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Abstract

Agricultural soils can be contaminated by industrial activities such as mining and smelting. Contamination with
cadmium (Cd) can significantly exceed average background values, which can lead to uptake by rice plant and
even harm to humans through food chain. In Hunan province, southern China, rice (Oryza sativa L.) is the main
cereal, and human exposure to metallic contaminants through rice pathway is of particular interest. Shortage of
land for rice growing means that contaminated agricultural soil is still cultivated for rice in Hunan. In the
present work, a field experiment was undertaken to remediate Cd-contaminated paddy soil with three mineral
amendments, namely sepiolite, bone char, and a silicon-based product (normally used as fertilizer). Average Cd
concentration in the paddy soil was 2.85 mg/kg, significantly exceeding Chinese soil quality standards of China.
Cd content was 0.59 mg/kg in sepiolite, 0.28 mg/kg in bone char, and 0.44 mg/kg in silicon fertilizer, respec-
tively. Distribution fractions of Cd in soil followed the order of exchangeable (FI) > organic matter-bound (FIII)
> residual (FIV) > oxide-bound (FII) without treatment, while exchangeable (FI) > residual (FIV) > organic
matter-bound (FIII) > oxide-bound (FII) after treatment. With addition of three amendments, soil pH values and
rice growth such as plant height and ripening rate increased. Concentrations of Cd in the rice plant (straw, husk,
and unpolished rice) decreased after treatment. However, among three amendments, only the bone char addition
reduced Cd accumulation in the rice plant below the Chinese standard value (0.2 mg/kg) and in the husk to
below the Chinese feed hygiene standard for food (0.5 mg/kg).
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Introduction

Rapid development of the Chinese economy has re-
sulted in heavy metals pollution (Hu et al., 2014) and

food security problem (Lu et al., 2015). In 2014, 19.4% of
farmland was heavily contaminated with heavy metals, in-
cluding cadmium (Cd), mercury (Hg), arsenic (As), copper
(Cu), and lead (Pb), especially Cd accounting for 7.0% of the
contamination observed (Ministry of Environmental Pro-
tection and Ministry of Land and Resources of China, 2014).
Cd is a nonessential element with a mean background level of
0.97 mg/kg in the environment (Wei et al., 1991). In Hunan
province the soil background value is calculated as 0.098 mg/

kg (Pan and Yang, 1988). However, as an industrial by-
product of the mining and smelting of Pb and zinc, >680
tonnes of Cd are discharged into the environment each year
(Kong, 2001). Lei et al. (2010) reported Cd values in garden
soil and paddy soil around the vicinity of Pb/Zn mines as 10.0
and 11.9 mg/kg, which greatly exceeded soil background
values. As a result of this increased availability of Cd (Cd is
rather soluble), it is easily absorbed by rice roots and con-
centrated in the rice grain, even on slightly to moderately
Cd-polluted soil (Uraguchi et al., 2009). The effect of Cd
exposure on human health is significant, causing, for exam-
ple, ‘‘itai-itai’’ disease (Kobayashi, 1978). Cheng et al.
(2005) reported that the amount of Cd-contaminated rice on
sale exceeding the national allowable limit of 0.2 mg/kg was
10.3% of the total in 2002 (Ministry of Health of China and
the Standardization Administration of China, 2005). Specific
investigations were also carried out in other provinces such as
Hunan (Williams et al., 2009; Lei et al., 2015), Guizhou
(Huang et al., 2009), Guangdong (Zhuang et al., 2009; Bian
et al., 2013), Zhejiang (Huang et al., 2013), and Jiangsu
(Zhao, Zhou et al., 2002; Zhen et al., 2008; Hang et al., 2009;
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Cao et al., 2010). An estimate of the direct economic losses
from the effect of Cd contamination of crops is more than 20
billion RMB (3.20 billion in US$) (Zhang et al., 2010).

Reduction of Cd entering to the food chain is therefore of
great importance for China, especially for Hunan, which is
China’s biggest rice producer and named ‘‘hometown of rice
and fish.’’ Although there are some methods such as physical,
chemical, and biological methods to remediate contaminated
paddy soil, due to the soil being repeatedly reused for the
production of rice, few are suitable for remediation of con-
taminated agricultural soil. Thus, the approach adopted in the
present work was to chemically stabilize through an in situ
method, using an increase to soil pH (to reduce Cd mobility)
but within limits to ensure that paddy soil remained suitable
for rice growing. A number of soil amendments, including
limestone, zeolite, or other organic and inorganic amend-
ments, have been investigated for Cd stabilization (Chen
et al., 2000; Geebelen et al., 2006; Huang et al., 2006; Zhao
and Masaihiko, 2007). Most of methods using amendments
focus on laboratory-scale incubation or pot trials, while few
have been applied in the field, as in the present work.

The aims of the present work were as follows: (1) to inves-
tigate the effects of sepiolite, bone char, and silicon fertilizer on
speciation of Cd in paddy soil; (2) to examine the effects on Cd
accumulation and translocation in rice plants; and (3) to provide
a theoretical and practical basis for a field-scale remediation
project to immobilize Cd to demonstrating rice safety.

Materials and Methods

Study area

The contaminated paddy field was located in Zu Bugan
(27�54.6860N, 112�58.2960E), north of Xiangtan city, Hunan
Province. Having been irrigated with contaminated water
from Xiangjiang River, the paddy soil was contaminated with
Cd, investigated by Tang et al. (2012).

Rice seeds

One genotype of rice seed named Lu Liang you 611 (L611)
was obtained from the Hunan Rice Seed Company follow-
ing germination in a nursery in April 2015 and planting in
May 2015.

Amendments

There were three amendments chosen for use in this study
as follows: sepiolite, bone char, and silicon fertilizer. The
natural sepiolite [Mg4Si6O15(OH)2$6H2O] sample was pur-
chased from Changsha city, Hunan Province, whereas the
bone char was obtained from the Guanghan city, Sichuan
Province. The silicon fertilizer was obtained from Tangshan
city, Hebei Province, China. As there are no control standards
for pollutants in amendments used for agricultural use, the
relevant standard for sludge (Ministry of Urban-Rural De-
velopment and Environmental Protection of China, 1984) was
taken as reference.

Field treatment experimental design

The paddy field under investigation was divided into ten
plots of 30 m2 and separated by polyethylene plates. Every
treatment for plot was random design and irrigated through

independent irrigation ditch. In the experiment, the depth of
soil used for calculating the amendment dosage was 20 cm,
which was applied to three replicate plots by manual plowing
according to the Table 1, 25 days before planting. On the day
of planting, 200 kg of P, K, N basal fertilizer was added.

The experimental plots were planted with rice seedlings
(L611) that had been raised for 4 weeks in clean soil on May
4th, 2015.

They were harvested 90 days later during which all water,
fertilizer, and pesticide management continued as normal.

Sample collection and preservation

Before sowing, 2.0 kg top-soil sample (0–20 cm) was col-
lected from the paddy field by soil sampler in February 2015
and placed in polyethylene bags for transportation to the lab-
oratory where they were air-dried. The soils were passed
through a 2-mm sieve and stored in 500 mL polypropylene
plastic bottles for analysis.

Samples of the growing rice plants were collected thrice as
follows: at the seedling stage, heading stage, and mature stage.
At the harvest in July 2015, whole rice plants were pulled,
and rice grains and rice straws (above 4 cm) were separated
from the plant by hand picking/cutting above the roots. The
rice plant samples (rice root, straw, and grain) from each area
were tagged/labeled, kept in polyethylene bags in the field,
and transported to the laboratory, where they were washed
with distilled water and then oven dried at 65�C for 96 h. The
rice root and straw were then cut, milled, and stored for
analysis. The rice grain was divided into its husk and un-
polished rice, milled, and stored ready for analysis.

Soil, amendments, and rice plant analysis

The soil pH was determined using double distilled water
(soil: solution ratio 1:2.5) with a combined pH electrode, and
the cation exchange capacity (CEC) was determined using
unbuffered 0.1 M BaCl2 (Hendershot and Duquette, 1986).
Total concentrations of Cd in paddy soils following acid
digestion with HNO3/HCl/HClO4 (U.S. EPA, 1998) were
determined by Graphite furnace atomic absorption spectro-
photometer (AA240FS; Varian).

The amendments were air-dried and ground to pass through
a 0.049 mm mesh sieve. The analysis methods of pH and Cd
concentrations of amendments were the same as those of soils.

Between 0.1 and 0.2 g of the rice plant samples (unpolished
rice, husk, straw, and root) were weighed into dry clean di-
gestion tubes and moistened overnight with 5 mL concentrated
nitric acid. The following day, the digestion tubes were placed

Table 1. Treatment with Three Amendments

Treatment ID

Amendments/kg/ha

Sepiolite Bone char
Silicon

fertilizer

CK 0 0 0
Low 2,250 (Sl)a 2,250 (Bl) 450 (F1)
Medium 11,250 (Sm) 11,250 (Bm) 900 (F1)
High 22,500 (Sh) 22,500 (Bh) 2,250 (F1)

aThe letters in bracket are treatment with each amendment and its
concentration.



on a heating block and heated at 80�C for 3 h and then at 120�C
for 48 h until a little solution remained without completely
drying out. After the tubes had cooled, the digests were trans-
ferred to 25 mL flasks with deionized water and filtered into
polythene bottles. Total Cd concentrations in root, straw, husk,
and unpolished rice were determined by Graphite furnace
atomic absorption spectrophotometer (AA240FS; Varian).

Cd speciation of soil analysis

To assess the effectiveness of amendments for in situ im-
mobilization, the sequential extraction scheme proposed by
European Community Bureau of Reference (BCR method),
including exchangeable (FI), oxide-bound (FII), organic
matter-bound (FIII), and residual (FIV) (Ure et al., 1993),
was used to analyze the Cd fractionations in preamended and
postamended soil samples. The detail of the BCR method was
described in reference (Ure et al., 1993). The determinations
of Cd in the extracts were performed by Graphite furnace
atomic absorption spectrophotometer (AA240FS; Varian).

Extraction efficiencies of the sequential extraction proce-
dures were expressed as percentage of the total contents,
estimated by the following equation:

E(%)¼
P

CFi

TC

· 100% (1)

where E (%) represents the extraction efficiency of Cd with
BCR method, CFi (mg/kg) is the average concentration of
each fraction of Cd, and Tc is the total content of Cd in soil
(mg/kg).

Statistical analysis

All treatments were replicated thrice in the experiments.
The means and standard deviation (SD) values were calculated
by Microsoft Office Excel 2007. One-way analysis of variance
was carried out with SPSS16.0. A significant difference
( p < 0.05 or p < 0.01) was observed between treatments.

Results

Properties of soil and amendments

The selected physicochemical properties of the paddy soil
and three amendments are presented in Table 2. The paddy

soil called the Quaternary Red Clay is highly weathered
parent material with slightly acidic pH = 5.13, suggesting that
the paddy soil was acidic easily increasing Cd availability
and accumulation in rice. The average Cd concentration in
paddy soil is 2.85 – 0.29 mg/kg in dry weight. With reference
to the Chinese environmental quality standards for heavy
metals in soil, the mean concentration of Cd (2.85 – 0.29 mg/
kg) recorded for paddy soil in this study was *10 times
higher than 0.3 mg/kg (GB15618-1995), indicating the seri-
ousness of the contamination. Furthermore, the concentra-
tions of Cd in three amendments are low (0.28–0.59 mg/kg)
and were lower than the permissible reference standards
of Cd for agricultural use (GB4284-1984), indicating that
they could be used in practice. The pH values of three
amendments were extremely different. The bone char has
the highest pH value with 10.79, followed by sepiolite
(pH = 8.29), indicating that bone char and sepiolite were al-
kaline materials. The lowest pH value of silicon fertilizer was
5.63, as same as soil pH value.

Changes in soil pH

The effects of three amendments on soil pH are shown in
Fig. 1, and it can be found that the nonamended soil (CK) had
a low pH of 5.13 before planting. After application, the pH
values of soils significantly ( p < 0.05) increased from that of
CK with increasing amounts of amendments. Due to it con-
taining calcium carbonate (CaCO3), the addition of bone char
led to a marked increase in soil pH (5.50–6.47) compared
with the control ( p < 0.05). Addition of bone char has caused
much bigger increase of soil pH than sepiolite (pH 5.25–5.77)
and silicon fertilizer (pH 5.18–5.50) did.

Cd fraction distribution

According to the Equation (1), the fraction distributions of
Cd in paddy soils before and after amendment are shown in
Fig. 2. The distributions of Cd in unamended paddy soil
followed: FI > FIII > FIV > FII (51.32%, 22.87%, 19.50%,
and 6.30%, respectively), highlighting the bioavailability of
Cd. After the amendments were applied, the order of fraction
distribution of Cd changed to: FI > FIV > FIII > FII. The
average ratios of FI and FIII decreased by: 7.51% and 1.41%
with sepiolite, 6.02% and 1.81% with bone char, and 8.04%
and 1.57% with silicon fertilizer. The average percentages of

Table 2. Properties of Soil and Amendments

Material names pH
CEC,

cmol/kg
Organic

matter, g/kg
Cd concentration,

mg/kg Main component

Red soil 5.13 19.32 15.90 2.85 – 0.29
Sepiolite 8.29 0.59 CaO 41.7%, SiO2 32.5%, MgO 16.8%
Bone char 10.79 0.28 CaO 56.46%, SiO2 0.06%, P2O5 39.8%
Silicon fertilizer 5.63 0.44 SiO2% 25%, CaO 20%, K2O 5%, MgO 10%
EQSHMSa <6.5 0.3
CSPSAUb pH <6.5 <5

pH ‡6.5 <20

aEQSHMS means Environmental Quality Standards for Heavy Metals in Soils (GB15618-1995 Grade 2) (Ministry of Environmental
Protection of China, 1995).

bCSPSAU means Control Standards for Pollutants in Sludges from Agricultural Use (GB4284-1984) (Ministry of Urban-Rural
Development and Environmental Protection of China, 1984).

Cd, cadmium; CEC, cation exchange capacity.



FII and FIV increased by: 1.41%, 1.81%, and 1.57% and
7.60%, 8.81%, and 9.38% with application of sepiolite, bone
char, and silicon fertilizer, respectively. Moreover, as
amendment dosage increased Cd immobilization increased.

Rice plant growth

Indicators of rice plant growth, including plant height, total
of grains per ear, and weight of a thousand grains, are shown
in Table 3. There were significant impacts on rice growth,
including plant height and ripening rate with the silicon fer-
tilizer. At higher dosage rates, the plant height and ripening
rate of rice were 3.7% and 4.2% times higher than those of
control (CK), respectively. The ripening rate was the highest,
ranging from 83.2% to 86.8% for rice L611 with silicon
fertilizer treatment, followed by bone char from 82.9% to
84.1%. There were no obvious effects on the aggregate
weight of grains with or without treatment.

Cd concentration in rice roots and straws

Concentrations of Cd in the roots and straws of rice
plants, including as seeding at the heading and mature stages
are shown in Table 4. In comparison with CK, the Cd
contents (in roots and straws) were significantly influenced
by the amendments showing both negative and positive
relationships at different growth stages. In the mature stage,
the ranges of reduction of Cd in rice straws were 23.0–
53.1% with sepiolite treatment, 26.7–52.0% with bone char
treatment, and 25.2–61.2% with the silicon fertilizer treat-
ment, respectively. The order of effect of amendments on

reduction of Cd in rice straw was silicon fertilizer (Sh and
Sm) > sepiolite (Sh) > bone char (Bh). However, the con-
centrations of Cd in the rice roots increased with two
treatment levels (Sl and Sm) of sepiolite, three levels (Bl,
Bm, and Bh) of bone char, and two levels (Sl and Sm) of
silicon fertilizer.

Cd concentration in rice grain

Effects of the three amendments on Cd in rice husk and
unpolished rice are shown in Table 5. The Cd found in rice
grains, including unpolished rice and husk, reduced with
increasing amendment dosage. The Cd contents in unpol-
ished rice and husk without amendments (CK) were 0.50 and
0.57 mg/kg, which exceeded the maximum permissible level
for Chinese foods (GB2762-2005) and the permissible level
for the Chinese hygiene standard for feed (GB13078-2001),
respectively. The negative relationship between Cd in rice
grains (unpolished rice and husk) and amendment application
rate was for unpolished rice: 22.5% (Sl), 46.8% (Sm), and
52.8% (Sh) for sepiolite; 43.6% (Bl), 47.6% (Bl), and 67.5%
(Bh) for bone char; and 53.6% (Fl), 41.9% (Fm), and 54.8%
(Fh) for silicon fertilizer, respectively, indicating that the
lowest contents of Cd were in unpolished rice treatment with
the highest amounts of three amendments, especially bone
char, followed by silicon fertilizer.

Discussions

With reference to the Chinese environmental quality
standards for heavy metals in soil, the mean concentration of

FIG. 1. Soil pH in control (CK)
and after amendments with sepio-
lite (Sl, Sm, Sh), bone char (Bl,
Bm, Bh), and silicon fertilizer (Fl,
Fm, Fh).

FIG. 2. Cd fractions in soil
amended with sepiolite, bone char,
and silicate fertilizer. Cd, cadmium.



Cd (2.85 – 0.29 mg/kg) recorded for paddy soil in this study
was *10 times higher than 0.3 mg/kg (GB15618-1995), in-
dicating the seriousness of the contamination. Furthermore,
the paddy soil was acidic causing soil Cd availability and
accumulation in rice. Following the BCR method, the
(combined exchangeable- and carbonate fractions) first ex-
changeable fraction of the four followed: FI > FIII > FIV >
FII, clearly indicating the bioavailability of this metal.

Although there are mitigation methods for Cd-
contaminated soil available, including soil washing, phytor-
emediation, and chemical immobilization, these can impact
negatively on agricultural soils rendering them unusable.
However, the in situ treatments used in this work reduced
the bioavailability of Cd in the paddy soil without adversely
affecting rice yield. The three amendments were within
the permissible reference standards for agricultural use
(GB4284-1984), indicating that they could be used in prac-
tice. Previous studies have shown that the application of al-
kaline substances containing Ca, Mg, and Si significantly
reduced the availability of Cd in paddy soil and its uptake by
rice through change in soil pH (Welch and Norvell, 1999;
Zhao, Hamon et al., 2002). This is also shown by the present
study with increasing amounts of amendments, especially
with bone char, followed by sepiolite. An increasing amount
of amendment (and consequently rise in soil pH) reduced the
bioavailability of Cd (Li et al., 2008; Gu et al., 2011; Liang
et al., 2014; Zhen et al., 2015). Of the four exchangeable
‘‘fractions,’’ the percentages of FI and FIII decreased,
whereas FII and FIV increased upon amendment. That said,

the dominant exchangeable fraction was FI, followed by
residual fraction (FIV), as soil parameters such as organic
matter, CEC, soil texture and soil microbiota, and redox
potential also affect Cd availability under field conditions.

As bioavailability of Cd decreased upon treatment, plant
height and rice ripening rate increased. A decrease in Cd in
rice roots and straws was seen at each growth stage and in
unpolished rice and husk also. The concentrations of Cd in
unpolished rice without amendments (0.50 mg/kg) exceeded
the maximum permissible level for Chinese foods (GB2762-
2005) and in husk exceeded the permissible level of the
Chinese hygiene standard for feed (GB13078-2001). Takiji-
ma and Katsumi (1973) reported that Cd uptake by plant was
reduced remarkably by raising the soil pH. In the present
study, the ranges of concentrations of Cd in unpolished
rice were 0.24–0.39 mg/kg with sepiolite treatment, 0.16–
0.28 mg/kg with bone char treatment, and 0.23–0.29 mg/kg
with silicon fertilizer treatment. The Cd content of unpol-
ished rice with the highest bone char addition (22,500 kg/ha)
met the food quality standard value of China (0.2 mg/kg),
while the doses of amendments used in this study were high.
With the existing contents of other amendment treatment,
Cd concentrations (0.23–0.39 mg/kg) were slightly above the
standard limit value for food. Husk is normally used to feed
pigs and cows in southern China, and the values were re-
corded after the addition if amendments in this study (0.38–
0.49 mg/kg) met the limit value for feed hygiene standards
(GB13078-2001). This clearly indicated that Cd in unpol-
ished rice was lowest with the highest application rates,

Table 3. Rice Plant Growth

Treatment
codes Amendments

Plant
height, cm

Total grain
per ear

Filled grains
per panicle

Ripening
rate, %

Weight of a
thousand grain, g

CK Without amendment 84.6 – 0.03 105.7 – 0.12 87.3 – 0.06 82.6 – 0.08 23.5 – 0.12
Sl Sepiolite 82.4 – 0.05 105.3 – 0.10 86.0 – 0.13 81.7 – 0.08 22.8 – 0.13
Sm 83.3 – 0.11 106.3 – 0.09 86.4 – 0.16 81.3 – 0.03 23.7 – 0.06
Sh 85.7 – 0.07 105.2 – 0.12 87.8 – 0.14 83.5 – 0.11 24.1 – 0.04
Bl Bone char 85.1 – 0.03 106.5 – 0.17 88.3 – 0.05 82.9 – 0.04 24.3 – 0.08
Bm 86.7 – 0.06 105.9 – 0.10 88.3 – 0.07 83.4 – 0.06 23.5 – 0.15
Bh 87.2 – 0.12 106.2 – 0.11 89.3 – 0.10 84.1 – 0.05 24.3 – 0.09
Fl Silicon fertilizer 83.8 – 0.21 105.1 – 0.04 87.4 – 0.04 83.2 – 0.06 23.8 – 0.10
Fm 85.3 – 0.07 106.2 – 0.11 87.4 – 0.11 84.9 – 0.10 22.9 – 0.04
Fh 87.7 – 0.08 105.9 – 0.05 91.9 – 0.03 86.8 – 0.07 24.2 – 0.08

Table 4. Cadmium Concentration in Rice Roots and Straws

Treatment
codes Amendments

Seeding stage (mg/kg) Heading stage (mg/kg) Mature stage (mg/kg)

Root Shoot Root Shoot Root Shoot

CK Without amendment 8.22 – 1.76 0.55 – 0.08 1.43 – 0.37 0.54 – 0.12 6.85 – 1.43 4.69 – 0.85
Sl Sepiolite 5.83 – 0.73 0.47 – 0.08 1.12 – 0.21 0.25 – 0.07 12.4 – 0.10 3.61 – 0.70
Sm 5.22 – 1.33 0.37 – 0.09 0.99 – 0.24 0.20 – 0.03 10.3 – 1.47 2.31 – 0.27
Sh 4.07 – 0.95 0.31 – 0.03 0.79 – 0.11 0.17 – 0.04 6.65 – 1.32 2.20 – 0.31
Bl Bone char 4.77 – 1.15 2.14 – 0.15 0.80 – 0.05 0.33 – 0.21 7.46 – 0.90 3.44 – 0.48
Bm 3.62 – 0.71 1.81 – 0.36 1.20 – 0.28 0.16 – 0.03 6.76 – 0.91 3.05 – 0.57
Bh 2.32 – 0.53 1.16 – 0.27 0.70 – 0.03 0.15 – 0.04 6.99 – 1.15 2.25 – 0.15
Fl Silicon fertilizer 3.69 – 0.19 1.84 – 0.09 1.03 – 0.13 0.17 – 0.03 9.35 – 0.82 3.51 – 0.80
Fm 4.27 – 0.67 0.57 – 0.12 0.86 – 0.13 0.16 – 0.04 7.75 – 2.06 1.82 – 0.55
Fh 3.52 – 1.46 0.51 – 0.18 0.70 – 0.18 0.15 – 0.02 6.01 – 2.70 1.86 – 0.37



showing the order: bone char followed by silicon fertilizer
and sepiolite.

Conclusions

Concentrations of Cd in the paddy soil from Zu Bugan,
Xiangtan, Hunan Province significantly exceeded the Chi-
nese standard value for soil and this caused Cd to be accu-
mulated in rice plants. The fractionation distributions of Cd
analyzed using the BCR method showed that the dominant
Cd species was readily exchangeable. The pH of soil and the
residual fraction of Cd increased with the increasing addition
of sepiolite, bone char, and silicon fertilizer. Rice plant height
and ripening rate increased in comparison to plants grown in
soil without amendments, and Cd concentrations decreased
with increasing amounts of the three amendments; only the
highest bone char addition was capable of reducing Cd to
meet the food standard of China. This work has demonstrated
that it is possible to reduce bioavailable Cd in rice grown in
grossly contaminated soil to meet food quality standards.
However, more work is required to see how the amendments
may be modified or augmented to increase their efficacy at
lower dosages.
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