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A combination of climatic conditions
determines major within-season dengue
outbreaks in Guangdong Province, China
Xia Wang1, Sanyi Tang1, Jianhong Wu2, Yanni Xiao3 and Robert A. Cheke4,5*

Abstract

Background: China’s Guangdong Province experienced a major dengue outbreak in 2014. Here we investigate if
the weather conditions contributing to the outbreak can be elucidated by multi-scale models.

Methods: A multi-scale modelling framework, parameterized by available weather, vector and human case data,
was used to examine the integrative effect of temperature and precipitation variation on the effective reproduction
number (ERN) of dengue fever.

Results: With temperature in the range of 25–30 °C, increasing precipitation leads to an increase in the ERN with
an average lag of 10 days. With monthly precipitation fixed, the more regular the pattern of rainfall (i.e. higher numbers of
rainy days), the larger is the total number of adult mosquitoes. A rainfall distribution peaking in June and July produces a
large ERN, beneficial to transmission. Climate conditions conducive to major outbreaks within a season are a combination
of relatively high temperature, high precipitation peaking in June and July, and uninterrupted drizzle or regular rainfall.

Conclusions: Evaluating a set of weather conditions favourable to a future major dengue outbreak requires near-future
prediction of temperature variation, total rainfall and its peaking times. Such information permits seasonal
rapid response management decisions due to the lags between the precipitation events and the realisation
of the ERN.

Keywords: Dengue, Aedes, Precipitation, Temperature, Multi-scale model, Short-term forecast, Effective
reproduction number

Background
Dengue fever, that can cause severe influenza-like illness
and potentially lethal complications, has been spreading
extensively in tropical and subtropical regions. It is the
fastest spreading emerging infectious disease in the Asia
Pacific region, where it was first recognized in the 1950s
in the Philippines and Thailand, and there has been a
persistently increasing trend with multi-year oscillations
in disease occurrences in the Western Pacific Region. In
China, where dengue fever was first imported from
Southeast Asia in 1917, few outbreaks were reported

until a sudden major outbreak in Foshan city in Guang-
dong Province in 1978 [1, 2]. Since then outbreaks have
been occurring almost annually in southern China in
general and in Guangdong Province in particular, with
Aedes albopictus being the dominant vector [3]. The
2014 outbreak in Guangdong Province was the most ser-
ious one in mainland China to date and here we identify
its key causative factors.
Dengue epidemics are seasonal, given the life-cycles of

its vectors (Ae. aegypti and Ae. albopictus) whose
reproduction, development and mortality rates are regu-
lated by temperature, precipitation and humidity [4–7].
Correlations between weather factors and dengue out-
breaks [8–10] have been incorporated into mathematical
models of the dynamics of both mosquito populations
and dengue fever disease transmission [11–14].
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In particular, recent studies [15–18] have considered
weather, disease importation, spatio-temporal patterns of
disease spread and control measures, all possible con-
tributors to the 2014 Guangzhou outbreak in Guang-
dong Province. Li et al. [19] suggested that the main
reasons for the outbreak were late control measure im-
plementation, numerous imported cases from the end of
April to early July, and high precipitation from May to
August. In 2016 Cheng et al. [15] showed that early case
importations and excessive rainfall were the most im-
portant determinants but in 2017, they [16] concluded
that the high number of imported cases in May and June
rather than the weather conditions was primarily re-
sponsible for the early outbreak. Using a generalized
additive model to examine dengue fever transmission in
Guangzhou from 2005 to 2015, Xu et al. [18] showed
that effects of rainfall and temperature on mosquito
abundance and dengue transmission are key to explain-
ing the temporal dynamics of dengue fever incidence.
Additional questions, however, remain in terms of quan-
tifying and evaluating the impact of weather factors on
dengue fever prevention and control: how do temporal
variations in the distribution of the rainfall, given a fixed
total amount of precipitation in a given period, affect an
outbreak? Does low rainfall invariably lead to minor out-
breaks? To what extent and how fast and reliably can
these key factors be incorporated into models to predict
the development of a potentially large outbreak within a
season? How long is the delay between the onset of wea-
ther conditions favourable for disease spread and obser-
vations of disease incidence, and can this delay permit
more effective prevention and control measures?
We address these questions using a set of mathemat-

ical modelling tools incorporating weather condition im-
pacts on vector population dynamics, vector-human
interaction patterns and human incidence generation.
We first calibrated the model using the weather and hu-
man incidence data from 2012–2014 to identify key fac-
tors behind the major outbreak of 2014; we then
validated and analysed it with date fitting to 2014–2017
events; and finally we used the model to quantify the
weather conditions favourable for a large outbreak and
illustrate the potential for providing early warning of the
epidemic situation to inform interventions in real time.

Methods
Data
Since 2002, the city of Guangzhou has been using the
conventional surveillance method [20], the Breteau
index (BI), the common index for Aedes density surveil-
lance, that is calculated from the number of containers
with mosquito eggs or larvae per 100 houses inspected.
From September 22nd to October 30th 2014,
Guangzhou Center for Disease Control and Prevention

released the BI data almost daily, but in 2015, 2016 and
2017 it was also reported almost weekly, see Fig. 1c. For
details of the weather and case data used (Fig. 1a, b), see
Additional file 1: Text S1 and Table S1.

Model equations
A stage-structured mosquito population model was for-
mulated as follows [21]:

M0
IM tð Þ ¼ b tð ÞMA tð Þ−d tð ÞMIM tð Þ−μ1 tð ÞMIM tð Þ

M0
A tð Þ ¼ d tð ÞMIM tð Þ−μ2 tð ÞMA tð Þ

W 0 tð Þ ¼ λ tð Þ−δ tð ÞW tð Þ

8
<

:

ð1Þ
where ' means the derivative with respect to t; MIM

and MA are the amounts of immature and mature mos-
quitoes; Wis the moisture index; b(t) is the egg-laying
rate, which depends on the moisture index; d(t) is the
development rate of the immature mosquitoes; μ i(t)(i =
1, 2) are the mosquito mortality rates; λ(t) is the precipi-
tation; and δ(t) is the evaporation rate (as shown in
Table 1). According to the relationship between the
relative vectorial capacity and the reproduction number
[22, 23], we obtained the expression of the effective
reproduction number (ERN), which is the basic
reproduction number of the mosquito without consider-
ing its variation with time t.

Rt ¼ RVC tð ÞThMH tð Þ ð2Þ
where Th is the infectious period, the ratio between

the mosquito and human populations is MH(t) = cMA(t)/
Nh with constant c and human population size Nh. The
vectorial capacity relative to the vector-to-human popu-
lation ratio RVC(t) gives RVC(t) = a2(t)bh(t)bm(t)
exp(−μ2(t)n(t))/μ2(t). The function a(t) is the average
daily vector biting rate, bh(t) represents the probability
of vector to human transmission per bite, bm(t) is the
probability of human to vector infection per bite, n(t) is
the duration of the extrinsic incubation period (EIP),
and μ2(t) is the adult vector mortality rate, which is
the same as that in the mosquito model. These time
dependent parameters are functions of temperature at
time t (see Additional file 1: Text S1 and Table S2).
The temperature at any time within a day was esti-
mated using the sinusoidal hourly temperature vari-
ation between the maximum and minimum [13].
Detailed definitions for parameters and/or functions
are given in Table 1.

Parameter estimation
Parameters involved in the mosquito dynamics model
were derived from a previous paper [21]. To estimate
other unknown parameters in the transmission model,
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we assumed that the number of local incident cases fol-
lows a Poisson distribution, so that the likelihood func-
tion was obtained. The daily numbers of new cases in
Guangzhou city during September 22nd to October 30th
2014 were used to estimate parameters by the Markov
Chain Monte Carlo (MCMC) method and the gener-
ation interval-informed method [24]. For details see
Additional file 1: Text S1 and Table S3.

Results
The effective reproduction number (ERN Rt)
Incorporating the mosquito dynamics model into Eq. 2,
we calculated the ERN as shown in Fig. 1d, which shows
a clear seasonal pattern with the largest peak in 2014
(with a peak value above 5) and the smallest peak in
2012. The results agreed well with the actual epidemic
size, shown in Additional file 1: Table S1. The ERN for
2014 showed a slowly increasing trend (Fig. 1d), given
the relatively consistent control measures and/or climate
in that year. The ERN in 2013 (Fig. 1a, b) was lower than
in 2015, 2016 and 2017, but the total number of cases in
2014 was higher than in the other three years, possibly
resulting from varying levels of control measure imple-
mentations before and after 2014.

Effects of precipitation and temperature on the ERN
To investigate effects of precipitation and temperature
on the abundance of mosquitoes and dengue fever trans-
mission, we investigated how the mosquito population
and the ERN vary if the yearly temperature or precipita-
tion is substituted by the mean from 2012 to 2016. Thus,
we examined the impact of temperature (or precipita-
tion) by using a uniform precipitation (or temperature)
throughout the study period. Figure 1e gives the simula-
tion results when the yearly temperature was fixed as
the mean temperature from 2012 to 2016, and shows
that the ERNs in years 2013 and 2016 became larger

a

b

c d

e f

Fig. 1 a, b The cumulative number of local cases. The X-axis represents the date. c Comparison of the BI surveillance data (stars) and the
predicted numbers of immature mosquitoes (lines). d The effective reproduction number from 2012 to 2017. e The effective reproduction
number from 2012 to 2017, but with the temperature of every year taken as the mean from 2012 to 2016. f The effective reproduction number
from 2012 to 2017, but with the precipitation of every year taken as the mean from 2012 to 2016

Table 1 Definitions of the parameters used in the model

Parameter Definition (units)

a The average biting rate (per day)

bm Transmission probability from human to mosquito (per bite)

bh Transmission probability from mosquito to human (per bite)

n The duration of the extrinsic incubation period (days)

Th The infectious period (days)

MH The ratio between the mosquito and human populations

b(t) The egg-laying rate (per mosquito per day)

d(t) The development rate of immatures (per day)

μ1(t) The daily mortality rate of immatures (per day)

μ2(t) The daily mortality rate of adults (per day)

λ(t) The total daily precipitation (mm)

δ(t) The evaporation rate (mm)
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than those in Fig. 1d, especially in 2016 for which it was
the largest, indicating that the precipitation in 2016 con-
tributed substantially to the mosquito reproduction. Fix-
ing the yearly precipitation as the uniform mean
precipitation from 2012 to 2016 revealed that the yearly
ERN becomes larger than that with a non-uniform pre-
cipitation; particularly, the Rt in 2014 remained the lar-
gest (Fig. 1f ). This indicates that the temperature in
2014 was the most beneficial for mosquito reproduction
and dengue fever transmission. The ERN of 2016 was
the smallest for the uniform precipitation (Fig. 1f ),
which means that the temperature in 2016 was the most
disadvantageous for dengue transmission, which explains
why the 2016 outbreak was not very big.
To further analyze effects of temperature on dengue

transmission, we produced a contour plot of the ERN
with respect to the mean temperature and the daily pre-
cipitation (Fig. 2). The daily mean temperature and the
daily temperature range (DTR) were used to calculate
the temperature at any time and then to obtain these
time dependent parameters. We assumed that it rains
every day with the same precipitation and ran the model
(1) with (2) for 30 days and obtained the ERN on days 2,
5, 8, 10, 20 and 30. The plots show that increasing the
mean temperature has a considerable and immediate im-
pact on the ERN. When the mean temperature is rela-
tively low (below 25 °C) or very high (above 33 °C),
increasing daily precipitation hardly affects the ERN
(Fig. 2a, b), while for suitable temperatures (between

25–33 °C) varying daily precipitation greatly affects the
ERN but a few days later (Fig. 2c-f), and hence there is a
lag of a few days between the rainfall and an ERN in-
crease. Hence the most beneficial temperature for trans-
mission is around 30°C when DTR = 5, while very high
or low temperatures are not conducive to transmission.
Also, the optimal temperature that maximises the ERN
becomes larger with time (Fig. 2c-f ), agreeing with the
fact that the optimal mosquito survival temperature is
relatively small (around 27 °C; [21]) but the optimum for
dengue fever transmission is relatively large (around 32 °
C; [25]). This is because at the start of the simulation
there are few mosquitoes and only a single infected indi-
vidual, so temperature initially mainly affects the growth
of mosquitoes, then affects both the mosquito
reproduction and the biting rate and transmission prob-
ability per bite with an increasing number of mosqui-
toes. Further, comparing the values of Rt in Fig. 2
indicates that continuous rainfall for a few days may not
lead to a noticeable increase in ERN Rt, while continu-
ous rainfall for more than 20 days will lead to a signifi-
cant increase in ERN.

Effects of monthly patterns of rainfall on the mosquito
population and the ERN
Figure 1e shows that the ERN in 2015 was still smaller
than that in 2014 even with the uniform temperature, so
the total precipitation in 2015 might have contributed
less to the ERN than it did in 2014, although this was

d e

ba c

f

Fig. 2 Contour plots of the effective reproduction number on days 2, 5, 8, 10, 20 and 30 (a-e) when DTR = 5
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not borne out by the actual events. This implicitly means
that the frequency and temporal distribution of the rain-
fall may be key factors that significantly affect the
reproduction of the mosquito and hence the transmis-
sion of dengue fever. To examine the effect of precipita-
tion on the mosquito population, we conducted
numerical studies by fixing certain values of the daily
mean temperature, the DTR and the total number of
rainy days within one month and observing the values of
MA in one month. We used sampling without replace-
ment to generate the date of rainfall from 1st to 30th of
a month, and plotted the distributions in Fig. 3a.
Figure 3b shows the total amount of adult mosquitoes
within 30 days with respect to the total precipitation and
its temporal distributions. It shows that the larger is the
total precipitation the more the mosquitoes. Interest-
ingly, different distributions of rainy days can cause very
significant differences in mosquito abundance. In par-
ticular, when the total precipitation is 200 mm, the total
amount of adult mosquitoes produced within 30 days
can be larger than 60 or below 40 with different rainfall
temporal distributions.
To investigate the effects of various distributions of

precipitation on the growth of the mosquito population,
we fixed the total amount of precipitation to be 100, 200
and 300 mm within one month and varied the number
of rainy days from 1 to 30 (randomly distributed within

a month, blue curves). The precipitation data were gen-
erated by sampling without replacement and 500 simula-
tions were run. The mean and standard deviation of the
adult mosquito population (Fig. 4a-c), show that the
mean number of mosquitoes increases with an increas-
ing number of rainy days, indicating that the more the
rainy days (or the more precipitation), the larger the
mosquito population. Note that the standard deviation is
quite large when the number of rainy days is around 15,
meaning that the risk of getting more mosquitoes is high
at this point. We further investigated the amount of
mosquitoes when the rainy days are regularly distributed
instead of randomly generated (Fig. 4a-c, red circles),
showing that the amount of mosquitoes is relatively
large when the number of rainy days is greater than 10,
indicating that the pattern of rainfall of every additional
day contributes to increasing the mosquito population.
Comparing the two (regular or random) patterns of rain-
fall for a given total amount of precipitation implies that
a regular pattern of rainfall was more beneficial for mos-
quito population growth.
Repeating the above plotting allows us to examine the

effect of patterns of rainfall on the mean ERN versus
time (Fig. 4d-f ). It follows that the mean of Rt also in-
creases with an increasing number of rainy days (the
blue surface in Fig. 4d-f ), agreeing with the varying
trend of the adult mosquito population (Fig. 4a-c).

a b

Fig. 3 a The patterns of monthly rainfall. Dark blue represents no rain, the red represents rain. b The total amount of mosquitoes with respect to
the total precipitation and the rainfall pattern
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Similarly, the value of Rt for a regular distribution of
rainfall is quite large when the number of rainy days is
about 10–15, which indicates that regular rainfall, espe-
cially every other day, results in more new dengue infec-
tions, in line with the conclusion on the mosquito
population development (Fig. 4a-c). Thus, for a given
total amount of precipitation, different patterns of rain-
fall significantly affect the mosquito population and
hence the occurrences of new infections of dengue fever
(Fig. 4). In particular, frequent and random rainfall or
regular rainfall every other day is most beneficial for the
mosquito population and hence new dengue infections.

Effects of yearly patterns of rainfall on the ERN
To investigate the effect of various yearly distributions of
precipitation on the ERN, we simulated events from March
to December and plotted the ERN by using the total pre-
cipitation and the mean temperature data calculated as the
mean from 2012 to 2016. Figures 5 (1) and 6 (1) show the
mean and variance of the 150 simulations for the ERN, and
Fig. 5 (2, 3) and Fig. 6 (2, 3) give the distributions and the
monthly mean precipitation of the randomly generated
data. Figures 5a-f show that as the peak of precipitation var-
ies from Spring to Autumn, the ERN increases and then de-
creases. In particular, the ERNs shown in Fig. 5c, d,
corresponding to the peak of precipitation reached in June
and July, are larger than those in other sub-plots, which

indicates that high precipitation in summer causes the risk
of transmission of dengue to be more likely than high pre-
cipitation in Spring or Autumn. To further examine the ef-
fect of the degree of aggregation of rainfall on the ERN, we
simulated on the basis of data generated from a distribution
with the same mode (June) but different kurtosis, as shown
in Fig. 6. As the kurtosis increases, the ERN increases ini-
tially and then decreases (Fig. 6a-c), indicating that an ap-
propriate kurtosis (Fig. 6b) induces transmission to be
more likely than a particularly large or particularly small
kurtosis does. This indicates that high precipitation in sum-
mer together with an appropriate degree of aggregation is
beneficial to the transmission.
To discuss the reliability of conclusions based on the gen-

erated data, we further investigated the correlation between
the real data and the generated data (Fig. 5). The monthly
precipitation data of 2012, 2013, 2014, 2015 and 2016 were
significantly correlated (P <0.05) with the data generated
from Beta distributions Be(2.8,4) (Fig. 5b), Be(3.54, 4)
(Fig. 5c) and Be(4.55,4) (Fig. 5d) and they were most highly
correlated with the generated data from distribution
Be(3.54,4) (Fig. 5c) (Here, Be(a, b) is a Beta distribution

with cumulative distribution function Fðxja; bÞ ¼ 1
Bða;bÞ

R x
0

ta−1ð1−tÞb−1dt;Bð∙Þ is the Beta function). The correlation
coefficients (P-values) are 0.7869 (0.0024), 0.8891 (0.0001),
0.8359 (0.0007), 0.7592 (0.0042) and 0.8264 (0.0009),

a b c

d e f

Fig. 4 a-c The total amount of mosquitoes produced within 1 month versus the number of rainy days (Nr ). The blue line shows the mean and
the bars show standard deviation when the precipitation data are generated randomly. The red circles show the total amount of mosquitoes
when the rain is distributed regularly. d-f The effective reproduction number versus time and Nr. The surfaces show the mean results of 500
simulations when the precipitation data are generated randomly. The red dashed lines represent the results when the rain is distributed regularly
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respectively. These results indicate that the yearly pattern
of precipitation with a peak in summer (Fig. 5b-d) is more
consistent with the actual rainfall in Guangzhou. Moreover,
we investigated the correlation between the real data and
the generated data (Fig. 6) to further identify the yearly pat-
terns of rainfall that significantly affect the ERNs. Add-
itional file 1: Table S4 shows that the precipitation data in
2013 are the most strongly correlated with the generated
data (Fig. 6b), which means that the pattern of the yearly
distribution of rainfall that occurred in 2013 is the most
likely to cause the transmission of dengue, with the precipi-
tation in 2014 and 2016 being the second and third most
strongly correlated with the generated data (Fig. 6b). The
precipitation data in 2015 were most strongly correlated
with the generated data with the smallest ERN (Fig. 6c),

indicating that the precipitation distribution in 2015 was
the most disadvantageous to the transmission.

We ranked the factors that contribute to the ERN in
Table 2, which provides insights and detailed reasons for
the outbreak level for each year, for details of which and
methods used see Additional file 1: Text S1.

Discussion
Recently, dengue fever has shown a persistently increas-
ing trend and multi-year oscillations and has become a
public health concern in southern China. The 2014 out-
break in Guangdong Province was the most serious one
in mainland China to date. Thus, identification of the
key factors which contributed to it and an ability to
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Fig. 5 (1) Effective reproduction numbers under different precipitation distributions. The red line shows the mean of 150 simulations. Blue bars
show the standard deviation. (2) The distribution used to generate precipitation data. (3) The monthly precipitation obtained by the generated
data. a Using data from the distribution Be(2.24,4); b using Be(2.8,4); c using Be(3.54,4); d using Be(4.55,4); e using Be(6,4); f using Be(8.29,4)

a b c

Fig. 6 (1) Effective reproduction numbers under different precipitation distributions. The red line shows the mean of the 150 simulations. Blue
bars show the standard deviation. (2) The distribution used to generate precipitation data. (3) The monthly precipitation obtained by the
generated data. a Using data from the distribution Be(2.69,3); b using Be(3.54,4); c using Be(6.92,8)
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make early predictions of high levels of dengue trans-
mission within a season are urgent requirements for im-
proving control strategies. Here we proposed a hybrid
model incorporating a stage-structured dynamic model
for the mosquito population and a Poisson model for
dengue transmission. We focused on analyzing the ef-
fects of temperature, precipitation and various patterns
of rainfall on the ERN, after fitting a model to the BI
data of 2014 and 2015. We then validated the model on
the basis of the 2016 and 2017 BI data. We identified
what kind of rainfall pattern is conducive to transmis-
sion and provided explanations of why outbreaks can be
big or small.
The BI data, calculated according to the number of

containers with mosquito eggs or larvae per 100 houses,
can be affected by the time and place of data acquisition
and control measures. Besides, the weather conditions in
the diapause period of the mosquitoes may affect the
size of the mosquito populations. However, the minor
discrepancies between our results and the data are ac-
ceptable despite these stochastic factors. On the basis of
our parameter values, we obtained the ERNs from 2012
to 2017 (Fig. 1d), which agree with the case data (Fig. 1c).
Fig. 1d shows that the 2014 ERN peak was the largest
with a value of almost 5, between the peak values of the
ERNs of Haizhou and Zengcheng districts [26]. This is
reasonable as the ERN of the entire Guangzhou city
often lies between the ERNs of areas with either serious
or minor outbreaks.
By keeping the uniform precipitation each year as the

mean of the precipitation from 2012 to 2016, we found
that the temperature in 2014 (or 2016) was the most
suitable (unsuitable) for transmission (Fig. 1f ). In
addition, by keeping the uniform temperature each year
as the mean temperature from 2012 to 2016 the results
showed that the precipitation pattern that occurred in
2016 provided the highest risk factor for inducing a
major outbreak. It follows from Fig. 2 that increasing the
precipitation leads to an increase in ERNs, but with lags
of more than 10 days, when the temperature is between
25–30 °C. This delay corresponds with one or two weeks

between oviposition and adult mosquito emergence and
there is also a latent period in the dengue transmission
process. In contrast, the effect of temperature on the
ERNs was observed immediately since it not only deter-
mines the development rates and life spans of the-
mosquitoes but it is also embodied in the transmission
process.
Main foci of this paper were examinations of the ef-

fects of different patterns of precipitation, including
monthly and yearly patterns, on dengue transmission.
Figure 3 provides strong evidence that increasing pre-
cipitation leads to an increase in the mosquito popula-
tion size with different distributions of rainy days
causing very different abundances of mosquitoes. More-
over, Fig. 4 reveals that uninterrupted drizzle is benefi-
cial to the reproduction of mosquitoes, and hence is
highly conducive to the transmission. This was verified
in Fig. 1f, in which the mean precipitation data from
2012 to 2016 were employed to yield uninterrupted driz-
zle, giving ERN values for every year much larger than
in any of the other scenarios (Fig. 1d). Besides, compar-
ing Fig. 1e and f, it seems that the variation in
temperature rather than in rainfall is more important to
determine the variations in ERN. In fact, this difference
may be due to the average of the precipitation data
yielding uninterrupted drizzle.
For the yearly distribution of precipitation, we found

that the distribution with a peak in June and July with
marked kurtosis induced a relatively large ERN, which is
the most propitious for the transmission of dengue
(Figs. 5c-d, 6). Further, taking the delay of the effects of
precipitation into consideration (Fig. 3), we concluded
that a rainfall peak in late June and possibly to August
can lead to much larger ERNs than peaks in any other
months can. Indeed the peak of the monthly mean
temperature in Guangzhou is from June to August.
Hence, our results reveal that large amounts of rain in a
season of high temperature are beneficial for dengue
transmission. In fact, the annual cycle of rainfall in
Guangzhou indeed peaks in June and July. So, our re-
sults also confirm why dengue fever is prevalent in
Guangzhou. In particular, much rain and high tempera-
tures in Guangzhou during June to August and a suit-
able monthly distribution of precipitation (i.e. frequent
and random rain or regular rain every two days; Fig. 4)
will lead to relatively large ERNs and hence to more new
dengue infections. These results provide a strong basis
for determining a season that has a large outbreak.
In summary, we quantified and evaluated the impact

of climate factors on dengue fever. Our findings reveal
danger signals of climate leading to the induction of a
major dengue fever outbreak. These signals are rela-
tively high temperature, high total precipitation with a
rainfall peak in June and July, together with

Table 2 Rank list of those factors that influenced the effective
reproduction number in different years

1st 2nd 3rd 4th 5th

Temperature 2014 2015 2012 2013 2016

Total
precipitation

2016
(2117.3)a

2015
(1856.8)

2014
(1629.4)

2013
(1535.6)

2012
(1131.8)

Total rainy
days

2016
(162)b

2015
(140)

2014
(137)

2013
(130)

2012
(111)

Yearly pattern
of rainfall

2013 2014 2016 2012 2015

aTotal precipitation
bTotal rainy days
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uninterrupted drizzle or regular rainfall every two
days. Taking into account delays between rainfall and
dengue transmission, we note that the peak of dengue
incidence usually appears in September in Guangzhou.
Therefore, current precipitation patterns and near-future
predictions of temperature and precipitation variation per-
mit more effective prevention and control measures for
annual outbreaks, thereby permitting rapid response man-
agement decisions. Thus, our analyses can provide a the-
oretical basis for early warning of possible within-year
major outbreaks to inform public health planning and
rapid responses to mosquito-borne outbreaks. Addition-
ally, these weather conditions favourable to dengue trans-
mission may also be key factors for inter-annual variations
of dengue fever. However, predicting multi-year cycles
based on our current data is very difficult, which depends
on multiple factors including the evolution of the virus,
the immune level of the population, the susceptibility of
the population and so on, topics for future research.

Conclusions
In the present study, a hybrid model was proposed to
analyze the effects of temperature, precipitation and
various patterns of rainfall on the ERN of dengue
based on data from Guangzhou, China. The findings
show a set of weather conditions favourable to a future
major dengue outbreak. Such information permits sea-
sonal rapid response management decisions due to the
lags between the precipitation events and the realisa-
tion of the ERN.
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