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Abstract  

The stable production of high quality fry in marine aquaculture is still hampered by 

unpredictable mortality caused by infectious diseases during larval rearing. 

Consequently, the development of new biocontrol agents is crucial for a viable 

aquaculture industry. The bacterial energy storage compound poly-β-hydroxybutyrate 

(PHB) has been shown to exhibit beneficial properties on aquatic organisms such as 

enhanced survival, growth, disease resistance and a controlling effect on the 

gastrointestinal microbiota. However, the effect of PHB on the developing immune 

system of fish larvae has so far not been investigated. In the present study, the effect 

of feeding PHB-enriched Artemia nauplii on survival, growth and immune response in 

European sea bass (Dicentrarchus labrax) post-larvae was examined. Amorphous PHB 

was administered to 28 days old sea bass larvae over a period of 10 days. The survival 

and growth performance were monitored and the expression of 29 genes involved in 

immunity, growth, metabolism and stress-response was measured. While the 

expression of the insulin-like growth factor 1 (igf1), an indicator of relative growth, was 

upregulated in response to feeding PHB, the larval survival and growth performance 

remained unaffected. After 10 days of PHB treatment, the expression of the 

antimicrobial peptides dicentracin (dic) and hepcidin (hep) as well as mhc class IIa and 

mhc class IIb was elevated in the PHB fed larvae. This indicates that PHB is capable of 

stimulating the immune system of fish early life stages, which may be the cause of the 

increased resistance to diseases and robustness observed in previous studies.  
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 Introduction  

The intensive production of marine fish larvae constitutes a major bottleneck in 

aquaculture, due to high and unpredictable mortality, mainly caused by the outbreak 

of infectious diseases (Vadstein et al. 2012). Especially the early life stages are highly 

susceptible towards pathogens, because they lack a mature immune system (Vadstein 

1997). During the first weeks after hatch, marine fish larvae mainly rely on their innate 

immune response, while the adaptive immune system is still developing (Magnadottír 

2006). Maternally-derived immune factors are mostly exhausted as early as when the 

yolk absorption is completed (Magnadottir et al. 2005; Swain and Nayak 2009). In 

European sea bass larvae, for example, maternal IgM was not detectable anymore by 

day 5 post hatch (Breuil et al. 1997). Consequently, vaccination, the most important 

method for disease prevention in aquaculture, cannot be applied during the larval 

stages, since their mode of action depends on adaptive immunological memory 

(Sommerset et al. 2005). Furthermore, the standard practice for disease control, the 

prophylactic application of antibiotics, has selected for antibiotic-resistant bacteria, 

making treatments ineffective as well as being a threat to the public health and the 

environment (Defoirdt et al. 2011). Therefore, the development of new biocontrol 

agents for disease prevention is crucial to improve animal welfare, ensure the 

consumers' health and reduce economic losses (Defoirdt et al. 2011). Several 

alternative strategies, such as the prophylactic application of prebiotics, probiotics and 

immunostimulants, have been proposed to reduce the infection risk and, thus, prevent 

diseases in aquaculture (Ringø et al. 2011; Akhter et al. 2015).  

One possibility is the application of the bacterial energy storage compound poly-β-

hydroxybutyrate (PHB), the polymer of the short-chain fatty acid (SCFA) β-
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hydroxybutyrate (β-HB). Under conditions of nutrient depletion and carbon excess, 

PHB is accumulated as a cellular carbon reserve by a wide range of bacterial genera 

such as Alcaligenes, Bacillus and Pseudomonas (Suriyamongkol et al. 2007; Wang et al. 

2012). The compound has been shown to increase growth and survival of some aquatic 

species, including penaeid shrimps (Penaeus monodon) (Laranja et al. 2014), blue 

mussels (Mytilus edulis) (Hung et al. 2015) and European sea bass (Dicentrarchus 

labrax) juveniles (De Schryver et al. 2010). Additionally, dietary PHB altered the 

microbial community of the gastrointestinal (GI) tract in European sea bass juveniles 

(De Schryver et al. 2011). After uptake of PHB-accumulated bacteria, PHB polymers can 

be gastrointestinally degraded into oligomers and monomers (SCFAs), lowering the pH 

in the host’s gut (Defoirdt et al. 2009). While it was shown that the cell growth of 

pathogenic bacteria belonging to genera like Vibrio and Salmonella (Van Immerseel et 

al. 2003; Defoirdt et al. 2007) is suppressed by SCFAs, beneficial bacteria such as 

Lactobacillus spp. and Bifidobacterium spp. may profit from the lower gut pH, 

improving the GI health of the host organism (Cotter and Hill 2003). This may explain 

why gnotobiotic Nile tilapia (Oreochromis niloticus) larvae (Situmorang et al. 2015) and 

rainbow trout (Oncorhynchus mykiss) fry (Najdegerami et al. 2015a) fed with a PHB-

enriched diet and subsequently challenged with pathogenic bacteria, exhibited an 

increased resistance against the infection. Nevertheless, the specific mode of action of 

PHB remains unknown. It is, however, hypothesized that its monomer β-HB is able to 

stimulate the immune system in fish (Montalban-Arques et al. 2015). So far, it has only 

been shown that PHB enhances the immune response in adult Mozambique tilapia 

(Oreochromis mossambicus) when measuring serum parameters as well as antibody 

response (Suguna et al. 2014). 
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In the present study, we hypothesize that PHB stimulates the immune system and 

improves survival as well as growth performance in European sea bass larvae. We used 

Artemia as live carriers to feed freeze-dried PHB-accumulated bacteria (Alcaligenes 

eutrophus) to sea bass larvae over a period of 10 days. Using gene expression analyses, 

we aimed to provide new insights into the capability of PHB to act as a stimulator for a 

developing immune system. Therefore, we carried out an extensive analysis on the 

expression of genes involved in immunity as well as growth, metabolism and stress. 

This is the first study to assess the potential immunomodulating effect of PHB in fish 

larvae.  

 

Materials and methods  

Larval rearing  

European sea bass (Dicentrarchus labrax) larvae were purchased from a commercial 

hatchery (Ecloserie Marine de Gravelines, France) at 3 days post hatch (dph) and 

reared in a flow-through system at GEOMAR Kiel (Germany) in three green stocking 

tanks until 25 dph. Each tank was filled with 30 L Baltic Sea water (5 μm-filtered and 

UV-treated) with an artificially increased salinity (SEEQUASAL, Germany) of 32 g L-1, 

which was gradually decreased to 26 g L-1 until 14 dph and increased again afterwards 

to improve the efficiency of the swim bladder inflation (Saillant et al. 2003). The water 

temperature was increased stepwise from 15 °C to 18.5 °C and oxygen was maintained 

above 80% saturation throughout the experiment. The larvae were kept in the dark 

until first feeding at 7 dph and under a natural photoperiod regime (16L: 8D), 

thereafter. For further details see Tillner et al. (2014). The sea bass larvae were fed on 

rotifers (Brachionus plicatilis) from 7 dph on. The rotifers were reared in sterile filtered 
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Baltic Sea water and fed on resuspended Nannochloropsis spp. concentrate 

(BLUEBIOTECH, Germany). From 23 to 25 dph, the sea bass larvae were fed on instar I 

Artemia nauplii and afterwards on instar II Artemia nauplii (Micro Artemia Cysts, 

OCEAN NUTRITION, USA). The Artemia eggs were incubated in 5 μm-filtered and UV-

treated sea water according to the manufacturer´s instructions. Prior to feeding, 

rotifers and instar II Artemia nauplii were enriched with essential fatty acids (S.presso, 

INVE, Belgium; applied according to instructions). At 25 dph, the larvae were randomly 

distributed into six experimental tanks (total volume: 65 L, used volume: 30 L) at a 

density of 40 larvae L− 1. The experiment was started after a three-day acclimation 

period at 28 dph under the following conditions: temperature 18.5 °C, salinity 32 g L-1, 

photoperiod 16L: 8D and flow rate 0.4 L min-1. The tank bottoms were siphoned daily 

to remove dead larvae, feces and debris.  

The experiment was approved by the ethical committee of Kiel University (Germany) 

under the file number V 312-7224.121-19 (24-2/13). 

 

Experimental diets and feeding 

Over the course of the experiment, starting at 28 dph, the sea bass post-larvae were 

fed three times a day at 10:00 h, 15:00 h and 20:00 h with instar II Artemia nauplii 

(Micro Artemia Cysts, OCEAN NUTRITION, USA) at densities of 8 mL-1, 4 mL-1 and 4 mL-

1, respectively. The water flow was turned off for feeding between 10:00 h and 22:00 

h. Three tanks, respectively, were randomly assigned to the following treatments: (1) 

PHB treatment (Artemia enriched with PHB), (2) control treatment (Artemia without 

PHB enrichment). For both treatments, instar II Artemia nauplii were enriched with 

highly unsaturated fatty acids (S.presso, INVE, Belgium) according to the 
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manufacturer´s instructions. For the PHB treatment, instar II Artemia nauplii were 

enriched afterwards with a freshly prepared PHB solution at a density of 500 nauplii 

ml-1 for 60 min under gentle aeration directly before feeding. Artemia are non-

selective filter feeder and it was demonstrated that they are able to accumulate 

bacteria when incubated in bacterial suspensions (Makridis et al. 2000). The PHB 

solution consisted of freeze-dried PHB accumulated bacteria (Alcaligenes eutrophus) 

dissolved in UV-treated salt water (salinity: 32 g L-1) at a concentration of 108 bacteria 

ml-1. The bacteria had a PHB content of 75% of the cell dry weight and were produced 

as described in Thai et al. (2014).  

 

Measured parameters 

Growth performance and survival rate 

After 10 days of treatment (38 dph), 20 larvae were randomly sampled from each tank, 

anaesthetized with MS 222 (SIGMA-ALDRICH, Germany), transferred into Eppendorf 

vials with sea water and immediately frozen on dry ice. The samples were stored at -80 

°C. For growth analysis, the total length (cm) of thawed larvae was measured. 

Subsequently, the larvae were briefly rinsed in distilled water to avoid salt residues, 

freeze-dried for 18 h at -55 °C (Alpha1-4 freeze dryer, CHRIST, Germany) and weighed 

(Microbalance SC2, SARTORIUS, Germany) in order to determine the larval dry weight 

(mg).  

Furthermore, Fulton's condition factor (K) was calculated according to the equation:  

𝐾 =
𝑊

𝐿3  

where W equals the dry weight (mg) and L the total length (cm) of the larvae. For 

calculating survival rates, dead larvae were removed from the tanks and counted daily.  
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Gene expression analysis 

After 3 and 10 days of treatment (31 and 38 dph, respectively) six larvae were 

randomly sampled from each tank, anaesthetized with MS 222 (SIGMA-ALDRICH, 

Germany), transferred into RNAlater and kept at 4 °C for 24 h before being stored at -

20 °C. These two sampling points were chosen to assess the short-term and the mid-

term effects of PHB administration. The first sampling point is crucial to detect 

potential effects of PHB on the innate immune system since it is known to react 

immediately (Magnadottír 2006).     

For the quantification of mRNA as a measure of gene expression levels, the RNA of 

single whole larvae was extracted using a RNeasy 96 Universal Tissue Kit (QIAGEN, 

Germany) according to the manufacturer´s instructions. RNA concentration was 

measured by spectrophotometry (NanoDrop ND-1000, VWR, Germany) and 

normalized to a common concentration with RNase free water. 500 ng RNA were 

reverse transcribed into cDNA, including a gDNA wipeout step (QuantiTect Reverse 

Transcription Kit, QIAGEN, Germany). The cDNA was stored at -80 °C until further use. 

Primers (METABION, Germany) for all genes of interest as well as for reference genes 

were taken from the literature (Mitter et al. 2009; Sarropoulou et al. 2009) or designed 

with Primer3 (version 0.4.0), using D. labrax sequences from GenBank (Table 1). The 

primers were tested for functionality and efficiency against a serial dilution of D. labrax 

cDNA together with EvaGreen qPCR Mix Plus Rox (SOLIS BIODYNE, Estonia), using a 

StepOnePlus Real-Time PCR System (THERMO FISHER SCIENTIFIC, Germany). The 

cycling conditions were 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and 60 

°C for 1 min, followed by 95 °C for 15 s, 60 °C for 1 min and 95 °C for 15 s.  
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A qPCR BioMark™ HD System (FLUIDIGM, Germany) running a 96.96 Dynamic Array™ 

IFC (Gene Expression chip) was used to measure the expression profiles of 29 genes in 

the larval samples. Briefly, 1.3 µl cDNA per sample were mixed with TaqMan-PreAmp 

Master Mix (THERMO FISHER SCIENTIFIC, Germany) and a 500 nM primer pool of all 

primers and pre-amplified (10 min at 95 °C; 16 cycles: 15 s at 95 °C and 4 min at 60 °C). 

The obtained PCR products were diluted 1:10 with low EDTA-TE buffer and pipetted 

into the sample inlets on the chip together with SsoFast EvaGreen Supermix with Low 

Rox (BIO-RAD, Germany) and DNA Binding Dye Sample Loading Reagent (FLUIDIGM, 

Germany). Samples were distributed randomly across the chip, including no template 

controls (NTC) and controls for gDNA contamination. Primers (50 µM) mixed with 

Assay Loading Reagent (FLUIDIGM, Germany) and low EDTA-TE Buffer were loaded 

onto the chip in technical triplicates per sample. The chip was primed and the run 

subsequently performed using the GE Fast 96x96 PCR+Melt v2 thermal cycling protocol 

with a Tm of 60 °C according to the manufacturer´s instructions.  

 

Statistical analyses 

Technical triplicates were used to calculate the mean cycle threshold value (Ct), the 

standard deviation (SD), and the coefficient of variation (CV) per sample for the gene 

expression analysis. Samples with a CV larger than 4% were excluded from the 

analysis, as in accordance with Bookout & Mangelsdorf (2003). The expression stability 

of genes was calculated using qbase+ (BIOGAZELLE, Belgium) and the geometric mean 

Ct of the three most stable genes (actb, Ɩ13a, hsp90; M < 0.5) was used to normalize 

target genes (calculation of ΔCt-values). Actb and Ɩ13a were also identified as suitable 

reference genes for sea bass by Mitter et al. (2009).  
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All statistical analyses were carried out in RStudio (version 0.98.1103). Permutational 

multivariate analyses of variance (PERMANOVA) were performed (adonis function of 

the vegan package in R; Oksanen et al. 2012) for each functional gene group to test for 

overall differences between the two treatments. PERMANOVAs using ΔCt-values are 

based on Pearson correlation distance matrices (amap package, Dist function; Lucas 

2011) and were run with 699 permutations. The multivariate model included 

treatment as a fixed factor, whereas ΔCt-values of all larvae per tank were averaged, 

since tank could not be implemented as a random factor in the PERMANOVA. 

Subsequently, a mixed effect model, which included treatment as a fixed factor and 

tank as a random factor, was used to analyze each individual target gene and growth 

data, respectively. All data were tested for normality (Shapiro-Wilk test) and 

homogeneity of variances (Levene’s test). If the test assumptions were violated, data 

were Box-Cox transformed. For a graphical representation of gene expression data, the 

2-ΔΔCt method (Livak and Schmittgen 2001) was applied by calculating the ΔΔCt for each 

larva in relation to the mean ΔCt of the control treatment group. The survival data are 

presented by means of Kaplan-Meier curves and compared between treatment groups 

using a log-rank test (survival package in R; Therneau 2015).  
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Results  

Survival 

The larval survival rates (Fig. 1) in the PHB treatment and the control treatment did not 

differ significantly from each other over the course of the experiment (χ2 = 0.9, df = 1, 

p > 0.05). Survival remained above 85% in both treatment groups.  

 

Growth performance 

The estimated growth-related parameters, such as total length, dry weight and 

Fulton´s condition factor K, were not affected by the PHB treatment over the course of 

the experiment. All parameters are presented in Table 2.  

 

Gene expression 

The expression of genes involved in immune response, growth, metabolism, 

antioxidant activity and stress-response were analyzed and classified into the following 

functional gene groups: (I) overall immune response (innate and adaptive immunity, 

complement system and apoptosis), (II) innate immunity, (III) adaptive immunity, (IV) 

growth and metabolism, (V) stress. All genes included in the study (Table 1) were 

expressed at day 31 and 38 ph (corresponding to 3 and 10 days of treatment, 

respectively).  

The multivariate analysis showed that the expression of genes related to metabolism 

and growth (fad6, tryp, gh, igf1) differed significantly between fish larvae fed on PHB-

enriched Artemia or control diet (F1,4 = 23.6, p < 0.01) for 3 days, while all other 

functional gene groups were not significantly affected by the treatment (Table 3). The 

univariate analyses of the four genes involved in metabolism and growth revealed that 
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3 days of PHB treatment only increased the insulin-like growth factor 1 (igf1) 

expression (2.0 ± 0.19-fold, ΔCt = 9.0 ± 0.24; df = 1, F = 9.8, p < 0.05) compared to the 

control treatment (1.2 ± 0.17-fold, ΔCt = 9.9 ± 0.16; Fig. 2) while the expression of 

fad6, tryp and gh was not significantly affected (Suppl. Table S1). 

The application of PHB over a period of 10 days, however, enhanced the immune 

response of sea bass larvae significantly. The multivariate analysis showed a significant 

difference between the two treatments for expression of genes involved in innate 

immunity (F1,4 = 9.2, p < 0.01) and adaptive immunity (F1,4 = 6.9, p < 0.01), while all 

other functional gene groups were not significantly affected by the treatment (Table 

3). The subsequent univariate analyses (Suppl. Table S1) revealed that the expression 

of the antimicrobial peptides dicentracin (dic) and hepcidin (hep) as well as the major 

histocompatibility complex class II (mhc class IIa and mhc class IIb) was significantly 

upregulated in the PHB treatment (for all 4 genes: df = 1, p < 0.05; Fig. 3 and 4). While 

the expression of dicentracin in sea bass larvae fed with a PHB-enriched diet was 

slightly enhanced (1.7 ± 0.13-fold, ΔCt = 3.1 ± 0.13; F = 10.8) compared to larvae fed on 

the control diet (1.1 ± 0.11-fold, ΔCt = 3.8 ± 0.14), the expression of hepcidin was 

highly upregulated in the PHB treatment group (21.3 ± 5.00-fold, ΔCt = 4.9 ± 0.53; F = 

15.4) compared to the control (1.7 ± 0.35-fold, ΔCt = 8.4 ± 0.38). The expression of mhc 

class II genes was approximately 3 times higher due to dietary PHB administration 

(mhc class IIa: 3.6 ± 0.70-fold, ΔCt = 6.7 ± 0.28; F = 14.3; mhc class IIb: 2.8 ± 0.47-fold, 

ΔCt = 6.4 ± 0.24; F = 8.3) than in the control group (mhc class IIa: 1.1 ± 0.12-fold, ΔCt = 

8.2 ± 0.17; mhc class IIb: 1.1 ± 0.08-fold, ΔCt = 7.6 ± 0.11). 
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Discussion  

The revelation of the manifold disadvantages concerning the widespread overuse of 

antibiotics in animal production has encouraged researchers all over the world to 

investigate alternative biocontrol compounds (Defoirdt et al. 2011). In the present 

study, the effects of the bacterial energy storage compound PHB on sea bass larvae 

were investigated with respect to survival, growth and gene expression. 

Early developmental stages, such as larvae, are known to be the most vulnerable life 

cycle stages, exhibiting high and unpredictable mortality (Rosenthal and Alderdice 

1976; Pepin 1991). Fish larvae only rely on their innate immune system while their 

adaptive immune system is still developing, making them highly susceptible to 

infectious diseases (Magnadottír 2006). Thus, the effect of potential 

immunostimulatory compounds such as PHB might vary significantly between different 

life stages. To the best of our knowledge, there are only one study on the effect of PHB 

on conventional and one on gnotobiotic fish larvae (Najdegerami et al. 2015b; 

Situmorang et al. 2015). However, the influence on the larval immune response has so 

far not been addressed.  

In the current study, larval survival rates were not affected by PHB administration. The 

same result was identified in an experiment with Siberian sturgeon (Acipenser baerii) 

larvae fed with PHB-enriched Artemia from first-feeding onwards over a period of four 

weeks (8 to 35 dph) (Najdegerami et al. 2015b). In contrast, blue mussel larvae fed 

with a PHB-supplemented diet directly after hatch over a period of 10 days showed a 

significantly higher survival compared to the control (Sui et al. 2012; Hung et al. 2015). 

Interestingly, in a study with Chinese mitten crabs (Eriocheir sinensis), the beneficial 

effect of PHB on larval survival was not yet present after 8 days of treatment, but could 
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only be observed after 10 days of PHB administration (Sui et al. 2012). Regarding the 

effect of PHB on the growth performance, it is hypothesized that PHB is 

gastrointestinally degraded either by digestive enzymes, PHB degrading bacteria or a 

combination of both into β-HB oligomers and monomers, which could then be used as 

an additional energy source by the organism (Weltzien et al. 2000, Azain 2004, 

Defoirdt et al. 2009, De Schryver et al. 2010). However, in the present study, none of 

the estimated growth-related parameters such as total length, dry weight and Fulton´s 

condition factor K were affected by the PHB treatment. In Siberian sturgeon larvae, 

dietary PHB decreased growth (Najdegerami et al. 2015b), whereas it increased growth 

in giant freshwater prawn larvae, Chinese mitten crab larvae and sea bass juveniles 

(Nhan et al. 2010, De Schryver et al. 2010, Sui et al. 2012, Thai et al. 2014), while no 

effect was observed on larval size in blue mussels (Hung et al. 2015). Generally, the 

effect of PHB on larval survival and growth performance seems to be species-specific 

as well as depend on the onset, dose and duration of the PHB supplementation and 

the developmental stage of the investigated organism. In the current study, PHB was 

fed to sea bass post-larvae over a duration of 10 days, hence, it cannot be ruled out 

that PHB applied at an earlier larval stage in a different dose and/or over a longer 

period of time would have resulted in a positive effect on survival and growth 

performance.  

For various immunostimulating substances, potential negative effects on cellular 

homeostasis have been addressed (Kepka et al. 2014; Miest and Hoole 2015). 

However, PHB did not affect the expression of the studied stress- and apoptosis-

related genes (cat, hsp70, hsp90; casp3, casp9). Thus, there is no indication that PHB 

induced cellular stress or cytotoxicity.  
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The expression of genes related to growth and metabolism (fad6, tryp, gh, igf1) 

differed significantly between fish larvae fed for 3 days on PHB-enriched Artemia or 

the control diet. In contrast to our results on growth-related parameters, the insulin-

like growth factor 1 (igf1) was significantly enhanced after 3 days of PHB 

supplementation, while fad6, tryp and gh were not significantly affected by the PHB 

treatment. Igf1 can be used as an indicator of relative growth (Dyer et al. 2004). It is 

involved in the differentiation and proliferation of cells (in particular myoblasts) as well 

as in the protein, lipid and carbohydrate metabolism promoting muscle and cartilage 

growth (Moriyama et al. 2000; Carnevali et al. 2006). A significantly elevated igf1 

expression alongside a significantly higher weight was e.g. found in sea bass fry treated 

with probiotic Lactobacillus species (Carnevali et al. 2006). After 10 days of PHB 

supplementation, only a trend towards a higher igf1 expression remained. This might 

indicate that the PHB was not administered in an adequate dose to induce a clearly 

persisting growth promoting effect in sea bass larvae. A dose-dependent growth 

promoting effect of PHB has been observed in earlier studies, e.g. when dietary PHB at 

a low, medium and high dose was administered to juvenile sea bass. While the low and 

medium dose enhanced growth and caused a controlling effect on the GI microbiota, 

the high dose showed no effect (De Schryver et al. 2010). The observed change in the 

intestinal microbial community is hypothesized to develop due to the degradation of 

PHB into SCFAs, causing a decrease of the GI pH, which inhibits the growth of certain 

pathogenic bacteria (Defoirdt et al. 2007, De Schryver et al. 2010, De Schryver et al. 

2011). Accordingly, it could be demonstrated that PHB effectively enhances the 

disease resistance in aquatic invertebrates (Sui et al. 2012; Ludevese-Pascual et al. 

2016) and fish. Dietary PHB protected gnotobiotic Nile tilapia larvae (Situmorang et al. 
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2015) as well as conventional adult Mozambique tilapia (Suguna et al. 2014) from 

pathogens, resulting in higher survival rates after bacterial challenge tests. Moreover, 

a lowered GI pH promotes the growth of specific beneficial bacteria, which can trigger 

an immune response via microbe-associated molecular patterns (MAMPs) as described 

for prebiotics (Gómez and Balcázar 2008; Sekirov and Finlay 2009; Song et al. 2014). 

Indeed, it has been demonstrated that dietary PHB enhanced serum lysozyme, 

peroxidase and antiprotease activity as well as antibody response in adult tilapia 

(Suguna et al. 2014).  

In order to estimate the potential immunomodulatory effect of PHB in fish larvae, the 

expression of genes involved in the immune response was analyzed in the present 

study. It has to be noticed that PHB was administered in form of freeze-dried PHB 

accumulated bacteria and that a direct effect of these bacteria on the larval immune 

system cannot be excluded. However, previous studies using bacteria accumulated 

with different PHB doses showed that the level of PHB was the main driver for the 

observed effects (e.g. disease resistance) (Laranja et al. 2014).  

In the current study, PHB administration over a period of 10 days enhanced the innate 

and adaptive immune gene expression in sea bass larvae significantly. The expression 

of the antimicrobial peptides (AMPs) dic and hep was significantly upregulated in the 

PHB treatment. Being quickly mobilized due to rapid diffusion rate, AMPs play a crucial 

role in the first line of innate immune defense in teleost fish (Terova et al. 2009; 

Alvarez et al. 2014). Their antimicrobial activity has been demonstrated against a 

broad spectrum of pathogens such as bacteria, viruses and fungi (Salerno et al. 2007; 

Alvarez et al. 2014). Thus, the upregulation of AMPs is considered to be advantageous 

especially for fish early life stages lacking a fully functional adaptive immune system. 
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An enhanced expression of dic was also shown after incorporation of yeast cell wall 

extracts (Bio-Mos®) in the diet of sea bass juveniles (Terova et al. 2009). The 

immunostimulating effect of Bio-Mos® is probably based on the activation of pattern 

recognition receptors (PRR) triggering an immune response to the non-self substance 

(Torrecillas et al. 2014). The immunomodulatory activity of PHB is as well likely to be 

mediated through direct interactions with PRRs being expressed e.g. on macrophages 

and neutrophils (Montalban-Arques et al. 2015). This ligand-receptor interaction 

activates signal transduction molecules, such as NF-κB, that stimulate immune cells 

(Song et al. 2014). It has previously been shown that SCFAs like β-HB have 

immunomodulatory effects in mammals (Dedkova and Blatter 2014; Kim et al. 2014; 

Shapiro et al. 2014), resulting from their binding to G protein-coupled receptors (GPRs) 

(Tazoe et al. 2008) being highly expressed in monocytes and granulocytes (Brestoff and 

Artis 2013). Even though specific receptors for SCFAs in fish cells have not yet been 

described in the literature, gene orthologs of mammalian GPR41 and GPR43 can be 

found in zebrafish (Danio rerio) (Montalban-Arques et al. 2015). Therefore, it can be 

hypothesized that β-HB can stimulate the immune system in fish as a ligand for GPRs in 

similar ways as they do in mammals (Montalban-Arques et al. 2015).  

The expression of mhc class IIa and mhc class IIb was significantly upregulated after 10 

days of PHB treatment. MHC class II molecules are expressed predominantly by 

antigen-presenting cells (APCs) such as macrophages, granulocytes and dendritic cells. 

The presence of antigens triggers the maturation of APCs accompanied by an increased 

expression of mhc class II (Knight et al. 1998; Delamarre et al. 2003; Cuesta et al. 

2006). Thus, mhc class II expression might be upregulated in sea bass larvae fed dietary 

PHB, since the compound modulates the GI microbiota altering the antigen pattern. 
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After antigens are taken up and degraded within APCs, their peptide fragments are 

displayed by MHC class II molecules at the cell surface and recognized by CD4+ T cells 

(Murphy 2011). In sea bass larvae reared at 15 ± 1 °C, the expression of cd4 could not 

be detected until 39 dph but from 51 dph onwards (no measurements were performed 

between 40 and 50 pdh) (Picchietti et al. 2009). Sea bass larvae analyzed here were 38 

days old but reared at a higher temperature. Consequently, they most likely were in a 

developmental stage where cd4 expression is about to appear. In mammals, the 

development of T cell precursors into TCR+ cells expressing CD4 is induced by MHC 

class II molecules (Anderson et al. 1993; Ladi et al. 2006; Luckheeram et al. 2012), a 

similar process is suggested to occur in teleosts as well (Picchietti et al. 2008). Hence, 

the upregulated mhc class II expression observed in the present study might enhance 

the performance of the still developing adaptive immune system by inducing 

differentiation of immature T cells into CD4+ T cells.  

In conclusion, this study demonstrates that PHB stimulated immune gene expression in 

sea bass post-larvae, possibly leading to heightened protection against pathogens. 

Hence, PHB can be considered as a potential biocontrol agent in fish larviculture, being 

additionally safe for the consumers' health and the environment. The question to what 

extent PHB could modulate the immune response in fish larvae should be addressed in 

future studies testing various PHB concentrations and administration times. 

Furthermore, it would be valuable to investigate the effect of PHB on the entire 

immune response, e.g. through transcriptome analyses, which could then be linked to 

immune and physiological parameters. Additionally, microbiota analyses and challenge 

tests with pathogenic bacteria should be taken into considerations in follow-up studies 
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to elucidate the link between immune response, intestinal microbiota and disease 

resistance.   
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Fig. 1. Kaplan-Meier survival curves of sea bass larvae fed with Artemia enriched with 

PHB (black) or without PHB (grey) over a period of 10 days (from 28 to 38 dph). The 

dashed lines represent the 95% confidence intervals. 

 

Fig. 2. Gene expression of insulin-like growth factor 1 (igf1) in sea bass larvae fed with 

Artemia nauplii with PHB (black bars) or without PHB enrichment (white bars). Larval 

samples were taken at 31 and 38 dph (3 and 10 days of treatment, respectively). The 

figure displays the x-fold gene expression to the control. Data are presented as mean ± 

SEM. The asterisk represents the level of significance (*: p < 0.05). 

 

Fig. 3. Gene expression of dicentracin (dic) and hepcidin (hep) in sea bass larvae fed 

with Artemia nauplii with PHB (black bars) or without PHB enrichment (white bars). 

Larval samples were taken at 31 and 38 dph (3 and 10 days of treatment, respectively). 

The figures display the x-fold gene expression to the control. Data are presented as 

mean ± SEM. The asterisk represents the level of significance (*: p < 0.05). 

 

Fig. 4. Gene expression of mhc class IIa and mhc class IIb in sea bass larvae fed with 

Artemia nauplii with PHB (black bars) or without PHB enrichment (white bars). Larval 

samples were taken at 31 and 38 dph (3 and 10 days of treatment, respectively). The 

figure displays the x-fold gene expression to the control. Data are presented as mean ± 

SEM. The asterisk represents the level of significance (*: p < 0.05). 
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Table 1  

Name, abbreviation and function of the 26 genes of interest and 3 reference genes. Genes were divided into the following 5 functional 

groups: (I) overall immune response, (II) innate immunity, (III) adaptive immunity, (IV) growth and metabolism and (V) stress. Forward 

(FW) and reverse (RV) primers were either designed using sequences from GenBank (see accession number) or taken from literature 

(see reference).  

Group 
 

Abbreviation  Gene name and function   Primer sequence Accession No. / Ref.  

Overall Innate immunity apoA1 Apolipoprotein A1, antimicrobial protein FW ATACGTCCTGGCACTGATCC Sarropoulou et al. 2009 

immune  
 

  
RV AGCCTGACCTTGCTCACTGT 

 response 
 

cc1 CC chemokine 1, chemotactic cytokine  FW TGGGTTCGCCGCAAGGTTGTT AM490065.1 

    
RV AGACAGTAGACGAGGGGACCACAGA 

 

  

cox2 Cyclo-Oxygenase-2, pro-inflammatory enzyme FW AGCACTTCACCCACCAGTTC AJ630649.1 

  
  

RV AAGCTTGCCATCCTTGAAGA 

 

  

Ifna1 Interferon, cytokine FW GTACAGACAGGCGTCCAAAGCATCA AM765846.2 

  
  

RV CAAACAGGGCAGCCGTCTCATCAA 

 

  

il1b Interleukin 1 beta, pro-inflammatory cytokine FW GCGACATGGTGCGATTTCTCTTCTACA AJ311925.1 

  
  

RV GCTGTGCTGATGTACCAGTTGCTGA 

 

  

dic Dicentracin, antimicrobial peptide FW AGTGCGCCACGCTCTTTCTTGT AY303949.1 

    
RV TTGTGGATGGACTTGCCGACGTG 

 

  

fer Ferritin, antimicrobial peptide FW ATGCACAAGCTCTGCTCTGA Sarropoulou et al. 2009 

    
RV TTTGCCCAGGGTGTGTTTAT 

 

  

hep Hepcidin, antimicrobial peptide FW AAGAGCTGGAGGAGCCAATGAGCA DQ131605.1 

    
RV GACTGCTGTGACGCTTGTGTCTGT 

 

  

tlr1 Toll-like receptor 1, pattern recognition receptor FW GCCTCTGCCTCAATACCTGATCCCA KX399287 

  
  

RV AACAACCTGTGCTTGGCCCTGTC 
 

  

tlr9 Toll-like receptor 9, pattern recognition receptor FW TCTTGGTTTGCCGACTTCTTGCGT KX399289 

    
RV TACTGTTGCCCTGTTGGGACTCTGG 

 

  

tnfa Tumor necrosis factor α, pro-inflammatory cytokine FW AGCCACAGGATCTGGAGCTA DQ070246.1 

 
      RV GTCCGCTTCTGTAGCTGTCC   

 
Adaptive immunity mhc class Ia Major Histocompatibility Complex  I α, cell surface molecules   FW TGTACGGCTGTGAGTGGGATGATGAG JX171695.1 

  
  

RV AGCCTGTGGTCTTGGAGCGATGAA 

 

  

mhc class IIa Major Histocompatibility Complex  II α, cell surface molecules  FW AGTCCGATGATCTACCCCAGAGACAAC FN667955.1 

  
  

RV ACAGGAGCAGGATAGAAACCAGTCACA 
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mhc class IIb Major Histocompatibility Complex  II ß, cell surface molecules FW GCTGGCAGACGCTGATTGGTTCT AM113471.1 

    
RV TAACCAGAGGTTCTCTCAGGCTGGC 

 

  

rag1 Recombination activating protein 1, involved in VDJ recombination  FW CCAATTACCTGCACAAGACCCTGGC FN687463.1 

 
      RV GTTTGTTTGCCGACTCGTTCCCCT   

 
Complement system  c3 Complement Component C3, classical & alternative pathway FW TGACGGAGAGCGGTGGTGAAATG HM563078.1 

    
RV AGGCCATCCCTGGTTTGAAGTATTTGG 

 

  

cla C-Lectin-A, lectin pathway FW GATGGCAGCAAGCTCCGGTATTCA EU660935.1 

  
  

RV TCTGACCTATGACCCCAGCCAACA 

 

  

gal Galectin, lectin pathway FW TGCAACTCTTACCAGGGAGGCAACT EU660937.1 

 
      RV GTCACGAGGAACTCTGTAGGGGTGA   

 
Apoptosis casp3 Caspase 3, protease FW CTGATTTGGATCCAGGCATT DQ345773.1 

  
  

RV CGGTCGTAGTGTTCCTCCAT 

 

  

casp9 Caspase 9, protease FW GGCAGGACTCGACGAGATAG DQ345776.1 

        RV CTCGCTCTGAGGAGCAAACT   

Growth &  
 

gh Growth hormone  FW GGCCAATCAGGACGGAGCAGAGAT GQ918491.1 

metabolism 
 

  
RV AGGTTCGTCTCAGCGACTCATCGG 

 

  

igf1 Insulin-like growth factor 1 FW TTCAAGGGCGCGATGTGCTGTATC AY800248.1 

  
  

RV GCCTCTCTCTCCACACACAAACTGC 

 

  

fad6 Fatty acid desaturase-6, fatty acid synthesis FW GCTCAGCCTTTGTTCTTCTGCCTCC FP671139.1 

  
  

RV TGAGCAGTTGCCAGCATGATCGAG 
 

  

tryp Trypsin, protease FW CCTGGTCAACGAGAACTGGGTTGTG AJ006882.1 

        RV GGATGACACGGGAGGAGCTGATGAA   

Stress 
 

cat Catalase, antioxidant FW TGATGGCTACCGCCACATGAACG FJ860003.1 

  
  

RV TTGCAGTAGAAACGCTCACCATCGG 

 

  

hsp70 Heat shock protein 70, stress protection FW ACAAAGCAGACCCAGACCTTCACCA AY423555.2 

        RV TGGTCATAGCACGTTCGCCCTCA   

Reference  
 

actb Beta-actin  FW TGAACCCCAAAGCCAACAGGGAGA AJ537421.1 

genes 
   

RV GTACGACCAGAGGCATACAGGGACA 

 

  

Ɩ13a Ribosomal protein L13 a  FW TCTGGAGGACTGTCAGGGGCATGC Mitter et al. 2009 

    
RV AGACGCACAATCTTGAGAGCAG 

 

  

hsp90 Heat shock protein 90 FW GCTGACAAGAACGACAAGGCTGTGA AY395632.1 

    
RV AGATGCGGTTGGAGTGGGTCTGT 
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Table 2  

Growth-related parameters of sea bass larvae fed with Artemia enriched with or without PHB 

over a period of 10 days (from 28 to 38 dph). Values represent mean ± SEM. In addition, F-

statistics (F) and p-values (p) calculated with a mixed-effect model are shown. Degrees of 

freedom/residual degrees of freedom: 1/4. 

Growth-related parameters Control PHB treatment F p 

Dry weight (mg)  2.6 ± 0.12 2.0 ± 0.11 3.98 0.12 

Total length (cm) 1.4 ± 0.02 1.4 ± 0.02 0.90 0.40 

Condition1 (mg cm-3) 0.9 ± 0.02 0.8 ± 0.02 7.31 0.06 
1 Fulton´s condition factor K = (W/L3) 
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Table 3 

PERMANOVA results for larval gene expression profiles. The permutational multivariate analysis 

of variance is based on Pearson correlation distance matrix. The effect of the experimental 

treatment (PHB administration) on overall gene expression levels was tested for different 

functional gene groups. F-statistics (F) and p-values (p) are shown. Degrees of freedom/residual 

degrees of freedom for all groups: 1/4. 

  3 days of treatment (31 dph)   10 days of treatment (38 dph) 

Functional group F p   F p 

Overall immune response 1.9 > 0.05 

 

6.5 > 0.05 

Innate immunity 3.1 > 0.05 
 

9.2 < 0.01 

Adaptive immunity 1.8 > 0.05 

 

6.9 < 0.01 

Growth & metabolism 23.6 < 0.01 

 

1.1 > 0.05 

Stress 3.6  > 0.05    3.4  > 0.05 
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Table S1 

Univariate statistical results (mixed-effect model) for larval gene expression at 31 dph and 38 

dph. F-statistics (F) and p-values (p) are shown. Degrees of freedom/residual degrees of 

freedom: 1/4. 

    3 days of treatment (31 dph) 

Functional group Gene F p 

Growth and metabolism gh 0.86 0.41 

 
igf1 9.80 0.04 

 
fad6 1.18 0.34 

  tryp 3.61 0.13 

        10 days of treatment (38 dph) 

Functional group Gene F p 

Innate immunity apoA1 2.10 0.22 

 
cc1 4.60 0.10 

 
cox2 2.43 0.19 

 
ifn 3.61 0.13 

 
il1b 4.46 0.10 

 
dic 10.85 0.03 

 
fer 3.46 0.14 

 
hep 15.36 0.02 

 
tlr1 1.95 0.24 

 
tlr9 1.00 0.38 

 
tnfa 1.12 0.35 

Adaptive immunity mhc class Ia 0.75 0.44 

 
mhc class IIa 14.35 0.02 

 
mhc class IIb 8.27 0.04 

  rag1 1.58 0.28 
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Fig. 1. Kaplan-Meier survival curves of sea bass larvae fed with Artemia enriched with PHB 

(black) or without PHB (grey) over a period of 10 days (from 28 to 38 dph). The dashed lines 

represent the 95% confidence intervals. 
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Fig. 2. Gene expression of insulin-like growth factor 1 (igf1) in sea bass larvae fed with Artemia 

nauplii with PHB (black bars) or without PHB enrichment (white bars). Larval samples were 

taken at 31 and 38 dph (3 and 10 days of treatment, respectively). The figure displays the x-fold 

gene expression to the control. Data are presented as mean ± SEM. The asterisk represents the 

level of significance (*: p < 0.05). 
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Fig. 3. Gene expression of dicentracin (dic) and hepcidin (hep) in sea bass larvae fed with Artemia nauplii with PHB (black bars) or 

without PHB enrichment (white bars). Larval samples were taken at 31 and 38 dph (3 and 10 days of treatment, respectively). The 

figures display the x-fold gene expression to the control. Data are presented as mean ± SEM. The asterisk represents the level of 

significance (*: p < 0.05). 
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Fig. 4. Gene expression of mhc class IIa and mhc class IIb in sea bass larvae fed with Artemia nauplii with PHB (black bars) or without 

PHB enrichment (white bars). Larval samples were taken at 31 and 38 dph (3 and 10 days of treatment, respectively). The figure displays 

the x-fold gene expression to the control. Data are presented as mean ± SEM. The asterisk represents the level of significance (*: p < 

0.05). 

 


