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A B S T R A C T

Parasitic weeds pose increasing threats to rain-fed rice production in Africa. Most important species are
Striga asiatica, S. aspera and S. hermonthica in rain-fed uplands, and Rhamphicarpa fistulosa in rain-fed
lowlands. Information on the regional spread and economic importance of parasitic weeds in cereal
production systems is scant. This article presents the first multi-species, multi-country, single-crop
impact assessment of parasitic weeds in Africa. A systematic search of public international and national
herbaria and the scientific literature was conducted to collect all available data on the regional
distribution, incidences and related yield losses of the most important parasitic weeds in rice. Herbaria
specimens were geo-referenced and these coordinates were overlapped with rain-fed rice areas.
Probabilistic diffusion waves of parasitic weeds were generated to derive most likely incidence values.
Estimates from this spatial analysis were then combined with secondary data from the literature into a
stochastic impact assessment model to generate a confidence interval of the likely economic impact per
country and for sub-Saharan Africa as a whole. Rhamphicarpa fistulosa occurs in at least 36 African
countries, 28 of which produce rice in rain-fed lowlands where this species thrives. Striga hermonthica is
found in at least 32 countries, Striga asiatica in at least 44 and S. aspera in at least 17. A total of 50 countries
have at least one of these three species of Striga, 31 of which produce rice in the rain-fed uplands where
these species can be encountered. An estimated 1.34 million ha of rain-fed rice is infested with at least
one species of a parasitic weed in Africa. Our stochastic model estimates that annual economic losses
inflicted by all parasitic weeds exceeds, with 95% certainty, a minimum value of US $111 million and most
likely reaches roughly US $200 million and increases by US $30 million annually. To reverse this trend and
support small-holder rice farmers in Africa with effective, sustainable and affordable solutions for
control, targeted investments in research, development and capacity building are required. The top-10
priority countries where such investments would probably have the highest return are Nigeria, Guinea,
Mali, Côte d’Ivoire, Cameroon, Tanzania, Madagascar, Uganda, Sierra Leone and Burkina Faso.
ã 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Parasitic plants depend on other plants for part or all of their
nutrition (Heide-Jørgensen, 2008). They parasitize by making a
xylem-to-xylem connection with the host plant using a specialized
organ called haustorium. Through this connection the parasite
extracts water, nutrients and metabolites and alters the plant
growth regulators of the host, resulting in stunted growth and
losses in reproductive output of the host plant (Westwood, 2013).
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Parasitic plants feature in 20 plant families (Heide-Jørgensen,
2013), with eight families harboring species of economic impor-
tance. They are economically important when they are weedy and
constrain crop production. This may happen when they shift from
the natural vegetation, where they spontaneously occur, to
cultivated fields with agricultural crops (Raynal Roques, 1994).
In sub-Saharan Africa (SSA), the Orobanchaceae family contains
the vast majority of species that have turned into parasitic weeds
and from that family, Striga is without any doubt the most
important genus in terms of economic impact in this region
(Mohamed et al., 2006). Striga Lour., is a vast genus with 28 species
and 6 sub-species in Africa, 22 of which are endemic to this
continent (Mohamed et al., 2001). Other Orobanchaceae genera
with economically important parasitic weed species in SSA are
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Orobanche, Alectra, and Rhamphicarpa. The most important
parasitic plant species that have developed into parasitic weeds
in cereal production systems in SSA, are the Witchweeds, Striga
asiatica (L.) Kuntze, S. aspera (Willd.) Benth. and S. hermonthica
Benth., and Rice Vampireweed, Rhamphicarpa fistulosa (Hochst.)
Benth. (Parker, 2012). All of these species may be found in rice
fields, with Striga spp. in rain-fed uplands and R. fistulosa
predominantly in rain-fed lowlands and moist uplands (Kabiri
et al., 2015). Rain-fed rice growing environments are entirely
depending on rainfall and groundwater flows for water supply. The
description ‘rain-fed upland’ refers to free-draining soils, often
positioned in pluvial landscape zones – i.e. crests, upper slopes and
middle slopes, while ‘rain-fed lowland’ refers to hydromorphic and
water-logged soils, in phreatic and fluxial zones – i.e. lower slopes
and valley bottoms (Windmeijer and Andriesse, 1993).

Known hot-spots of parasitic weed infestation in rice are
northern Côte d’Ivoire (Johnson et al., 1997; Kouakou et al.,
2015) and northeast Nigeria (Gworgwor et al., 2001; Dugje
et al., 2006) for Striga aspera and S. hermonthica, the Middle
West of Madagascar (Fujisaka, 1990; Elliot et al., 1993), Comoros
(Reneaud, 1980) and southern Tanzania (Kabiri et al., 2015) for
Striga asiatica, and central and northern Benin (Rodenburg et al.,
2011c; N’cho et al., 2014), northern Togo (Houngbedji et al.,
2014), southern Mali and central Burkina Faso (Ouédraogo et al.,
1999), eastern Uganda (Rodenburg et al., 2015a) and southern
Tanzania (Kabiri et al., 2015) for R. fistulosa. The areas affected by
parasitic weeds accommodate some of the world’s poorest
farmers and are reported to increase (Dugje et al., 2006;
Rodenburg et al., 2011b; Kouakou et al., 2015). Within this
category of farmers, parasitic weeds seem to predominantly
affect women as they are often working on the most marginal
and parasitic weed infested plots (Houngbedji et al., 2014; N’cho
et al., 2014).

Rice is perhaps not the first crop one would associate with
parasitic weed problems. The problem is more generally known to
occur in maize and sorghum, crops that suffer mainly from Striga
asiatica in southern Africa and from S. hermonthica in West, Central
and East Africa (Parker, 2013). Rice can be grown under
permanently flooded conditions where parasitic weeds do not
thrive. However, while irrigated rice may be the most popularly
known rice production system, in SSA it is not the most important
one in terms of area. Sixty-six percent of the land area under rice in
SSA is characterized as rain-fed (Diagne et al., 2013), and these are
precisely the environments where parasitic weeds are found as
well. Rice is one of the major food crops in Africa, and is subject to a
rapidly increasing consumer demand (Seck et al., 2012). The
regional annual growth rate of rice consumption is 4.5% while the
regional production growth rate is only 3.2% (Seck et al., 2010). As a
result, rice import dependency has increased by 2.2% annually
since the 1960s (Demont, 2013). Apart from increasing imports,
part of the gap will be closed by area expansion for rice production
(van Oort et al., 2015). Such expansion results from new
exploitations, mainly in the rain-fed lowlands, i.e. the inland
valleys (Rodenburg et al., 2014), and conversions of fallow, maize
and sorghum fields into (rain-fed upland) rice fields (Kijima et al.,
2008). The natural vegetation of African inland valleys harbors
Rhamphicarpa fistulosa (Hansen, 1975), and the fallow, maize or
sorghum fields in this region are often highly infested by Striga spp.
(Samake et al., 2006; Kamara et al., 2014). Hence the increase of
area under rain-fed rice is likely to be associated with increasing
parasitic weed problems and this is expected to be aggravated by
climate change (Rodenburg et al., 2011a).

Parasitic weed inflicted yield losses in rice are a function of the
parasite species, infestation and virulence level of the local ecotype
(or morphotype) and the extent of resistance and tolerance of the
crop variety (Rodenburg et al., 2015b, 2016). Estimates of the
extent of the economic losses caused by parasitic weeds in crops in
sub-Saharan Africa are however inaccurate and outdated (Parker,
2009). For rice, economic loss assessments have even never been
undertaken. In parasitic weed affected countries there is a general
lack of attention for this type of weed problems among agricultural
extension and crop protection services, policy and decision makers
and research portfolio and training curricula, particularly for rice
production systems (Schut et al., 2015). As this is partly due to
suboptimal awareness, a thorough assessment of the extent of the
problem would be a first essential step to effectively address it. The
objectives of this study are therefore to acquire estimates on the
incidence and present the first multi-species, multi-country,
single-crop impact assessment of parasitic weeds in Africa.
Estimating economic losses inflicted by parasitic weeds, however,
is severely constrained by data scarcity. Moreover, according to De
Groote (2007), a major constraint is the lack of integration of social
sciences in research on parasitic weeds. He proposes the following
seven steps in the economic analysis: (i) estimating the extent and
(ii) intensity of the problem, (iii) trials and (iv) appropriate
economic analysis of new control methods, (v) farmer evaluation
of these methods, (vi) modeling of the weed � crop � environment
interactions, and (vii) impact assessment.

The current study purely relies on secondary data. Through an
elegant combination of data mining, spatial analysis and stochastic
impact assessment, we aim at obtaining a confidence interval of
the minimum and most likely economic losses inflicted by parasitic
weeds in rice in Africa and identifying the major drivers for these
losses. This is expected to shed light on the current and likely
future situation of this production constraint in rain-fed rice
producing areas, which in turn should contribute to better targeted
policy making, research and development endeavors and invest-
ments in the region.

2. Materials and methods

Our methodology consists of a combination of data mining,
spatial analysis and stochastic impact assessment. This section is
organized as follows. In Section 2.1, we develop a model for
estimating the impact of parasitic weeds in production systems.
From this model, we derive our data requirements. Through data
mining, we then exploit the scarcely available data to the
maximum extent possible. This involves collecting secondary data
from literature and conducting an exhaustive herbarium study
followed by geo-referencing (Section 2.2). In Section 2.3, we then
combine these data with spatial data on rain-fed rice growing
areas, and in Section 2.4, we incorporate uncertainty into our
model by assigning stochastic distributions to our parameters,
which enables us to obtain a confidence interval and a most likely
value for our model outcomes.

2.1. Model

Total monetary losses, C (US$), and annual incremental change
in monetary losses, DC (US$), inflicted by parasitic weeds in Africa
can be estimated as follows:

C ¼
Xn

j¼1

Ajmjpj
Xw

i¼1

fijDyij ð1Þ

DC ¼
Xn

j¼1

Ajmjpj
Xw

i¼1

DfijDyij ð2Þ

with Aj the total rice area in country j (j = 1, 2, . . . , n), mj the
average milling recovery rate in country j (share in weight of milled
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rice relative to paddy rice), pj the average price (US$ t�1) of milled
rice in country j, Dyij the absolute yield loss (tons of paddy rice
ha�1), inflicted by parasitic weed species i in country j, despite
control, ’ij the incidence of parasitic weed species i (i = 0, 1, . . . , w)
in country j measured as the share (percentage) of the total rice
area affected by the species, and D’ij the annual incremental
incidence of parasitic weed species i in country j.

Estimating the absolute yield loss, Dyij, requires two major
functions to be estimated: (i) the effect of parasitic weeds on yield,
and (ii) the effect of control methods on parasitic weeds (De
Groote, 2007). Therefore, following Demont and Tollens (2004), we
assume that parasitic weed infestation decreases yield propor-
tionally to the damage incurred despite weed control. The
“affected” yield yaij (tons of paddy rice ha�1) represents the yield

that would be obtained if the rice field is infested by parasitic weed
species i in country j, while the farmer attempts to control it. It can
be expressed through the following “damage abatement” function:

yaij ¼ yuij 1 � 1 � aij
� �

sij
� � ð3Þ

with yuij the theoretical “unaffected” yield attained in absence of

parasitic weed species i in country j, aij the average efficacy of
weed control methods used against parasitic weed species i in
country j, measured by the proportion of yield loss averted by the
technology, and sij the theoretical average fraction yield loss caused
by parasitic weed species i in country j in the absence of control.
The parasitic weed species i can be (i) absent (i = 0 and s0j= 0), (ii) R.
fistulosa, (iii) S. asiatica, (iv) S. aspera, and/or (v) S. hermonthica. The
realized yield yij is a weighted average of the affected and
Table 1
Incidence and yield loss estimates from the literature. Incidence rates represent the estim
particular country.

Weed genus Species Country/Region E

Rhamphicarpa fistulosa Benin 6
Benin 6
N. Côte d’Ivoire 3
N. Nigeria 6
S. Tanzania 9
N. Togo 8

Striga hermonthica N. Côte d’Ivoire 6
hermonthica, aspera N. Côte d’Ivoire 6

N. Côte d’Ivoire 6
hermonthica, asiatica S. Ghana 6
hermonthica N. Nigeria 3
aspera N. Nigeria 3
aspera N. Nigeria 3
hermonthica Kenya 

asiatica Madagascar 2
asiatica Madagascar 2

1. Econometrically estimated yield losses, decomposed into productivity and efficiency lo
assumed equal for Striga and Rhamphicarpa as the difference between species was non
2. 22% of inland valleys were infested with R. fistulosa (Rodenburg et al., 2011b); 72% o
3. In six states, across 65 locations, 135 farms are surveyed. In 48% of those farms, grown
farms S. aspera was found and in 98% of the farms S. hermonthica was found. Striga aspera
with sorghum, pearl millet or rice (Gworgwor et al., 2001).
4. Across 64 adapted lowland rice varieties, R. fistulosa-inflicted yield losses range from
5. 79% of inland valleys in north Togo are infested; 36% of the fields within an infested
6. 91,430 ha of a total of 225,798 ha (40.5%) of upland rice in northern Côte d’Ivoire is infe
(Kouakou et al., 2015). The total estimated area of upland rice in Cote d’Ivoire is 615,32
infestation zone, the overall incidence rate in upland rice is 14.8%.
7. In 1986, 12% of >12,000 rice farmers in the guinea savannah reported Striga sp. Yield
8. Based on farmer surveys among 81 farmers from 28 villages in coastal savanna zon
9. Based on sampling of 935 arable fields in 30 communities in three savanna zones (S
10. Atera et al. (2012) reported S. hermonthica-inflicted yields losses in a range of upla
11. Based on 30 upland rice, 90 maize (maize and rice are rotated) and 24 mixed maiz
12. Elliot et al. (1993) reported S. asiatica to be one of the main weed species in rice in

a The area of the specific environment (upland for Striga spp. and lowland for R. fistu
estimated by Diagne et al. (2013).
unaffected yield:

yij ¼ yaijfij þ yuij 1 � fij

h i
ð4Þ

where ’ij represents the incidence of parasitic weed species i in
country j measured as the share (percentage) of the total rice area
affected by the species. If we impute yaij from Eq. (3) into Eq. (4), we

can calculate the unaffected yield, yuij , as follows:

yuij ¼
yij

1 � 1 � aij
� �

sijfij
ð5Þ

The absolute yield loss, Dyij (tons of paddy rice ha�1), inflicted
by parasitic weed species i in country j, despite control, is simply
the difference between unaffected and affected yields:

Dyij ¼ yuij � yaij ð6Þ

To estimate Eqs. (1) and (2), we need estimates for Aj, mj, and pj
(i.e. the rice area, milling recovery rate and average price) for each
country j, and for ’ij, D’ij, and Dyij (i.e. the species incidence,
annual incremental incidence and weed-inflicted absolute yield
loss) for each parasitic weed species i and each country j. Data from
national statistics can be used for the first set of parameters. For the
second set, we will develop an estimation strategy based on data
mining, spatial analysis and stochastic impact assessment in the
subsequent sections.

2.2. Herbarium study

Country-disaggregated data on the incidence of parasitic weed
species in Africa are scarce and incomplete. Incidence can be
ated share of the total area under the weed-specific rice-growing environment of a

nvironment sharea Incidence Yield loss Sources

9% 35% 50% 1
9% 16% 63% 2
4% 13% 21% 1
5% 48% 3
9% 50% 4
7% 28% 5

6% 13% 21% 1
6% 15% 6
6% 12% 50% 7
% 2.6% 8
5% 98% 3
5% 47% 3
5% 44% 9

62% 10
0% 53% 11
0% 80% 12

sses (Benin: 32% + 18% = 50%; Côte d’Ivoire: 18% + 3% = 21%). In Côte d’Ivoire, losses are
-significant (N’cho, 2014).
f fields within these inland valleys were infested (N’cho et al., 2014).

 with sorghum or rice, R. fistulosa was observed, in moist upland fields. In 47% of the
 was found in fields cropped with maize or rice and S. hermonthica in fields cropped

 27 to 73%, and average 50% (Rodenburg et al., 2016).
 inland valley have R. fistulosa (Houngbedji et al., 2014).
sted by Striga spp. [0.9% by S. asiatica, 2.0% by S. aspera and 97.1% by S. hermonthica]
5 ha (Diagne et al., 2013). Assumed that Striga spp. do not infest rice south of this

 losses with 17 S. aspera pl. m�2 at 50 DAS are around 50% (Johnson et al., 1997).
e of Ghana in 2001 (Aflakpui et al., 2008).
udan, Northern Guinea and Southern Guinea) in 2004 (Dugje et al., 2006).
nd rice varieties between 33 and 90%, averaging 62%.
e/rice fields in middle west of Madagascar in 1993 (Geiger et al., 1996).

 the middle-west of Madagascar with yield losses ranging from 60 to 100%.
losa) in a specific country as a share of the total area under rice in that country is
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determined by direct or indirect geo-referenced observations (De
Groote, 2007). Table 1 compiles estimates from direct observations
with high relevance for rice systems in Africa from ten surveys,
covering six countries or regions within countries (Benin, Côte
d’Ivoire, Ghana, Nigeria, Madagascar and Togo). Incidence rates are
highly heterogeneous; they range from 3 to 98% and average
around 33% of the surveyed areas. Therefore, instead of using these
heterogeneous and incomplete data directly, we will use an
indirect spatial approach to model incidence ’ij. In the literature,
the geographic spread of weeds is simulated by assuming that a
species spreads from several foci along fronts at constant rates in
all directions (Auld et al., 1979; Auld and Coote, 1980; Doyle et al.,
2001), or as a wave in which individuals at a particular point spread
out in concentric circles of ever-expanding radii (Van Dyke, 2008).
Current incidence levels of parasitic weeds in Africa are the result
of such a diffusion pattern around several foci. To gain spatial
information on their geographic spread, nine national and
international public herbaria (see acknowledgements) have been
searched online or physically on the four main parasitic weed
species to rice in Africa: Rhamphicarpa fistulosa, Striga asiatica, S.
aspera and S. hermonthica. All relevant information available on the
specimen, i.e. country, geographic coordinates (latitude, longitude)
of the collection location, names of and distance to nearby villages,
altitude and parasite morphotype (i.e. flower color) were entered
in a database. The species database created this way was then used
to map the distribution of these species. In cases where collection
locations were not geo-referenced on the specimen, they were
geo-referenced by Google Earth as best as possible, making use of
the aforementioned collection descriptions. Cases where there
were no clear descriptions, i.e. where the location name or the
species name could not be ascertained, were discarded.

2.3. Spatial analysis

Spatial analysis allows the spatial distribution of weeds to be
mapped against a wider range of enabling and limiting factors
(Doyle et al., 2001). Here, the major enabling factor is the rice-
growing environment. Since all parasitic weeds, R. fistulosa and
Fig. 1. Distribution of observations of Rhamphicarpa fistulosa (left) and Striga asiatica, 
Striga spp., are limited to the rain-fed rice growing environments,
we focus our sampling on rain-fed rice growing areas. Spatially
distributed information of rain-fed rice growing areas in Africa is
obtained from the MIRCA2000 data set (Portmann et al., 2010).
This dataset provides global gridded maps of harvested area for 26
crops, including rain-fed rice, with a spatial resolution of 5 arc
minute meaning that each grid cell measures about 9.2 by 9.2
kilometers at the equator. Portmann et al. (2010) first collected
official statistics of cropped areas at national and sub-national
levels provided by the FAO and national organizations and then
downscaled this information to grid cell level. For non-disclosed
reasons, the gridded rain-fed rice map, does however not provide
information for four countries in sub-Saharan Africa: Cameroon,
Madagascar, Rwanda and Kenya. Moreover, significant rain-fed rice
areas are observed in the Sahelian zone where annual seasonal
rainfall is less than 500 mm and where no rain-fed agriculture is
practiced. To improve the MIRCA2000 rain-fed rice map, we first
used an alternative map of rain-fed rice areas, from the Spatial
Production Allocation Model (SPAM) database (HarvestChoice,
2014), to replace the four aforementioned countries with no data.
We then excluded the grid cells where on average less than
500 mm of rainfall occurs. For that purpose we used a gridded
average annual rainfall map for the years 2001 to 2014, provided by
the Africa Rainfall Estimate Climatology (Novella and Thiaw, 2013).
The resulting rain-fed rice map shows all grid cells where rice area
is reported (Fig. 1).

Following the aforementioned literature on the geographic
spread of weeds (Auld et al., 1979; Auld and Coote, 1980; Doyle
et al., 2001; Van Dyke, 2008), we consider each herbarium
observation of a parasitic weed species as a potential focus for that
species from where it has spread in concentric circles. We do not
know, however, how far it has spread from the foci since it has been
observed, but we are certain that it has been observed on those
particular locations. Under these conditions of data scarcity and
uncertainty, the best strategy is to resort to the simplest model
possible of weed spread, combined with a probability distribution
function (Doyle et al., 2001). Therefore, we use the spatial overlap
between parasitic weed observations from herbaria and rice
S. aspera and S. hermonthica (right) overlapped with rain-fed rice areas in Africa.
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growing areas to model ’ij as a probabilistic concentric diffusion
wave of parasitic weeds (Van Dyke, 2008). We assume that the
probability that a sampled rain-fed rice growing area (grid cell
g = 1, 2, . . . , mj) is infested with a particular parasitic weed species
i in country j, is inversely related to the distance dijg between the
area and the closest observation of that parasitic weed. In the
following, we first simulate the concentric diffusion wave through
an ascending cumulative distribution function and in the next
section, we assign a probability function to the concentric rings
under increasing radii.

For each rice growing area g in each country j, we first calculate
the minimum distance dijg to parasitic weed observations for all
four parasitic weed species i. There is no broad-based evidence for
differences in virulence (and hence crop damage) between Striga
species, and these species are mostly mutually exclusive in terms
of their presence in a given field. Therefore, we aggregate them
together by taking the minimum distance to any Striga spp.
observation as a measure of the probability that a rice growing area
is infested with Striga spp. Since R. fistulosa and Striga spp. typically
thrive in different rain-fed rice growing environments (Kabiri et al.,
2015), we will assume no overlap between these species and, per
country, exclusively allocate all R. fistulosa to rain-fed lowlands and
all Striga spp. to rain-fed uplands. Our spatial data on rain-fed rice
growing areas does however not distinguish between lowlands
and uplands. Therefore, for each country, we use the share of rice
growing environment from national statistics (Diagne et al., 2013)
to estimate the probability that a rain-fed rice area is lowland or
Table 2
Estimated parasitic weed control efficacies of advanced technologies for rice, based on p
absence of parasitic weeds (t ha�1), from the available literature.

Parasitic weed Control options Country Yield without control Yield 

S. asiatica Cultivars Tanzania 0.53 0.93 

0.96 1.90 

0.95 1.59 

Rotation with crotalaria 0.80 1.80 

1.02 2.14 

1.14 1.97 

N-fertilizer (25 kg ha�1) 0.93 1.32 

N-fertilizer (50 kg ha�1) 0.93 1.75 

S. hermonthica Cultivars Kenya 0.85 1.34 

1.27 1.52 

0.41 1.82 

Nigeria 2.15 3.27 

1.31 1.65 

1.64 2.30 

N-fertilizer 1.64 2.30 

R. fistulosa Cultivars Tanzania 1.20 1.89 

Distributionb

1. Average of improved cultivars compared to local cultivar Mwangulu (for S. asiatica infes
in Kenya) (Rodenburg et al., 2015b).
2. In 9 of the 17 monitored farms yields were �800 kg ha�1; In ten of 15 sites at which C
farmers remember unaffected yields prior to Striga asiatica problems to be as high as 

3. With modest N fertilizer rates (25 or 50 kg N ha�1) or with rotations with crotalaria, yi
2005).
4. Comparing locally popular rice cultivar Dourado precoce with the average of the yiel
Kenya (Atera et al., 2012).
5. Average of all but the lowest yielding cultivar compared to the lowest yielding culti
6. Average of all but the lowest yielding cultivar compared to the lowest yielding cultivar
an average of the yield after application of 30, 60, 90 and 120 kg N ha�1 (Adagba et al.,
7. Comparing local rice variety Supa India with NERICA-1-39; the yield in absence of R

a Unaffected control yields are not available; as an alternative, the yield of the best-
approaches the attainable unaffected control yields at the specific location of the stud

b Best fit based on the Akaike information criterion (AIC) and assuming that the dist
upland. We then model cumulative incidence, ’ij(d), as an
expanding concentric ring under increasing radii through an
ascending cumulative distribution function:

fij dð Þ ¼ rijProb dijg � d
� � ð7Þ

with rij the share of rice growing environment of the total area of
rain-fed rice which is associated with any of the parasitic weed
species i in country j (R. fistulosa in lowland and Striga spp. in
upland). There is a lot of uncertainty as to the current spread of
parasitic weeds in each country along these cumulative incidence
curves, ’ij(d). The curves can be described through three points,
depending on the radius we assume for the potential current area
of spread around the point of observation derived from the
herbarium specimen: (i) a “highly likely” incidence radius ’ij

(10 km), a “primary” radius caused by dispersion of seed through
local markets ’ij (50 km) (Berner et al., 1994; Doyle et al., 2001),
and (iii) a “secondary” radius ’ij (100 km). In the next section, we
will attempt to obtain a most likely value for ’ij(d) by attaching
probabilities to these scenarios.

2.4. Stochastic parameterization

Our estimation exercise is greatly hampered by data scarcity.
Therefore, similarly to Demont and Tollens (2004) and Demont
et al. (2008), through data mining we compile whatever data is
available (Tables 1–3, Fig. 1) and, wherever possible, incorporate
subjective probability distributions to reflect the uncertainty of the
addy grain yields without control (t ha�1), yields with control (t ha�1) and yields in

with control Yield in absence of
parasitic weeds

Control efficacy aij Yield loss si Source

2.02a 0.27 0.74 1
2.82a 0.51 0.66 1
2.65a 0.38 0.64 1
4.00 0.31 0.80 2
4.00 0.37 0.74 3
4.00 0.29 0.71 3
4.00 0.13 0.77 3
4.00 0.27 0.77 3

2.09a 0.40 0.59 1
1.87a 0.42 0.32 1
3.00 0.54 0.60 4
5.42a 0.34 0.35 5
2.00a 0.50 0.41 5
2.77a 0.58 0.86 6
2.53a 0.74 0.35 6

3.09 0.37 0.61 7
Pert(0, 0.36, 1) Pert(0, 0.67, 1)

ted fields in Tanzania) and Striga-susceptible IAC165 (for S. hermothica infested fields

rotalaria was planted rice produced �1800 kg ha�1 grains in the following season;
4000 kg ha�1 (Mbwaga and Riches, 2006).
eld advantages in S. asiatica infested fields in Tanzania can be attained (Riches et al.,

d of improved varieties (NERICA-1, -10 and -11) in a S. hermonthica infested field in

var in a S. hermonthica infested field in Nigeria (Adagba et al., 2002a).
 in a S. hermonthica infested field in Nigeria; comparing yield with no-fertilizer with
 2002b).
. fistulosa is that of Supa India in Tanzania (Rodenburg et al., 2016).
performing improved technology is provided here, with the assumption that this
y.
ribution is bounded over the interval [0,1].



Table 3
Trends in parasitic weed incidence in cereal production systems in Africa.

Weed genus Crop(s) Country Period 1 Estimated incidence Period 2 Estimated incidence Estimated increase per year Source

Rhamphicarpa Rice Benin 1998 33% 2008 55% 2.2% 1

Striga Rice, sorghum, maize Côte d’Ivoire 1974–
1997

40% 1997–
2011

72% 2.2% 2

Maize, millet, sorghum, rice Nigeria 1986 40% 2004 68% 1.6% 3
Maize, millet, sorghum, rice Ghana 1969 2.5% 2001 41% 1.2% 4

Distributiona Pert(0, 1.8%, 2.2%)

1. Percentages are based on nine inland valleys that were surveyed in 1998 (Gbèhounou and Assigbé, 2003) and 2007/2008 (Rodenburg et al., 2011b); in 1998, 3 of the 9 were
infested; in 2007/2008, 5 of the 9 were infested.
2. The infestation front moved southwards and on a total area of arable land of 4.45 M ha; infestation rose from 1.79 M ha (40%) in the period 1974–1997 to 3.19 M ha (72%) of in
the period 1997–2011, i.e. an annual increase of (72%–40%)/(2011–1974) = 2.2% per year (Kouakou et al., 2015).
3. Lagoke et al. (1991) reported 40% for all cereals in 1986 and Dugje et al. (2006) reported 68% in the same area 18 years later.
4. Based on farmers re-call surveys among 81 farmers from 28 villages in coastal savanna zone of Ghana in 2001 (Aflakpui et al., 2008).

a Based on a minimum of zero, an average of 1.8% as the most likely value and 2.2% as the observed maximum.
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parameters in our model outcomes. In this study, we focus on the
top-three most uncertain parameters, i.e. (i) the incidence ’ij and
annual increase D’ij of parasitic weeds; (ii) the loss sij inflicted by
parasitic weeds; and (iii) the efficacy aij of weed control methods
used against parasitic weeds. We model the other parameters
(realized yield yij, rice area Aj, milling recovery rate mj, and price pj)
as deterministic as we expect their uncertainty to be dwarfed by
the uncertainty surrounding the former three parameters. We
enter our model (Eqs. (1)–(6)) in Microsoft1 Excel 2010 and use the
software add-in @Risk 6.3.1 from Palisade Corporation (2013) to
construct stochastic distributions for the three uncertain param-
eters. This converts our deterministic model into a stochastic one.
The program @Risk then allows running a Monte Carlo simulation
to obtain a stochastic distribution, confidence interval and most
likely value for our model outcomes (Eqs. (1) and (2)).

In order to generate a reasonable estimate of the most likely
incidence in each country, we construct our probabilistic diffusion
wave, Prob[’ij(d)], by assigning a simple and transparent
probability function to the ascending cumulative distribution
function in Eq. (7), assuming that the probability of incidence is
inversely related to the closest distance to parasitic weed
observations within a range of 100 km and zero beyond this
distance:

Prob fij dð Þ
h i

¼ 100 � d
100

8 d 2 0; 100 km½ �
Prob fij dð Þ

h i
¼ 0 8 d > 100 km

ð8Þ

This stochastic distribution reflects that we are highly certain of
parasitic weed infestation in a rain-fed rice grid cell if a parasitic
weed observation from an herbarium spatially coincides with the
grid cell (d = 0) and we become one percent less certain every
kilometer further away from the observation.3 The probabilistic
diffusion wave, algebraically represented in Eq. (8), is consistent
with a linear rate of diffusion commonly assumed in the literature
on plant population spread (Auld and Coote, 1980).

In order to estimate parameter sij, we need literature estimates
on yield losses caused by parasitic weeds under absence of control
(De Groote, 2007). In Table 1, we compile parasitic weed-inflicted
yield loss estimates for rice from six studies covering five countries
(Benin, Côte d’Ivoire, Kenya, Madagascar and Tanzania). Yield
losses are estimated to range from 21 to 80%, with a mean of 50%.
3 Note that our spatial procedure does not produce any zero values for distance,
even when the observation point is inside a pixel. This is due to the fact that the
pixels are converted to a point with centroid as coordinate. The smallest pixels are
9.2 � 9.2 km, hence the smallest level of precision of the radius is
d� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:2=2ð Þ2 þ 9:2=2ð Þ2

q
¼ 6:5 km.
However, observed yield losses crucially hinge on the control
methods that have been used against parasitic weed species and
their efficacy. Yield loss estimates in farmers’ fields do not
necessarily reflect the true yield-reducing potential of parasitic
weeds as farmers are not passive and will attempt to control
parasitic weeds when they occur (N’cho et al., 2014). Therefore, the
only way we can estimate sij is by comparing on-farm experimental
yields under different treatments (De Groote, 2007). In Table 2, we
compile data from experiments—the majority of which have been
conducted in farmer’s fields—on affected yields despite control of
parasitic weeds, yaij, and without control of parasitic weeds, yoij, and

complete these with estimated unaffected control yields, yuij , under

the hypothetical absence of parasitic weeds. Since it is difficult to
obtain comparable unaffected yields under conditions of parasitic
weed infestation, in particular for the obligate parasitic plant
species of the genus Striga, where data of unaffected yields are
indeed unavailable, we use the yield of the best-performing
improved technology (from Table 2) as a proxy for yuij to estimate

the yield loss as:

sij ¼ yuij � yoij
� �

=yuij ð9Þ

Since no reliable data are available on weed control efficacies of
hand weeding, which is the most common parasitic weed control
method in rice (Houngbedji et al., 2014; N’cho et al., 2014), the
average control efficacies of the advanced improved technologies
(Table 2: improved varieties, herbicides, rotations and mineral
fertilizers) are used and estimated as (Oerke and Dehne, 1997):

aij ¼ yaij � yoij
� �

= yuij � yoij
� �

ð10Þ

We can assume that these efficacies are higher than what
farmers generally achieve using traditional control methods,
mostly entailing hand or hoe weeding. This will, again, ensure
that our estimates are conservative by assuming farmers to actively
and efficiently control parasitic weeds in their fields.

In order to reflect the uncertainty and heterogeneity among
countries regarding the yield loss and efficacy, we use @Risk to fit a
stochastic distribution on the set of estimates reported in Table 2.
N’cho (2014) did not find any significant difference between losses
caused by R. fistulosa and Striga spp. and since we have insufficient
observations to justify the assumption of differences between
weed species, we use the entire dataset of 16 estimates (15 for
Striga spp. and one for R. fistulosa) to fit statistical distributions for
both parameters. Based on the Akaike Information Criterion
(Palisade Corporation, 2013) and assuming that both parameters
are bounded by the interval [0,1], the following Pert distributions



312 J. Rodenburg et al. / Agriculture, Ecosystems and Environment 235 (2016) 306–317
provided the best fit:

sij � Pert 0; 0:67; 1ð Þ ð11Þ

aij � Pert 0; 0:36; 1ð Þ ð12Þ
The estimated most likely value of 36% for aij as fitted by the

Pert distribution is consistent with Oerke and Dehne’s (1997)
estimate of 34–38% of the average efficacy of general weed control
in rice, wheat and maize. The means of the distributions are
respectively <sij> = 0.61 and <aij> = 0.41. Pert functions are
parsimonious as they can capture distributions through three
parameters, i.e. the minimum, most likely and maximum value.
The Pert distribution is a special case of the Beta distribution and
has been used before in weed-related impact assessment (e.g.
Demont et al., 2008). It is widely preferred for modeling
uncertainty under severe data scarcity—such as our case—as it is
very flexible, can fit highly skewed as well as symmetrical
distributions, has a close fit to normal and lognormal distributions,
and does not allocate too much weight to the extremes (Lau et al.,
1998). Due to lack of weed species- and country-disaggregated
data, we assume a similar distribution for each weed species i in
each country j, but allow the parameters to randomly vary between
the species and between the countries, which generates more
realistic stochastic impact estimates.

To obtain a rough idea about the annual incremental incidence
of parasitic weed species, D’ij, we compiled the few published
studies (from Benin, Côte d’Ivoire, Ghana and Nigeria) that have
compared historical with current data on parasitic weed incidence
rates in cereal production systems that include rice. Annual
incremental incidence rates are estimated to range from 1.2 to
2.2%, with a mean of 1.8% (Table 3). Since we only have four
estimates, which is insufficient for fitting a distribution in @Risk
(Palisade Corporation, 2013), we incorporate uncertainty through a
Pert distribution bounded by zero and the sample maximum, and
centered around the sample mean as most likely value:

Dfij � Pert 0; 0:018; 0:022ð Þ ð13Þ
The mean of this distribution is <D’ij> = 0.016. Similarly as

before, we assume a similar distribution for each weed species i in
each country j, but allow the parameter to vary between the
species and between the countries.

Finally, national rice areas disaggregated by country, Aj, realized
yields, yij, and share of rice growing environments, rij, in the
affected countries are borrowed from Diagne et al. (2013), while
we use a uniform average milling recovery rate of mj = 60% (Diagne
et al., 2013) and a uniform average rice price of pj = US $400/t for all
countries (Fiamohe et al., 2015).
Table 4
Statistics and estimates concerning distribution of parasitic weeds (Striga asiatica, S. aspe
based on observations from public national and international herbaria.

Number of parasitic weed observations 

Altitude range (m) 

Number of countries with parasitic weed incidence 

Minimum number of rain-fed rice producing countries with parasitic weeds 

Share of rain-fed rice producing countries of the total number of countries with para
Share of parasitic weed affected countries in SSA of the total rain-fed rice producing 

a According to Diagne et al. (2013), rain-fed upland and rain-fed lowland rice are produ
of rain-fed rice producing countries with parasitic weeds divided by 39.
3. Results

3.1. Parasitic weed incidence

The herbarium search resulted in 885 observations on S.
asiatica, 315 on S. aspera, 597 on S. hermonthica (1797 for Striga
spp.) and 419 on R. fistulosa (Table 4). The Striga species occur from
sea level to as high as 2591 m above sea level (a.s.l.), while R.
fistulosa occurrence ranges from 5 m to 1750 m a.s.l. Based on this
evaluation of occurrence, Striga spp. are found in at least 50
countries in Africa, at least 31 of which produce rice under rain-fed
upland growing conditions where Striga spp. can be found. From
the total of rain-fed upland rice producing countries in Africa (39),
79% have at least one of the important species of Striga, able to
attack rice. Rhamphicarpa fistulosa was observed in 36 countries in
Africa, at least 28 of which grow rice in rain-fed lowlands where
this parasite can be found. From the total of rain-fed lowland rice
producing countries in Africa, 78% are reported to have R. fistulosa.

Overlapping the herbarium observations with the rain-fed rice
growing areas provides insights as to where parasitic weed
problems in rice production systems in Africa exist or may exist in
the future. Rain-fed rice production areas are concentrated in the
sub-humid and humid tropical zone of Africa, south of the Sahel,
ranging from southern Senegal across central Africa to the Indian
Ocean islands (Fig. 1). Parasitic weeds, R. fistulosa and Striga spp.,
have a broader distribution than rain-fed rice production areas,
and do hardly overlap with rice in the Sahel, northeast Africa and
southwest to southern Africa.

3.2. Economic losses

We run a Monte Carlo simulation with 100,000 iterations to
obtain a stochastic distribution, confidence interval and most likely
value for our stochastic parameters (Eqs. (11)–(13)) and model
outcomes (Eqs. (1)–(2)). In Table 5, we report the three incidence
scenarios along our assumed probabilistic diffusion wave (i.e. 10,
50 and 100 km radii) as well as the most likely value which is
basically the mean of the probabilistic diffusion wave (Eq. (8)),
based on a Monte Carlo simulation with 100,000 iterations. The
incidence curves in Eq. (7) are estimated for Africa as a whole
(Fig. 2) and for all countries separately. The incidence of R. fistulosa
in rain-fed lowland rice in Africa is estimated to range from 1.2% to
10% and further to 22%, depending on the radius of spread around
each parasitic weed observation point, resp.10, 50 or 100 km (Fig. 2
and Table 5). Rhamphicarpa fistulosa showed highest incidence in
rain-fed lowland rice in Burkina Faso, the Gambia, Senegal and
Togo (Table 5 and Fig. 1). The highest incidence of Striga spp. in
rain-fed upland rice was observed in Cameroon, Comoros, Guinea
and Mali.
ra, S. hermonthica and Rhamphicarpa fistulosa) in rain-fed rice in sub-Saharan Africa

Parasitic weed species

S. asiatica S. aspera S. hermonthica Striga spp R. fistulosa

885 315 597 1797 419
0–2591 200–

1500
0–1524 0–2591 5–1750

44 17 32 50 36
28 15 22 31 28

sitic weeds 64% 88% 69% 62% 78%
countries in SSAa 72% 38% 56% 79% 72%

ced in 39 African countries; The percentage calculated here is the minimum number



Table 5
Parasitic weed incidence and physical (milled rice) and economic loss estimates for rice in sub-Saharan Africa.

Countries Incidence Most likely physical and economic losses

Rhamphicarpa fistulosa Striga spp. R. fistulosa Striga spp. Total Growth

10 km 50 km 100 km MLV 10 km 50 km 100 km MLV 103 t 106 $ 103 t 106 $ 103 t 106 $ 106 $ y�1

Angola 0.0% 0.0% 0.0% 0.0% 0.0% 3.8% 7.6% 2.1% 0.00 0.00 0.06 0.02 0.06 0.02 0.04
Benin 2.5% 23% 56% 13% 5.1% 25% 31% 15% 2.04 0.81 1.81 0.72 3.84 1.54 0.17
Burkina Faso 4.4% 34% 67% 19% 6.9% 19% 21% 12% 6.75 2.70 3.90 1.56 10.7 4.26 0.39
Cameroon 1.4% 8.6% 11% 4.7% 17% 57% 73% 36% 2.75 1.10 24.3 9.73 27.1 10.8 0.75
CAR 0.1% 0.8% 3.3% 0.5% 2.2% 18% 50% 11% 0.01 0.01 0.31 0.13 0.33 0.13 0.03
Chad 0.8% 4.2% 13% 2.7% 3.8% 27% 52% 15% 1.00 0.40 4.19 1.67 5.18 2.07 0.40
Comoros 0.0% 0.0% 0.0% 0.0% 36% 41% 41% 35% 0.00 0.00 1.21 0.48 1.21 0.48 0.05
Congo 2.0% 14% 26% 7.9% 0.5% 13% 38% 7.2% 0.07 0.03 0.04 0.02 0.11 0.05 0.01
Côte d’Ivoire 0.2% 2.4% 6.0% 1.4% 4.5% 27% 50% 16% 4.51 1.80 44.4 17.7 48.9 19.6 3.72
DRC 0.0% 0.3% 1.1% 0.2% 0.9% 12% 29% 6.6% 0.10 0.04 4.24 1.70 4.35 1.74 0.72
Gabon 0.0% 7.2% 22% 4.6% 0.0% 21% 35% 7.7% 0.01 0.00 0.01 0.00 0.02 0.01 0.00
Gambia 4.4% 51% 57% 27% 5.6% 23% 39% 13% 4.23 1.69 2.38 0.95 6.61 2.64 0.20
Ghana 1.0% 10% 30% 5.9% 0.3% 2.4% 4.4% 1.4% 2.18 0.87 0.42 0.17 2.60 1.04 0.41
Guinea 1.9% 15% 28% 8.3% 8.9% 39% 56% 23% 19.4 7.74 62.3 24.9 81.7 32.7 2.99
Guinea-Bissau 3.5% 26% 47% 15% 2.8% 27% 42% 14% 6.00 2.40 3.65 1.46 9.65 3.86 0.39
Liberia 0.0% 0.0% 0.0% 0.0% 0.0% 18% 42% 10% 0.00 0.00 6.92 2.77 6.92 2.77 0.98
Madagascar 2.1% 16% 40% 9.3% 0.7% 5.5% 11% 3.1% 15.1 6.04 2.92 1.17 18.0 7.20 1.55
Malawi 2.2% 22% 36% 12% 3.2% 16% 21% 9.2% 2.00 0.80 0.99 0.40 2.99 1.19 0.17
Mali 1.9% 18% 35% 10% 6.9% 37% 55% 22% 21.3 8.51 40.7 16.3 62.0 24.8 2.36
Mauritania 0.0% 40% 69% 16% 7.8% 25% 25% 16% 0.55 0.22 0.31 0.12 0.86 0.34 0.03
Mozambique 0.2% 2.4% 10% 1.6% 0.6% 6.9% 20% 4.2% 0.71 0.29 1.29 0.52 2.00 0.80 0.47
Niger 1.0% 21% 32% 10% 6.5% 29% 47% 18% 0.41 0.16 0.51 0.20 0.91 0.37 0.04
Nigeria 1.4% 12% 30% 7.2% 2.4% 18% 30% 10% 80.3 32.1 53.8 21.5 134 53.6 10.0
Senegal 7.4% 39% 53% 23% 5.7% 29% 40% 17% 5.82 2.33 3.76 1.51 9.58 3.83 0.28
Sierra Leone 0.0% 0.9% 4.7% 0.6% 3.1% 33% 71% 18% 0.42 0.17 15.3 6.14 15.8 6.31 0.91
Sudana 0.0% 0.0% 26% 0.5% 0.0% 41% 41% 12% 0.01 0.00 0.14 0.05 0.14 0.06 0.02
Togo 4.1% 34% 65% 20% 2.6% 12% 13% 7.0% 3.01 1.20 0.72 0.29 3.72 1.49 0.15
Uganda 2.2% 15% 33% 8.9% 6.0% 36% 45% 20% 5.16 2.06 11.9 4.75 17.0 6.81 0.71
Tanzania 1.9% 18% 51% 11% 0.1% 0.7% 1.2% 0.4% 19.9 7.96 0.35 0.14 20.2 8.10 1.70
Zambia 1.7% 15% 34% 8.4% 0.9% 8.0% 18% 4.5% 0.61 0.25 0.21 0.08 0.82 0.33 0.07
Zimbabwe 0.0% 0.0% 36% 1.0% 14% 21% 28% 16% 0.00 0.00 0.01 0.00 0.01 0.00 0.00
Africa 1.2% 10% 22% 5.7% 3.6% 21% 34% 12% 204 81.7 293 117 497 199 29.7

Note: All most likely values (MLV) are based on Monte Carlo analysis with 100,000 iterations. All physical loss estimates are expressed in thousand tons of milled rice.
CAR = Central African Republic; DRC = Democratic Republic of Congo.

a Similarly to Diagne et al. (2013), we merge Sudan with South Sudan.

Fig. 2. Ascending cumulative distribution of rain-fed rice growing areas (pixels) in
function of closest distance to parasitic weed observations for R. fistulosa and Striga
spp. in Africa.

Fig. 3. Stochastic distribution and 95% confidence interval of the total economic
losses (106 US$) inflicted by R. fistulosa and Striga spp. in rice in Africa based on a
Monte Carlo analysis with 100,000 iterations.
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Assuming the probabilistic diffusion wave presented in Eq. (8),
our model estimates that the most likely annual physical loss
inflicted by R. fistulosa is 204,000 tons of milled rice resulting in an
annual economic loss of US $82 million (Table 5). For Striga spp.,
hence all three species combined, the incidence in rain-fed upland
rice in Africa is estimated to range from 3.6% to 21% and further to
34%, depending on an assumed radius of 10, 50 and 100 km
respectively. Annual physical loss is most likely around 293,000
tons of milled rice resulting in an annual economic loss of US $117
million. Following a Monte Carlo analysis with 100,000 iterations, a
stochastic distribution of the total economic losses of all parasitic
weeds species combined is drawn, which suggests that annual
economic losses inflicted by all parasitic weeds exceeds, with 95%
certainty, a minimum value of US$111 million and most likely
reaches roughly US$200 million (Fig. 3). The top-10 most affected
countries are Nigeria, Guinea, Mali, Côte d’Ivoire, Cameroon,
Tanzania, Madagascar, Uganda, Sierra Leone and Burkina Faso.
Incidence trends derived from the literature (Table 3) were used to
estimate the annual incremental incidence of parasitic weed
species following the Pert distribution (Eq. (13)), which in turn was
fed back into the model (Eq. (2)). Based on that, the parasitic weed-
inflicted economic losses were estimated to grow by US $30
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million annually (Table 5). This incremental change will probably
not be linear; it may exponentially grow or decay over time
depending on (i) farmers' ability to learn from previous experience
and cope with this moving infestation front, and (ii) researchers'
and extension agents' success in developing and communicating
innovative control strategies that can effectively mitigate
economic losses.

4. Discussion

4.1. Perspectives on incidence and loss estimates

The most widely cited study on incidence and impact of Striga
spp. on cereal production in Africa estimated the total infested
cereal production area to be 21 million ha, and the annual losses at
4.1 million tons (Sauerborn, 1991). However, the study was
conducted about 25 years ago, was limited to only six countries
and did not include upland rice in the analyses. More complete and
more recent estimates are necessary, in order to better inform
stakeholders such as researchers, donors and local and national
policy makers. Following our most likely value of incidence rate of
Striga spp. of the total upland rice growing environments
disaggregated per country (Table 5), and the upland rice area
estimates for these countries from Diagne et al. (2013), our best
estimate of the infested area would be 887,000 ha with annual
yield losses of 488,000 tons paddy (average yield loss of
0.55 t ha�1). To put this in perspective, it should be noted that
rain-fed upland rice covers only about 4% of the total area under
cereals in sub-Saharan Africa in 2013 (FAO, 2016; adjusted with
rice-growing environment specific data from Diagne et al., 2013). A
total area of 455,000 ha of rain-fed lowlands is estimated to be
infested with R. fistulosa in SSA, leading to an estimated total
production loss of 340,000 tons paddy (average yield loss of
0.75 t ha�1). Rain-fed lowland rice covers about 4.5% of the total
cereal production area in Africa. The total parasitic weed infested
rain-fed rice area in SSA is estimated to be 1.34 million ha and the
total parasitic weed inflicted production loss is estimated at
829,000 tons of paddy. For comparison, the overall regional weed-
inflicted production loss in rain-fed uplands and lowlands
combined was previously roughly, and conservatively, estimated
at 1.40 million tons of paddy (Rodenburg and Johnson, 2009).

4.2. Spatial data quality

The quality of parasitic weed distribution maps, on which the
impact estimates are ultimately based, are subject to the quality of
the herbarium specimen and hence the correct identification of the
specimen by the botanists who collected or archived them. Some
debate and confusion exists on the taxonomy and distribution of
Striga species. Based on Mohamed et al. (2001) the species
S. asiatica only occurs in East and Southern Africa, whereas
S. hirsuta spreads from West to East and into Southern Africa. From
our herbarium study, the species S. asiatica has a much wider
distribution. Some confusion with other Striga species can however
not be excluded as Striga asiatica is often confused with S. lutea
Lour. and S. hirsuta Benth. Some botanists, e.g., Musselman and
Hepper (1986), have lumped S. asiatica, S. lutea, and S. hirsuta as a
single species, S. asiatica. Due to that, many herbarium specimen of
S. lutea, and S. hirsuta have been named or renamed S. asiatica.
Mohamed et al. (2001) reported however consistent morphologi-
cal, ecological, and phenological differences among these and
concluded that three taxa should be recognized. In the herbarium
search we followed the taxonomy of Mohamed et al. (2001), and
specimen filed as S. asiatica but with mentions of the names S. lutea
or S. hirsuta were therefore not used. In West Africa, Striga asiatica
seems less weedy in rice. For instance, in Côte d’Ivoire, Johnson
et al. (1997) found S. asiatica in maize and upland rice fields but at
low levels of infestation and mainly parasitizing the grass weed
Andropogon gayanus Kunth, rather than these crops. Botanga et al.
(2002) found S. asiatica mainly on maize and wild grasses
(Rottboellia spp. and Panicum spp.). There are also two co-existing
morphotypes of Striga asiatica, the common red-flowered and the
less common yellow flowered form (Botanga et al., 2002). The red-
flowered morphotype seems to dominate as pest in rice and it is
not clear whether the yellow morphotype is equally virulent and
whether it can indeed be considered a parasitic weed in rice. In the
herbarium search, we found 27 data points with explicit mention
of the yellow-flowered morphotype, 24 in West- and Central Africa
and 3 in South-East Africa. Only 5 of those data points fall within a
radius of 100 km of rain-fed rice growing areas. Inclusion of this
morphotype in the database is therefore not likely to cause any
overestimation of the incidence and impact. Lastly, due to similar
morphological appearances and flower colors, S. hermonthica can
be confused with S. aspera and the occasional S. brachycalyx Skan
(Mohamed et al., 2001; 2006).

Also the quality of the rain-fed rice maps determines the
reliability of the incidence and impact estimates. For four
countries—all with at least one species of parasitic weeds—i.e.
Burundi, Ethiopia, Kenya and South Africa, the available spatial
data on rain-fed rice seem inaccurate. Kenya and South Africa have
indeed negligible (<1,000 ha) areas of rain-fed rice (Diagne et al.,
2013). However for Burundi (>9,000 ha of rain-fed rice; parasitic
weeds reported: S. asiatica, S. hermonthica and R. fistulosa) and
Ethiopia (>6,000 ha of rain-fed rice; all four species of weeds
reported), the inaccuracy of spatial rice data may have caused a
slight underestimation of the overall impact of parasitic weeds in
SSA. Furthermore, the threshold of 500 mm rainfall that we applied
to discard grid cells for mapping rain-fed rice is arbitrary. Rain-fed
upland rice is usually produced in zones with more than 1,000 mm
rainfall (e.g. Singh et al., 2009) but the exact limit very much
depends on local soil conditions and crop management (Day et al.,
1992), as well as on landscape morphology. In landscape
depressions, i.e. inland valleys, rain-fed lowland rice production
could still be pursued at much lower levels of rainfall, due to
favorable hydrology leading to supplementary water from surface
and groundwater flows from surrounding uplands and slopes
(Windmeijer and Andriesse, 1993).

4.3. Quality and sensitivity of estimates and parameters

Although our stochastic model exploits the scarce data available
to the maximum extent possible and reflects their uncertainty, our
most likely economic loss estimates are conservative for three
additional reasons. Firstly, our incidence curves are prone to (i)
Type I errors if the parasitic weeds that have been observed on
certain locations have not infested rain-fed rice fields or have
disappeared over time; and (ii) Type II errors if parasitic weeds
occur and have infested rain-fed rice fields on locations where no
herbarium specimen has been collected. Type I and II errors
respectively result in an over- versus underestimation of parasitic
weed incidence. However, we expect Type II errors to dominate
Type I errors due to incomplete spatial coverage of parasitic weed
observations and therefore we expect our incidence curves ’ij(d) to
be on the conservative side. Moreover, our simple probabilistic
diffusion wave assumes that weeds spread equally in all directions,
so the diffusion may be described by a series of concentric circles.
In reality, parasitic weed seeds are spread mainly through local
transport and trade of cereal seeds, as observed from seed samples
taken at local markets (Berner et al., 1994). Such dissemination, in
addition to environmental heterogeneity and spatial irregularities,
result in an uneven spread (Doyle et al., 2001). In this study, we
overlapped parasitic weed observations with a single enabling
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factor, i.e. the rice-growing environment. Further refinements to
this model are needed by adding additional layers of enabling or
disabling factors related to soils, management practices, competi-
tor species, and climatic variables (Doyle et al., 2001), and convert
it into a more sophisticated stratified diffusion model (Van Dyke,
2008). However, due to severe data scarcity this is currently not
possible in the context of parasitic weeds in rain-fed rice growing
environments in Africa.

Secondly, our data assumptions overestimate farmers’ efficacy
of controlling parasitic weeds and hence underestimate the true
damage of this pest. Manual weeding is the predominant parasitic
weed control practice in rain-fed cereal cropping systems in sub-
Saharan Africa (Aflakpui et al., 2008; Ayongwa et al., 2010) and this
is not different for rice (Houngbedji et al., 2014; N’cho et al., 2014).
N’cho (2014) estimated technical efficiency of manual weeding
labor in a context of parasitic weeds infestation in Benin and Côte
d’Ivoire. Assuming constant returns to scale, technical inefficiency
levels of weeding labor were estimated to be around 58% in Côte
d’Ivoire and 69% in Benin, implying that 58–69% of weeding labor
could be saved without reducing rice production or increasing the
use of other inputs. Overall technical efficiency scores were
estimated to be 64% in Benin and 85% in Côte d’Ivoire, which
suggests that rice farmers can still increase their production by as
much as 36% in Benin and 15% in Côte d’Ivoire through more
efficient use of production factors and control of parasitic weeds.
Since we based our efficacy estimates on advanced technologies
(Table 2), we overestimate farmers’ current ability to cope with
parasitic weed problems.

Finally, a limitation of our parsimonious model is that it
assumes rice area to be constant, and hence ignores the area
response occurring in the hypothetical absence of parasitic weeds.
Farmers would plant greater areas with a crop in response to
higher levels of profitability (Chambers et al., 2010). Conversely,
our model does not capture the loss in production due to farmers
abandoning their fields as a result of parasitic weed infestation, as
reported by N’cho et al. (2014) in Benin and Houngbedji et al.
(2014) in Togo. On marginal lands, farmers are discouraged to plant
rice when the land becomes infested with parasitic weeds (N’cho,
2014). As a coping strategy, they often migrate to previously
uncultivated lands and as a result of population pressure and
reduction of available land, they increase duration of cropping at
the expense of fallow duration (N’cho, 2014). Reduced fallow times
in turn result in higher occurrence of weeds in the cultivated fields
(Demont et al., 2007) and a likely buildup of the seed bank of
parasitic weeds (Sauerborn and Kroschel, 1996), unless parasitic
weed seed production in the crop is somehow prevented (van
Mourik et al., 2011). Including such area responses would require
incorporating a market model into our framework, which is
beyond the scope of our study. A market model would also enable
capturing price effects. For example, in the absence of parasitic
weeds, domestic rice prices would be lower due to higher supply of
rice production. Hence, not incorporating area response and price
effects has respectively led to an underestimation versus
overestimation of total economic losses.

Nevertheless, data scarcity on incidence, yield losses and
control efficacies achieved by farmers is currently the main
bottleneck in the estimation of economic losses. The parameteri-
zation of our stochastic impact assessment is disaggregated at the
country and species level, i.e. the three stochastic parameters
feature a separate statistical distribution for each of the two
species in each of the 31 countries (Table 5). Although for each
parameter the distribution is identical among species and
countries, during each iteration the program @Risk will randomly
select a different combination of values for these parameters
among species and countries. As a result, the total number of
stochastic parameters influencing total economic losses is 3 � 2
� 31 = 186. To illustrate the sensitivity of our impact estimates
(Eq. (1)) to our distributional assumptions of our parameters (Eqs.
(11)–(13)), we visualize the relative contribution of the top-10
most important factors in Fig. 4. The horizontal bars represent
normalized regression coefficients, which show the proportional
change in the standard deviation of total economic losses if the
respective parameter is increased by one standard deviation. A
coefficient of 1 or �1 indicates a 1 or �1 standard deviation change
in the output for a 1 standard deviation change in the input
(Palisade Corporation, 2013). For example, Fig. 4 suggests that if the
true incidence of R. fistulosa in Nigeria were one standard deviation
higher than our most likely value of 7.2% (Table 5), we would have
underestimated total economic losses inflicted by R. fistulosa in
Africa by 51% of its standard deviation (i.e. US $32 million, Fig. 3).
Furthermore, if we had overestimated Nigerian farmers’ efficacy of
controlling R. fistulosa or underestimated the theoretical yield loss
inflicted by R. fistulosa under absence of control by one standard
deviation, we would have underestimated total economic losses
inflicted by R. fistulosa in Africa by respectively 17% or 16% of its
standard deviation (i.e. US $10–11 million, Fig. 3). The uncertainty
surrounding total economic losses seems to be driven by scale first
and then by the uncertainty of the parameters. The top-five
countries with the largest rain-fed rice areas and high incidence
rates of parasitic weeds dominate the aggregate economic losses,
i.e. Nigeria, Guinea, Côte d’Ivoire, Mali and Tanzania. Secondly,
given our assumed stochastic distributions for each of the
parameters, the uncertainty surrounding our incidence estimates
seems to dwarf the uncertainty regarding the efficacy and yield
loss estimates. The results are similar for the remaining 176
stochastic parameters. This sensitivity analysis suggests that we
first need to obtain more accurate incidence estimates in the top-
five countries to further refine our economic impact estimates. The
highly negative coefficient of the efficacy parameter suggests
that—given that farmers have little control over parasitic weed
incidence and control-free losses—improving the efficacy of
parasitic weed control technologies is a first priority in helping
farmers to cope with this problem. Our stochastic model provides a
useful insight in the potential order of magnitude of the benefits
that can be obtained by more efficient control of parasitic weeds in
cereal production systems in Africa.

5. Conclusion

This study presents the first systematic and integrated multi-
species, multi-country, single-crop impact assessment conducted
on parasitic weeds. It shows that with a combination of data
mining, spatial analysis and stochastic impact assessment, a
confidence interval of economic pest-inflicted losses can be made,
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when primary data are scarce or absent. Such exercise also proved
valuable for the identification of the major drivers for these losses,
and hence priorities for policy, research, training and communica-
tion aimed at prevention of the causes and mitigation of the effects.
In addition, the pursued stochastic modeling approach used here
provides the potential order of magnitude of the benefits obtained
by such policy, research and extension efforts.

This study underlines that parasitic weeds are common and
widely distributed production constraints in rain-fed cereal
production systems of sub-Saharan Africa. The most weedy Striga
species in upland rice – i.e. Striga asiatica, S. aspera and
S. hermonthica – occur in at least 31 upland rice producing
countries with a most likely mean incidence rate of 12%. The total
rice area infested by Striga spp. in SSA is estimated at 887,000 ha
and the annual losses inflicted by Striga spp. are estimated at
293,000 tons of milled rice. Rhamphicarpa fistulosa occurs
predominantly in rain-fed lowland areas and is observed in at
least 28 countries producing rice in such environments. The most
likely mean incidence of R. fistulosa in those rice-growing
environments is 6%. The total R. fistulosa infested lowland rice
area in SSA is estimated at 455,000 ha, leading to an estimated total
annual production loss of 204,000 tons of milled rice. Together,
these weeds are estimated to cost African economies US $200
million per year, with an annual increase of US $30 million.

The estimates generated by this study accentuate that parasitic
weeds are an underestimated and also an increasing threat to rice
production in SSA. Sensitivity analyses showed that the first
priority to help individual rice farmers to cope with parasitic
weeds, should be to improve their control efficacies. National
policy and decision makers, as well as international donors, should
therefore be engaged in targeted investments in research and
capacity building on parasitic weed management strategies
enabling farmers to reduce infection and damage levels in their
crops. The top-10 priority countries where investments in parasitic
weed research, capacity building and national strategy develop-
ment would probably have the highest return are Nigeria, Guinea,
Mali, Côte d’Ivoire, Cameroon, Tanzania, Madagascar, Uganda,
Sierra Leone and Burkina Faso.
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