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Abstract

In order to test whether quantitative traits are under directional or homogenizing selection,

it is common practice to compare population differentiation estimates at molecular markers

(FST ) and quantitative traits (QST ). If the trait is neutral and its determinism is additive,

then theory predicts that QST = FST , while QST > FST is predicted under directional selec-

tion for different local optima, and QST < FST is predicted under homogenizing selection.

However, non additive effects can alter these predictions. Here, we investigate the influence

of dominance on the relation between QST and FST for neutral traits. Using analytical results

and computer simulations, we show that dominance generally deflates QST relative to FST .

Under inbreeding, the effect of dominance vanishes, and we show that for selfing species, a

better estimate of QST is obtained from selfed families than half-sib families. We also com-

pare several sampling design and found that it is always best to sample many populations

(> 20) with few families (5) rather than few populations with many families. Providing

that estimates of QST are derived from individuals originating from many populations, we

conclude that the pattern QST > FST , and hence the inference of directional selection for

different local optima, is robust to the effect of non additive gene actions.
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INTRODUCTION

Understanding the evolutionary forces that shape ecologically important traits among pop-

ulations of the same species is one of the central theme of evolutionary biology research

(Merila and Crnokrak 2001). These forces are first selection, which can homogenize

phenotypes across populations or on the contrary make them diverge because of different

local optima, a phenomenon called local adaptation. But the other micro-evolutionary forces

also affect quantitative traits. These forces are classically mutation, and particularly migra-

tion and random genetic drift. In the absence of selection, these last three forces are the

only one acting on traits at least partly genetically determined (Lande 1992, Whitlock

1999, Hendry 2002). The same forces affect patterns of variation at molecular markers,

hence the idea of comparing statistics obtained from molecular markers and quantitative

traits. Lande (1992) and Whitlock (1999) showed that for a neutral trait with a strictly

additive determinism, differentiation estimated from quantitative traits should be equal to

that estimated from molecular markers. Spitze (1993), using results obtained by Wright

(1951), derived a statistic for quantitative traits equivalent to Wright’s FST (Wright 1969),

statistics that he called QST . Under strict neutrality and additivity, QST = FST . Different

local optima in different populations lead to QST > FST , while selection for the same opti-

mum across populations of the same species lead to QST < FST (Crnorkrak and Merila

2002, McKay and Latta 2002). These predictions for the relation between QST and FST

were confirmed using computer simulations by Le Corre and Kremer (2003) for both

random mating and highly selfing situations.

Merila and Crnokrak (2001) and McKay and Latta (2002) have recently reviewed

the empirical literature on comparisons between differentiation estimates obtained from

quantitative traits and molecular markers. The general pattern that emerges from these

reviews is that quantitative traits are on average more differentiated than molecular markers

despite showing a very large variability.

While these reviews seem to confirm the ubiquitness of local adaptation, the conclusions
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are based on the assumption that the quantitative traits have a purely additive determinism.

Several authors have pointed out that it is crucial to investigate how QST would behave in

the presence of dominance and epistasis at quantitative traits (Whitlock 1999; Le Corre

and Kremer 2003). Lynch et al. (1999) suggested that epistasis would drive QST upwards.

Whitlock (1999) demonstrated that additive by additive epistasis would on the contrary

drive QST downwards, and suggests that dominance could affect QST in either way. Merila

and Crnokrak (2001) and Yang et al. (1996) have also pointed out that inbreeding could

affect the relation between QST and FST .

Lopez-Fanjul et al. (2003) investigated the effect of dominance and epistasis, using a

two loci, two alleles model. They concluded that with dominance, QST < FST for low to

moderate frequency of the recessive alleles, and QST > FST otherwise. Epistasis diminished

QST relative to FST , unless the recessive alleles are very frequent. They therefore concluded

that the comparison between QST and FST should be restricted to purely additive traits.

This would certainly be a strong limitation of this approach, as the genetic determinism

of quantitative traits is seldom understood. They arrived at these conclusions by looking

at the effect on allelic frequencies of a one generation bottleneck of size N = 2. However,

several authors (Robertson 1952, Willis and Orr 1993, Cheverud and Routman 1996,

Naciri-Graven and Goudet 2003, Barton and Turelli 2004) showed that bottlenecks

affect strongly the additive variance within lines. It is thus difficult to conclude wether the

pattern observed by Lopez-Fanjul et al. (2003) is general or specific to the situation where

bottlenecks have occurred in the very recent past.

A second issue touched upon in Lopez-Fanjul et al. (2003) concerns the large errors

in the estimation of FST and particularly QST . This point was already noted in the early

eighties by Rogers and Harpending (1983) who pointed out that ”one polygenic character

contains as much information about population relationships as one single-locus marker”.

As comparisons between QST and FST depend critically on the variance of these statistics, it

seems worthwhile to investigate which sampling scheme minimizes the variance of these esti-
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mators. Sampling design issues have been addressed for FST (Pons and Petit 1995;Pons

and Chaouche 1995), and O’Hara and Merila (2005) have recently investigated the

statistical properties of QST .

The goal of this paper is to characterize the effects of dominance and inbreeding on QST

in the absence of selection. We first obtain analytical results for the expression of QST for

a bi-allelic trait and identify situations in which QST is expected to be larger than FST . As

the analytical results are limited to bi-allelic loci, we use computer simulations to explore

the effect that dominance and inbreeding have on QST , using estimators of QST based (i)

on allele frequency and (ii) on covariance among relatives obtained from classical crossing

designs in common garden experiments. We also explore how the variance of QST is affected

by the experimental design.

METHODS AND RESULTS

The quantities needed in order to obtain the expression for FST and QST are the gene

diversity within populations HS, and overall HT , the variance among populations VB and

the additive variance within populations, VAW .

With these quantities, FST is defined as 1− HS

HT
(Hartl and Clark 1997), while QST is

defined as:

QST =
(1 + f)VB

(1 + f)VB + 2VAW

(1)

(Bonnin et al. 1996), where VB is the among population component of variance for the

trait, and VAW the additive genetic variance within populations. The factor 2 associated

with VAW is due to the fact that for quantitative traits, genotypes are compared, while genes

are compared when computing FST (Lynch and Spitze 1994).

Consider a locus with 2 alleles, A and B, with respective frequencies pi and qi = 1 − pi

in population i . We will use the notation of Falconer (Falconer and MacKay 1996) for

genotypic value. Under regular inbreeding, genotypic values and frequencies of the different
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genotypes are given in table 1.

[Table 1 about here.]

Gene diversity within population HS depends only on allelic frequencies. It writes:

HSi = 2piqi = 2(pi − p2
i ).

Overall diversity HT writes as:

HT = 2p̄q̄,

where p̄ =
∑n

i=1
pi

n
is the average frequency of the recessive allele A.

FST is defined as:

FST =
HT −HS

HT

(2)

The variance among populations of trait means, VB is defined as:

VB =
1

n

∑
M2

i − (M)2

where Mi , the mean trait value in population i can be written (qi− pi)a + 2piqi(1− f)d.

After replacement and simplifications, VB becomes:

VB = 2a2(HT −HS)− 4ad(1− f)Cov(p, HS) + d2(1− f)2V (HS) (3)

While under pure additivity, VB is proportional to HT − HS (and therefore to the first

and second moments of allele frequencies), in the presence of dominance VB becomes a

complex function of higher moments of allele frequencies. The effect of dominance depends

on allelic frequencies and gene diversity. When the recessive allele is frequent (p̄ > 0.5),

the covariance term is negative and VB increases compared to the case without dominance.

7



When the recessive allele is rare (p̄ < 0.5), VB increases providing that β(p, HS) > d
4a

, where

β(p, HS) is the slope of the regression of the frequency of the recessive allele on HS.

Finally, we seek within population additive variance. For nl loci, additive variance is

quantified as VA = 2
∑nl

j=1

∑nk
i=1 pijeijαij (Lynch and Walsh 1998), where eij represents the

average excess of allele i at locus j and αij the average effect of allele i at locus j. For one

locus, following Templeton (1987), we obtain:

ei
A = (pi + qif)(−a−Mi) + qi(1− f)(d−Mi) = (pi + qif)(−a) + qi(1− f)d−Mi

ei
B = (pi(1− f)(d−Mi) + (qi + pif)(a−Mi) = (pi(1− f)d + (qi + pif)a−Mi

αi
j = ei

j/(1 + f), j ∈ (A, B) (4)

Expression for the additive variance within population i is then:

V i
A = 2(piα

i
Aei

A + qiα
i
Bei

B) =
2

1 + f
(pi(e

i
A)2 + qi(e

i
B)2)

which, after replacement and simplifications gives:

V i
A =

2piqi

(1 + f)
[(1 + f)a− (1− f)(qi − pi)d]2

V i
A =

HSi

(1 + f)
[(1 + f)a− (1− f)(qi − pi)d]2

For a number n of populations, the expression becomes:

VAW =
1

n(1 + f)

n∑
i=1

HSi ((1 + f)a− (1− f)(qi − pi)d)2 (5)

From this expression we see that dominance decreases the additive variance within pop-

ulations when the recessive allele is rare (p < 0.5), while it increases it when the recessive
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allele is frequent. This is easily understood since when the recessive allele is rare, it will

be found mainly in heterozygote which do not differ much in phenotype from the dominant

homozygote.

The expression for QST is obtained by replacing VAW and VB in equation (1).

From equations (3) and (5), we see that inbreeding diminishes the contribution of dom-

inance to both VB and VAW . Thus, as inbreeding increases, the effect of dominance on

QST diminishes, and, unless d � a, dominance will have little effect on QST under strong

inbreeding.

The expression of QST for specific cases are listed below:

• No dominance, ∀f

In the absence of dominance (d = 0), VAW reduces to:

VAW =
a2(1 + f)2

n(1 + f)

∑
HSi = a2(1 + f)HS

while VB takes expression:

VB = 2a2(HT −HS).

and QST becomes:

QST d→0 =
2(1 + f)a2(HT −HS)

2(1 + f)a2[(HT −HS) + HS]
= FST

• Overdominance (no additivity), ∀f

When a = 0, expression for VB and VAW become

VB = d2(1− f)2V (HS)
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and

VAW =
d2(1− f)2

(1 + f)

(
HS −

2

n

∑
(HSi)

2
)

=
d2(1− f)2

(1 + f)

(
HS − 2HS

2 − 2V (HS)
)

and QST becomes:

QST a→0 =
(1 + f)2V (HS)

((1 + f)2 − 4)V (HS) + 2HS(1− 2HS)

This is clearly very different from FST (equation 2)

• f = 0

The expression for QST does not simplify greatly when f = 0, as it remains a function

of a, d, HT , HS and p:

QST f→0 =
2a2(HT −HS)− 4adCov(p, HS) + d2V (HS)

2a2HT − 4adCov(p, HS)− 3d2V (HS) + 2d2HS(1− 2HS)

• f = 1

When f = 1, since the dominance term d comes as a product with (1− f) in VB and

VAW , it disappears altogether from their expressions and therefore also from that of

QST , as expected. Thus, QST f→1 = FST , ∀(a, d).

As we have seen, the expression for QST in the presence of dominance and inbreeding is not

simple. In order to gain a better understanding of its effect, we start with a two populations

system and first show contour plots for FST , QST and the difference (QST − FST ) for a trait

encoded by one locus and two alleles as a function of the frequency of the recessive allele in

two populations.
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For a purely additive determinism, FST = QST and the difference QST −FST is therefore

equal to zero for all points of the allele frequency space.

[Figure 1 about here.]

Figure 1 shows the contour plots for the case a = 1, d = 1 and f = 0. FST (represented

in panel A) is null when the frequency is the same in the two populations, and increases as

allele frequencies diverge between the two populations, to reach a maximum of one when one

allele is fixed in the first population and the other allele is fixed in the second.

The contour plot for QST is shown in panel B. When the allele frequencies are the same

in the two populations, QST is null, as expected. Difference in allele frequencies when the

recessive allele is rare in the two populations brings less changes in QST than FST . The effect

of a difference in allele frequency increases as the recessive allele increases in frequency in

both populations. When looking at the difference QST − FST (panel C) we observed that

the difference is negative in the lower left part of the panel (when the recessive allele is rare

in both populations), while it is positive on the upper right part (when the recessive allele

is frequent). The negative area is larger than the positive one, and this is confirmed by

integrating over the surface of allele frequencies: averaged over the allele frequency space,

QST = 0.162 while FST = 0.186. Thus, the expected difference between QST and FST when

there is dominance is negative.

[Figure 2 about here.]

Figure 2 shows a contour plot of the difference between QST and FST for different levels

of dominance and inbreeding. Panel A and B represents the case a = 1, d = 1 seen in Figure

1. f = 0 for panel A and this is therefore the same as panel C of Figure 1. In panel B,

f = 0.8, and we see that the difference between QST and FST vanishes. It is ten-fold lower

than with no inbreeding. And the mean value for QST is now 0.185, very close to the average

FST (= 0.186).
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Panel C and D of figure 2 represent the case of strict overdominance (a = 0; d = 1).

With strict overdominance and f = 0, a large area covering the secondary diagonal is

negative (panel C), and a much smaller portion of the contour plot has positive values for

the difference. When integrating over the surface, the average QST is 0.09. Therefore, with

strict overdominance, QST is on average much lower than FST . With f = 0.8 (panel D), the

area where the difference between QST and FST is negative reduces drastically while that

where it is positive increases. And indeed, average QST when f = 0.8 is 0.186, as is average

FST . High inbreeding therefore cancels out the effect of overdominance on QST .

Computer simulations With many loci and alleles, analytical results become intractable

when there is dominance and inbreeding. We therefore used computer simulations to generate

data under different levels of population structure, inbreeding and trait determinism. Two

types of simulations were used, one based on allele frequencies and the other on individuals.

Allelic frequencies

• First we drew allelic frequencies from Dirichlet distributions (Kingman 1977). Overall

allelic frequencies [p] is a vector with its element obtained from a Dirichlet distribution

of parameter 1, equivalent to a uniform distribution. To obtain frequencies at each

locus in the different populations, a Dirichlet distribution with parameter 2Nm[p],

where Nm is the number of migrants between population, was used (Beaumont

2005).

• From these allele frequencies, FST was obtained classically as 1 − HS

HT
, where HS =∑n

i=1
(1−

∑nl

j=1

∑nk

k=1
p2

ijk)

n
. Similarly, HT was estimated as 1−∑nl

j=1

∑nk
k=1 p2

jk, where pjk is

the realized overall allele frequency pjk =
∑n

i=1
pijk

n
(i.e., it is not the original theoretical

frequency [p] from the Dirichlet distribution). To account for bias due to the number

of samples, HT
′ = n

n−1
(HT − HS) + HS (Nei 1987) was used instead of HT in the

expression of FST .
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• Traits were encoded by ten ten-allelic loci. Trait values were simulated by assigning to

each allele at each locus an additive value drawn from a normal distribution. Similarly,

to obtained dominance effect of each genotype, a value drawn from a normal distrib-

ution was assigned to the dominance deviation of the genotype. The sum of the two

additive effects and the dominance deviation gives the genotypic value of this genotype

at the locus considered. Genotypic values for multi-locus genotypes are obtained by

summing the contributions of the individual loci, since we assume no epistasis. We also

used exponential distributions instead of normal to draw additive value and dominance

deviations, but this did not alter the results.

• Once all these values are assigned, the within population additive variance is estimated

as VAw = 2
∑nl

j=1

∑nk
i=1 pijeijαij (Lynch and Walsh 1998), with expressions for eij and

αij given above (equation 4); and the among population variance of trait mean is

simply that. QST estimated this way is denoted QST
p where p stands for parent. Note

that QST
p cannot be estimated in experimental situations, as one would need allelic

frequencies for all alleles contributing to the trait and the genotypic values for all

genotypes.

[Figure 3 about here.]

Figure 3 shows the relation between FST and QST
p for pure additivity (panels A and B),

dominance (panels C and D) and super dominance (panel E and F) under no inbreeding

(panels A, C and E) or strong inbreeding (f = 0.8, panels B, D and F).

Under strict additivity, QST
p = FST , as expected, and independently of the inbreeding

coefficient. For traits with dominance and under random mating (Figure 3 panel C), QST

becomes lower than FST on average, and this tendency increases as populations get more

structured. But this effect disappears in inbred populations (Figure 3 panel D). With strict

overdominance and under random mating (panel E), the pattern observed with dominance

is enhanced, and QST
p is much lower than FST , the more so for very structured populations.
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With selfing and strict overdominance (Figure 3 panel F), QST
p is larger than FST for weakly

structured populations, and lower for those that are strongly structured.

The results presented in Figure 3 are for simulations with 10 populations. The effect of

the number of populations involved is presented in Figure 4, where only the situation with

purely additive traits under random mating is presented. This figure shows very clearly that

with two populations (panel A), the variance among replicates is huge, still large with 5

populations (panel B), and much smaller with 50 populations (panel D).

[Figure 4 about here.]

Individual Based Model The results just presented are for a theoretical situation where both

allele frequencies at all loci involved in the trait and genotypic values for all genotypes are

known, but this is never the case. When experimentalists estimate QST , they use covariance

among relatives to estimate additive variance rather than the allele frequencies at the loci

underlying the trait, since these loci are generally unknown. In order to mimic this real

situation we used an Individual Based Model with the following features:

• We used Easypop (Balloux 2001) to generate genotypes from an individual based

finite island model, where islands exchange migrants at a fixed rate m, constant among

populations and across generations. For all the simulations, population size N was fixed

at 50 hermaphroditic individuals, the number of populations n was also fixed at 50.

For each individual, 100 loci with 20 allelic states each were simulated. The mutation

rate was fixed at 0.001 and followed a KAM. Simulations were ran for 500 generations,

at which point FST had reached its equilibrium value for all levels of migrations. These

were fixed at 0.002, 0.005, 0.01, 0.02, 0.05, 0.1 and 0.2, corresponding to Nm values of

0.1, 0.25, 0.5, 1, 2.5, 5 and 10 respectively. Two selfing rates were used, either 0 or 0.8.

Genotypes of the last generation were stored for further processing.

• Traits were encoded as in the simulations on allelic frequencies, by assigning additive
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values drawn from a normal distribution to each allele at each locus and dominance

deviation to each genotype.

• To estimate FST we used the genotypes at the trait loci of the parents, and calcu-

lated FST using the method of Weir and Cockerham (1984) implemented in Fstat

(Goudet 1995). To estimate QST
o (where o stands for offspring), we proceeded as

follows: a number of parents were chosen from each population of the island model.

From these parents, a number of half-sib families (one male mated to ten different

females) was established, with 10 offspring each (one offspring per female). We used

either the full data set (10 individuals from 50 families from 50 populations, a total of

25000 individuals) or subsamples of 1000 offsprings from each data set, using different

sampling scenarios presented in table 2.

[Table 2 about here.]

These experimental sampling designs are similar to those used in several studies esti-

mating QST
o, with total number of individuals in the 1000 ( e.g. Lynch et al. 1999,

Morgan et al. 2005, Palo et al. 2003, Spitze 1993). Often however, the total num-

ber of individuals used to infer QST is less than 1000 (e.g. Bonnin et al. 1996, Petit

et al. 2001, Steinger et al. 2002).

• A classical nested ANOVA was used to estimate the different variance components.

VAW is estimated as four time the among family component of variance Vfam, while VB

is simply the among population variance component.

Figure 5 shows the relation between FST and QST
o for additive (panels A and B), dom-

inant (panels C and D) and superdominant (panels E and F) traits, for random mating

(panels A, C and E) and selfing (panel B, D and F). For all panels of Figure 5, estimation

of QST
o is based on 50 families of 10 half-sibs from 50 populations. Under strict additivity
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(panel A and B), QST
o = FST , and there is no difference between random mating and self-

ing populations. The observed pattern is congruent with that obtained for QST
p (Figure 3,

panels A and B).

For traits with dominance (Figure 5, panels C and D), QST
o ≤ FST , and the difference

increases as population structure increases. This is observed both for random mating and

selfing populations, and there seems to be very little differences in QST
o between the two

mating systems.

Last, panels E and F of Figure 5 show the effect of overdominance. Here, the pattern ob-

served with dominance (a lower QST
o than FST , and the difference increasing with population

structure) is amplified.

[Figure 5 about here.]

Effect of the crossing design. We have seen that with allele frequency based estimates

of QST , the effect of dominance on QST
p disappears as selfing increases (Figure 3 panel D),

but when QST is estimated with a half-sib design, the pattern QST
o < FST remains (Figure 5

panel D). However, the half-sib design is likely to unduly inflate additive variance estimates

for a species that commonly self, and for strongly selfing species, experimentalists often

use selfed progeny to estimate the different genetic variance components and hence QST

(e.g. Bonnin et al. 1996; Steinger et al. 2002). With a selfed progeny design, additive

variance cannot be singled out from dominance variance, but for a high selfer, dominance

variance is not naturally expressed as homozygous genotypes are transmitted intact to the

next generation. With selfed progeny, QST is estimated as
σ2

B

σ2
B+σ2

Fam
, which amounts to

assume complete selfing (see equation 1).

Using individual based simulations with high selfing rate (s = 0.889 f = 0.8), we com-

pared estimates of QST obtained from either half sibs or selfed progenies. Figure 6 shows

the results. Panels on the left of Figure 6 were obtained using a classical half-sib design,

while those on the right were obtained using a selfing design. With pure additivity (panel
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A and B), the two crossing designs give equivalent results. With dominance, estimates of

QST obtained from a selfed design (panel D), are slightly lower than, but closer to FST than

those obtained from a half-sib design (panel C). This is particularly true for populations that

are strongly structured. Hence, when the species under scrutiny is mainly selfing, estimates

of QST obtained from selfed progeny are less influenced by dominance, thus preferable, to

estimates obtained from a half-sib design. Another advantage of the selfing design is that

it does not require a precise assessment of the inbreeding coefficient of the population (a

pre-requisite for the half-sib design).

Last, panels E and F of Figure 6 show the effect of the crossing design on traits that are

purely overdominant. Panel E shows that under strict overdominance, QST is even lower than

under dominance when QST is estimated from a half-sib design in a species with high selfing.

If selfed progeny are used instead of half-sib, QST does not differ from zero whatever the level

of population structure. This is expected, as under overdominance, homozygote genotypes all

have the same trait value. Selfed progeny from highly selfed parent are strongly homozygous

in all populations, and therefore traits means is also identical among populations. Note

that this is an artefact of having strict overdominance (i.e, the complete absence of additive

effects).

[Figure 6 about here.]

Sampling strategies. The effect of different sampling strategies on estimation of QST
o is

shown on Figure 7. The box-plot representation gives a fair idea of the distribution of QST
o

under these four sampling strategies. The worst scenario is strategy A (50 families of 10

individuals in 2 populations), which shows the largest variance for all levels of population

differentiation and a negative bias that increases in magnitude as differentiation increases.

Strategies C (20 populations) and D (40 populations) are best overall, with strategies

C being slightly better for low structure and strategies D better for high structure. For

scenarios C and D, the interquartile range is very similar to that under exhaustive sampling
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(labelled T on Figure 7).

[Figure 7 about here.]

DISCUSSION

While dominance can theoretically either increase or decrease QST relative to its expectation

under strict additivity, we have shown that, on average, dominance decreases the value of

QST , and the more differentiated the populations, the stronger the effect. Thus, we conclude

that dominance is unlikely to cause the pattern QST > FST . Since this pattern was also

shown to be unlikely under epistasis (Whitlock 1999, Lopez-Fanjul et al. 2003), we

argue that when QST is larger that FST , it is a good indicator of the presence of directional

selection for different local optima. QST < FST , on the other hand, could be the result of

several factors other than homogenizing selection.

These results contrast with those obtained by Lopez-Fanjul et al. (2003), who found

that the effect of dominance would more often increase QST relative to FST than the re-

verse. There may be several reasons for this. First, Lopez-Fanjul et al. (2003) focused

on populations that just underwent a severe bottleneck, and bottlenecks are known to alter

(increase or decrease) the genetic variance both within and between lines (Robertson 1952,

Willis and Orr 1993, Cheverud and Routman 1996, Naciri-Graven and Goudet

2003, Barton and Turelli 2004). Second, to compare FST and QST , they did not use the

allele frequencies at the loci coding for the trait as we did here, but used the expectation of

the inbreeding coefficient among recently bottlenecked populations. Third, they looked at

the effect of a one generation bottleneck of 2 individuals, which would correspond to an FST

of 0.25 on average and did not investigate (as we did here) a range of population structure.

Note that we also find situations in which QST > FST , when the recessive allele is very

common in most populations. But this situation is unlikely to be found frequently in nature,

as recessive alleles are often deleterious, thus under the action of purifying selection, and

therefore, at low frequencies (Naciri-Graven and Goudet 2003, Barton and Turelli
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2004).

In general, empirical studies tend to find QST > FST (see reviews in Merila and

Crnokrak (2001) and McKay and Latta (2002)). Can we conclude from this pattern

that directional selection is in action? Our results show that non-additive gene actions are

not the likely culprits, but other biases could produce this pattern:

• Hendry (2002) pointed out that mutation is also likely to alter the relation between

QST and FST . The deflating effect of large mutation rate on FST is well known

(Hedrick 1999; Balloux et al. 2000). If QST is less sensitive to mutation than

FST , or if mutation rate at trait loci is lower than at marker loci, then the mutation

rate in itself can create the pattern expected under the action of directional selection.

On the other hand, the mutation rate on a quantitative trait coded by several loci

might be larger than that of one molecular marker. Thus, we concur with Hendry

(2002): the potential effect of mutation rate on the relation between FST and QST

deserves a thorough investigation.

• The large variance in QST estimates based on few populations (and in many field situ-

ations, only a few populations are available) limits the statistical power of a test of the

relation FST = QST . O’Hara and Merila (2005) recently investigated the statistical

properties of estimators of QST , and came to the same conclusion: with less than a

dozen populations, the variance in QST is huge. We showed that this is particularly

the case for very differentiated populations (FST > 0.2). With less differentiation, the

problem seems less acute. We also showed that with few populations, estimates of

QST seem to be biased downward. Thus, the pattern QST > FST is unlikely due to

a statistical artifact. Note that these arguments are only verbal, and more work is

clearly necessary to refine the statistical tools available. In particular, our investiga-

tion of the effects of the sampling strategies needs to be pursued: we modelled traits

that are purely genetically determined, and the effect of environmental variance on the

19



precision of QST estimates is not known, but is likely to inflate the variance of QST .

• It would be interesting to investigate the behaviour of QST under the joint action of

selection and dominance. If the effect of dominance is just to hide recessive deleterious

alleles, then recessive alleles will be rare and we saw that this is a situation where QST

is less than FST . Hence, the presence of deleterious recessive alleles should tend to

make QST even lower than FST . If both purifying selection and directional selection

for different optima is occurring, the deflating effect of dominance on QST might cancel

out the enhancing effect of directional selection. Hence, the pattern QST = FST might

reflect the joint action of these two selective forces rather than the absence of selection.

A similar investigation on the effect of epistasis is also necessary.

CONCLUSIONS

Despite these caveats and shortcomings, we have clearly shown that the pattern QST > FST

is unlikely for neutral traits with non-additive gene action. Importantly, we have also shown

that estimates of QST are only reliable if based on many sampled populations. Providing

that this is the case, the comparison between QST and FST will remain useful in documenting

the presence (or not) of local adaptation.
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Figure 3: QST
p versus FST for a trait coded by 10 10-allelic loci. Additive effects and

dominance deviation are drawn from a normal distribution. For all panels, n = 10. Panel A,
C and E: f = 0; panel B, D and F f = 0.8. Panel A and B: purely additive trait; Panel C
and D: dominant trait; panel E and F: overdominant trait. Means based on 100 replicates.
FST and QST

p are calculated as ratio of sums rather than the sums of ratios. Error bars
represents ±1 standard deviation. The solid line is the line of equality between FST and
QST
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Figure 4: QST
p versus FST for a trait coded by 10 10-allelic loci. For all panels, purely

additive traits and no inbreeding. Panel A: n = 2; panel B: n = 5; panel C: n = 10; panel
D: n = 50. Means based on 100 replicates. FST and QST

p are calculated as ratio of sums
rather than the sums of ratios. Error bars represents ±1 standard deviation. The solid line
is the line of equality between FST and QST
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Figure 5: QST
o as a function of FST for different trait determinism and two levels of selfing.

Estimation of QST
o based on 50 families of 10 half-sibs from 50 populations. Additive and

dominance effect were drawn from a normal distribution. Panel A, C and E: random selfing.
Panel B, D and F: s=0.8; panel A and B: additive traits; Panel C and D traits with both
additivity and dominance. Panel E and F: overdominant traits
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Figure 6: Effect of the crossing design used to infer QST . For all panels, s = 0.889 (f = 0.8),
and sampling is exhaustive. Panel A, C and E: variance components were estimated using a

true half-sib design. For this design, QST was estimated as QST =
(1+f)σ2

B

(1+f)σ2
B+8σ2

Fam
. Panel B,

D and F: variance components were estimated using 10 selfed offspring for each individual.

For this design, QST was estimated as QST =
σ2

B

σ2
B+σ2

Fam
. Panel A and B: purely additive trait.

Panel C and D: dominant trait. Panel E and F: overdominant trait (no additivity).
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Figure 7: Effect of different sampling strategies on QST
o estimation for four different levels

of population structure. The trait is purely additive and s = 0. For each of the four levels of
population structure, leftmost box-plot (labelled T): exhaustive sampling (50 half-sib families
of 10 individuals from 50 populations. The other four sampling schemes are based on a total
of 1000 individuals. From left to right A: 50 families of 10 individuals from 2 populations;
B: 20 families of 10 individuals from 5 populations; C: 10 families of 5 individuals from 20
populations; D: 5 families of 5 individuals from 40 populations. The long horizontal black
segments are drawn at the expected value of FST . Boxes correspond to the interquartile
range and the small horizontal black segments give the median of QST
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Genotype AA AB BB
Genotypic value −a d a

Frequency in pop i p2
i + piqif 2piqi(1− f) q2

i + piqif

Table 1: Genotypes, their genotypic values and frequencies in a population with inbreeding
coefficient f due to regular inbreeding
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Name Populations Families Individuals
T 50 50 10
A 2 50 10
B 5 20 10
C 20 10 5
D 40 5 5

Table 2: Sampling designs used to infer QST
o. Sampling designs A-D consist of 1000 indi-

viduals in total
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