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Summary 

The aims of this paper are to develop our understanding of the ways by which soil water deficits influence 

early wheat root growth responses, particularly how seminal roots respond to soil drying and the extent to 

which information on differences in soil water content are conveyed to the shoot and their impact on shoot 

behaviour. To achieve this, wheat seedlings have been grown, individually for around 25 days after 

germination in segmented soil columns within vertical plastic compartments. Roots were exposed to different 

soil volumetric moisture contents (SVMC) within the two compartments. Experiments where the soil in the 

lower compartment was allowed to dry to different extents, while the upper was maintained close to field 

capacity, showed that wheat seedlings allocated proportionally more root dry matter to the lower drier soil 

compartment. The total production of root, irrespective of the upper or lower SVMC, was similar and there 

were no detected effects on leaf growth rate or gas exchange. The response of seminal roots to proportionally 

increase their allocation of dry matter, to the drier soil was unexpected with such plasticity of roots system 

development traditionally linked to heterogeneous nutrient distribution than accessing soil water. In 

experiments where the upper soil compartment was allowed to dry, root growth slowed and leaf growth and 

gas exchange declined. Subsequent experiments used root growth rates to determine when seminal root tips 

first came into contact with drying soil, with the intentions of determining how the observed root growth 

rates were maintained as an explanation for the observed changes in root allocation. Measurements of 

seminal root ABA and ethylene from roots within the drying soil are interpreted with respect to what is known 

about the physiological control of root growth in drying soil.    
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Introduction 

Nine billion people will have to be fed by the middle of this century (Godfray et al., 2010; Tomlinson 

2013). To achieve the necessary increase in food production, in a sustainable manner, requires that 

we utilise resources more efficiently and avoid bringing more land into agricultural production (Royal 

Society, 2009). The implications are that agricultural systems will have to sustain the productivity of 

current land and not exploit further forested areas, or utilise more marginalised regions with 

problems of water deficit and elevated temperatures (Godfray et al., 2010). Global climate change 

predictions suggest changes in the amount and patterns of precipitation and so understanding crop 

water use efficiency, at all levels, is a major task as water availability is one of the main 

environmental factors limiting development, growth, and the yield of crops (Boyer, 1982; Chaves 

and Oliveira, 2004). Application of innovation is a key factor in the increase of crop yields, but before 

this can happen; we need to understand the principles that influence aspects of plant development 

and growth, which provide the means by which drought tolerance can be achieved.  

The root system is the main organ of the plant which absorbs water and nutrients from the 

soil (Manske and Vlek, 2002). It is, therefore, the first sensor to perceive any change in soil water 

and nutrient availabilities. The capacity of a  root system to absorb water and nutrients is crucial to 

plant survival (Xu et al., 2003; Wasson et al., 2012; Ren et al., 2012; Renton and Poot, 2014; Jin et 

al., 2015). It is also a major determinant of crop productivity (Reynolds et al., 2009; White et al., 

2015). Evidence suggests that early developmental and growth related characteristics of the root 

system are a determinant of its reproductive performance (Zhang et al., 1998; Fabian et al., 2008; 

Lynch, 2011; Ober et al., 2014; Atkinson et al., 2015). It is however surprising that, in general, we 

have only recently begun to understand the events which determine, either, the architectural 

pattern, or physiological function, particularly with respect to early root system development and 
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its role in the acquisition of water (Nakamoto and Oyanagi, 1994; Manske and Vlek, 2002; Sanguineti 

et al., 2007; Manschadi et al., 2008; Lynch, 2011; Nakhforoosh et al., 2014; Ji et al., 2014). There are 

important implications for why we should have a better understanding of early development of roots 

and how their growth is influenced by environmental stresses such as drought, particularly those 

likely to be associated with responses to climate change and its impacts on crop production 

(Nakamoto and Oyanagi, 1994; Zhang et al., 1998; Fabian et al., 2008; Ren et al., 2012; Wasson et 

al., 2012; Ober et al., 2014). The mechanisms by which roots sense and respond to variations in water 

availability in the soil are not yet thoroughly understood. The work of Sharp and Davies (1979) 

showed, in maize, that moderate water deficits provoked a net increase in root growth. Subsequent 

results, also with maize, demonstrated the differential effects of low water potentials (ψw) along the 

root axis, with the first three millimeters behind the apex being insensitive to low ψw despite root 

abscisic acid (ABA) concentration being higher than in well-watered controls (Sharp et al., 1988). 

Different experimental approaches (ABA-mutants, ABA and ethylene inhibitors) have been used to 

explain these findings and it is concluded that under drought stress, root ABA concentration 

increases maintaining low ethylene concentrations which prevent its inhibitory effect on root growth 

(Sharp, 2002). There is also some support for the involvement of root ABA in the differential control 

of wheat root and shoot dry matter allocation when subject to nutrient deficiencies (Vysotskaya et 

al., 2008). 

The intentions of this paper are to develop our understanding of the way in which soil water 

deficits influence newly germinated wheat root growth responses. To achieve this we have 

developed an experimental system to grow wheat seedlings for around 25 days directly after 

germination and expose seminal roots to different soil volumetric moisture contents (SVMCs). Our 

aim is to determine how seminal root (see Nakamoto and Oyangi, 1994) growth responses change 
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when they are exposed to stratigraphic differences in SVMCs and how these differences are 

perceived and influence shoot behaviour. Wheat seminal root growth was quantified over time 

when newly germinated seedlings were exposed to isolated, but different vertical profiles of SVMCs. 

We hypothesized that root perception of drying soil is a key component in root behaviour responses 

and the subsequent pattern of soil exploitation. More specifically, we also question how initial 

seminal root development, during early crop growth, may be linked physiologically to shoot 

development and what are the implications for soil water deficits during early crop establishment. 

 

Materials and methods 

 

Experimental approach 

 

The system used two polyvinyl-chloride (PVC) compartments, with an external diameter of 80 mm 

and a length of 150 mm, which were joined end to end to create two rooting horizons. Both 

compartments were filled with soil, which was a mixture of three parts of soil (‘Barming Series’, 

Fordham and Green, 1980) obtained from a field plot at East Malling and one part of sand 

(horticulture grade, William Sinclair Horticulture Ltd. UK). Previously both soil and sand were sieved 

using a 2 mm diameter sieve. To ensure no water movement by either gravity or capillary rise (from 

one compartment horizon to another), as well as ensuring the soil in the upper compartment 

(horizon) did not move, a woven nylon membrane (3 mm mesh) was fixed across the bottom of the 

upper compartment prior to attaching the lower compartment. The mesh was held firmly in place 

by a plastic ring inserted within the lower compartment and the surface of the nylon mesh was 

covered with a layer of petroleum jelly (Vaseline™, ca 2-3 mm thick). This sealed the upper 
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compartment ensuring its SVMC had no influence on the lower compartment SVMC. Preliminary 

experimental observations showed that the presence of neither the nylon mesh, nor the petroleum 

jelly prevented root penetration or altered the rate at which roots entered the lower compartment. 

Equally importantly, root tip development was also examined to ensure that the petroleum jelly did 

not alter root development (tip or elongation), or growth rate into the lower compartment. To 

validate this experimental approach the SVMC content of the upper compartment was maintained 

close to full soil water capacity (FSWC, ~21-24%), while the soil in the lower horizon connected 

compartment, had a SVMC set at 10%. Every other day the SVMC of both compartments was 

measured in situ (Wet-2 Sensor, Delta-T Devices, Ltd, Cambridge, UK) by inserting the probe through 

access holes in the side of both compartments at points above and below, but close to the separating 

layer of petroleum jelly between the two compartments. This validation showed that the 

experimental system could maintain SVMC in the two compartments when at very different SVMC, 

for at least 35 d. 

 

Plant material and experimental conditions 

 

Seeds of spring wheat (Triticum aestivum L.) cv. Redigo Mulika previously, treated with a 

fungicide, were placed on moist tissue paper in plastic Petri dishes and incubated at 20 °C in the dark 

for 38 h prior to germination. Similar sized seedlings were selected based on those which had 

hypocotyl lengths of 3-5 mm, and three seminal roots of 5-8 mm in length. These were planted into 

the upper compartments filled with soil at FSWC (full soil water capacity) with the nylon mesh and 

petroleum jelly on the bottom. Seedlings were maintained in an ambient lit, temperature-controlled 
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greenhouse (20 + 5 oC) and after three days the lower compartment was attached, generally, with a 

SVMC different from the compartment above. 

 

Experiments 

 

Experiment 1: The aims of this experiment were to grow seedlings at a SVMC, in the upper 

compartment which was constant (around 21%, equivalent to FSWC), while allowing the SVMC in 

the lower compartment to decline in a stepwise manner to SVMC around 10%. Six treatments of 

different SVMC in the lower compartment were used: control (SVMC of 21% in both compartments) 

and 18, 16, 15, 14 and 12% SVMC in the lower compartment. The entire experiment was repeated 

on two further occasions in a similar manner. 

Experiment 2: The aim of this experiment was to use the same approach as in experiment 1, 

but grow the seedlings for a shorter period to avoid possible effects induced by roots reaching the 

bottom of the lower compartment. Again, a range of SVMC was established in the lower 

compartment (21 to 12%), while in the upper compartment SVMC was kept at 21%.  Rooting was 

again measured, at harvest after 18 days of growth, as the distribution of dry matter and root length 

to both the upper and lower compartments. 

Experiment 3: Three different combinations of upper and lower compartment SVMC were 

established to define and compare seedling capacity to detect a decline in SVMC in either the upper 

or lower compartment. This was achieved in the following manner: treatment (T24:24), where both 

the upper and lower compartments were kept close to SVMC of 21% by watering from the top and 

the bottom of the compartments. A second treatment (T4.8:24), started with the upper 

compartment at soil 21% to which no further water was added after seedling transplantation, while 
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the lower compartment was kept close to a SVMC of 21% by watering from below. For the third 

treatment (T24:11), the upper compartment was kept close to FSWC, while the lower compartment 

had a SVMC of about 12%, similar to experiments 1 and 2. This approach provide a rooting 

environment where the SVMC was constant (T24:24), where SVMC closest to the establishing 

seedling declined (T4.8:24) and (T24:11) where SVMC declined in soil in which seedling roots could 

grow. 

Experiment 4: The aim of this experiment was to establish a precise time course of events 

when the first seminal root grew out of the upper compartment (wetter) and seminal root tips first 

made contact with soil in the lower drier compartment (methodology as in experiments 1 and 2). 

Root distribution was measured in both compartments over a 20 d period, as changes in the root 

dry matter and root length allocation, in response to contact with SVMC in the lower compartment 

of 14, 12 or 10%.   

Experiment 5: From experiment 4 the timing of root tip growth from the upper compartment 

at FSWC in to the lower compartment at a lower SVMC was confirmed (previous experiments had 

made preliminary observations on this event) and used to carry out a highly replicated experiment 

to link the quantitative data on root development with specific physiological changes in the root at 

the time when the first seminal root made contact with the lower compartment SVMC. Seminal roots 

within the lower compartment where analysed for changes in their ABA concentrations and ethylene 

production rates. To carry out the analysis of roots at the point where they were first in contact with 

the lower drying soil required a sufficient amount of root mass (e.g. ~0.04 g fwt for the ethylene, 

and 5 to 7 roots for the ABA analyses). Roots were sampled simultaneously for measurements of 

SVMC and soil water potential ψw. These measurements were made when contrasting two different 

SVMC in the lower compartment of 21% and 10%. 
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In all experiments leaf length was repeatedly, non-destructively, measured daily to calculate 

changes in leaf growth rate. At the end of each experiment, total leaf area, shoot, and root dry 

weight per plant were measured after drying to a constant weight. Before drying the roots, total 

plant root length was also determined using a root length scanner (Comair, Commonwealth Aircraft 

Corp. Ltd., Melbourne, Australia), or from direct linear measurements. When both seminal and 

adventitious nodal roots were present these were analysed separately (see Manske and Vlek, 2002). 

Instantaneous measurements of leaf gas exchange, which included CO2 assimilation (A), leaf 

stomatal conductance (g), and transpiration rate (E), were made with a portable and open 

photosynthetic gas exchange system (LI-6400XT; LICOR, Inc., Lincoln, NE, USA). Soil and root ψw 

measurements were made using C-30 sample chambers pyschrometers (Wescor Inc. Logan, UT, USA) 

connected to an eight-channel data logger PSYPRO (Wescor Inc. Logan, UT, USA) following the 

method described by the manufacturer.  

Ethylene production rates were measured as described by Atkinson et al. (2008). Root 

samples were rapidly weighed and placed into 4 cm3 vials (Chromacol Ltd., UK), and sealed with a 

screw lids fitted with a PFTE coated silicone rubber septum. For all tissue samples the analysis 

process started directly after sampling; material was maintained at a constant temperature (20 0C), 

in the dark, throughout the equilibrium/incubation period. After approximately 30 min, 1 cm3 of the 

headspace was drawn up into a 1 cm3-glass syringe. The sample was then injected into a Pye Unicam 

PU4500 gas chromatograph fitted with a 1.5 m, 1/4 in. o.d. glass column filled with 10% OV3 on 

Chromosorb W, AW, 80 mesh. Water saturated nitrogen was used as the carrier gas and the injector 

and column were heated to 50 0C, while the detector was heated to 100 0C. Peaks were detected by 

ionisation in a hydrogen flame. The retention times of the volatile peaks was recorded and related 
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to standards. The peak heights were measured manually and used to estimate the concentrations 

of ethylene in the vial gas volume. 

Abscisic acid (ABA) concentrations in seminal root segments were measured as follows. 

Quantification was carried out after the addition of deuterated internal standards, ABA was 

extracted and purified using anion exchange (SAX) (Isolute IST Ltd, UK) and C18 ‘Sep-Pak’ cartridges 

(Waters Associates, USA). Following derivatisation with ethereal diazomethane, methyl esters of 

ABA were quantified using an Agilent 6890 gas chromatogram equipped with a split/splitless injector 

coupled to an Agilent 5973 mass selective detector (MSD). Concentrations of ABA were computed 

from calibration curves relating molar ratios of the endogenous compound and its deuterated 

analogue to ion intensities of their respective molecular ions.  

 

Experimental design and statistical analysis  

All treatments, in all experiments, were distributed in a completed randomized design with 

a minimum of six replicates for experiments 1 to 4 and 12 for experiment 5. The data were analyzed 

using the GLM procedure of SAS software, version 8.2 (SAS Institute, NC, USA) and significant 

differences between treatments means were separated with Tukey’s honestly significant difference 

(HSD) tests with P = 0.05. Independence, normality and variance homogeneity test were conducted 

prior to the analysis of variance using Ryan-Joiner and Bartlett tests, respectively; for cases in which 

the hypothesis was rejected, the data set was transformed using Johnson transformation (Chou et 

al., 1998), or a parametric test was performed (Kruskal-Wallis). SigmaPlot software, version 12.3 

(SPSS Inc., England) was used to present the graphics. 

 

Results 
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Experiment 1 

Over 30 days from germination total seedling leaf area showed no significant decline in 

response to a reduction in SVMC of 15% in the lower compartment (data not shown). Calculated leaf 

relative growth rates (cm cm-1), derived from leaf lengths, for all leaves up to the 5th emerged and 

6th emerging leaves showed no significant differences with respect to the declining SVMC in the 

lower compartment (Figure 1). Equally, there were no significant differences in leaf gas exchange 

rates (A, 32-34 μmol m-2 s-1; g, 160 mmol m-2 s-1 and E, 4.8-5 mmol m-2 s-1) recorded between any 

treatment, throughout the experiment. Measurements of total root dry matter production and 

allocation were carried out by carefully extracting the soil from both compartments and collecting 

and washing roots to determine dry matter allocation to the upper and lower compartments (Figure 

2). This analysis showed that the amount of root allocated to the upper compartment, at a SVMC of 

20%, declined, significantly, and proportionally in response to a reduction in SVMC in the lower 

compartment. The dry matter allocated to the lower compartment increased in response to the 

declining SVMC in the lower compartment. The total root biomass per plant, summed from the 

upper and lower compartments, did not vary greatly (i.e. means of 0.617, 0.593, 0.561, 0.637, 0.587 

and 0.555 g, respectively, for treatments 20-20 to 20-10), or systematically, in response to different 

SVMC of the lower compartment.  

 

Experiment 2  

Again, as in Experiment 1, the imposition of a declining SVMC in the lower compartments had 

no influence on leaf length, leaf growth rate, or leaf gas exchange over the 18 d of the experiment 

(data not shown). Measurement of the allocation of dry matter to roots in the upper and lower 

compartments with their different SVMC showed treatment differences (Figure 3). As with 
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experiment 1 root production in the upper compartment was greatest at the highest SVMC (20%) 

and this declined as the SVMC in the lower compartment declined. Differences in the allocation to 

roots for the two compartments were significant with respect to treatment, for the measurement 

of dry matter, but not for root length. Again, the total amount of root produced per seedlings was 

similar when the upper and lower compartments were combined, ranging from 0.62 to 0.55 g per 

plant, but the allocation of dry matter to roots in the lower compartment, in the drying soil, 

increased proportionally and sequentially from 25.5% to 44.9% with treatment. 

 

Experiment 3 

 To complement the results from Experiments 1 and 2, the direct local effects of a reduction 

in SVMC was made by determining the effects of having a lower SVMC (4.8%) in the upper 

compartment relative to the lower compartment SVMC (24%), i.e. T4.8:24, compared with 

treatments where SVMC was either the same in the upper and lower compartments (at 24%), i.e. 

T24:24, or at 24% in the upper and 11% in the lower (T24:11). As seen in experiment 1 and 2 the 

seedlings had proportionally more of their roots in the lower compartment when the SVMC was 

lower, i.e. T24:11 (Figure 4). When the SVMC in the upper compartment was set at 4.8% (T4.8:24) 

with the lower compartment at 24%, root distribution was greater in the lower compartment and 

less in the upper compartment compared with T24:24 and T24:11. This pattern of allocation was 

consistent, irrespective of root dry matter or root length being quantified. With respect to the total 

mean root dry weight per plant T24:24 (0.114 g) was similar to T24:11 (0.123 g), while T4.8:24 was 

lower (0.061 g) (data not shown). The total root dry matter of the T4.8:24 treatment did not include 

the presence of nodal roots as with the other treatments. The proportional allocation of total root 

dry matter to the lower compartment also differed with treatment, with T24:24 having 6% and 



 

13 | P a g e  
Wheat seminal roots and drying soil 

T4.8:24 and T24:11 having 34 and 26% respectively. Measurements of leaf length, leaf growth rates 

and leaf gas exchange showed that the drier soil in the upper compartment of T4.8:24 was linked to 

reduced gas exchange and leaf growth and this was apparent by day 8, as reduced growth for leaf 2 

and then more significantly with leaf 3, while leaf 4 emerged later than its counterparts in T24:24 

and T24:11 (Figure 5).  

 

Experiment 4 

From the experience and knowledge gained in earlier experiments root growth was consistent 

enough to enable accurate predictions of the timing when roots first grew into the lower 

compartment i.e. on day 6-7 of the 20 d since transplanting (Figure 6). This information was used to 

quantify the timing of root development and to determine precisely when, in this experimental 

protocol, seminal root tips would first experience the SVMC conditions of the lower compartment. 

This experiment used SVMC of 20% in the upper compartment while the lower compartment had 

SVMCs of 14, 12 or 10%. Firstly as seen with all the experiments where the SVMC was lower in the 

lower compartment the allocation of root dry matter, or root length was greater than that in soil 

with a higher SVMC in the lower compartment. There were no significant treatment differences in 

root dry matter, or root length in the upper compartment (Figure 6). The time sequence of analyses 

showed that no roots, irrespective of treatment, had reached the lower compartment by day 5, while 

by day 11 all treatments had some seminal roots in the soil within the lower compartment, albeit, in 

different amounts. The analysis showed that roots in the lower compartments at higher SVMC (24 

and 14%) were allocated less carbon while maintaining similar total root lengths. From day 5 to day 

20 SVMC and root ψw where recorded destructively using samples taken from the lower 

compartment. The results show marked treatment difference in SVMC and root ψw, and how rapidly 
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the different treatments with respect to different SVMC (21, 14, 12, and 10%) were established and 

how consistent they were over the 10 days in which roots grew from the upper compartment into 

the lower compartment (Figure 7).  

 

Experiment 5  

As shown in Experiment 4, roots began to grow into the lower compartment around day 7 to 

8 and differences were found between the control (21%) and the lower drying compartment around 

day 9 (Figure 8). This treatment difference increased, particularly when measurements supported 

by root length rather than root dry matter were compared (Figure 8). An analysis of the relationship 

between root length and root dry weight was also investigated using data from this experiment (data 

not shown). This analysis showed that there was a linear relationship between root length and root 

dry matter for the 20% SVMC (y=3-5x, r2 0.84) and 10% SVMC (y=2-5x, r2 0.76) with no detectable 

differences in this relationship for treatment, upper or lower compartment or sampling date. 

Measurements of root ethylene production were made using isolated root segments 

collected from the lower compartment (Table 2). Samples collected on day 9 which by observation 

was determined as the day when roots first came into contact with the drying soil in the lower 

chamber (10% SVMC), despite a lower mean (42%) with the roots in the drier compartment there 

was no significant difference, with respect to treatment, in ethylene production rates. The analysis 

of root ABA concentrations, and root tip dry matter, for roots entering dry soil on Days 9 and 11 after 

germination are shown in Table 3. Variation with respect to ABA concentration meant that 

statistically significant differences could not be linked to the observed SVMC differences. The trend 

was however for ABA to increase with soil drying. ABA concentration did however increase with 

respect to sampling date by around 20% for both SVMC treatments, but only when expressed on a 
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dry weight basis. SVMC treatment differences were statistically detected on comparing root dry 

matter content from the dry soil (10% SVMC) being lower by 19 and 14% on days 9 and 11 

respectively relative to the wet soil (Table 3).    

 

Discussion 

The experimental approach devised here was developed to address questions about the early 

developmental responses of wheat seedling seminal roots to differences in SVMC. During early root 

development and seed establishment it is suggested that soil ψ and seedling responses to decreasing 

soil ψ, are important factors in determining survival and subsequent yield (Lynch, 2011; Ober et al., 

2014; Atkinson et al., 2015). The evidence to support the idea that roots and root systems show dry 

matter allocation plasticity to exploit below ground heterogeneous environments and enhance 

nutrient uptake is much stronger, than the case for promoting water uptake (Bingham and 

Bengough, 2003; Mallamy, 2005; Renton and Poot, 2014; Jin et al., 2015). In simple terms, roots have 

the capacity to locate and exploit soil water by allocating root dry matter to regions where it is more 

abundant (Lynch, 2013).  It is well known, for example, that water deficits, depending at what time 

they develop, which soil horizon dries, and the location of functional roots, can have a profound 

influence on plant survival and recovery (Sharp and Davies, 1985; Asseng et al., 1998). Plant breeders 

are now using this information to develop strategies to improve crop water uptake (Wasson et al., 

2012). For example, wheat genotypes are known to have different root system architectures, in 

particular deeper rooting characteristics, which lead to greater yields and phenotypic traits being 

exploitated by crop breeders (Ehdaie et al., 2012; Wasson et al., 2012; Ober et al., 2014; Nakhforoosh 

et al., 2014; White et al., 2015). This is a different strategy than those which focus on increased 

allocation of dry matter to reproductive structures (Reynolds et al., 2009). It is unlikely that any single 
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strategy will enable adaptation to climatic change, particularly, in arid environments, but a focus on 

root system biology has the potential to optimize resource acquisition where responses to limited 

access and availability of water are critical. 

The experiments reported here show that seminal roots grow at a constant and predictable 

rate from a region of high SVMC (with soil close to FSWC), into the lower soil column (in the lower 

compartment), when it is drier. Root exploration occurs in a manner where the proportional 

allocation of dry matter in the drier soil increases, when roots come into contact with soil at a lower 

SVMC. But this change in root distribution occurred in the absence of any reduction in the total 

amount of root (length or dry mass); but a proportional and sequential shift in root production was 

detected as the soil in the lower compartment dried. Measurements of leaf gas exchange and leaf 

growth support the notion that carbon acquisition was not reduced in response to roots in contact 

with drier soil. When the upper and lower SVMC were similar, around 81-85% of the seminal roots 

remained in the upper soil, both on a dry weight and length basis. On drying the lower soil 

compartment to around 10% SVMC there was a shift in root allocation to around 51-57% remaining 

in the upper compartment. The large increase in roots in the lower compartment (from 14-19 to 42-

48% accounting for weight or length measurements) was consistent in experiments 1 to 4. The 

consistency of seminal root response shows that the plasticity of these roots was not due to 

alterations in the ratio of dry matter to root length which could be perceived as an alteration in root 

carbon use efficiency. Changes in root morphological features such as the development of cortical 

aerenchyma that are suggested to improve water uptake along with a reduction in metabolic 

maintenance were not seen in these seminal roots (Lynch, 2011; Jaramillo et al., 2012). This was not 

obviously the case in experiment 5, where the root morphology and chemical analyses (Table 3) 

were derived from analysis of root segments which were smaller and younger than those presented 
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in Figure 6. The roots sampled in experiment 5 included only the root tip and the tissues in the region 

directly behind the root tip (cell expansion zone), which were in the lower compartment. This 

supports the notion that there are positional differences in a roots structure which we know 

influence ion and water uptake and this appears to be measurable through difference in dry matter 

allocation when sampling roots over even short but different developmental, temporal sequences. 

Other work with wheat shows the apical 3 to 4 mm region behind the root tip as the site of ABA 

accumulation (Vysotskaya et al., 2008). 

Evidence shows that shoot physiology with respect to leaf growth rate and or gas exchange 

(A, E, g), remained unchanged when roots grew into soil with a lower SVMC indicating resources 

(water and nutrients) where being supplied from the upper soil column with its greater SVMC. This 

was confirmed experimentally when the upper compartment SVMC was allowed to decline. In this 

situation soil drying delayed the time of the emergence and the growth rate of leaf number 3 relative 

to seedlings held at a SVMC of 21%. Further drying of the soil, in the lower compartment (to an SVMC 

of 10%), reduced the growth rates of later emerging leaves. This shows that seminal roots respond, 

in a manner which has been documented, to soil drying and this involves root perception of a 

declining SVMC and the conveying of this information to the shoot, influencing leaf growth and 

stomatal regulation of gas exchange (Passioura, 1988; Davies et al., 2008). We show in experiment 

3 when comparing treatments 2 (T4.8:24) and 3 (T24:11), the drying of the upper compartment 

(T4.8:24) reduced leaf gas exchange and growth with a concomitant reduction in total root 

production, but an increased allocation of roots exploiting the wetter lower compartment (34% for 

T4.8:24 compared to 6% in T24:24). This supports our initial notion of the way roots respond through 

allocation plasticity to enhance access to water.  For T24:11 treatment the allocation to root growth 

to the lower drier compartment was similar to T4.8:24 at 26% where SVMC in the lower 
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compartment was higher and similar to T24:24 despite its much lower allocation of total root dry 

matter (i.e. 6%). Given the evidence presented here, it does not seem possible that shoot deprivation 

of nutrients, which often accompanies soil drying, was responsible for the change in root dry matter 

allocation. Here we do not see predictable leaf responses, such as a decline in leaf growth, 

photosynthesis or stomatal conductance, as are apparent with nutrient deficiency in wheat 

(Vysotskaya et al., 2008). 

It is apparent from these experiments that roots in the lower compartment soil were exposed 

to a declining SVMC which has been shown to reduce root ψ. Root tissue analysis included sampling 

material beyond the elongation and root tip zones. While it is well known that despite root tips being 

exposed to lower soil ψ, and experiencing confounding ‘anatomical disconnectivity’ with respect to 

root xylem water ψ gradients, they still grow into dry soil (Boyer et al., 2010). The potential 

contribution of the phloem in supplying, not only photoassimilates, but sufficient water to the root 

tip has been proposed as a likely explanation for sustained root growth in dry soil (Prichard et al., 

2000; Boyer et al., 2010). Here water in the upper compartment could provide seminal roots via 

phloem transport with water for root growth.   

Given that phloem water in roots, derived from the upper compartment, is the most likely 

means for the continued growth of roots into drying soil; it does not however explain the increased 

allocation of root dry matter to the lower compartment soil. Suggestions have been proposed that 

root growth rate is determined by the production and possible balance of  several endogenous 

growth regulators, such as, ABA, ethylene, auxin and GA acting in cross-talking networks (Grossmann 

and Hansen, 2001; Sharp, 2002; Sharp and LeNoble, 2002; Steffens et al., 2006). Importantly, these 

authors suggest that ABA may act in limiting ethylene production under drought stress and this may 

explain why here seminal root growth was maintained when roots come into contact with drying 
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soil.  It may also explain why we see no evidence of any change in shoot growth or indirectly gas 

exchange as seen with ABA modulated nutrient deficiency responses in wheat (Vysotskaya et al., 

2008).  

To explore the possible reasons why seminal roots show different responses to wet and dry 

soil we measured the concentration of ABA and the production rate of ethylene (an inhibitor of shoot 

growth) in roots at the time when roots first contacted the drying soil. Our assumption was that this 

is the point where the root responses (from the root tip) were initiated.  In our work, root ethylene 

production rates did not increase with declining SVMC, or sampling date, which suggests that root 

ethylene production rate was not influenced by falling SVMC, or that it was being regulated. Despite 

a clear trend which implies a greater accumulation of ABA with the 10% SVMC treatment on day 9 

and 11, this difference was not statistically significant due to sample variability. However we do not 

have evidence which would support an alternative explanation.   
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Table 1.  

Soil water content expressed as SVMC (%) and ψw (MPa) for samples taken from the lower 

compartment in which plants of Triticum aestivum L. cv. Redigo Mulika seedlings had been grown 

for 11 days post germination.  

 

 Well-watered control Drying lower compartment 

Days after 
germination 

Soil volumetric 
water content 

(SVMC %) 

Soil water 
potential 
(ψw MPa) 

Soil volumetric 
water content 

(SVMC %) 

Soil water 
potential 
(ψw MPa) 

7 25.3 + 1.05 -0.109 + 0.057 9.94 + 0.11 -0.653 + 0.192 

9 25.4 + 1.09 -0.199 + 0.072 9.80 + 0.09 -0.634 + 0.060 

11 26.1 + 1.10 -0.156 + 0.125 9.75 + 0.21 -0.731 + 0.109 

 

Note: No statistically significant differences were detected with respect to SVMC or ψw or sample 

date within a treatment. 
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Table 2. 

Analysis of ethylene (pmol kg-1 s-1) production from the sampled root terminal sections of Triticum 

aestivum L. cv. Redigo Mulika seedlings grown for 11 days post germination at a constant SVMC in 

the upper compartment of 20% and the lower compartment at a SVMC of either 21 or 10%.  

 

 Day 9 Day 11 

SVMC (%) pmol kg-1 s-1 pmol kg-1 s-1 

21  15.85 a 18.31 a 

10 9.24   a 20.04 a 

 

Note: Data followed by the same letter are not statistically significant, t-students P 0.05   
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Table 3.  

Analysis of abscisic acid (ng g-1 fwt./dwt.) production from the sampled root terminal sections of 

Triticum aestivum L. cv. Redigo Mulika seedlings grown for 9 or 11 days post germination at a 

constant SVMC in the upper compartment of 20% and the lower compartment at a SVMC of either 

21 or 10%.   

 

 
Day 9 Day 11 

SVMC 
(%) 

Root sample  
% dry 

matter 

ABA  
ng g-1 fwt. 

ABA  
ng g-1 dwt. 

Root sample  
% dry  

matter 

ABA  
ng g-1 fwt. 

ABA  
ng g-1 dwt. 

21  61.3 122 202 52.1 135 269 

10  42.3 125 303 38.1 138 376 

F prob. 0.035 0.866 0.128 0.026 0.938 0.364 

LSD 5% 16.86 43.7 146.4 11.7 82.8 265 

 

 

 

  



 

26 | P a g e  
Wheat seminal roots and drying soil 

Fig 1. The change in relative growth rate (cm cm-1) for leaves 1 to 6 for of Triticum aestivum L. cv. 

Redigo Mulika seedlings grown for 30 days post germination with a constant SVMC in the upper 

compartment of 20% and the lower compartment at a SVMC of 20, 17, 15, 14, 13 or 10%. Leaf growth 

rates were calculated from the measurement of changes in leaf length.  
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Note: Bars represent the SE of the mean for each data point. SVMC % in the lower compartment, 20 

(●), 17 (○), 15 (□), 14 (△), 13 (▽), 12 (☆). No statistically significant differences were detected 

with treatment. 
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Fig 2. Allocation of root dry matter to upper and lower compartments separated by a Vaseline layer 

for Triticum aestivum L. cv. Redigo Mulika seedlings grown for 30 days post germination at a constant 

SVMC in the upper compartment of 20% and the lower compartment at a SVMC of 20, 17, 15, 14, 

13 or 10%. Numbers shown as percentages in the root dry matter columns above and below the zero 

line (Vaseline layer) show the proportional distribution of dry matter to the upper and lower 

compartments at harvest for each treatment.  
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Note: Bars represent the standard error of the mean for each data point. Different letters within the 

same column represent significant differences within and between treatments at P = 0.05 by Tukey 

Test. 
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Fig 3. Allocation to root length and root dry matter for upper and lower compartments separated by 

a Vaseline layer for Triticum aestivum L. cv. Redigo Mulika seedlings grown for 18 days post 

germination with a constant SVMC in the upper compartment of 21% and the lower compartment 

at a SVMC of 18, 16, 15, 14 or 10%.  Numbers shown as percentages in the root dry matter columns 

above and below the zero line (Vaseline layer) show the proportional distribution of dry matter to 

the upper and lower compartments at harvest for each treatment.  
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Note: Bars represent the SE of the mean for each data point. Different letters within the same column 

represent significant treatment differences within and between treatments at P = 0.05 by Tukey Test. 
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Fig 4.    Allocation to total root length and total dry matter to upper and lower compartments (A,B) 

and seminal and nodal roots (C,D) separated by a Vaseline layer for Triticum aestivum L. cv. Redigo 

Mulika seedlings grown for 18 days post germination. The target SVMC used were as follows: 

treatment 1, 24% upper and lower compartments [T24:24]; treatment 2, upper 4.8% and 24% lower 

[T4.8:24] and treatment 3, upper compartment 24% and the lower 11% [T24:11].  
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Fig 4. Continued  
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Note: Bars represent the SE of the mean for each data point. Numbers in shown in upper and lower 

compartments in the columns reflect the mean SVMC at harvest for each treatment. Different letters 

within the same column represent significant differences within and between treatments at P = 0.05 

by Tukey Test. 
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Fig 5.  The pattern of leaf extension rate changes for leaves 1 to 4 for Triticum aestivum L. cv. Redigo 

Mulika seedlings grown for 18 days post germination when subjected to similar SVMC in the upper 

and lower compartments (T24:24), drying in the upper compartment with a constant SVMC in the 

lower compartment (T4.8:24) and an upper compartment SVMC, as in T24:24, but a declining lower 

compartment SVMC (T24:11).  
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 Note: Bars represent the SE of the mean for each data point. The treatments are coded as follows:  

T24:24 (●); T4.8:24 (○); T24:11 (□).   
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Fig 6.  Allocation to root length and root dry matter to the upper and lower compartments separated 

by a Vaseline layer for of Triticum aestivum L. cv. Redigo Mulika seedlings grown for 20 days post 

germination with at a constant SVMC in the upper compartment of 24% and the lower compartment 

at a SVMC of 14, 12 or 10%. 
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Note: Bars represent the SE of the mean for each data point. Different letters at the same sampling 
point reflect significant differences between treatments at P = 0.05 by Tukey Test. 
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Fig 7.  The changes in root and soil water potentials (ψ, MPa) from measurement of the lower 

compartment, allowed to dry to different SVMC, for plants of Triticum aestivum L. cv. Redigo Mulika 

seedlings grown for 20 days post germination at a constant SVMC in the upper compartment of 24% 

and the lower compartment at a SVMC of 14, 12 or 10%.  
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Note: Bars represent the SE of the mean for each data point. Different letters at the same sampling 
point reflect significant treatment differences at P = 0.05 by Tukey Test. 
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Fig 8. Allocation of root length and dry matter to upper and lower compartments separated by a 

Vaseline layer for of Triticum aestivum L. cv. Redigo Mulika seedlings grown for 11 days post 

germination at a constant SVMC in the upper compartment of 24% and the lower compartment at 

either a SVMC of 24% or 10%.  
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Note: Bars represent the SE of the mean for each data point. Different letters at the same sampling 

point reflect significant treatment differences at P = 0.05 by Tukey Test. 

 

 


