
Risk-Cost Optimization of Buried Pipelines
Using Subset Simulation
Lutfor Rahman Khan1 and Kong Fah Tee2

Abstract: On the basis of time-dependent reliability analysis, a computational framework called subset simulation (SS) has been applied for 
risk-cost optimization of flexible underground pipeline networks. SS can provide better resolution for rare failure events that are commonly 
encountered in pipeline engineering applications. Attention in this work is devoted to scrutinize the robustness of SS in risk-cost optimization of 
pipelines. SS is first employed to estimate the reliability of flexible underground pipes subjected to externally applied loading and material 
corrosion. Then SS is extended to determine the intervention year for maintenance and to identify the most appropriate renewal solution 
and renewal priority by minimizing the risk of failure and whole life-cycle cost. The efficiency of SS compared to genetic algorithm has been 
demonstrated by numerical studies with a view to prevent unexpected failure of flexible pipes at minimal cost by prioritizing maintenance based 
on failure severity and system reliability. This paper shows that SS is a more robust method in the decision-making process of reliability-
based management for underground pipeline networks. 
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Introduction

The reliability of a system is the probability of performing its re-
quired functions under stated conditions for a specified period of
time. In engineering reliability analysis, it is calculated based on
specified probabilistic modeling of the underlying uncertainties
or random variables, which is called stochastic algorithm (Li 2011;
Schueller and Pradlwarter 2007; Fang et al. 2014). Methods of reli-
ability analysis such as the first-order reliability method (FORM),
second-order reliability method (SORM), point estimate method
(PEM), Monte Carlo simulation (MCS), gamma process, probabil-
ity density evolution method (PDEM), etc. are available in litera-
ture (Sivakumar Babu and Srivastava 2010; Mahmoodian et al.
2012; Fang et al. 2013; Tee and Khan 2014; Tee et al. 2015). As
failure is an exception rather than the rule in properly designed
systems, therefore, an engineering reliability analysis involves a
rare event simulation. Finding the optimum, on the other hand,
involves simulating the extreme events that also can be considered
as rare occasions in the design variable space. Thus, if stochastic
algorithms are adopted, the objective function is evaluated at the
optimum random points in the design variable space.

Most of the decisions that are required during the processes of
maintenance and management of aging civil infrastructure are
made under conditions of uncertainty. Therefore, such methodol-
ogies have to be reliability-based. Recent advances in stochastic
optimization have contributed to the development of powerful al-
gorithms for life-cycle cost (LCC) optimization of infrastructure
systems under uncertainty. Reliability-based maintenance optimi-
zation approaches have been applied in different engineering

projects, such as bridges, buildings, pipelines, offshore structures,
mechanical components, etc. (Saydam and Frangopol 2015;
Beaurepaire et al. 2012; Chen et al. 2013; Tolentino and Ruiz
2013; Tee et al. 2014a). Development of reliability-based manage-
ment of inspection, monitoring, maintenance, and repair of various
types of offshore structures has been described, with a focus on
management of hull damage due to crack growth and corrosion
(Moan 2005). An existing reinforced-concrete T-beam bridge
located in Colorado has been investigated using a time-variant
series system reliability approach (Enright and Frangopol 1998).
The results can be used to better predict the service life of deterio-
rating reinforced concrete bridges, and to develop optimal lifetime
reliability-based maintenance strategies for these bridges.

Due to the increased safety requirements, the goal of introducing
effective optimization for underground pipelines is very challeng-
ing because it is difficult to have an algorithm that performs in a
uniformly efficient manner for all problems. Several countries have
developed or initiated the development of pipe management
systems to optimize the maintenance cost of deteriorated pipe struc-
tures. Over the last decade, reliability-based optimal design of
buried pipe distribution systems has been studied by several re-
searchers and this has resulted in the development of a number
of reliability models and the application of optimization techniques
(Rahman and Vanier 2004). Different optimization approaches
have been implemented in different buried pipe management
systems ranging from simplified economic models to advanced
Markovian decision processes (Lounis 2006).

Nevertheless, the design of these models is based on future pre-
defined and perfectly known working conditions, a premise that
directly impacts the optimization process. The imposed scenario
may perform badly if the reality turns out significantly different.
In the context of a proactive attitude toward these risks, it is im-
portant to consider these aspects at the beginning of the design
phase. Arranging these activities in a proper time scale is also a
difficult task. Different pipeline projects require different timetables
to complete. A shorter project duration may lead to higher direct
costs as more skilled laborers and resources are needed for com-
pletion in a short time. In contrast, a longer project duration may
lead to lower direct and indirect costs. In such situations, it is
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important to study the trade-off between completion time, the risk
involved in each resource option, and the cost of the project
(Halfawy et al. 2008; Tee and Li 2011). Trading off between these
conflicting aspects of a project is a challenging job and, in such
cases, planners are faced with numerous possible combinations
for project delivery. If durations of the activities are impacted,
the cost may show an increasing trend due to more resources being
allocated for their rapid accomplishment (Ambrose et al. 2008).

It is commonly believed that there is no single universal method
thath is capable of solving all kinds of optimization problems effi-
ciently because each method has its own definition and limitations.
A common feature of most stochastic optimization algorithms is
that they are developed based on the observations of random phe-
nomena in nature. Hence, the random sampling and/or random
manipulation play an important role in the implementation of these
algorithms. These random features provide the possibility of
jumping out of local optima. Various sophisticated numerical tech-
niques based on gradient information have been well documented
(Ravindran et al. 2006), but most of them are vulnerable to conver-
gence into a local optimum due to nonlinear, multimodal, or even
discontinuous objective functions. Stochastic optimization algorithms
are commonly used for solving global and local optimization prob-
lems. Many are based on probabilistic assumptions on the design var-
iables and the objective functions. Among stochastic optimization
algorithms, simulated annealing (SA) and genetic algorithm (GA)
have been most successful (Spall 2003). However, these are computa-
tionally expensive traditional algorithms. In addition, there is no ab-
solute assurance that these methods will find a global optimum.

To overcome the above limitations, a stochastic optimization al-
gorithm, subset simulation (SS), has been applied in this paper,
which is more robust and easy to implement for solving nonlinear
and multimodal optimization problems. SS is a relatively new
method and has not yet been applied in optimization for pipe main-
tenance. SS, which is originally a reliability analysis method, can
be implemented to solve risk-cost optimization problems for under-
ground pipelines by introducing artificial probabilistic assumptions
on design variables (Au and Beck 2001, 2003; Au et al. 2007; Li
2011; Tee et al. 2014b). The first part of the proposed method is a
reliability analysis approach to calculate the probability of failure
based on corrosion-induced failure modes, whereas the second part
is a risk-cost optimization approach to determine the intervention
year for maintenance from the minimization of the total LCC. The
calculated probability of failure from the first part will be used as an
input to the second part. Both the reliability analysis and risk-cost
optimization are performed using SS. Appropriate renewal methods
and renewal priority can also be obtained.

The basic idea is to deal with the optimization problems in the
context of reliability analysis. The searching process of an optimi-
zation problem is equivalent to exploring the process of the tail
distribution in a reliability problem. Based on the concept of SS,
this artificial reliability problem is decomposed into a series of con-
ditional probability problems. The modified Metropolis-Hastings
algorithm (Au and Beck 2001; Au et al. 2007) is implemented
to generate efficiently the conditional solutions in each simulation
level. An ascending sequence of the objective function values is
chosen adaptively so that the estimated conditional probabilities
are equal to the specified value. When increasing the sequence,
the value of the objective function approaches the optimum point.

Basics of SS Optimization

The analogy between an optimization problem and a reliability
problem allows an optimization problem to be solved using the

SS method. Let hopt be the global maximum of h, where x ¼
xopt. By definition of cumulative density function (CDF), a CDF
curve is monotonic, nondecreasing, and right-continuous and its
value at h ¼ hopt is unity. A reliability problem including classical
and stochastic ones can be employed to perform as an optimization
algorithm (process). However, solving optimization problems by
reliability methods is still in its infancy compared to other available
methods, such as GA, finite state machine (FSM), ant colony opti-
mization algorithm (ACOA), shuffled frog leaping algorithm
(SFLA), etc., due to lack of research and applications in practical
problems (Li and Au 2010).

The basic difference between a reliability and an optimization
problem is that the aim of a reliability analysis is to evaluate the
probability of an event, while the aim of an optimization problem
is to locate a point or region where the objective function is mini-
mized or maximized, i.e., taking extreme values. One can therefore
treat the optimization problem as locating a rare event, because an
extreme event is also a special case of a rare event. Based on these
observations, an optimization problem can be converted to a reli-
ability problem, which makes it possible to use a reliability method
for solving an optimization problem. To view the optimization
problem in the framework of reliability analysis, the design varia-
bles are artificially considered to be random (Li and Au 2010). This
induces the objective function h to PF.

Consider an optimization problem given by

MaxhðxÞ; such that x ∈ Ω

where h∶Ω ⊂ Rn → R = real valued function; x = design variable
vector; and Ω = closed and bounded set. The maximum (xopt; hopt)
is the point such that

hopt ¼ hðxoptÞ ≥ hðxÞ ð1Þ

In Eq. (1), only one variable x is involved, and h is a function of
x. The optimization problem is defined as finding the maximal
value of h, i.e., maxhðxÞ.

On the other hand, a reliability problem can be defined to es-
timate the probability of h exceeding a given threshold h0; there-
fore, the failure probability can be estimated as shown in Eq. (2):

Pf ¼ P½hðxÞ ≥ h0� ð2Þ

The reliability problem is often considered a rare event simula-
tion problem because a very small probability of failure is involved
in practice. Geometrically, the region of h > h0 in a reliability prob-
lem is broader than that of maximum points in an optimization
problem. In other words, the region needing to be found in an op-
timization problem is a reduced region in a reliability problem. The
attention here is on the point or region where the objective function
attains the largest value, which can be a challenging problem when
the objective function has many local optimums or when the di-
mension of the design variable space is large (Li 2011). Recall that
the artificial reliability problem is not to compute the failure prob-
ability but to search for the corresponding point hopt of zero failure
probability given by Eq. (2).

After randomizing the design variables, the objective function
maps the multidimensional design variable vector into a random
variable h. This mapping also transforms all points that take the
same value onto one point on the nondecreasing CDF curve of the
randomized objective function h. Hence, the trend trapping in local
optimums can be easily avoided (Li and Au 2010). Based on the
aforementioned conventions, it is clear that an artificial reliability
problem can be dealt with using an optimization problem in the
framework of reliability analysis. Thus, SS can generate samples



(solutions) that progress toward the maximum in a more efficient
way, simultaneously as the rare event region is gradually being
populated.

Pipe Failure Modes

When the residual ultimate strength of a buried pipeline is ex-
ceeded, breakage becomes imminent and the overall reliability
of the pipe is reduced. The critical failure modes are those contrib-
uting significantly to the reliability of the system at the chosen
level. The failure criteria adopted here are due to loss of structural
strength of pipelines by corrosion through reduction of the pipe
wall thickness, which then leads to pipe failure by excessive deflec-
tion, buckling, wall thrust, and bending.

Corrosion of Metal Pipes

Buried pipes are made of plastic, concrete, or metal, e.g., steel,
galvanized steel, ductile iron, cast iron, or copper. Plastic pipes tend
to be resistant to corrosion. Damage in concrete pipes can be attrib-
uted to biogenous sulfuric acid attack (Tee et al. 2011; Alani et al.
2014). On the other hand, metal pipes are susceptible to corrosion.
Metal pipe corrosion pitting is a continuous and variable process.
The corrosion pit depth can be modeled with respect to time as
shown in Eq. (3) (Ahammed and Melchers 1997; Sadiq et al. 2004).

The corrosion pit depth is

DT ¼ kTn ð3Þ

whereDT = pit depth; and T = exposure time. The parameters k and
n are corrosion empirical constants and depend on pipe materials
and surrounding environments. Due to the reduction of wall
thickness given by Eq. (3), the moment of inertia of pipe wall
per unit length I and the cross-sectional area per unit length As
for thin-walled plain pipe can be defined as follows (Watkins
and Anderson 2000; Tee and Khan 2012):

Moment of inertia∶I ¼ ðt −DTÞ3=12 ð4Þ

Cross-sectional area∶As ¼ t −DT ð5Þ

where t = thickness of pipe wall.

Deflection, Buckling Pressure, Wall Thrust, and
Bending Stress

In this paper, the chosen dominating failure modes of flexible pipes
are characterized by corrosion-induced excessive deflection,
buckling, wall thrust, and bending stress (Tee et al. 2013). These
dominating failure modes are discussed briefly as follows.

A buried pipe tends to deflect under the effects of earth and live
loads. The performance of a flexible pipe in respect to its ability to
support the load is typically assessed by measuring the deflection
from its initial shape. Deflection is quantified in terms of the ratio of
the horizontal increase in diameter (or vertical decrease in diameter)
to the original pipe diameter. Rigid pipe is sometimes classified as
pipe that cannot deflect more than 2% of its internal diameter with-
out significant structural distress, such as cracking (Hancor 2009).
Flexible pipe takes advantage of its ability to move, or deflect under
loads without structural damage. The actual deflection, Δy, can be
calculated as shown in Eq. (6) (Watkins and Anderson 2000). The
critical, or allowable, deflection for flexible pipe,Δycr, is normally
determined as 5% of the inside diameter of a pipe (Gabriel 2011):

Δy ¼
KbðDLWc þ PsÞD�

8EI
D3 þ 0.061E 0

� ð6Þ

where Kb = deflection coefficient; DL = deflection lag factor;
D = mean diameter; E = modulus of elasticity of pipe material;
E 0 = modulus of soil reaction; Wc = soil load; and Ps = live load.

External loadings from soil pressure or external hydrostatic
pressure can cause inward deformation known as wall buckling.
Buckling is a premature failure in which the pipe is not able to
maintain its initial circular shape and the structure becomes unsta-
ble at a stress level that is well below the yield strength of the struc-
tural material (Sivakumar Babu and Srivastava 2010). The actual
buckling pressure, p, and the critical buckling pressure, pcr, can
be calculated from Eqs. (7) and (8), respectively (AWWA 1999):

p ¼ Rwγs þ γwHw þ Ps ð7Þ

pcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
32RwB 0Es

EI
D3

�s
ð8Þ

where Rw = water buoyancy factor; γs and γw = unit weight of soil
and water, respectively; Hw = height of groundwater above the
pipe; B 0 = empirical coefficient of elastic support; and Es = soil
modulus.

If the buried depth is not enough then the pipe wall can crush
(wall thrust) due to earth and surface loading. The allowable or
critical thrust must be equal to or greater than the actual thrust
in order for the pipe to remain structurally stable. The critical and
actual wall thrust can be estimated as shown in Eqs. (9) and (10),
respectively (Hancor 2009):

Tcr ¼ FyAsϕp ð9Þ

Ta ¼ ðWA þ PSCL þ PwÞðD0=2Þ ð10Þ
where Fy = minimum tensile strength of pipe; ϕp = capacity modi-
fication factor for pipe; CL = live load distribution coefficient;
WA = soil arch load; Pw = hydrostatic pressure; and Do = outside
diameter of pipe.

If a pipe is part of a carrying structure, the elastic limit may be an
obvious choice as the design limit. A pipe subjected to increasing
pure bending will fail as a result of increased ovalization of the
cross section and reduced slope in the stress-strain curve. The ac-
tual bending stress can be measured from Eq. (11). The allowable
bending stress is the long-term tensile strength of pipe material:

σb ¼ 2DfEΔyy0=D2 ð11Þ
where Df = shape factor; and y0 = distance from centroid of pipe
wall to the furthest surface of the pipe.

Methodology

The SS optimization is combined with the total life-cycle cost
[Eq. (15)] as the objective function, which will be explained in
the next section. The procedure of the SS optimization algorithm
is presented as follows. First, select the distributional parameters
for design variables. In the original optimization problem, each de-
sign variable is a random variable with an artificial probability den-
sity function (PDF) fðxÞ. If there are n numbers of design variables
denoted as x ¼ fx1; x2; : : : ; xngT , then the corresponding PDFs of
these design variables are denoted as f1ðx1Þ; f2ðx2Þ; : : : ; fnðxnÞ. It
is assumed that the random variables are statistically independent;



hence, the joint PDF is the product of the PDFs of the random var-
iables. Therefore, the joint PDF of all design parameters can be
expressed as shown in Eq. (12) (Au and Beck 2003; Ching et al.
2005; Li 2011):

fðxÞ ¼
Yn
i¼1

fiðxiÞ ð12Þ

Next, generate N independent and identically distributed sam-
ples fx1; x2; : : : ; xng by direct Monte Carlo simulation according
to the artificial distributions. Each sample xiði ¼ 1; 2; : : : ; nÞ has
n components, i.e., xi ¼ fxð1Þi ; xð2Þ2 ; : : : ; xðnÞi g, where xðjÞi fj ¼
1; 2; : : : ; ng are generated from fjðxjÞðj ¼ 1; 2; : : : ; nÞ. Calculate
the constraint fitness function values (if any) and the objective
function values of the samples and then sort them according to
the double-criterion ranking algorithm. The first ranking based
on the constraint fitness function is designed to search the feasible
domain, while the second ranking based on objective function
searches for the optimal solution.

The modified Metropolis-Hastings (MMH) algorithm is em-
ployed for generating samples conditional on the intermediate
event. Let f�i ðξijxiÞ, i ¼ 1; 2; : : : ; n be a series of PDFs that depend
on xi. In order to generate the next Markov chain sample

xkþ1 ¼
n
xð1Þkþ1; x

ð2Þ
kþ2; : : : ; x

ðnÞ
kþ1

o
T

from the current sample xk ¼n
xð1Þk ; xð2Þk ; : : : ; xðnÞk

o
T
conditional on an event Fj, the MMH algo-

rithm is presented as follows (Au and Beck 2001; Li 2011):
1. Generate a candidate state ξkþ1 ¼

n
ξð1Þkþ1; ξ

ð2Þ
kþ2; : : : ; ξ

ðnÞ
kþ1

o
T

from the proposal PDFs

f�i ðξijxiÞ; i ¼ 1; 2; : : : ; n

For each component i ¼ 1; 2; : : : ; n
a. Generate a precandidate component ξð1Þkþ1 from f�i ðξijxiÞ
b. Compute the acceptance ratio as

rikþ1 ¼
fiðξðiÞkþ1Þf�i ðxikjξðiÞkþ1Þ
fiðxðiÞk Þf�i ðξðiÞkþ1jxikÞ

c. Set the ith component of ξkþ1 according to

ξðiÞkþ1 ¼
�
ξðiÞkþ1 with probability minð1; rkþ1ðiÞÞ
xðiÞk with probability 1 −minð1; rðiÞkþ1Þ

2. When ξkþ1 ≠ xk perform an evaluation of the objective function
hðξkþ1Þ. If ξkþ1 ∈ Fj, accept it as the next state, otherwise reject
it and take the current state as the next one, i.e., set xkþ1 ¼ xk.
Au et al. (2007) have proved that the next sample will be
distributed as the current one is, and, hence, is the stationary
distribution of the Markov chain.
In each simulation level, a Markov chain can be generated with

the same conditioning. Because the initial samples obey the condi-
tional distribution, all these Markov chains are automatically in a
stationary state and samples in these Markov chains distribute ac-
cording to the conditional distribution. If the number of samples in
each level is a constant number, then the length of each Markov
chain will be 1=pk−1 (k ¼ 2; : : : ;m) where pk−1 is the level prob-
ability in the last simulation level and m is the total simulation
levels. Evaluate and sort the objective function values of new
generated samples. Then determine the Nð1 − pkÞth percentile
hk;Nð1−pkÞ from the ascending sequence of fhk;l∶l ¼ 1; : : : ;Ng
so that the probability of the conditional event is satisfied, as shown
in Eq. (13) (Li 2011):

PðFkjFk−1Þ ¼ P½hðxÞ ≥ hk;Nð1−pkÞjFk−1� ≈ pk ð13Þ

These samples with their objective function values larger than
hk;Nð1−pkÞ are chosen to provide seeds for the sampling operation in
the next simulation level. The procedure is repeated until a stop
criterion is met or the computational budget of the objective func-
tion evaluations is exhausted.

Each new simulation level is an improvement on the previous
one that went before, which is realized by the level probability pk,
as shown in Eq. (13). The level probability pk is used to select a
subpopulation that provides the sampling seeds for the next sim-
ulation level. It controls the efficiency of calculation and the choice
of level probability is a trade-off between the number of samples
required in each simulation level and the number of simulation lev-
els required to reach the target failure region. Au et al. (2007) sug-
gested that pk takes a constant value of 0.1 to 0.2 in a real reliability
problem. In SS optimization, the level probability is a control
parameter that regulates the convergence of the optimization pro-
cess. If a very small number is used, the algorithm would have a
low probability of reaching a global optimum. Therefore, the level
probability must be large enough to permit the locally developed
Markov chain samples to move out of a local optimum in favor of
finding a global optimum, especially in the early simulation level.
However, a large value would increase the number of simulation
levels.

The total number of samples is equal to N þP
m
k¼2ð1 − pkÞN. It

is observed that a large value of N tends to increase the number of
objective function evaluation, which is a time-consuming process.
On the other hand, a small value of N may cause the generated
samples not to cover the searching space well and thus lead to a
fail in finding a good optimum solution. Therefore, in practice, this
number should not be too large or too small. More details on SS
optimization can be found in Li (2011).

Life-Cycle Cost

For a pipeline, the occurrence of either failure mode will constitute
its failure. Therefore, a series system is more appropriate for its
assessment of failures. The correlation between the failure modes
is estimated and the value is within the range from 0 to 1. Thus, the
probability of failure for a series system Pf can be estimated as
follows (Fetz and Tonon 2008):

Max½Pf;i� ≤ Pf ≤ 1 −Yr
i¼1

½1 − Pf;i� ð14Þ

where Pf;i = probability of failure due to ith failure mode of pipe;
and r = number of failure modes considered in the system.

In this paper, the life-cycle cost (LCC) consists of initial cost or
installation cost, maintenance cost, and failure risk cost (Ambrose
et al. 2008). The total life-cycle cost CLCCðTÞ can be presented as
follows (Hinow et al. 2008):

CLCCðTÞ ¼ CA þ
XT
j¼1

CMðjÞ þ
XT
j¼1

CfðjÞ × Pf;j ð15Þ

where CA = capital cost; CM = maintenance cost; Cf = failure cost,
and j ¼ 1; 2; 3; : : : ;T year.

In this paper, the problem of identifying the optimal intervention
year is transformed into minimization of total LCC [Eq. (15)] using
SS. The cost terms in the right-hand side of Eq. (15) are the costs in
the year they actually occur. The ð1þ rÞT factor is used to convert
the cost into its present value discounted by the discount rate of r,



for the T year period. The discount rate depends on the prevailing
interest rate and the depreciation of the currency or inflation rate.

Maintenance Strategy

The criterion used for pipe renewal is the degree of impact of an
underground pipeline failure. The impact assessment ranks the pipe
segments in unit length in terms of six major factors: location, em-
bedment soil, burial depth, pipe size, functionality, and seismic
zone. The assessment generates a ranking of impact for the under-
ground pipeline system. Each of the six factors is assigned a degree
of impact defined by low, medium, or high (McDonald and Zhao
2001). A weighted impact rating (Iw) formula is used to combine
the influence of each of the six factors for each pipe segment within
the system as follows:

Iw ¼ 0.2fl þ 0.16ðfs þ fz þ fd þ ff þ fqÞ ð16Þ
where fl = location factor; fs = embedment soil factor; fz = size
factor; fd = burial depth factor; ff = underground pipeline function
factor; and fq = seismic factor. Although these factors do not
change dramatically from year to year, periodic updating may
be necessary. The failure impact rating Rimp can be assessed based
on Table 1 with respect to Iw values (McDonald and Zhao 2001).
For all of the factors listed, the low value is 1 and high value is 3.
The medium degree of impact falls between the high and low ex-
tremes and is assigned a value of 1.5.

Once the weighted impact rating is determined for individual
pipe segments, the impact assessment can then be used in a number
of ways in the decision-making process. The impact ratings can be
used in combination with the underground pipeline condition,
which is called the condition index, or the mean structural pipe
grade to prioritize rehabilitation or replacement work and the future

inspection frequencies. The maintenance strategy can be imple-
mented by identifying applicable renewal categories based on
the underground pipeline condition index. The purpose of the
condition index is to objectively rate or scale the current condition
of buried pipes based on several physical, environmental, and op-
erational factors, which provide the basic terminology and frame-
work. The mean structural pipe grade or structural condition index
(CI) for underground pipeline can be calculated from the regression
model as follows (WRC 2001):

CI ¼ 0.0003T2 − 0.0003T þ 1 ð17Þ

where T = age of underground pipeline (in years), which
corresponds to the intervention year obtained from the risk-cost
optimization.

Buried pipeline renewal methods can be grouped into four main
categories: replacement, structural, semistructural, and nonstruc-
tural lining methods (Khan et al. 2013). Structural liners are defined
as being capable of carrying hydrostatic, soil, and live loads on their
own. Structural liners are expected to be independent, i.e., bonding
with original underground pipeline is not required. Semistructural
liners are designed to withstand hydrostatic pressure or perform as a
composite with the existing pipelines. Semistructural liners could
be designed as interactive or independent. Semistructural liners
typically are used for nongravity pipeline systems. Nonstructural
liners are used mainly to improve flow, resist corrosion, or to seal
minor cracks in gravity pipelines.

The possibility of surrounding soil loss, a very important param-
eter to assess the renewal process, is determined on a high, medium,
or low scale according to the soil type and groundwater level, as
shown in Table 2 (Newton and Vanier 2006). The renewal methods
are selected based on detailed analysis of possible defects, as in-
dicated by the condition index and the possible scenarios of soil
loss, as shown in Table 3 (WRC 2001). For example, an under-
ground pipeline with Condition Index 3 and a high possibility
of soil loss will need replacement or the use of a structural liner
to carry loads and stabilize deformation. At a minimum, a semi-
structural liner that can withstand hydrostatic pressure is required.
On the other hand, the renewal priorities are decided based on CI,
Iw, and Rimp values as shown in Table 4. For the pipe segments with
the same physical condition index/rating, those with higher impact
ratings would be considered first for rehabilitation.

Numerical Example

An underground pipeline network under a roadway subjected to
heavy load operating conditions, passing under commercial and
residential areas, is taken as a numerical example to validate the
proposed risk-cost optimization management strategy using SS.
The underground pipeline network, which was constructed in
1940, consists of approximately 789 km of sanitary flexible buried
metal pipelines. The pipes in the network are medium-sized steel
and ductile iron pipes. The whole network is divided into six seg-
ments of pipeline, namely, A to F. The pipe material, location, and

Table 1. Failure Impact Rating

Weighted impact factor, Iw Failure impact rating, Rimp

1.00 1
1.01–1.60 2
1.61–2.20 3
2.21–2.80 4
>2.81 5

Table 2. Possibility of Soil Loss Based on Soil Type and Groundwater
Level

Soil type

Groundwater level

Below
sewer

Same line
with sewer

Above
sewer

Clay Low Medium High
Gravels and low-plasticity clay Low Medium High
Silt and sand High High High

Table 3. Selection of Renewal Categories Based on Condition Index and Soil Loss Possibility

Condition index

Possibility of soil loss

Low Medium High

2 Nonstructural or semistructural Nonstructural or semistructural Semistructural, structural, or replacement
3 Nonstructural or semistructural Semistructural or structural Semistructural, structural, or replacement
4 and 5 Structural or replacement Structural or replacement Structural or replacement



soil parameters of each segment are listed in Table 5. The whole
network was constructed above the groundwater table.

It is presumed that the whole underground pipeline network is
located in a high seismic vulnerable zone area. The network is sub-
jected to corrosion and its corrosion is presumed to be uniform over
the pipe sections. The corrosion rate is modeled using Eq. (3).
There are nine random variables (elastic modulus of pipe, soil
modulus, soil density, live load, deflection coefficient, corrosion
coefficients, pipe wall thickness, and height of the backfill) for
which the mean and coefficient of variation are listed in Table 6.
The data are obtained from Ahammed and Melchers (1997), Sadiq
et al. (2004), and Sivakumar Babu and Rao (2005).

The capital cost, maintenance cost, and failure consequence cost
(future values) are presented in Table 7 on a yearly basis for the
whole network from Sections A to F. The cost data are predicted
or calibrated based on real case studies on municipal infrastructure
investment planning (MIIP) in Canada (Rahman and Vanier 2004),
a report by Melbourne Water (owned by the Victorian government)
(2012), and Davis et al. (2008). A typical discount rate of 5% is
considered in this paper. In this paper, LCC is used as an objective
function, which includes initial construction cost, maintenance
cost, and failure cost. All alternatives for maintenance and renewal
will be considered. The essence of LCC is that one alternative may
have a higher initial cost, but its costs over the asset’s life cycle may
be lower than those of other alternatives.

Results and Discussion

The SS optimization process has been developed to solve the risk-
cost optimization problem of a buried pipeline network in order to
validate the proposed method. This numerical example is an uncon-
strained optimization problem. In this paper, the design variable is
the failure probability of the underground pipeline network, which
comprises nine random variables as listed in Table 6, and the total
LCC in Eq. (15) is the objective function. To obtain a fair and re-
liable result, a considerable amount of computational effort and
time has been spent to identify the best number of samples required

for achieving a reasonably good solution. The results are presented
as follows.

Pipeline Reliability

First, the probabilities of buried pipe failure due to corrosion-
induced excessive deflection, buckling, wall thrust, and bending
with respect to time are estimated using the SS method based on
the parameters and basic variables given in Tables 5 and 6. When
the thickness of the pipe is reduced due to corrosion, the moment of
inertia and the cross-sectional area of the pipe wall are decreased
with a resulting reduction in pipe strength, as shown in Eqs. (4) and
(5), respectively. All the random variables are considered as nor-
mally distributed, except the deflection coefficient, which is lognor-
mally distributed. For the non-normally distributed variable, the
Rosenblatt transformation is used to transform it to an equivalent
normal variable. The occurrence of either failure mode of the pipe
will constitute its failure. Therefore, the probability of failure of
the underground pipeline network is determined as a series system
using Eq. (14) and the results are shown in Figs. 1–6.

The paper shows that on average the probability of pipe failure
at the beginning is close to zero and it remains unchanged until
about 45 years of service life. Then it gradually changes as time
increases; after 50 years, the probability of failure rises drastically.
Upper failure probabilities, as shown in Figs. 1–6 for pipe Sections
A to F, have been used for the subsequent risk-cost optimization as
a worst-case scenario.

Optimum Renewal Cost, Time, and Priority

As shown in Eq. (15), the failure risk cost is calculated by multi-
plying the failure cost with the probability of system failure. Once
the probability of system failure has been calculated, the optimal
time to repair or replace, as well as the associated life-cycle risk
and cost, are obtained from the risk-cost optimization using SS.
Table 8 summarizes the results of the SS optimization process
for the convergence of total LCC obtained from pipeline risk-cost

Table 4. Renewal Priority

Structural
condition
index Implication

Failure impact
rating (Rimp)

Renewal
priority

5 Failed or failure imminent 1 to 5 Immediate
4 Very poor condition 5 Immediate

High structural risk 1 to 4 High
3 Poor condition 4 to 5 Medium

Moderate structural risk 1 to 3 Low
2 Fair condition/minimal

structural risk
1 to 5 Low

1 or 0 Good or excellent condition 1 to 5 Not required

Table 5. Pipe Materials and Location Properties

Pipe section Material Location Embedment soil
Length
(km)

Mean
diameter (mm)

Thickness
(mm)

Soil height above
pipe invert (m)

Traffic
load (kPa)

A Steel Commercial Clay 150 500 8 2.0 100
B Ductile iron Commercial Clay 100 600 8 2.0 100
C Steel Residential Sand 110 600 9 2.1 100
D Steel Residential Sand 225 480 7.5 2.5 90
E Ductile iron Residential Sandy gravel 85 350 7 2.2 100
F Ductile iron Commercial Sandy gravel 115 500 8 1.8 100

Table 6. Statistical Properties

Symbol description
Mean
value

Coefficient
of variation % Distribution

Elastic modulus
of steel pipe

210 GPa 1.0 Normal

Elastic modulus of
ductile iron pipe

170 GPa 1.0 Normal

Soil modulus, Es 2 MPa 5 Normal
Unit weight of soil, γ 18.0 kN=m3 2.5 Normal
Traffic load (live load), Ps Table 5 3.0 Normal
Deflection coefficient, Kb 0.11 1.0 Lognormal
Multiplying constant, k 0.3 10.0 Normal
Exponential constant, n 0.6 5.0 Normal



optimization, for which 500 numbers of samples, level probability
of 0.1, and stopover value of 10−5 are used in this paper. The first
column of Table 8 shows the optimal LCC cost, which is associated
with the first maintenance.

Next, the proposed maintenance strategy is extended to deter-
mine an applicable and feasible renewal method using Tables 2
and 3. The recorded database shows that the underground pipelines
are built on clay, sand, and sandy gravel. In addition, the whole
pipeline network is above the groundwater level. Based on this in-
formation and according to Table 2, the possibility of soil loss for
sanitary underground pipeline Sections A and B is low, whereas for

Table 7. Cost Data for Pipe Network

Pipe section Capital cost Maintenance cost Failure cost

A £1 million £20,000 £100 million
B £50,000 £10,000 £80 million
C £70,000 £8,000 £90 million
D £1 million £15,000 £140 million
E £30,000 £8,000 £70 million
F £55,000 £7,000 £85 million

Fig. 1. Probability of failure for pipeline Section A using SS

Fig. 2. Probability of failure for pipeline Section B using SS
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Fig. 3. Probability of failure for pipeline Section C using SS

Fig. 4. Probability of failure for pipeline Section D using SS

Fig. 5. Probability of failure for pipeline Section E using SS

Fig. 6. Probability of failure for pipeline Section F using SS



Sections C to F, the possibility of surrounding soil loss is high. The
condition index (CI) for the underground pipeline network is esti-
mated as shown in Table 8 using Eq. (17) by substituting the
identified optimal time to renew from risk-cost optimization.
Applicable renewal categories are then selected from Table 3 based
on CI and the possible scenario of soil loss. Pipeline Sections A, B,
and C are required to renew using nonstructural or semistructural
lining methods based on the estimated CI and low possibility of
soil loss. On the other hand, due to high possibility of soil loss
and CI > 2, pipeline Sections D and E need to renew using semi-
structural or structural liners. Finally, pipeline Section F should
be renewed with structural liners or replacement (CI > 3, high
possibility of soil loss). Alternatively, replacement is recommended
if the repair cost becomes greater than the cost of replacing
the pipes.

Based on the underground pipeline’s inventory information and
alignment, the renewal assessment has been carried out considering
all six major impact factors and Eq. (16), and the renewal priority is
based on the structural CI and failure impact rating. According to
Table 8, the pipes that are in fair or minimal structural risk condi-
tion need low renewal priority. On the other hand, pipes with a high
structural risk condition require immediate rehabilitation or
replacement for the safety of the network.

Finally, a comparison is made with GA results to validate the
accuracy of the SS optimization process. Table 9 shows a good
agreement between these two optimization approaches. The ob-
tained optimal costs and renewal times from SS and GA methods
are reasonably close. The renewal time and renewal methodologies
are the same for both optimization approaches. The advantage of
SS optimization is that it takes about 30 min to execute the current
problem, whereas GA optimization takes more than 1 h 30 min.
Thus, SS requires only one-third the computational time compared
to GA. Note that the computational speed is measured in terms of
central processing unit (CPU) time on a 1.6-GHz Pentium IV per-
sonal computer in this paper. Another advantage of SS optimization
is that the evaluation number required by GA is larger than that of
the SS algorithm. The SS algorithm exhibits a higher success ratio
compared to GA and enables finding the global maxima in all runs.

Thus, SS is found to be the best choice for this kind of multimodal
function.

Conclusions

An SS optimization technique has been developed in this paper
for reliability-based risk-cost optimization of a buried pipeline
network. The proposed optimization technique is found to be
competitive in exploiting the feasible regions and providing opti-
mal solutions in solving complex problems. A numerical example
is presented to demonstrate the robustness and validate the effi-
ciency of the technique. SS is first employed to estimate the reli-
ability of flexible underground pipes subjected to externally applied
loading and material corrosion. Then SS is extended to determine
the intervention year for maintenance and to identify the most ap-
propriate renewal solution and renewal priority by minimizing the
risk of failure and whole life-cycle cost. A comparison is made with
the results obtained from GA to validate the accuracy of the SS
optimization. The paper shows a good agreement between these
two methods. However, SS requires only one-third the computa-
tional time of GA. The proposed risk-cost optimization approach
can help management in making correct decisions concerning
the intervention year and renewal methodology. The proposed
method produces a reasonably good result with much less computa-
tional effort.
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