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Abstract 
 
Metabolic profiling by NMR spectroscopy or hyphenated mass spectrometry, 
known as metabonomics or metabolomics, is an important tool for systems-
based approaches in biology and medicine. The experiments are typically done in 
a diagnostic fashion where changes in metabolite profiles are interpreted as a 
consequence of an intervention or event; be that a change in diet, the 
administration of a drug, physical exertion or the onset of a disease. By contrast, 
pharmacometabonomics takes a prognostic approach to metabolic profiling, in 
order to predict the effects of drug dosing before it occurs. Differences in pre-
dose metabolite profiles between groups of subjects are used to predict post-
dose differences in response to drug administration. Thus the paradigm is 
inverted and pharmacometabonomics is the metabolic equivalent of 
pharmacogenomics. Although the field is still in its infancy, it is expected that 
pharmacometabonomics, alongside pharmacogenomics, will assist with the 
delivery of personalised or precision medicine to patients, which is a critical goal 
of 21st century healthcare. 
 
Highlights 
 

 metabonomics or metabolomics involves metabolic profiling by NMR or 
MS methods 

 metabonomics is used in a diagnostic mode to study the effects of an 
intervention  

 pharmacometabonomics is a prognostic method to predict the effects of 
drugs 

 pharmacometabonomics is a special case of predictive metabonomics 
 pharmacometabonomics will help to deliver personalised medicine in the 

future 
 
Graphical Abstract 
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1. Introduction 
 
1.1 Personalised or Precision Medicine 
 
It is an unfortunate fact that many drugs currently prescribed are either 
ineffective or unsafe for significant numbers of patients.[1] In an ideal world, 
each patient would be prescribed a treatment that had the best chance of 
achieving efficacy and the lowest risk of toxicity. A key goal of 21st century 
healthcare is to deliver the promise of personalised medicine, or precision 
medicine as it is sometimes known; that is to use genomic, molecular and clinical 
information to select treatments or medicines that are more likely to be both 
effective and safe for that patient.[2] 
 
The cost of drug-related morbidity and mortality due to lack of drug safety was 
estimated to be greater than $177 billion in 2000 in the United States alone, 
which is a staggering figure. Earlier, Pomeranz et al estimated that in US 
hospitals in 1994 over 2 million patients had serious adverse drug reactions 
(ADRs), with an estimated 100,000 patients having fatal ADRs.[3] This 
represents a massive personal and financial burden. 
 
Since earliest days, physicians have practised personalised medicine; that is the 
use of information to select treatments that are most likely to be efficacious and 
least likely to be harmful for the particular patient. Thus treatments would be 
selected based on factors such as the patient’s individual personal history, their 
family history, gender, age and body mass index. However, in the past 50 years 
or so, genetic information has become increasingly available, enabling clinicians 
to base treatment decisions upon a patient’s individual genetic make-up as well. 
This approach to personalised medicine is known as pharmacogenomics: the 
study of how genes modulate drug responses among individuals.[4]  
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Pharmacogenomics is now having some significant clinical successes, for 
example, selecting breast cancer patients for treatment with trastuzumab on the 
basis of a test for the over-expression of the erbB2 oncogene in the tumour, or 
deselecting treatment with the EGFR-specific antibodies cetuximab and 
panitumumab, for colorectal cancer patients that have activating mutations in 
their KRAS gene.[4] In addition, pharmacogenomics can inform on drug 
pharmacokinetics and hence dosing schedules for drugs like warfarin, which has 
a very narrow therapeutic index and whose dose is critically dependent upon the 
patient’s VKORC1 and cytochrome P450 genotypes. VKORC1 codes for a subunit 
of the vitamin K oxide reductase complex, which is the target for warfarin, 
whereas the P450s are ‘drug metabolising’ enzymes that are responsible for 
metabolising warfarin, with the CYP2C9 genotype being particularly important. 
The pharmacogenetics approach has been demonstrated to improve the 
accuracy of warfarin dose setting and reduce the risk of hospitalisation from 
incorrect dosing.[4] 
 
However, pharmacogenomics faces challenges due to a number of factors: (1) in 
a complex, multi-factorial disease, involving many genes, there may not be a 
simple correlation between a mutation in one gene and the subsequent disease 
phenotype or its response to a particular treatment, and in any event there are 
many steps and much uncertainty between having a gene mutation and having 
an altered phenotype; (2) many diseases and many human phenotypes have an 
environmental component as well as a genetic component and human genetics is 
blind to these factors, especially the influence of the bacteria in the human gut 
microbiome and finally; (3) the issue of phenoconversion, where genotypic 
extensive metabolisers may be converted into phenotypic poor metabolisers by 
drug administration and thereby confound a pharmacogenomics prediction.[5] 
Thus, whilst the promise of pharmacogenomics to help deliver personalised 
medicine is clear, it has recently been shown to have delivered less than was 
expected in randomised clinical trials in the areas of cardiovascular disease,[6] 
diabetes[7] and depression.[8] 
 
Given the importance of improving the selection of medicines for patients, so as 
to maximise efficacy and to minimise adverse effects, there is thus clearly a need 
for new technologies to work in tandem with pharmacogenomics to improve the 
current personalised or precision medicine paradigm. The rest of this article will 
introduce pharmacometabonomics as one such methodology that can help 
achieve that. 
 
1.2 Metabolic profiling: metabonomics and metabolomics 
 
Metabolic profiling has a long history, going back at least several hundred years, 
[9] but has come to the fore in the past few decades with the advent of powerful 
NMR and mass spectrometers capable of providing exquisite details of the 
metabolic compositions of biological fluids and tissues.[10] Metabolic profiling 
has proven enormously valuable in many areas of biology and medicine, 
including disease diagnosis, drug discovery and development, and the 
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understanding of human biochemistry and physiology from a systems biology 
perspective.[9-11]  
 
The term metabonomics was coined in 1996 by Everett and Nicholson to provide 
a framework for a set of metabolic profiling experiments done in parallel with 
proteomics and transcriptomics studies, in a collaboration between Birkbeck 
College and Pfizer Global R & D on the discovery of early drug safety biomarkers. 
Metabonomics has the following interventional definition: “the quantitative 
measurement of the multiparametric metabolic response of living systems to 
pathophysiological stimuli or genetic modification.”[12] The alternative term 
metabolomics has an observational definition: “a comprehensive analysis in 
which all the metabolites of a biological system are identified and 
quantified”[13] that is more difficult to achieve, as the identification of all the 
metabolites in a biological system can only ever be an aspiration. In this review, 
we shall use the original term metabonomics throughout. 
 
To date, most applications of metabolic profiling have been diagnostic in nature; 
that is the effects of an intervention are interpreted and understood through the 
changes observed in the metabolic profile of, for example, a patient, before and 
after the intervention. In the case of the intervention being drug dosing to a 
patient, a typical metabonomics experiment would interpret the effects of the 
drug by an assessment of the impact of the drug administration on the 
endogenous metabolic profiles of the patient post-dose compared with pre-dose. 
 
In order to be useful for personalised medicine and the selection of optimal 
treatments for patients, a new prognostic approach to metabolic profiling is 
required where pre-dose metabolic profiles can be interpreted in order to 
predict drug effects in advance of dosing. Pharmacometabonomics delivers this 
new prognostic approach, as will be demonstrated (see Section 3 below). 
 
2. Metabonomics: Metabolic Profiling in Practice 
 
2.1 Key elements of metabolic profiling experiments 
 
Regardless of the objective, the analytical technology, or the intervention used, a 
metabolic profiling experiment has a number of important stages, including: 1) 
definition of study aims and experimental design, 2) ethical approval where 
necessary, 3) sample collection and storage, 4) sample preparation, 5) data 
acquisition, 6) data quality control, 7) spectroscopic data pre-processing  8) 
statistical data pre-processing, 9) statistical analysis to determine the 
biomarkers that are responsible for any differences in metabolite profiles due to 
the intervention used, 10) identification of biomarker metabolites, 11) biological 
and biochemical interpretation of the role of biomarker metabolites including 
pathway analysis, and 12) reporting of results and deposition of the data. 
 
Each of these steps has been well investigated for either NMR-[14-20] or mass 
spectrometry (MS)-based[21-24] approaches to metabolic profiling. The step 
that presents the most difficulties to investigators using either NMR-based or 
MS-based approaches is metabolite identification (see Section 2.4 below).  
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2.2 NMR and MS technologies for metabonomics 
 
NMR spectroscopy, and MS hyphenated with a separation technology such as 
ultra performance liquid chromatography, gas chromatography or capillary 
electrophoresis, are the two main analytical methodologies used for both the 
detection and the identification of metabolites in biological samples. The 
methodologies are both very powerful and can often be used synergistically.[25] 
Table 1 gives a comparison of the relative strengths and weaknesses of the two 
analytical technologies. 
 

Table 1. A comparison of the analytical capabilities of NMR spectroscopy 
and mass spectrometry for metabolic profiling 

 
NMR spectroscopy mass spectrometry 

 powerful structure elucidation 
capability for small molecules in 
solution giving information on 
molecular structure, conformations 
and dynamics 
 

 powerful structure analysis 
capability to generate metabolite 
mass and some fragments and 
molecular formulae at high 
resolution 
 

 relatively insensitive, but sensitivity 
improved recently with digital 
spectrometers, cryoprobes and low 
volume probes 
 

 highly sensitive 

 instrumentation expensive but per 
sample cost relatively low 
 

 instrumentation relatively 
inexpensive but isotopically labelled 
reference standards for quantitation 
can be expensive 

 absolute quantitative measurements 
and no reference standard required 
with ERETIC technology[26] 
 

 not absolutely quantitative in 
absence of specific reference 
standards, but has relative 
quantification capability 
 

 highly stable as no contact between 
sample and spectrometer 

 little effect of history on data 

 relatively unstable 
 column and spectrometer 

performance can be affected by 
history 
 

 minimal sample preparation and 
direct analysis of biological samples 
 

 generally requires a 
chromatographic separation step 
prior to MS analysis 

 gas chromatographic (GC) analysis 
requires metabolite derivatisation in 
order to effect volatilisation 
 

 simple spectra corresponding to  soft ionisation mass spectra 
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each metabolite complicated by possibilities of 
multiple adduct formation with 
different metal ions and solvent 
adducts observed separately for each 
metabolite 

 GC-MS analyses may be complicated 
by multiple derivatisation species 
 

 
 
2.3 Metabonomics Data Analysis 
 
The following steps would be typical of a data analysis workflow for an NMR-
based metabonomics experiment: 

1. NMR spectra quality control, checking resolution, lineshape, sensitivity 
and water suppression quality 

2. spectroscopic data pre-processing, which for NMR data would include 
zero-filling, apodisation, Fourier transformation, phasing, baseline 
correction, chemical shift referencing and removal of regions of no 
interest (usually as follows: > ca 10 ppm, < 0.4 ppm, the residual water 
region, any regions due to administered drugs or their metabolites, and 
for urine spectra the urea region) 

3. statistical data pre-processing, including peak alignment, scaling and 
normalisation, in order to optimally prepare the NMR data for high 
quality statistical analysis 

4. multivariate statistical analysis of the data to determine the biomarkers 
that are responsible for any differences in metabolite profiles due to the 
intervention used 

 
Whereas a decade ago it was common to use a bucketing approach and divide 
the NMR spectrum into multiple (hundreds) regions each of e.g. 0.04 ppm 
spectral width for multivariate analysis, it is now more usual to adopt a full data 
point analysis of the spectral data, resulting in multivariate analysis in a 
metabolic space with tens of thousands of dimensions: one dimension for each 
data point. This poses no particular technical issues with modern computers and 
statistical analysis software. However, this approach does open the possibility of 
false discoveries due to multiple hypothesis testing, and this must be taken into 
account in the data analysis protocol. 
 
Two philosophically distinct approaches to multivariate analysis are available: 1) 
unsupervised methods such as principal components analysis (PCA)[27] are 
typically used for the initial analysis of all studies, in order to discover subject 
outliers and to determine any structuring of the data, such as differential 
clustering of pre-dose and post-dose subjects, in a completely unbiased fashion; 
and 2) supervised methods such as projection to latent structures (PLS, partial 
least squares)[28] or maximum margin criteria (MMC)[29] where the algorithm 
is fed the information about which treatment grouping e.g. high fat diet group 
versus control diet group, each subject’s spectrum belongs to. The algorithm 
then uses this information in order to find metabolic variables that maximally 
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correlate with and discriminate between the different treatment groups. 
Considerable care has to be taken with the use of supervised multivariate 
methods in a high dimensional space, as it is possible to overfit the data and 
arrive at false conclusions, especially with low subject numbers. It is therefore 
good practice not only to apply a false discovery rate (FDR, typically set to 10%) 
filter to the multivariate analysis to reduce the probability of false outcomes, but 
also to test the outcome of the multivariate analysis in an independent data set 
i.e. use external validation.[30-33] With an FDR approach, the critical p value for 
statistical significance is often reduced to well below the typical value of 0.05 or 
5% in order to protect against false discovery by multiple comparisons. 
 
The outcome from a successful multivariate analysis of the spectroscopic data is 
a set of spectroscopic features that are associated with different sub-groups of 
subjects and that discriminate between those subgroups e.g. treated and 
untreated patients. 
 
2.4 Metabolite Identification 
 
This stage of metabolic profiling is the assignment of metabolite identities to the 
discriminating spectroscopic features identified by the multivariate data analysis 
(see Section 2.3 above). This is one of the most important steps in metabolic 
profiling, as correct identification of metabolites that are discriminating between 
groups of subjects in an experiment, e.g. drug-dosed vs placebo-dosed subjects, is 
critical to the correct biological interpretation of the results. If metabolites are 
mis-identified, the ensuing analysis will be worthless. Unfortunately, in the 
current metabolic profiling literature, it is often impossible to determine the 
confidence with which metabolites have been identified.  
 
The metabolite identification problem is of two types: first, the identification of 
truly novel metabolites, either previously unknown, or known metabolites for 
which no relevant spectroscopic data is available; and second, the identification 
of known metabolites for which the relevant spectroscopic data are available. 
The structure elucidation of novel metabolites requires the high standards 
associated with the identification of novel natural products[34] or novel drug 
degradation products[35] and would normally involve either: (i) the isolation 
and purification of the metabolite from the biological matrix and its full 
molecular structure characterisation by the standard array of methods including 
UV, IR, MS and NMR, or X-ray crystallography, or (ii) the synthesis of an 
authentic reference standard of the metabolite for comparison of its spectral 
properties with those of the same metabolite in the biological matrix. This novel 
structure elucidation work can be clearly differentiated from the second type of 
identification problem, that of structure confirmation of known metabolites, for 
which spectroscopic data is available in databases such as the Human Metabolite 
Database (HMDB)[36], the BioMagResBank (BMRB)[37] and COLMAR.[38] The 
key question for this structure confirmation work is what confidence the 
investigator has in the identification of the known metabolites. 
 
The Metabolomics Standards Initiative’s Chemical Analysis Working Group first 
proposed a four-level classification scheme for the identification of known 
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metabolites in 2007.[39] However, these recommendations have not been 
widely adopted and are currently being updated.[40] In the meantime, new 
proposals have emerged for both MS-[41, 42] and NMR-based[38, 43-45] known 
metabolite identification. It is expected that the Metabolite Identification Task 
Group of the Metabolomics Society 
(http://metabolomicssociety.org/board/scientific-task-groups/metabolite-
identification-task-group) will publish improved and unifying recommendations 
for this important area shortly. 
 
3. The Discovery of Pharmacometabonomics 
 
Twenty to thirty years ago, it was typical to observe large differences in the 
outcomes of drug dosing experiments in animal species such as rats and mice 
and this was often ascribed at the time to ‘biological variability’, although the 
latter was never defined, nor understood.  These differences in outcome could be 
striking and so large that it would appear that some animals had been dosed 
whereas others had not, often leading to concerns about the quality of the 
experiments. These concerns were discussed at a project review meeting on 18 
October 2000, in Amboise France, between Pfizer Global R & D and Imperial 
College collaborators working on a drug safety prediction project. During the 
course of this meeting, the radical notion was proposed that the supposedly 
equivalent rats under study were in fact not identical, and that metabolic 
profiling of the animals prior to dosing might identify sub-group differences that 
were correlated with different post-dose responses, such as radically different 
drug excretion, metabolism and safety outcomes. This was the birth of the notion 
of pharmacometabonomics: the use of pre-dose metabolite profiles to explain 
post-dose differences in response to drug treatment. A series of experiments 
were designed to test this hypothesis that led to a study dosing 
paracetamol/acetaminophen to rats. This study demonstrated that pre-dose 
metabolite profiles could be used to predict, to some extent at least, both the 
metabolism and the toxicity of paracetamol.[46] 
 
This first pharmacometabonomics experiment dosed paracetamol at a toxic 
threshold dose of 600 mg/kg to 65 Sprague-Dawley rats, with 10 further 
controls receiving an equal volume of dose vehicle. 600 MHz 1H NMR 
spectroscopy was performed on both pre-dose and post-dose urine samples, 
with comparisons made between pre-dose metabolite profiles and post dose 
drug metabolism and toxicity outcomes. 
 
A projection to latent structures (PLS) supervised model, based on pre-dose 
urine metabolite profiles, was built and validated that could predict the post-
dose ratio of the concentrations of the glucuronide metabolite of paracetamol to 
that of the parent paracetamol drug (G/P, see Figure 1). This model was 
validated by permutation of the G/P data relative to the pre-dose data, and by a 
leave-one-out strategy (Figure 2).[46] 
 

http://metabolomicssociety.org/board/scientific-task-groups/metabolite-identification-task-group
http://metabolomicssociety.org/board/scientific-task-groups/metabolite-identification-task-group
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Figure 1: the molecular structures of paracetamol and its major metabolites 

 
The most significant feature in the pre-dose urine metabolite profile that 
correlated positively (r = 0.48) with the post-dose G/P ratio was the integral of 
the region from 5.06 to 5.14 ppm, the region where the glucuronide of 
paracetamol itself resonates in post-dose urine spectra. It was hypothesised that 
the signals in this region pre-dose were from endogenous ether glucuronides 
and that it was reasonable that the propensity to form these ether glucuronide 
metabolites pre-dose was linked to the extent of paracetamol glucuronide 
formation post-dose.[46] 
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Figure 2. a) observed paracetamol glucuronide to paracetamol ratio (G/P) plotted against 
predicted G/P ratio from a 2-component projection to latent structures (PLS) model in which all 
the predictions relate to model-building data. b) the 12 regions of the pre-dose 600 MHz 1H NMR 
spectra that are most important in deriving the PLS G/P model and have the highest variable 
influence on projection, VIP (each region is identified by the centre-point of its 0.04 ppm wide 
‘bucket’). c) internal validation of the PLS model by showing the decreases in R2 (measure of how 
well the model fits the data, and is the proportion of the sum of squares explained by the model) 
and in Q2 (the predictive ability of the model: the cross-validated R2), as the G/P data are 
randomly permuted relative to the pre-dose data and d) results of a seven-round cross-validation 
is which every point represents test data that was not used in building the models. Figure 
reproduced with permission from Nature Publishing Group.[46] 

 
The degree of liver toxicity observed was measured using a mean histology score 
(MHS) calculated histopathologically across all five liver lobes, and this was also 
shown to be statistically significantly associated with pre-dose metabolic profile 
features (Figure 3).  
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Figure 3. A) Unsupervised principal components analysis of the pre-dose urine spectral features 
in 65 rats dosed with paracetamol and with each animal represented by a diamond colour-coded 
by post-dose histopathology class: green, Class 1, minimal or no hepatocellular necrosis): blue, 
Class 2, mild necrosis and red, Class 3, moderate necrosis. A partial separation between Class 1 
and Class 3 is observed across PC2. B) A plot of mean histopathology score (MHS) against PC2 
showing a weak but significant correlation. C) Unsupervised PCA of the pre-dose urine spectral 
features with the same colour coding as in a) but for Classes 1 and 3 only. D) A PCA loadings plot 
showing the pre-dose spectral bins (denoted by bin centre-point in ppm) and metabolites (where 
identified), responsible for the separation across PC2 and the direction of that feature’s influence. 
Tau, taurine; Citr, citrate; Oxog, 2-ketoglutarate; TMAO + Bet, trimethylamine-N-oxide (TMAO) 
and betaine. Figure reproduced with permission from Nature Publishing Group.[46] 

 
An unsupervised principal components analysis  (PCA) comparing the pre-dose 
metabolic profiles of rats with Class 1 (minimal or no hepatic necrosis) versus 
Class 3 (moderate necrosis) showed partial but statistically significant 
separation across principal component 2 (PC2, Mann Whitney U-test, p = 0.002). 
The main pre-dose metabolites responsible for the discrimination between 
minimal and moderate hepatic necrosis were shown to be taurine (high pre-dose 
levels associated with minimal necrosis) and trimethylamine N-oxide (TMAO) 
where high pre-dose TMAO levels were associated with moderate necrosis. The 
association of high pre-dose levels of taurine with minimal necrosis is consistent 
with literature findings of the protective effects of taurine, if administered prior 
to, or soon after, a toxic dose of paracetamol. Lower levels of taurine may be due 
to lower levels of the paracetamol-sulphating agent phosphoadenosine 
phosphosulfate (PAPS, a co-factor required by sulphotransferase enzymes such 
as SULT1A1), since most of the rats with a higher degree of post-dose necrosis 
(MHS > 2.5) excreted a relatively low amount of paracetamol sulphate in their 
urine. The association of high levels of TMAO with moderate necrosis may 
indicate an involvement of gut bacteria in determining the degree of toxicity, 
since TMAO is formed by oxidation of bacterially derived trimethylamine by 
mammalian flavin monoxygenase 3 (FMO3).[47] 
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This paper[46] was a landmark in terms of demonstrating the ability of a 
metabolic profile to operate in a prognostic as opposed to diagnostic mode, but it 
was a pre-clinical study in rats.  
 
The team responsible for the pre-clinical paracetamol study then turned to gain 
funding and ethical approval for a pharmacometabonomics experiment involving 
paracetamol dosing in human subjects. The aim of this follow-on study was to 
determine if pre-dose metabolite profiles could be used to predict post-dose 
drug metabolism in humans given a normal oral dose of paracetamol. The drug 
paracetamol was chosen again, as the degree of metabolism to the major 
sulphate or glucuronide metabolites was known to be variable in humans. The 
Pfizer Global R & D Phase I Unit in Kent UK recruited a total of 99 fit and healthy, 
male volunteers. Each volunteer was given a normal 2 x 500 mg dose of 
paracetamol together with water (250 ml) and their pre-dose, 0-3 hour and 3-6 
hour post-dose urines collected. 600 MHz flow-mode 1H NMR spectroscopy was 
used to characterise the metabolite profiles in these urines. Illustrative pre-dose 
and post-dose NMR spectra from the urines of two volunteers are shown in 
Figure 4.  
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Figure 4. 600 MHz 1H NMR spectra of the urine from volunteers on a paracetamol trial. A: the 
spectrum of the pre-dose urine from volunteer 1. B. the spectrum of the 0 – 3 hour post-dose 
urine from volunteer 1. C and D: the corresponding pre-dose and post-dose urine spectra of 
volunteer 2 respectively. Key to NMR signal numbers: 1, creatinine; 2, hippurate; 3, 
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phenylacetylglutamine; 4, unknown metabolite 4 (see text); 5, citrate; 6, cluster of signals from 
N-acetyl groups from paracetamol-related compounds that resolves into 7, 8 and 9 on expansion; 
7, paracetamol sulfate; 8, paracetamol glucuronide; 9, other paracetamol-related compounds. 
Reproduced with permission from PNAS.[48] 
 
The pre-dose urine of volunteer 1 (Figure 4A) shows signals from a number of 
endogenous metabolites, including the methyl (ca 2.35 ppm) and aromatic 
signals (ca 7.2 - 7.3 ppm) from an unknown metabolite, 4. In the 0-3 hour post-
dose urine (Figure 4B), this volunteer excreted a relatively low amount of 
paracetamol sulphate metabolite (S, peak 7) relative to the paracetamol 
glucuronide metabolite (G, peak 8). By contrast, the pre-dose urine NMR 
spectrum of volunteer 2 (Figure 4C) shows no significant levels of endogenous 
metabolite 4 and a higher ratio of S/G (peak 7 / peak 8) in the 0-3 hour post-
dose urine spectra (Figure 4D). Close analysis of all of the data showed that this 
pattern was repeated across the sample set: higher-pre-dose levels of metabolite 
4 normalised to creatinine were associated with lower post-dose S/G ratios 
(Figure 5). 
 
A Mann-Whitney U-test in conjunction with a Bonferroni correction of 100 (p 
value for statistical significance becomes 0.05/100 = 5.0 x 10-4), to correct for 
multiple hypothesis testing, showed that pre-dose levels of metabolite 4 
normalised to creatinine of > 0.06 were statistically significantly associated with 
0-3 hour post-dose S/G ratios of < 0.8 (p = 1.0 x 10-4, Figure 5A). On the other 
hand, if the creatinine-normalised, pre-dose levels of 4 were < 0.06 then the 
post-dose S/G ratio was variable and not predictable. In addition, if the pre-dose 
levels of metabolite 4 normalised to creatinine were > 0.06, then the 3 - 6 hour 
post-dose ratios of S/G were always < 0.6, a smaller value than that at 0 - 3 
hours, with p = 1.2 x 10-4, and also statistically significant (Figure 5B).[48] 
Conversely, if the post-dose ratios of S/G were high, then the pre-dose levels of 
metabolite 4 normalised to creatinine were always low (Figure 5 A and 5B). 
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Figure 5. A. Plot of 0 – 3 hour post-dose urinary paracetamol sulphate to paracetamol 
glucuronide metabolite ratios (S/G) plotted against the pre-dose urinary ratios of metabolite 4 
normalised to creatinine. Critical cut-offs in the S/G and metabolite 4/creatinine ratios are 
shown with horizontal blue and vertical red lines (see text). B. Corresponding plot for the 3-6 
hour post-dose S/G ratios plotted against pre-dose ratios of metabolite 4 normalised to 
creatinine. Reproduced with permission from PNAS.[48] 
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Given the discovery of unknown metabolite 4 as a biomarker that could at least 
partially predict low S/G excreting volunteers from high S/G excreting 
volunteers, it became important to identify this metabolite. Metabolite 4 was 
characterised by a singlet methyl resonance at 2.348 ppm that was linked by 
statistical correlation spectroscopy (STOCSY)[49] to a pair of second order, 
aromatic pseudo-doublets at ca 7.210 and 7.285 ppm. It thus appeared that 
metabolite 4 contained a 4-substituted benzene ring with a methyl group at 
position 1. The metabolite was shown not to be 4-cresol itself by spiking an 
authentic reference standard of the latter into a representative pre-dose urine. 
Metabolite 4 was finally identified as 4-cresol sulphate, (1) by incubation of a 
representative pre-dose urine sample with a sulphatase enzyme that resulted in 
the reduction in the signals for 4, and the production of signals for 4-cresol, and 
(2) by unambiguous synthesis of metabolite 4, by reaction of 4-cresol with 
chlorosulphonic acid.[48] 
 
Given the importance of these results, the entire NMR experiment was repeated 
in 2007 (4 years after the original analysis) in 5 mm NMR tubes, instead of the 
previous flow mode, using stored frozen urine samples, and with no significant 
changes in results. A year later, in 2008, the original S/G ratio analysis was 
repeated using UPLC-MS instead of NMR and a correlation coefficient of 0.99 was 
found between the two studies, with no outliers. Confidence having been gained 
in the data, the results were published in 2009.[48] 
 
The identification of metabolite 4 as 4-cresol sulphate came as a surprise, as this 
key pre-dose biomarker that can partially predict human post-dose paracetamol 
sulphate to glucuronide metabolite ratios does not originate as a human 
metabolite. 4-cresol sulphate is produced in humans by the sulphation of 4-
cresol, which is itself largely produced in the gut microbiome, particularly by 
Clostridia species. Thus, the human metabolism of paracetamol, one of the most 
widely taken drugs worldwide, is partly under the control of human gut bacteria; 
a result that was striking at the time as the degree of microbiome involvement in 
human biology and human drug metabolism was not well understood. 
 
The rationale for the involvement of metabolite 4, that is 4-cresol sulphate, in 
paracetamol metabolism is as follows. In humans, as opposed to rodents, 4-
cresol is eliminated from the body almost exclusively by sulphation, with no 
significant glucuronidation of the compound. However, the sulphation pathway 
in humans is considered not have a high capacity[50] and will be limited (1) by 
availability of the sulphate donor 3-phosphoadenosine 5-phosphosulfate (PAPS), 
and (2) by competition for the active site of the sulphotransferase enzyme 
involved.  
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Figure 6. A comparison of the molecular structures of 4-cresol and paracetamol and their 
corresponding sulphates, the latter produced by the action of human sulphotransferases such as 
SULT1A1. 

 
Figure 6 shows the striking molecular structural similarity between 4-cresol and 
paracetamol; they will compete for sulphation, especially by the enzyme 
sulphotransferase 1A1 (SULT1A1). Thus, in a human with a gut microbiome 
excreting significant quantities of 4-cresol, there is potentially a drain on the 
limited sulphation resources that the body uses (together with glucuronidation) 
to eliminate this toxic compound. If that person then takes a dose of paracetamol, 
the metabolism of the drug will tend to use glucuronidation more, due to 
depletion of sulphation capacity. On the other hand if a person has a gut 
microbiome that does not excrete significant levels of 4-cresol, then there is no 
excess demand on that person’s sulphation capacity from that source and the 
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ratio of paracetamol sulphate to paracetamol glucuronide metabolites excreted 
will be variable and not predictable by this method.[48]  What is clear, however, 
is that a person excreting a high ratio of S/G paracetamol metabolites post-dose 
will have had a low level of 4-cresol sulphate normalised to creatinine in their 
pre-dose urine. 
 
Given the number of drugs that are metabolised, at least in part, by sulphation, 
the results found for the influence of 4-cresol excretion on paracetamol 
sulphation could have relevance for other such drugs. In addition, sulphation is 
an important endogenous metabolic process, which could therefore be 
influenced by gut microbiome excretion of 4-cresol.[48]  
 
Since these first demonstrations of the ability of pharmacometabonomics to 
predict the outcomes of drug administration in animals and humans, a host of 
other studies have been published (Table 2). The rest of this article will review 
these later studies, with a focus on those using NMR spectroscopy as the 
metabolite detection, quantification and identification technology. 
 
Table 2. A compilation of human and pre-clinical pharmacometabonomics 
studies and the detection technologies employed, published up to March 
2017a,b,c 

 
class of experiment human studies pre-clinical  studies 

prediction of 

pharmacokinetics (PK) 

prediction of tacrolimus PK in healthy 

volunteers [LC-MS] [51]  

prediction of pharmacokinetics 

of triptolide in rats [GC-MS] 

[52] 

 prediction of atorvastatin 

pharmacokinetics in healthy 

volunteers [GC-MS] [53] 

 

 prediction of methotrexate clearance 

in patients with lymphoid 

malignancies [GC-MS] [54] 

 

 prediction of midazolam clearance in 

female volunteers [GC-MS]  [55] 

 

 pharmacometabonomic prediction of 

busulfan clearance in hematopoietic 

cell transplant recipients [LC-MS] 

[56] 

 

   

prediction of drug 

metabolism 

prediction of metabolism of 

paracetamol / acetaminophen in 

human volunteers [NMR] [48] 

** first demonstration of 

pharmacometabonomics in humans 

prediction of 

paracetamol/acetaminophen 

metabolism in rats [NMR] [46] 

** first demonstration of 

pharmacometabonomics  

 prediction of CYP3A4 induction in 

volunteer twins [NMR] [57] 

 

 prediction of CYP3A activity in 

healthy volunteers [GC-MS] [58] 

 

   

prediction of drug 

efficacy 

prediction of simvastatin efficacy in 

patients on the Cholesterol and 

Pharmacogenomics study (TLC plus 

GC and GC-MS respectively] [59, 60] 

 

 prediction of citalopram/ escitalopram 

response in patients with major 
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depressive disorder (MDD) [GC-MS] 

[61] 

** first demonstration of 

pharmacometabonomics-informed 

pharmacogenomics approach to 

personalised medicine 
 

See also [62] and [63] the latter using 

LC-electrochemical coulometric array 

detection (LC-ECA) 

 prediction of sertraline and placebo 

responses in patients with MDD [LC-

ECA and GC-MS] [64],  

[65] and [66] 

 

 prediction of efficacy of anti-

psychotics in schizophrenia patients  

[LC-ECA] [67] 

 

 prediction of response to aspirin in 

healthy volunteers [LC-MS and GC-

MS] [68-70] 

 

 prediction of efficacy with anti-TNF 

therapies in rheumatoid arthritis 

[NMR] [71] 

 

 prediction of thiopurine-S-

methyltransferase phenotype in 

Estonian volunteers [HPLC]  [72] 

 

 prediction of efficacy of L-carnitine 

therapy for patients with sepsic shock 

[NMR] [73] 

 

 prediction of acamprosate treatment 

outcomes in alcohol-dependent 

patients [UPLC-MS]  [74] 

 

 prediction of blood pressure lowering 

in hypertensive patients treated with 

atenolol and hydrochlorothiazide [GC-

MS] [75] 

 

 prediction of response in lung cancer 

patients [NMR and GC-MS] [76] 

 

 prediction of patient response to 

trastuzumab-paclitaxel neoadjuvant 

therapy in HER-2 positive breast 

cancer [LC-MS] [77] 

 

 prediction of blood pressure lowering 

in Caucasian hypertensive patients on 

the PEAR study with atenolol [LC-

MS] [78] 

 

   

prediction of adverse 

events 

prediction of weight gain in breast 

cancer patients undergoing 

chemotherapy [NMR]  [79] 

** first demonstration of 

pharmacometabonomics in patients 

prediction of toxicity from 

paracetamol/acetaminophen 

dosing in rats [NMR]  [46] 

** first demonstration of 

pharmacometabonomics 

 prediction of liver injury markers in 

patients treated with ximelagatran 

[NMR, GC-MS and LC-MS] [80] 

prediction of onset of diabetes in 

rats administered with 

streptozotocin [GC-MS] [81] 

 prediction of toxicity of paracetamol / 

acetaminophen (not strictly 

pharmacometabonomics, but ‘early-

onset pharmacometabonomics’) 

prediction of nephrotoxicity of 

cisplatin in rats [NMR] [83] 
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[NMR] [82] 

 prediction of toxicity in patients with 

inoperable colorectal cancer treated 

with capecitabine [NMR] [84] 

prediction of toxicity of 

isoniazid in rats [NMR]  [85] 

  prediction of variability in 

response to galactosamine 

treatment in rats [NMR] [86] 

  prediction of toxicity from 

lipopolysaccharide treatment in 

rats [LC-MS and GC-MS]  [87] 

  prediction of nephrotoxicity of 

cisplatin in rats [GC-MS and 

LC-MS] [88] 

   

 
Footnotes:  

a) significant papers are highlighted with a double asterisk with explanatory text in bold blue font 

b) abbreviations: GC, gas chromatography; LC, liquid chromatography; MS, mass spectrometry; ECA, 

electrochemical coulometric array detection 

c) the reader should beware that many papers with pharmacometabonomics or pharmacometabolomics 

in their titles are in fact just diagnostic metabonomics papers with no predictive or prognostic elements: 

these papers have been ignored in this compilation 

 
3.1 NMR-Based pre-clinical pharmacometabonomics studies 
 
Kwon et al[83] used an NMR-based pharmacometabonomics approach to predict 
the nephrotoxicity (kidney toxicity) of the anti-cancer drug cisplatin in rats. 
Nephrotoxicity is a significant issue for cisplatin and can be dose-limiting for 
some patients. Significant inter-animal variations in toxicity to cisplatin were 
observed. When challenged at a toxic dose of 10 mg / kg, 10 rats developed 
toxicity (T), but 5 did not (NT), and the differences in haematology markers were 
very large (p-values ca 10-6), with the NT rats showing few differences from the 
control rats. Allantoin, succinate and creatinine were at higher levels in the 
urines of the non-toxic (NT) group and 2-ketoglutarate was at higher levels in 
the urines of the toxic group (T). With a leave-one-out approach their OPLS-DA 
(orthogonal projection to latent structure - discriminant analysis) model could 
predict the toxicity class of unknown samples with a modest 66% accuracy. The 
metabolic differences between the T and NT groups were interpreted as 
indicating that in the T group insufficient NADH was being produced to detoxify 
reactive oxygen species generated by cisplatin, the main mechanism of its 
toxicity. 
 
Cunningham et al[85] also used an NMR-based approach to predict the central 
nervous system (CNS) toxicity of the anti-tubercular drug isoniazid in rats when 
dosed at 200 and 400 mg/kg. Isoniazid has a complex metabolic fate, including 
conjugating with pyruvate and pyridoxal to form pyruvate isonicotinylhydrazone 
and isoniazidyl-pyridoxal metabolites respectively. The neurotoxicity of 
isoniazid is associated with the depletion of cellular pyridoxal, which then leads 
to depletion of gamma-amino-butyric acid (GABA) levels in the brain and 
consequent seizures. Again, differences were seen between rats that exhibited 
toxic CNS responses at the high dose (responders, R) and those that did not (non-
responders, NR). An OPLS-DA model showed that pre-dose urine levels of an 
unidentified phenolic ether-glucuronide metabolite were higher in the high dose 
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CNS responders than in the non-responders. Even in the low-dose rats, there 
were higher pre-dose urinary levels of this glucuronide in those animals that 
went on to excrete low levels of the drug metabolite acetylisoniazid post-dose: 
the latter drug metabolite also lower in the high dose CNS responders. It was 
hoped that this pre-clinical study, the first to identify multiple isoniazid urinary 
metabolites, would have the ability to translate its finding to the human clinical 
setting.[85] 
 
Coen et al[86] used an NMR-based approach to investigate variability in the 
response of rats to the toxicity of galactosamine, a drug whose variable 
responses in rats triggered the design of the original pharmacometabonomics 
experiment.[46] Male Sprague-Dawley rats were dosed intraperitoneally with 
415 mg/kg galactosamine and classified as responders or non-responders based 
on clinical pathology. After an 11-day drug washout period, the animals were 
given a second dose of the drug and their responses monitored again. Some rats 
that were non-responders to the first dose were responders to the second dose: 
these rats were termed induced responders. An OPLS-DA model based on the 
pre-dose urine metabolite profiles was able to distinguish the profiles of non-
responders to dose 1 from induced responders to dose 2, with significantly 
discriminating metabolites including hexanoic acid and the N-acetyl resonances 
of some α1 acid glycoproteins.[86] A similar discrimination, was observed from 
an OPLS-DA model of fecal extract profiles, with decreased levels of γ - 
aminobutyrate (GABA), α-ketoisovalerate, and lactate in predose fecal profiles of 
induced responders.  
 
3.2 NMR-based human pharmacometabonomics studies 
 
3.2.1 Prediction of drug metabolism studies.  
Ahmadi, Kemsley et al[57] used an NMR approach to predict variability in the 
activity of the ‘drug-metabolising’ enzyme cytochrome P450 3A4 (CYP3A4) in 
301 female, volunteer twins who were administered St John’s Wort (a potent 
CYP3A4 inducer) for 14 days. The activity of CYP3A4 was then assessed by 
measuring the ratio of 3-hydroxyquinine (3-OH Q) to quinine (Q) after 
administration of the CYP3A4 substrate quinine sulphate (300 mg) to the 
volunteers at day 14. The best model for the prediction of the 3-OH Q / Q ratio 
explained around 38% of the variation in the cohort ratios and included 7 pre-
dose urine NMR bins plus BMI, volunteer alcohol and smoking status and, 
strikingly, the batch code of the UPLC-MS data used to measure the 3-OH Q/Q 
ratio. None of the metabolites identified as most significantly contributing the 
predictive 3-OH Q / Q ratio model were linked in a direct fashion to CYP3A4 
induction, but the majority were known to have urine levels substantially 
influenced by diet.   
 
3.2.2 Prediction of drug efficacy studies.  
Kapoor et al[71] used 500 MHz 1H NMR spectroscopy of pre-dose urines from 16 
rheumatoid arthritis patients to show that the profiles of several pre-dose 
metabolites, including histamine, glutamine, xanthurenic acid, and ethanolamine, 
could be used to discriminate between those patients who either would, or 
would not have a good response to anti-TNF therapy according to European 
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League Against Rheumatism criteria, with a sensitivity of 88.9% and a specificity 
of 85.7%. A correlation between baseline metabolite profiles and the change in 
the disease activity score in 28 joints from baseline to 12 months had a p value of 
0.04. The positive association of degree of response with the strongly 
discriminating, pre-dose metabolite histamine was interpreted as potentially 
indicating the degree of pre-dose inflammation or the degree of breakdown of 
histidine. Larger, additional studies were recommended. 
 
Puskarich et al[73] used 500 MHz 1H NMR of pre-dose serum samples to show 
that lower baseline blood serum levels of 3-hydroxybutyrate (p < 0.001), 
acetoacetate (p < 0.001) and 3-hydroxyisovalerate (p < 0.001) were significantly 
associated with survival for septic shock patients on L-carnitine therapy (4 g 
bolus followed by 8 g infusion over 12 hours).  The 31 patients were randomised 
between placebo (n = 15) and drug treatment (n = 16). Patient survival analysis 
indicated a marked trend towards greater survival in L-carnitine-dosed, low 
ketone patients (3-hydroxybutyrate < 153 uM) compared to L-carnitine-dosed, 
high ketone patients (baseline 3-hydroxybutyrate > 153 uM, P = 0.007), or 
compared to placebo treated patients with either high or low baseline ketone 
levels. These precision healthcare results were seen as important clinically as the 
differentiation of responders from non-responders was not evident from 
traditional clinical biomarkers such as lactate levels and the Sequential Organ 
Failure Assessment (SOFA) score. Additional method validation was 
recommended. 
 
Hao et al[76] have used both 600 MHz 1H NMR and GC-MS to study serial blood 
serum samples from 25 lung cancer patients undergoing chemotherapy with or 
without radiation. The metabolites detected by 1H NMR were associated with 
cancer type and stage. However, metabolites such as hydroxylamine, tridecan-1-
ol, and octadecan-1-ol, detected by GC-MS, were indicative of patient survival (P 
< 0.05) and other GC-MS-detected metabolites including tagatose, 
hydroxylamine, glucopyranose, and threonine were indicative of disease 
progression (P < 0.05). It was concluded that metabolic profiling has the 
potential to provide prognostic clinical outcome information. 
 
3.2.3. Prediction of drug safety studies.  
In the first validated study with human patients, as opposed to volunteers, Keun 
et al[79] used 600 MHz 1H NMR to show that pre-treatment serum levels of 
alanine and lactate together with % body fat were predictive of weight gain in 
women undergoing chemotherapy treatment for breast cancer. This is important 
as weight gain is associated with a risk of cancer recurrence. 
 
Andersson et al[80] used a wide array of analytical methodologies, including 600 
MHz 1H NMR, GC-MS, LC-MS and proteomics, to show that the blood plasma 
levels of a wide variety of metabolites and proteins, including kininogen 1 
(KNG1), formate, L-cystine, creatinine, lecithin-cholesterol acyltransferase 
(LCAT), glutamic acid, pyruvic acid, alanine, 2-ketoglutaric acid, apolipoprotein 
(APO) A2, APOA4, and APOE, were all statistically significant in predicting liver 
injury (as determined by alanine aminotransferase (ALT) levels) in patients 
treated with the anticoagulant agent ximelagatran. The systems biology 
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approach used in this study was successful in developing new hypotheses for the 
unknown mechanism of toxicity. Unfortunately, the development of this 
compound was ultimately terminated due to its liver toxicity. The ability to 
determine which patients could benefit from a drug without toxicity could be 
crucial in such a situation in the future, and potentially avoid the loss of a drug 
which is toxic to just a subset of patients as opposed to all patients. 
 
Backshall et al[84] used 600 MHz 1H NMR to show that high pre-treatment 
serum levels of low-density lipoprotein–derived lipids, including 
polyunsaturated fatty acids and choline phospholipids, were predictive of 
greater toxicity, in 54 patients with locally advanced or metastatic colorectal 
cancer being treated with capecitabine. Although the authors recommended 
validation by repetition in a larger cohort, this is an important result, as 
capecitabine toxicity is not only a significant issue for patients’ quality of life, it 
also limits the drug dose range available, and may thereby diminish the 
likelihood of patient cure. 
 
4. Conclusions and the future for pharmacometabonomics 
 
The development of personalised medicine (or precision or stratified medicine 
as it is sometimes known) is an important goal for 21st Century healthcare, in 
order to avoid unnecessary drug adverse events in patients and to maximise 
efficacy in patients by prescribing the most appropriate drugs for the particular 
patient. The current paradigm for personalised medicine is built upon the use of 
pharmacogenomics, i.e. the use of patient genomic information to predict the 
influence of patient gene mutations on drug metabolism, pharmacokinetics, 
efficacy and safety.  However, this paradigm is limited by the fact that the effects 
of drugs on the patient (efficacy, safety) and the effects of the patient on the 
drugs (metabolism, transport, pharmacokinetics) involve a variety of 
environmental factors, especially the status of the patients’ microbiomes, in 
addition to their genetic profiles. In these circumstances it is unsurprising that 
pharmacogenomics has had less influence on personalised medicine in clinical 
practice than was first hoped for. By contrast, pharmacometabonomics is able to 
sample both genetic and environmental factors that influence the efficacy, safety, 
metabolism, transport and pharmacokinetics of drugs. The metabolic profiles of 
biological fluids such as urine and plasma contain human metabolites, bacterial 
metabolites (from the microbiome) and human/bacterial co-metabolites. It is 
therefore to be hoped that a combination of pharmacogenomic and 
pharmacometabonomic technologies will be able to provide more sensitive and 
specific predictions of drug efficacy and safety that pharmacogenomics alone is 
currently able to do. 
 
In the decade or so since the first publication on pharmacometabonomics, an 
array of publications have demonstrated the ability of both NMR-based and mass 
spectrometry-based pharmacometabonomics studies to predict drug 
metabolism, pharmacokinetics, efficacy and safety: see Table 3. It is striking that 
pharmacometabonomics approaches are now being used to predict drug efficacy 
in situations that are literally life-and-death, such as the report by Puskarich et 
al[73] involving septic shock patients on L-carnitine therapy. Many of the studies 
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reported are early stage and exploratory, rather than large-scale clinical trials, 
and many of the studies will require validation in larger cohorts of subjects. 
However, the promise of using human metabolic information in combination 
with human genomic information in order to optimise the choice of medical 
treatments for patients in the future is compelling. 
 
The delivery of the promise of metabolic profiling in pharmacometabonomics 
studies will be considerably assisted by the recent development of large number 
of Biobanks: repositories of human biofluids and tissues that can be accessed for 
large-scale phenotyping and crucially, in addition, the advent of Phenome 
Centres such as those in London and Birmingham in the UK and in Singapore, 
that can deliver large-scale metabolic profiling using NMR and MS technologies 
on hundreds or thousands of patients’ samples with high efficiency, high speed 
and high quality.[89]  
 
It is also worth considering that pharmacometabonomics itself is just one 
example of a wider array of prognostic metabolic profiling experiments that can 
be generally termed predictive metabonomics.[90] In pharmacometabonomics, a 
pre-dose metabolite profile is used to predict the effects of drug treatment, be 
that efficacy, safety, or indeed metabolism or pharmacokinetics.[91] In 
predictive metabonomics, a pre-event metabolite profile is used to predict a 
broader array of interventions such as change in diet, exercise, or just the 
passage of time. It was envisaged from the point of discovery of 
pharmacometabonomics that the methodology would have this broader 
utility.[46] If the intervention is just passively the passage of time, the 
methodology can be used to predict disease onset in subsets of a population, and 
this has been demonstrated in several important cases, including the prediction 
of the onset of type-2 diabetes, [92-94] as well as in other diseases.[90] The 
power of metabolic profiling to provide prognosis of outcome in a wide variety 
of situations is one of the most exciting current aspects of this new science. 
 
In summary, personalised medicine will benefit enormously from the combined 
implementation of metabolic profiling by pharmacometabonomics, together with 
genomic profiling by pharmacogenomics. It is expected that the synergistic 
combination of these technologies[61] will lead to much improved drug choices 
for patients in the future, which is a critical goal of current and future healthcare. 
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6. Terminology[95] 
 

BIOFLUID: A biological fluid, typically from an animal or human, such as urine, 
blood plasma, cerebrospinal fluid, saliva, sweat, or tears. 
 
METABOLITE: A small molecule product of enzyme-mediated biotransformation 
in an organism. 
 
METABONATE: A small molecule product of non-enzymatic, chemical 
transformation in an organism. This term is also used to describe molecular 
artefacts produced chemically during sample extraction, isolation, purification or 
analysis procedures.[96] 
 
METABONOMICS: “The study of the metabolic response of organisms to disease, 
environmental change or genetic modification.”[12, 97] Metabonomics has an 
interventional definition describing a diagnostic, systems biology approach to 
understanding global metabolic regulation of organisms and their commensal, 
parasitic and symbiotic partners. 
 
METABOLOMICS: The comprehensive and quantitative measurement of all the 
metabolites in a biological system.[98] Metabolomics, by contrast to 
metabonomics, has an observational definition which is also aspirational, as it 
will not, in the foreseeable future, be possible to detect, let alone quantitate, all 
the metabolites in a biological system.  
 
METABOLOME: The full set of metabolites within, or that can be secreted from, a 
biological system such as a cell type or tissue.[99]  
 
METABONOME: The sum of the cellular metabolomes in a multi-cellular 
organism and their interaction components plus the products of chemical 
transformations and extra-genomically generated metabolites.[100] 
 
METABOTYPE: The metabolic phenotype of an organism. 
 
MICROBIOME: The collection of microorganisms present both in and on an 
organism, in a variety of environmental niches 
 
PHARMACOGENOMICS: The prediction of the outcome of a drug or xenobiotic 
intervention in an individual based on an analysis of that individual’s genetic 
profile. 
 
PHARMACOMETABONOMICS: The prediction of the outcome of a drug or 
xenobiotic intervention in an individual based on a mathematical model of pre-
intervention metabolite signatures.[46] 
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PHARMACOPROTEOMICS: Sometimes defined as the use of proteomic 
technologies in drug discovery and development [101], but logically, this would 
be better defined as: ‘The prediction of the outcome of a drug or xenobiotic 
intervention in an individual based on an analysis of that individual’s proteome.’  
 
PHARMACOMETABOLOMICS: This later prognostic term is used synonymously 
with pharmacometabonomics, but is sometimes erroneously used to describe 
the investigation of the effects of a drug on an organism: this is just diagnostic 
metabonomics. 
 
PREDICTIVE METABONOMICS: The prediction of the outcome of an intervention 
in an individual based on a mathematical model of pre-intervention metabolite 
profiles. The intervention could be a change in diet, exercise, the passage of time, 
surgical treatment etc. Pharmacometabonomics is one case of predictive 
metabonomics, which covers the prognosis of any intervention. 
 
TRANSCRIPTOMICS: the study of the transcriptome: the complete set of 
ribonucleic acid transcripts produced by an individual genome under a given set 
of conditions. 
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8. Glossary 
 
Term Meaning 
ADR adverse drug reaction 
BMI body mass index 
CYP2C9 the gene encoding the 9th member of the cytochrome P450 enzyme in 

family 2, subfamily C  
ERETIC Electronic REference To access In vivo Concentration 
FDR false discovery rate 
GC-MS gas chromatography - mass spectrometry 
HER-2 human epidermal growth factor receptor 2 
LC-ECA liquid chromatography - electrochemical coulometric array detection 
LC-MS liquid chromatography - mass spectrometry 
MHS mean histopathology score 
MMC maximum margin criteria 
NADH reduced form of nicotinamide adenine dinucleotide (NAD) 
OPLS-DA orthogonal projection to latent structure - discriminant analysis 
PC1 principal component 1 etc. 
PCA principal components analysis 
PLS partial least squares / projection to latent structures 
STOCSY statistical correlation spectroscopy 
SULT1A1 member 1 of the sulphotransferase enzyme family 1A 
TMAO trimethylamine N-oxide 
UPLC-MS ultra performance liquid chromatography - mass spectrometry 
VIP variable influence on projection 
 


