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Abstract— Location fingerprinting techniques generally make back to the MN (or the application requesting the location
use of existing wireless network infrastructure. Consequently,he information).
positions of the access points (APs), which constitute an integral Some prior works [6], [7] have suggested that the accuracy
part of a location system, will invariably be dictated by the . - T -
network administrator’s convenience regarding data communica- of a fingerprint-based location system 'S_ sqmewhat erenden
tion. But the localization accuracy of fingerprint-based solutions On the APs’ placements. But the main idea behind these
is largely dependent on the APs’ placements over the area. In inexpensive fingerprint-based techniques is that, suchnseh
this paper, we developed the idea oWirtual Access Point (VAP), provide location information as value-added services profo
where one can have AP’s functionality at a desired position for the existing infrastructure for data networks (e.g., WLANS)

localization purpose, without physically placing an AP there. We , - .
argue that, placing VAPs at favorable positions helps to improve As a result, the APs’ positions would largely be dictated by

localization accuracy. VAP also serves the purpose of virtually the ease of data communication. Moreover, for a fingerprint-
increasing the number of APs over the localization area, which based location system, it is not clear how many APs need

according to previous works should enhance the localization to be “heard” at a given point for a particular accuracy
accuracy further. We test the feasibility of our VAP idea both and precisioh The general consensus is that, the higher the

analytically and experimentally. Finally, we present our results
using a well-known localization algorithm, namely, K-Nearest number of APs, the better the performance reported — some

Neighbor, when our VAP idea is implemented. The findings are Works [6] have also validated this claim with both analytica
quite encouraging, which report significant improvement in the and experimental findings. Therefore, a positioning system

localization accuracy. administrator may benefit from as many APs as possibly could

Keywords: Positioning Systems, Indoor Localization, vir-Pe “heard” at a particular position, in order to estimatet tha

tual Access Point, Location Fingerprint, Bluetooth. location more accurately. , ,
In this paper, we have developed the idea of virtual ac-

|. INTRODUCTION cess point (VAP), which tries to achieve the aforementioned
Traditional location estimation solutions specifically- derequirements regarding a positioning system. We contend
signed for indoors generally require dedicated infrastmec that there are certain relationships among the APS’ redeive
based on infrared, radio frequency, or ultrasound teclyiedo signal strengths from a MN. Utilizing this notion, we can
solely for positioning purpose [1]-[3]. Recently, thereshagenerate VAPs at desired positions that would aid localiza-
been a growing interest in indoor localization technigues t tion, thereby eliminating the limitations imposed by fixe® A
rely on in-building communications infrastructure (e./j- placements that were possibly installed with facilitatoiata
Fi, Bluetooth, etc.) mainly because it allows the designrof a&ommunication in mind. Moreover, we argue that, by selectin
easily deployable low-cost positioning system. Most ofsthe good positions for VAPs’ placement, the localization accuracy
approaches utilize location fingerprinting techniques-[@], would see a monotonic increase with the number of VAPs, at
which provide reasonable positioning accuracy but entkit a no additional hardware cost. In short, we contend that, our
borious training phase in order to construct the radio-rkap. cost-effective VAP-based positioning system could improv
gerprinting based systems generally have two phas#fline the localization accuracy offered by current fingerpriaséd
training phase ananline location estimation phase. Duringtechniques.
the offline phase, the location fingerprints (i.e., signedrggth The rest of the paper is organized as follows. In Section II,
samples) at the selected locations of interest are collecteve elaborately discuss our virtual access point basedmyste
yielding the so-called radio map. In order to differentiatPom both analytical and experimental point of view. In
between various locations, the entire area is usually edverSection Ill, we present the localization experimental ltssu
by a rectangular grid of points. During the online locatioincorporating our VAP idea. Finally, we present in Sectivh |
determination phase, the signal strength samples receivedhe conclusions drawn, as well as our future work.
the access points (APs) from the mobile node (MN), or vice, _ , _ , o
Location accuracy is the error distance deviated from theahgosition,

versa, will k_)e sent to_a central server. The server then u%ﬁ’ﬁe precision is the percentage of measurements that fddlmthat distance
some algorithm to estimate the MN's position, and reports dt accuracy.



AP, APq

Fig. 1. Creation of VAP from other real APs’ signals.

I[I. THE CONCEPT OFVIRTUAL ACCESSPOINTS
A. Motivation

In a location system that is aided by VAPs, the received
signal strength (RSS) values at such VAPs are estimated
from real APs’ RSS values. These estimated RSS values are
then used together with the real APs’ RSS values during the
location estimation of a MN, as depicted in Fig. 1. Our VAP-
based location system is inspired by two key observations.
The first key observation is that, the fingerprint-basedtiona
system’s designer normally would have to provide location
services as a value-added service on top of an existing
infrastructure, thereby, having no control over the reas’AP
placements. However, previous work in the literature, ab we
as our own experimental results, have observed that certain
positions are more favorable than others for the placemient o
APs regarding localization. Although it would aid localima
if additional APs were installed at such locations, it may no
always be practical to do so. The second key observation
is that, a system’s location accuracy is usually enhanced by
an increase in the number of APs, as suggested by previous
work in the literature. Our VAP-based location system isabl
to accomplish the advantages suggested by the above two
observations, as follows:

« It creates APs (virtual ones) at preferred positions with
no additional hardware cost incurred upon the system.

« During theonlinelocation determination phase, the num-
ber of APs’ RSS values are now augmented by the VAPS’
RSS values, thereby enhancing the localization accuracy.

B. System Model

Just like any fingerprint-based location system, our VAP-
based system also has the same two phases, namebyfflihe
training phase and thenline location estimation phase. There
are only small additional changes in the two phases, which do
not incur any substantial burden upon the system. Moredver,
could actually help the system in achieving particular aacy
and precision without extra cost (e.g., without deploymant
additional real APs). We now discuss the two phases in detail

1) Offline Training Phase:

o Collecting SampledsFirst, we collect RSS samples at the
APs from the MN while placing the latter at different

TABLE |

CORRELATION MATRIX OF OUR TESTBED S THREE REAL APS’ AND TWO

MONITORING DEVICES RSS VALUES

AP, AP, AP; VAP, VAP,
AP;  1.0000 -0.2190 0.1457 -0.2333  0.4898
AP,  -0.2190 1.0000 0.0177 -0.0432 -0.0875
AP; 01457 0.0177 1.0000 -0.7785 0.1348

VAP, -0.2333 -0.0432 -0.7785 1.0000 -0.3278

VAP, 0.4898 -0.0875 0.1348 -0.3278  1.0000

locations over our testbed, similar to the traditional
fingerprint-based systems. The only difference is that,
RSS samples are also collected by placing monitoring
devices at the potential positions of VAPs at the same
time. Now, if there areN APs, and that\/ VAPs are

to be generated, each RSS sample vector in the database
takes the form of al§ + M)-dimensional vector:

[P(APy), P(APy) ... P(APy), P(VAP,),... P(VAP,)],
where P(AP;) is the RSS at the" AP, and P(VAP;) is

the RSS at theé" VAP position. Without loss of general-
ity, we assume that the monitoring devices’ hardware are
of the same type as those of the APs.

Statistical Analysis and Creation of VAP Modshrious
statistical tools can be applied to the gathered training
samples in order to create an appropriate VAP model. For
example, in Table I, we have shown the space correlations
of our testbed’s three APs’ RSSs and two monitoring
devices’ RSSs from a MN, when the two monitoring
devices are placed at the VAPS' positions indicated in
Fig. 5. The absolute value of each entry in Table |
indicates the degree of linear dependence between a pair
of APs with regard to the RSS samples collected during
the training phase. The strong correlation betweeg' AP
RSS and the first monitoring device’s RSS (placed at
VAP;’s position in Fig. 5) made us believe that, there
are certain relationships between two APs’ RSSs, such
that knowing one or more APs’ RSSs may give us a
measure of another AP’'s RSS. Hence, the idea of VAP
has blossomed. We have used simple least-mean square
multivariate linear regression model in order to forecast
a VAP's RSS:

N
P(VAP)) = aj, + Y _ a;, P(AP;).

i=1
Here, P(AP;) and P(VAP;) represent the RSSs of the
i™ AP and thej™ VAP from the MN, respectively. Also,
thea;,’s are the regression coefficients with regard to the
4™ VAP, and thatN real APs are considered in inferring
this particular VAP's RSS equation. The calculation of
regression coefficients is shown in Appendix A. Using
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the shadowing model under some simplifying assump-
tions, we have also validated that our linear regression
approximation is a reasonable one, which we will discuss
in Section II-C.

Fig. 2 illustrates our linear regression model’'s perfor-
mance when the VAP is placed at four different locations. 50
For this experiment, we have used one set of training o 5 ° ¥ coodnates

samples to generate the RSS prediction formula for

the VAP, and tested its performance on another set. In (b) APs's position is fixed - VAP’s positions are changed over the
accordance with our previous discussion, we see that, whole area giving different correlation factors w.r.t. AP

placing VAPs at different locations does not provide thgg. 3.  Using simulations to identify potential VAP positioiby plotting
same performance in predicting RSS. In other words, titee correlation factors of different VAP positions w.r.tfised AP. The AP
prediction error is small at some VAP positions (e_gﬁgalnst which the correlations are calculated is marked aviillar.

Fig. 2(b)), whereas at other VAP positions it may be a
bit high (e.qg., Fig. 2(a)).

Before starting with the sample collections, it is helpful t
perform simulations to obtain some intuition about where
to place the monitoring devices, which will ultimately be
the positions of the VAPs. In our case, simulations using
the simplified shadowing model (without the variation
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the APs. As will be seen later, our experimental results in
Section 1lI-B are also more favorable when we consider
VAP, rather than VAR (their positions are indicated by
shaded circles in Fig. 5). This strengthens the fact that,
simulations can actually help in finding a potentigod
position for a VAP. In the worst case, one may need to

factor) gave us insightful pointers in placing the VAPs perf_orm the sarr]ple gqllection phase again if the initial
(see Fig. 3). We have empirically obtained the path-loss choices of VAPs' positions turn out to be bad ones.
exponents of the shadowing model from the collected 2) Online Location Determination Phasen this phase,
training samples, in order to model our testbed in th@nly the real APs will be collecting RSS samples from the
simulations. To obtain the results of Fig. 3(a) and 3(b), WwdN. For example, in Fig. 1, there will be no monitoring
have fixed the APs but varied the positions of the VAP#&levice at the VAP's position. Hence, the RSS vector will now
We then generated artificial RSS samples over the whdlave a dimension ofV, i.e., [P(APy), P(AP;)... P(APy)].
localization area according to the simplified shadowinBY Plugging these values into the RSS prediction formulas
model for each position of the VAP, and calculated itgf €ach VAP (as in (1)), we will obtain thé/ VAPs’ RSSs.
RSSs’ correlation with respect to the fixed AP showhhe next steps are similar to any fingerprint-based location
in the figures. In both figures, we see that, those VASystem. The only difference is that, instead of using an RSS
positions that are close to the fixed APs tend to hag@mple vector of dimensiofV, we are using an RSS vector
h|gh correlation factors. An interesting observation &tth of dimensionNV + M, in order to infer the location estimate.
from Fig 3(b), the VAP positions at the opposite end of
APj3 also have better prospects, as can be seen from fhe
strongly negative correlation factors. The position of our SupposeP(d) and P(d,) denote the received power of
VAP, is eventually chosen to be at the opposite side af device at an arbitrary distaneeand a close-in reference
AP3, after performing extensive simulations among allistanced, from a transmitter, respectively. From the log-

Validation of Linear Regression Approximation
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Fig. 4. The distribution of differences between real anddjsted distances K RealAccess Point @ Virtual Access Point

of a VAP from 20 training points — the error bars are drawn at tifaining

points for which the distances from the VAP were calculated. . . .
Fig. 5. Our experimental testbed — the three APs are markedhess sthile
the two VAPS' positions are shown as shaded circles.

normal shadowing model, we get

: P(d) s = 10810 (i) Ly @ Simplifying (6), we finally obtain
P(d,)'® B, ' dvap ~ do'd1“ ds® ... dyON. (7)
The first part of (2) defines the path loss componghis(the  Eqn. (7) reflects that the distance of VAP from any training
path loss e_xponent) and the sec_ond_ part reflects the varia%int can be represented using the distances of the APs
of the received power at a certain distanée { N(0,0ds))- from the same training point, together with the regression
Eqn. (2) can be rewritten as, coefficients of the VAP's RSS equation. Fig. 4 shows the
. differences between real and predicted distances (olstaine
P(d)ldgm = P(dr)ldgm — 105 10g(dr) = using (7)) of a VAP from the locations where training samples
—1081log(d) + X. () have been collected. We see that the predictions using €7) ar
From (1), we know that, quite good \_/vith an average error of _oril;57 m. This va!idgtes
that our claim of linear regression fit for VAP’s RSS is indeed
a reasonable one. In order to obtain Fig. 4, we first came up
with the regression equation from the training samples, and
also calculated the value gf empirically to getdy. Since we
Here, P(AP;) and P(VAP) represent the RSSs of ti#8 AP know the distances of the APs from each training point, we
and the VAP due to the MN, respectively. Since we assuriiét predicteddyap using (7) for each case, and compared it
that the path-loss exponept is the same over our testbedWith the real distance.
and that the monitoring device placed at the potential VAP’s
position collecting RSS samples would be of similar hardwar _ ] ) , ]
as the real APs, th8(d, )|qpm and—103 log(d, ) factors of (3) First, we briefly describe our system’s experimental testbe

are similar for all devices. Using this property, (4) can pand our data collection procedure. We then present our iexper
simplified as mental results. Note that all the experimental resultsepries!

in the previous section are also based on this same testbed.

N
P(VAP) =ag+ Y _a;P(AP;). (4)

i=1

IIl. L OCALIZATION EXPERIMENTAL RESULTS

—10p31og(dvap) + Xvap = A. Experimental Testbed

N N
ag — 1052%. log(d;) + Z ai X;, (5) Our experimental testbed is located inside an amphitheater
i—1 =1 of our school which spans over an area of 540 50 x 30
d grid has been considered to map our whole area. We have used
three Aopen MP945 Mini PCs to serve as our APs, which are
, . N placed near the ceilings. The locations of these APs arershow
that all X;'s are independent, s ;" a;X; follows a nor- . " - . .
L e A p=1 . in Fig. 5, marked as stars. Each Mini PC is incorporated with
mal distribution. For simplicity, by eliminating the Gaiems .
. ) . a BT-2100 Class 1 Bluetooth adapter, and is also connected
variation factors from both sides of (5), and assuming th{'_;\t hool's i f o ith th
— ~108log(dy), we get 0 our school’s intranet for communicating with the servgr b
@0 0/s means of a wired LAN connection. All our Mini PCs run SuSe
N 10.1 Linux distribution with the latest BlueZ protocol stac
—1081log(dyap) = —1081log(dy) — 10ﬁ2ai log(d;). (6) We have either used the Mini PC or a laptop equipped with
i=1 the same BT-2100 Bluetooth adapter as the monitoring device

where d; is the distance between ARand the MN, an
X, is the variation factor associated with APNMe assume
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considered — for this experiment, we have considered a maxinfufauo
real APs (placed at the positions labeled as,’ARAP ', ‘AP35’ and ‘VAP;’
in Fig. 5). In each case of the three pairs of bars, the rightlithin the pair
hows the result when a VAP has been considered in place offcthe four
at the potential position of a VAP. Two such VAP pOSItlonﬁ\pS The left bar within the pair shows the result when neith&AP nor an
which we have considered in our experiments are shown AR has been considered at that same place (i.e., only lefttii¢e real APs).
Fig. 5, marked as shaded circles. The horizontal line gives the error when all four real APs emesidered.

Fig. 6. Performance of various combinations of APs and VAPddcation
estimation — the KNN algorithm has been used.

. It is interesting to note in Fig. 7 that, the use of VAP
B. Data Collection Procedure (refer to the rightmost bars) actually performs better ttran
Our Bluetooth APs continuously issue inquiries which thease where a real AP is placed at \{A&Pposition (refer to
mobile devices respond to. These response packets’ inforrtt@e horizontal average error line at around 3.3 m). Thisaoul
tion is immediately transferred to our central server, \whicbe due to two reasons — firstly, that position was the best in
filter out all the other packets’ information apart from theerms of placing a VAP, and secondly, the collected samples
training samples. In other words, only training samples’ inncorporated much noises for the real AP’s signals when the
formation will be stored in the database. The central serv&P was placed there.
is also responsible for calculating the location estimblste 2) Impact of the Number of VAP&rom Fig. 6, it is evident
that our Bluetooth adapters provide absolute RSS metric. thiat the inclusion of a VAP at a reasonable position improves
addition, rather than using pure RSS values, we have wdilizthe localization accuracy compared to the scenario whee the
Signal Strength Differences (SS[B] to denote a location’s is none. Moreover, we also find that, a location system with
fingerprint, which give better performance. two VAPs outsmarts those systems with only one VAP. This
i . phenomenon complies with the findings of prior works that
C. Experimental Results and Findings report monotonic increase in accuracy with the number of APs
1) Impact of Positions of VAPsIn Section 1I-B, our Our contribution is that, we can achieve it without actually
simulation results have suggested that YAPposition is a employing additional APs in that area; we only need to create
good one. Fig. 6 strengthens this claim, since the loca@dizat VAPs at favorable positions from the already existing APs.
accuracy achieved when VAR included turns out to be better
than the case when VAHs included. As we have discussed, IV.  CONCLUSION AND FUTURE WORK
not all positions may be favorable for the placements of In this paper, we have proposed a new VAP-based position-
VAPs. For example, in Fig. 7, the average localization erré?g system, which aims to improve the localization accuracy
actually worsens when a VAP is considered abAPosition, and cost-effectiveness of a system that utilizes existmg i
compared with a system that does not incorporate any VARstructure to provide location services. We have disetiss
(the leftmost pair of the bars). By inspecting Table |, wétuitive guidelines about how to choose the VAPS’ position
observe that APs RSSs have very little correlation with theand found that our linear regression based prediction famu
other APs’ signals, which may have ultimately resulted in #r VAP's RSS has performed quite well. Based on our
bad prediction model. On the contrary, the inclusion of YAPanalysis and experimental results, the following condusi
reduces the average localization error immensely, as ®evidéan be drawn:
in Fig. 7 (the rightmost pair of the bars). Upon inspecting « Our main contribution is that, for a system with limited
Table |, we see that VAPhas the best correlation factors number of APs, the localization accuracy may be im-

w.r.t. other APs, which helps explain why our prediction ralbd proved significantly with VAPs. We also contend that the
utilizing the other APs’ RSSs to predict the RSS at YARS choice of the VAPS’ positions plays an important role in
turned out well. Our simulation results previously present achieving that goal, and hence it should be done carefully.

in Section 1I-B have also foretold that the position of VAR « Fingerprint-based positioning system is known to be cost-
a good one. effective itself, because of the use of existing infrastruc



ture. VAP can further reduce the cost, since it provided = [ag a; ... ax =17, P, =[1 P} P2 ... PN pet

AP’s functionality for localization purpose, without everHere,Plj and P,YAP represent the RSSs of th& AP and the

being a physical entity. monitoring device placed at the VAP position, respectively
« The mismatch of dimension of RSS vectors collectesthen the MN is stationed at training locatidn Now, our

during offline and online phases is a known problem foraim is to minimize(As;)* over all the L training locations.

any fingerprint-based positioning system, because of t@®nsequently, the optimization problem becomes,

absence of some APs in tloaline phase. VAP may help L I

in that regard by deriving QII. the APs’ RSS prediction pinimize Z(A51)2 _ Z(ATPZ)(AT,PZ)T

formulas based on the training samples. When one of P

them is off, its RSS value can be predicted using the

otherlive APs’ signals. =
« At first glance, VAP-based positioning system may give

the impression of putting substantial burden on the train- L

ing phase of a fingerprint-based location system. But we = AT Z(PZPIT)A =ATBA

have seen that, if the initial choices for placing the VAPs 1=1

are promising, it does not incur any additional burden fosrubject toCTA = 1, whereC = [1 1 ... 1 O]T and B —
the training phase.

L T At o ; )
. The advantages offered by our VAP-based positioni%lél(ﬂn ). The objective function incorporating the con
raint can be written as,

system can be realized with any choice of existing
fingerprint-based localization algorithms. In this paper, L(AN) = ATBA+ (1 —-CTA)

we have only used the well-known KNN for all the . o
localization experiments performed. where ) is Lagrangemultiplier. Subsequently, we can come

In summary, our VAP-based positioning system improveu§) with the following equations,

I
—

(ATP)(P,T A)

] =

Il
_

the localization accuracy offered by current fingerpriaséd %(A* A) = 2BA - AC=0
techniques with no additional hardware cost. In the foltayyi OAY
we list some future directions that we foresee: - A= Y o)
o Only linear regression has been used to predict VAP’s 2
RSS from the other APS’ signals — more complex rela- or
tionships may provide better results. —AN) = 1-cTAa =0
« In our testbed, the number of APs were low, so we have 2 T 1
used all of them to obtain a VAP’s model. Consider a = 1- ACBTC =0, using (8)
scenario where many APs are available. Based on the 2
nature of those APS’ signals, only a few of them may = M= ﬁ 9)

be used for a particular VAP’s model. In other words, o _ _
preprocessing of the signals from the APs may lead #8ugging in the value o™ from (9) into (8), we obtain the
to select a subset of the available APs, rather than usiggtimum values of the regression coefficients, = f _Cl ]
all, and this might provide interesting results. crB—1c
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