Skip navigation

Insulin-like growth factor I (IGF-I) in a growth-enhanced transgenic (GH-overexpressing) bony fish, the tilapia (Oreochromis niloticus): indication for a higher impact of autocrine/paracrine than of endocrine IGF-I

Insulin-like growth factor I (IGF-I) in a growth-enhanced transgenic (GH-overexpressing) bony fish, the tilapia (Oreochromis niloticus): indication for a higher impact of autocrine/paracrine than of endocrine IGF-I

Eppler, Elizabeth, Caelers, Antje, Shved, Natallia, Hwang, Guylin, Rahman, Azizur M., Maclean, Norman, Zapf, Jürgen and Reinecke, Manfred (2007) Insulin-like growth factor I (IGF-I) in a growth-enhanced transgenic (GH-overexpressing) bony fish, the tilapia (Oreochromis niloticus): indication for a higher impact of autocrine/paracrine than of endocrine IGF-I. Transgenic Research, 16 (4). pp. 479-489. ISSN 0962-8819 (Print), 1573-9368 (Online) (doi:10.1007/s11248-007-9093-z)

Full text not available from this repository.

Abstract

Several lines of growth hormone (GH)-overexpressing fish have been produced and analysed for growth and fertility parameters. However, only few data are available on the growth-promoting hormone insulin-like growth factor I (IGF-I) that mediates most effects of GH, and these are contradictory. Using quantitative real-time RT-PCR, radioimmunoassay, in situ hybridization, immunohistochemistry, and radiochromatography we investigated IGF-I and IGF binding proteins (IGFBPs) in an adult (17 months old) transgenic (GH-overexpressing) tilapia (Oreochromis niloticus). The transgenics showed an around 1.5-fold increase in length and an approximately 2.3-fold higher weight than the non-transgenics. Using radioimmunoassay, the serum IGF-I levels were lower (6.22 ± 0.75 ng/ml) in transgenic than in wild-type (15.01 ± 1.49 ng/ml) individuals (P = 0.0012). Radioimmunoassayable IGF-I in transgenic liver was 4.2-times higher than in wild-type (16.0 ± 2.21 vs. 3.83 ± 0.71 ng/g, P = 0.0017). No hepatocytes in wild-type but numerous hepatocytes in transgenic liver contained IGF-I-immunoreactivity. RT-PCR revealed a 1.4-times higher IGF-I mRNA expression in the liver of the transgenics (10.51 ± 0.82 vs. 7.3 ± 0.49 pg/μg total RNA, P = 0.0032). In correspondence, in situ hybridization showed more IGF-I mRNA containing hepatocytes in the transgenics. A twofold elevated IGF-I mRNA expression was determined in the skeletal muscle of transgenics (0.33 ± 0.02 vs. 0.16 ± 0.01 pg/μg total RNA, P < 0.0001). Both liver and serum of transgenics showed increased IGF-I binding. The increased IGFBP content in the liver may lead to retention of IGF-I, and/or the release of IGF-I into the circulation may be slower resulting in accumulation of IGF-I in the hepatocytes. Our results indicate that the enhanced growth of the transgenics likely is due to enhanced autocrine/paracrine action of IGF-I in extrahepatic sites, as shown here for skeletal muscle.

Item Type: Article
Uncontrolled Keywords: IGF-I, IGFBP, Liver, Serum, Skeletal muscle, Transgenic fish
Subjects: Q Science > Q Science (General)
S Agriculture > SB Plant culture
Faculty / Department / Research Group: Faculty of Engineering & Science > Department of Life & Sports Sciences
Last Modified: 17 Oct 2016 09:11
Selected for GREAT 2016: None
Selected for GREAT 2017: None
Selected for GREAT 2018: None
URI: http://gala.gre.ac.uk/id/eprint/5355

Actions (login required)

View Item View Item