends Stone's network approach. Recall that in a homogeneous system, an 

optimal network solution will map all tasks to one processor, here, a penalty function is 

incurred to distribute the tasks to multiple processors. This approach is not very practical 

for very large problem since repeated use of the Max-Flow Min-Cut algorithm is too 

expensive.
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2.1 Introduction

In Chapter 1, a brief outline of existing techniques to graph partitioning and embedding 

was given. In this chapter, some of the methods that we looked at extensively are 

described in more detail. At the end of each section, we discuss the analysis of the 
method described.

2.2 Nearest Neighbour 

2.2.1 Introduction

The nearest neighbour algorithm was proposed in [SE87] as an approach to mapping 
finite element meshes onto processors. A nearest neighbour mapping is one where 
elements which share a node are mapped onto the same or neighbouring processors. The 
idea behind the nearest neighbour mapping is that if neighbouring elements are mapped 
onto neighbouring processors then the total communication costs should be low. 
Furthermore, by aiming at a load-balanced distribution, computation costs can also be 
minimized. Starting with an initial nearest neighbour mapping, successive incremental 
modification of the mapping is done to improve the load balancing whilst still 
maintaining the nearest neighbour property.

The nearest neighbour mapping uses a two-step procedure :

1) Creation of an initial nearest-neighbour partition by grouping nodes into clusters and 
the clusters allocated to processors so that any two nodes which share an edge are 
mapped onto the same or neighbouring processors.
2) Iterative boundary refinement involving modification of the initial mapping where 
nodes are reassigned among the processors to improve the load balancing but maintaining 

the nearest neighbour property.
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2.2.2 Regular Grids

We first describe a scheme for creating nearest neighbour mappings for regular graphs. 

These are graphs that are made up of four-node finite elements that can be embedded 

onto a uniform two-dimensional grid in such a way that any two vertices of the finite 

element graph which share an edge are mapped onto adjacent (vertically or horizontally) 
mesh points. There are two types of partitioning methods for the regular graphs. The first 

is a one dimensional strip partitioning which provides perfectly load-balanced nearest 
neighbour partitions. The second is a two dimensional strip partitioning which satisfies 

the nearest neighbour property but does not always satisfy the load-balancing property. 
It is with the two dimensional scheme where the boundary refinement procedure is 

applied. One example of nearest neighbour partitioning is strip partitioning.

2.2.2.1 One Dimensional Strip Partitioning

The essential idea behind this method is to partition the graph into "strips", where each 
column (or row) encompasses one or more contiguous columns (or rows) of the graph. 
The graph is covered by strips in such a way so that each strip is adjacent to at most two 
other strips, one on either side of it. The number of strips equals the number of 
processors and each strip can be made so that each strip contains the same number of 

vertices.
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Fig 2.1: Example of one-dimensional strip partitioning

It is easy to assign the strip partitions of the finite element mesh to the processors. 

Starting with the leftmost node in the uppermost row of the regular graph, the nodes are 

assigned to a processor by proceeding across the row of the regular graph. When the first 

row is completely exhausted we then move on to the left end of the next row and 

continue assigning nodes to the processors. When the processor has been assigned the 

required number of nodes, we begin assigning the remaining nodes to the next processor 

in the linear chain of processors. Proceeding in this manner, all nodes are assigned to the 

processors.
An example of the one dimensional strip partitioning is given in Figure 2.1. Here, we 

have a graph with 48 nodes which has been partitioned into 4 strips, each strip containing 

12 nodes and is mapped onto a 2 x 2 processor mesh by treating it as a 1 x 4 linear 

chain. A similar procedure can be used to create a vertical one dimensional strip 

partitioning of the same graph.
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2.2.2.2 Two Dimensional Strip Partitioning

When the regular graph is not one dimensional strip partitionable into as many strips as 
the number of processors (i.e. when we have a matrix of processors rather than a chain 
of processors), it is often possible to partition the graph into the number of processors 
on one side of the processor mesh. The idea behind the two dimensional strip partitioning 
is to create two independent one-dimensional strip partitios, one in the horizontal 
direction and the other in the vertical direction. This is illustrated in Figure 2.2 with a 
mesh graph with 40 nodes to be mapped onto a 4 x 2 processor mesh. Figure 2.2(a) 
shows the graph partitioned into 4 strips in the horizontal direction and each strip 
contains 10 nodes.

A similar procedure is used to partition the graph in the vertical direction and it is 
partitioned into two vertical strips, each strip containing 20 nodes. By overlapping the 
two orthogonal strip-partitions generated, and forming the intersections, we can generate 
a number of regions which equals the number of processors in the processor mesh. The 
nature of the construction guarantees that the partitions generated satisfy the nearest- 
neighbour property. Even though the two independent partitions are each individually 
balanced, the intersection partitions are not generally load balanced as can be seen in 
Figure 2.2(c). However, this partition is used as an initial partition and is then refined by 
the load-balancing boundary refinement procedure.
One way of balancing the computational loads between the processors is to reassign some 
of the nodes among the processors and this is done by transferring nodes from overloaded 
processors to underloaded processors. For example by transferring one task from P22 to 
P 12 and one task to P21 , and also transfer one task from P31 to P32 as shown graphically 
in Figure 2.2(d) as a Load Transfer Graph (LTG).
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Processors Processors

:-.ltial Loads
' a . _cac

Fig 2.2: Two dimensional strip partitioning

(a) Horizontal strip partitioning; (b) Vertical strip partitioning

(c) Initial two dimensional mapping (d) Load transfer graph

(e) Final mapping after boundary refinement
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A heuristic boundary-refinement procedure which is described in detail in [SE87] 

iteratively attempts to transfer tasks between the processors using the load transfer graph. 

An "active" processor list is formed and is sorted in decreasing order of current task-load, 

containing all processors that source an edge in the LTG. Looking at the processor which 

has the greatest load, a task is found (preferably on the partition boundary) which can be 

transferred to a neighbouring processor in the LTG. At this stage we must make sure that 

the nearest neighbour constraint is not violated. If a task cannot be found, then we scan 

the sorted active processor list in decreasing order of processor loads until a processor 

which has a transferable task is found. The task is transferred and the LTG is updated 

by decreasing the relevant edge-weight by one and removing it if its edge-weight 

becomes zero.

The algorithm proceeds iteratively in an incremental fashion to refine the mapping by 

rearranging the boundaries of the partitions to improve the load balancing. With the 

example used in Figure 2.2, the final mapping after using the boundary-refinement 

procedure can be seen in Figure 2.2(e).

2.2.3 Non Regular Grids

This section describes methods for generating nearest neighbour partitions for general 

finite element graphs. A generalization of the one dimensional strip partitioning used for 

regular graphs is possible for non-regular graphs. The basic idea is to cover the graph 

with strip-like regions, so that if a node lies on a certain strip then all other nodes which 

share an edge with this node lie on the same or adjacent strip. Due to the regularity of 

the regular graphs, the process of generating strips was simplified and the nodes could 

easily be grouped into columns and rows. Unfortunately, this is not possible with the 

non-regular graphs. The nodes have to be grouped by using a levelization process and 

each node is assigned a level, this is illustrated in Figure 2.3. Starting with a randomly 

selected node or set of nodes (preferably on the boundary) these are assigned a level 1. 

All nodes which are connected to these level 1 nodes and which have not previously been 

assigned a level are assigned a level 2. The same procedure is carried out with these level 

2 nodes until all the nodes in the graph have been assigned a level.

page 38



Chapter 2

Figure 2.3: Example of a one-dimensional non-regular graph

The nature of this levelization procedure ensures nearest neighbour communication since 

if any node is assigned a level i, then any neighbouring node will be assigned a level /, 

i - I or i + 1. The strip partitioning can now be achieved using the levels similar to using 

the rows or columns used for mesh graphs as described earlier. Figure 2.3 shows a non- 

regular graph containing 60 nodes and this is partitioned into 4 strips, each containing 

15 nodes. We start with the level 1 nodes and allocate these to the first strip and when 

all level 1 nodes have been used we move on to level 2 nodes and so on until we have 

allocated 15 nodes to the first strip.

In the case of regular graphs, mapping onto an m X n processor mesh was achieved by 

performong two independent partitions, one in the vertical direction and the other in the 

horizontal and overlapping these two partitions.

2.2.4 Analysis of Method

We investigated the nearest neighbour method and wrote code to perfrom the partitioning 

strategies.Even though the method can be quite effective, unfortunately, the strip 

partitioning procedure does not always work well, particularly on meshes that are very 

unstructured. As such, its partitions can be arbitrarily poor. The key reason for this poor 

performance, is that essentially the nearest neighbour strategy is a geometric approach,
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whereas in reality the task of mesh decomposition is a topological one.

WWW\A/ AAAAAAAA

a) Original mesh

77
I/I/1A/I7171/1/77

77
77

77

77
77

b) Split into two using nearest neighbour

\AAAAAAAA WWWVV\

c) Ideal decomposition with minimal communicaton cost

Figure 2.4: A simple mesh illustrating the limitation of 

the nearest neighbour technique

This is demonstrated in the example shown in Figure 2.4. Figure 2.4(b) shows the simple 

split into two equal sub-meshes produced by the nearest neighbour approach of the mesh 

shown in Figure 2.4(a). Unfortunately, this split, though viable, does not minimise the 

communication cost between the sub-meshes. The split that achieves this is shown in
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Figure 2.4(c). Although, the two arms are located on the same processor and have no 

connection, the total amount of communication is less than the nearest neighbour split. 

However, the split shown in Figure 2.4(c) is also nearest neighbour because we can see 

that all neighbouring elements are placed on the same or neighbouring processors. Even 

though the split contains a disconnected sub-mesh, the two arms do not have to 

communicate with each other and only have to communicate with the other sub-mesh 

which is placed on a neighbouring processor. Although the mesh in Figure 2.4 is trivial, 

it demonstrates the one type of limitation experienced by all approaches which are 

essentially based upon geometrical rather than topological considerations.

2.3 Recursive Spectral Bisection 

2.3.1. Introduction

The recursive spectral bisection algorithm is derived from a graph bisection strategy 
developed by Pothen, Simon and Lieu (PSL90) and has been developed and explored 

separately by both Williams (Wil91) and Simon et al (S91), (VSB91). The approach is 

based on the computation of a specific eigenvector of the Laplacian matrix of the 

connected graph G.

2.3.2 The Laplacian Matrix

Recall that the Laplacian matrix L(G) = (lyXij = l....n is defined by

+ 1 if (VpVj) 6 E
- deg (Vj) if i=j
0 otherwise

The Laplacian matrix L(G) = -D + A where A is the adjacency matrix of the graph and
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D is the diagonal matrix of the vertex degrees. This matrix has a number of important 
algebraic properties [Moh88] which reflect some of the basic structure of the graph. For 
example, all the cofactors are equal and have a value whose modulus equals the number 
of spanning trees. Since the matrix is obviously singular, then zero is an eigenvalue. In 

fact, the largest eigenvalue Xt is zero and that the associated eigenvector xlt is the vector 

of all ones. If G is connected then A^, the second largest eigenvalue is negative. The 
magnitude of A^ is a measure of connectivity of the graph.

2.3.3 The Fiedler Vector

The eigenvector x2 associated with X^ gives some directional information on the graph. 
If the components of x2 are associated with the corresponding vertices of the graph, they 
yield a weighting for the vertices. Differences in this weight gives a distance information 
about the vertices of the graph. The graph can then be partitioned by sorting the vertices 
according to their weight. This eigenvector is called the Fiedler vector since the special 
properties of x2 have been investigated by Fiedler (Fei73), (Fei75).

The RSB algorithm works as follows:
1. Compute the second largest eigenvalue ^ and corresponding eigenvector x2 (the 

Fiedler vector).
2. Sort the vertices of the graph so that they correspond monotonically to their 

entries in the Fiedler vector.
3. Half of the vertices are assigned to each subdomain.

4. Repeat recursively.
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a) Original mesh b) Partition into two using RSB

Figure 2.5: A simple mesh illustrating the RSB producing disconnected sub-domains

To find a 2" way parition of a graph G
P°o = VG

do i = 0,..., n - 1

doj = 0, 1,..., 2i+1 -1

compute x2 of Pj

sort out the components of x2

assign half of the vertices and edges corresponding to the smallest

component in x2 to PI+1 2j and those corresponding to the other half
tn Pi10 r

enddo

enddo

Pn , i =0, 1, 2,..., 2" - 1 are the subgraphs of G.

Figure 2.6: Recursive Spectral Bisection Algorithm.
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2.3.4 Analysis of Method

Venkatakrishnan et al [VSB91] show impressive mesh decomposition produced by the 

RSB algorithm, notably for external flow regions.

The RSB algorithm assumes that the decomposition will produce connected sub-meshes 

but this is not always guaranteed. For example, using the mesh given in Figure 3.5(a) and 

splitting into two we can see by looking at Figure 3.5(b) that one of the sub-meshes is 

disconnected. The theory applies to connected sub-meshes but disconnected sub-meshes 

can be re-connected but it is unclear what effect this has since in a sense, it is against the 

'spirit' of the method.

Moreover, when the domains are connected then the resultant partition is obviously 

nearest neighbour and has all the advantages and suffers the same disadvantages as the 

general nearest neighbour strategy. So, for example, if the RSB is applied to the graph 

in Figure 2.5(a) then it cuts the graph into two blocks down the central block as in Figure 

2.5(b).

2.3.5 Multilevel Recursive Spectral Bisection

Barnard and Simon [BS93] describe a multilevel implementation of RSB that achieves 

about an order-of-magnitude improvement in run time.

The multilevel RSB method requires three components to be added to the basic single- 

level RSB algorithm. The first component is contraction where a series of smaller graphs 

are created such that the global structure of the original large graph is retained. 

The second is interpolation where given a Fiedler vector of a contracted graph, this 

vector is interpolated to the next larger graph in a way that provides a good 

approximation to next Fiedler vector. The last component is refinement. Given an 

approximate Fiedler vector for a graph, a more accurate vector is computed efficiently. 

The performance advantage of the multilevel algorithm over the single level algorithm 

is dependent on the problem size. The speedup decreases as the number of domains 

increases because the multilevel algorithm must spend more time partitioning smaller 

subproblems.
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2.4 Combinatorial Optimisation Methods

2.4.1 Introduction

Solving a combinatorial optimization problem [Law76] amounts to finding the best 

solution among a finite collection of alternative solutions. At first it may seem that this 

is a simple problem; the solution can be found by just examining each of the alternatives 

in turn and selecting the best. The problem is that the number of alternatives can be 

numerous.

A classic example of a combinatorial optimisation problem is the travelling salesman 

problem [GJ79]. Given a list of TV cities and a means of calculating the cost of travelling 

between any two cities, one must plan a route, which will pass through each city only 

once and return finally to the starting point, minimising the total cost. 

All exact methods for determining an optimal route require a computing effort that 

increases exponentially with N, so that in practice exact solutions can be attempted only 

on problems involving a few hundred cities or less. An algorithm which depends upon 

a power of N is called a polynomial time algorithm.

Theoretically combinatorial optimization problems can be divided into two classes: those 

which can be solved by a polynomial time algorithm and those which cannot. In principle 

polynomial time algorithms are easy to solve on a computer and those which are not 

polynomial are very difficult. The theory of NP-completeness [GJ79] has been developed 

in an effort to gain insight into this mysterious class of problems. 

A non-deterministic algorithm is an algorithm in which there are choices. We assume that 

when such an algorithm is executed, the computer fortunately makes the right choice on 

each occasion.(It goes without saying that no such machine exists). If a problem can be 

solved in polynomial time by such an algorithm then we say it is in the class NP (Non- 

deterministic Polynomial). The travelling salesman problem belongs to this class. An 

alternative way of thinking about this classification is that a problem belongs to the class 

NP if, given a possible solution to the problem, we can check whether it is a solution or 

not in polynomial time. 

We say that any problem which can be solved by a polynomial time algorithm is in the
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class P. Obviously PeNP. It is not known whether P=NP or not. A problem is said to be 

hard if finding a polynomial time algorithm for a hard problem we are at the same time 

looking for a solution to all the problems in NP. It can be shown that certain hard 

problems are also in NP, these are called NP-complete problems. Unfortunately, it is not 

possible to find complete solutions to these problems in reasonable amounts of 

computation time. In trying to solve such problems we have two choices, either go for 

an exact optimal solution and restrict the size of the problem which can be solved or look 

for approximate or nearly optimal solutions for a larger class of problem. We are 

interested in this second class of algorithms and these are known as heuristic algorithms. 

The mapping problem can be regarded as a combinatorial optimization problem. Two 

heuristic algorithms that have been used to try and solve the mapping problem are 

Simulated Annealing [RGV83] and Tabu Search [Glo89], [Glo90].

2.4.2 General Formulation

In this section we give a general formulation of combinatorial optimization problems and 

give examples relating to graphs.

Formally, a combinatorial optimisation problem consists of a cost function f with domain 

S and co-domain R the set of real numbers

f: S ->

S is a finite set and is called the solution space. Problems can either be maximisation or

minimisation problems.

For minimisation the problem is to find x* e S such that f(x*) < f(x), for all x e S.

In the case of maximisation we require f(x*) > f(x).

Since we can transform a maximisation problem into minimisation by multiplying the

cost function by -1, it is sufficient to think of all problems as minimisation problems.

Whilst this formulation gives the general structure, certain consideration must be given

to the construction of S and F.

page 46



____ ____ __________________________________ Chapter 2

To illustrate this, consider the problem of partitioning a graph into two. Let G be a graph 

where G = (V,E) with a cost of 1 i.e. c(u,v) = 1 associated with each edge (u,v) e E. 

The problem is to partition the vertices of G into two subsets of equal sizes such that the 

cut set has minimum cost i.e. the sum of the cost of all those edged with end points in 

different subsets is minimum. 

Therefore, we can define the set of feasible solutions S to be

and the cost function f(x), x=(S 1 ,S2) e S to be 

f(x) = E c(u,v)

U 6 S,, V € S2

2.4.3 General Purpose Algorithms

One important problem shared by all combinatorial optimisation problems is that the 

solution space is ragged and unpredictable. Classical optimisation problems can often be 

solved by hill climbing techniques. We optimise a function by always going up, when 

we can no longer go up we have reached the summit and this we hope, is the best 

solution. In a complex landscape we may have chosen the wrong hill to climb and 

although we have reached the top, there is a higher hill elsewhere. The complexity of the 

landscape for combinatorial optimisation problems makes the scenario almost inevitable. 

We are therefore forced to search for our optimum value by taking a more heuristic 

strategy. We shall now examine the general principles of the most successful techniques.

In examining general methods, we require the concept of a neighbourhood. Given a cost 

function f and a member x of the solution space S then a neighbourhood N(x) of x is a 

member of S which is close to x in some sense. A neighbourhood structure is a mapping 

which defines a set of neighbourhoods for every x in S. To illustrate how this may work, 

consider again the problem of partitioning a graph. A neighbourhood N(x) can be reached
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from x via a single pair-exchange between members of the two different subsets of x. 

Naturally, the best neighbour of x corresponds to the member in N(x) that gives us the 

highest decrement in cost.

It is illuminating to consider how the concept of a neighbourhood can be applied to 

obtain a standard hill climbing method. We first generate a random start and evaluate the 

cost. We next examine a neighbourhood of the random start and see if the cost has 

improved. If there is an improvement, we move to that position and examine the 

neighbourhood of the new position. If the cost deteriorates, then we examine a different 

neighbourhood. We repeat this strategy iteratively until there is no improvement. The 

problem with this method is that we can easily find ourselves in a position in which no 

improvement is possible but we have reached an optimum. The method is rather like 

trying to find the lowest point in a range of mountains. First randomly pick a starting 

point and select a direction to walk. Check that the direction is downhill, then walk in 

that direction until you are no longer going down. Repeat the procedure until you are 

forced to stop. The chances of this method getting you to the lowest point are virtually 

zero. The most likely is that you would be trapped in the bottom of a small valley. To 

find a way out of the solution it would be necessary to climb upwards in order to go 

down further in the future. The methods of Simulated Annealing [KGV83] and Tabu 

search [GloSO], [Glo90] are based on this concept.
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2.4.4 Simulated Annealing

2.4.4.1 Introduction

The Simulated annealing approach is based on ideas from statistical mechanics. It can be 

viewed as an enhanced version of the iterative improvement, in which an initial solution 

is repeatedly improved by making small local changes until no such change gives a better 

solution. Simulated Annealing randomizes this procedure in a way that allows for 

occasional uphill moves (changes that worsen the solution) in an attempt to reduce the 
probability of becoming stuck in a poor but locally optimal solution.

2.4.4.2 Methodology

The difficulty with local optimisation is that it has no way of backing out of unattractive 
local optima. A move to a new solution is never made unless the direction is downhill, 

that is, a better value of the cost function.

Simulated Annealing is an approach that avoids getting trapped in local minima by 

allowing an occasional uphill move. This is done using a random number generator and 

a control parameter called the temperature. As typically implemented, the Simulated 

Annealing approach involves a pair of nested loops and two additional parameters, a 

cooling ratio r, 0 < r < 1, and an integer temperature length L. Figure 2.7 shows the 
steps of the Simulated Annealing algorithm. In Step 3 of the algorithm, the term "freezes" 

refers to a state in which no further improvement in cost S seems likely. 
The core of this procedure is the loop at Step 3.1. The random number e^ will be a 

number between 0 and 1, where A and T are positive, and can rightfully be interpreted 

as a probability that depends on A and T. The probability that accepting an uphill move 

of size A decreases as the temperature cools down, and, for a fixed temperature T, small 

uphill moves have higher probabilities of being accepted than larger ones.
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1. Obtain an initial solution S.

2. Obtain an initial temperature T > 0.

3. While not yet frozen do :

3.1 Perform the following loop L times.

3.1.1 Let S' be a random neighbour of S.

3.1.2 Let A = cost (S'} - cost (S).

3.1.3 If A < 0 (downhill move) 

Then set S = S'.

3.1.4 If A > 0 (uphill move)

Then set S = S' with probability e

3.2 set T = rt (reduce the temperature) 

4 Goto Step 1

Figure 2.7: Simulated Annealing algorithm

2.4.4.3 Addressing Graph Partitioning using Simulated Annealing

Recalling that in a graph partitioning problem, we have a graph G = (V, E) and we want 

to partition the graph such that the partition V = V} u V2 of V into two equal sized sets 

has the minimum number of edges being shared by the sets V7 and V2. Using the 

simulated annealing method, a solution will be any partition V = Vj u V2 of the vertex 

set and not just a partition into equal sizes sets. Two partitions are neighbours if one can 

be obtained from the other by moving a single vertex from one of its sets to the other 

set.

Therefore, if (V,,V2) is a partition and v e V; , then (V} - M, V2 u fW) and (V,, V2 ) are 

neighbours.
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The cost of a partition (VJt V2) is defined to be :

Cost (V,,V2)= I ( i ii, v ; E£ : u G V; , v e V2 ) I + a (| V, I - I V2 \ ) 2

where I V, \ is the number of elements in set V} and a is a parameter known as the 
imbalance factor.

Although this method allows infeasible partitions to solutions, it carries a penalty cost 
according to the square of the imbalance. Consequently, at low temperatures, the sets 
tend to be perfectly balanced. The penalty function approach is common to many 
implementations of simulated annealing and it is often effective because the extra 
solutions that are allowed give new escape routes out of local optima. 
The initial solution is randomly generated. If the final solution stays unbalanced, then a 
greedy heuristic is used to put it into balance. The heuristic then repeats the following 
operation until the two sets of the partition contain the same number of vertices: find a 
vertex in the larger set with the least increase in cutsize, and move it. The best feasible 
solution found is noted, be it the modified final solution or some earlier feasible solution 
encountered earlier on.

2.4.2.4 Analysis of Method

Simulated annealing has proved succesful in certain practical domains. However, there
are certain areas of potential difficulties for the approach.
One question that needs to be addressed is the running time of the algorithm. It has been
observed by many researchers that the simulated annealing requires large amounts of
computational time to perform well. For partitioning unstructured meshes, the
computational time for partitioning is just as important as the sub-meshes obtained since
the time taken to partition the mesh must be a small fraction of the overall solution time
of the problem.
Johnson et al [JAMS89] discusses simulated annealing for graph partitioning. They
showed that for sparse random graphs, it tended to outperform the Kerninghan-Lin
method [KL70]. However, it did not perform so well on a graph that was generated with
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a built-in geometric structure.

Williams [Wil91] also compared the simulated annealing method with two other methods. 

One method was the recursive spectral bisection and the other was recursive orthogonal 

bisection. Recursive Orthogonal Bisection partitions a planar graph by placing a 

horizontal or vertical line such that half the vertices lie on either side of it. Williams 

showed that the parallel implementation of simulated annealing took 20 times longer than 

the recursive spectral bisection for the test cases that he used. The running time of an 

application was measured after being mapped by the three methods he was comparing. 
Using a graph with 5722 nodes, the running time of an application was fastest using 
simulated annealing. Even though simulated annealing ran significantly longer than the 

recursive orthogonal bisection method, the running time for the simulated annealing 
partitioned application (which was the best mapping) was only 21 % less than the running 

time for the recursive orthogonal bisection (which was the worst mapping).

2.4.5 Tabu Search

2.4.5.1 Introduction

Tabu search is a fairly new approach to combinatorial optimisation where it is very 
similar to Simulated annealing in that it accepts "bad" moves in hope that there exits a 
better solution later on. It is characterised by aggressive local search during each 
iteration, and avoiding cycling in the solution space by keeping a short history of the 

recent solution [Glo89],[Glo90].

2.4.5.2 Methodology

There are two aspects in which Tabu search differs from Simulated annealing.

1. It is more aggressive. The whole neighbourhood is searched for each iteration of the 
current solution and it is usually searches exhaustively to find the best candidate moves.
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2. It is deterministic. The above exhaustive search for best candidate moves is repeated 

for each iteration. If a candidate move does not cause cycling in the solution space then 

this candidate move is made to avoid cycling no matter what sign its gain has. A "tabu 

list" is usually used to record the most recent move history.

Figure 2.8 shows the general framework of tabu search where S is used to represent the 

solution. C is used to represent the cost function and t is the length of the tabu list. The 

first solution is a random solution, and the algorithm repeats the loop at step 2 until some 

criteria for stopping has been met. During each iteration, the algorithm makes an 

exhaustive search of the solution space in the neighbourhood of the current solution 

which has not been traversed in the last t (t > 1) iterations. The current solution with the 

best cost. Some of the main points for the tabu search algorithms are :

1. The design of the neighbourhood system effects the selection procedure. Usually, each 

iteration is made more aggressive if there is a large neighbourhood and this can prove 

to be very time consuming.

2. The design of the contents of the tabu list. If a current solution is transformed to S by 

a move m, then some attributes of S or m should be captured by the corresponding cell 

of the tabu list, so that S will not be traversed again in the next t steps. At one extreme, 

the solution S can be stored directly in the tabu list. However, in practice, in order to 

save memory space and checking time, some attributes of S will be stored in the tabu list 

to prevent m or m" 1 to be used in the next t iterations. If a more detailed set of attributes 

of a solution or of a move in each cell of the tabu list is used, then more memory space 

and checking time will be incurred during the search of the solution space, and the 

searches will be less restrictive because less solutions ( as well as the ones visited in the 

last t iterations) will be tabued. However, if a more simplified set of attributes of a 

solution or move in each cell of the tabu list is used, then the implementation will make 

more efficient use of space and time for each iteration, and since extra solutions will be 

tabued, the searches will be more restrictive.

3. The design of the aspiration level function. To make more efficient use of space and 

time, most designs of the contents of the tabu list will tabu too many solutions as well
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as those that have been visited in the last t iterations therefore increasing the risk of 

losing good move candidates. However, an aspiration level A(m,S) can be defined for 

each pair of move m and solution S such that if C3 (m(S)) > A(m,S) the tabu status of 

m for the current solution S can be outweighed to capture the common properties of the 

earlier applications of m to solutions sharing the same attribute values of S.

4. The design of the length t of the tabu list. The length of the moved history that is 

saved in the tabu list is determined by the parameter t. Suppose that we have a local 

optimum S and that it needs at least t 1 consecutive "downhill" moves to get to another 

local optimum S 1 . Therefore, a necessary condition for S to reach S 1 is that t > t 1 . 

Generally, the longer the tabu list, the more time for tabu status checking for each move, 

and the more restrictive the search process. However, by having a tabu list that is too 

short can risk introducing cycling in the solution space. The parameter t can be a constant 

or a variable during the execution of the algorithm. Glover [Glo89] states that a tabu list 

of length 7 is appropriate for many applications.

1. Get a random initial solution S

2. If stop criteria not met, DO

2.1 Let S 1 be neighbouring solution of S maximising

A = C3 (S 1 ) - C3 (S) and that 

this neighbourhood has not been visited in the last t iterations.

2.2 Let S = S'

3. Return the best solution S visited. 

C3 : Objective function

Figure 2.8: Tabu search algorithm
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Tao et al [TZTS92] propose the following description for their tabu search algorithm for 
multiway graph partition:

For the tabu list design, they use a circular list to maintain vertices that have been 

moved in the last t (t > 1) iterations. They find that by having a more detailed 

characterization of past known moves commonly traps the search process in a small 

subspace of the solution space. For their problems, a constant tabu list of length 5 gave 

the best performance.

For their aspiration level A (m,s) for all pairs of m and s, they used the cost of the best 

visited solution, based on the same observation as pointed out above, more "flexible" 

searches implemented by a more sophisticated aspiration level definition tend to limit the 
real search freedom in the solution space.

2.4.5.3 Analysis of Method

Lim et al [LC91] compare the tabu search algorithm with the Simulated annealing 

algorithm for graph partitioning. They found that tabu search did not perform as well in 

terms of quality of solutions on random graphs, even though in most cases the results 

were close. However, they found that their tabu search algorithm was faster by two to 

three orders of magnitude.
Tao et al [TZTS92] studies show the importance of the design of the solution 

neighbourhood structure. They believe that the running time of their algorithms can be 

greatly reduced if they combine the aggressive search in the tabu search approach with 

the stochastic search in the simulated annealing approach. While the former is critical to 

finding "good" solutions in practical time frames, the latter is effective in avoiding 

cycling in the solution space.
As well as combining Tabu search with simulated annealing, other approaches have been 

looked at. For example, Tabu search has been modified so that recent implementations 

do not search the whole solution space but accept the first downhill move encountered. 

This improves speed but does not detract from the solution process.
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In general, Tabu search algorithms are slower than other problem-specific heuristics, but 

they have been successfully applied to many problem domains. The relative performance 

of Simulated annealing and Tabu Search is primarily problem dependent.

We experimented with different neighbourhood structures and cost function with some 

of our simple meshes. Our preliminary findings were in accord with those mentioned 

above [ELJC93].

For example, one strategy taken was to use a cost function which was the correlation of 

the adjacency matrix of the mesh with an ideal structure matrix. In particular, if we wish 

to split the mesh into two sub-meshes, the ideal structure matrix has the form

,0 E

where E is matrix of all 1's 

and 0 is a matrix of all O's

Given a particular partition of a mesh the correlation between the re-arranged partitioned

matrix and the ideal structure matrix gives a measure of how good a partition we have

achieved.

This process was used on the example shown in Figure 2.4(a) and we obtained the

partition that is shown in Figure 2.4(c).

Unfortunately, the time taken to achieve this partition on a 486 PC was approximately

20 minutes. Clearly, this method, whilst capable of producing excellent partitions is not

feasible for any realistic problems.
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Chapter 3 
Recursive Clustering Algorithm
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3.1 Introduction

The recursive clustering method was devloped by Sadayappan et al [SER90] in order to 
split and map graphs onto a local memory machine with a hypercube interconnection 
tolopgy. The algorithm explicity attempts to minimise the communication volume through 
the use of an iterative improvement heuristic based on the Kernighan-Lin mincut 
algorithm [KL70]. Kerninghan-Lin propose an efficient mincut bisection heuristic with 
an experimental determined time complexity of O(n24). Their algorithm is based on 
finding an advantageous series of vertex-exchanges between the two partitions to 
minimise the communication between the two. The method is considered superior to 
other simple local search heuristics since it is endowed with the "hill-climbing" ability 
because of the swapping of a series of vertex-exchanges as opposed to simple 
perturbations. 

The Kerninghan-Lin method is described in the next section.

3.2 Kerninghan-Lin Graph Bisection method

3.2.1 Definition of Problem

Given a graph G with costs on its edges, partition the nodes of G into subsets so as to 
minimise the total costs of the edges cut. The simplest problem to be partitioned is that 
of a graph G with 2n vertices which is to be split into 2 sub-sets with minimal cost 
between the subsets which will both contain n vertices each.

Let G be a set with 2n vertices and an associated cost Cy, for each edge connecting 
vertices i and j.
We wish to partition G into 2 subsets A and B, each with n vertices, such that the 
"external cost" (i.e. cost between the two subsets)

K = Z Cab for all ae A and b e B is minimised.
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The method is as follows :

1. Arbitrarily assign each vertex to one of two subsets A and B of G.

2. Try to decrease the initial external cost between the two subsets by a series of 
interchanges of subsets A and B.

The subsets to be chosen are to be described . When it is not possible for further 

improvements, the resulting subsets A' and B' have a local minimum cost between 
them. Kerninghan and Lin state that the resulting partition also has a fairly high 
probability of being a globally maximum partition.

The procedure can then be repeated in a recursive manner, so that we can obtain 2" 
subsets.

Given G and C^, suppose A* and B* is a minimum cost 2-way partition. Suppose A and 
B is any initial arbitrary 2-way partition. It is clear therefore that there exists XczA, YcB 
with |X| =|Y| < n/2 such that interchanging X and Y produces A* and B* as shown 
in Figure 3.1.

A* = A-X+Y 

B* = B-Y+X

Figure 3.1: Interchanging sets X and Y between two subsets A and B.
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However, the problem is to identify X and Y from A and B without having to consider 

all possible choices.

The process to identify X and Y is described below: 

For each a e A, we define an external cost Ea by

E =a / -; av 
yeB

and an internal cost by

a ' -> ax. 
xeA

Similarly, for each be B, we define an external cost Ef, by

^bx 

xeA

and an internal cost by

'» = £ by
V€fi

Let the difference between external and internal costs be

Dz = Ez - Iz for all z e G
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It is stated that by considering any a G A, b e B, if a and b are interchanged, then the 

gain (i.e. the reduction in cost) is precisely

Da + Db - 2Cab

This can easily be seen as follows:

Let t be the total cost for all connections between A and B that do not involve a or b. 

Then the external cost K is

K = t + Ea + E, - Cab

Exchange a and b; let K 1 be the new cost. We obtain

K" = t + Ia + Ib + Cab

Therefore,

Gain = old cost - new cost 
= K- K 1

= Ea + Eb + Ia + Ib - Cab - Cab 

= Da + Db - 2Cab

This is illustrated in the example given below:

Example
Suppose we have a graph with 18 vertices, whose initial arbitrary split can be seen in 

Figure 3.2, each subset containing 9 vertices. If we assume that each edge carries a cost 

of 1, then the external cost (i.e number of edges shared) between A and B is 6.
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A = {1,5, 6,7, 8,9, 10, 11, 12} 

B = {2, 3,4, 13, 14, 15, 16, 17, 18}

Figure 3.2: Example of graph with initial arbitrary split

If vertices numbered 2 and 8 are interchanged then calulating 

E2 = 2 I2 = 1 So, D2 = 2-1 = 1

and E8 = 2 

Hence, using

I8 = 2

Gain = D2 + D8 - 
=1+0-0

= 1

So, Do = 2-2 = 0

Therefore, there is a gain i.e reduction in cost of 1 by interchanging vertices numbered 

2 and 8. This can be seen in figure 3.3, where the vertices have been swapped and we 

can see that the number of edges shared by subsets A and B is now 5, i.e. a reduction 

in cost of 1 from the split shown in Figure 3.2
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A= {1,2,5,6,7,9, 10, 11, 12} 

B = {3, 4, 8, 13, 14, 15, 16, 17, 18}

Chapter 3

Figure 3.3: A reduction in cost of 1 by interchanging vertices 2 and 8

The algorithm proceeds as follows:

1 . Compute the D values for all vertices of the graph.

2. Choose a; e A, bj e B such that

gl = Dai + Dbj - 2CaibJ 

is maximum. 

a; and bj correspond to the largest possible gain from a single interchange.

3. aj and bj are set aside temporarily, and are called a, and b! respectively.

4. Recalculate the D values for the vertices of A - 'I a! }• and for B - \ b { 

by using :
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Dx ' = Dx 4- 2Cxai - 2CxbJ A - ^ a, !>

= Dy + 2Cybl - 2Cyai B -

These expressions can be easily verified:

The edge connecting vertices x and a; is counted as internal in Dx . It is counted as being 

external in Dx ', therefore Cxai must be added twice to make this correct. 

Similarly, Cxbj must be subtracted twice to convert the edge joining x and bj from external 

to internal.

5. The second step is now repeated by choosing a^b^ from A - •{ a. { I and 

B - \ bj }• such that :
82 = Da2 ' + Dbz 1 - 2Ca2|b2| is maximum

(aj and bj are not considered in this choice)

Therefore, g2 is the additional gain when the vertices a2 ' and b2 ' are interchanged as

well as having exchanged aj and bj.

This additional gain is maximum, given the previous choices.

6. 82' and b2 ' are set aside and the algorithm continues until all the vertices are 

exhausted, identifying (a3 ',b3),....(an ,bn l ) and the corresponding maximum gains g3 ,

As each pair (a',b') is identified, it is removed from contention from further choices. 

Therefore, the size of the subsets decrease by one each time a pair (a',b') is chosen.

If X = a,', a, 1 , ..... aj, 

and Y = b, 1 , b, 1 ,...., bj
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then the decrease in cost when sets X and Y are interchanged is

Cost = gl + g2 + ..... + gn . 

Of course, if every pair of elements were swapped then the cost would be 0 i.e.

n

Cost =
A 1

Obviously, some of the gj's are negative because by swapping certain vertices can 

increase the cost. i.e. a reduction in cost of -2 means that there is an extra cost of 2.

7. kbest is chosen to maximise the partial sum :

kbest

E r* O ~~ I •*• 
°i

If G > 0, then a reduction in cost of value G can be made by interchanging the sets X 

and Y.

8. When this is done, the resulting partition is treated as the initial partition and the 

algorithm is repeated from Step 1.

If G = 0 (i.e. not worthwhile to make any more swaps), then we have arrived at a locally 

optimum partition.

Figure 3.4 shows a flow-chart for the algorithm described above.
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Compute D values for A and B

a 4- 1

Act <— A, Bet <— B

Choose ^ e aa, bj e B a such that 

ga = DU + Dbj - 2Caibj is maximum

<- 

i «- Aa

B a-t- 1

Isa=n ?
No

Yes

a
Update the D values 

for Aa, Ba

Choose kbest to maximise

kbest

Yes
Is G > 0 ?

No

move a, 1 ,....^^, 1 to B 

move b,',....,bkbest ' to A

Figure 3.4: Flow chart showing steps of recursive clustering method
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For example, using the graph which contains 18 vertices that is given in Figure 3.2

i

1

2

3

4

5

6

7

8

9

a. 1

2

12

11

7

10

6

1

5

9

b, j

8

3

4

13

16

17

14

18

15

gi

1

2

-1

_2

-1

-1

1

-1

0

G=Ig,

1

3

2

0

-1

-2

-1

-2

-2

kbest

1

2

2

2

2

2

2

2

2

Table 3.1: Table showing best interchanges

As we can see from Table 3.1, the value of G, which means a reduction in cost of 3, it 

at its highest when i = 2, therefore kbest = 2. Hence, for this particular example, the 

subsets X and Y contain the following vertices :

X = 8, 3 

Y = 2, 12
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And these two subsets are interchanged between A and B which gives us the partitions:

A= {1, 5, 6,7, 9, 10, 11, 8, 3}

B = {4, 13, 14, 15, 16, 17, 18, 2, 12}

The resulting partition can be seen in Figure 3.5:

A= {1,2,3,5,6,7,9, 10, 11}

B = [4, 13, 16, 8, 14, 17, 12, 15, 18}

Figure 3.5: Resulting partition

If the algorithm is run again, then the value of G is equal to 0 since the partition shown 

in Figure 3.5 is optimal and a smaller cost could not be found.

3.2.2 Analysis of Method

Given such problems as above, one approach to solve these problems is to find the best
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exchange involving, say, p pairs of vertices, for some p that has been specified in

advance. By using a small value of P, the difficulty that is met is to identify good
exchanges, but as p increases, the computational effort required grows rapidly.

The Kerninghan-Lin method sequentially finds an approximation to the best exchange of

P pairs. To make the improvement as large as possible, p is chosen and is not specified
in advance.

Since a sequence of gains gi5 i = 1,..., n is constructed and the 'maximum' partial sum

is found, the process does not terminate immediately if any gs is negative. Therefore, the

process can sequentially identify sets for which the exchange of only a few vertices

would actually increase the cost, while the interchange of the entire sets produces a net

gain.

3.2.3 Running Time of The Algorithm

The operations involved in making one cycle of identification (aj, b, 1 ),...,^ 1 , bj) and 

the selection of the subsets X and Y that are to be exchanged can be defined as a 'pass'. 
The total time taken to make a pass can be recalculated as follows:

The initial calculation of the D values is an n2 procedure, because for each vertex of G, 
all other vertices of G have also to be considered.
To update the values of D, the time required is proportional to the number of values that 
need to be updated. Therefore, the total updating time in one pass grows as

(n - 1) + (n - 2) + ......+ 2 + 1

which is proportional to n2 .

3.3 Using Recursive Clustering to Partition Unstructured Meshes.

In the above section, the recursive clustering technique was described for partitioning 

graphs. However, we want to be able to partition unstructured meshes so we need to be 

able to view an unstructured mesh as a graph.
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Since elements of the mesh communicate via shared nodes, then the cost between 
submeshes depends on the number of nodes shared by these two submeshes.

The unstructured mesh can be viewed as a Task Interaction Graph (TIG). The vertices 
of the TIG represent the elements of the mesh and the edges represent communication 
requirements between elements with edge-weights reflecting the relative amounts of 
communication involved.

This is demonstrated using the simple mesh shown in Figure 3.6. This can be transformed 
into a Task Interaction graph which can be seen in Figure 3.7.

X
X

3/ 
/*

/8

Figure 3.6: Simple mesh containing 8 elements
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Figure 3.7: Task Interaction Graph

The information of the Task Interaction Graph can be stored in matrix form where the 

number of rows and columns equals the number of elements. For example, the TIG 

shown in Figure 3.7 could be stored as the following matrix:

[02101000 

20212110 

12021110 

01201121 

12110210 

01112021 

01121202 

00010120
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In order to find the amounts of data communication between two elements, for example, 

elements numbered 3 and 4, we can look up row 3, column 4 in the above matrix and 

we can see that the amount of data communication between these two elements is 2. i.e. 
they share 2 nodes.

3.4 Cost Function

An assumption that is made throughout this thesis is that the amount of data 

communiated via each node is homogeneous.

The cost function in our recursive clustering algorithm is slightly different to the one 

described for the Kerninghan-Lin algorithm.

The cost function is calculated by counting the number of nodes shared by the two 

submeshes.

If a mesh M with n elements has ben split into two submeshes A and B. We have a 

matrix C(a,b) = 1 if node a e A is the same node as node b e B, else C(a,b) = 0. 

Therefore,

n

Cost = £ C(a.Jb)
1=1

This is illustrated in the example given in Figure 3.8. Looking at Figure 3.8(a), we can 

see that eight nodes are being shared between the two submeshes, therefore the 

communication cost between the two is equal to eight. However, if elements numbered 

2 and 3 are swapped, then by looking at Figure 3.8(b), we can see that now only six 

nodes are being shared by the two submeshes. Hence, the communication cost has been 

reduced by two from eight to six. Therefore, it would be advantageous to implement this 

swap .
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A

\/\
\/\\/\

\/\

\/\ /\/
\

\/

a) Cost=8 b) Cost=6

Figure 3.8: An example of the local cost function used in the

recursive clustering method

3.5 The Algorithm

The recursive clustering algorithm proceeds as follows :

1. Arbitrarily assign each element to one of two clusters A and B, such that there is an 

approximately equal number of element on each.

2. Evaluate the communication cost of this partition and find which pairs of elements 

when swapped give the maximum reduction in costs. (This is done as described for the 

Kerninghan-Lin method).

3. Temporarily removing the previously swapped pair, find the next best pair and 

continue until no more pairs remain.

4. From the set of all swaps, find the subset which minimises the communication costs. 

Provided this reduces the cost, make the swap.

The procedure is repeated in a recursive manner, so that we obtain 2n partitions.

page 73



_______ ______________Chapter 3

When applied to the simple problem shown in Figure 3.9(a), the division into four 

domains is straightforward and can be seen in Figure 3.9(b). Using another simple 

example shown in Figure 3.10(a), the division into four and eight can be seen in Figure 

3.10(b) and Figure 3.10(c).

It appears that the recursive clustering method works well on a variety of simple meshes 

and that the partitions obtained are well-clustered.

Figure 3.9(a): Unpartitioned mesh
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Figure 3.9(b): Decomposition into four
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Figure 3.10(a): Unpartitioned mesh

7XX7X

7XX/X

X/X/X

X/XZX

Figure 3.10(b): Decomposition into four
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/l/l/l/l
ZZZ

ZZZ

77

ZZ
ZZzz

zz
zz

zzz

Figure 3.10(c): Decomposition into eight
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However, the recursive clustering method does have its limitations.

1. The mesh can only be partitioned into 2" sub-meshes.

2. Each split, even if perfect (i.e. optimal) does not imply an overall optimal solution.

3. The processor topology is not taken into account.

4. The optimisation procedure tends to get caught in local minima.

We have attempted to overcome some of these limitations and Chapter 4 describes the 

modifications that we have made to the standard recursive clustering.
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Chapter 4 
Extension of the Recursive Clustering Algorithm
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4.1 Introduction
The examples demonstrated in Chapter 3 show that the recursive clustering method can 

perform well on a variety of simple meshes and that the partitions obtained are 

adequately clustered. Despite its limitations (some of which are shared by other 

approaches anyway) it seems to have the potential to be very effective at mesh 

decomposition with minimal inter-processor communication. In this chapter, we describe 

modifications to the standard recursive clustering algorithm to provide a more flexible 

and robust mesh decomposition software tool.

4.2 Eliminating Constraint of 2n sub-meshes.
As mentioned in the previous chapter, the recursive clustering algorithm, because of its 

recursive nature, is limited to splits of 2n clusters. Since we only obtain 2" sub-meshes, 

we can only map onto a multi-processor system with 2" processors, but for our purposes 

this is a severe limitation, since we want to be able to map onto any number of 

processors. However, it is a straightforward matter to eliminate this constraint of splitting 

into 2" sub-meshes and obtaining k sub-meshes.. The solution to this limitation is to use 

an iterative technique for any number of processors. The essential idea is to start with an 

arbitrary split into k sub-meshes with equal load. Then, every pair of sub-meshes is 

operated on to minimise the communication costs between the pair as in the conventional 

recursive clustering algorithm. We shall now call this algorithm the iterative clustering 

algorithm.
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4.3 Local Minima Trap
Unfortunately, as with the recursive clustering algorithm, this method taking any number 
of processors into account is still susceptible to local minima trap. 
There are two types of local minima traps which are described below:

4.3.1 Type 1
This is the standard local minima trap i.e the method fails to find a minima of the given 
objective function and gets stuck in local optima.

Local optima by R.C

Figure 4.1: Local minima trap

4.3.2 Type 2
The other type of local minima trap is that the method uses a pairwise optimisation 
technique. Even if the method finds a global minimum at each stage, the solution found 

will not be a global minimum.
For example, looking at the simple mesh shown in Figure 4.2(a), if we wanted to 
partition this mesh into five, the minimum cost solution would be 12 and an optimum 
result can be seen in Figure 4.2(b). However, when using the method above, the result 
of partitioning into five can be seen in Figure 4.2(c). At this point the sub-meshes are 
allocated onto any processor. The cost of this split is 15. By looking at this split, we can
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see that the elements that have been assigned to processor 3 are not all connected (even 

though sometimes a disconnected sub-domain is more desirable, in this example it is not). 

It finds the local minima between the pair but does not find an overall global minimum. 

Unfortunately, it is the optimisation of the local cost measure using the swapping strategy 

that leads to the undesirable disconnected domains in Figure 4.2(c). For example, the 

number of nodes shared by processor 3 and 4 is 3, and hence the cost between these two 

is 3. An optimum cost between two processors for this particular mesh is 3. When the 

algorithm tries to optimise the cost between processors 3 and 4 it does not take into 

account the fact that processor 3 also shares nodes with processor 5. Since the cost 

between processors 3 and 4 is already 3, the algorithm will not be able to overcome the 

problem of the disconnected sub-domain because it has no way of knowing how the other 

sub-meshes are connected.

Since the initial partition into k sub-meshes is arbitrary, the resulting sub-meshes obtained 

obviously depends on the starting sub-meshes. By choosing good starting sub-meshes, it 

may make the probability of an optimal solution higher, although this tendency is very 

difficult to evaluate. Another reason for choosing good starting sub-meshes is that is can 

reduce the amount of work required to make the system pairwise optimal.
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a) Simple mesh

b) Optimal solution cost=12

Processor 1 Processor 2 Processor 4 Processor 5

Processor 3

c) Solution using Iterative Clustering with random initial partition, cost=15

Figure 4.2: Limitation of the iterative clustering algorithm

4.3.3 Renumbering Elements
One technique that can be used to create good starting sub-meshes is to renumber the 

elements. With the iterative clustering algorithm, the initial split is arbitrary and if we 

have a mesh with n elements and we want to split into k sub-meshes, then elements

page 83



________^^ ______________________Chapter 4

numbered 7 to k/n are set aside for one sub-mesh, elements numbered k/n+l to 2k/n are 

set aside for another sub-mesh, and so on.

Figure 4.3(a) shows a simple example with only 16 elements and the figure shows the 

elements numbered arbitrarily. Say, for example, we wish to partition this mesh into two, 

elements numbered 1 to 8 are in one sub-mesh and elements numbered 9 to 16 in the 

other. Figure 4.3(b) shows the initial split into two.

13

14

15

16

12

11

10

Figure 4.3(a): Simple mesh with random element numbering

Proceeding with the algorithm, we identify two elements a[i] and b[j], one from the sub- 

mesh A and the other from sub-mesh B. These two elements when interchanged produce 

the largest possible reduction in cost. The elements a[i] and b[j] are temporarily set aside, 

and the algorithm proceeds to find the next two elements from the remaining sub-meshes 

that again reduce the cost the most. This is continued until all the elements are exhausted. 

Table 4.2 shows the elements that have been chosen from each sub-mesh for each step.
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Sub-mesh A Sub-mesh B Sub-mesh A

8

Figure 4.3(b): Simple mesh split into two sub-domains

a[i]

4

3

2

1

8

7

5

6

b[j]

16

12

9

11

10

15

13

14

MaxG

-2

-2

-2

6

-2

1

-2

6

SumG

-2

-4

-6

0

-2

-1

-3

3

BigG

-2

-2

-2

0

0

0

0

3

kbest

1

1

1

4

4

4

4

8

Table 4.1: Table to show the best pairs to be swapped

KEY:
a[i] and b[j] : Elements that when swapped give the largest reduction in cost.

MaxG : The reduction (or increase) in cost when elements a[i] and b[j] are swapped.

SumG : The reduction in cost so far when k elements have been swapped.

BigG : The best reduction in cost so far.

Kbest : The number of pairs of elements in the sub-meshes that need to be swapped.
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We can see by looking at Table 4.1 that the number of pairs of elements that need to be 

swapped is 8. Since we only have eight pairs of elements that are considered for 

swapping, it is obvious that all pairs of elements have been swapped. So all the elements 

that were in sub-mesh A are now in sub-mesh B, and all the elements that were in sub- 

mesh B are now in sub-mesh A. Figure 4.4 illustrates the elements that were removed 

for each step.

(a) Step 1 (b) Step 2

.13

14
15

(e) Step 5

(c) Step 3

B A

.13

15

10

(d) Step 4

B

(f) Step 6

B B

(f) Step 7 (g) Step 8 
Figure 4.4: Illustration of elements that were removed at each step.
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Figure 4.5 shows the resultant sub-meshes after the swapping has been made. Despite the 

fact that eight swaps have been made, it is clear that the algorithm has made no 

difference whatsoever to the cost between the sub-meshes.

Sub-mesh B Sub-mesh A Sub-mesh B

6

8

Figure 4.5: Sub-meshes after swapping

Figure 4.3 shows one example with the elements numbered randomly. Suppose we take 

the same mesh and number the elements differently to the way they are numbered in 

Figure 4.3. The element numbers can be seen in Figure 4.6(a). The initial arbitrary 

partition can be seen in figure 4.6(b), where the shaded elements are in sub-mesh A and 

the unshaded elements in sub-mesh B. We then continue with the algorithm until all pairs 

of elements are considered for swapping. The results can be seen in Figure 4.6(c) and we 

can see that an optimum cost of 3 between the two-submeshes has been found, with no 

disconnected sub-domains.

12

14

15

B

1 D

7

16 1 1

Fig 4.6(a): Simple mesh with numbered elements
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12 11

14

15

10 13

16

Figure 4.6(b): Initial arbitrary split

12

1 5

8

10 13
16 11

Figure 4.6(c): Final split, cost=3

Using the simple mesh shown in Figures 4.4(a) and 4.6(a) with two different sets of 

element numbers, it is obvious that the element numbers can be important. If we number 

the elements in such a way so that the starting partitions are fairly well connected, then 

we might be able to overcome the problem of obtaining final sub-meshes which are 

disconnected as shown in Figure 4.4(c). We looked at various techniques that can be used 

to renumber the elements and the one that we found to be most satisfactory is the Cuthill- 

McKee algorithm [CM69].

4.3.4 Cuthill-Mckee Algorithm

The Cuthill-McKee method provides a simple scheme for renumbering elements [CM69]. 

This algorithm was developed to number nodes in order to reduce the bandwidth of 

sparse symmetric matrices [AM65]. Our investigations show that it is also reliable for
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renumbering elements since we achieve good starting partitions when the elements are 
renumbered in this way.

The renumbering scheme is given below :

1. Choose an element to be relabelled 1. This element should be located at the 

extremity of the mesh and should, if possible, have few connections with other 

elements.

2. The elements which share a node ( i.e those which are connected) with this 

element number 1 are relabelled 2,3, etc,, in the order of their increasing degree. 

(The degree of an element is the number of elements which share a node with this 

element).

3. The procedure is repeated by relabelling elements which are connected to element 

number 2 and which have not previously been relabelled.

4. The above procedure is repeated for each of the new element numbered 3,4 etc., 

until the renumbering is complete.

Figure 4.7(a): Mesh with original element numbers

The algorithm is applied to the simple mesh given in Figure 4.7(a), which is the same 

as the mesh shown in Figure 4.2(a). The element numbers that were used to obtain the 

sub-domains shown in Figure 4.2(c) can also be seen in Figure 4.7(a). The renumbering 

will yield the mesh with numbered elements shown in Figure 4.7(b). The element which 

has been relabelled 1 was previously element number 6 since it is one element which has 

fewer connections. Table 4.2 shows an element connection lists which can easily be
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constructed. The Cuthill-McKee algorithm may be more easily implemented by referring 

to such an element connection list. Consider the renumbering of elements using the 

information presented in Table 4.2 and starting with element number 6 since this element 

has fewer connections. By referring to row 6 of the connection list it is apparent that 

elements 3, 13 and 22 need to be renumbered 2, 3 and 4. Element numbers 3 and 22 

should be renumbered first since both these elements have fewer connections than 

element number 13. Since it makes no difference which one of these two elements is 

renumbered first, the choice is arbitrary, hence we may renumber element number 3 

before element number 22 . An examination of row 3 show that elements numbered 7,10 

and 17 should be renumbered 4,5 and 6. According to the number of connections to 

element number 3, the first element that should be renumbered is element number 10.

Element

1

2

3 

4 

5 

6 

7

8 

9 

10 

11 

12

13 

14

No of Connections

6 

9

6 

6

7 

3 

9

9

9 

6

7 

9

7 

9

Connection List

4,15,30,31,35,38 

5,12,16,18,24,25,29,32,39

6,7,10,13,17,22 

1,15,30,31,35,38 

2,16,20,24,25,32,39 

3,13,22 

3,8,10,13,17,21,22,23,37

7,11,12,17,21,23,29,33,37 

14,19,26,27,30,31,34,36,40 

3,7,13,17,22,37 

8,12,18,21,29,33,37 

2,8,11,18,21,25,29,32,33

3,6,7,10,17,22,23 

14,19,26,27,30,31,34,36,40

etc.
Table 4.2: Connectivity list for mesh shown in Figure 5.7(a)
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7
1 1

8

15

12

1 9

16

23 2B 31 35 38

3 9/

/ /36

Figure 4.7(b): Cuthill-McKee renumbering

We now apply the iterative clustering algorithm to the mesh shown in Figure 4.7(a). If 

we choose to partition this mesh into five then the result can be seen in Figure 4.7(c). We 

can see by looking at Figure 4.7(c) that by renumbering the elements before applying the 

iterative clustering algorithm, we generate an optimum decomposition where a minimum 

cost of 12 is achieved as opposed to a cost of 15 with the decomposition of the same 

mesh with random element numbering as shown in Figure 4.2(c)

Figure 4.7(c): Split into five using renumbered elements, cost=12

Obviously, this is a very simple mesh to demonstrate the effectiveness of renumbering 

elements. Due to its rectangular shape, the renumbering scheme will work very well for 

any mesh of this shape therefore it is important to demonstrate the effectiveness of the 

algorithm on meshes without a rectangular-based shape. Figure 4.8(a) shows a Y-shaped 

mesh which has been partitioned into three sub-domains and the decomposed mesh is
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shown in Figure 4.8(b). Another example is shown in Figure 4.9(a) and this cross-shaped 

mesh has been decomposed into four sub-domains which is shown in Figure 4.9(b). It can 

be seen in both Figures 4.8(b) and 4.9(b) that the sub-domains achieved are well- 

clustered sub-domains with fairly low costs between each pair of sub-domains.

Figure 4.8(a): Y-shaped mesh.

Figure 4.8(b): Y-shaped mesh split into three.
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7777

Figure 4.9(a): Cross-shaped mesh.

zzzz
7777

7777

ZZZZZ
ZZZZZZ
ZZZZZ
ZZZZZ

Figure 4.9(b): Cross-shaped mesh split into four.
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4.4 Specifying Processor Topology
Another feature required in the iterative clustering method is the influence of the 

processor topology on the partition calculation (this is true for other methods too). For 

the recursive clustering method, the problem is not so acute when mapping onto a 

hypercube topology due to the high connectivity of the processor network, but when we 

have modified this to account for any number of processors, it doesn't take into account 

the processor topology at all. Therefore, a version is required which will account explicity 

for a given processor topology.

One way of modifying the iterative clustering method to account for the processor 

topology is to exploit the flexibility of the method by changing the cost function in the 

optimisation procedure. As we recall from Chapter 3, the cost between two sub-meshes 

is the number of nodes they shared.

The simplest function to minimise is the total inter processor distance travelled over the 

topology which enables all relevant communicaton to take place. Let's take the simple 

mesh illustrated in Figure 4.10(a) and suppose the processor topology that we wanted to 

map this mesh onto is configured as a simple chain of five processors as in Figure 

4.10(b). Obviously we would not want an element on processor 1 to have its neighbour 

on processor 5 as they would have to communicate via 4 other processors. The mesh 

illustrated in Figure 4.10(a) shows a simple 40 element mesh together with an 

assignement of element numbers. The element numbers have been randomly generated 

and we assign elements numbered 1 to 8 to the first processor, elements numbered 9-16 

to the second, etc. The unmodified cost function is based upon the number of shared 

nodes and hence takes no account of the location of neighbouring elements. In contrast 

the modified cost function contains a distance measure of communication cost which 

becomes part of the optimisation procedure.

Figure 4.10(a): Simple 40 element mesh.
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Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

Figure 4.10(b): Processor pipeline.

Suppose an element on processor 1 shares a node with an element on processor 5, then 

the cost of this node is now 4 (not 1) since it has to be communicated via 4 other 

processors. An example of such a pair of elements is shown in Figure 4.10(c) which are 

two elements taken from the mesh shown in Figure 4.10(a). Since element 4 is on 

processor 1 and element 38 is on processor 5, they have to communicate via 4 processors 

and they share 2 nodes; we therefore assign each node a cost of 4. The cost of each node 

in the mesh is calculated and summed to give what we shall call the global cost.

Cost between element 4 and 

element 38 = 2 x 4 = 8

Figure 4.10(c): Two elements taken from mesh shown in Figure 4.10(a).

The basis of this global cost is to force elements to be on the same or neighbouring 

processors. If two neighbouring elements are on different processors which are some 

distance away, then it obviously makes the value of the global cost much higher. 

However, if one of the elements was moved to the same processor as its neighbour, then 

the global cost is greatly reduced. The global cost now reflects the processor topology 

and we proceed with a standard minimisation procedure. If we use the mesh given in 

Figure 4.10(a), then we can see by looking at Figure 4.10(d) that by using this global
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cost method, we generate an optimum decomposition (without renumbering the elements 

first) where all neighbouring elements are on the same or neighbouring processors and 

the minimum cost of 12 is achieved.

Figure 4.10(d): Split into 5 using the global cost method, cost=12.

zzzzZ//Z

zz/zzzzz
zz/z

Figure 4.11(a): Original mesh.
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Figure 4.11 (a) shows a simple example of a geometry that has a key feature of internal 

flows (i.e. the external boundary is much more complex than in external flows). If we 

split this mesh into five using the iterative clustering technique, a total communication 

cost of 29 (see Table 4.4) is achieved. The sub-domains can be seen in Figure 4.11(c) 

together with a processor topology that would be required for nearest neighbour 

communications. Obviously, this is a very simple mesh to use as an example and the 

processor connections required is not too bad, but if larger meshes were partitioned using 

the iterative clustering method, then the processor topologies required would be much 

more complex. This would be a severe limitation since the cheaper multi-processor 

systems don't have such flexibility and are limited to the number of connections they can 

have.

Say, for example, we have a simple processor topology with a pipeline of 5 processors. 

If we partition the same mesh into five using the global cost method and taking this 

processor topology into account, then the sub-meshes obtained can be seen in Figure 

4.1 l(b). Looking at this figure, we can see that all neighbouring elements are on the same 

or neighbouring processors. Table 4.3 gives a breakdown of the communication costs 

between every pair of processors and we can see that the total communication cost is 

now 34. Even though this cost is slightly higher than with the iterative clustering 

technique, it has used a simple processor topology.

If we now take the sub-domains obtained when using the iterative clustering technique 

and map them onto the chain of 5 processors, then by looking at Table 4.5, we see that 

the cost has now increased to 40. This is fairly high compared to the total cost achieved 

using the global cost method, and there is even a node being shared by processor 1 and 

5, which means that two processors have to communicate via four other processors, and 

hence adds a cost of 4 to the total communication cost.
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Pairs of Processors Cost

1 and 2 5

2 and 3 12

3 and 4 10

4 and 5 7

Total 34

Table 4.3: Communication costs between processors when using global cost method.

Pairs of Processors

1 and 2

1 and 5

2 and 3

2 and 5

3 and 4

3 and 5

4 and 5

Total

Table 4.4: Communication costs

into account.

Cost

5

1

9

2

5

4

3

29

between processors not taking processor topology

page 98
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Pairs of Processors Shared nodes X Distance travelled

= Cost

1
1
2

2

3

3

4

and 2

and 5

and 3

and 5

and 4

and 5

and 5

Total

5 X 1

1 X4

9X 1

2X3

5X 1

4X2

3X1

= 5

= 4

= 9

= 6

= 5

= 8

= 3

40

Table 4.5: Costs achieved using the iterative clustering method and mapping onto 
a pipeline of processors. (Having not taken processor topology into 

account).
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Processor Topology

1 ? 3 4 5

Figure 4.11(b): Mapping the cross-shaped mesh onto a chain of 5 processors.
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1

Processor Topology :

Figure 4.1 l(c): Partition of cross-shaped mesh into five not taking processor

topology into account.
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4.5 The Algorithm
In this chapter, we have shown how the iterative clustering method has been modified 

to cater for our needs, and have also shown how we have overcome some of the 

problems that we encountered. In this section, the algorithm used is described. We have 

been working with an unoptimised proto-type code which is not intended for practical use 

and was just a development tool. Figure 4.12 shows the flow chart of the routines called 

within this algorithm. An explanation of each routine called is given in sections 4.5.1 to 

4.5A

Input

Form clusters

I
Swapset

1
Findg

1
Output 
Results

Figure 4.12: Flow chart showing routines called within the algorithm.
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4.5.1 Routine "Input"

The purpose of this routine is to enter all the relevant data about the mesh.

Reads the data from <filename>.dat

<filename>.dat contains information about the nodes of each element. The first line gives

the total number of elements and each line then on gives the node numbers for each

element.

e.g. for the simple mesh shown in Figure 4.13, <filenamexdat would contain the

following data:

4
1 2 4
245
235
563

Node number

Element number
56

Figure 4.13: Simple 4 element mesh.

The first line tells us that there are 4 elements in the mesh. The second line corresponds 

to element number 1, so we can see that the node numbers for this element is 1 2 4. The 

third line corresponds to element number 2 and so on.

The nodal data is put into a one dimensional array mesh, where maxnode (the maximum 

number of nodes per element) columns are assigned to each element. The number of 

nodes per element should not be equal to or greater than maxnode, and the rest of the 

columns are filled with zeros. For the simple mesh given in Figure 4.13, the array mesh 

would hold the following data (where maxnode=5):

[1,2,4,0,0,2,4,5,0,0,2,3,5,0,0,5,6,3,0,0......]

Columns 1 to 3 represent the nodes of element number 1 , columns 6 to 8 represent the 

nodes of element number 2 and so on.
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4.5.2 Routine "Form Clusters"

In this routine the number of processors is entered and the value is assigned to the 

variable ntransp,

It then allocates sets of elements to processors and the data is held in records 

sett[i].elemts[j], where i is the processor number and j is theyf/i element in processor i. 

For example using the mesh in Figure 4.13 again,

sett[l].elemts[l]=\\ 

sett[l].elemts[2]=2\ 

sett[l].elemts[3]=3', 

sett[2].elemts[l]=4\ 

sett[2].elemts[2]=5\ 

sett[l].elemts[3]=6; 

... and so on

Loop over processors for all pairs of processors and count the node uses for all 

processors and store in the record inter[k].incl[j], where k is the processor number and 

j is the node number. For example, if elements numbers 1 and 4 from the mesh in Figure 

4.13 were assigned to processor 1 and elements numbers 2 and 3 were assigned to 

processor 2 then

inter[l].incl[l]=l\ Node number 1 is used once in processor 1 

inter[l]. incl[2]= 1; 

inter[l]. incl[3]= 1;

inter[2].incl[l]=Q\ Node number 1 is not used in processor 1

inter[2]. incl[2]=2\

inter[2].incl[3]=l;

and so on.
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4.5.3 Routine "Swapset"
This routine finds the best pairs of elements that can be swapped in order to reduce the 

communication costs between a pair of processors.

Reads the shortest distance matrix which gives the shortest path between processors and 

this is held in the variable d[ij], where i and; are processor numbers. For example if we 

have a processor topology as shown in Figure 4.14, then the shortest path matrix is :

0112

1011

1101

2110

where column i and row j correspond to the shortest path between processor i and 

processor;. With the example given, the shortest path between processor 1 and processor 

4 is 2.

Figure 4.14: A simple processor topology.

Loop with every pair of processors and for each loop do:

Find all possible swaps in order of cost reduction by looping n/ntransp (the 

number of elements in each partition) times:

Calculate glocost which is the total communication cost. This is calculated
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by looping over all pairs of processors, checking to see if a particular 

node is shared.If it is shared between processor achip and processor bchip, 

find the shortest path by looking at d[achip,bchip], square this value and 

add it onto glocost.

Call routine "findg", which finds the pair of elements that minimise the 

global cost the most when swapped, (see section 4.5.4)

These two elements, say a and b are passed back to swapset. The variable 

maxG which is the reduction in cost by swapping these two elements, is 

also passed back.

The node usage of these elements are changed. For example, the nodes of 

element a are removed from the node usages of processor achip and added 

onto the node usage of processor bchip. The same is done for element b.

The elements are now swapped by finding the end of the list of elements 

for processor achip. The chosen element a is moved from the list and the 

list is shortened. The other chosen element b is also removed from the list 

of elements of processor bchip and the list is shortened. For example,

Before moving elements : 

Processor achip [1,2,3,4,0,0,...] 

Processor bchip [5,6,7,8,0,0,...]

If elements number 3 is chosen from processor achip and element number 

5 is chosen from processor bchip then the lists will now look like this :

Processor achip [1,2,4,0,5,0,...] 

Processor bchip [6,7,8,0,3,0,...]

We now calculate sumG which is the summation of all maxG so far. 

If this summation is the first or the maximum so far, then bigG = sumG
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and kbest becomes the number of elements that have been considered for 

swapping so far.

We now swap the first kbest pairs of chosen elements and returning all others to 

their original partition sets.

Pointers are calculated for processors achip and bchip to check to see where the 

kbest pairs of elements are in the list. The elements that were last found, which 

are the unrequired swapped elements are returned to their original processor lists. 

The node usages are adjusted as the elements are replaced. The swapped elements 

which we want to remain swapped are now connected fully to the other elements 

in the list.

For example, if our original lists contained eight elements each and originally 

looked liked this

Processor achip [1,2,3,4,5,6,7,8,0] 

Processor bchip [9,10,11,12,13,14,15,16,0]

and after finding eight pairs of elements to swap the lists now look like :

Processor achip [0,12,11,16,9,14,10,13,15] 

Processor bchip [0,1,4,6,3,5,2,7,8]

The pointers are calculated to find the position in the list where elements are to 

remain swapped. In this case, since kbest = 2, the pointer will be at position 7, 

so all elements from position 1 to 6 are to be returned to their original lists. 

This is done by moving the element in position 2 of the first list is moved to 

position 1 of the other list and so on. With the above example, the lists now look 

like
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Processor achip [1,4,6,3,5,2,10,13,15] 

Processor bchip [12,11,16,9,14,10,2,7,8]

As the elements are swapped, the node usages are also adjusted. 

Note that elements numbers 2 and 10 are contained in both lists, but this is taken 

care of when the elements that are to remain swapped are connected to the list by 

being moved up. The lists now look like :

Processor achip [1,4,6,3,5,2,15,13] 

Processor bchip [12,11,16,9,14,10,8,8]

If on the other hand, bigG is negative, i.e. there is no reduction in cost when pairs 

of elements are swapped, then all the elements that have been swapped are 

returned to their original lists.

4.5.4 Routine "Findg"

This routine finds a pair of elements that reduces the overall communication costs the 

most.

Loop over elements in partition achip and for each loop do:

Loop over elements in partition bchip and for each loop do:

Reduce the global cost assuming that element achip[p] is removed. 

Reduce the global cost assuming that element bchipfr] is also removed.

Assuming element achip[p] is added to list bchip, the global cost is 

increased, looking at each node of the element. The same is done assuming 

element bchip[r] is added onto list achip.
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The minimum global cost found is saved as minglob together with the
relevant elements.
MaxG which is the reduction in cost so far is also calculated.

4.6 Test Cases
In this section, we will show some examples of some simple meshes decomposed with 
the iterative clustering method.
Figure 4.15(a) was partitioned into four onto a chain of four processors and the resulting 
split can be seen in Figure 4.15(b). We can see that the algorithm has succeeded to map 
neighbouring elements onto the same or neighbouring processors. None of the elements 
need to communicate via more than one processor.

Figure 4.15(a): Y-shaped mesh.
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Proc 
1

Proc 
2

Proc 
3

Proc 
4

Figure 4.15(b): Y-shaped mesh mapped onto a chain of four processors.

page 110



_ ____ _____________________Chapter 4

So far, only examples of meshes mapped onto a chain of processors have been given. We 

now give an example of a mesh split into five with the processor topology specified in 
Figure 4.16(a).

Figure 4.16(a): Processor topology.

The mesh (which is illustrated in Figure 4.16(b)) was split into five with the above 

processor topology in mind. The sub-meshes obtained can be seen in Figure 4.16(c). 

From the processor topology above, we can see that there are no connections between 

processors 2 and 5, and processors 4 and 3. Looking at the sub-meshes obtained, there 

are no communications between sub-meshes allocated to processors 2 and 5, and 

processors 3 and 4. Again, we see that only neighbouring elements are mapped onto the 

same or neighbouring processors.
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7777
7777

Figure 4.16(b): Cross shaped mesh.

Figure 4.16(c): Cross shaped mesh split into five and mapped onto processor toplogy

shown in Figure 4.16(a).
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4.7 Larger Meshes

So far in this chapter we have shown that the algorithm can work successfully but most 
of the examples used were very simple. In this section the algorithm is applied to real 
life problems.

The mesh shown in Figure 4.17 has 516 elements which is used to simulate the resulting 
convection currents due to a moving lid as shown in Figure 4.18.

VYYVV

Figure 4.17: Mesh with 516 elements.
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Figure 4.18: Flow of vectors due to moving lid.
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The mesh shown in Figure 4.17 was partitioned into 3, 4, 5 and 6 sub-meshes, all being 

mapped onto a chain of processors. The results can be seen in Figure 4.19 and it is clear 

that by using this modified cost function, a reliable decomposition is generated where all 

neighbouring elements are on the same or neighbouring processors.

&AAAA
[ZXYVYWS

Figure 4.19: Mesh partitions for 516 element mesh.
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A mesh containing 3034 elements as shown in Figure 4.20(a) was partitioned into 5 

taking into account a processor topology of a chain of 5 processors. The decomposition 

achieved can be seen in Figure 4.20(b) and again, we can see that this decomposition is 

a reliable one where all neighbouring elements are on the same or neighbouring 
processors.

mmm

Figure 4.20(a): Mesh containing 3034 elements.

Figure 4.20(b): Decomposition of 3034 element mesh into five.
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Another example which is shown in Figure 4.21 is the graph of Great Britain with over 

5000 elements. This mesh was split into four taking into account a processor topology 
of a chain of four processors. We can see that neighbouring elements are placed on the 
same or neighbouring processors. Again, we can see that we have a disconnected sub- 
domain (red area). It seems that the cost along the boundaries of the red and green areas 
are lower than a cost along the boundary if the red area was not disconnected.

However, despite obtaining a reliable decomposition, the time taken to decompose the 

mesh was approximately 15 minutes. It is vitally important that the time taken to 
decompose a mesh is a small fraction of the overall solution time. Although the time 

taken to decompose the 3034 element mesh is not very large, it would increase greatly 
if we were dealing with a mesh containing millions of elements. 

One way to overcome this problem is to reduce the number of elements in the mesh. This 
can be done by grouping together clusters of elements to create what we call 'super- 
elements' and then applying the decomposition algorithm onto this mesh of super- 
elements.

Chapter 5 describes how these super-elements are created and some of our results will 
be demonstrated.

page 116



CNCD00 
•H



Chapter 5

Chapter 5 
Dealing with Large Meshes
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5.1 Introduction

As we have seen in Chapter 4, the clustering method is not suitable for dealing with large 
scale meshes since the calculations often require prodigious amounts of computer power. 
It is important that the time taken to decompose these large meshes must be a small 
proportion of the overall solution time.

This problem can be overcome by creating clusters of the original elements and using 
these to create a reduced network which is homomorphic to the original mesh. These 
clusters will be known as 'super-elements'. By creating these super-elements, we are 
reducing the number of elements in the mesh and hence reducing the computational time 
to decompose the mesh. For example, the mesh in Figure 5.1(a) has 516 elements, but 
after we have clustered the elements to create the super-elements, the mesh now has 64 
super-elements and the mesh can be seen in Figure 5.1(b).
In this chapter, we describe how these super-elements are created and what impact it has 
on the time taken and the decomposition achieved.

W9999999&v/VVVVVVVVvWvVwVvVv

Figure 5.1 (a): Original mesh with 516 elements
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Figure 5.1(b): The same mesh with 64 super-elements

5.2 Creating Super-Elements

Since the super-elements are created in order to speed up the decomposition, it is vitally 
important that the time taken to create these super-elements is very quick. A method that 
we have used to create the super-elements is the graph bisection method which is 
described in section 5.2.1. Obviously, a number of alternative methods can be used to 
create the super-elements. Ideally, they should be connected and compact i.e. have small 
diameters but this is not essential.
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5.2.1 Recursive Graph Bisection

The recursive graph bisection method works as follows:

1. Find two elements (from a set of n elements) which are a maximal or near maximal 
distance away.

2. Assign one of these elements to a set.

3. Find an elements which shares an edge with this element and assign these to the same 
set.

4. Repeat the procedure by finding elements adjacent to the newly assigned elements.

5. Stop when the set contains n/2 elements. The other unassigned elements are assigned 
to the other set.

This algorithm is repeated recursively so as to achieve the required number of super- 
elements. By using the above algorithm, we can illustrate how the super-elements are 
created. Figure 5.1 shows a mesh containing 160 elements and we shall create 32 super- 
elements each containing 5 of the original elements.
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Figure 5.1: Original mesh

Figure 5.2(a): 2 super-elements
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Figure 5.2(b): 4 super-elements
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Figure 5.2(c): 8 super-elements

page 122



Chapter 5

A

f

Z 7
//

Z

Z
ZZ

7

\Z\

ZZ

7
7
Z

Z1ZZZI7
/

Figure 5.2(d): 16 super-elements
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Figure 5.2(e): 32 super-elements
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rigure 5.2(f) shows the mesh now with only 32 super elements.

Figure 5.2(f): Mesh shown with 32 super-elements

5.2.2 Image Network

We now need to form an image network which will hold the details of the cost between
the super-elements. Obviously, the cost between each super-element will be greater than
one since we need to take into account the shared nodes of the original elements since
these are the nodes that will eventually be used.
To illustrate the image network, we shall use a simpler mesh than the cross given above.
We only have to consider the nodes on the boundaries of the super-elements.
Take the mesh shown in Figure 5.3. The same mesh can be seen with its super-elements
in Figure 5.4 with the original nodes on the boundaries clearly visible.
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Figure 5.3: Y shape with original elements

Figure 5.4: Y shape with super-elements shown.
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The nodes of the original elements can be seen in Figure 5.4. Note that only nodes that 

are on the boundaries of the super-elements are shown. There is no need to use the 

internal nodes since they are not included in the cost function. We are only attempting 

to minimise the communication between the boundaries of the super-elements for the 
time being.

From Figure 5.4, we can see that super-elements 1 and 2 share 3 nodes, hence there is 

a communication cost of 3 between these two. Figure 5.5 shows the image network of 

the mesh and each node corresponds to the cost between the two super-elements. Hence 

node 1 corresponds to super-element 1, node 2 corresponds to super-element 2 and the 

edge between the two which has a weight of 3 corresponds to a communication cost of 
3 between the two super-elements. 

Figure 5.5 shows the complete image network for the mesh shown in Figure 5.4.

Figure 5.5: Image network for mesh shown in Figure 5.4

page 126



Chapter 5

The bisection algorithm is then applied to the mesh and the cost between super-elements 

can be found by referring to the image network. Using the example of the cross shown 

in Figure 5.1(a) with 32 super-elements (illustrated in Figure 5.1(f)), the algorithm is 

applied taking into account a processor topology of a chain of 5 as shown in Figure 5.6.

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

Figure 5.6: Processor pipeline

KEY:

Processor 1 

Processor 2

Processor 3

Processor 4

Processor 5

Figure 5.7(a): Decomposition of mesh using super-elements
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Figure 5.7(a) shows the decomposed mesh after the algorithm has been applied. It can 

be seen that the algorithm has made some attempt to obtain a decomposition to map onto 

a chain of 5 processors. Table 5.1 shows the number of nodes that are being shared by 

each pair of processors. From the table we can see that non-neighbouring processors have 

to communicate. For example, processors 1 and 3 have four shared nodes and processors 
3 and 5 have five shared nodes. This communication between non-neighbouring 
processors will incur a large overall communication cost. The reason that we have shared 

nodes between non-neighbouring processors is because of the shape of the super- 

elements. Obviously, they are not always smooth around the edges, and since this is a 

very simple example with not many super-elements, this type of problem cannot be 

avoided at this stage. The boundaries need to be tidied up so that we have less nodes 
being communicated. This is done by looking at the original elements that are on the 

boundaries of the processors and applying the algorithm to these boundary elements.

Pairs of processors Number of shared nodes

1 and 2 

1 and 3 

1 and 4

1 and 5

2 and 3 

2 and 4

2 and 5

3 and 4

3 and 5

4 and 5

6

4

0

0

5

0

0

9

5

5

Table 5.1: Number of shared nodes of every pair of processors for decomposition

shown in Figure 5.7(a)
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Figure 5.7(b): Decomposition after tidying up boundary once

Pairs of processors Number of shared nodes

1 and 2 

1 and 3 

1 and 4

1 and 5

2 and 3 

2 and 4

2 and 5

3 and 4

3 and 5

4 and 5

6

1

0

0

8

0

0

10

0

7

Table 5.2: Number of shared nodes of every pair of processors for decomposition
shown in Figure 5.7(b)
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Having done this to the above example, we can see the results in Figure 5.7(b). It can 

be seen that the decomposition looks much better with very smooth boundaries and that 
nearly all neighbouring elements have been placed on the same or neighbouring 
processors. Table 5.2 shows which processors have to communicate. However, we still 

have one node being shared by non-neighbouring processors, namely processors 1 and 
3. The reason for this is that when we were tidying up the boundaries we were only 
looking at one layer of original elements.

To overcome this problem, we need to iterate the application of the algorithm to the 
original elements on the boundaries until no further changes are made. For this example, 
it only had to be done once again and the decomposition can be seen in Figure 5.7(c). 
This might not be such a problem with very large meshes with small super-elements. 
Looking at Figure 5.7(c) we can now see that all neighbouring elements are mapped onto 
the same or neighbouring processors and this would be a good mapping onto a chain of 

5 processors.
Table 5.3 shows the number of shared nodes for every pair of processors. We can see 
from this table that only neighbouring processors have to communicate.

Figure 5.7(c): Decomposition after tidying up boundary iteratively
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Pairs of processors Number of shared nodes

1 and 2 

1 and 3 

1 and 4

1 and 5

2 and 3 

2 and 4

2 and 5

3 and 4

3 and 5

4 and 5

7

0

0

0

8

0

0

10

0

7

Table 5.3: Number of shared nodes of every pair of processors for decomposition

shown in Figure 5.7(c)

However, for this particular example, using the graph bisection method in a recursive 

way may not be the best way to create the super elements. If we examine the results 

obtained in Figure 5.7(c), we see that processors 1, 2 and 3 have all got 30 of the 

original elements, whereas processors 4 and 5 have 35 original elements. This has 

happened because we were mapping 32 super-elements (each containing five of the 

original elements) onto 5 processors. Six of the super-elements were assigned to 

processors 1, 2 and 3 with seven super-elements being assigned to processors 4 and 5. 

Therefore, load balancing has not been achieved. Even though this is only a small 

problem and the difference in the number of elements is only 5, the problem of load 

balancing would worsen considerably when using larger meshes.
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This problem can easily be overcome by applying the graph bisection in a non-recursive 
manner. The method used is described below:

1. From a set of n elements, find 2 elements which are a maximal or near maximal 
distance away.

2. Create a list where one of these elements is assigned to the top of the list.

3. Repeat the procedure by finding elements adjacent to the newly assigned elements 
adding these elements to the list.

4. Stop when the list contains n elements.

5. The first n/p (p is the number of processors) is assigned to one set, the second n/p 
elements is assigned to another set, and so on, until we obtain p sets each containing 
n/p elements.

6. Repeat for each set until the required number of super-elements is obtained.

This method can be used to create super-elements for any number of processors.

Therefore to summarise, Figure 5.8 shows a flow diagram to illustrate the steps involved 
when creating the super-elements.
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STEP 1 :Create super-elements using a 
Graph Bisection Method.

_V
STEP 2: Apply algorithm to super-elements

V
STEP 3 identify Original elements on the

boundaries and re-apply algorithm
to these elements.

Repeat Step 3 until no 
further changes are made.

Figure 5.8: Flow diagram illustrating creation of super-elements

5.3 Level of Granularity

Now that super-elements can be used to reduce the time taken to decompose the meshes, 

one question that needs to be answered is 'What level of granualarity should be taken ?' 

i.e. How many super-elements should be created and what impact various numbers of 

super-elements have on the time taken and the overall communication costs of the
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decomposition achieved.

The mesh shown in Figure 5.9 will be used as an example and this mesh has 3034
elements.

Figure 5.9: Mesh with 3034 elements.

This mesh was reduced to meshes containing 32, 64, 128, 256 and 512 super-elements 

respectively. These meshes were then decomposed taking into account a processor 

topology of a chain of 4 processors. The decomposition achieved can be seen in Figures 

5.10(a)-5.10(e).
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Figure 5.10(a): Decomposition of 32 super-element mesh

Figure 5.10(b): Decomposition of 64 super-element mesh
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Figure 5.10(c): Decomposition of 126 super-element mesh

Figure 5.10(d): Decomposition of 256 super-element mesh
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Figure 5.10(e): Decomposition of 512 super-element mesh

Figure 5.10(f): Decomposition with no super elements
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Looking at the decompositions achieved we can see that they look very similar but that 

there seems to be two different patterns. For example, Figures 5.10 (a), (c) and (e) are 

simliar and Figures 5.19(b) and (d) are similar to each other. It is possible that the 

problem converges into two different minimas and we can speculate that the reason for 

this will be different starting partitions. However, the size and shape of the super 

elements could also be the cause of this.

However, it is important that we look at the actual communication costs and the time

taken to decompose the mesh.

Table 5.4 shows the number of super-elements used and the communication costs

between each processor and the total communication costs. This can also be seen

graphically in Figure 5.11. We can see that the communication costs do decrease when

we use a larger number of super-elements.

However, Table 5.5 shows the time taken to create the super-elements and the time taken

to decompose the mesh into four using various sizes of super-elements. This can also be

seen graphically in Figure 5.12 and from this graph we can see that the time taken to

decompose the mesh increases exponentially with a larger number of super-elements.
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Communication between pairs of processors

No of super-elements

32

64

128

256

512

No super elements

1 and 2

38

38

35

38

30

27

2 and 3

43

36

36

29

30

30

3 and 4

19

19

19

19

17

17

Total

100

93

90

86

77

77

Table 5.4: Communication costs between processors for different sizes of super- 
elements

No of super-elements

32

64

128

256

512

No super elements

Time taken to partition (s) *

0.8

1.4

11.2

32.3

59.0

>600

Run on a Sun SPARC station 

* Time taken to partition includes time taken to create the super-elements.

Table 5.5: Time taken to partition different sizes of super-elements
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100-

90-
Comm 

cost
80-

70-

32 64 128 256 512
Number of super-elements 

Figure 5.11: Graph showing communication costs against no. of super-elements

Time 

taken to 

decompose 

(sees)

50-

40

30

20-

10-

32 64 128 256 512

Number of super-elements 
Figure 5.12: Graph showing time taken against no. of super-elements.
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From these two graphs we can conclude that it would be best to use a smaller number 

of super-elements, even though the communication costs might be slightly higher. 

However, there will be a huge saving in time taken to achieve the decomposition. Whilst 

saying this, there must be a minimum number of super-elements that can be used. 

Obviously, if the super-elements are too large and there are only a few of them, then it 

will not be possible to take the processor topology into account. Of course, many factors 

need to be taken into account. For example, the shape and size of the mesh used. 

Using the cross shape shown in Figure 5.1, it would be very difficult to map onto the 

topology shown in Figure 5.13 without using at least 32 super-elements.If any less is 

used, then it will not be possible to map onto such a topology without having non- 

neighbouring processors communicating.

Figure 5.13: Processor Topology

The number of super-elements to be used must be decided by the user but care must be 

taken in his choice. The processor topology, along with the size and shape of the mesh 

must be taken into consideration.
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5.4 Conclusion

This chapter has dealt with the creation of super-elements in order to minimise the time 

taken to decompose the meshes. We have shown that by using this method, we can 

generate reliable decompositions with a huge reduction in time. 

However, we have not yet addressed the effectiveness of the parallelisation of the code. 

Chapter 6 shows some more test cases and some results obtained of the parallel 

efficiency using the sub-domain achieved using our decomposition technique.

page 142



Chapter 6

Chapter 6 
Computational Results and Conclusions
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6.1 Introduction

In chapters 4 and 5 we have demonstrated the success of obtaining reliable mesh 

decompositions using the iterative clustering algorithm and also by creating super- 
elements to obtain time-effective sub-meshes. We have not yet demonstrated the 
effectiveness of the parallelisation using the sub-meshes obtained with our algorithm. In 
this chapter some examples showing parallel efficiency will be shown.

6.2 Parallelisation of UIFS

UIFS is a control volume unstructured mesh flow and unstructured stress analysis code 
developed at the University of Greenwich with the intention of modelling metal casting 

and other processes [CHOW93], [CCP93], [CROSS92]. This is a fully unstructured mesh 
2D and 3D code which uses a cell centred Rhie and Chow interpolation [RC82] with a 
pressure correction solution procedure and false time stepping. The procedure for solving 
the discrete equations is iterative using the SIMPLE algorithm. Iterations are repeated 
until changes are small enough to satisfy convergence criteria. Three types of solvers are 
available; Jacobi, Gauss Seidel SOR and the Conjugate Gradient method.

This code has been parallelised using domain decomposition [MKCJ94], [JMCEJ93] with 
explicit message passing in Fortran to fulfil the following objectives:

i) Minimise changes to the original serial code. Ideally the parallel code should produce 
identical results to the serial. This is a necessary requirement for user acceptability.

ii) Minimise visibility of parallel code. The code is under continual development so the 
parallel code should be hidden from the serial code developers and the serial code users.

iii) Maximise parallel efficiency to take full advantage of DM parallel hardware. 
The motivation for parallelisation is to reduce the run time.
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iv) Be portable to a variety of DM MIMD platforms.

v) It should be automatable. Human intervention should be minimised in the 

parallelisation process as in the Computer Aided Parallelisation Tools [JCIL93] used at 

the University of Greenwich.

6.3 Mesh Division

The mesh is split into the required number of domains using the method described in 

Chapter 5, where each node or element is allocated to only one region. Each processor 

works on these core nodes or elements in its own domain. At the edge of a domain, there 

will be a mixed element where the nodes belong to a different domain. So that each 

region has a complete mesh discretisation, halo nodes/elements are added to the domain. 

These are copies of nodes/elements from neighbouring domains as illustrated in Figure 

6.1.

PrcDienn 
Mesh

Aac ^-aic Elements

Figure 6.1 : Halo Elements
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Each processor calculates only the values of variables for points and elements inside its 

own domain, no computation is performed on the haloes. Variable values are swapped 

into the halo from the processors on which the variables are calculated, as shown in 

Figure 6.2. There is an obvious exception however, where data operations are so trivial 

that it is faster to perform the operation locally on the halo than to import the new values 

from a neighbour. Halo values are exchanged between processors as soon as practically 

possible, for example, at each iteration of the solver. This exchange of data between 

processors is synchronised on an odd-even alternate pair basis which allows the exchange 

to be carried out as a parallel process.

Figure 6.2 : Halo swapping scheme.
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Variation between serial and parallel code is sometimes inevitable. Like many CFD 

codes, UIFS builds a system matrix which is solved using a variety of iterative schemes. 

The main change to the serial algorithm is the order of coefficient evaluation within the 

solvers. Using a Jacobi type solver the parallel solution variables remain identical to 

those of the serial code at each step of the solution procedure. It is however impractical, 

if not impossible, to identically parallelise a Gauss-Seidel iterative solver. Such 

algorithms are dependent on the order of evaluation of the coefficients and must be 

modified to achieve a parallel scheme. The resulting parallel algorithm becomes a near 

Gauss-Seidel hybrid of Gauss-Seidel and Jacobi. The results so far have shown that 

variations in the serial and parallel variables and differences in the number of iterations 

required to converge are both minimal.

6.3 Efficiency of Parallel Solution

6.4.1 Simple 2D Problem
The effectiveness of the parallelisation approach is first demonstrated on the simple 2D 

problem. The problem is a simple modification to the moving lid problem which 

produces a flow filled with a number of recirculation zones, as shown in Figure 6.3.

Figure 6.3: Flow vectors due to moving lid
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The mesh contains 516 elements and has been split into 3, 4, 5 and 6 sub-meshes as 

shown in Figure 6.4.

\/w\
&7\7\/

Figure 6.4: Mesh containing 516 elements split into 3, 4, 5 and 6 sub-meshes
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The parallel UIFS code was run on the above problem on an array of T800-20 transputers 

with a 3L FORTRAN compiler, and on a TRANSTECH parallel system where each node 

uses a T800 for communications and an i860 processor for processing. Here the Portland 

FORTRAN compiler is used with the CTOOLSET to handle interprocessor 

communications. Results for parallel efficiencies are shown on 1-6 processors on both 

the transputer and i860 systems in Table 6.1 and Figure 6.5.

The proportion of the mesh decomposition time of the simulation time is approximately 

4% for this particular problem. However, this can vary with different problems sizes.

Parallel Efficiency (%)

No of processors

1

2

3

4

5

6

T800

100

98

97

96

94

90

i860

100

92

81

76

70

66

Table 6.1: Parallel Efficiency for 516 element mesh
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1

T800

Efficiency 70 _

2345 
Number of Processors

6
\

Figure 6.5: Parallel efficiency

In reality the problem is a small one and the efficiencies on the transputer system are 

reasonably consistent with what would be expected from a structured mesh code 

employing otherwise similar solution procedures. It is anticipated [JC91] that as the 

problem size increases, then the efficiency will rise and remain above 90% on transputer 

systems beyond 20-30 processors. The efficiency results for the i860 system is much 

worse - at the 65% level for 6 processors compared with 90% on the transputer system. 

The reason for this degradation in performance is simply a function of the parallel system 

characteristics [GCCHI92]. Although an i860 processor is about 10-15 times faster than 

a T800-20 transputer, the latency of the T800-i860 node is around 10 times that of a 

T800-20 processor. This is due to the interrupt overhead between the i860 and T800
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processors. As such, the interprocessor communication time between the i860 nodes is 

relatively much larger than between T800 nodes and leads to the degradation in parallel 

efficiency. The efficiencies are still consistent with structured mesh codes with otherwise 

similar solution procedures.

6.4.2 Larger meshes

Figure 6.6 shows a solidifying metal problem which has been meshed into 3034 and 

10000 elements as shown in Figure 6.7 and Figure 6.8. Both meshes were partitioned 

using the method described in Chapter 5.

Figure 6.6: Solidifying metal
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Figure 6.7: Mesh containing 3034 elements

Figure 6.8: Mesh containing 10000 elements
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Figure 6.9 is a graph showing parallel efficiency and speed-up using between one and 

twelve processors for both the meshes shown in Figures 6.7 and 6.8. We can see that 

parallel efficiency decreases to 60% if twelve processors are used for the smaller size 

mesh but only decreases to 83% for the larger mesh. Speed up is also very good for the 

larger mesh and increases if more processors are used.

Efficiency 70 J

Mesh Size 

10000 

3034

3 5 7 9 11
Number of i860 Processors

Speed

Figure 6.9: Parallel efficiency and speed-up
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6.5 Conclusions and Further Work

In this thesis we have investigated mapping unstructured meshes onto distributed memory 

parallel architectures. We have discussed various techniques used to solve the mapping 

problem and we conclude that an extension of the recursive clustering method was most 

suitable for our needs. This method was extended so that any number of processors can 

be mapped onto and that the processor topology is also taken into account whilst 

decomposing the meshes. Results have shown that this method can work successfully.

Our preliminary results shown in Figure 6.9 is an early indication that the method is 

scalable but further experiments need to be performed since our experiments have not 

dealt with a parallel machine containing more than twelve processors. 

We need to investigate further the efficiencies and speed-up if very large meshes and a 

large number of processors is used.

Decomposing very large meshes can be very time consuming, so we have developed a 

method to reduce this time. This is done by clustering elements together to form super- 

elements and we have demonstrated that by using this method,the time taken to 

decompose the meshes can be reduced dramatically. Hence, super-elements provide a 

good method of 'speeding-up' domain decomposition algorithms. The unstructured CFD 
codes which have been decomposed using the above methods can be effectively mapped 

onto distributed memory parallel architectures with efficiencies that are equivalent to 

structured mesh codes.

There are many extensions that can be made to the work presented here. The graph 

bisection method may not necessarily be the best method used to create the super- 

elements, therefore other methods will need to be examined. For example, Chris Walshaw 

et al [WCJE94] uses a variant of the Greedy algorithm [FA88] which he uses recursively. 
In addition, the current method we use for boundary refinement may not be the best 

therefore other methods can be investigated.
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The shape, design and properties of the super-elements will be investigated. There are 

many issues that need to be addressed. For example, should the super-elements be 

connected and have small diameters? Should the size of the super-elements be determined 

with respect to the size of the mesh and should their shape be similar to the shape of the 

mesh?

Another important issue is the overall computation time. We have seen that by creating 

super-elements we can reduce the time taken for mesh decomposition but how much time 

should we spend on creating super-elements? Further investigations need to be carried 

out in order to answer these questions. We need to ask ourselves to what extent is mesh 

decomposition important? When solving a real problem on a parallel system, we need to 

know what the difference is in decomposing using a random technique, using a quick and 

dirty method, a fairly good but long method and an exact one. Comparisons of solutions 

obtained and time taken to obtain a solution using different techniques can be made.

The current implementation of our method assumes that all node weights in the task 

graph are equal and that the edge weights are equal. Additionally, the iterative clustering 

method assumes that the computer is homogeneous. Our method can be extended to 

operate on heterogeneous task and processor graphs. With many problems this is not 

always the case. However, we could overcome this problem by taking into account the 

weights of the task at the initial partition stage and also during the optimisation stage.

Currently, our mesh decomposition method used has only been implemented sequentially. 

However, if the mesh decomposition could be done in parallel, this would increase the 

speed-up. The initial partition, which need to be quick and cheap, would have to be done 

sequentially and the optimisation could then be done in parallel. However, only elements 

on the boundaries could be swapped between the processors, hence the final partition will 

not deviate too far from the initial one. Again, we would attempt to ensure load-balancing 

in the initial partition and only swapping of elements would be allowed. Chris Walshaw 

et al [WCJE94] are developing a parallelisable algorithm for partitioning unstructured 

meshes. Their method, encapsulated in a software tool, JOSTLE, uses a combination of 

techniques including the Greedy algorithm to give an initial partition, together with some
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optimisation heuristics, including a localised version of the Kerninghan-Lin algorithm 

[KL70]. However, as mesh and machine sizes grow, the need for parallel mesh 

partitioning becomes increasingly acute, since an O(N) overhead is simply not scalable. 

Developing techniques such as parallel mesh generation should also be taken into 

account. These methods result in meshes which are already distributed among the 

processors of a parallel machine. If this is the case, then it can be very expensive to 

transfer the whole mesh back to a single processor for sequential load-balancing. 

However, if the parallel mesh generation could be done so that load balancing and 

nearest neighbour communication is achieved, then parallel mesh decomposition could 

be applied locally.

The creation of super-elements could also be done in parallel. If the initial partition could 

be done using the original elements of the mesh, then the super-elements could be created 

in parallel and optimisation could be done locally in parallel using the super-elements. 

The tidying up of the boundaries could also be done locally in parallel.

Another idea for creating super-elements is to make use of recursive mesh generation. 

The coarser mesh could be used for the creation of the super-elements and tidying up 

could be done on the more refined mesh. The parallelisation of CFD codes using 

adaptively refined grids also needs to be explored and these require automatic load 

balancing at run-time. After grid-refinement, re-partitioning and re-mapping of the grid 

can be necessary to obtain again a satisfactory load balance. Therefore, this requires fast 

(parallel) mesh partitioning and mapping algorithms acting on the already distributed grid. 

Ideally, these algorithms should take into account the existing mapping of the grid in 

order to avoid excessive data transport during mapping.

The order of the methods used for decomposition is also very important. As mentioned 

previously, the time taken to decompose a mesh should be a fraction of the overall 

solution time. From our experience, the computation time is very large so we would 

suggest that the decomposition algorithm should be one order of magnitude less to be 

sufficient. The decomposition achieved could also be stored and used more than once if 

many runs need to be done.
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Investigations also need to be done on whether the overall solution time is dependent on 

the decompositions. Figures 5.20(a)-(f) shows that the problem can converge into two 

different minimas (these figures have used a different number of super-elements). If we 

had the same number of super-elements and used a different initial partition, then it is 

probable that we would obtain different decompositions. These two decompositions may 

have the same cost or may have different costs therefore experimental work needs to be 

done to see whether or not two decompositions would produce similar characteristics. It 

is likely that the solution would be different.

Finally, the domain decomposition method that has been developed in this thesis is for 

mapping onto message-passing multiprocessors. A network of computers would also be 

appropriate. For this type of machines, the communication of shared data is achieved via 

messages exchanged directly between processors. This requires mapping neighbouring 

elements onto the same or neighbouring processors so as to avoid large latency. However, 

the future of parallel architectures include mesh-connected machines such as a Cray T3D 

or Intel Paragon, which use wormhole routing. This means that a processor can pass a 

message on without interrupting the work it is doing or slowing down the message too 

much. The implication is that a message travelling between two processors far apart has 

hardly any more latency than a message passing between two adjacent processors. If such 

a machine is used, then we wouldn't have to worry too much about mapping 

neighbouring elements onto the same or neighbouring processors. It seems that this type 

of machine is the future of parallel architectures but such machines are extremely 

expensive to purchase. Because of their high costs, not everyone will be able to afford 

such machines and will be using the cheaper message-passing multiprocessors or 

computer networks.

The experience of computing technology has shown that high performance machines that 

were once used by certain specialist only. However, many of these machines are now 

being used by a more general group and are therefore becoming more affordable. It 

would also be a reasonable assumption that this pattern will be repeated for parallel 

machines and there are many computation-intensive applications today for which parallel 

processing makes or will make a significant difference.
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or these two reasons, there will always be a need for domain decomposition algorithms 

which insist on achieving nearest neighbour communication.
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Further Results
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The mesh shown in Figure 6.8 contains 10000 elements and the PARC mesh (supplied
by H.Simon) contains 4320 elements. Both these meshes were partitioned (on a Sun
SPARC station) into 5, 7, 9 and 12 sub-meshes and the sub-meshes were to be mapped
onto a chain of processors.

The 10000 was partitioned using 512 and 256 super-elements and the results can be seen
in Tables 1A and 2A.

The PARC mesh was partitioned using 256 and 128 super-elements and the results can
be seen in Tables 3A and 4A.
The tables show the communication between the processors i.e. the total number of nodes
shared by all processors. The tables also show the time taken to partition the meshes and
the times given include the time taken to produce the super-elements.

No of Processors

5

7

9

12

Communication between 
processors

208

332

448

621

Time taken to 

partition (s)

66.2

89.3

106.7

132.1

Table 1A: Results for 10000 element mesh using 512 
super-elements
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No of Processors

5

7

9

12

Communication between 

processors

219

337

450

633

Time taken to 

partition (s)

39.0

66.2

83.5

112.7

Table 2A: Results for 10000 element mesh using 256 
super-elements

No of Processors

5

7

9

12

Communication between 

processors

71

97

122

161

Time taken to 

partition (s)

37.6

52.9

66.8

88.4

Table 3A: Results for PARC mesh using 256 
super-elements
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No of Processors

5

7

9

12

Communication between 

processors

75

100

132

171

Time taken to 

partition (s)

14.2

22.8

31.1

45.9

Table 4A: Results for PARC mesh using 128 
super-elements

Looking at the above tables, we can see that there is a difference in the total number of 

nodes shared for the same mesh using a different number of super-elements and we can 

see that this varies from 10% to a factor of 2. This difference is relatively small and a 

saving in the time taken to partition the mesh is made compared to partitioning the 

meshes without using super-elements (which were measured in hours!). 

As mentioned in Chapter 6, the graph bisection method may not necessarily be the best 

method used to create the super-elements and other methods need to be investigated. 

This could make a significant difference in the variation of communication costs using 

different number of super-elements.
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