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From time series analysis to a modified
ordinary differential equation
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Abstract

In understanding Big Data, people are interested to obtain the trend and dynamics of a given set of temporal data, which

in turn can be used to predict possible futures. This paper examines a time series analysis method and an ordinary

differential equation approach in modeling the price movements of petroleum price and of three different bank stock

prices over a time frame of three years. Computational tests consist of a range of data fitting models in order to

understand the advantages and disadvantages of these two approaches. A modified ordinary differential equation model,

with different forms of polynomials and periodic functions, is proposed. Numerical tests demonstrated the advantage of

the modified ordinary differential equation approach. Computational properties of the modified ordinary differential

equation are studied.
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Introduction

Observing the trend and forecasting the future are

always required in all kinds of market. In understand-

ing Big Data, people are more interested to obtain the

trend and dynamics of a given set of temporal data,

which in turn can be used to predict possible futures.
Classic statistical methods are usually used to per-

form the task, such as regression analysis, cluster anal-

ysis, and so on. As a branch of statistics, time series

analysis (TSA) is very popular for modeling temporal

data.1 Great efforts have been put in the application of

TSA in the temporal market analysis. In 1970, Box and

Jenkins proposed the autoregressive integrated moving

average (ARIMA) model.2 In order to handle time-

varying property of variance, Engle derived autoregres-

sive conditional heteroscedasticity (ARCH) model.3

Next, Bollerslev (1986), Glosten et al. (1991), and

Nelson (1991) derived generalized ARCH (GARCH)

model, threshold ARCH (TARCH) model, and expo-

nential ARCH (EARCH) model, respectively.
One of the disadvantages of these statistical methods

is that large amount of market data is required. In such

cases, numerical methods, i.e. ordinary differential

equations (ODE),4 partial differential equations

(PDE), or stochastic differential equations (SDE),
would be taken into account.

This paper examines a modified ODE approach and
compares it with TSA in modeling the price movements
of petroleum price and of three different bank stock
prices over a time frame of three years. The market
data were obtained from the official web page.5

Computational tests consist of a range of data fitting
models in order to understand the advantages and
disadvantages of these two approaches. Then, a mod-
ified ODE model, with different forms of polynomials
and periodic functions, is proposed. Numerical tests
demonstrate the advantages of such modification.
Computational properties of the modified ODE are
studied.
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The rest of this article is organized as follows. In the

upcoming section, ARIMA model and an ODE

method are introduced and then results of them are

compared. Subsequently, the modification of the

ODE model is presented and the empirical analysis is

shown. Finally, the article is concluded in the last

section.

The ARIMA and the existing ODE models

Fundamental methods

Time series analysis comprises methods for analyzing

temporal data. Models for time series data contain

many forms representing different stochastic processes.

In statistics and econometrics, and in particular in

TSA, the autoregressive integrated moving average

(ARIMA) models are often applied in some cases

where data show evidence of nonstationary. Wan and

Wen6 found that ARCH model did not always show

better compared to ARIMA model. For simplicity,

attention was only given to ARIMA model in this

section.
ARIMA models are generally denoted by ARIMA

p; d; qð Þ where parameters p; d; and q are nonnegative

integers, p is the order of the autoregressive model, d is

the degree of differencing, and q is the order of the

moving average model.7

Given the time series of data yt where t is an integer

index and yt is a real number, then an ARIMA p; d; qð Þ
model is given by
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where B is the lag operator such that

Bkyt ¼ yt�k; k ¼ 0; 1; 2; . . .

And the symbol D is the differencing operator such

that

Ddyt ¼ ð1� BÞdyt; d ¼ 0; 1; 2; . . .

ui are the parameters of the autoregressive part, hi
are the parameters of the moving average part, and et
are white noise error terms.

Case d ¼ 0 corresponds to the ARMA ðp; qÞ model.

What’s worth mentioning is that the ARMA ðp; qÞ
models are used for the stationary data. If data is non-

stationary, one should try ARIMA p; d; qð Þ models.

Finally, one could determine the best model according

to the Akaike information criterion (AIC) or the

Bayesian information criterion (BIC).
Next, considering the Cauchy initial value problem

y0 ¼ ay; y t0ð Þ ¼ y0 (2)

One can solve equation (2) by means of numerical

integration or obtain an analytic solution if a is given.

It is also possible to calibrate a at different time

intervals.
One approach for solving equation (2) is given by

Lascsáková.8 The particular solution of problem (2) is

y ¼ y0e
aðt�t0Þ

Substituting the point ðt1; y1Þ to this particular solu-

tion, we have

y1 ¼ y0e
aðt1�t0Þ (3)

From equation (3), a is obtained as follows

a ¼ 1

t1 � t0
ln

y1
y0

� �
(4)

At the next time t2, one has

y2 ¼ y1e
aðt2�t1Þ (5)

From equation (5), a is obtained again

a ¼ 1

t2 � t1
ln

y2
y1

� �
(6)

Generalizing the previous principle, one can get the

solution of problem (2) in the following form

yiþ1 ¼ yie
aðtiþ1�tiÞ (7)

Here,

a ¼ 1

ti � ti�1
ln

yi
yi�1

� �
(8)

Comparison of the TSA and the existing ODE model

This section compares the time-domain TSA method

given in equation (1) and the ODE approach given in

equation (2) in modeling the price movements of petro-

leum price and of two bank stock prices over a time

frame of three years.
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For the observed data t0;y0
� �

; t1;y1
� �

; t2;y2
� �

; . . . ;
tn;yn
� �

of a time series of data yt, the absolute percent-

age error (APE) and mean of APE (MAPE) are chosen

applied as the criterion to evaluate the models in this

paper. They are defined as

APEi ¼ jbyi � yij
yi

MAPE ¼ 1

n

Xn

i¼1

APEi

Let byi denote the approximated value at time (day/

month/year) ti, yi denotes the observed value at time

(day/month/year) ti. Although MAPE is less often used

than the mean square error (MSE) and the mean abso-

lute error (MAE), it is a more natural error measure,

and has several advantages.9

For petroleum data in 2013, an appropriate model is

ARIMA(0, 1, 13)

xt ¼ xt�1 þ et � 0:1338et�5 � 0:1226et�13

The calculated results are shown in Table 1. The

table indicates that all the APEs of TSA are less

than 5%. There are 249 APEs of ODE and only one

APE of ODE is not less than 5% but less than 7.5%.

It seems that there is almost no difference between

these two approaches in this sense. But, the MAPE of

TSA is less than that of ODE. It is well known

that APE and MAPE are the smaller the better. As a

consequence, the TSA method is preferred in the

market.
For petroleum data in 2014, an appropriate model is

ARIMA(6, 1, 0)

xt ¼ �0:1662þ 0:8299xt�1 þ 0:1701xt�2 þ 0:1727xt�6

� 0:1727xt�7 þ et

For petroleum data in 2015, an appropriate model is

ARIMA(1, 1, 0)

xt ¼ 0:8695xt�1 þ 0:1305xt�2 þ et

The results of comparing ODE and TSA of petro-

leum price (2014, 2015) are shown in Tables 2 and 3.
Similarly, this paper also worked on the share values

of two banks over a period of about 750 days. The

results are obtained in Table 4.
From the above examples, TSA seems to show

better results compared to ODE. However, it is

possible to modify the form of the derivative given in

equation (2).

Modification of the ODE model

There are different ways of modifying the ODE model

given in equation (2). For example, the form of the

Table 1. Comparing ODE and TSA of petroleum price (2013).

APE ODE TSA

[0, 5%) 249 250

[5%, 7.5%) 1 0

[7.5%, 10%) 0 0

[10%, 1) 0 0

MAPE 1.2597% 0.8817%

APE: absolute percentage error; ODE: ordinary differential equation;

TSA: time series analysis.

Table 2. Comparing ODE and TSA of petroleum price (2014).

APE ODE TSA

[0, 5%) 235 248

[5%, 7.5%) 9 1

[7.5%, 10%) 4 0

[10%, 1) 2 1

MAPE 1.7445% 1.0670%

APE: absolute percentage error; ODE: ordinary differential equation;

TSA: time series analysis.

Table 3. Comparing ODE and TSA of petroleum price (2015).

APE ODE TSA

[0, 5%) 198 227

[5%, 7.5%) 30 18

[7.5%, 10%) 15 5

[10%,1) 7 0

MAPE 3.4100% 2.2922%

APE: absolute percentage error; ODE: ordinary differential equation;

TSA: time series analysis.

Table 4. Comparing ODE and TSA of bank share values.

APE

Barclays bank Lloyds bank

ODE TSA ODE TSA

[0, 5%) 623 694 626 706

[5%, 7.5%) 90 54 82 39

[7.5%, 10%) 39 14 41 19

[10%, 1) 20 10 22 8

APE: absolute percentage error; ODE: ordinary differential equation;

TSA: time series analysis.
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derivative given in equation (2) may be changed. This
section introduces several alternatives in such
modification.

If the data yt is not an exponential function of time
variable t, equation (2) may be modified. Equation (8),
which in fact defined the parameter a as a piecewise
function, may also be modified. Hence, the modifica-
tion consists of the derivative itself and the parameter
a. After modification, problem (2) can be transformed
into

y0 ¼ f yð Þ; y t0ð Þ ¼ y0 (9)

or
y0 ¼ f tð Þy; y t0ð Þ ¼ y0 (10)

Several different forms of fð:Þ as listed in Table 5
have been tested.

Problems (9) and (10) are actually separable differ-
ential equations. A general form, which leads to a non-
separable differential equation, is given as below

y0 ¼ a tð Þyþ s yð Þ (11)

It should be noted that sðyÞ is itself a function of y.
The forms of aðtÞ and sðyÞ could be the primary func-
tions, such as exponential function, trigonometric func-
tion, logarithmic function, and power function.
Primary functions could be expanded to power series
under special conditions. Furthermore, sometimes the
data yt might be periodic. Henceforth, the derivative y’
might consist of a polynomial and a periodic function.
A generalized model is given as below

y0 ¼ g t; yð Þ

¼
XM

i¼0

ait
i

0
@

1
Ayþ b0 þ

XN

j¼1

bjsin
2pjy
h

þ cj

� �

(12)

The unknown parameters a0; a1; . . . ; aM; b0; b1; . . . ;
bN; c1; c2; . . . ; cN; h are estimated according to the
approach of inverse problem.10 The numerical solution
is obtained by fourth-order Runge–Kutta one-step
method, which is the most widely known member of
the Runge–Kutta family.11

ynþ1 ¼ yn þ 1

6
h k1 þ 4k2 þ k3ð Þ;

where

h ¼ tnþ1 � tn;

k1 ¼ g tn; ynð Þ;

k2 ¼ g tn þ 1

2
h; yn þ 1

2
hk1

� �
;

Table 5. Possible forms of f ðxÞ.
asinx þ b aex þ b
ax þ b ax

bþx

ax2 þ bx þ c a � 2�x=b

alnx þ b abx

asinx þ bx þ c aþ bcx

asinx þ blnx þ c eaþbcx

alnx þ bx þ c 1
aþbcx

asinx þ bx þ clnx þ d aebx þ c
. . . . . .

Table 6. MAPE of petroleum (2013) according to equation (12).

MAPE

N

1 2 3

M 0 0.89524% 0.88784% 0.88896%

1 Singular 0.89059% 0.88722%

2 Singular Singular Singular

3 Singular Singular Singular

MAPE: mean absolute percentage error.

Table 7. MAPE of petroleum (2014) according to equation (12).

MAPE

N

1 2 3

M 0 1.08986% 1.11213% 1.10441%

1 Singular Singular 1.09418%

2 Singular Singular Singular

3 Singular Singular Singular

MAPE: mean absolute percentage error.

Table 8. MAPE of petroleum (2015) according to equation (12).

APE

N

1 2 3

M 0 2.27096% 2.26665% 2.30960%

1 2.25025% 2.26416% 2.26109%

2 Singular Singular Singular

3 Singular Singular Singular

APE: absolute percentage error.
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k3 ¼ g tn þ 1

2
h; yn þ 1

2
hk2

� �
;

k4 ¼ g tn þ h; yn þ hk3ð Þ

The bigger the values ofM or N, the more will be the

number of parameters to be estimated. Furthermore,

the bigger the values ofM or N, the more likely that the

Jacobian matrix is singular. It should be noted that the

bigger the values of M or N, the more difficult will be

the computational work. From all these points of view,

one would usually take M or N to be less than four.

Empirical analysis

Applying the above ODEs (9), (10), (11), and (12) to

the petroleum data and three bank share prices, some

improved results are obtained. In practice, one would

prefer equation (12), which consists of a polynomial

and a periodic function. The results are shown in

Tables 6 to 11.
In the aforementioned tables, one could choose the

best model with the smallest MAPE. For example, for

petroleum data in 2013, the smallest MAPE occurs

when M ¼ 1 and N ¼ 3. For Barclays bank, the small-

est MAPE occurs when M ¼ 0 and N ¼ 1. The param-

eters are estimated according to the approach for

inverse problem. Results are as shown in Table 12.
The results of equations (2) and (12) can be com-

pared. As can be seen in Table 13 the modified ODE

Table 9. MAPE of Barclays bank according to equation (12).

APE

N

1 2 3

M 0 2.23898% Singular Singular

1 2.25212% Singular Singular

2 Singular Singular Singular

3 Singular Singular Singular

APE: absolute percentage error.

Table 11. MAPE of RBS bank according to equation (12).

APE

N

1 2 3

M 0 2.21889% 2.21824% 2.21455%

1 2.21350% 2.21267% Singular

2 Singular Singular Singular

3 Singular Singular Singular

APE: absolute percentage error.

Table 10. MAPE of Lloyds bank according to equation (12).

APE

N

1 2 3

M 0 2.29275% 2.30361% 2.31223%

1 2.29840% 2.29030% 2.31427%

2 Singular Singular Singular

3 Singular Singular Singular

APE: absolute percentage error.

Table 12. The estimated parameters.

Parameters

Petroleum Bank

2013 2014 2015 Barclays Lloyds RBS

a0 �0.03031 0.01215 �0.02185 �0.00947 �0.00638 �0.00914

a1 0.00001 �0.00004 �0.00001 �0.00002

b0 2.90619 �1.30755 1.26420 2.36196 0.43602 4.88964

b1 0.24353 �0.22307 0.16355 1.31137 �0.07560 0.82936

h 0.49755 0.74135 0.46282 0.50023 0.49999 0.49879

c1 �4.50499 398.30817 12.81797 1.56126 49.13539 �8.37850

b2 �0.17368 0.18431 0.84405

c2 �11.26577 1.52255 �5.84867

b3 0.11570

c3 �15.31979

Table 13. MAPE compared with different y’.

Model given in

equation (2)

Model given in

equation (12)

Petroleum 2013 1.2597% 0.8872%

Petroleum 2014 1.7445% 1.0809%

Petroleum 2015 3.4100% 2.2471%

Barclays 3.2526% 2.2390%

Lloyds 3.1877% 2.2855%

RBS 3.0739% 2.2127%

Xue and Lai 5



given in equation (12) does improve the results with
regard to MAPE.

Conclusions

In order to obtain the trend and forecast the future
with higher accuracy, the idea of modifying the ODE
model is proposed and the form as in equation (12)
seems to be the best modification. Based on the
obtained result, it can be stated that such modification
provides good understanding of the trend and the
dynamics of the price movement. This provides a
good way forward in forecasting. Furthermore, on
comparison with the statistical methods, numerical
methods for ODEs show that fewer historical market
data are required.

Finally, recalling the following problem, which
involves a deterministic function l t; yð Þ

y0 ¼ l t; yð Þ (13)

This paper provides an insight on various forms of
the right-hand side of problem (13). The authors antic-
ipate that this work will lead to a systematic and an
accessible way of forecasting the dynamic market, par-
ticularly some of the price movements in the financial
market. The results are calculated with R.12
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