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ABSTRACT

This paper investigates several enhancements to two
well-established local alignment algorithms in the context
of their use for melodic similarity. It uses the annotated
dataset from the well-known Meertens Tune Collection to
provide a ground truth and the research aim to answer the
question, to what extent do these enhancements improve
the quality of the algorithms? In the results, recursive ap-
plication of the alignment algorithms, applied to a multi-
level representation of the melodies, is shown to be very
effective for improving the accuracy of the classification
of the tunes into families. However, the ideas should be
equally applicable to music search and melodic matching.

1. INTRODUCTION

1.1 Background

In the field of music information retrieval an important
topic, impacting on music search, melodic matching /
clustering and tune classification, is the calculation of
melodic similarity. This paper investigates several en-
hancements to two well-established local alignment algo-
rithms in the context of their use for melodic similarity.

It builds on results established by Janssen et al., [1],
[2] and van Kranenburg et al., [3], which suggest that
alignment-based similarity measures provide some of the
best results for matching melodic segments, or indeed
whole melodies, in a corpus of folk songs.

It uses an annotated dataset from the Meertens Tune
Collection, [4], to provide a ground truth with which to
evaluate the quality of the enhancements and for that rea-
son deals with classification of melodies into tune fami-
lies. However, the algorithms should be equally applica-
ble to music search, e.g. [5], and melodic matching, e.g.
[6], where some of the ideas were originally presented.

1.2 Organisation

The paper is organised as follows: section 2 presents the
baseline algorithms and four enhancements. Section 3
discusses the evaluation and section 4 presents the results.
Conclusions and further work are discussed in section 5.

2. ALGORITHMIC VARIANTS

This section discusses the alignment-based algorithms
tested for the classification problem. Initially the two
baseline algorithms, local alignment and longest common
substring, are outlined (section 2.1). Subsequently a
number of enhancements are discussed, including length
normalisation (section 2.2) and the rhythmic representa-
tion of the melody (section 2.3), as well as globalising
and multilevel enhancements (sections 2.4 & 2.5).

2.1 Baseline Similarity Measures

2.1.1 Local alignment (LA)

Local alignment is a well-known technique originating
from molecular biology. Given two strings it finds the
optimal alignment for two sub-sequences of the originals.
The algorithm does not require the aligned sub-sequences
to match exactly and makes allowances for gaps and sub-
stitutions. For example the strings ***abcde** and
*acfe**** (where the asterisks represent non-
matching entries) could potentially be aligned between a
and e with a gap at the b and the substitution of d for f.
Gaps (otherwise known as insertions and deletions) and
substitutions are penalised with weights.

The algorithm is known as local alignment (LA) be-
cause, unlike the global alignment algorithms which pre-
ceded it, mismatching sub-strings from either side of the
alignment are not penalised (i.e. in the example, the string
of non-matching entries, indicated by asterisks, could be
arbitrarily long without changing the alignment score).

To compute the optimal local alignment for two strings
of length m & n, an (m+1) x (n+1) score matrix A4 is con-
structed with the top row and left hand column initialised
to zero. The remainder of the matrix is then filled using
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and where Wmatch, Wsubstiwtion and Weap represent the
weights for a matching or substituted entry or a gap in the
aligned sequences. The implementation discussed here
follows Janssen et al., [1], [2], and uses Wmatch = 1, Wsubsti-
tution = —1 and Wgap =-0.5.

This algorithm was introduced by Smith & Waterman,
[7]. In fact their original scheme is a little more computa-
tionally involved but the scheme above is widely used
and is the variant tested by Janssen ef al.

To calculate the alignment score, and hence the quali-
tative similarity, the above scheme suffices. However to
determine the aligned sub-sequences (needed for recur-
sion, section 2.4) a trace-back procedure is required. The
trace-back is implemented by recording a matrix of
DIAG, UP or LEFT pointers for every entry of the score
matrix indicating where the maximum value originated. If
the maximum value is zero an END pointer is stored.



The trace-back starts at the pointer matrix entry corre-
sponding to the maximum score found and then tracks
back through the pointers, terminating when it reaches an
END. Diagonal moves indicate contiguous values in the
two aligned sub-sequences whilst left or up moves indi-
cate a gap in one of them.

2.1.2 Longest Common SubString (LCSS)

The longest common substring algorithm also finds
matched sub-sequences from two strings but requires the
sub-sequences to match exactly with no gaps or substitu-
tions. It operates in a very similar fashion to local align-
ment filling in an (m+1) x (n+1) matrix of alignment val-
ues. However, because there is no need to allow for gaps,
no trace-back is required: the position of the maximum
score in the matrix indicates the end of the longest com-
mon substring and the value of this entry gives its length.

2.1.3 Sub-sequence alignment

In fact it is easy to see that, if the local alignment weights
Wiubstitution and Weap are sufficiently large so that gaps and
substitutions can never occur, then the LCSS algorithm is
just a special case of local alignment.

From here on, therefore, both algorithms, LA and
LCSS, will be referred to collectively as sub-sequence
alignment, the main distinction between the two being
that LCSS produces exact matching aligned substrings, is
faster to compute and requires less memory (there is no
need to use a full matrix and a memory efficient version
exists which just repeatedly swaps a pair of arrays, one
containing the row under calculation and one containing
the previous row). Conversely, LA is more computation-
ally complex and more memory intensive, but will gener-
ally match longer strings.

Both algorithms can be used for melodic similarity by
representing each melody as a sequence of pitches or in-
tervals: here intervals are used (see section 3.2). Then, if
using Wmatech = 1 for LA, the similarity measure , Sxy, that
either algorithm calculates between a pair of melodies, X
and Y, represents the length (the number of notes) of the
sub-sequences aligned. However, in the case of LA there
may also be penalty weights for gaps or substitutions (for
example, the matching of abcde with acfe has a score
ofl-%+1-1+1=1%).

2.2 Normalisation

The first simple algorithmic variant is just the way that
the raw similarity measure is normalised. In their papers,
[1], [2], Janssen ef al. normalise the similarity Sxy by di-
viding by the length of the query. In the context of their
use of short melodic phrases to query a database of melo-
dies, and since the longest query is normally much short-
er than the shortest melody, this means that the similarity
measure is effectively normalised by min(length(X),
length(Y)), In addition, since the maximum value possi-
ble of Sxy is also min(length(X), length(Y)), i.e. the
length of the shortest of the two sequences being com-
pared, then Sxy gives a value between 0.0 and 1.0 (with
1.0 being returned when an exact match of the query is
found within the melody being queried).

For phrase-based classification studied in [1], [2], this
makes perfect sense; there is no expectation that the que-
ry will match the entire tune. However, for the tune-based
classification discussed here, that is no longer true and so
using the minimum length may no longer be appropriate.
For example, consider matching the sequence abc with
two other sequences, abc and abcdef. In both cases the
raw similarity is 3 and using minimum length (also 3) to
normalise, the normalised similarity is 3/3 = 1.0. Howev-
er, it does seem unreasonable that the similarity is the
same in both cases (particularly since the match with the
first sequence is exact, whereas the sequence abcdef
could be arbitrarily long without changing the result).

Alternatives are to normalise with the maximum
length or the average length. For example consider
abcxyz matching with abcdef and abcdefghi. Us-
ing minimum length the normalised similarity is 0.5 for
both matches (3/6) which doesn't seem unreasonable.
However, using either maximum or average length, a se-
quence with identical raw similarity (in this case 3) to
two other sequences will be normalised as closer to the
one which is of a similar length, and arguably this is more
appropriate.

Because it is not immediately clear which normalisa-
tion to use, the experimentation tests all three empirically.

2.3 Representation — bar indicators

A second algorithmic variant tries to take account of the
position of notes within the bar. This is particularly rele-
vant for folk music (although perhaps less so for jazz)
since the position often determines which are the stressed
(more important) notes.

One way to achieve this is to adapt the similarity
measure to add weight to stressed notes, e.g. [8]. Howev-
er, that relies on what is arguably a subjective assessment
of which are the stressed notes. Instead, as discussed in
[5], it is possible to use bar indicators or even bar num-
bers in the sequences of intervals to be compared. For ex-
ample a major scale can be indicated by the intervals
2212221. Including bar indicators, and assuming 4
notes to the bar this could be represented as
[221 12221 | where the | symbols represent bar lines
(note that an interval between the last note in a bar and
the first note in the next bar, could be shown before or
after the bar indicator; in the experiments here it is al-
ways included afterwards). This means that any matched
common substrings must respect bar lines (unless they
are shorter than the length of a bar).

Furthermore, if the bar symbols are numbered, e.g.
1221 1,2221 |5, where each |; represents a numbered
bar, then matched common substrings also need to re-
spect the position in the tune. (If matching of subsections
of the tune is important then the numbering could be re-
started at natural breaks such as double bar lines and re-
peat marks; however, that is not tested here.)

In terms of implementation, the “strings” of intervals
are represented as an array of short integers so that bar
markers (or numbers) can easily be included with large
integer values outside the possible range of intervals.



This inclusion of bar indicators is more of a represen-
tational variant than an algorithmic one and increases the
computational complexity of the matching slightly (as the
strings to be compared by the similarity measure are
longer). However, even though some melodies in the da-
taset under investigation are in free meter and have no bar
lines, it has a significant effect on the results and is an
important enhancement.

2.4 Recursive sub-sequence alignment

2.4.1 Recursive alignment (= global alignment)

A problem with using LCSS, and to a lesser extent LA, is
that they are local. For example, using LCSS, ab**ba
has exactly the same raw alignment score (of 2) when
matched with **ab and with ab**ba, even though the
latter seems a far better match. This is because the second
match (ba) is not accounted for.

This was less of an issue in the predecessor to this pa-
per, [9], where LCSS was used as part of a multilevel me-
lodic search algorithm, since search algorithms are typi-
cally trying to find the best matches of a short phrase in a
dataset of complete melodies. However, for classification
it is crucial to distinguish between tunes which match
well across their entire length and those which perhaps
only match for a short segment.

Interestingly Smith & Waterman touch on this in their
original paper where they say “the pair of segments with
the next best similarity is found by applying the trace-
back procedure to the second largest element of [the ma-
trix] not associated with the first trace-back”, [7]

Unfortunately, working from the existing matrix may
lead to overlapping local alignments and instead sub-
sequence alignment may be applied recursively as fol-
lows: when applied to two strings, S1 and S2, sub-
sequence alignment splits both into three substrings S1 =
L1+ Al +R1 and S2=12 + A2 + R2, where Al and A2
are the aligned substrings (exact matches for LCSS or po-
tentially with gaps and substitutions for LA), L1 and L2
are the left hand side unmatched substrings and R1 and
R2 are the right hand side unmatched substrings (where
any of the these unmatched substrings may be of length
0). Thus, having found Al & A2 and split S1 & S2, sub-
sequence alignment can then be applied to compare L1
with L2 and R1 with R2.

This procedure continues recursively, terminating
when no alignment is found, or one or both lengths of the
substrings being aligned are 0. For example, if the start of
S1 is aligned with the end of S2 no further recursion is
possible as the lengths of L1 and R2 are 0.

This recursion effectively turns the local alignment al-
gorithms LCSS or LA into a globalised similarity meas-
ure, giving an alignment score along the length of both
strings being compared. Henceforth these recursive algo-
rithms will be referred to as RLCSS and RLA.

2.4.2 Biased recursive local alignment

An issue that became apparent when using recursive
alignment, is that just adding all the scores together
makes no distinction between one long aligned sequence

and several shorter ones. For example (using RLCSS)
abcd**** has the same alignment score (of 4) when
compared with abcd* *** and with
*rgr*rprrcrrdr* even though the former seems a
good match and the matching with the latter is essentially
noise.

To address this, the similarity measure can be biased
towards longer aligned sub-sequences by taking the 2-
norm (square root of the sum of squares) of the alignment
scores found by the recursive local alignment. In the
above example this means that the biased recursive local
alignment score is V42 = 4 when matching abcd* ***
with abcd****,  whereas when matching with

*rgR xR kR xR xtis V12 + 12 + 12 412 = 2,

2.5 Multilevel Similarity

Speed the Plough (4 bars)

God Speed the Plough (4 bars)

El

Figure 1. Two tune variants for Speed the Plough.

Multilevel similarity was first introduced in [5] and sub-
sequently developed further in [6]. The idea is motivated
in Fig. 1 which shows two versions of the first 4 bars of
Speed the Plough, a tune well-known across the British
Isles. Clearly these tunes are related but with distinct dif-
ferences, particularly in the second and fourth bars.

It is typical in tunes like this that the emphasis is
placed on the odd numbered notes, and in particular the
first note of each beam. The strongest notes of the bar are
thus 1 and 5, followed by 3 and 7.

To capture this emphasis when matching tune variants
it might be possible to use some sort of similarity metric
which weights stress (so that matching 1% notes carry
more importance than, say, 2" notes, e.g. [8]). However,
an alternative approach is to build a multilevel (hierar-
chical) representation of the tunes.

Figs. 3 & 4 show multilevel coarsened versions of the
original tunes, where the weakest notes are recursively
replaced by removing them and extending the length of
the previous note by doubling it.

At level 0, i.e. the original, the tunes are quantised to
show every note as a sixteenth note, thus simplifying the
coarsening process. In addition the triplet in bar 3 of
“God Speed the Plough” is simplified by representing it
as two eighth notes, the first and last notes of the triplet.

To generate level 1, the 2nd, 4th, 6th and 8th notes are
removed from each bar. (Interestingly this accords with
an idea used by Breathnach, [10], the renowned collector
of Irish traditional music, who developed a system for
indexing melodies based on the accented notes of each
tune — effectively level 1 in the multilevel hierarchy).

For level 2, the original 3rd and 7th notes (which are
now the 2nd and 4th) are removed; for level 3, the origi-
nal 5th note (now the 2nd) is removed.



Speed the Plough (4 bars) - multilevel coarsening
level O (original)
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Figure 2. Multilevel coarsening of Speed the Plough

God Speed the Plough (4 bars) - multilevel coarsening
level 0 (original)
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Figure 3. Multilevel coarsening of God Speed the Plough

As can be seen, as the coarsening progresses the two
versions become increasingly similar and thus provide a
good scope for melodic comparisons by ignoring the finer
details of the tunes.

The implementation of this scheme is discussed more
fully in [6] but is mostly straightforward. Each tune is ini-
tially normalised & quantised and then recursively coars-
ened down to a skeleton representation with just one note
per bar. Melodic similarity calculations can then take
place at every level and the (possibly weighted) sum of
the similarities at each level used to provide a multilevel
similarity measure (see section 4.5).

The coarsening works by recursively removing “weak-
er” notes from each tune to give increasingly sparse rep-
resentations of the melody. In the current implementation
the coarsening strategy considers that the weaker notes
are the off-beats or every other note and it is these which
are removed (see Figs. 3 & 4). However, it should be
stressed that the multilevel framework is not tied to a par-
ticular coarsening strategy and in principle any algorithm
that can reduce the detail in the melody (preferably recur-
sively) could be used. For example, it should even be
possible to use something as complex as a Schenkerian
reduction, [11]; conversely multilevel algorithms in other
fields often use randomised coarsening, [12].

Exceptions to the “remove every other note” rule are
handled with heuristics, typically for tunes in compound
time. Thus for jigs in 6/8, 9/8 & 12/8, which are normally
written in triplets of eighth notes, the weakest notes are
generally the second of each triplet. The same applies for

waltzes, mazurkas and polskas in 3/4, so that for 3 quarter
notes in a bar, the weakest is generally the second. The
heuristics for dealing with these, and other less common
time signatures, are discussed in [9].

Coarsening progresses until there is one note remain-
ing in each bar; it would be possible to take it further,
coarsening down to one single note for a tune, but exper-
imentation suggests that the bar is a good place to stop. In
fact some tunes in the dataset under investigation are in
free meter, with no bar lines, and hence are coarsened
down to a single note. An artificial limit of 4 levels (typi-
cal for many time signatures) was tested, but made very
little difference to the results, particularly since any ex-
cess levels are ignored when comparing melodies with
differing numbers of levels.

Once the multilevel representation is constructed, a va-
riety of methods (including the alignment algorithms dis-
cussed here) can be used to compare each level. Again,
this is a strength of the multilevel paradigm which is not
reliant on a particular local search strategy, [12].

In the experiments below, multilevel variants are re-
ferred to as ML-*, where the * indicates the sub-sequence
alignment algorithm (e.g. RLA). Conversely, if the multi-
level representations are not used the similarity frame-
work is referred to as SL-* (i.e. single level).

3. EVALUATION

3.1 The dataset

The dataset used is the Annotated Corpus of the Meertens
Tune Collection, version 2.0.1, [4]. This contains 360
melodies each identified as belonging to one of 26 tune
families. It also includes further annotations, splitting
each melody into phrases, with three annotators manually
assigning labels to each phrase. These have been used by
Janssen et al., [1], [2], for testing search queries based on
phrases, rather than whole melodies. However, since the
investigation under discussion deals with globalised
a2lignment algorithms it was decided to ignore the
breakdown of the melodies into their constituent phrases.

3.2 Representation - transposition & time dilation

In [2], Janssen ef al. present a comparison of several al-
gorithms and indicate that what can make a big difference
to the results is the representation of the music. In par-
ticular they find that using pitch adjustment in order to
resolve transposition differences (i.e. similar melodies
transcribed in different keys) can significantly improve
the performance of the algorithms. However, the premise
for their research is that the tune families are known in
advance and so the pitch adjustment scheme uses this in-
formation and aims to transpose all the melodies in a giv-
en family into the same key. This does not apply for the
work presented here where the aim is to classify each
query melody into one of the 26 tune families, under the
assumption that this is not known beforehand.

Perhaps a more appropriate scheme would be the
pairwise pitch adjustment used by van Kranenburg ef al.,
[3]. However, in the experimentation below, the algo-
rithms are made transposition invariant by representing
each melody as a sequence of pitch intervals. In contrast
with Janssen et al., [2], this was not found to deteriorate



the algorithmic performance and it may be the case that
their pitch adjustment scheme provides better results than
intervals because it uses tune family information that
would not normally be available for an arbitrary dataset.

Another interesting representational idea is the dura-
tion adjustment scheme, again from Janssen et al., [2],
which seeks to adjust the note durations in a similar man-
ner to pitch adjustment so that melodies transcribed in
different meters (e.g. 3/4 and 6/8) are more closely com-
parable. However, that has not yet been tested with the
algorithms described here.

In terms of the variants discussed by Janssen et al., the
musical representation used in all experiments presented
here is duration weighted pitch intervals, i.e. a representa-
tion which repeats each pitch according to the length of
the note and with a sequence of integers expressing the
difference in semitones between successive pitches.

3.3 Evaluation — Receiver Operating Curves (ROC)
The evaluation of each algorithmic variant is straightfor-
ward. Each of the 360 melodies is used as a query and
compared against the other 359 melodies with the algo-
rithm assigning a similarity score between the query and
each melody. This results in 360 arrays, each containing
359 similarity scores.

Each array can then be used to generate a Receiver
Operating Characteristic (ROC) curve which plots the
true positive rate (TPR) against the false positive rate
(FPR) in the ground truth as the results array is traversed.
ROC curves are an elegant, generic tool often used to
evaluate classification experiments across a wide range of
disciplines, [13]. In fact they do not even require the
similarity scores as input, they just need the results sorted
in order of decreasing similarity and the ground truth (in
this context whether a melody belongs to the same tune
family as the query or not) to determine positive or nega-
tive outcomes.

Typically ROC curves are compared by measuring the
Area Under the Curve (AUC). Since any ROC is con-
fined to the unit square, the corresponding AUC is a val-
ue between 0.0 and 1.0 with higher values indicating a
better classification algorithm. An AUC value of 1.0 in-
dicates that the algorithm has done a perfect classification
with all the true positives sorted by the similarity scores
to one end of the array (and hence all the true negatives
sorted to the other end). Conversely an AUC of 0.5 indi-
cates that the algorithm has essentially done no better
than a random classification.

Since each algorithmic variant results in 360 ROC

curves, a method for combining them together is required.

Janssen et al., [1], [2], aggregate all of the similarity re-
sults into one ROC curve and then measure the area un-
derneath. However although this is a recognised tech-
nique, e.g. [13], it is not area-preserving in the sense that
the average area under the individual curves is not neces-
sarily the same as the area under the aggregated curve.

To see this, suppose an algorithm produces similarity
scores of [1.00, 0.49, 0.00] for a particular search query
and dataset of 3 melodies when the corresponding ground
truth is [true, true, false] (in other words the melody with
the similarity score of 0.00 is not a member of the same

family as the search query, whereas the other two are).
Since the similarity measure has done a perfect job of or-
dering the dataset using the similarity scores (perfect in
the sense that all the true matches are at left hand end of
the array and all the false matches at the other end), the
ROC curve representing this would actually run up the x-
axis and then along the line y = 1, giving the maximum
possible AUC of 1.0.

Now suppose that a second search query produces sim-
ilarity scores of [1.00, 1.00, 0.51] with the same corre-
sponding ground truth of [true, true, false]. Once again
the ordering is perfect and the area under the curve is 1.0.
So the average AUC across the 2 queries is 1.0.

However, if the scores and ground truths are aggregat-
ed to form a single curve the results are no longer perfect
as 0.49 is smaller than 0.51 and so the ordered ground
truth array is [true, true, true, false, true, false]. The AUC
for the corresponding ROC is 0.875.

Conversely, consider 2 search queries used on a da-
taset of 4 melodies and producing the results [1.00, 1.00,
0.52, 0.51] and [1.00, 1.00, 0.49, 0.48], both with corre-
sponding ground truth of [true, true, false, true]. In this
case the classifier has not done a perfect job and the AUC
for each ROC is 0.667. When the results are aggregated
the ordered ground truth array is [true, true, true, true,
false, true, false, true] and the corresponding aggregated
ROC has an AUC of 0.75.

Thus it is possible that the area under the aggregated
curve can be significantly different (either lower or high-
er) from the average area under the individual curves.

Of course, as more results (more search queries, a
larger dataset) are included, it is likely that the differ-
ences between the average AUC and the AUC for the ag-
gregated ROC will diminish. Nonetheless, the aggregated
ROC may not be telling the whole story.

In this paper the results for each algorithm are aggre-
gated simply by taking an average of all the AUC values
for that algorithm. Then, in order to draw the ROCs in
Fig. 1, it is possible to use Fawcett’s vertical averaging
algorithm in [13] (Algorithm 3). Although Fawcett de-
scribes vertical averaging by sampling the ROC space at
regular intervals, this is easily adapted to the non-
parametric scheme described by Chen & Samuelson, [14],
where it is sampled at every possible FPR value. With
this adaptation in place, Chen & Samuelson have proven
that the averaged ROC is area preserving, i.e. the AUC
for the averaged ROC is the same as the average AUC
across the individual ROCs (up to rounding differences).

3.4 Classification success rate (CSR)

Finally, to evaluate the quality of the tune classification
into families, the nearest neighbour scheme described by
van Kranenburg et al., [3], is applied. Specifically the
melody in use567 as a query is assigned to the tune fami-
ly of the nearest neighbour in terms of similarity. This
assumes that the tune families of the 359 other melodies
are known and that of the query is the unknown. However,
for an arbitrary unannotated dataset, with no known tune
families, it should be possible to use proximity graphs,
similar to those described in [6] and with suitably chosen
thresholds, to suggest tune family membership.



In the event that a number of melodies are nearest
neighbours (i.e. have the same similarity with the query)
then here ties are broken by considering the set of all such
melodies and picking the tune family with the largest
similarity contribution across the set.

Finally since, unlike van Kranenburg et al., [3], this
experimentation is only applied to the small annotated
dataset of 360 tunes, the classification success rate (CSR)
can be calculated as a simple percentage |S|/360 where S
is the set of tune family labels successfully identified.

4. EXPERIMENTATION

This section discusses the results: throughout the algo-
rithms are applied cumulatively with the best perorming
approach from each section used in the following section.

4.1 Baseline results

Table 1 shows the results for the baseline algorithms, sin-
gle level LCSS & LA, showing the average AUC across
all of the queries (which as mentioned above is the same
as the AUC for the averaged ROC) and the classification
success rate (CSR).

Avg
Algorithm Variant AUC CSR
SL-LCSS  baseline 0.787 0.697
SL-LA baseline 0.787 0.814

Table 1. Results from the baseline algorithms, LCSS &
LA (see section 2.1).

In this table (as all others) the best AUC figures for
LCSS & LA variants are shown in boldface to highlight
the key performance indicator.

What is perhaps surprising is that the LCSS algorithm
appears to perform as well as the LA algorithm although
it does a worse job of classification (69.7% correct as
compared with 81.4%). However, the average AUC is
0.787 for both algorithms indicates a generally high
quality similarity measure and, although the figures can-
not be directly compared (for the reasons given in sec-
tions 3.1, 3.2 & 3.3), is broadly comparable to the 0.790
figure for LA in [1].

It should not be a surprise that there is such a wide dif-
ference in the Classification Success Rate (CSR). In fact
CSR is not such a good performance indicator as AUC,
since essentially it only applies to the nearest neighbour
(highest similarity) for each query, whereas the AUC
measures the performance of the similarity measure
across the entire dataset. Thus, as well as indicating the
similarity with all other melodies in the tune family, the
AUC is a better indicator of how the algorithm might per-
form for other melodic similarity tasks, such as search
and matching.

4.2 Length normalisation

Table 2 shows the effect of applying different length
normalisations to the similarity measure — i.e. when com-
paring two tunes of different lengths, dividing the raw
similarity score by the minimum, the average and the

maximum length of the two tunes (of course, if the tunes
are the same length then these three values are the same).

As can be seen, this can make a small improvement to
the results, with minimum length giving the worst results
and average length the best. Surprisingly here, LCSS
even outperforms LA.

Avg
Algorithm Length AUC CSR
SL-LCSS  Min 0.787 0.697
SL-LA Min 0.787 0.814
SL-LCSS  Avg 0.818 0.853
SL-LA Avg 0.810 0.872
SL-LCSS  max 0.818 0.872
SL-LA max 0.802 0.883

Table 2. Results showing the effects of different length
normalisation (see section 2.2).

From here on all results use average length as the cho-
sen normalisation, unless otherwise indicated

4.3 Bar indicators

Table 3 shows the effect of including bar indicators in the
representation. As can be seen, bar markers and even bar
numbers can improve some results significantly, with bar
numbers being somewhat less effective. This is perhaps
to be expected; bar numbers tie the bars down to a partic-
ular part of the melody whereas in fact there are known
instances where the ordering of the phrases may change.

Bar Avg
Algorithm indicators AUC CSR
SL-LCSS  none 0.818 0.853
SL-LA none 0.810 0.872
SL-LCSS  markers 0.827 0.853
SL-LA markers 0.849 0911
SL-LCSS  numbers 0.814 0.853
SL-LA numbers 0.846 0.906

Table 3. Results showing the effects of using bar indica-
tors (see section 2.3).

Furthermore, with bar markers and average length
normalisation LA is now seen to give better results than
LCSS. Again this is to be expected since it is a more so-
phisticated (though computationally costly) algorithm.

4.4 Recursive sub-sequence alignment

Table 4 shows the effect of including recursive variants
of the sub-sequence alignment algorithms, i.e. Recursive
Local Alignment (RLA) and Recursive Longest Common
SubString (RLCSS). As can be seen, the crucial feature is
the use of biased similarity (biased to favour longer
matches, rather than a series of short matches) which uses
the 2-norm of the recursive similarity scores (section
2.4.2); just adding the recursive similarity scores together
(1-norm) actually makes the recursive results worse than
the non-recursive versions.



Recursive Avg
Algorithm  score AUC CSR
SL-LCSS  none 0.827 0.853
SL-LA none 0.849 0.911
SL-RLCSS 1-norm 0.813 0.828
SL-RLA 1-norm 0.842 0.878
SL-RLCSS  2-norm 0.845 0.889
SL-RLA 2-norm 0.854 0.914

Algorithm Indicators Avg AUC CSR
ML-RLCSS  none 0.880 0.908
ML-RLA none 0.883 0.922
ML-RLCSS  bar markers 0.870 0.900
ML-RLA bar markers 0.887 0.922
ML-RLCSS  bar numbers 0.849 0.883
ML-RLA bar numbers 0.868 0.925

Table 4. Results showing the effects of using recursive
sub-sequence alignment (see section 2.4).

4.5 Multilevel similarity

Table 5 presents perhaps the biggest performance en-
hancement which comes from the multilevel similarity
measure, adding all the similarity scores from all coars-
ened versions of the melody. This significantly improves
on the single level versions, SL-RLCSS and SL-RLA.

Algorithm Framework | Avg AUC CSR
SL-RLCSS single level 0.845 0.889
SL-RLA single level 0.854 0.914
ML-RLCSS  multilevel 0.870 0.900
ML-RLA multilevel 0.887 0.922

Table 5. Results showing the effects of using multilevel
similarity (see section 2.5).

Note that other experiments were performed to vary
the weight of the similarity contributions from each level
(e.g. as suggested in [5], giving greater weight to the finer,
more accurate representations of the melody). However,
none of the variants gave consistently better results.

4.6 Parameter cross-checking

Finally Tables 6 & 7 provide some cross-checks to fur-
ther validate the results above. Table 6 shows the results
for the multilevel schemes, using bar markers but with
different length normalisations (minimum, average &
maximum). As in section 4.2, the average length is seen
to give the best normalisation.

Algorithm Length | Avg AUC CSR
ML-RLCSS  Min 0.840 0.811
ML-RLA Min 0.865 0.872
ML-RLCSS  Avg 0.870 0.900
ML-RLA Avg 0.887 0.922
ML-RLCSS  max 0.866 0.900
ML-RLA max 0.878 0.917

Table 6. Results showing the effects of different length
normalisation for the multilevel algorithms.

Meanwhile Table 7 shows the results using average
length normalisation, but comparing bar indicators (no
indicators, bar markers & bar numbers). As in section 4.3,
bar markers are seen to give the best results.

Table 7. Results showing the effects of using bar indica-
tors for the multilevel algorithms.

4.7 Discussion

Fig. 1 shows the ROC curves for 4 of the algorithmic var-
iants, the two baseline algorithms (SL-LCSS & SL-LA)
and the two final algorithms with all four enhancements
(ML-RLCSS & ML-RLA using average length normali-
sation and bar markers). As can be seen the baseline algo-
rithms have very similar curves with SL-LCSS marginal-
ly worse than SL-LA for smaller values of TPR / FPR (i.e.
with high similarities) and marginally better at the other
end of the range. Of the final algorithms, ML-RLA is bet-
ter than ML-RLCSS although their performance is almost
indistinguishable for larger values of TPR / FPR.

Note also that although LA versions of the algorithms
generally outperform LCSS, the LCSS results are of in-
terest because they achieve nearly the same quality and
are much faster (e.g. in the tests presented here LCSS
variants are about 1.4 to 1.6 times faster than the LA
counterparts).

As mentioned before, the results here are not directly
comparable with those of Janssen et al., [1], [2] (for the
reasons given in sections 3.1, 3.2 & 3.3). Nonetheless
they are of the same order and for example the best AUC
value presented here (0.887), even without knowledge of
the tune families, is broadly comparable to the best value
in [2] (0.893, achieved using a hand-adjusted representa-
tion). It is even possible that by combining some of the
techniques (e.g. the duration adjustment scheme, [2]) the
results could be improved still further.

The results are more directly comparable with those of
van Kranenburg et al., [3]. Unfortunately the best CSR of
0.925 presented here does not match the CSR of 0.99
achieved there and again this argues for further integra-
tion of techniques.

5. CONCLUSIONS

This paper has investigated several enhancements to two
well-established sub-sequence alignment algorithms, in
the context of their use for melodic similarity and in par-
ticular classification of queries into tune families. It uses
the annotated dataset from the well-known Meertens
Tune Collection to provide the ground truth with which
to evaluate the quality of the algorithms.

In particular, recursive application of the alignment al-
gorithms applied to a multilevel representation of the
melodies is shown to be very effective for improving the
accuracy of the classification.



True Postive Rate

0.6
False Positive Rate

= = = ML-RLCSS

Figure 4. The averaged ROC curves for four algorithmic variants: the baseline algorithms and the best variants.
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The other enhancements include length normalisation
of the similarity measure (which can be tailored accord-
ing to the problem — for example minimum length might
be more appropriate where all the queries are expected to
be short phrases but the dataset contains complete melo-
dies). In addition, the use of bar indicators can improve
the results still further.

In broad terms, the impact of these enhancements
(along with other representational variants, e.g. [2]) sug-
gest that sub-sequence alignment (both the local align-
ment version, LA, and the special case, LCSS) are flexi-
ble and robust in terms of how the music is represented
and how the algorithms are applied.

Finally it should be stressed that these enhancements
do not appear to be mutually dependent. In other words, it
should be possible for other authors to adopt some or all
of the algorithmic enhancements discussed here to im-
prove melodic similarity algorithm(s), and the ideas
should be equally applicable to music search and melodic
matching.
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