
Multilevel Mesh Partitioning for Optimising Domain Shape

C. Walshaw
�
, M. Cross

�
, R. Diekmann

�
and F. Schlimbach

��
School of Computing and Mathematical Sciences,

University of Greenwich, London, SE18 6PF, UK;�
Department of Computer Science, University of Paderborn,

Fürstenallee 11, D-33102 Paderborn, Germany.
email: C.Walshaw@gre.ac.uk

Mathematics Research Report 98/IM/38

July 24, 1998

Abstract

Multilevel algorithms are a successful class of optimisation techniques which address the mesh parti-
tioning problem. They usually combine a graph contraction algorithm together with a local optimisation
method which refines the partition at each graph level. To date these algorithms have been used almost
exclusively to minimise the cut-edge weight in the graph with the aim of minimising the parallel commu-
nication overhead. However it has been shown that for certain classes of solution algorithm, the conver-
gence of the solver is strongly influenced shape or aspect ratio of the subdomains. In this paper therefore,
we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several
variants of the algorithms are tested and shown to provide excellent results.

Keywords: graph-partitioning, mesh-partitioning, multilevel algorithms, aspect ratio, domain decom-
position preconditioning.

1 Introduction

The need for mesh partitioning arises naturally in many finite element (FE) and finite volume (FV) applica-
tions. Meshes composed of elements such as triangles or tetrahedra are often better suited than regularly
structured grids for representing completely general geometries and resolving wide variations in behaviour
via variable mesh densities. Meanwhile, the modelling of complex behaviour patterns means that the prob-
lems are often too large to fit onto serial computers, either because of memory limitations or computational
demands, or both. Distributing the mesh across a parallel computer so that the computational load is evenly
balanced and the data locality maximised is known as mesh partitioning. It is well known that this problem
is NP-complete, so in recent years much attention has been focused on developing suitable heuristics, and
some powerful methods, many based on a graph corresponding to the communication requirements of the
mesh, have been devised, e.g. [12].

A particularly popular and successful class of algorithms which address this mesh partitioning problem
are known as multilevel algorithms. They usually combine a graph contraction algorithm which creates a
series of progressively smaller and coarser graphs together with a local optimisation method which, start-
ing with the coarsest graph, refines the partition at each graph level. To date these algorithms have been
used almost exclusively to minimise the cut-edge weight, a cost which approximates the total communi-
cations volume in the underlying solver. This is an important goal in any parallel application, in order to
minimise the communications overhead, however, it has been shown, [19], that for certain classes of solu-
tion algorithm, the convergence of the solver is actually heavily influenced by the shape or aspect ratio (AR)
of the subdomains. In this paper therefore, we modify the multilevel algorithms (the matching and local
optimisation) in order to optimise a cost function based on AR. We also abstract the process of modification

1

in order to suggest how the multilevel strategy can be modified into a generic technique which can optimise
arbitrary cost functions.

1.1 Domain decomposition preconditioners and aspect ratio

To motivate the need for aspect ratio optimisation we consider the requirements of a class of solution tech-
niques. A natural parallel solution strategy for the underlying problem is to use an iterative solver such as
the conjugate gradient (CG) algorithm together with domain decomposition (DD) preconditioning, e.g. [2].
DD methods take advantage of the partition of the mesh into subdomains by imposing artificial boundary
conditions on the subdomain boundaries and solving the original problem on these subdomains, [4]. The
subdomain solutions are independent of each other, and thus can be determined in parallel without any
communication between processors. In a second step, an ‘interface’ problem is solved on the inner bound-
aries which depends on the jump of the subdomain solutions over the boundaries. This interface problem
gives new conditions on the inner boundaries for the next step of subdomain solution. Adding the results
of the third step to the first gives the new conjugate search direction in the CG algorithm.

The time needed by such a preconditioned CG solver is determined by two factors, the maximum time
needed by any of the subdomain solutions and the number of iterations of the global CG. Both are at least
partially determined by the shape of the subdomains. Whilst an algorithm such as the multigrid method as
the solver on the subdomains is relatively robust against shape, the number of global iterations are heavily
influenced by the AR of subdomains, [18]. Essentially, the subdomains can be viewed as elements of the
interface problem, [7, 8], and just as with the normal finite element method, where the condition of the
matrix system is determined by the AR of elements, the condition of the preconditioning matrix is here
dependent on the AR of subdomains.

1.2 Related work

The idea of optimising AR in order to maintain scalability in the solver was first developed by Farhat et
al., [7, 8]. This was backed up by Vanderstraeten et al. who showed that partitioning for cut-edge weight
was not necessarily the most appropriate optimisation for every solver [18, 19]. However the field of mesh
partitioning has changed somewhat since this work was carried out and although other more recent work
exists which takes AR into account, e.g. [5, 6, 17], our aim in this paper is to extend the ideas in the light
of recent developments in mesh partitioning technology and incorporate AR optimisation into a multilevel
strategy.

1.3 Overview

Below, in Section 2, we introduce the mesh partitioning problem and establish some terminology. We then
discuss the mesh partitioning problem as applied to AR optimisation and describe how the graph needs
to be modified to carry this out. Next, in Section 3, we describe the multilevel paradigm and present and
compare three possible matching algorithms which take account of AR. In Section 4 we then describe a
Kernighan-Lin (KL), [15], type iterative local optimisation algorithm and describe four possible modifica-
tions which aim to optimise AR. Finally in Section 5 we compare the results with a cut edge partitioner,
suggest how the multilevel strategy can be modified into a generic technique and present some ideas for
further investigation.

The principal innovations described in this paper are:� In
�
2.2 we describe how the graph can be modified to take AR into account.� In
�
3.2 we describe three matching algorithms based on AR.� In
�
4.3 we describe four ways of using the cost function to optimise for AR.� In
�
4.5 we describe how the bucket sort can be modified to take into account non-integer gains.

2

2 The mesh partitioning problem

To define the mesh partitioning problem, let �����	��
����� be an undirected graph of vertices
 , with edges� which represent the data dependencies in the mesh. For the purposes of this paper we assume that
each graph vertex represents a mesh element and that graph edges arise from elements that are adjacent
in the sense of sharing an element face. We assume that both vertices and edges can be weighted (with
positive integer values) and that � ��� denotes the weight of a vertex � and similarly for edges and sets of
vertices and edges. Given that the mesh needs to be distributed to � processors, define a partition � to
be a mapping of
 into � disjoint subdomains ��� such that ����������
 . To evenly balance the load, the
optimal subdomain weight is given by �! "�$#%�&
'� ()��* (where the ceiling function #,+�* returns the smallest
integer -�+) and the imbalance is then defined as the maximum subdomain weight divided by the optimal
(since the computational speed of the underlying application is determined by the most heavily weighted
processor).

The definition of the mesh-partitioning problem is to find a partition which evenly balances the load or
vertex weight in each subdomain whilst minimising some cost function . . Typically this cost function is
simply the total weight of cut edges, but in this paper we describe a cost function based on AR. A more
precise definition of the mesh-partitioning problem is therefore to find � such that ���0/ � and such that .
is minimised.

2.1 The aspect ratio and cost function

We seek to modify the methods by optimising the partition on the basis of AR rather than cut-edge weight.
In order to do this it is necessary to define a cost function which we seek to minimise and a logical choice
would be 13254 � AR �6� � � , where AR �,� � � is the AR of the subdomain � � . However maximum functions are
notoriously difficult to optimise (indeed it is for this reason that most mesh partitioning algorithms attempt
to minimise the total cut-edge weight rather than the maximum between any two subdomains) and so
instead we choose to minimise the average AR. AR �87 � AR �6� � �� 9 (1)

There are several definitions of AR, however, and for example, for a given polygon S, a typical defini-
tion, [16], is the ratio of the largest circle which can be contained entirely within S (inscribed circle) to the
smallest circle which entirely contains S (circumcircle). However these circles are not easy to calculate for
arbitrary polygons and in an optimisation code where ARs may need to be calculated very frequently, we
do not believe this to be a practical metric. It may also fail to express certain irregularities of shape. A
careful discussion of the relative merits of different ways of measuring AR may be found in [17] and for the
purposes of this paper we follow the ideas therein and define the AR of a given shape by measuring the
ratio of its perimeter length (surface area in 3d) over that of some ideal shape with identical area (volume
in 3d).

Suppose then that in 2d the ideal shape is chosen to be a square. Given a polygon � with area :;� and
perimeter length <�� , the ideal perimeter length (the perimeter length of a square with area :;�) is =�> :;�
and so the AR is defined as <��?(5=@> :;� . Alternatively, if the ideal shape is chosen to be a circle then the
same argument gives the AR of <A�?(CB > �?:;� . In fact, given the definition of the cost function (1) it can be
seen that these two definitions will produce the same optimisation problem (and hence the same results)
with the cost just modified by a constant D (where D��$EF(5= for the square and EF()B > � for circle). These
definitions of AR are easily extendible to 3d and given a polyhedron � with volume :;� and surface area<�� , the AR can be calculated as D�<A�?(��,:;�G�%H�IKJ , where DL�MEN(O= if the cube is chosen as the optimal shape
and D8�PEF()�RQSIKJUT)H�IKJ for the sphere. Note that henceforth, in order to talk in general terms for both 2d & 3d,
given an object � we shall use the terms <�� or surface for the surface area (3d) or perimeter length (2d) of
the object and :;� or volume for the volume (3d) or area (2d).

Of the above definitions of AR we choose to use the circle/sphere based formulae since they guarantee
that the aspect ratios of any shape are -�E . This gives a convenient formula for the cost function of:. template � ED 7 � <�� ��,:;� � �CVKW�XV (2)

3

where D���� XV �,BCY�� VKW�XV � and Y (�LB or Z) is the dimension of the mesh. We refer to this cost function as. template or .\[because of the way it tries to match shapes to chosen templates.
In fact, it will turn out (see for example

�
3.2) that even this function may be too complex for certain

optimisation needs and we can define a simpler one by assuming that all subdomains have approximately
the same volume, :;�@�^]_:;`a()� , where :;` is the total volume of the mesh. This assumption may not
necessarily be true, but it is likely to be true locally (see

�
4.4). We can then approximate (2) by. template] EDcb 7 � <A��� (3)

where D b �d�,�?��� XV �6B)Y�:;`�� VKW�XV . This can be simplified still further by noting that the surface of each sub-
domain ��� consists of two components, the exterior surface, <\eU��� , where the surface of the subdomain
coincides with the surface of the mesh <�` , and the interior surface, <gfh��� , where ��� is adjacent to other
subdomains and the surface cuts through the mesh. Thus we can break the i � <A��� term in (3) into two
parts i � <�fS� � and i � <Aej� � and simplify (3) further by noting that i � <AeF� � is just <A` , the exterior surface
of the mesh ` . This then gives us a second cost function to optimise:. surface � Ek Q 7 � < f ���cl k H (4)

where
k Q �m�,�?�n� XV �6B)Y�:;`�� VKW�XV and

k H �o<�`a(k Q . We refer to this cost function as . surface or .Rp because it is
just concerned with optimising surfaces.

2.2 Modifying the graph

f

e

d

c
a

b f

e

d

c
a

b

E1 E2

E3
v1 v2

v3

v4 v5
V2

V3

V1

e1
e2

e3

e5e4

(a) (b) (c) (d)

Figure 1: Left to right: a simple mesh (a), its dual (b), the same mesh with combined elements (c) and its
dual (d)

To use these cost functions in a graph-partitioning context, we must add some additional qualities to the
graph. Figure 1 shows a very simple mesh (1a) and its dual graph (1b). Each element of the mesh cor-
responds to a vertex in the graph. The vertices of the graph can be weighted as is usual (to carry out
load-balancing) but in addition, vertices store the volume and total surface of their corresponding element
(e.g. :;� Q �q:;r Q and <�� Q �s<Ar Q). We also weight the edges of the graph with the size of the surface they
correspond to. Thus, in Figure 1, if t3�6u5��vU� refers to the distance between points u and v , then the weight of
edge �,� Q �%� H � is set to t3�,u5��vU� . In this way, for vertices � f corresponding to elements which have no exterior
surface, the sum of their edge weights is equivalent to their surface (<A� f � ixw �y�,� f ����z5�N�). Thus for vertex� H , <A� H �o<�r H �ot3�6u5��vU�?l{t3�6v5�%rF�|lat3�6r)��uU�}�P�y�6� H ��� Q �N�jlo�y�,� H ���5~U�N�jlo�y�,� H �%� J �N� .

When it comes to combining elements together, either into subdomains, or for the multilevel matching
(
�
3) these properties, volume and surface can be easily combined. Thus in Figure 1(c) where � Q ��r Q larU� ,� H ��r J lmrN~ and � J ��r J we see that volumes can be directly summed, for example :�
 Q ��:;� Q �:;r Q l�:;rj���$:;� Q lo:;�F� , as can edge weights, e.g. �y��
 Q �j
 H �F�}�$t3�,u5��vU��l�t3�,v5��Y������y�,� Q ��� H �F�)l��y�,�F�����5~U�N� .

The surface of a combined object � is the sum of the surfaces of its constituent parts less twice the interior
surface, e.g. <\
 Q �o<�� Q �8<Ar Q l�<Arj�}��B���t3�6���%vU���8<A� Q l�<��F����BA�y�6� Q �%�F�5�N� . These properties are very similar

4

to properties in conventional graph algorithms, where the volume combines in the same way as weight and
surfaces combine as the sum of edge weights (although including an additional term which expresses the
exterior surface <ge). The edge weights function identically.

Note that with these modifications to the graph, it can be seen that if we optimise using the .}p cost func-
tion (4), the AR mesh partitioning problem is identical to the cut-edge weight mesh partitioning problem
with a special edge weighting. However, the inclusion of non integer edge weights does have an effect on
the some of the techniques that can be used (e.g. see

�
4.5).

2.3 Testing the algorithms

mesh no. vertices no. edges type aspect ratio mesh grading
uk 4824 6837 2d triangles 3.81 7.98e+02
4elt-dual 30269 44929 2d triangles 1.08 2.13e+04
t60k 60005 89440 2d triangles 1.80 2.00e+00
dime20 224843 336024 2d triangles 2.11 3.70e+03
cs4 22499 43858 3d tetrahedra 1.32 9.64e+01
wing 62032 121544 3d tetrahedra 1.27 1.08e+06
mesh100 103081 200976 3d tetrahedra 2.02 2.45e+02
cyl3 232362 457853 3d tetrahedra 1.59 8.42e+00

Table 1: Test meshes

Throughout this paper we compare the effectiveness of different approaches using a set of test meshes. The
algorithms have been implemented within the framework of JOSTLE, a mesh partitioning software tool
developed at the University of Greenwich and freely available for academic and research purposes under a
licensing agreement (available from http://www.gre.ac.uk/˜c.walshaw/jostle). The experiments
were carried out on a DEC Alpha with a 466 MHz CPU and 1 Gbyte of memory. Due to space considerations
we only include 8 test meshes but they have been chosen to be a representative sample of medium to large
scale real-life problems and include both 2d and 3d examples. Table 1 gives a list of the meshes and their
sizes in terms of the number of vertices and edges. The table also shows the aspect ratio of each entire mesh
and the mesh grading, which here we define as the maximum surface of any element over the minimum
surface, and these two figures give a guide as to how difficult the optimisation may be. For example, ‘uk’ is
simply a triangulation of the British mainland and hence has a very intricate boundary and therefore a high
aspect ratio. The ‘wing’ mesh on the other hand is a cube containing a hollowed out section in the shape of
an aeroplane wing; the AR is therefore reasonably close to 1, but the grading is very high as the mesh goes
from very small elements close to the wing to very large ones in the far-field.�8�PEFT �o�8Z)B ���8T5= �8�PEFB)�

mesh .?[� ����� � p .?[� �;�5� � p .?[� �;��� � p .\[� ����� � p
uk 1.75 241 0.08 1.49 342 0.15 1.38 540 0.32 1.39 903 0.93
4elt-dual 1.28 858 1.15 1.27 1397 1.13 1.27 1840 1.07 1.28 2722 1.45
t60k 1.28 978 2.50 1.24 1532 3.18 1.28 2480 2.85 1.30 3789 4.47
dime20 1.42 1701 4.12 1.33 2960 4.97 1.29 4575 5.33 1.28 6938 7.37
cs4 1.46 2742 1.18 1.47 3670 1.65 1.50 5062 2.27 1.46 6513 3.00
wing 1.41 9131 30.95 1.39 11641 38.45 1.41 14510 25.23 1.43 16859 10.42
mesh100 1.46 5414 2.80 1.48 8037 3.55 1.51 11854 5.02 1.50 15950 8.12
cyl3 1.48 10976 6.95 1.50 16142 8.43 1.51 22120 12.43 1.51 29976 16.42

Table 2: Final results using surface matching and local template gain/template cost optimisation

Table 2 shows the results of the most successful combination of algorithms – SM (see
�
3.2) and LTGTC

(see
�
4.3) – which were chosen as a benchmark for the other combinations. For the 4 different values of �

(the number of subdomains), the table shows the average aspect ratio as given by .G[, the edge cut � ����� (that
is the number of cut edges, not the weight of cut edges weighted by surface size) and the time in seconds,

5

� p , to partition the mesh. Notice that with the exception of the ‘uk’ mesh and �s��ENT , all partitions have
average aspect ratios /�E 9"� E which is within the target range suggested in [6]1. Indeed for the ‘uk’ mesh
it is no surprise that the results for ����EFT are not optimal because the subdomains inherit some of the
poor AR from the original mesh (which has an AR of 3.81) and it is only when the mesh is split into small
enough pieces, �o� 32, 64 or 128, that the optimisation succeeds in ameliorating this effect. Intuitively this
also gives a hint as to why DD methods are a very successful technique as a solver.

3 The multilevel paradigm

In recent years it has been recognised that an effective way of both speeding up partition refinement and,
perhaps more importantly giving it a global perspective is to use multilevel techniques. The idea is to match
pairs of vertices to form clusters, use the clusters to define a new graph and recursively iterate this procedure
until the graph size falls below some threshold. The coarsest graph is then partitioned and the partition
is successively optimised on all the graphs starting with the coarsest and ending with the original. This
sequence of contraction followed by repeated expansion/optimisation loops is known as the multilevel
paradigm and has been successfully developed as a strategy for overcoming the localised nature of the KL
(and other) optimisation algorithms. The multilevel idea was first proposed by Barnard & Simon, [1], as a
method of speeding up spectral bisection and improved by Hendrickson & Leland, [11], who generalised
it to encompass local refinement algorithms. Several algorithms for carrying out the matching have been
devised by Karypis & Kumar, [13], while Walshaw & Cross describe a method for utilising imbalance in the
coarsest graphs to enhance the final partition quality, [20].

3.1 Implementation

Graph contraction. To create a coarser graph �n��� Q ��
���� Q �%����� Q � from ������
��S�%����� we use a variant of the edge
contraction algorithm proposed by Hendrickson & Leland, [11]. The idea is to find a maximal independent
subset of graph edges, or a matching of vertices, and then collapse them. The set is independent because no
two edges in the set are incident on the same vertex (so no two edges in the set are adjacent), and maximal
because no more edges can be added to the set without breaking the independence criterion. Having found
such a set, each selected edge is collapsed and the vertices, � Q ��� H��
�� say, at either end of it are merged to
form a new vertex � �
���� Q with weight � �A�5�!� � Q �jlo� � H � .

The initial partition. Having constructed the series of graphs until the number of vertices in the coarsest
graph is smaller than some threshold, the normal practice of the multilevel strategy is to carry out an initial
partition. Here, following the idea of Gupta, [10], we contract until the number of vertices in the coarsest
graph is the same as the number of subdomains, � , and then simply assign vertex � to subdomain � f . Unlike
Gupta, however, we do not carry out repeated expansion/contraction cycles of the coarsest graphs to find
a well balanced initial partition but instead, since our optimisation algorithm incorporates balancing, we
commence on the expansion/optimisation sequence immediately.

Partition expansion. Having optimised the partition on a graph ��� , the partition must be interpolated
onto its parent ��� � Q . The interpolation itself is a trivial matter; if a vertex � �
�� is in subdomain �@� then
the matched pair of vertices that it represents, � Q �%� H��
�� � Q , will be in ��� .

3.2 Incorporating aspect ratio

The matching part of the multilevel strategy can be easily modified in several ways to take AR into account
and in each case the vertices are visited (at most once) using a randomly ordered linked list. Each vertex
is then matched with an unmatched neighbour using the chosen matching algorithm and it and its match
removed from the list. Vertices with no unmatched neighbours remain unmatched and are also removed.
In addition to Random Matching (RM), [12], where vertices are matched with random neighbours, we
propose and have tested 3 matching algorithms:

Surface Matching (SM). As we have seen in
�
2.2, the AR partitioning problem can be approximated

by the cut-edge weight problem using (4), the . p cost function, and so the simplest matching is to use the
1Reference [6] suggests the value of 1.40 using the square/cube based definition of AR in ¡ 2.1 – this is equivalent to 1.57 using the

circle/sphere based definition.

6

Heavy Edge approach of Karypis & Kumar, [13], where the vertex matches across the heaviest edge to
any of its unmatched neighbours. This is the same as matching across the largest surface (since here edge
weights represent surfaces) and we refer to this as surface matching.

Template Cost Matching (TCM). A second approach follows the ideas of Bouhmala, [3], and matches
vertices with the neighbour which minimises the given cost function. In this case, the chosen vertex matches
with the unmatched neighbour which gives the resulting cluster the best aspect ratio. Using the . [cost
function, we refer to this as template cost matching.

Surface Cost Matching (SCM). This is the same idea as TCM only using the .}p cost function, (4), which
is faster to calculate and matches a vertex with the neighbour which minimises the surface of the resulting
cluster.

e1
e2e3

e1
e2e3

(a) surface matching (b) cost matching

Figure 2: Surface (a) and cost (b) matching

Figure 2 motivates the difference between surface matching (SM) and cost matching (SCM & TCM). For
surface matching, the graph vertex corresponding to r Q matches across the largest surface area, in this case
with r H . For cost matching, the graph vertex corresponding to r Q matches to minimise aspect ratio (TCM)
or surface area (SCM) of the resulting cluster, in this case with r J .
3.3 Results for different matching functions�8��ENT �8�oZCB �8�8T5= �o�mENBC�

mesh .\[¢�£ RM ¤ � Q¢�£ SM ¤ � Q .?[¢�£ RM ¤ � Q¢¥£ SM ¤ � Q .\[¢¥£ RM ¤ � Q¢¥£ SM ¤ � Q .\[¢¥£ RM ¤ � Q¢¥£ SM ¤ � Q
uk 1.74 0.98 1.50 1.02 1.38 1.00 1.42 1.07
4elt-dual 1.29 1.04 1.27 0.97 1.30 1.10 1.28 1.00
t60k 1.32 1.15 1.34 1.46 1.37 1.33 1.35 1.17
dime20 1.52 1.24 1.47 1.41 1.39 1.34 1.37 1.31
cs4 1.51 1.11 1.53 1.12 1.53 1.06 1.53 1.15
wing 1.46 1.14 1.46 1.17 1.45 1.10 1.46 1.05
mesh100 1.58 1.24 1.58 1.21 1.55 1.07 1.56 1.13
cyl3 1.52 1.09 1.56 1.11 1.55 1.09 1.57 1.11
Average 1.12 1.18 1.13 1.12

Table 3: Random matching results compared with surface matching

In Tables 3, 4 & 5 we compare the results in Table 2, where SM was used, with RM, SCM & TCM respectively.
In all cases the LTGTC optimisation algorithm (see

�
4.3) was used. For each value of � , the first column

shows the average AR, .\[of the partitioning. The second column for each value of � then compares results

with those in Table 2 using the metric ¢¥£ RM ¤ � Q¢�£ SM ¤ � Q for RM, etc. Thus a figure ¦§E means that RM has produced
worse results than SM. These comparisons are then averaged and so it can be seen, e.g. for ���¨ENT that
RM produces results 12% (1.12) worse on average than SM. Indeed RM is better than SM in only two cases
(‘uk’, �o�mENT ; ‘4elt-dual’ ���oTO=) and up to 46% worse (‘t60k’, �o�8T5=) with the average quality 14% worse
than SM. This is not altogether surprising since the AR of elements in the coarsest graph can be very poor
if the matching takes no account of it, and hence the optimisation has to work with badly shaped elements.

7

This limitation is graphically demonstrated in Figure 3 which shows an example of the shapes of the final
16 clusters in the coarsest graph. Whilst the shapes for SM (3b) are very good (although the borders are
somewhat irregular), the shapes for RM (3a) are extremely poor and as a result the partition optimisation
on the finer graphs is limited in the improvements that can be made.

Figure 3: Final ‘element’ shapes for random (a) and surface (b) matching

When it comes to comparing SM with SCM & TCM (Tables 4 & 5) there is actually very little difference;
SCM is about 3.8% worse and TCM only about 1.2%. This suggests that the multilevel strategy is relatively
robust to the matching algorithm provided the AR is taken into account in some way.�o�mENT �8�8Z)B �8�oTO= �o�mENBC�

mesh .\[¢�£ SCM ¤ � Q¢¥£ SM ¤ � Q .\[¢¥£ SCM ¤ � Q¢¥£ SM ¤ � Q .\[¢¥£ SCM ¤ � Q¢¥£ SM ¤ � Q .?[¢�£ SCM ¤ � Q¢¥£ SM ¤ � Q
uk 1.63 0.84 1.49 0.98 1.39 1.01 1.40 1.03
4elt-dual 1.27 0.99 1.29 1.04 1.28 1.03 1.29 1.04
t60k 1.28 0.98 1.27 1.14 1.30 1.06 1.29 0.98
dime20 1.40 0.95 1.36 1.08 1.31 1.08 1.28 1.01
cs4 1.47 1.02 1.50 1.06 1.53 1.06 1.51 1.10
wing 1.40 0.97 1.42 1.09 1.40 0.99 1.43 0.99
mesh100 1.56 1.20 1.51 1.06 1.53 1.04 1.52 1.04
cyl3 1.54 1.13 1.52 1.04 1.54 1.08 1.55 1.08
Average 1.01 1.06 1.04 1.03

Table 4: Surface cost matching results compared with surface matching

�o�mENT �o�8Z)B �8��T5= ���mENBC�
mesh . [¢�£ TCM ¤ � Q¢¥£ SM ¤ � Q . [¢¥£ TCM ¤ � Q¢¥£ SM ¤ � Q . [¢¥£ TCM ¤ � Q¢¥£ SM ¤ � Q . [¢¥£ TCM ¤ � Q¢�£ SM ¤ � Q
uk 1.64 0.85 1.49 0.99 1.40 1.05 1.38 0.97
4elt-dual 1.28 1.00 1.26 0.96 1.29 1.05 1.28 1.00
t60k 1.29 1.02 1.27 1.14 1.27 0.97 1.28 0.95
dime20 1.42 0.99 1.36 1.08 1.30 1.03 1.28 1.00
cs4 1.48 1.04 1.49 1.03 1.47 0.95 1.47 1.02
wing 1.41 1.01 1.42 1.09 1.40 0.99 1.41 0.96
mesh100 1.50 1.07 1.50 1.03 1.50 0.98 1.50 1.01
cyl3 1.54 1.13 1.50 0.99 1.53 1.05 1.51 1.00
Average 1.01 1.04 1.01 0.99

Table 5: Template cost matching results compared with surface matching

We are not primarily concerned with partitioning times here, but for the record, RM & SCM were about
17.1% and 18.5% slower than SM; this is because the optimisation stage took considerably longer. TCM was
4.0% slower than SM. Overall this suggests that SM is the algorithm of choice although there is little benefit
over TCM.

8

4 The Kernighan-Lin optimisation algorithm

In this section we discuss the key features of an optimisation algorithm, fully described in [20] and then in�
4.3 describe how it can be modified to optimise for AR. It is a Kernighan-Lin (KL) type algorithm incor-

porating a hill-climbing mechanism to enable it to escape from local minima. The algorithm uses bucket
sorting (

�
4.5), the linear time complexity improvement of Fiduccia & Mattheyses, [9], and is a partition

optimisation formulation; in other words it optimises a partition of � subdomains rather than a bisection.

4.1 The gain function

A key concept in the method is the idea of gain. The gain ©?�,�¥��ª5� of a vertex � in subdomain ��� can be
calculated for every other subdomain, �?« , ª8¬�� , and expresses how much the cost of a given partition
would be improved were � to migrate to �?« . Thus, if � denotes the current partition and � b the partition if �
migrates to �g« then for a cost function . , the gain ©?�,���%ª5����.}�6� b �G�^.}�,�?� . Assuming the migration of � only
affects the cost of �@� and ��« (as is true for .|[and . p) then we get©?�,�¥��ª5�}� AR �,��«®la�C�G� AR �6��«��Rl AR �,�@���{�)�¯� AR �,�@�¥� 9 (5)

For .?[this gives an expression© template �6�¥��ª5�}� ED ° <\±���«�l{��²�,:�±5��«®l{�@²��CVKW�XV � <���«�,:;��«5�)VKW�XV l <\±����n�{��²�,:�±5�����^��²5�)VKW�XV � <A����6:;�����CVKW�XVx³ 9 (6)

which cannot be further simplified. However, for . p , since

AR �6��«®l´�)�G� AR �,�g«��µ� Ek Q�¶ < f �,��«;l{�C�G�{< f ��«¥·� Ek Q�¶ < f � « la< f �c�^BA�y�,� « ���)�N����< f � «¥·� Ek Q�¶ < f �c�{BA�y�6��«)�%�C�N� ·
(where �y�,��«����)�N� denotes the sum of edge weights between �?« and �), we get© surface �,�¥��ª5�}� Bk Q ±@�y�,� � ���)�N���o���6� « ���)�N�&² (7)

Notice in particular that © surface is the same as the cut-edge weight gain function and that it is entirely lo-
calised, i.e. the gain of a vertex only depends on the length of its boundaries with a subdomain and not on
any intrinsic qualities of the subdomain which could be changed by non-local migration.

4.2 The iterative optimisation algorithm

The serial optimisation algorithm, as is typical for KL type algorithms, has inner and outer iterative loops
with the outer loop terminating when no migration takes place during an inner loop. The optimisation
uses two bucket sorting structures or bucket trees (see below,

�
4.5) and is initialised by calculating the gain

for all border vertices and inserting them into one of the bucket trees. These vertices will subsequently be
referred to as candidate vertices and the tree containing them as the candidate tree.

The inner loop proceeds by examining candidate vertices, highest gain first (by always picking vertices
from the highest ranked bucket), testing whether the vertex is acceptable for migration and then transfer-
ring it to the other bucket tree (the tree of examined vertices). This inner loop terminates when the candidate
tree is empty although it may terminate early if the partition cost (i.e. the number of cut edges) rises too far
above the cost of the best partition found so far. Once the inner loop has terminated any vertices remaining
in the candidate tree are transferred to the examined tree and finally pointers to the two trees are swapped
ready for the next pass through the inner loop.

9

The algorithm also uses a KL type hill-climbing strategy; in other words vertex migration from subdo-
main to subdomain can be accepted even if it degrades the partition quality and later, based on the sub-
sequent evolution of the partition, either rejected or confirmed. During each pass through the inner loop,
a record of the optimal partition achieved by migration within that loop is maintained together with a
list of vertices which have migrated since that value was attained. If subsequent migration finds a ‘bet-
ter’ partition then the migration is confirmed and the list is reset. Once the inner loop is terminated, any
vertices remaining in the list (vertices whose migration has not been confirmed) are migrated back to the
subdomains they came from when the optimal cost was attained.

The algorithm, together with conditions for vertex migration acceptance and confirmation is fully de-
scribed in [20].

4.3 Incorporating aspect ratio: localisation

One of the advantages of using cut-edge weight as a cost function is its localised nature. When a graph
vertex migrates from one subdomain to another, only the gains of adjacent vertices are affected. In contrast,
when using the graph to optimise AR, if a vertex � migrates from � � to � « , the volume and surface of both
subdomains will change. This in turn means that, when using the template cost function (2), the gain of
all border vertices both within and abutting subdomains �A� and �g« will change. Strictly speaking, all these
gains should be adjusted with the huge disadvantage that this may involve thousands of floating point
operations and hence be prohibitively expensive. We have tested (Table 8) a version which includes full
updating but, as alternatives, we propose three localised variants:

Surface Gain/Surface Cost (SGSC). The simplest way to localise the updating of the gains is to make
the assumption in

�
2.1 that the subdomains all have approximately equal volume and to use the surface

cost function . p from (4). As mentioned in
�
2.2 the problem immediately reduces to the cut-edge weight

problem, albeit with non-integer edge weights, and from (7) only the gains of the vertices adjacent to the
migrating vertex will need updating. However, if this assumption is not true, it is not clear how well . p
will optimise the AR and below we provide some experimental results.

Surface Gain/Template Cost (SGTC). The second method we propose for localising the updates of gain
relies on the observation that the gain is simply used as a method of rating the vertices so that the algorithm
always visits those with highest gain first (using the bucket sort). It is not clear how crucial this rating is to
the success of the algorithm and indeed Karypis & Kumar demonstrated that (at least when optimising for
cut-edge weight) almost as good results can be achieved by simply visiting the vertices in random order,
[14]. We therefore propose approximating the gain with the surface cost function . p from (4) to rate the
vertices and store them in the bucket tree structure, but using the template cost function .¯[from (2) to
assess the change in cost when actually migrating an vertex. This localises the gain function.

Local Template Gain/Template Cost (LTGTC). A third possibility we propose is to actually use the
template cost function, .|[for adjusting the gain, but only adjusting the gain of those vertices adjacent to
the migrating vertex. The motivation is that the neighbours of the migrating vertex are likely to have large
changes in gain whereas the gains of other vertices are likely to only change marginally (since they are
only affected by the change in volume and surface of subdomains). The disadvantage is that the gains
will become progressively more and more inaccurate as the optimisation progresses; however, they are still
likely to be as accurate as using the surface cost.

Finally note that the implementation which, when a vertex migrates from subdomain � � to � « , involves
full updating of the gains of all vertices in and adjacent to the borders of ��� and �g« is referred to as Template
Gain/Template Cost (TGTC).

4.4 Results for different optimisation functions

Tables 6 & 7 compare SGSC & SGTC against the LTGTC results from Table 2. Both sets of results use
surface matching (SM). The tables are in the same form as those in

�
3.3 and show that on average the

surface gain function provides results which are 11.6% (SGSC) and 12.9% (SGTC) worse than LTGTC. In
fact these results are similar in the average to simply partitioning for edge cut (see Table 9,

�
5.1). However

in an earlier version of this paper, [21], we concluded that SGTC was much better than partitioning for
edge-cut. The reason for this discrepancy is explained in the test meshes used. In [21] we did not use the
‘4elt-dual’ and ‘wing’ meshes which contain the highest mesh grading (the ratio of the largest surface of

10

�o��EFT �o�8Z)B �8��T5= �8�PEFB)�
mesh .?[¢�£ SGSC ¤ � Q¢�£ LTGTC ¤ � Q .?[¢�£ SGSC ¤ � Q¢�£ LTGTC ¤ � Q .\[¢¥£ SGSC ¤ � Q¢¥£ LTGTC ¤ � Q .\[¢¥£ SGSC ¤ � Q¢¥£ LTGTC ¤ � Q
uk 1.65 0.87 1.50 1.00 1.41 1.07 1.41 1.07
4elt-dual 1.37 1.34 1.41 1.50 1.38 1.39 1.35 1.26
t60k 1.27 0.95 1.26 1.09 1.26 0.92 1.27 0.90
dime20 1.38 0.89 1.32 0.95 1.28 0.97 1.26 0.95
cs4 1.49 1.05 1.50 1.05 1.52 1.03 1.51 1.10
wing 1.65 1.59 1.64 1.65 1.64 1.57 1.62 1.42
mesh100 1.45 0.98 1.49 1.02 1.49 0.96 1.51 1.03
cyl3 1.50 1.04 1.52 1.03 1.53 1.05 1.52 1.02
Average 1.09 1.16 1.12 1.09

Table 6: Surface gain/surface cost optimisation compared with local template gain/template cost�o��EFT �o�8Z)B �8��T5= �8�PEFB)�
mesh .?[¢�£ SGTC ¤ � Q¢�£ LTGTC ¤ � Q .?[¢�£ SGTC ¤ � Q¢�£ LTGTC ¤ � Q .\[¢¥£ SGTC ¤ � Q¢¥£ LTGTC ¤ � Q .\[¢¥£ SGTC ¤ � Q¢¥£ LTGTC ¤ � Q
uk 1.67 0.90 1.51 1.04 1.39 1.02 1.41 1.06
4elt-dual 1.40 1.44 1.42 1.53 1.36 1.31 1.37 1.32
t60k 1.26 0.93 1.25 1.04 1.28 1.00 1.26 0.87
dime20 1.39 0.93 1.35 1.05 1.28 0.96 1.27 0.97
cs4 1.54 1.18 1.49 1.03 1.50 1.00 1.49 1.06
wing 1.65 1.60 1.66 1.70 1.61 1.49 1.61 1.42
mesh100 1.53 1.15 1.49 1.01 1.50 0.97 1.50 1.01
cyl3 1.52 1.09 1.51 1.02 1.53 1.06 1.51 0.99
Average 1.15 1.18 1.10 1.09

Table 7: Surface gain/template cost optimisation compared with local template gain/template cost

an element to the smallest), respectively 2.13e+4 and 1.08e+6. Looking at the results in more detail then
‘4elt-dual’ gives average aspect ratios between 26-53% worse than LTGTC, while ‘wing’ ranges between 42-
70% worse. These heavily influence the average results and the reason we believe this to happen is that the
approximation (3) made in

�
2.1, that every subdomain has approximately equal volume, completely breaks

down for meshes with very high gradings. For all the other meshes, the SGSC & SGTC optimisations give
average ARs between 13% better to 18% worse than LTGTC and in fact, if we exclude the ‘4elt-dual’ &
‘wing’ meshes from the results, on average SGSC is 0.01% better than LTGTC and SGTC is 1.39% worse.
This leads us to suggest that as a very rough ‘ball park’ figure, if the mesh grading is of the order EN¸¥J or less,
the surface gain function provides perfectly good results, but if greater than this a more accurate estimate
of gain is necessary and LTGTC is to be preferred.�o��EFT �o�8Z)B �8��T5= �8�PEFB)�

mesh .?[¢¥£ TGTC ¤ � Q¢�£ LTGTC ¤ � Q .?[¢¥£ TGTC ¤ � Q¢�£ LTGTC ¤ � Q .\[¢¥£ TGTC ¤ � Q¢¥£ LTGTC ¤ � Q .\[¢�£ TGTC ¤ � Q¢¥£ LTGTC ¤ � Q
uk 1.67 0.90 1.48 0.98 1.40 1.04 1.41 1.06
4elt-dual 1.24 0.85 1.27 0.99 1.26 0.95 1.28 1.01
t60k 1.29 1.04 1.24 1.03 1.29 1.02 1.29 0.98
dime20 1.42 1.00 1.33 0.98 1.31 1.06 1.28 1.00
cs4 1.47 1.01 1.47 1.00 1.48 0.96 1.49 1.05
wing 1.36 0.88 1.39 1.01 1.41 1.01 1.43 1.00
mesh100 1.49 1.06 1.51 1.06 1.50 0.97 1.51 1.02
cyl3 1.49 1.03 1.50 1.00 1.50 0.99 1.51 1.00
Average 0.97 1.00 1.00 1.01

Table 8: Template gain/template cost optimisation compared with local template gain/template cost

11

Table 8 compares TGTC with LTGTC and shows that on average LTGTC & TGTC give results which
are almost equivalent in quality (TGTC is just 0.23% better than LTGTC) and hence that LTGTC provides a
very good approximation to TGTC.

Again we are not not primarily concerned with partitioning times, but it was interesting to note that
SGSC & SGTC were on average 29.66% & 29.76% faster than LTGTC. This is because the surface cost func-
tion, .Rp , is much quicker to calculate when assessing or updating the gains (since it does not involve cal-

culating � VKW�XV�). TGTC was over 220 times slower on average than LTGTC and we feel that this justifies the
assertion that full updating of gains is too expensive.

4.5 Incorporating aspect ratio: bucket sorting with non-integer gains

The bucket sort is an essential tool for the efficient and rapid sorting and adjustment of vertices by their
gain. The concept was first suggested by Fiduccia & Mattheyses in [9] and the idea is that all vertices
of a given gain © are placed together in an unsorted ‘bucket’ which is ranked © . Finding a vertex with
maximum gain then simply consists of finding the (non-empty) bucket with the highest rank and picking a
vertex from it. If the vertex is subsequently migrated from one subdomain to another then the gains of any
affected vertices have to be adjusted and the list of vertices which are candidates for migration (re)sorted
by gain. Using a bucket sort for this operation simply requires recalculating the gains of affected vertices
and transferring them to the appropriate buckets. If a bucket sort were not used and, say, the vertices were
simply stored in a list in gain order, then the entire list would require resorting (or at least merge-sorting
with the sorted list of adjusted vertices), an essentially ¹	�,º�� operation for every migration.

The implementation of the bucket sort is fully described in [20]. It includes a ranking for prioritising
vertices for migration which incorporates their weight as well as their gain. The non-empty buckets are
stored in a binary-tree to save excessive memory use (since we do not know a priori how many buckets will
be needed) and this structure is referred to above as a bucket tree.

The only difficulty in adapting this procedure to AR optimisation is that with non-integer edge weights,
the gains are also real non-integer numbers. This is not a major problem in itself as we can just give buckets
an interval of gains rather than a single integer, i.e. the bucket ranked 1 could contain any vertex with gain
in the interval » ¸ 9 � �NE 9"� � . However, the issue of scaling then arises since, if using the surface gain function .¼p
(SGSC & SGTC), for a mesh entirely contained within the unit square/cube, all the vertices are likely to end
up in one of two buckets (dependent only on whether they have positive or negative gains). Fortunately,
we can easily calculate the maximum possible gain when using . p which would occur if the vertex with the
largest surface, � � �@� say, were entirely surrounded by neighbours in �\« . The maximum possible gain is
then BG13254O½5¾)¿	<A� (strictly speaking B¯1�254)½5¾)¿�<�fh�) and similarly the minimum gain is �ÀBG13254)½O¾O¿Á<A� . This
means we can easily choose the number of buckets, Â say, and scale the gain accordingly so that for a gain© we calculate the appropriate bucket by finding the integer part of©@Â=¼1�2545½O¾O¿Á<A� 9
If using . [as a gain function (LTGTC & TGTC) we can approximate the maximum gain (using .}p) to get
the same scaling, although then the actual number of buckets used only approximates Â . For either .¼p
or . [, a problem still arises for meshes with a high grading because many of the elements will have an
insignificant surface area compared to the maximum and hence be contained in a small number of buckets
centered around 0. However the experiments carried out here all used a scaling which allowed a maximum
of Â���E)��¸)¸C¸ buckets and we have tested the algorithm up to ÂÃ��EN¸��%¸C¸)¸ buckets without significant
penalty in terms either memory or run-time. We have also tested the algorithm with Â_�$EF¸)¸ although
with a 6.9% average deterioration in the results.

5 Discussion and conclusions

5.1 Comparison with cut-edge weight partitioning

In Table 9 we compare AR as produced by the edge cut version of JOSTLE (EC) described in [20] with the
results from Table 2. The EC partitioner produces only two results that are actually better than the AR

12

�8�PEFT �8�8Z)B ���8T5= �8�PEFB)�
mesh .?[¢¥£ EC ¤ � Q¢�£ AR ¤ � Q .\[¢¥£ EC ¤ � Q¢�£ AR ¤ � Q .\[¢¥£ EC ¤ � Q¢¥£ AR ¤ � Q .?[¢�£ EC ¤ � Q¢¥£ AR ¤ � Q
uk 1.72 0.96 1.50 1.01 1.42 1.09 1.45 1.16
4elt-dual 1.29 1.04 1.27 1.00 1.28 1.03 1.29 1.04
t60k 1.34 1.20 1.33 1.42 1.32 1.14 1.32 1.08
dime20 1.49 1.16 1.43 1.28 1.41 1.40 1.37 1.33
cs4 1.48 1.03 1.50 1.05 1.49 0.98 1.50 1.09
wing 1.52 1.29 1.52 1.34 1.53 1.30 1.52 1.20
mesh100 1.52 1.12 1.51 1.05 1.57 1.11 1.54 1.08
cyl3 1.51 1.07 1.52 1.04 1.53 1.04 1.52 1.03
Average 1.11 1.15 1.14 1.12

Table 9: AR results for the edge cut partitioner compared with the AR partitioner

partitioner (‘uk’, �o�!EFT ; ‘cs4’, ���8T5=) and can be up to 42% worse. On average AR partitioning produces
results which are 12.9% better than those of the edge cut partitioner. Notice that there is no real consistency
in the differences however (as there is in the differences between SGSC & SGTC compared with LTGTC –
see

�
4.4) and we conclude that although an EC partitioner might be expected to produce reasonably good

AR results (since a partition with a low value of � � � � is likely to have compact and therefore well shaped
subdomains), targeting the cost function on AR can provide considerably better results in most cases.�8�PEFT �o�8Z)B �8�8T5= �8�PEFB)�

mesh � ����� Ä w?Å Ä"£ EC ¤Ä w Å Ä"£ AR ¤ � ����� Ä wgÅ Ä"£ EC ¤Ä w Å Ä"£ AR ¤ � �;�5� Ä w?Å Ä"£ EC ¤Ä w Å Ä"£ AR ¤ � ����� Ä wgÅ Ä"£ EC ¤Ä w Å Ä"£ AR ¤
uk 189 0.78 290 0.85 478 0.89 845 0.94
4elt-dual 566 0.66 939 0.67 1491 0.81 2363 0.87
t60k 974 1.00 1588 1.04 2440 0.98 3646 0.96
dime20 1326 0.78 2294 0.77 3637 0.79 5497 0.79
cs4 2343 0.85 3351 0.91 4534 0.90 6101 0.94
wing 4606 0.50 6459 0.55 8782 0.61 11676 0.69
mesh100 4577 0.85 7109 0.88 10740 0.91 14313 0.90
cyl3 10458 0.95 14986 0.93 20765 0.94 27869 0.93
Average 0.80 0.83 0.85 0.88

Table 10: � � � � results for the edge cut partitioner compared with the AR partitioner

Meanwhile in Table 10 we compare the edge cut produced by the EC version of JOSTLE with that of
the AR version. As might be expected, EC partitioning produces the best results (about 16.2% better than
AR). Notice, in particular, the results for the ‘wing’ mesh (the mesh with the highest grading) where the
EC partitioner produces partitions with up to 50% fewer cut edges than the AR partitioner, but the AR
partitioner produces subdomains with aspect ratios 20-34% better. This demonstrates that a good partition
for aspect ratio is not necessarily a good partition for edge-cut and vice-versa.

In terms of time, the EC partitioner is about 47% faster than AR on average. Again this is no surprise
since the AR partitioning involves floating point operations (assessing cost and combining elements) while
EC partitioning only requires integer operations.

5.2 Generic multilevel mesh partitioning

In this paper we have adapted a mesh partitioning technique originally designed to solve the edge cut par-
titioning problem to a different cost function. The question then arises, is the multilevel strategy an appro-
priate technique for solving partitioning problems (or indeed other optimisation problems) with different
cost functions? Clearly this is an impossible question to answer in general but a few pertinent remarks can
be made:

13

� For the AR based cost functions at least, the method seems relatively sensitive to whether the cost is
included in the matching. This suggests that, if possible, a generic multilevel partitioner should use
the cost function to minimise the cost of the matchings. Note, however, that this may not be possible,
since a cost function which, say, measured the cost of a mapping onto a particular processor topology
would be unable to function since at the matching stage no partition, and hence no mapping exists.� The optimisation relies, for efficiency at least, on having a local gain function in order that the migra-
tion of a vertex does not involve an ¹	�6º�(C��� or even an ¹	�,º�� update. Here we were able to localise
the updating of gains either by (a) making a simple approximation to localise the cost function, or
(b) by just ignoring the updating of non-adjacent vertices. However, it is not clear that (a) is always
possible or that (b) is always valid.� The bucket sort is reasonably simple to convert to non-integer gains, but the process relies on being
able to estimate the maximum gain. If this is not possible it may not be easy to generate a good scaling
which separates vertices of different gains into different buckets.

5.3 Conclusion and future research

We have shown that the multilevel strategy can be modified to optimise for aspect ratio. In Section 2 we
gave a definition of aspect ratio and showed how the graph could be modified to take AR into account. In
Section 3.2 we described three matching algorithms (modifications of those already in the literature) which
can be used to take AR into account and in Section 3.3 demonstrated that if it is not taken into account (i.e.
random matching) the same quality of results cannot be expected. In Section 4.3 we described four ways of
incorporating AR into a Kernighan-Lin based optimisation algorithm. We then demonstrated in Section 4.4
that we can approximate the cost function to localise the updating of gains reasonably successfully, pro-
vided that the mesh grading is not too high. We also showed that we can also localise the updating of gains
by just ignoring non-adjacent vertices and that full updating of gains does not provide any significant ad-
vantages (and costs a lot more). We also described, in Section 4.5, how to use the bucket sorting of Fiduccia
& Mattheyses for non-integer gains. Finally in Section 5.1 we showed that partitions with good subdomain
aspect ratios can vary greatly from those with a low edge-cut.

To fully validate the method, it would be desirable to demonstrate that the measure of aspect ratio used
here does indeed provide the benefits for DD preconditioners that the theoretical results suggest. It would
also be very interesting to measure the correlation between aspect ratio and convergence in the solver.
These are part of the ongoing research in the work described here.

Finally, although a parallel version of JOSTLE exists, e.g. [22], it is not clear how well AR optimisation,
with its more global cost function, will work in parallel and this is another direction for future research.
Some related work on AR optimisation already exists in the context of a parallel dynamic adaptive mesh en-
vironment, [5, 6, 17], but none of this work involves multilevel methods so the question still arises whether
parallel multilevel techniques can help in the optimisation.

References

[1] S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recursive Spectral Bisection for
Partitioning Unstructured Problems. Concurrency: Practice & Experience, 6(2):101–117, 1994.

[2] S. Blazy, W. Borchers, and U. Dralle. Parallelization methods for a characteristic’s pressure correction
scheme. In E. H. Hirschel, editor, Flow Simulation with High Performance Computers II, Notes on Numerical
Fluid Mechanics, 1995.

[3] N. Bouhmala. Partitioning of Unstructured Meshes for Parallel Processing. PhD thesis, Inst.
d’Informatique, Univ. Neuchatel, 1998.

[4] J. H. Bramble, J. E. Pasciac, and A. H. Schatz. The Construction of Preconditioners for Elliptic Problems
by Substructuring I+II. Math. Comp., 47+49, 1986+87.

14

[5] R. Diekmann, B. Meyer, and B. Monien. Parallel Decomposition of Unstructured FEM-Meshes. Con-
currency: Practice & Experience, 10(1):53–72, 1998.

[6] R. Diekmann, F. Schlimbach, and C. Walshaw. Quality Balancing for Parallel Adaptive FEM. To appear
in Proc. Irregular ’98.

[7] C. Farhat, N. Maman, and G. Brown. Mesh Partitioning for Implicit Computations via Domain De-
composition. Int. J. Num. Meth. Engng., 38:989–1000, 1995.

[8] C. Farhat, J. Mandel, and F. X. Roux. Optimal convergence properties of the FETI domain decomposi-
tion method. Comp. Meth. Appl. Mech. Engrg., 115:367–388, 1994.

[9] C. M. Fiduccia and R. M. Mattheyses. A Linear Time Heuristic for Improving Network Partitions. In
Proc. 19th IEEE Design Automation Conf., pages 175–181, IEEE, Piscataway, NJ, 1982.

[10] A. Gupta. Fast and effective algorithms for graph partitioning and sparse matrix reordering. IBM
Journal of Research and Development, 41(1/2):171–183, 1996.

[11] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. Tech. Rep. SAND
93-1301, Sandia National Labs, Albuquerque, NM, 1993.

[12] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. In Proc. Supercomput-
ing ’95, 1995.

[13] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irregular
Graphs. TR 95-035, Dept. Comp. Sci., Univ. Minnesota, Minneapolis, MN 55455, 1995.

[14] G. Karypis and V. Kumar. Multilevel Æ -way partitioning scheme for irregular graphs. TR 95-064, Dept.
Comp. Sci., Univ. Minnesota, Minneapolis, MN 55455, 1995.

[15] B. W. Kernighan and S. Lin. An Efficient Heuristic for Partitioning Graphs. Bell Systems Tech. J., 49:291–
308, February 1970.

[16] S. A. Mitchell and S. A. Vasavis. Quality Mesh Generation in Three Dimensions. In Proc. ACM Conf.
Comp Geometry, pages 212–221, 1992.

[17] F. Schlimbach. Load Balancing Heuristics Optimising Subdomain Aspect Ratios for Adaptive Finite Element
Simulations. Diploma Thesis, Dept. Math. Comp. Sci., Univ. Paderborn, 1998.

[18] D. Vanderstraeten, C. Farhat, P. S. Chen, R. Keunings, and O. Zone. A Retrofit Based Methodology for
the Fast Generation and Optimization of Large-Scale Mesh Partitions: Beyond the Minimum Interface
Size Criterion. Comp. Meth. Appl. Mech. Engrg., 133:25–45, 1996.

[19] D. Vanderstraeten, R. Keunings, and C. Farhat. Beyond Conventional Mesh Partitioning Algorithms
and the Minimum Edge Cut Criterion: Impact on Realistic Applications. In D. Bailey et al, editor,
Parallel Processing for Scientific Computing, pages 611–614. SIAM, 1995.

[20] C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing and Refinement Algorithm. Tech.
Rep. 98/IM/35, Univ. Greenwich, London SE18 6PF, UK, March 1998.

[21] C. Walshaw, M. Cross, R. Diekmann, and F. Schlimbach. Multilevel Mesh Partitioning for Aspect Ratio.
In Proc. VecPar’98, Porto, Portugal, pages 381–394. Universidade do Porto, 1998.

[22] C. Walshaw, M. Cross, and M. Everett. Parallel Dynamic Graph Partitioning for Adaptive Unstructured
Meshes. J. Par. Dist. Comput., 47(2):102–108, 1997.

15

