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Abstract  

Timely drying of groundnuts is important after harvest. In most parts of sub-Saharan Africa, 

moisture content reduction is practically achieved by solar drying. In particular, the groundnuts 

are traditionally cured in the field using the inverted windrow drying technique. Recently, the 

Mandela cock technique, a ventilated stack of groundnut plants with a chimney at the center, has 

mailto:alimbikani@gmail.com


2 

 

been introduced in the southern Africa region with the aim of reducing moisture content and the 

risk of aflatoxin contamination. An on-farm study was conducted in Malawi to compare the 

effectiveness of the Mandela cock and Windrow drying techniques with respect to aflatoxin 

control. For two consecutive years, farmers (2016, n=29; 2017; n=26) were recruited to test 

each of the two drying techniques.  A mixed-design ANOVA showed that the Mandela cock 

groundnut drying technique led to significantly (p<0.001) higher aflatoxin levels in groundnut 

seed compared to the traditional inverted windrow drying (5.7 μg/kg , geometric mean  vs 2.5 

μg/kg in 2016 and 37.6 μg/kg vs 8.4 μg/kg in 2017). The present findings clearly demonstrate the 

need for regulation and technology validation if farmers and consumers are to benefit. 
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Introduction  

Aflatoxin contamination in groundnut (Arachis hypogaea), is a serious problem worldwide 

affecting human health and restricting trade in affected products. Aflatoxins are secondary 

metabolites produced mainly by Aspergillus flavus and A. parasiticus and have been linked to 

immunosuppressive, hepatotoxic, carcinogenic, mutagenic, and teratogenic effects in laboratory 

animals (Wong and Hsieh, 1976; Williams et al. 2004; Osward et al., 2005; El-Nahla et al., 2013), 

and the same problems could occur in humans. The aflatoxigenic fungi may invade and 

contaminate the developing groundnut pods with aflatoxin prior to lifting following severe late-

season drought stress (Griffin and Garren, 1976; Dorner et al., 1989; Dorner et al., 1998; Guo et. 

al, 2009), pod damage by insects (Widstrom, 1979) and over maturity (McDonald, 1970; Mehan 

et al., 1986; Dorner et al., 1989). However, in the developing world, most aflatoxin contamination 
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occurs at harvest and during drying and subsequent storage (Wild and Hall, 2000; Williams et al., 

2004; Turner et al., 2005).  Aflatoxin in groundnuts leads to reduced crop yields as contaminated 

seed has to be discarded and farmers receive less income from reduced sales.   

 

In developing countries within the tropics, groundnuts are often harvested under humid, warm and 

rainy conditions.  The majority of farmers lack drying equipment (Matumba et al., 2017a) and rely 

on sun-drying (solar drying), often placing the harvested groundnuts on ground in contact with soil 

where exposure to contamination is much more likely. The groundnuts are often manually lifted  

from the soil with the aid of a hand hoe. The groundnut plants (with pods intact) are then 

windrowed in the field until lower storage moisture levels are achieved. A windrow is a long low 

ridge or line of harvested crop plants, designed to achieve the best conditions for drying. The two 

types of windrow can be described as follows: 1) a random windrow where plants are left to dry 

haphazardly with most of the pods covered by foliage; and, 2) an inverted windrow where the 

plants are inverted to expose the pods to sunlight (Porter and Garren, 1970) (Figure 1).  

 

Drying of groundnuts using the inverted windrow technique was found to be more rapid and less 

favourable for mould development than random windrows  (Porter and Garren, 1970; Porter and 

Wright, 1971). Subsequently, inverted windrows have been advocated by most extension agents 

worldwide. Recently, the Mandela cock1 groundnut drying technique (Figure 2), which involves 

windrowing the groundnuts for a few days followed by stacking of the plants, has been introduced 

in the southern African region and is now in widespread use by small scale groundnut farmers 

                                                           
1 A different spelling (Mandela ‘cork’) exists on the web (African Institute of Corporate 

Citizenship (AICC), 2014; ICRISAT Open Access Repository, 2012). 
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following its dissemination by government and non-government actors. There is limited 

information regarding the origin of the practice and the name. It appears that the name ‘Mandela 

cock’ stems from a haycock, which refers to a small cone-shaped pile of hay that has been left in 

the field until it is dry enough to be carried to the hayrick. The use of a ‘cock’ to dry groundnut is 

highlighted in an FAO groundnut publication of a decade and a half ago as one of the traditional 

groundnut drying techniques employed in Nigeria and certain parts of southern Africa (Nautiyal, 

2002). However, the roots of the ‘Mandela’ prefix are not clear. Perhaps the inclusion of the 

Mandela name is in recognition of the fact that the practice was developed in South Africa.  

 

According to a recently published groundnut instruction manual, the Mandela cock technique 

involves windrowing groundnuts for 1-4 days (to rapidly reduce moisture) followed by 

constructing a circular platform of soil about 1 m in diameter which supports a single layer of 

inverted plants compressed together filling the whole platform (AICC, 2014). Subsequently, more 

bunches of groundnut plants are added horizontally (with pods facing inward) on the periphery of 

the circle leaving a chimney at the center. In each successive layer, the diameter of the chimney is 

reduced and the pods are arranged towards the center of the stack until a maximum height of about 

1.5 m is attained. The chimney is then closed with one or two plants and the stack is left uncovered 

in the field for about 2-4 weeks depending on humidity, temperature and wind movement. 

Proponents of the Mandela cock drying technique claim that it reduces the risk of aflatoxin 

contamination as there is rapid initial moisture reduction from the windrowing step. It is also 

believed that stacking in a cock prevents rain water ingress, although we were unable to find 

evidence to support this view.  
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To address this gap in knowledge the current study was carried out to systematically compare the 

performance of the two techniques (inverted windrow and Mandela cock technique) with respect 

to aflatoxin incidence.  The primary objective was to establish whether there is a difference in the 

total level of aflatoxin in groundnuts dried using the two techniques.  A further aim was to identify 

whether aflatoxin levels differed between years and whether any treatment differences were 

consistent over time.  It is expected that the findings of the study will help to reduce yield losses 

in groundnuts due to rot and aflatoxin accumulation. 

 

Materials and Methods 

Site Selection and Recruitment of Participant Farmers 

A total of 29 randomly selected smallholder farmers  were recruited from Lilongwe (Mpenu and 

Mitundu Extension Planning Areas (EPA), 7 farms), Mchinji (Chiosha EPA, 13 farms) and Dowa 

(Mponera EPA, 9 farms) districts during the 2015/16 growing season (under rain fed conditions). 

The experiment was repeated during the 2016/17 season in 26 farms in Mikundi EPA in Mchinji 

district. The site selection for the 2016/17 growing season was based on logistical reasons and the 

number of participating farms depended on the willingness of the farmers to participate in the 

study. The multi-locational farmer-managed trials were conducted over two growing seasons  in 

order to take into consideration the variability that could arise from diversity of stack architecture 

(chimney diameter, stack height, foliage density), groundnut moisture levels, and environmental 

conditions including field fungal population. 

 

Groundnut Field Establishment and Crop Management 
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Groundnuts of the cultivar Virginia bunch CG 7 (the most popular variety in Malawi which was 

released in 1990) were freely distributed to all participating farmers. Seeds were planted by all the 

farmers with the first planting rains (approximately 20-30 mm). Malawi has one rainfall season 

that stretches from October/December to April/May. Based on the rainfall pattern, in the 2015/16 

growing season, groundnut was planted  between 20 and 22 December 2015, while  during the 

2016/17 growing season, the crop was planted  between 27 and 29 November, 2016.  

 

Agronomic practices recommended for Virginia-type groundnuts were used (Ministry of 

Agriculture, 1993). Soil fungicides and nematicides were not used. Further, no inorganic fertilizers 

were applied as is the practice in Malawi. All these practices were applied by the farmers 

themselves with minimal guidance from the extension worker.  Plants were harvested between 

125–140 days after planting. After harvest the groundnuts were dried in the field using two 

techniques: 1) inverted windrow (hereafter referred to as windrow); and, 2) the Mandela cock 

technique. This was done under the guidance of an extension worker. The crops were harvested in 

May in 2016 and April in 2017, respectively, and the cropping seasons are hereafter referred to as 

‘2016’ and ‘2017’..   

 

In 2016 groundnuts from the two treatments were stripped from the vegetation on the same day on 

each individual farm having been dried in the field for roughly 3 weeks as stipulated in the 

technology instruction manual (African Institute of Corporate Citizenship (AICC), 2014; 

ICRISAT Open Access Repository, 2012). In 2017 the groundnuts from the two treatments were 

stripped from the vegetation at different times as deemed appropriate by the individual farmers.  
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On-farm sampling of groundnuts 

For each treatment, the harvested pods were pooled, mixed thoroughly, and a 5 kg aggregate 

sample was extracted by trained laboratory personnel.  A pair was recorded for each farm. This 

provided 29 paired samples in 2016 and 26 paired samples in 2017. By using paired samples, the 

effect of farm to farm variation in aflatoxin levels on determining differences between the two 

treatments is minimized (Macfadyen et al., 2009; Purtauf et al., 2005). In all cases, aflatoxin was 

extracted from a 25 g test portion drawn from the milled aggregated sample of kernels (5 kg of 

pods yields about 3.5 kg of kernels) in order to reduce sampling error (Whitaker et al., 1974; 1995; 

Giesbrecht and Whitaker, 1998). 

 

Quantification of aflatoxin 

The shelled groundnut samples were measured by VICAM immunoaffinity column cleanup 

coupled with high-performance liquid chromatography and on-line post-column photochemical 

derivatization-fluorescence detection (IAC-HPLC-PCD-FLD). The IAC-HPLC-PCD-FLD 

technique used for aflatoxin analysis was similar to that described by Matumba et al., (2014). 

Limits of quantification of the aflatoxin analytical method were 0.2 μg/kg for aflatoxin B1 (AFB1) 

and AFG1 and 0.1 μg/kg for AFB2 and AFG2. The results for the four individual aflatoxins (AFB1, 

AFB2, AFG1 and AFG2) were presented graphically. However, in most of the discussion, we 

express total aflatoxin as the sum of these analogs.  

 

Statistical Analyses 
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 After a log-transformation to improve normality of the data, the Total Aflatoxins variable was 

subjected to a two-factor mixed-design ANOVA in R (version 3.4.4) to test whether aflatoxin 

accumulation was influenced by the postharvest treatment or the year.  As the two treatments were 

applied to part of the same harvest from each farmer, a paired-sample analysis was used (within-

subject in a multi-factor analysis) for treatment (Windrow or Mandela cock) as the within-subject 

factor. The year was the between-subject factor as, if groundnuts from each farmer were divided 

in two lots for the two postharvest treatments in each year, different farmers were involved in each 

year.  Therefore, the analysis also allowed us to test whether there was an interaction between the 

two factors. 

Results  

With the exception of one sample (dried using the windrow technique, in 2016), all the samples 

from the field experiment contained aflatoxins with levels reaching as high as 799 μg/kg in 

Mandela cock dried groundnuts and 290 μg/kg in windrow dried groundnuts (Table 1). Although 

the ranges of aflatoxin content overlapped between samples dried using windrow and Mandela 

cock in both years (2016 and 2017), the results of the mixed-design ANOVA show that there was 

a large difference between the treatments (p<0.001), and between the years (p<0.001), with 2017 

showing higher levels of total aflatoxins in both treatments, and the Mandela cock showing higher 

levels of total aflatoxins in both years (Table 1). There was no statistically significant interaction 

between year and treatment, meaning that the effect of treatment does not change between the two 

years and conversely, the year effect is consistent regardless of the treatment (Table 2). 

Due to natural variability of aflatoxins, some samples showed very high values (e.g. 799 and 420 

μg/kg). Even after a log transformation, these could normally be considered outliers in statistical 



9 

 

analyses, but had to be kept in the analysis as they are the natural occurrence of aflatoxins. Despite 

the prevalence of a few samples with extremely high aflatoxin content in 2016, the geometric 

means for aflatoxin levels for both treatments were comparatively lower than in 2017. 

Correspondingly, relatively higher proportions of samples (in both the Mandela cock and windrow 

treatments) in 2017 exceeded the regulatory limits. However, treatment-wise, a higher proportion 

of groundnut samples that were dried using Mandela cock than those that were dried using 

windrow exceeded the aflatoxin limit used in Malawi (3 μg/kg), EU (4 μg/kg), most developing 

countries (10 μg/kg), and the USA (20 μg/kg) (Table 1). Notably, 31% and 100% of the samples 

drying using Mandela techniques in 2016 and 2017 respectively exceeded the 10 μg/kg limit. 

Comparatively, less than half of these proportions exceeded 10 μg/kg limit in samples that were 

dried using windrow (Table 1).      

 

Similar to the occurrence pattern or the aflatoxin analogs (AFB1, AFB2, AFG1, and AFG2) 

previously published for maize, groundnuts, pigeon pea and cowpea from Malawi (Matumba et 

al., 2015 and 2017b), AFB1 was the most frequently detected toxin and occurred in all but one 

aflatoxin positive sample. AFG1 was the second most frequently detected toxin and was present in 

84% of aflatoxin positive samples. Further, AFG1 was detected in the aflatoxin positive sample in 

which AFB1 was absent. AFB2 and AFG2 always co-occurred with AFB1 and AFG1, respectively 

and in every case the pattern was AFB1 > AFB2 and AFG1 > AFG2. In 33.6% of the aflatoxin 

positive groundnut samples, AFG1 concentration exceeded AFB1. The mean relative percentages 

to which AFB1, AFB2, AFG1, and AFG2 contributed to the total aflatoxin content (100%) in the 

groundnut samples were 54.6%, 4.0 %, 39.4%, and 2.0%, respectively (Figure 4 and 5).  
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Discussion 

The present farmer-managed experiment compared the performance of Mandela cock and 

windrow groundnut drying techniques with regards to aflatoxin contamination of groundnut seed. 

The study limitations that the study neither measured the moisture of groundnuts during drying 

process nor attempted to optimize the timeliness of field drying and that the windrows and the 

Mandela cocks were manually constructed by the farmers themselves which may have contributed 

to non-uniformity in the way they were constructed, the present findings suggest conclusively that 

the Mandela cock groundnut drying technique results in higher aflatoxin contamination compared 

to the windrow technique. These findings could significantly contribute to the development of 

strategies managing groundnut rot and aflatoxin accumulation during drying under smallholder 

setting, thus reducing yield losses. 

 

It is likely that the higher aflatoxin contamination in Mandela cock treated kernels resulted from 

the humid conditions that occurred during curing in the stack. In the Mandela cock technique, the 

plants are piled up and as a consequence, the pods are not exposed to sunlight. This, coupled with 

poor air circulation, prolongs drying thereby allowing moulds to proliferate.   

 

The effect of light itself on mould proliferation is both complex and unclear. While numerous 

studies have reported an inhibitory effect of light on mould growth (Murdoch et al., 2013; Schmidt-

Heydt et al., 2011; Ray et al., 2009; Bayram et al., 2008; Cotty and Misaghi, 1985; Rotem et al., 

1985; Häggblom and Unestam, 1979), some have showed the promotional effect (Matić et al., 

2013; Fanelli et al., 2012; Oueslati et al., 2010) due to variation in matrice nutritional composition 

(Atoui et al., 2010), temperature (Rotem and Aust, 1991), relative humidity (Atalla et al., 2004) 
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and type of genera or species (Cheong et al., 2016; Atalla et al., 2004). Importantly, in similar 

ways, these conditions influence mycotoxin production of the fungi (Arias et al., 2012; Desmond 

et al., 2008; Xu et al., 2007) including aflatoxin (Klich, (2007). 

 

Data on the effect of light on aflatoxigenic fungi and toxin production during drying of groundnuts 

is sparse. Porter and Garren, (1970) observed a steady reduction of isolation frequency of A. flavus 

during drying of groundnuts in windrows. Similar trends were reported by McDonald and 

Harkness, (1964) and Jackson, (1965). But it is likely that the reduction of the aflatoxigenic fungi 

isolation frequencies resulted from an interactive effect of light and water activity over the drying 

period and not light alone. Do these findings help to explain the significant difference between 

aflatoxin levels in the windrow and the Mandela cock found in the present study?  

 

As is very often the case with aflatoxin measurements, the values recorded in this study were 

highly variable. The relatively low levels of aflatoxin contamination encountered in some samples 

that were dried using the Mandela cock technique indicate that under certain conditions the 

technique may yield groundnuts with acceptable aflatoxin levels. With regard to the small number 

of groundnut samples with exceptionally high levels of aflatoxins in windrowed groundnuts, this 

may have resulted from the contact of groundnut pods with soil or covering by foliage (as was 

noted by farmers in several cases). The lifting and inverting of the groundnut crop was performed 

manually and it is likely to have been imperfect  considering the physical effort involved. This 

could also be due to the fact that the farmers were busy with other activities and were not able to 

devote enough time to do the job with the necessary care. Further, the bunch stature of the Virginia 
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CG 7 variety used in the experiment (20-30 cm tall) led to lodging in high winds and pods came 

into contact with soil.     

 

The comparatively greater aflatoxin contamination problem experienced in 2017 than in 2016, as 

indicated by a higher proportion of groundnut samples exceeding the regulatory limit and revealed 

by the mixed-design ANOVA, was most likely due to the environmental differences between the 

years (Figure 3). Unlike in 2016 when there was no rainfall during drying of groundnuts in the 

field, in 2017 there were multiple episodes of rainfall in April and traces of rainfall in May which 

consequently increased the level of aflatoxin contamination.  

 

Generalized global occurrence ratios of the four aflatoxins (AFB1 + AFB2 + AFG1 + AFG2) 

reported earlier (European Commission EC, 2012; Kensler et al., 2011; Van Egmond and Jonker, 

2004) indicate that AFB1 exceeds half of the sum of the aflatoxins and that AFB2 and AFG2 occur 

in the lowest concentrations. Interestingly, the present unusual aflatoxin profile corroborate 

published aflatoxin occurrence patterns in maize, cowpea,  pigeon pea and groundnut  samples 

from Malawi, with AFG1 found frequently at equal or higher levels than AFB1 (Matumba et al., 

2015, 2017). This pattern is also apparent in peanut butter samples from neighbouring Zambia 

(Matumba et al., manuscript in preparation) and in a publication made on samples from 

neighbouring Mozambique where average AFB1 and AFG1 concentrations were comparable 

(Warth et al., 2012). Until now, aflatoxigenic fungal strains have not been fully characterized in 

Malawi (and the region). It is therefore tempting to speculate that the aflatoxigenic strains 

responsible for such uncommon aflatoxin profiles may be shared with neighboring region, hence 

the similarity of the co-occurrence pattern of the aflatoxin analogs. Similar patterns have been 
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reported in nuts of Brazilian origin (Oliveira et al., 2009; Olsen et al., 2008) where through fungal 

isolation, the authors concluded that the toxins were produced by Aspergillus nomius. 

 

Conclusion and Future Perspectives 

This study has provided the first published data on the efficacy of the Mandela cock technique 

compared with the conventional technique of drying groundnuts in inverted windrows as a means 

of managing aflatoxin contamination in Malawi. It is important to highlight that the study has 

several limitations. First, the windrows and the Mandela cocks were manually constructed by the 

farmers themselves and therefore there may have been lack of uniformity in the way they were 

constructed. However this gave a realistic representation of the situation on the farms. Second, we 

did not measure the moisture of groundnuts and did not attempt to optimize the timeliness of field 

drying.  The groundnuts were either left to dry as stipulated in the manual or this was done at the 

discretion of the farmers. The groundnuts may have been left longer in the field than is necessary 

and this may have contributed towards high aflatoxin contamination. Nonetheless, the findings 

have clearly demonstrated technical flaws in the two drying techniques, particularly in the Mandela 

cock. Based on the findings of the present study is strongly recommended that, before further 

efforts are made to promote the Mandela cock drying technique among groundnut farms across 

Africa, further research be conducted to modify/improve the approach. Considering the high and 

overlapping aflatoxin levels in groundnuts from the Mandela cock and window techniques, a 

search for a more efficient alternative drying techniques is merited. The rainfall pattern has become 

unpredictable in most parts of sub-Saharan Africa, and it is increasingly important that farmers use 

drying techniques that mitigate the risk of aflatoxin contamination by allowing speedy evaporation 
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or reducing the wetting of the nuts; for example, stripping groundnuts and drying them on 

tarpaulins or, where resources allow, using forced air driers.  
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