
Abstract—The aim of this paper is to discuss a technique for 
visually exploring melodic relationships within traditional tune 
collections encoded in abc notation, a widely used text-based music 
representation system particularly popular for folk and traditional 
music. There are approximately ½ million melodies encoded in abc 
on the web and abcnotation.com provides a searchable index of the 
entire corpus with tools to view, download and listen to the scores.  

This paper stems from related work known as TuneGraph 
which uses a melodic similarity measure to derive a proximity 
graph representing relationships between tunes in the abc corpus, 
and which allows users of abcnotation.com to explore melodic 
similarity. As it stands TuneGraph only gives a localised view of 
the melodic relationships: this paper aims to look at exploring 
those relationships at a global (corpus-based) level via a prototype 
visualisation tool. Currently the tool is not interactive: in this 
paper the aim is to consider a proof-of-concept approach to 
explore where there is a useful visualisation possible; future work 
will look at user interactivity with the tool. 
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I. INTRODUCTION

The aim of this paper is to conduct a visual exploration of
melodic relationships within traditional tune collections. It stems 
from related work into an online application known as 
TuneGraph, [1], which allows users of abcnotation.com to 
explore melodic similarity in folk music. TuneGraph uses a 
similarity measure to derive a proximity graph representing 
similarities within the abc notation corpus (~½ million tunes) 
which backs the search engine. From this a local graph is 
extracted for each vertex, aimed at indicating close variants of 
the tune represented by the vertex. Finally an interactive user 
interface displays each local graph on that tune’s webpage, 
allowing the user to explore melodic similarities.  

As it stands TuneGraph only gives a very localised view of 
the melodic relationships: this paper aims to explore those 
relationships at a global (corpus-based) level. 

II. METHODOLOGY

To distinguish the work from that discussed in previous
papers, here the similarity representation under study is referred 
to as a corpus graph and aims to display the melodic similarities 
within an entire tune collection (a corpus), as opposed to a tune 
graph, which just display near neighbours for a single tune. 
However the underlying technology is effectively the same. 

The idea is that, given a collection of tunes and a melodic 
similarity measure which can compute pairwise similarity 
between tunes (e.g. [2]), it is possible to construct a complete 
proximity graph of the corpus. In this graph each vertex 

represents a tune and edge weights represent similarities 
between tunes: the greater the similarity the larger the edge 
weight. If a similarity threshold is applied so that an edge is only 
included in the graph if the two tunes it connects are sufficiently 
similar then a sparse proximity graph can be induced (the higher 
the threshold, the more sparse the graph). 

In [1] the sparse proximity graph is sparsified further and 
processed to produce a collection of local tune graphs, one for 
each connected vertex in the graph. Here, since the interest is in 
visualising the corpus as a whole, no such processing need take 
place. However, as discussed in Section II(C), there is a need to 
connect all the vertices in the sparse graph. 

A. Melodic similarity measure: multilevel recursive alignment
In this paper, the melodic similarity measure used is

multilevel recursive sub-sequence alignment. Space precludes a 
full description but it is discussed in detail in [1]. Some 
additional enhancements, tested in [3], are also applied. The 
most important features and enhancements are: 

• Multilevel comparisons. Each tune is coarsened by
recursively removing non-stressed notes to create a
hierarchy of tune representations. When two tunes are
compared, the similarity is calculated at each level of the
hierarchy and then aggregated across the levels. This
means that tunes which may differ in minor details can
still be considered sufficiently similar, in terms of stressed 
notes (i.e. at a coarser levels), to generate edges in the
corpus graph. It also allows for significant improvements
in computational cost as the similarity calculation can be
abandoned for tunes which have little or no similarity at
the coarse (computationally cheap) levels.

• Recursive Sub-Sequence Alignment. A popular class of
melodic similarity measures use local alignment
algorithms, e.g. [2], applied to sequences of pitches or
intervals. In general such algorithms have some ability to
match inexact sub-sequences but this is limited,
particularly when the sequences are long. To extend their
effectiveness, recursive sub-sequence alignment was
introduced in [1]. That paper and the follow-on, [3], also
concluded that an effective scheme is a recursive version
of the longest common substring algorithm (a special case 
of local alignment which only produces exact matches but 
which is faster to compute and requires less memory) and
so that algorithm is used here.

• Biased Recursive Alignment Scoring. An issue that
became apparent when using recursive alignment, is that
just adding all the scores together makes no distinction
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between one long aligned sequence and several shorter 
ones, [1]. To address this, the similarity measure is biased 
towards longer aligned sub-sequences by taking the 2-
norm (square root of the sum of squares) of the alignment 
scores found by the recursive local alignment. This was 
demonstrated in [3] to significantly improve the accuracy 
of the measure. 

Aside: It should be stressed that the ideas discussed here are 
generic: in principle, any melodic similarity measure, S(X,Y), 
which measures the similarity between a pair of tunes X and Y, 
can be used. However, obviously the results and visualisations 
will depend on the quality and features of the measure. 

B. Matching threshold
Neglecting the multilevel framework for now, this similarity

measure, S(X,Y), induces a complete weighted graph on a 
dataset, where the edge weight between each pair of melodies is 
given by the similarity. Subsequently, when the graphs are 
displayed, edge thickness is shown in proportion to the weight 
with very similar vertices joined by thick edges and not so 
similar ones by thin edges. 

As mentioned, since most edges in the graph will have very 
small weights it makes sense to restrict the graph to include only 
edges for tunes which are reasonably close matches. This 
restricted graph is referred to henceforth as the corpus graph, 
(also referred to as the fundamental proximity graph in [1]). 

This restriction could be achieved in a variety of ways but 
here it is assessed by a matching threshold, T, and edges 
between melodies X and Y are only included if they match 
across at least some proportion T of their length. Specifically an 
edge between vertices Vx and Vy is only included if  

S(X,Y) ≥ average(length(X), length(Y)) * T 

Following [1] values for T in the experiments are 1/4, 1/6 and 
1/8; the former value considerably restricts the number of edges 
whilst the latter is fairly inclusive and can allow a lot of false 
positive matches.  

Note: the use of biased alignment scoring, mentioned above, 
does obscure what these fractions imply exactly, as it is no longer 
a case of adding up all the recursively aligned scores. To explore 
this further consider that a large proportion of melodies in the 
dataset are 32-bar tunes in an AABB format. This is very typical 
in western European folk music and usually means that the tune 
is written as 16 measures, as A and B sections, with repeat 
markers at the end of each section. For a reel in common time 
this would be quantised as 8 eighth notes per measure or a total 
of 16 x 8 = 128 notes (strictly speaking 127 intervals).  

If T is set to 1/4 then, for an edge to be included between 
them, two tunes would need to match exactly across one a 
quarter of the tune (4 measures or 32 notes). Alternatively, they 
could match across four segments, each two measures (16 notes) 
long (in this case S(X,Y) = √16ଶ + 16ଶ + 16ଶ + 16ଶ =√1,024 = 32); in other words in this case they need to match
over a total of 64 notes or half the tune, even though T = 1/4.

C. Connecting the corpus graph
As will be seen in the results section, it became apparent that

the choice of similarity threshold can have an impact on whether 

it is even possible to visualise the corpus graph. If the threshold 
is too low, e.g. Fig. 5(l), then the graph will not be sparse enough 
to produce a successful visualisation as, typically, too many 
edges obscure any valuable information that could be gained 
from such a visualisation, [4]. 

However, higher values of the threshold typically generate a 
corpus graph with many disconnected components (subgraphs 
that are not connected by any edges) and often large numbers of 
isolated vertices (vertices with no incident edges – i.e. tunes that 
are not sufficiently similar to any other tune in the corpus to 
generate an edge). 

This presents a problem for the investigation discussed here. 
One option is simply to visualise the largest connected 
component (i.e. the one with the most vertices) but in many cases 
this component may represent only a very small portion of the 
dataset. Alternatively, there are published schemes to lay out 
disconnected components: for example Monserrat et al. discuss 
an algorithm which regards each component as a super-vertex, 
connects all the super-vertices together in a chain-like structure 
and then uses a force-directed placement algorithm to create 
layouts both at the macro level (of the components) and at the 
micro level (within each component), [5]. 

Unfortunately, in the context of a proximity graph, such a 
scheme potentially discards a lot of valuable information: 
although two vertices may not be connected because the 
corresponding tunes are not sufficiently similar, nonetheless it is 
possible to measure the similarity between them and use that to 
inform the visualisation. 

Accordingly the following algorithm has been implemented: 

1. The corpus graph G(V, E) is constructed as discussed,
with edges in E only included between pairs of vertices
if the corresponding tunes are sufficiently similar.

2. The connected components are evaluated and all
vertices are marked with a flag indicating which
component they belong to.

3. A list is compiled of all those excluded edges which run
between pairs of vertices in different components (i.e.
with different flags).

4. The list is sorted in order of decreasing edge weight (i.e.
decreasing similarity) and then the first edge in the list
is added to the graph, but with its weight set to zero.

5. The process repeats from step 2 until the graph is fully
connected. After the first iteration the edge list is already 
compiled so step 3 just involves removing edges
between vertices in the same (newly connected)
component.

It is easy to see that this scheme adds nothing to the total edge 
weight in the graph, but increases the number of edges by |C| – 
1 where |C| is the number of disconnected components in the 
original proximity graph. 

The sorting of the edge list prioritises how the disconnected 
components are connected up. Obviously a disconnected 
component may have many vertices which are not quite similar 
enough to be connected to other components in the original 



proximity graph and probably only one of these will end up 
being connected. However, since the visualisation is primarily 
about visualising similar tunes the inclusion of these additional 
edges is really just to enable the layout of the disconnected 
components in a sensible fashion. 

 Setting zero edge weights is important for visualisation: 
since edge weights influence vertex placement, a zero weight 
edge will have minimal impact on the graph layout but will mean 
that the two insufficiently similar vertices that it connects are 
positioned as close together as possible. Furthermore zero-
weight edges are not displayed in the visualisations. 

Note: connecting the graph up this way is computationally 
expensive. For a graph with thousands of components there can 
be millions of inter-component edges which need to be assessed. 
As a consequence the experiments are limited to graphs with a 
maximum of ~ 5,000 vertices by restricting the number of tunes. 

D. Visualisation: multilevel force-directed placement
Having constructed the connected corpus graph, it can be

visualised using multilevel force-directed placement (FDP), a 
heuristic method for drawing graphs which uses a multilevel 
framework combined with an FDP algorithm. FDP is a common 
technique for computing a layout of graph vertices, e.g. [5], 
which models edges as springs (that push / pull vertices apart) 
and includes global repulsive forces to untangle the graph. 

FDP is unable to untangle large-scale structures and limited 
to graphs of a few hundred vertices. Hence multilevel schemes 
were introduced both to accelerate the computation and, more 
importantly, impart a global quality to the drawing, [6]. The 
multilevel technique matches and coalesces pairs of adjacent 
vertices to define a new graph and is repeated recursively to 
create a hierarchy of increasingly coarse graphs. The coarsest 
graph is then given an initial random layout and the layout is 
refined iteratively with FDP and recursively extended to all the 
graphs starting with the coarsest and ending with the original. 

III. RESULTS

A. Annotated datasets
The initial investigation explores two small datasets known

to contain many related tunes and which have been annotated 
manually to indicate similar melodies, specifically those 
belonging to the same tune family. 

The first of these datasets is the Annotated Corpus of the 
Meertens Tune Collection 1  (MTC), version 2.0.1, [7]. This 
contains 360 Dutch folk melodies, each identified by experts as 
belonging to one of 26 tune families. 

The second dataset (Morris) contains English morris dance 
tunes taken from the Morris Ring website2. Since morris music 
has many (approx. 35) related traditions, each typically 
associated with a village, there are several tunes found in more 
than one tradition, but each tradition typically has a different 
variant of the tune. This dataset therefore contains 368 tunes 
which have been manually identified as belonging one of 113 

1 http://www.liederenbank.nl/mtc/index.php 
2 https://themorrisring.org/music/handbook-morris-dances 

tune families (in many cases the tune family can be derived from 
the tune title or song words)3. 

Table I shows the corpus graph characteristics for both 
datasets using three different values for the matching threshold, 
specifically T = 1/4, 1/6 and 1/8. The table shows |V|, the number 
of vertices (fixed), |E| the number of edges and |C| the number of 
disconnected components. It also shows the maximum, dmax, and 
average, davg, degree of the vertices. The minimum degree is not 
shown as in all cases there are isolated vertices (often many of 
them) of degree 0. 

Characteristics for the connected corpus graph, G′(V, E′), are 
not shown but most can be derived. The number of components 
|C′| is 1; the number of edges, |E′|, is just |E| + |C| – 1, so the 
average degree, d′avg, is given by 2 (|E| + |C| – 1) / |V|. 

TABLE I.  ANNOTATED DATASET CHARACTERISTICS 

Dataset T |V| |E| |C| dmax davg 
MTC 1/8 360 981 85 19 5.45 
MTC 1/6 360 833 117 16 4.63 
MTC 1/4 360 501 157 13 2.78 
Morris 1/8 368 667 124 18 3.62 
Morris 1/6 368 450 184 17 2.45 
Morris 1/4 368 199 268 15 1.08 

The graph layouts are calculated using the multilevel force-
directed placement algorithm discussed in section II but, since 
the datasets are annotated, a more informative visualisation is 
possible by assigning each tune family to a different colour. 

Fig. 1 and Fig. 2(a) show the three graphs produced for the 
MTC dataset. As can be seen in Fig. 1(l) for T = 1/8, the 
methodology has done well at disambiguating the tune families: 
generally vertices of the same colour (in the same family) are 
clustered closely together even if no visible edge connects them 
(recall that zero-weight edges, which are not shown, are used to 
connect the graph and connect tunes to their most similar 
neighbour even though the two tunes are not considered 
sufficiently similar to have that similarity represented in the 
graph). Furthermore there are few edges between tunes in 
different families (i.e. “cut” edges between vertices of a different 
colour). However, there are some confusing edge crossings 
(centre left of the image) and so raising the threshold to exclude 
the more tenuous similarities can be helpful.  

Fig. 1(r) for T = 1/4 demonstrates this. With a threshold this 
high the graph is much sparser (501 edges as compared with 981 
previously) and the tune families are generally very well-spaced. 
However, this graph contains rather a lot of isolated vertices and 
some tune families appear to have no inter-family edges at all. 

The compromise threshold of T = 1/6, shown in Fig. 2(l), 
resolves both difficulties: generally the tune families are well-
spaced but there are not too many isolated vertices (although 
note that isolated vertices are an inevitable consequence of 
diversity within the dataset – they just express the fact that some 
tunes are not closely related to any others). 

Fig. 2(r) shows the Morris dataset at the same threshold of 
1/6. This is a rather more complicated picture as there are many 

3 The allocation of tunes to families can be downloaded from 
the author’s website http://chriswalshaw.co.uk/research/ 



more tune families (113 rather than the 26 of MTC) and some of 
those “families” only have 1 member. It is hard to find 113 
distinct colours and so most are duplicated (currently the graph 
drawing software provides a maximum of 64 colours). 
Nonetheless the methodology has achieved good separation 
between tune family clusters, without too many isolated vertices 
and hence a graph layout that is relatively easy to navigate. 

B. Large datasets
The next results consider larger datasets from 4 locations:

• The Session4 (TheSession), a community site which hosts
a large collection of Irish traditional tunes (~30,000).

• The Traditional Tune Archive5 (TuneArch), a carefully
curated archive of “North American, British and Irish
traditional instrumental music” (~32,000 tunes).

• The Village Music Project6 (VMP), another community
project containing “traditional social dance music of
England” mostly transcribed from 18th & 19th century
manuscripts. At the time of writing the site hosts around
7,000 tunes but here a fixed subset of 5,638 used in
previous papers, e.g. [1], is tested.

• An abc version of the Essen Folk Song Database7 (Essen),
containing “8000 European and Chinese folk songs”.

Table II shows the corpus graph characteristics for all 4 
datasets in the same format as Table I. As mentioned in section 
II.C, because of limitations in the graph connecting algorithm
the maximum size of graph that can be easily constructed is
limited to around 5,000 vertices and so, with the exception of the 
VMP collection, the datasets have all been restricted to this size
by using only the first 5,000 tunes.

TABLE II.  LARGE DATASET CHARACTERISTICS 

Dataset T |V| |E| |C| dmax davg 
TheSession 1/8 5,000 5,121 2,649 94 2.05 
TheSession 1/6 5,000 2,847 3,312 12 1.14 
TheSession 1/4 5,000 1,645 3,812 9 0.66 
TuneArch 1/8 5,000 5,407 2,927 103 2.16 
TuneArch 1/6 5,000 1,833 3,792 15 0.73 
TuneArch 1/4 5,000 1,100 4,209 10 0.44 
VMP 1/8 5,638 20,361 2,053 202 7.22 
VMP 1/6 5,638 5,317 3,496 41 1.89 
VMP 1/4 5,638 3,140 4,199 16 1.11 
Essen 1/8 5,000 190,768 1,621 905 76.31 
Essen 1/6 5,000 30,881 2,062 349 12.35 
Essen 1/4 5,000 1,936 3,779 27 0.77 

What is immediately clear is that there is a wide range of 
values for dmax & davg, the maximum & average degree of the 
vertices. This suggests that some datasets contain significantly 
more similarities than others. The first two datasets, TheSession 
& TuneArch, are relatively similar, but VMP is denser and Essen 
significantly more so. 

Following manual investigation of a small number of 
matches a possible reason for the density of the Essen corpus 
graphs is that the tunes (mostly songs) tend to be very short in 
length (often just 8 measures). Therefore it is much easier to find 

4 https://thesession.org/ 
5 http://www.tunearch.org/wiki/TTA 

a match across 1/4 of the tune (particularly at the end of a phrase 
where a single note may be held for the whole measure). This is 
backed up by the observation that the density of the graph tails 
off rapidly as the threshold is increased – much more rapidly 
than for the other datasets. 

Fig. 3 uses the compromise threshold of 1/6 suggested above 
to visualise TheSession (l) and TuneArch (r) corpus graphs. 
Since the datasets are not annotated it is not possible to colour 
the vertices to indicate tune families. Nonetheless many small 
clusters are visible and indicate likely families. 

Other identifiable structures include super-connectors 
(isolated vertices surrounded by sunflower like structures of 
other isolated vertices) and weak linkage (long, lightly-
weighted edges which indicate loose connections between 
different subgraphs). 

The super-connectors represent tunes which, although not 
sufficiently similar to any other tune to be connected by an edge, 
are passingly similar to many tunes. Investigation of some 
examples have suggested that this is because the super-
connectors are very long in length. 

The weak linkage is just a product of the layout algorithm: 
lightly weighted edges which join relatively coherent subgraphs 
tend to become very stretched when using force-directed 
placement because the attractive spring in the edge is not 
sufficient to overcome the global repulsive forces between the 
vertices in each subgraph which push the subgraphs apart. 

Fig. 4(l) shows a similar structures for the VMP corpus graph 
although, as the graph is denser, there are more clusters and a 
tangle (centre-left) which the methodology has not managed to 
resolve fully. 

Although none of these datasets are annotated, it is still 
possible to partition the graph in a number of ways and Fig. 4(r) 
shows one such attempt. Here the colours represent meters (4/4, 
2/4, 6/8, etc) and clearly shows that although some tunes in 
different meters can be regarded as similar to each other 
(particularly using the multilevel similarity measure which may 
remove enough of the non-stressed notes to reveal related coarse 
structures), in some subgraphs particular meters dominate. For 
example most of the vertices in the upper left subgraph are 
“salmon” coloured (in this case indicating 6/8 jigs) whilst those 
top right are either “blue” (2/2) or “mediumvoiletred” (4/4). 

Finally Fig. 5(l) shows the visualisation of the Essen dataset 
for T = 1/6. Here it is clear to see that the graph is almost 
certainly too dense for a layout to be computed for reasons 
discussed above. Fig. 5(r) therefore shows the graph for T = 1/4, 
revealing a few clusters, some super-connectors and weak 
linkage, although there is still a tangle, upper right, suggesting a 
large group of tunes that have some similarities between them. 

IV. DISCUSSION, CONCLUSIONS AND FURTHER WORK

The results indicate that there are structures that become
apparent when visualised using the corpus graph methodology 
discussed here. How much these structures reveal is debateable, 

6 http://www.village-music-project.org.uk/ 
7 https://ifdo.ca/~seymour/runabc/esac/esacdatabase.html 



but the differences between, say, the Essen corpus graph with T 
= 1/4 (Fig. 5(r)) and the TheSession and TuneArch graphs with 
T = 1/6 (Fig. 3), demonstrate very clear variances in the 
similarities within each dataset, despite comparable average 
vertex degrees (0.77, 1.14 and 0.73 respectively). 

However, the results do suggest that further work into 
developing an interactive visual exploration tool, with user-
driven zoom features and including score rendering and MIDI 
playing facilities, could be worthwhile. Moreover, as suggested 
in [1], the threshold, T, should be a variable parameter which 
the user could adjust according to their needs. 

ACKNOWLEDGMENT  

The author would like to thank Bob Sturm & Oded Ben-Tal 
for stimulating discussions in the development of this paper. 

REFERENCES 

[1] C. Walshaw, “Constructing Proximity Graphs To Explore Similarities in 

Large-Scale Melodic Datasets,” in 6th Intl Workshop on Folk Music 

Analysis, 2016. 

[2] B. Janssen, P. van Kranenburg, and A. Volk, “Finding occurrences of 

melodic segments in folk songs employing symbolic similarity 

measures,” J. New Music Res., p. (to appear), 2017. 

[3] C. Walshaw, “Tune Classification using Multilevel Recursive Local 

Alignment Algorithms,” in 7th Intl Workshop on Folk Music Analysis, 

2017. 

[4] C. Walshaw, “A Multilevel Algorithm for Force-Directed Graph-

Drawing,” J. Graph Algorithms Appl., vol. 7, no. 3, pp. 253–285, 2003. 

[5] T. Monserrat, J. Pabico, and E. lbacea, “A Hybrid Graph-drawing 

Algorithm for Large, Naturally-clustered, Disconnected Graphs,” Asia
Pacific J. Multidiscip. Res., vol. 2, no. 4, pp. 119–126, 2015. 

[6] C. Walshaw, “A multilevel algorithm for force-directed graph-drawing,” 

J. Graph Algorithms Appl., vol. 7, no. 3, 2003. 

[7] P. van Kranenburg, B. Janssen, and A. Volk, “The Meertens Tune 

Collections : The Annotated Corpus (MTC-ANN) Versions 1.1 and 

2.0.1,” 2016. 

Fig. 2. Corpus graphs for MTC (left) & Morris (right) datasets with T = 1/6 

Fig. 1. Corpus graphs for the MTC dataset with T = 1/8 (left) and T = 1/4 (right) 



Fig. 5. Corpus graphs for the Essen dataset with T = 1/6 (left) and T = 1/4 (right) 

Fig. 4. Corpus graphs for the VMP dataset with T = 1/6 showing it unpartitioned (left) and partitioned by meter (right) 

Fig. 3. Corpus graphs for TheSession (left) & TuneArch (right) datasets with T = 1/6 




