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21 Abstract

22 Africa is endowed with a diverse guild of small carnivores, which could benefit stakeholders 

23 by providing ecosystem services while fostering conservation tolerance for carnivores. To 
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24 investigate the potential of small carnivores for the biological control of rodents within agro-

25 ecosystems, we assessed both the ecological and social landscapes within two rural villages in 

26 the Vhembe Biosphere Reserve, South Africa. We employed a camera trapping survey 

27 underpinned by an occupancy modelling framework to distinguish between ecological and 

28 observation processes affecting small carnivore occupancy. We also used questionnaires to 

29 investigate perceptions of small carnivores and their role in pest control. We found the greatest 

30 diversity of small carnivores in land used for cropping in comparison to grazing or settlements. 

31 Probability of use by small carnivores was influenced negatively by the relative abundance of 

32 domestic dogs and positively by the relative abundance of livestock. Greater carnivore diversity 

33 and probability of use could be mediated through habitat heterogeneity, food abundance, or 

34 reduced competition from domestic carnivores. Village residents failed to appreciate the role 

35 of small carnivores in rodent control. Our results suggest that there is significant, although 

36 undervalued, potential for small carnivores to provide ecosystem services in agro-ecosystems.

37

38 1. Introduction

39 Rodents cause significant damage to crops in small-holder farms in Africa (Granjon and 

40 Duplantier, 2009; Monadjem et al., 2015; Singleton, 2010; Swanepoel et al., 2017). Existing 

41 rodent control is highly reactive and almost exclusively based on the use of rodenticides. This 

42 heavy reliance on poisons has led to increasing problems with the development of behavioural 

43 and physiological resistance, environmental contamination, and non-target poisoning (Buckle 

44 and Smith, 2015). Ecologically-based rodent management (EBRM) is a term popularised more 

45 than 20 years ago (Singleton et al., 1999) with an aim to re-emphasize the importance of 

46 understanding rodent biology and behaviour of different species as well as agro-ecological and 

47 socio-economic contexts. While traditional rodent pest solutions emphasized over-reliance on 

48 poisons, EBRM advocates less harmful and sustainable solutions such as biological control 

49 through increasing ecosystem services of natural predation for pest control. Several studies 

50 have shown that the adoption of EBRM strategies for rodent pest management can be highly 

51 effective in reducing rodent damage whilst reducing farmer reliance on rodenticides (Brown et 

52 al., 2006; Jacob et al., 2010). EBRM has recently gained traction in small-holder agro-
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53 ecosystems in Africa (Massawe et al., 2011; Monadjem et al., 2015; Taylor et al., 2012).

54

55 In smallholder agro-ecosystems, and many other modified landscapes, the removal of apex 

56 carnivore species from most human inhabited areas of Africa may have facilitated increased 

57 mesocarnivore abundance (Caro and Stoner, 2003; Prugh et al., 2009; Ritchie and Johnson, 

58 2009). Such increases might cause several ecological services or disservices to human 

59 communities. For example, small carnivores such as the red fox (Vulpes vulpes) provide 

60 valuable ecosystem services such as seed dispersal and potentially controlling populations of 

61 small mammals, regulating their impacts on keystone plant species and threatened habitats in 

62 Europe (Cancio et al., 2017). In contrast, in Africa the importance of small carnivores around 

63 small-holder farming systems is well-recognised in terms of human-wildlife conflict and 

64 ecosystem disservices (Blaum et al., 2009; Gusset et al., 2009; Woodroffe et al., 2005), but is 

65 less understood in terms of potential ecosystem services (Roemer et al., 2009). This is 

66 unfortunate as Africa has a rich small carnivore assemblage, which could provide key 

67 ecosystem services to surrounding communities (Schuette et al., 2013). Furthermore, the 

68 relatively large number of small-sized farms and small settlement areas in sub-Saharan Africa 

69 (Lowder et al., 2016) are interspersed within a mosaic of semi-natural habitat that can increase 

70 human-wildlife conflict (Crooks, 2002; Lamarque et al., 2009). As farm sizes in Africa are 

71 likely to continue to decline and further fragment the landscape (Masters et al., 2013), there is 

72 a real risk of further natural habitat loss, trophic collapse and loss of potential ecosystem 

73 services provided by small carnivores (Dobson et al., 2006).

74

75 Although the use of biological control is well established for many insect pests in agricultural 

76 production (Vincent et al., 2007), it is not yet commonplace for rodent pests. The potential of 

77 avian predators to provide ecosystem services for the control of pest rodents has been recently 

78 reviewed (Labuschagne et al., 2016), highlighting that some species, such as barn owls (Tyto 

79 alba), are able to control rodent pests in some in agricultural contexts. Recent research suggests 

80 that domestic cats and dogs may increase the landscape of fear around rural homesteads, 

81 resulting in lower rates of rodent activity and food intake (Mahlaba et al., 2017). This indirect 
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82 mechanism, affecting rodent behaviour, could work synergistically with direct control 

83 mechanisms such as predation of rodents by domestic carnivores, which could reduce rodent 

84 density (Krijger et al., 2017). Little attention, however, has been given to the potential services 

85 or disservices of wild terrestrial carnivores in terms of rodent pest control.

86

87 Thus, the first objective of our study was to understand which small- and medium-sized 

88 mammalian carnivores (< 15 kg, hereafter referred to as small carnivores) were present in and 

89 around rural farming communities in the study area. Secondly, we set out to determine the 

90 influence of the abundance of domestic animals (livestock and pets) on the probability of use 

91 of an area by small carnivores; and also assess  how the species richness of the small carnivore 

92 community was influenced by land use. Thirdly, we wanted to capture the knowledge and 

93 opinions of smallholder farming communities with respect to small carnivores. This will 

94 provide an initial yet essential step towards understanding the potential ecosystem services 

95 provided by small carnivores in rural agro-ecosystems, to help inform the development of 

96 EBRM strategies with a strengthened biological control component.

97

98 2. Methods

99 2.1. Study area

100 We conducted the study at two rural sites (Ka-Ndengeza: S23.31003° E30.40981° and 

101 Vyeboom: S23.15174° E30.39278°) in the Vhembe Biosphere Reserve, South Africa 

102 (Appendix S1). Both sites receive an annual rainfall of 700-800 mm per year, with a hot wet 

103 season from October to March and a cool dry season from May to August (Hijmans et al., 

104 2005). Natural vegetation is classified as Granite Lowveld and Gravelotte rocky bushveld 

105 (Mucina and Rutherford, 2006). Vegetation is characterised by tall shrubs with few trees to 

106 moderately dense low woodland on the deep sandy uplands dominated by Combretum zeyheri 

107 and C. apiculatum. Low lying areas are characterised by dense thicket to open Savanna with 

108 Senegalia (Acacia) nigrescens, Dichrostachys cinerea, and Grewia bicolor dominating the 

109 woody layer, particularly the Granite Lowveld  (Mucina and Rutherford, 2006). 
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110

111 Three major land-use types were identified in each of the villages. First, the settlement areas 

112 were used for residential purposes (hereafter settlements) (Odhiambo and Magandini, 2008). 

113 The majority of households had large gardens (50-80 m x 40-80 m) which were used to grow 

114 crops (maize (Zea mays), peanuts, beans (Phaseolus vulgaris), ground nuts (Arachis 

115 hypogaea), avocados mangoes, bananas, litchis, and oranges), and to overnight livestock 

116 (cattle, donkeys, sheep, goats, and poultry). The second land-use type identified was cropping 

117 areas (hereafter crops). Residents of both villages practiced either rotational cropping (maize, 

118 ground nuts, and beans) or intercropping (maize, beans, and pumpkins (Cucurbita spp.)). Land 

119 preparation was usually by manual labour, and preparation typically began in October or 

120 November, while planting commenced in early December. Harvesting of crops occurs in 

121 February until late April (crop dependant). Farmers reported yields varying between 5 to 20 

122 bags (each bag weighing 50 kg) of maize and 3 to 10 bags of ground nuts (Swanepoel, 

123 unpublished data). Crop residues were typically used for livestock fodder. The third land-use 

124 type was the grazing areas, which comprised of short grass, shrubs and tall trees (hereafter 

125 grazing). In addition to communal grazing of livestock, these areas served for firewood 

126 collection and informal hunting. Due to poor land management practices, however, the grazing 

127 areas were typically severely overgrazed, with woody plants (mainly Dichrostachys cinerea) 

128 decreasing herbaceous production and replacing the grass and shrub layer, typically in low 

129 lying areas. 

130

131 2.2. Potential small carnivore diversity and ecosystem services

132 We define predation of rodent pests and consumption of carrion as potential ecosystem services 

133 (Ćirović et al., 2016) that could be provided by small carnivores. We estimated theoretical 

134 small carnivore diversity for our study sites by compiling a list of all small carnivore species 

135 potentially present at the study sites from the IUCN Red List of Threatened Species (IUCN, 

136 2016) and from published literature (Apps, 2012; Cillié, 2013; Kingdon and Hoffman, 2012; 

137 Skinner and Chimimba, 2005; Stuart and Stuart, 2007). For each species we then extracted 

138 from the literature, data on the amount of rodents in their diets, and whether the species 

139 consumed carrion (Admasu et al., 2004a, b; Apps, 2012; Camps, 2008; Cillié, 2013; Kingdon 
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140 and Hoffman, 2012; Skinner and Chimimba, 2005). We regarded species with diets that 

141 included a minimum of 20% rodents as potential ecosystem service providers (Ćirović et al., 

142 2016). The home range size of the species potentially present, were used to determine the 

143 average distance between camera traps.

144

145 2.3. Camera trapping and data preparation

146 We used camera trapping to determine both species richness and habitat use (occupancy) of 

147 small carnivores. Our surveys were underpinned by an occupancy based modelling framework, 

148 which guided the layout of camera traps (MacKenzie and Bailey, 2004). Each study area was 

149 divided into a settlement area, cropping area and grazing area, based on recent satellite imagery 

150 (Google, 2014), which was then overlaid with a regular spaced grid with a cell size of 300 x 

151 300 m (9 ha). The size choice of the grid cells was guided by the median home range size of 

152 small carnivores expected to inhabit the study areas (Table 1), to adhere to the independent 

153 assumptions of occupancy models (Mackenzie and Royle, 2005). We deployed one camera 

154 trap in each grid, which resulted in an average spacing between camera traps of 193 m (standard 

155 deviation 65 m), and camera traps were operated for 10-12 days. Camera traps were set to 

156 record 24 hours per day, with a 30 second delay between detections. We regarded individuals 

157 of the same species photographed within a 5-minute period as the same individual, to avoid 

158 pseudo-autocorrelation. 

159

160 We deployed camera traps at roads, drainage lines, and well-established animal paths. We 

161 placed cameras around 30 cm above the ground, and cleared vegetation in front of camera traps 

162 to reduce the number of false triggers. In the settlement grid cells we deployed 27-30 infra-red 

163 flash cameras (Cuddeback Ambush 1194), as these were less disruptive to the inhabitants of 

164 villages than cameras using a visible light flash, while in the crops and grazing areas we 

165 deployed 55-60 xenon flash cameras (Cuddeback Ambush 1170). Camera traps were deployed 

166 between 2-26 June 2014 at Ka-Ndengeza and 17 June to 27 July 2014 at Vyeboom. This 

167 resulted in a camera trapping effort of 810 trap days in Ka-Ndengeza and 738 trap days in 

168 Vyeboom. From each camera trap we extracted detection-non-detection data for the target 
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169 species, and calculated the relative abundance index (RAI) (O'Brien et al., 2003) of other 

170 species we deemed important to the detection and occupancy of target species, such as domestic 

171 cats and dogs, livestock, and humans. 

172

173 To classify land use we first digitized the different land-use types using satellite imagery from 

174 Google Maps (Google, 2014), which we later ground-truthed. This approach allowed us to plan 

175 the locations of our camera traps for optimal spacing, stratified by land use. We classified crops 

176 as either active fields, i.e. still showing agricultural activity, or as abandoned fields. For each 

177 camera trap we calculated the percentage of crops, grazing and settlement that comprised the 

178 camera trapping grid cell in which each camera trap was located. Camera trap images were 

179 catalogued using Camera Base version 1.7 (Tobler, 2015). 

180

181 2.4. Questionnaires

182 We assessed the opinions of community members towards small carnivores using a structured 

183 questionnaire (Appendix S2) (based on the questionnaire used by Holmern and Røskaft 

184 (2014)), completed by a total of 127 respondents (n = 58 in Ka-Ndengeza and n = 69 in 

185 Vyeboom). For each camera trap the inhabitants of the nearest household were sampled, but 

186 when this was not possible another nearby house was selected. Photographs of small carnivore 

187 species were provided to ensure that the species were correctly identified. We asked 

188 interviewees whether they had seen each species of carnivore, if they were good for the 

189 community, if they kill rodents, if they had impacted the respondents negatively, and if they 

190 were aware if any small carnivore species that are killed by people. The reasons for any positive 

191 and negative impacts of the species were also recorded. We also asked whether interviewees 

192 consider poultry to be an important source of protein, in order to gain some insight into the 

193 motivations for farming chickens and protecting them by killing carnivores. 

194

195 Ethical approval for the study was provided by the Ethics Committee of the University of 

196 Venda (approval number SMNS/14/ZOO/03/2803). We also obtained consent to interview 
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197 community members of Ka-Ndengeza and Vyeboom from each community Chief in addition 

198 to community members. We informed each respondent that anonymity would be maintained, 

199 and obtained written consent from interviewees. 

200

201 2.5. Data analysis

202 2.5.1. Community occupancy (probability of use) model 

203 We used the MaoTau function in the EstimateS package (Colwell, 2016) to generate species 

204 accumulation curves to confirm sampling adequacy for the camera trap dataset (Gotelli and 

205 Colwell, 2011). We also used the camera trap data to estimate how the relative abundance of 

206 domestic animals influenced small carnivore occupancy, which can be defined as the 

207 proportion of the study site that was occupied by the study species (MacKenzie et al., 2017). 

208 This is of interest because domestic animals could outcompete sympatric wild carnivores 

209 (Vanak and Gompper, 2009), reducing their capacity to provide ecosystem services. Due to the 

210 fact that little is known regarding home range and movement rates of South African small 

211 carnivores (Roemer et al., 2009), we considered among-grid cell movement in small carnivore 

212 species a plausible violation of the closure assumption. As such the occupancy parameter (ψ) 

213 should be considered to represent the proportion of area used rather than the proportion of area 

214 occupied (MacKenzie and Bailey, 2004).

215

216 We adopted the hierarchical formulation of the Dorazio/Royle community occupancy model 

217 with data augmentation to estimate species-specific occupancy and site-specific species 

218 richness (Dorazio and Andrew Royle, 2005). In a single-species single-season occupancy 

219 model the probability that site j is occupied by species zj is a Bernoulli random variable 

220 governed by the occupancy probability Ψ. The occupancy probability is modelled on the logit 

221 scale as either a function of site specific covariates or being constant. Analogous to occupancy, 

222 the probability that a species is detected is governed by the detection probability, p, which is 

223 conditioned on the true latent occupancy state, zj.  Survey sites are camera trapped on k 

224 occasions (e.g. days) where the observations, yjk, is a Bernoulli random variable, either pjk = 1 
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225 where zj = 1 or pjk 0 where zj = 0. Detection probability is also modelled on the logit scale, 

226 either constant or as a function of site (e.g. vegetation type) or occasion (e.g. daily temperature) 

227 specific covariates. 

228

229 We fitted community models to the data, as this allowed us to investigate the influence of the 

230 relative abundance of domestic animals on small carnivores at a community level (MacKenzie 

231 et al., 2017). In the community model formulation the single-species single-season model is 

232 further extended where the latent and model parameters are indexed by species, i. This 

233 formulation results in a number of linked species-specific models because it is assumed that 

234 these species-specific parameters come from a common underlying distribution (governed by 

235 the hyperparameters, which in our study is the small carnivore community). To estimate the 

236 number species at each sampling site (including ones never detected) we augmented the data 

237 with all-zero observations for the hypothetical species (Dorazio and Andrew Royle, 2005). We 

238 hypothesized that in our study area a potential 23 small carnivore species could occur (IUCN, 

239 2016), and we therefore augmented the observed data with 14 species. 

240

241 We expected occupancy and diversity of small carnivores to be affected by various 

242 anthropogenic and environmental variables. To investigate these variables we developed an a 

243 priori model based on biological hypotheses on how small carnivore occupancy could be 

244 influenced by these variables. We hypothesized that small carnivore occupancy will be affected 

245 by the presence of domestic cat, dogs, livestock, humans and land use. Both domestic cats and 

246 dogs can either directly (through predation) or indirectly (through competitive exclusion) 

247 impact small carnivores (Brook et al., 2012; Dickman, 1996). Similarly, humans can directly 

248 kill small carnivores (Berger, 2006; Ćirović et al., 2016), and livestock can trample burrows of 

249 small carnivores and reduce vegetation cover (Blaum et al., 2007a; Blaum et al., 2007b). We 

250 used variance inflation factor (Zuur et al., 2009) to identify and remove highly correlated 

251 variables to reduce multicollinearity. Using all the covariates we sequentially dropped the 

252 variable with highest VIF (however, we selected the variable with the least biological effect 

253 among variables with high VIF first), and recalculated the VIF until the VIF of each factor was 
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254 below five (Zuur et al., 2009). Using this approach we dropped percentage crops, settlement 

255 and grazing as these variables were highly correlated and had high VIF factors. Both human 

256 RAI and dog RAI were correlated and we thus dropped human RAI since we hypothesised that 

257 domestic dogs can have higher sustained impact on small carnivores (e.g. since dogs can roam 

258 over the landscape independent of humans). 

259

260 We thus retained only domestic cat RAI, domestic dog RAI, and livestock RAI as explanatory 

261 occupancy covariates, and we modelled occupancy probability as having species-specific 

262 random intercepts with these three site covariates. We assumed that occupancy patterns were 

263 similar across villages, even though they were not sampled at the same time. For detection 

264 probability we only modelled the effect of survey date (Julian day) on detection, again as 

265 species-specific random intercept (Dorazio and Andrew Royle, 2005). We collapsed the 10-12 

266 day survey into 5 sampling occasions to increase detection probabilities (Ramesh et al., 2012), 

267 and each camera trap was regarded as independent.

268

269 We used a Bayesian framework (Plummer, 2003) to implement the community model. Full 

270 details can be found in Appendix S3, while the full model specification can be found in 

271 Appendix S4. Results are reported in mean, standard deviation and 95% Bayesian confidence 

272 intervals (95 BCI taken from the 2.5% and 97.5% percentiles of the posterior mean). We 

273 regarded coefficients as having strong inference value if its 95 BCI values did not include 0. 

274 We further estimated the number of small carnivore species per land use by summing the 

275 estimated species richness at each survey site, in each land use. Finally we used the estimated 

276 species richness at each camera trap location to create spatially explicit species richness maps 

277 using inverse distance weighted interpolation (Sarmento et al., 2010). We used R v3.4.1 (R 

278 Development Core Team, 2017) for all modelling, with the following R packages; raster for 

279 IWD (Hijmans, 2015), jagsUI (Kellner, 2016). 

280
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281 2.5.2. Questionnaires

282 The questionnaire data allowed us to investigate stakeholder perceptions of small carnivores in 

283 agro-ecosystems. We explored the questionnaire data by calculating the frequency with which 

284 respondents reported that 1) they had seen small carnivores; 2) small carnivores had either 

285 positive or negative impacts on people; 3) small carnivores kill rodents; and 4) people kill small 

286 carnivores. Some frequencies were represented graphically using bar plots created using the R 

287 package ggplot2 (Wickham, 2016). All data analysed in this study are publically available in 

288 Williams et al. (2017). 

289

290 3. Results

291 3.1. Small and medium carnivore diversity and occupancy (probability of use) 

292 Species accumulation curves plateaued at approximately 1,368 camera trapping days (8 survey 

293 days), which suggested adequate sampling (Appendix S5). Of 23 small and medium carnivore 

294 species potentially occurring at the study sites (IUCN, 2016), we detected 9 (8 at Ka-Ndengeza 

295 and 8 at Vyeboom) small carnivores representing 5 different families (Table 1). The mean 

296 metacommunity richness was estimated at 14.48 (95 BCI 9-22 species). However the mean 

297 metacommunity richness had a skewed posterior distribution and a wide credible interval. We 

298 therefore used the mode to estimate total metacommunity richness, which was estimated at 

299 10.98 species.  

300

301 The strength of associations with occupancy covariates varied between species (Fig. 1). The 

302 presence of cats did not have a strong association with any of the small and medium carnivore 

303 species, nor to the metacommunity as a whole (Fig. 1). In contrast, dogs had a strong negative 

304 association with occupancy probability (probability of use) for all species and the 

305 metacommunity (Fig. 1). For livestock only four species (white tailed mongoose, slender 

306 mongoose, Selous’ mongoose, and large spotted genet) showed strong positive associations 

307 with livestock presence, while the other five species had no association. Interestingly, the 
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308 metacommunity also had a strong positive association with livestock presence (Fig. 1).
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311 Fig. 1. Interpolated heat maps based on relative abundance index (scaled between 0 and 1) for 

312 a) domestic cat, c) domestic dog, and e) livestock across the settlement, crop, and grazing areas 

313 in Ka-Ndengeza and Vyeboom. Caterpillar plots show the strength of associations between the 

314 RAI of b) domestic cat, d) domestic dog, and f) livestock with occupancy (probability of use) 

315 of the nine carnivore species detected. Confidence intervals highlighted in blue do not overlap 

316 0. The broken lines indicate the 95 BCI for the mean community response to each variable. 

317

318 Cropping areas consistently showed higher species richness than grazing and settlement areas 

319 (Fig. 2). Spatially, species richness density surfaces clearly adhered to cropping areas and 

320 highest species richness per 900 m2 grid cell were consistently observed in the cropping areas 

321 (Fig. 2). A survey of the literature showed that 65% of these species (15/23) are reported to 
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322 have at least 20% of rodents in their diet (Table 1). Combined with species richness maps this 

323 suggests that the small and carnivore community not only occur most often in cropping areas, 

324 but also probably incorporate a large proportion of rodents in their diet. Using the mode small 

325 carnivore richness (10.98) as a reliable estimate of species richness we suggest that the study 

326 area realised around 47% of the potential small carnivore diversity. 

327
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328 Fig. 2. Maps and boxplots showing how the species richness (scaled between 0 and 1) of small 

329 carnivores varies with land use at Ka-Ndengeza (a, b) and Vyeboom (c, d). Boxplots show 

330 mean number (posterior mean) of species estimated at each camera trap, summarized per land 

331 use. 
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333 Table 1. List of carnivore species detected during the camera trap study. The table is ordered according to family level (all capitals). 

  
 Number of independent detections per 1,000 camera trap days

Ka-Ndengeza Vyeboom
Common name Scientific name Home 

range 
size 

(km²)

Consumes 
carrion

% of scats or 
stomachs 

that contain 
rodent 

remains

Settlement Crops Grazing Settlement Crops Grazing IUCN Red List⁵

CANIDAE     
Domestic dog

Canis lupus familiaris
 9324.1 1269.8 308.1 5160 201.7 37.04

MUSTELIDAE
 

   

Striped polecat 
Ictonyx striatus

- No 20-30¹ 0 0 5.1 0 8.23 0 Least concern

Honey badger
Mellivora capensis

10 - 30 Yes 30¹, 57² 0 0 0 0 0 6.17 Least concern

FELIDAE
 

   

Domestic cat
Felis catus

 324.07 0 10.1 720 0 6.14

VIVERRIDAE
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771
772
773
774
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776
777
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Large-spotted genet
Genetta maculata

0.5 - 1 No 47³, 68⁴ 0 642.86 217.17 22.22 172.8 228.4 Least concern

African civet
Civettictis civetta

5 - 11.1 Yes 41⁴ 0 0 0 0 8.23 0 Least concern

HERPESTIDAE
 

   

Slender mongoose 
Galerella sanguinea

0.5 - 1 Yes 25³ 0 253.97 25.25 0 148.15 86.42 Least concern

Meller's mongoose
Rhynchogale melleri

- No Not available 0 47.62 0 0 0 0 Least concern

Selous' mongoose
Paracynictis selousi

- No Not available 0 71.43 0 0 32.92 0 Least concern

White tailed mongoose
Ichneumia albicauda

4 - 8 Yes 18³ 0 150.79 0 26.67 8.23 18.52 Least concern

Dwarf mongoose
Helogale parvula

1 - 3 No 4 0 31.75 0 4.44 4.12 30.86 Least concern

Species richness 11 2 7 5 5 8 7
% of potential maximum species richness (23)   9 30 22 22 35 30  
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335

336 1Apps (2012)

337 2Skinner and Chimimba (2005)

338 ³Smithers (1971)

339 4Smithers and Wilson (1979)

340 5IUCN (2016)

341

342 3.2. Questionnaires 

343 Eleven species of non-domesticated small carnivore species were reported to be seen by the 

344 respondents (Appendix S6). All mongoose species (with the exception of water mongoose), 

345 African wildcat, small spotted genet, black backed jackal, and striped polecat were reported 

346 most frequently. African civet and honey badger were seen by few respondents, while caracal, 

347 serval, and water mongoose had not been seen. Domestic cats and domestic dogs had been seen 

348 by all interviewees. The only species perceived to benefit the community were domestic cats 

349 and domestic dogs (Table 2). 
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350 Table 2. Percentage of respondents (n = 58 in Ka-Ndengeza and n = 69 in Vyeboom) with positive responses to questions on interactions between 

351 carnivores and humans. 

 Are they good for the community? Do they kill rodents? Do they impact you negatively? Do people kill them?
Species Ka-Ndengeza Vyeboom Ka-Ndengeza Vyeboom Ka-Ndengeza Vyeboom Ka-Ndengeza Vyeboom
Banded mongoose 0 0 0 15.9 20.7 43.5 0 0
Dwarf mongoose 0 0 5.2 15.9 32.8 95.7 1.7 1.4
Slender mongoose 0 0 25.9 15.9 89.7 79.7 8.6 0
Yellow mongoose 0 0 1.7 11.6 0 0 1.7 0
White tailed mongoose 0 0 3.4 15.9 22.4 72.5 0 0
Water mongoose 0 0 0 0 0 0 0 0
Black backed jackal 0 0 0 0 0 5.8 0 0
African civet 0 0 0 0 0 0 0 0
Small spotted genet 0 0 13.8 0 1.7 0 0 0
Striped polecat 0 0 27.6 0 0 0 0 0
Caracal 0 0 0 0 0 0 0 0
African wild cat 0 0 44.8 62.3 6.9 43.5 1.7 0
Honey badger 0 0 0 0 0 0 0 0
Domestic cat 51.7 98.6 100 100 6.9 1.4 0 0
Domestic dog 58.6 98.6 3.4 0 8.6 1.4 0 0

352
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353 A total of eight species of non-domesticated carnivores were believed by some people to kill 

354 rodents (Ka-Ndengeza: seven species were thought to kill rodents by a mean of 17.5% of 

355 respondents; Vyeboom: six species were thought to kill rodents by a mean of 23.0% of 

356 respondents). The species most commonly thought to predate on rodents were African wildcat, 

357 striped polecat, and slender mongoose (Table 2). 

358

359 Negative impacts of carnivores on people were reported for most mongoose species, black 

360 backed jackal, small spotted genet, and African wild cat (Table 2). Most negative impacts were 

361 perceived to be due to poultry predation, although a small number of respondents cited cultural 

362 reasons, such as involvement in witchcraft or other superstitions, for negative impacts 

363 (Appendix S7). 

364

365 Slender mongoose, dwarf mongoose, yellow mongoose, and African wildcat were said to be 

366 killed by people (Table 2). The only reason provided for people killing carnivores was poultry 

367 predation. Poultry was considered to be an important source of protein by 98.3% of respondents 

368 in Ka-Ndengeza and 100.0% of respondents in Vyeboom. The median number of chickens 

369 owned was 10 (interquartile range = 13, n = 21) in Ka-Ndengeza, and 4 (interquartile range = 

370 6, n = 24) in Vyeboom. Poultry were almost always free-ranging (in 96.6% and 100% of 

371 households surveyed in Ka-Ndengeza and Vyeboom respectively). 

372

373 4. Discussion

374 Our camera trapping results indicated that cropping areas consistently supported the greatest 

375 diversity of small carnivores. Furthermore, the literature review showed that the small 

376 carnivore assemblages present typically incorporate a large percentage of rodents and carrion 

377 in their diets. Collectively these results highlight the potential for pest control and carrion 

378 removal by small carnivores as important ecosystem services. Our results concur with other 

379 studies that highlight the unrealised potential of small carnivore predation and scavenging as 

380 ecosystem services (Ćirović et al., 2016; Mateo-Tomás et al., 2015). Rodent pests, for example, 
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381 account for approximately 15% of the damage caused to rural farming crops in Africa 

382 (Swanepoel et al., 2017), and such damage is dependent on the density of rodents (Brown et 

383 al., 2007). Since small carnivore diets include a large proportion of rodents, it is likely that 

384 small carnivore predation could be a key factor affecting rodent abundance, and therefore 

385 reduce crop damage (Ćirović et al., 2016). Further support comes from meta-analysis studies, 

386 that show that reduced predation increases population growth for cyclic prey (Salo et al., 2010) 

387 and provisioned populations of small mammals such as rodents feeding on grain (Prevedello 

388 et al., 2013; Salo et al., 2010). There therefore appears to be strong support, both from our 

389 findings and from the literature, that predation of rodents by small carnivores could be an 

390 important ecosystem service to rural communities through EBRM.  

391

392 Our results showed that abundance of domestic dogs (and feral dogs) and livestock are 

393 important determinants of small carnivore diversity and habitat use, while cats seemed to have 

394 little effect. Several studies have highlighted the negative impact of dogs (domestic and feral) 

395 on native mammalian communities (Hughes and Macdonald, 2013; Reed and Merenlender, 

396 2011). For example, dogs can act as intraguild competitors where they can outcompete 

397 carnivores, especially under conditions of low prey biomass (Vanak and Gompper, 2009). We 

398 suggest that such a scenario is most likely prevalent in rural African landscapes were local 

399 fauna often form part of the diet of people in rural areas (Holmern et al., 2006). Furthermore 

400 dogs, especially when roaming freely (a scenario common in African rural landscapes 

401 (Czupryna et al., 2016)), can kill small carnivores (Ralls and White, 1995). Finally, dogs are 

402 often used during hunting activities where they can kill non-target species such as small 

403 carnivores (Holmern et al., 2006). 

404

405 The lack of effect of cats on small carnivore occupancy is surprising, given the large impact 

406 cats have on mammalian communities (Loss et al., 2013). We provide two possible reasons for 

407 this lack of effect; first cats most often include small mammals in their diet (Loss et al., 2013), 

408 and as such might impact small carnivores through competitive exclusion (Brook et al., 2012). 

409 However, densities of cats in our study might not be high enough to achieve such an effect. 
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410 Secondly, dog hunting often occurs at night (Holmern et al., 2006), which might restrict cats 

411 (and hence their impact on small carnivores) to the settlement areas. The positive effect of 

412 livestock contrasts with other studies that highlight the negative impact of livestock on small 

413 carnivores (Blaum et al., 2007a; Blaum et al., 2007b). We hypothesised that this effect is 

414 probably mediated through invertebrate food sources for small carnivores. For example the 

415 four small carnivore species exhibiting a positive occupancy effect due to livestock (large 

416 spotted genet, slender mongoose, white tailed mongoose and Selous’ mongoose) all 

417 incorporate a large proportion of invertebrates in their diet (Skinner and Chimimba, 2005). 

418 Studies have shown that disturbance-adapted insect populations increase in abundance in 

419 highly impacted areas (e.g. heavy grazed)  (Schowalter, 1985; Seymour and Dean, 1999). 

420 Therefore, the presence of livestock can create local conditions of increased invertebrate 

421 biomass, which could facilitate small carnivore presence. 

422

423 We found that cropping areas had the highest small carnivore richness, which contrasts with 

424 the low biodiversity often observed in intensive agricultural systems (Benton et al., 2003). We 

425 provide several hypotheses for this observation, which are not necessarily mutually exclusive. 

426 First, rural agricultural landscapes are often structurally complex and heterogeneous (Donald, 

427 2004) which seems to support higher animal diversity (Norris, 2008). Secondly, rural 

428 agricultural systems support a diverse and high rodent abundance, especially in our study areas 

429 (Belmain, 2006), which can support small carnivores (Blaum et al., 2007b). While dogs had a 

430 large effect on small carnivores, the highest dog and cat activities were observed in the 

431 settlement areas, and to a lesser extent in the cropping areas, which suggests that competitive 

432 exclusion and competition with small carnivores (Glen and Dickman, 2005; Vanak and 

433 Gompper, 2010) is limited in agricultural areas. Finally livestock abundance was higher in 

434 cropping areas compared to grazing areas, which could have created favourable conditions for 

435 high biomass of disturbance-adapted insect populations that can act food resource for small 

436 carnivores (Seymour and Dean, 1999).

437

438 While our results support the hypothesis that small carnivores could provide ecosystem 
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439 services, we highlight that such a service would not depend solely on diversity, but also 

440 abundance of small carnivores. Our results show that the majority of small carnivores had low 

441 relative abundance indices, which were likely to be below ecologically effective densities 

442 (Soulé et al., 2005). Nonetheless, the small carnivore  assemblage present in these rural agro-

443 ecosystems can still fulfil basic ecological functionality of predation (Roemer et al., 2009). 

444 Such functionality will be largely dependent on whether the small carnivore assemblages 

445 retained inherent functional redundancy (Roemer et al., 2009; Suraci et al., 2017). This is 

446 important since the ecosystem service provision can be greater if expressed through collective 

447 effects, where the sum effect of predation (from different carnivores) might exceed that of a 

448 single small carnivore (Suraci et al., 2017). Our study shows that the system retained some 

449 functional redundancy, however a large number of rodent specialists (e.g. striped polecat) were 

450 not detected or occurred at low relative abundances. Their absence probably reflects the small 

451 carnivore assemblage responding to pressures and changes as a result of human modification 

452 to the landscape that exist around rural agro-ecosystems. These responses will inadvertently 

453 bring shifts and changes in ecosystem service delivery and provision, which, if not checked 

454 can ultimately only exist as simple linear food chain communities (Roemer et al., 2009). 

455 Therefore facilitating or at least maintaining small carnivore functional redundancy should be 

456 a key conservation management action in rural African landscapes if ecosystem services are to 

457 be maintained. Changes in rural landscapes are dynamic, which could potentially allow for 

458 various species of small carnivores to persist in them (Melo et al., 2013). However, to what 

459 extent these changes retain or enhance functional redundancy remains to be explored. 

460

461 Encouragingly, community members were able to identify 11 native small carnivore species 

462 that should occur in their areas, although we recorded fewer species using camera traps (nine 

463 wild species, domestic cats and domestic dogs). Although respondents were aware of the 

464 presence of the study species in their villages, and many respondents acknowledged the 

465 presence of rodents in the diet of some wild small carnivore species, they lacked any 

466 appreciation of the ecosystem services that they could provide. Reports of negative impacts of 

467 small carnivores were commonplace, almost exclusively due to perceived poultry predation. In 

468 both villages keeping of poultry was very common, and almost all respondents asserted that 
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469 poultry was an important source of protein in their diet. The threat of poultry predation was 

470 said to be the main motivation for small carnivores being killed by community members. 

471

472 The mechanism by which some small carnivores were thought to predate on poultry was 

473 unconventional and unsubstantiated. Many community members believed that carnivores 

474 would intentionally trap the beaks of chickens in their anus, before breaking their necks. 

475 Although some species of small carnivores such as the African civet, small spotted genet, and 

476 large spotted genet have been known to predate on poultry (Kingdon and Hoffman, 2012), and 

477 in some cases levels of poultry predation by small carnivores can be high (Holmern and 

478 Røskaft, 2014), such perceptions illustrate that the perceived threats of predation may not 

479 always have a strong grounding in reality. Nevertheless, it appears that overcoming perceptions 

480 of poultry predation will be the key challenge in promoting the role of small carnivores as 

481 providers of ecosystem services. Our results could help to demonstrate to community members 

482 that wild small carnivores are more likely benefit them by controlling pests and removing 

483 carcasses than predate on their poultry. We note that the wording of the questionnaires 

484 (Holmern and Røskaft, 2014) could be improved upon to reduce bias. As an example, we 

485 suggest that in future studies asking respondents to rate their benefit of a carnivore species on 

486 a Likert scale would be less biased than asking if a species is good for the community (Morgan-

487 Brown et al., 2010). 

488

489 Although our findings indicate that small carnivores could provide ecosystem services through 

490 pest control and waste removal in rural agro-ecosystems, we suggest that further research may 

491 help to characterise the impacts of small carnivores on the density and diversity of rodents in 

492 agricultural fields, the amount of crop damage caused by rodents, and the amount of carrion 

493 removed. The socio-economic implications on the livelihoods of people adopting these 

494 strategies would also be worthy of further study.

495

496 5. Conclusions
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497 Our findings suggest that agricultural areas could be important refuges for small carnivores 

498 within modified landscapes, and these species are likely to be providing important ecosystem 

499 services in rural agro-ecosystems. We found that agricultural areas supported the the greatest 

500 diversity of small carnivores. Livestock was linked to higher levels of occupancy (probability 

501 of use) of small carnivores, while the opposite trend was observed for domestic dogs, and 

502 domestic cats had no influence on carnivore occupancy. The small carnivore species present 

503 are reported in the literature to dedicate a considerable proportion of their diets to rodents, and 

504 consume carrion. Although community members could identify many small carnivore species, 

505 they appeared to be unaware of the ecosystem services that the small carnivores are likely to 

506 provide through EBRM and carcass removal. The perceived threat of poultry predation 

507 emerged as a key challenge in promoting the role of small carnivores as providers of ecosystem 

508 services. 

509

510 6. Appendices

511 Appendix S1. Study area figure

512 Appendix S2. Interview schedule. 

513 Appendix S3. Model description and parameter estimates of the community occupancy model 

514 applied to small carnivore camera trapping data from a rural matrix.

515 Appendix S4. Community model JAGS code used in the analysis.

516 Appendix S5. Species accumulation curves to show sampling adequacy.

517 Appendix S6. Percentage of respondents in Ka-Ndengeza and Vyeboom that reported seeing 

518 species of small carnivores. 

519 Appendix S7. Reasons provided why carnivores have impacted respondents negatively for Ka-

520 Ndengeza and Vyeboom. 
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Table 1. List of carnivore species detected during the camera trap study. The table is ordered according to family level (all capitals). 
 Number of independent detections per 1,000 camera trap days

  Ka-Ndengeza Vyeboom

Common name Scientific name

Home 
range 
size 

(km²)
Consume
s carrion

% of scats or 
stomachs 

that contain 
rodent 

remains
Settlemen

t Crops
Grazin

g
Settlemen

t Crops
Grazin

g IUCN Red List⁵
CANIDAE     

Domestic dog Canis lupus familiaris  9324.1
1269.

8 308.1 5160 201.7 37.04
MUSTELIDAE     
Striped polecat Ictonyx striatus - No 20-30¹ 0 0 5.1 0 8.23 0 Least concern
Honey badger Mellivora capensis 10 - 30 Yes 30¹, 57² 0 0 0 0 0 6.17 Least concern

FELIDAE     
Domestic cat Felis catus  324.07 0 10.1 720 0 6.14

VIVERRIDAE     

Large-spotted genet Genetta maculata 0.5 - 1 No 47³, 68⁴ 0
642.8

6 217.17 22.22 172.8 228.4 Least concern
African civet Civettictis civetta 5 - 11.1 Yes 41⁴ 0 0 0 0 8.23 0 Least concern

HERPESTIDAE     

Slender mongoose Galerella sanguinea 0.5 - 1 Yes 25³ 0
253.9

7 25.25 0
148.1

5 86.42 Least concern

Meller's mongoose Rhynchogale melleri - No
Not 

available 0 47.62 0 0 0 0 Least concern

Selous' mongoose Paracynictis selousi - No
Not 

available 0 71.43 0 0 32.92 0 Least concern

White tailed mongoose Ichneumia albicauda 4 - 8 Yes 18³ 0
150.7

9 0 26.67 8.23 18.52 Least concern
Dwarf mongoose Helogale parvula 1 - 3 No 4 0 31.75 0 4.44 4.12 30.86 Least concern

Species richness 11 2 7 5 5 8 7
% of potential maximum species richness (23)   9 30 22 22 35 30  

1Apps (2012)



2Skinner and Chimimba (2005)

³Smithers (1971)
4Smithers and Wilson (1979)
5IUCN (2016)



Table 3. Percentage of respondents (n = 58 in Ka-Ndengeza and n = 69 in Vyeboom) with positive responses to questions on interactions between 

carnivores and humans. 

 Are they good for the community? Do they kill rodents? Do they impact you negatively? Do people kill them?
Species Ka-Ndengeza Vyeboom Ka-Ndengeza Vyeboom Ka-Ndengeza Vyeboom Ka-Ndengeza Vyeboom
Banded mongoose 0 0 0 15.9 20.7 43.5 0 0
Dwarf mongoose 0 0 5.2 15.9 32.8 95.7 1.7 1.4
Slender mongoose 0 0 25.9 15.9 89.7 79.7 8.6 0
Yellow mongoose 0 0 1.7 11.6 0 0 1.7 0
White tailed mongoose 0 0 3.4 15.9 22.4 72.5 0 0

Water mongoose 0 0 0 0 0 0 0 0
Black backed jackal 0 0 0 0 0 5.8 0 0
African civet 0 0 0 0 0 0 0 0
Small spotted genet 0 0 13.8 0 1.7 0 0 0
Striped polecat 0 0 27.6 0 0 0 0 0
Caracal 0 0 0 0 0 0 0 0
African wild cat 0 0 44.8 62.3 6.9 43.5 1.7 0
Honey badger 0 0 0 0 0 0 0 0
Domestic cat 51.7 98.6 100 100 6.9 1.4 0 0
Domestic dog 58.6 98.6 3.4 0 8.6 1.4 0 0



Meso-carnivore questionnaire 

1) Have you seen any of these carnivores/animals?  2) How often?    3) Kill rodents? 

Mongooses 

x  Banded mongoose  Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x  Dwarf mongoose  Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x  Slender mongoose  Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x  Yellow mongoose  Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x  White tailed mongoose  Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x  Water/Marsh mongoose  Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 

Jackal 

x Black backed jackal  Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 

Genets/Civet/polecats 

x African civet   Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x  Small spotted genet  Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x Striped polecat   Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 

Felids/other 

x Caracal    Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x  Serval    Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x African wildcat   Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x Honey badger   Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x House cats   Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x House dogs   Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 

Birds of Prey 
x Eagles    Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x  Falcons    Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 
x Owls    Yes/No/Unsure  Daily/weekly/monthly/>monthly Yes/No/Unsure 

4) Do they impact you negatively?  5) Why?      6) Nr   

Mongooses 

x Banded mongoose Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr……………………… 
x Dwarf mongoose Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr……………………...  
x Slender mongoose Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr……………………... 
x Yellow mongoose Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr……………………...  
x White tailed mongoose Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr……………………... 
x Water/Marsh mongoose Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr……………………… 

 Jackal 

x Black backed jackal Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 

Genets/Civet/polecats 

x African civet  Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x Small spotted genet Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x Striped polecat  Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 

Felids/other 

x Caracal   Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x Serval   Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x African wildcat  Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x Honey badger  Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x House cats  Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x House dogs  Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 

Birds of Prey 
x Eagle   Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x Falcon   Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x Owls   Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 



7) Are any carnivores killed?  8) Why?       9) Nr   

Mongooses 

x Banded mongoose Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr……………………… 
x Dwarf mongoose Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr……………………...  
x Slender mongoose Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr……………………... 
x Yellow mongoose Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr……………………...  
x White tailed mongoose Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr……………………... 
x Water/Marsh mongoose Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr……………………… 

 Jackal 

x Black backed jackal Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 

Genets/Civet/polecats 

x African civet  Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x Small spotted genet Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x Striped polecat  Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 

Felids/other 

x Caracal   Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x Serval   Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x African wildcat  Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x Honey badger  Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x House cats  Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x House dogs  Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 

Birds of Prey 
x Eagle   Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x Falcon   Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 
x Owls   Yes/No/Unsure Kill poultry / Kill pets / Ethnic; religious ………………………… Nr………………………. 

9) Are any of the carnivores good for community? 10) Why?     

Mongooses 

x Banded mongoose Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x Dwarf mongoose Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x Slender mongoose Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x Yellow mongoose Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x White tailed mongoose Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x Water/Marsh mongoose Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 

 Jackal 

x Black backed jackal Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 

Genets/Civet/polecats 

x African civet  Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x Small spotted genet Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x Striped polecat  Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 

 Felids/other 

x Caracal   Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x Serval   Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x African wildcat  Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x Honey badger  Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x House cats  Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x House dogs  Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 

Birds of prey 

x Eagles   Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x Falcons   Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 
x Owls   Yes/No/Unsure  Kill rodents / Kill snakes / Ethnic; religious ………………… 



 

11) Do you own:     12) How many?    13) Do you feed them? 

x Cat Yes/No/Communally owned Male:………………. Female:………………………..  Yes/No       Daily/Weekly/> 
x Dog Yes/No/Communally owned Male:………………. Female:………………………..  Yes/No      Daily/Weekly/> 

13) You don’t have a rodent problem because you have cats?  Yes/No/UN 

14) Does cats bring stuff to house? Yes/No  15) What? Birds / Reptiles / Rodents / Other …………………………………………………… 

16) Do you own livestock?  17) Do you own poultry?   18) Are poultry free ranging? 

x Cattle Nr…………….   Chickens Nr………………..  Yes 
x Pigs Nr……………….   Geese Nr……………………..  No 
x Sheep/goats…………   Other Nr…………………….  Where do they sleep……………………………………. 

19) Are poultry and important protein source?  Yes/No 



Williams et al. Predation by small mammalian carnivores in rural agro-ecosystems: An 

undervalued ecosystem service? 

 

Appendix S3. Data summary and formal model description for the multispecies occupancy 

model applied to small carnivore data obtained from camera traps in a rural agricultural 

matrix, Vhembe District, South Africa. 

 

Camera trapping was done in two villages, Vyeboom and Ka-Ndengeza, in the Vhembe 

District of South Africa. Villages were close to one another and we analyzed data as a single 

dataset. We used a Dorazio/Royle (DC) community occupancy model with data augmentation 

(DA) (Dorazio and Royle 2005) to analyse camera trapping data obtained from sampling the 

two villages, were we detected 9 small carnivore species and augmented the data with 13 

potential species occurring in area (Table 1; Main Text).   We specifically aimed to spatially 

estimate small carnivore species richness over the different land uses in order to investigate to 

potential ecosystem services that can be derived from small carnivore predation on pests. We 

followed a species specific parameterisation with random effects on detection and occupancy 

(e.g. species specific relationships with covariates).   

The community occupancy model was parameterized as follows:  

𝑤𝑘~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(Ω) # Superpopulation process 

𝑧𝑖𝑘|𝑤𝑘~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑤𝑘𝜓𝑘) # State process (occurance) 

𝑦𝑖𝑗𝑘|𝑧𝑖𝑘~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖𝑘𝑝𝑖𝑗𝑘) # Observation process (detection) 

 # models of species heterogeneity (Eq. S1) 𝑙𝑜𝑔𝑖𝑡(𝜓𝑖𝑘) = 𝑙𝑝𝑠𝑖𝑘 + 𝛽1𝑘Cat𝑖 + 𝛽2𝑘Dog𝑖 +

𝛽3𝑘𝐿𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑖  

# (𝐸𝑞. 𝑆2) 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑘) = 𝑙𝑝𝑘 + 𝛽. 𝑑𝑙𝑝𝑘 ∗ 𝐷𝑎𝑡𝑒𝑖𝑗 

with 



𝑙𝑝𝑠𝑖𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑙𝑠𝑝𝑖 , 𝜎𝑙𝑠𝑝𝑖
2 ) 

𝛽1𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝑢𝛽1, 𝜎𝛽1
2 ) 

𝛽2𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛽2 , 𝜎𝛽2
2 ) 

𝛽3𝑖 ~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛽3, 𝜎𝛽3
2 ) 

𝑙𝑝𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇
𝑙𝑝

, 𝜎𝑙𝑝
2 ) 

𝛽. 𝑑1𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛽.𝑑, 𝜎𝛽.𝑑
2 ) 

In this model parameterization we augmented the observed species with species never 

detected (but that we hypothesised could occur in the study area), which is represented by a 

Bernoulli random variable (w), which indicates that the species is part of the metacommunity 

studied (e.g. data augmentation variable; (Kéry and Royle 2015)). zik represents the true 

occupancy state where 0 indicates not occupied and 1 occupied for a species k at site i; ψik 

represents the occupancy probability (between 0 and 1) for each species k; lpsik is the logit-

linear predictor intercept of occupancy probability, which is indexed by species (k). β1 is the 

coefficient for the Relative abundance of cats (expressed as number of pictures/1000 camera 

trapping days), β2 the coefficient for relative abundance of dogs and β3 coefficient for 

relative abundance of livestock. Species specific intercepts and coefficients comes from 

Normal distributions with mean (𝜇𝑙𝑝𝑠𝑖),  and variance (𝜎𝑙𝑝𝑠𝑖
2 ) for the community, mean (μβ1-

μβ3) and variance (σ2β1- σ2β3) for coefficients. Similarly, yik are the species detections (1 

being detected and 0 not detected) of k species at i sites; pik is the detection probabilities per 

species,  lpk is the logit-linear predictor intercept of detection probability, which is again 

indexed by species (k). β.d is the effect of Julian survey date on detection probability. The 

species specific detection intercepts were drawn from a Normal distribution with community 

mean (𝜇𝑙𝑝) and variance (𝜎𝑙𝑝
2 ) and for Julian date coefficient mean (μβ.d) and variance 

(σ2β.d).  



 

We used a Bayesian framework to implement the community occupancy model using JAGS 

(Plummer 2003) ported through R (RDevelopmentCoreTeam 2012) using the R package 

‘jagsUI’ version 1.4.4 (Kellner 2015). We ran three parallel Markov chains with 50 000 

iterations, where we disregarded 10 000 as burn-in and thinned the remaining chains by 10. 

We assessed chain convergence first by visually inspecting chains and calculating the 

Gelman-Rubin statistic (Gelman et al. 2014), where values of <1.1 indicated convergence. In 

our analysis all parameters had R values <1.1 which adequate chain mixing and convergence.  

We tested model fit by calculating the Bayesian p-value (Gelman et al. 1996) by comparing 

the observed residuals to residuals simulated under the model. Under perfect model fit we 

would expect the Bayesian p-value to be around 0.5, while values >0.95 indicate lack of fit.  

 

We used the Freeman-Tukey residuals, R, in the calculation of the Bayesian p-value, where 

𝑅(𝐲, 𝛉) = ∑(√𝑦 − √𝐸(𝑦))2. 

In this equation, y represent the binary observations, θ represents all parameters in the 

community occupancy model. E(y) is the expected value of y, which is the product of the 

species, site and the species specific detection and occupancy probabilities.  The residuals are 

then summed over species, sites and occasions (see code for full parameterizing). 

Our model simulations resulted in a Bayesian p-value of 0.61 which indicated a good fit of 

our community occupancy model.  



 

We present model parameter estimates only for the 9 detected species; for the augmented 

species model parameters are equivalent to the hyperparameter estimates. We report on the 

following parameters: (Table S3-1) is the community level parameters, (Table S3-2) species-

specific estimates of the occupancy intercept psi, (Table S3-3) species specific estimates of 

βcat, (Table S3-4) species specific estimates of βdog, (Table S3-5) species specific estimates 

of βlivestock, (Table S3-6) species-specific estimates of the intercept for the logit-linear 

predictor of detection probability, (Table S3-7) and estimates of species-specific effect of 

Julian date on detection (on logit scale).  

 



Table S3-1: Hyperparameter posterior summaries (metacommunity estimates) for a community 

occupancy model fitted to data obtained from camera traps in a rural agricultural matrix, 

Vhembe District, South Africa, during 2014. Mean and SE = posterior mean and standard 

deviation; 2.5%, 50% and 97.5% = respective percentiles of the posterior. 

 

 

 

 

 

 

 

Parameter Mean SD 2.5% 50% 97.5% 

Detection component      

μp -3.020 1.135 -5.738 -2.744 -1.518 

σp 1.513 0.783 0.321 1.423 2.906 

μdate 0.162 0.255 -0.380 0.162 0.673 

σdate 0.354 0.268 0.024 0.0295 1.036 

Occupancy component      

𝜇𝑝𝑠𝑖  -4.247 1.515 -7.587 -4.009 -1.982 

𝜎𝑝𝑠𝑖  2.383 1.025 0.814 2.247 4.586 

𝜇𝛽𝑐𝑎𝑡  -0.218 0.554 -1.726 -0.082 0.485 

𝜇𝛽𝑑𝑜𝑔 -1.898 0.491 -2.882 -1.892 -0.983 

𝜇𝛽𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘  0.913 0.349 0.227 0.920 1.593 

𝜎𝛽𝑐𝑎𝑡 0.648 0.563 0.017 0.488 2.164 

𝜎𝛽𝑑𝑜𝑔 0.385 0.325 0.019 0.305 1.199 

𝜎𝛽𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘  0.351 0.309 0.012 0.272 1.164 



Table S3-2: Posterior summaries of species-specific occupancy intercepts (psi in Eq. 1) for a 

community occupancy model fitted to data obtained from camera traps in a rural agricultural 

matrix, Vhembe District, South Africa, during 2014. Mean and SE = posterior mean and 

standard deviation; 2.5%, 50% and 97.5% = respective percentiles of the posterior. 

Species Mean SE 2.5% 50% 97.5% 

Civettictis civetta -4.353 1.785 -7.656 -5.495 -0.723 

Galerella sanguinea -1.873 0.387 -2.764 -2.086 -1.221 

Genetta maculata -0.959 0.216 -1.396 -1.100 -0.547 

Helogale parvula -3.138 0.703 -4.448 -3.595 -1.637 

Ichneumia albicauda -2.474 0.381 -3.223 -2.728 -1.740 

Ictonyx striatus -3.590 1.532 -6.263 -4.618 -0.265 

Mellivora capensis -4.378 1.767 -7.706 -5.536 -0.696 

Paracynictis selousi -2.630 0.624 -3.848 -3.030 -1.368 

Rhynchogale melleri -4.359 0.804 -6.041 -4.848 -2.881 

 



Table S3-3: Posterior summaries of the coefficient of cat relative abundance (β1 in Eq. 1) for a 

community occupancy model fitted to data obtained from camera traps in a rural agricultural 

matrix, Vhembe District, South Africa, during 2014. Mean and SE = posterior mean and 

standard deviation; 2.5%, 50% and 97.5% = respective percentiles of the posterior. Bold font 

indicates strong effects with 95% Bayesian Credible Interval not overlapping 0. 

Species Mean SE 2.5% 50% 97.5% 

Civettictis civetta -0.304 0.972 -2.927 -0.586 1.013 

Galerella sanguinea -0.653 0.959 -3.210 -1.024 0.373 

Genetta maculata 0.253 0.256 -0.236 0.084 0.766 

Helogale parvula 0.045 0.567 -1.267 -0.211 1.050 

Ichneumia albicauda 0.189 0.340 -0.516 -0.015 0.849 

Ictonyx striatus -0.348 1.002 -3.003 -0.644 0.932 

Mellivora capensis -0.286 0.945 -2.823 -0.571 0.992 

Paracynictis selousi -0.570 1.014 -3.397 -0.902 0.502 

Rhynchogale melleri -0.365 0.933 -2.969 -0.639 0.731 

 

 

 

 

 

 

 

 



 

Table S3-4: Posterior summaries of the coefficient of dog relative abundance (β2 in Eq. 1) for a 

community occupancy model fitted to data obtained from camera traps in a rural agricultural 

matrix, Vhembe District, South Africa, during 2014. Mean and SE = posterior mean and 

standard deviation; 2.5%, 50% and 97.5% = respective percentiles of the posterior. Bold font 

indicates strong effects with 95% Bayesian Credible Interval not overlapping 0. 

Species Mean SE 2.5% 50% 97.5% 

Civettictis civetta -1.941 0.662 -3.354 -2.329 -0.719 

Galerella sanguinea -1.949 0.537 -3.059 -2.292 -0.977 

Genetta maculata -1.975 0.486 -2.956 -2.294 -1.070 

Helogale parvula -1.894 0.599 -3.103 -2.274 -0.774 

Ichneumia albicauda -1.726 0.545 -2.776 -2.084 -0.662 

Ictonyx striatus -1.955 0.667 -3.403 -2.342 -0.751 

Mellivora capensis -1.944 0.678 -3.402 -2.330 -0.739 

Paracynictis selousi -1.849 0.578 -3.004 -2.224 -0.743 

Rhynchogale melleri -1.963 0.645 -3.368 -2.338 -0.791 

 

 

 

 

 

 

 

 

 

 



Table S3-5: Posterior summaries of the coefficient of livestock relative abundance (β3 in Eq. 1) 

for a community occupancy model fitted to data obtained from camera traps in a rural 

agricultural matrix, Vhembe District, South Africa, during 2014. Mean and SE = posterior mean 

and standard deviation; 2.5%, 50% and 97.5% = respective percentiles of the posterior. Bold font 

indicates strong effects with 95% Bayesian Credible Interval not overlapping 0. 

Species Mean SE 2.5% 50% 97.5% 

Civettictis civetta 0.827 0.566 -0.462 0.552 1.831 

Galerella sanguinea 0.932 0.363 0.229 0.693 1.664 

Genetta maculata 0.809 0.340 0.135 0.583 1.465 

Helogale parvula 0.860 0.447 -0.086 0.592 1.706 

Ichneumia albicauda 1.118 0.426 0.369 0.833 2.060 

Ictonyx striatus 0.856 0.528 -0.317 0.581 1.846 

Mellivora capensis 0.821 0.553 -0.425 0.552 1.800 

Paracynictis selousi 1.156 0.503 0.353 0.833 2.371 

Rhynchogale melleri 0.829 0.476 -0.229 0.571 1.678 

 



Table S3-6: Posterior summaries for species-specific intercepts for the logit-linear predictor of 

detection probability, p, (as defined in Eq. 2) for a community occupancy model fitted to data 

obtained from camera traps in a rural agricultural matrix, Vhembe District, South Africa, 

during 2014. Mean and SE = posterior mean and standard deviation; 2.5%, 50% and 97.5% = 

respective percentiles of the posterior 

Species Mean SE 2.5% 50% 97.5% 

Civettictis civetta -3.735 1.661 -7.309 -4.889 -1.293 

Galerella sanguinea -1.688 0.201 -2.091 -1.822 -1.312 

Genetta maculata -1.132 0.112 -1.357 -1.208 -0.917 

Helogale parvula -2.589 0.653 -4.030 -2.994 -1.474 

Ichneumia albicauda -1.956 0.339 -2.663 -2.178 -1.335 

Ictonyx striatus -3.798 1.432 -6.768 -4.804 -1.525 

Mellivora capensis -3.704 1.644 -7.212 -4.834 -1.276 

Paracynictis selousi -2.558 0.562 -3.695 -2.932 -1.498 

Rhynchogale melleri -1.941 0.599 -3.283 -2.292 -0.911 

      

 

 

 

 

 

 

 



Table S3-7: Posterior summaries for species-specific effects of Julian date on detection 

probability on the logit scale (as defined in Eq. A2) for a community occupancy model fitted 

to data obtained from camera traps in a rural agricultural matrix, Vhembe District, South 

Africa, during 2014. Mean and SE = posterior mean and standard deviation; 2.5%, 50% and 

97.5% = respective percentiles of the posterior 

Species Mean SE 2.5% 50% 97.5% 

Civettictis civetta 0.184 0.455 -0.772 -0.038 1.169 

Galerella sanguinea 0.332 0.190 -0.011 0.196 0.714 

Genetta maculata -0.008 0.112 -0.230 -0.084 0.207 

Helogale parvula 0.222 0.356 -0.501 0.020 0.974 

Ichneumia albicauda 0.046 0.353 -0.789 -0.133 0.674 

Ictonyx striatus 0.310 0.468 -0.537 0.045 1.395 

Mellivora capensis 0.127 0.465 -0.925 -0.076 1.032 

Paracynictis selousi 0.214 0.351 -0.546 0.022 0.913 

Rhynchogale melleri 0.078 0.493 -1.089 -0.124 1.015 
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Williams et al. Predation by small mammalian carnivores in rural agro-ecosystems: An 

undervalued ecosystem service? 

Appendix S4. Jags code for the multispecies occupancy model applied to small carnivore data 

obtained from camera traps in a rural agricultural matrix, Vhembe District, South Africa. 

 

model { 

       

      # Priors 

      omega ~ dunif(0,1) 

      # Prior for species spesific effects on occupancy and detection 

      for(k in 1:(M)){ 

      lpsi[k] ~ dnorm(mu.lpsi, tau.lpsi)    # Hyperparams describe community 

      betalpsi1 [k] ~ dnorm(mu.betalpsi1, tau.betalpsi1) # cat 

      betalpsi2 [k] ~ dnorm(mu.betalpsi2, tau.betalpsi2) # dog 

      betalpsi3 [k] ~ dnorm(mu.betalpsi3, tau.betalpsi3) # livestock 

       

      lp[k] ~ dnorm(mu.lp, tau.lp) 

      betalp1 [k] ~ dnorm(mu.betalp1, tau.betalp1) #only for date as detection covariate 

      } 

       

      # Hyperpriors 

      # For the model of occupancy 

      mu.lpsi ~ dnorm(0,0.01) 

      tau.lpsi <- pow(sd.lpsi, -2) 

      sd.lpsi ~ dunif(0,5) 

       

      mu.betalpsi1 ~ dnorm(0, 0.01) 

      tau.betalpsi1 <- pow(sd.betalpsi1, -2) 

      sd.betalpsi1 ~ dunif(0,3) 

       



      mu.betalpsi2 ~ dnorm(0, 0.01) 

      tau.betalpsi2 <- pow(sd.betalpsi2, -2) 

      sd.betalpsi2 ~ dunif(0,3) 

       

      mu.betalpsi3 ~ dnorm(0, 0.01) 

      tau.betalpsi3 <- pow(sd.betalpsi3, -2) 

      sd.betalpsi3 ~ dunif(0,3) 

       

      # for the model of detection 

      mu.lp ~ dnorm(0,0.01) 

      tau.lp <- pow(sd.lp, -2) 

      sd.lp ~ dunif(0,3) 

       

      mu.betalp1 ~ dnorm(0,0.01) 

      tau.betalp1 <- pow(sd.betalp1, -2) 

      sd.betalp1 ~ dunif(0,3) 

       

      # Superpopulation process: Ntotal species sampled out of M available 

      for(k in 1:(M)){ 

      w[k] ~ dbern(omega) 

      } 

       

      # Likelihood 

      # Ecological model for true occurrence (process model), occupancy 

      for (k in 1:M){ 

      for (i in 1:nsite) { 

      logit(psi[i,k]) <- lpsi[k] + betalpsi1[k] * cat[i] + betalpsi2[k] * dog[i] + betalpsi3[k] * livestock [i] 

      mu.psi[i,k] <- w[k] * psi[i,k] 

      z[i,k] ~ dbern(mu.psi[i,k]) 

      } 

      } 



       

      # Observation model for replicated detection/nondetection observations 

      for(k in 1:(M)){ 

      for (i in 1:nsite){ 

      for(j in 1:nrep){ 

      logit(p[i,j,k]) <- lp[k] + betalp1[k] * date[i,j] 

      p.eff[i,j,k] <- z[i,k] * p[i,j,k] 

      Y[i,j,k] ~ dbern(p.eff[i,j,k]) 

      ### generate new data from model under consideration 

      new.y[i,j,k] ~ dbern(p.eff[i,j,k]) 

       

      ### calculate Freeman-Tukey residuals for real and new data 

      res[i,j,k] <- (Y[i,j,k] - sqrt(p.eff[i,j,k]))^2 

      new.res[i,j,k] <- (new.y[i,j,k] - sqrt(p.eff[i,j,k]))^2 

      } 

      ###sum residuals over occasions 

      R1[i,k] <- sum(res[i, ,k]) 

      new.R1[i,k] <- sum(new.res[i, , k]) 

      } 

      ###sum residuals over sites 

      R2[k] <- sum(R1[, k]) 

      new.R2[k] <- sum(new.R1[, k]) 

      } 

       

      ###sum residuals over (observed) species (all species were observed) 

      R3 <- sum(R2[]) 

      new.R3 <- sum(new.R2[]) 

       

      # Derived quantities 

      for(k in 1:(M)){ 

      occ.fs[k] <- sum(z[,k])             # Number of occupied sites among the 171 



      } 

      for (i in 1:nsite) { 

      Nsite[i] <- sum(z[i,])              # Number of occurring species at each camera site 

      } 

      n0 <- sum(w[(nspec+1):(nspec+nz)])  # Number of unseen species 

      Ntotal <- sum(w[])                  # Total community size 

       

      } 








