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Abstract. Evacuation simulation has the potential to be used as part of a decision
support system during large-scale incidents to provide advice to incident comman-

ders. To be viable in these applications, it is essential that the simulation can run
many times faster than real time. Parallel processing is a method of reducing run
times for very large computational simulations by distributing the workload amongst
a number of processors. This paper presents the development of a parallel version of

the rule based evacuation simulation software buildingEXODUS using domain
decomposition. Four Case Studies (CS) were tested using a cluster, consisting of 10
Intel Core 2 Duo (dual core) 3.16 GHz CPUs. CS-1 involved an idealised large

geometry, with 20 exits, intended to illustrate the peak computational speed up per-
formance of the parallel implementation, the population consisted of 100,000 agents;
the peak computational speedup (PCS) was 14.6 and the peak real-time speedup

(PRTS) was 4.0. CS-2 was a long area with a single exit area with a population of
100,000 agents; the PCS was 13.2 and the PRTS was 17.2. CS-3 was a 50 storey high
rise building with a population of 8000/16,000 agents; the PCS was 2.48/4.49 and the
PRTS was 17.9/12.9. CS-4 is a large realistic urban area with 60,000/120,000 agents;

the PCS was 5.3/6.89 and the PRTS was 5.31/3.0. This type of computational perfor-
mance opens evacuation simulation to a range of new innovative application areas
such as real-time incident support, dynamic signage in smart buildings and virtual

training environments.
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1. Introduction

The use of evacuation/pedestrian modelling is well established as part of building
design to ensure that buildings meet performance based safety and comfort crite-
ria [1, 2]. Another possible use for these models is to provide data, in addition to
sensor information [3, 4], to a decision support system that in turn provides live
operational advice to incident commanders while disasters are actually unfolding
[5]. Live decision support systems that have been suggested include: the FireGrid
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[6, 7] system that was designed to aid emergency responders using a combination
of artificial intelligence, sensor data, and predictive computation; the EU FP7
GETAWAY project [8] developed a system where the emergency signage within a
complex building can adapt to a developing hazardous environment and direct
occupants to their optimal exit point using information from smoke and fire
detectors, live CCTV streams, and fire and evacuation simulation. The smoke and
fire detector data identifies the most closely matching scenarios from a large data-
base of precomputed fire simulations. The GETAWAY system relies on the build-
ingEXODUS evacuation simulation software [9–12] to run evacuation simulations
representing all the alternative evacuation strategies and identify the best route
out of the structure given the evolving situation. Such a system is potentially lim-
ited by the size of the scenarios that can be simulated and the time required to
perform not one, but many simulations. While there are many considerations
which must be taken into account when applying such models to live incidents,
one of the first concerns the speed of computation. In this case the insight that
could be obtained from an evacuation model is only useful if that information can
be used to affect the ongoing incident. Thus for this type of application to be use-
ful, it is essential that the simulation can be run many times faster than real time.

Faster runtimes are also useful in the commercial environment where the mod-
elling can be performed more quickly or to a greater level of detail than would be
possible using a conventional non-parallel version of the software. In addition to
faster runtimes the parallel implementation also allows the possibility of running
larger problems than was previously possible. Evacuation simulation tools capable
of simulating large scale events have been used to forensically analyse past tra-
gedies such as the Love Parade in 2010 [13, 14] and the Hajj in 1990 [15, 16] and
2015 [17]. However, the large scale of these events, both in terms of area and
number of people, limits the level of detail that can be represented within these
evacuation simulations. The use of the parallel implementation not only results in
faster runtimes but also enables the possibility of running larger problems at a
higher level of detail than previously possible due to the extra memory available
across the processing units. Similarly, the greater speed of computation and
greater detail that can be achieved using a parallel implementation make these
tools better suited to the planning of large-scale events [18].

Parallel computing techniques are one way of reducing run times for very large
computational simulations. Other ways of reducing runtime can be achieved by
using macroscopic models, hybrid models [19], improved algorithms and faster
hardware. A typical parallel implementation distributes a simulation across a
number of computers making use of the available memory and processing capabil-
ities of all the computers in the cluster or network. There are two main benefits
associated with this approach. Firstly, larger scenarios can be modelled than
would be possible with an evacuation model running on a single computer. This
allows the simulation of very large building complexes or potentially even large
urban spaces to be modelled in far greater detail than was previously possible.
Secondly, large scenarios can run more quickly than was previously possible and
potentially much faster than real time.
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Most pedestrian evacuation models can be described as macroscopic or micro-
scopic although some models can be described as mesoscopic [20–22]. The macro-
scopic approach (also known as coarse network models [1, 2, 23]) do not
represent individuals but treat the population more like a fluid. They can repre-
sent very large scale evacuations and compute them in short timeframes on a sin-
gle PC without the need for parallel computation. However, macroscopic models
cannot easily represent detailed human behaviour and the interaction of individu-
als [21], e.g. it is difficult to examine contra-flow. The alternative microscopic
approach models the crowd as a collection of interacting agents and so potentially
has the ability to represent and predict interactive behaviours. There are three
commonly used approaches to representing agent behaviour within microscopic
evacuation models: Cellular Automata (CA) [24], Social Forces based models [25–
27], and rule based models [9–12, 28, 29]. CA methods have been parallelised
across multiple processors [30] but CA methods are particularly well suited to par-
allelisation on a SIMD (Single Instruction Multiple Data) platform [31] such as a
General Purpose Graphical Processing Unit (GPGPU) [30, 32, 33] or a Field Pro-
grammable Gate Array (FPGA) [32] due to each grid cell being computed in the
same fashion but with different data. However if complex interactions/behaviours
are to be represented involving agents utilising information obtained from beyond
their immediate vicinity the effectiveness of SIMD parallelism will be affected.
Parallelisation can also be applied to social forces based models [34, 35]. In evacu-
ation models utilising the Social Forces approach the movement of agents is gov-
erned by equations representing virtual forces within a continuous spatial domain.
Social Forces models appear to be very computationally intensive and so can
potentially greatly benefit from a parallel implementation. For example, Steffen
et al. [35] noted that an evacuation simulation of a stadium involving 20,000 occu-
pants using a parallel implementation of a Social Forces based evacuation model
could be performed approximately five times faster than real time using a parallel
computer utilising 180 processors.

The work presented in this paper differs from the earlier work on parallelisation
of evacuation models by exploring the parallel implementation of a rule based
evacuation model. Given the differences in the formulation of rule based evacua-
tion models and the computational costs associated with rule based models com-
pared with CA and Social Force models, it is unclear how effective parallelisation
can be for this type of model. Furthermore, most of the earlier parallel implemen-
tations were simply concerned with reducing the execution time of the simulation
[30, 33, 34] but not necessarily as part of a live incident, where significantly faster
than real time performance is required. Two implementations were specifically
concerned with running faster than real time for use in a live incident [32, 35].
The Giitsidis et al. [32] model ran on specialist hardware (FPGA) is reported to
achieve run times over 107 times faster than real time when applied to a small air-
craft carrying 150 passengers. It is unclear, from the available literature, if this
model could be extended to simulating larger environments. Steffen et al. [35]
demonstrated their parallel social force evacuation model on a sports stadium.
The simulation of the stadium evacuation involving 20,000 pedestrians could run
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approximately in real-time when 24 processors were used and when 180 processors
were used could run approximately five times faster than real time.

Before evacuation simulation could be considered useful for real time applica-
tions, sufficient speedup over real time must be achieved in order to allow incident
managers sufficient time to assess the information and suggest potential mitigation
strategies. Even if the management system is automated, sufficient time must be
available to implement the alternative strategies and for the alternative strategies
to be effective. Thus it is suggested that speedups of at least an order of magni-
tude (10+ times) over real time would be required before evacuation simulation
could begin to be considered useful in real time applications.

There are two potential strategies for parallelisation of the evacuation simula-
tion; these are population decomposition and domain decomposition.

Population decomposition sub-divides the population with each processing
thread responsible for a particular population sub-group i.e. an individual will
always be simulated by the same processing thread. This approach is potentially
attractive on a single multi-core/multi-CPU shared memory (SM) based PC using
OpenMP [36] or multithreading. However, extending this approach to a dis-
tributed set of computers (i.e. a cluster) has a number of shortcomings. Each com-
puter must accommodate the entire geometry which would restrict the maximum
size geometry that could be simulated no matter how many computers were used.
Also there is potentially a large amount of interaction between the agents simu-
lated on different computers which may incur additional code complexity and high
communication costs between the computers.

Domain decomposition is based on a systematic partitioning of the problem
domain (geometry) onto a number of sub-domains (sub-geometries) and is the
method generally used in parallelising Computational Fluid Dynamics (CFD)
based simulations including fire simulations [37–40]. Each sub-domain is com-
puted on a separate processor and runs its own copy of the evacuation simulation
software. At the boundary of the domain partitions, each sub-domain must com-
municate with its neighbouring sub-domain to transfer agents from one sub-do-
main (and therefore computer) to another sub-domain (computer) as they move
through the environment. Using this strategy, many computers will potentially be
responsible for handling the movement of a particular agent through the environ-
ment. This was the strategy adopted in other parallel implementations [30, 32–35].

In this work a domain decomposition approach is applied to the rule based
evacuation simulation software buildingEXODUS [9–12]. The parallel implemen-
tation is implemented on distributed memory cluster computer networks and a
series of tests evacuation simulations are used to gauge the real time and compu-
tational speedup achieved.

2. Parallel Implementation

The implementation effort required for an advanced egress model can be substan-
tial before considering the parallel processing. It was therefore decided to base the
parallel implementation on an existing advanced egress code, buildingEXODUS.
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buildingEXODUS is a well validated software product and the source code was
readily available to the authors.

The buildingEXODUS software has been described many times in the literature
[9–12] and so only a brief description is provided here. EXODUS is a suite of
software tools designed to simulate the evacuation of large numbers of people
from complex enclosures. The software is a multi-agent simulation environment
that utilises a two-dimensional grid of nodes to represent space. The software
takes into consideration people–people, people-fire and people-structure interac-
tions. The model tracks the trajectory of each individual as they make their way
out of the enclosure, or are overcome by fire hazards such as heat, smoke and
toxic gases. The behaviour and movement of each individual agent is determined
by a set of heuristics or rules. The spatial grid maps out the geometry of the
building, locating exits, internal compartments, obstacles, etc. The grid is made up
of nodes and arcs with each node representing a small region of space and each
arc representing the distance between each node. Individuals travel from node to
node along the arcs.

In creating a parallel implementation of an existing serial code that has a wide
international user base there are a number of core requirements that the parallel
implementation must satisfy in order to make the parallel version of the software
both flexible and easy to adopt by the existing user base. These include the follow-
ing considerations:

� There should be no difference between the input or output files for the serial
and parallel implementations of the software. This will allow applications to be
designed and the results visualised using the familiar serial components of the
software.

� The parallel implementation should work on any number of processors.
� Minimal additional investment (in time and hardware/software) should be

required by the engineer to effectively run the software. The system should
work on a conventional set of PCs attached via a standard LAN as well as a
dedicated cluster.

� The parallel implementation is intended to function in a Microsoft Windows
environment.

An additional requirement imposed by the software developers was that there
should only be one EXODUS source code i.e. separate parallel and serial source
codes would not be developed. Having a single software source code is desirable
in order to minimise the effort required to maintain the product. Thus the parallel
code was developed by modifying the existing serial source code.

There are a number of parallel processing technologies available that include
multi-core CPUs, networked computers (e.g. specialised clusters or general office
networked computers), GPGPU and FPGA.

Although GPGPU and FPGA coding looks attractive for evacuation simulation
[32], due to their impressive performance compared to CPUs, it is difficult to
apply to a rule based evacuation model where each agent will follow its own
branching path of execution within the software making it unsuitable, at present,
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for a SIMD type processor [31] which can only perform a single execution branch.
Another issue is the complexity of the buildingEXODUS software which has hun-
dreds of thousands lines of code making writing a GPGPU or FPGA version a
major undertaking even if it was suitable.

buildingEXODUS software is suitable for a Multiple Instruction Multiple Data
(MIMD) [31] style of parallel processing as MIMD systems are able to simultane-
ously execute multiple execution pathways. Both multi-core CPUs and networked
computers are MIMD systems. MIMD systems are able to simulate different
branches of execution which is required for the rule-based movement used within
buildingEXODUS.

The de-facto Application Programming Interface (API) for distributed parallel
processing is MPI (Message Passing Interface) [41] and the version created by
Argonne National Laboratory, MPICH2 [42] for Windows, was used to facilitate
the parallel implementation. Using this API reduces the amount of programming
effort required to make a parallel implementation that works on both multi-core
CPUs and networked computers.

2.1. Software Parallelisation Strategy

Domain decomposition was the chosen parallelisation strategy for this implemen-
tation as it favours the Distributed Memory (DM) model of parallel processing
and was the strategy adopted in other parallel implementations [30, 32–35]. In PC
parlance this is a network (or cluster) of PCs linked together via some form of
Local Area Network (LAN). It should be further noted that the program written
for a DM system would also run on a SM machine removing the need for two
separate parallel versions. The decomposition concept is illustrated in Fig. 1 where
the domain is simply split into two sub-domains; however the domain can be split
into many sub-domains.

The code was designed using the Single Program Multiple Data (SPMD) paradigm.
With this methodology only one executable is used and a copy of the executable is
launched on each processor which operates on its own part of the problem domain.
Typically there is one process that handles the I/O and problem distribution, this is
the master process (process 0). The other processes are exactly the same as one
another and only differ slightly from the master; the master process was also responsi-
ble for visualisation and collection of the results to a single output file.

2.2. Agent Transfer and Movement Across Sub-domain Boundaries

In creating the sub-domains a series of Halo nodes are added to each partition
boundary of each sub-domain (see Fig. 1). Essentially, Halo nodes are an addi-
tional series of nodes that are added to the partition boundaries of a sub-domain
that copy the information stored in the boundary nodes of the adjoining sub-do-
mains. We refer to the additional series of nodes added to the partition boundary
as Outer Halo nodes, while the series of nodes within the sub-domain on the par-
tition boundary are called Inner Halo nodes. The Halo nodes are used to pass
information between neighbouring sub-domains concerning the movement of indi-
viduals between the neighbouring sub-domains as illustrated in Fig. 2. Here the
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domain has been split into two sub-domains with each sub-domain being placed
on a separate computer. Each computer is responsible for performing the compu-
tations for the evacuation simulation for the agents who are located on their
assigned sub-domain. In the example shown in Fig. 2, the agent is moving from
left to right and must transfer from one sub-domain to the other. The movement
across sub-domain boundaries can be briefly explained as follows:

(a) In Fig. 2a, the agent is approaching the sub-domain boundary but is currently
controlled by the left hand sub-domain (LHSD).

(b) As the agent enters the Inner Halo region of the LHSD (see Fig. 2b), the
LHSD now sends a message concerning the agent stood on the Inner Halo
node to the right hand sub-domain (RHSD) and the RHSD now creates a
copy of the agent on its Outer halo node.

(c) As the agent moves onto the Outer Halo region of the LHSD (see Fig. 2c) this
information is sent to the RHSD which updates the agent on its side to move
to its Inner Halo region. At this point the agent is now controlled by the
RHSD.

(d) In Fig. 2d, the agent now continues its journey on the RHSD and as it moves
away from the boundary the LHSD is instructed to delete its copy of the
agent as that copy is no longer needed.

Inner Halo / 
Boundary nodes 

Outer Halo 

Inner halo of one sub-geometry is mapped 
to the outer halo of adjoining sub-geometry 

Partition geometry 
into sub-geometries 
and add halo nodes 

Figure 1. Example decomposition of a computational domain into
two sub-domains.
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2.2.1. Synchronisation In the above explanation the communication model has
been simplified. It is not the case that one computer can simply send a message to
another. The communication needs to be arranged to ensure that the appropriate
computer is ready to receive a message and the corresponding computer is sending
the message. Failure to correctly orchestrate this communication can lead to dead-
lock. This occurs when both computers are waiting to receive a message from
each other but they will wait forever as the message will not be sent until a mes-
sage is received from the other computer. This was solved by using a convention
based on the sub-domain numbering and using partial non-blocking communica-
tion. All sub-domains are uniquely labelled 0 to N-1, where N is the total number
of sub-domains. This leads to the general case that each sub-domain will have
boundaries with both lower and higher numbered sub-geometries.

These boundaries can be classified as low (neighbouring sub-domain has a
lower number) and high boundaries (neighbouring sub-domain has a higher num-
ber). In order to remain synchronised every sub-domain initiates a ‘receive’ from
its low boundaries and simultaneously ‘sends’ update messages to its high bound-
aries. All boundaries wait until they have successfully received a message from
their low boundaries. Once this has been achieved the computers initiates a ‘re-
ceive’ from the high boundaries while simultaneously sending update messages to
the low boundaries.

2.2.2. Parallel Movement Algorithm Within EXODUS the overall simulation is
governed by the global Simulation Clock which ticks every 1/12 s. On even ticks
agents decide what their future actions will be; this is generally a movement

(b) Agent enters Inner Halo(a) Agent approaches sub-domain boundary

(c) Agent moves to Outer Halo (d) Agent now moves on 
neighbouring sub-domain

Figure 2. The movement of an agent across sub-domains in the par-
allel version of EXODUS.
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towards the nearest exit, on odd ticks the movement is performed [9]. The popula-
tion is looped over until all the PETs (Personal Elapsed Time) of each of the
agents has incremented beyond the Simulation Clock due to a movement to the
next node or in congested flows a decision to wait in its current position until the
next tick of the global Simulation Clock. The global Simulation Clock keeps tick-
ing until the scenario finishes.

The algorithm for the parallel implementation is essentially the same as that for
the serial implementation except that the population is looped over in sub-groups
related to their proximity to sub-domain boundaries. These are the high-boundary
group, the low-boundary group, and the non-boundary group. The boundary
groups are further sub-divided into communication groups and computation
groups. A communication group consists of agents that are on the inter sub-do-
main boundary and consists of agents on the inner and outer halo nodes of a sub-
domain. A computation group consists of agents on the inner halo nodes and the
neighbouring set of nodes within the sub-domain. The non-boundary computation
group consists of all the agents that are not members of a boundary computation
group within the sub-domain. This arrangement ensures that agents in the non-
boundary group cannot move directly into the high/low boundary communication
groups when computation and communication are overlapped in steps 3 and 5 in
the algorithm below. In Fig. 3, 4, 5 6 and 7 the computation groups are repre-
sented by a dashed line box, a sending communication group is represented by a
continuous line box, and a receiving communication group is represented by a
dash-dot line box.

Below is the logic used in the parallel movement algorithm, with the additional
steps required by the parallel algorithm highlighted in italics (steps 3–7).

1. Simulation Clock is incremented 1/12 s and the ticker is incremented by one
tick.

Figure 3. Example of communication and computation in step 3 of
parallel movement algorithm.

Increasing the Simulation Performance of Large-Scale Evacuations



2. If the number of simulation ticks is even then movement options for individu-
als are calculated then go to 1. Else if the number of simulation ticks is odd,
then the selected movement will be performed in steps 3–7, continue.

Figure 4. Example of computation in step 4 of parallel movement
algorithm.

Figure 5. Example of communication and computation in step 5 of
parallel movement algorithm.

Figure 6. Example of computation in step 6 of parallel movement
algorithm.
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3. The agents on high boundaries are sent to neighbouring sub-domains whilst at the
same time other agents are received on the low boundaries. Whilst the computers
wait to receive/send data from one another, members of the non-boundary group
are computed for potential movement until this communication is complete. This
is illustrated in Fig. 3. In a previous iteration or time-step agents A and C had
been moved to their locations. In the case of agent A this required an update to
its position in the lower boundary group. In the case of agent C that moved into
the high-boundary communication group a new copy of agent C is created on the
j + 1 sub-domain. Agent B in the non-boundary group was computed whilst the
communication was taking place.

4. The agents located around the low boundaries of a sub-domain are computed for
potential movement. In Fig. 4 agent D is seen to move away from the boundary
and will no longer be part of the low-boundary communication group but will be
part of the low-boundary computation group. Agent E crosses over to sub-domain
j and leaves the low-boundary computation group of sub-domain (j + 1) although
it is still a member of the low-boundary communication group of sub-domain
(j + 1).

5. The agents on low boundaries are sent to neighbouring sub-domains whilst at the
same time the agents are received from high boundaries. Whilst the computers
wait to receive/send data from one another, further members of the non-boundary
group are computed for potential movement until this communication is complete.
In Fig. 5 agent D’s movement is communicated to the high-boundary communica-
tion group of sub-domain (j - 1) and is deleted from sub-domain (j - 1). Agent
E’s position is communicated from sub-domain (j + 1) to sub-domain j and its
positon is updated on sub-domain j. Agent G and F’s movements in the non-
boundary group are performed during the communication.

6. The agents located around the high boundaries of a sub-domain are computed for
potential movement. In Fig. 6 agent H moves from the high-boundary computa-
tion group across the boundary onto the outer halo nodes of sub-domain (j - 1).

7. Any remaining members of the non-boundary group that were not processed dur-
ing step 3 or step 5 are computed for potential movement. In Fig. 7 it can be seen

Figure 7. Example of computation in step 7 of parallel movement
algorithm.
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that various agents of the non-boundary group are moved. At this point agent H
has not been updated on sub-domain (j). This update will occur when step 3 of
the algorithm is performed again.

8. Due to movement conflicts between agents some of the agents will need to be
reprocessed. Go to step 3 until all the remaining agents’ PETs have been incre-
mented.

9. Go to 1 until all the evacuation scenario has finished.

One of the important developments in the parallel implementation of EXODUS
was the ability to overlap communication with calculation. This overlapping was
critical to obtaining good speedups as without this development the parallel and
thus runtime performance would have been significantly poorer. By overlapping
the communication and computation the order in which agents are processed can
be changed and due to the use of pseudo-random numbers in the software for
some decision making meant that no two runs were the same due to the addi-
tional randomisation now created by the network. This change in ordering is just
as valid as any other particular order but unlike the serial version of EXODUS,
the simulation cannot be repeated to give exactly the same result. An exact repeat
simulation could be obtained by removing the overlapping of communication and
computation at the expense of run time performance; though not generally useful
it was helpful to make the software run in this mode for the purposes of develop-
ment and debugging.

2.3. Decomposition Strategy

The decomposition strategy determines how many sub-domains to create and how
the sub-domains should be distributed to the various computers within the cluster/
network. A poor decomposition, or partition, can lead to poor load balancing on
the computers. This means that some of the computers utilised for parallel pro-
cessing are under-utilised and therefore the wall-clock time to run the simulation
is adversely effected. However, unlike CFD fire simulation, where a single domain
decomposition strategy may be appropriate for virtually all fire scenarios, for
evacuation simulation, the decomposition strategy is scenario specific. In the worst
case scenario, at least in terms of parallel performance, it is possible that the par-
allel performance will be no better and possibly worse than the serial performance
no matter how many computers are used if a poor decomposition is selected.

Consider a simple example involving a rectangular geometry in which there is
an exit at either end of the geometry and the population is uniformly distributed
throughout the environment. The population is further assumed to be smoothly
flowing with no congestion. If each agent moves towards their nearest exit, half
the population will move to the exit on the left and half will move to the exit on
the right. In this case the ideal partition for a network of two computers would
involve simply splitting the domain in half, with one half associated with the left
exit and the other half associated with the right exit.

However if the scenario involved the right exit being non-viable, the simple par-
titioning would be inappropriate as the computer allocated the right part of the
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domain would have increasingly less work to do as the population progressively
moves toward the only viable exit located on the left. A point would be reached
when the processor handling the right domain would be idle while the processor
handling the left domain would still be working hard.

A simplified analytical calculation of computational performance can be devised
if communication overheads and memory access speed are ignored. It is assumed
that z agents are uniformly distributed in the domain and travel with the same
speed and direction. The length of the domain is l. If a single computer was used
to compute the evacuation then the total work performed by that processor is,
(number of agents (z)) 9 (average distance travelled (l/2)), zl/2. In the case of two
processors using the decomposition suggested the calculation is split into 2 parts.
Whilst the right hand domain is being emptied, into the left hand sub-domain, the
work performed by the busy processor is, (number of agents on busy processor (z/
2)) 9 (distance travelled (l/2)), zl/4. The second processor is now idle and the
work done in emptying the remaining sub-domain is, (number of agents on busy
processor (z/2)) 9 (average distance travelled (l/4), zl/8. The total work done by
the busy processor is therefore 3zl/8. Computational Speedup (Sp) [43] is defined
as the time taken to run the simulation on one processor (t1) divided by the time
taken to run on P processors/computers (tp) i.e. SP = t1/tp. Assuming that the
work done is proportional to the time taken then the maximum computational
speedup of two processors over one processor for this decomposition would be 4/
3 (1.33).

Another difficulty with this simple partition is that it only applies to two pro-
cessors and cannot be generalised for any number of processors. If the population
was not initially uniformly distributed throughout the domain this would also lead
to a computational load imbalance.

These problems can be mitigated by using multiple sub-domains per computer
as illustrated in Fig. 8. In this decomposition the diagonally shaded areas are
computed on one processor and the crosshatched shaded areas are computed on
another. Using this scheme the workload is more evenly balanced. As the popula-
tion moves toward the exit both processors are generally kept busy, it is only
when the geometry has emptied to the last sub-domain that the second processor
becomes idle. By generalising the analysis that was performed previously the fol-
lowing analytical computational speedup Eqs. 1 for 2 processors can be obtained
when the domain is split into N equal sized sub-domains, where N is a multiple of
two.

SN2 ¼ 2N
N þ 1

ð1Þ

So if the domain is split into 6 sub-domains as illustrated in Fig. 8 the analytical
speedup is 12/7 (1.71) and as N tends to infinity it can be seen that the analytical
speedup tends to 2.

This methodology can be extended to using any number of processors and on
any arbitrary geometry using any decomposition strategy. For the above partition
for two processors the partition can be represented as 121212, if three processors
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were being used then the partition would be represented as 123123. With this
technique the computational load on each computer is kept well balanced and the
load is more evenly balanced with more partitions per processor. Equation 1 can
be generalised (see Fig. 9) to include any number of processors as well (Eq. 2).
The derivation of Eq. 2 and Eq. 5 is described in Appendix A. Equation 2 is used
to calculate the analytical computational speedups in case study 2.

SNP ¼ N 2P
N N þ P � 1ð Þ þ KP � K2 � HðKÞP ð2Þ

where

K ¼ N mod P ð3Þ

H Kð Þ ¼ 0; if K ¼ 0
1; if K > 0

�
ð4Þ

If K = 0 then Eq. 2 simplifies to the following Eq. 5.

SNP ¼ NP
N þ P � 1

ð5Þ

It can be seen from this particular example (Eq. 5) that speedup improves as the
number of sub-domains increases. Equation 5 is not generally applicable but illus-
trates the advantage of the multiple sub-domains per processor decomposition
strategy.

However the disadvantage of this technique is the increase in communications
and hence communication costs associated with an increasing number of sub-do-
mains. The increasing cost is due to the increase in the number of sub-domain
boundaries which require agents to be transferred across. This communication has
an overhead and there will be a point where the advantage of better computa-

Exit 

2 1 2 2 1 1 

Figure 8. Evacuation domain consisting of rectangular geometry, one
exit and uniform population distribution split into multiple sub-do-
mains and allocated to two processors.
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tional load balance is outweighed by the extra communication cost. There is
therefore an optimal number of sub-domains which will give a peak speedup per-
formance. This balance between better load balancing that is achieved by having
more sub-domains, the number of processors utilised and the communication
overhead is explored later in case study 2. The general strategy used is to have
multiple sub-domains per processor that are distributed in such a way as to even
out the work load throughout the simulation.

3. Case Studies

To demonstrate the parallel implementation four different cases were examined
(see Table 1). It is not the intention of these demonstration cases to provide any
substantive analysis of evacuation behaviour but to demonstrate the performance
improvements possible using the parallel implementation of buildingEXODUS.
The first two cases are theoretical in nature and have been designed to gain a
greater understanding of the performance of the parallel implementation. The sec-
ond two cases are based on realistic scenarios; a high-rise building and a large
public gathering in a large urban space. Earlier results produced by a prototype
implementation of the parallel buildingEXODUS [44] have been improved using
the latest version of the parallel implementation described in this paper.

The cases demonstrated here have been tested on a 64bit-Windows cluster con-
sisting of 109 Intel Core 2 Duo (dual core) 3.16 GHz based computers connected
via a 1Gbit Ethernet switch.

The software is stochastic in nature and needs to be run a number of times,
generating a distribution of predicted evacuation times, which would also result in
a small distribution of runtimes. However, for the purposes of this demonstration
work only, the software was configured to operate in a deterministic manner.
Thus, in situations where some movement decisions/conflicts are sometimes deter-
mined by random selection, they have been resolved in a deterministic manner.
This was done to eliminate variability between simulations. This would further
ensure that the runtimes of the simulations were consistent. Each case study con-
figuration was run three times and it was found that there was less than a second

Exit 

P1 2

N-K-P+1 1

P1 2

P

K1 2

NN-K+1

Figure 9. A generalised domain decomposition for N sub-domains
and P processors where K = N (mod P) and N � P for a long area with
a single exit point.
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difference in runtime for any particular configuration. The predicted evacuation
time for each case study was identical across the serial and parallel configurations.

The results have been split into single core and dual core results. It has been
found in previous work that better speedups are obtained on two single processors
connected via a network compared to two processors (cores) on a shared memory
machine [38, 39]; typically dual cores operate at a computational speedup of 1.7–
1.9 compared to a single core. This effect is due to memory bus contention on the
shared memory computer with both processes trying to simultaneously access the
single memory bus within the computer. However, in some cases this memory bus
contention is so high that the use of two processors in a shared memory computer
produces little, if any, speedup compared to a single processor.

In the remainder of this paper two types of speedup will be discussed; these are
computational speedup and real-time speedup. Computational speedup compares the
run time of the parallel implementation against the serial or single processor run
time [36]. Real-time speedup, or speed up over real time, compares the run time of
the parallel or serial implementation of the software against the time required to
complete the evacuation as predicted by the software. More detailed tables of
results are available in Appendix B.

3.1. Case 1: Idealised Large Geometry

This test case is intended to represent an ideal case for the parallel implementa-
tion. It has been designed so that there is no sub-domain boundary interaction
and that the problem is well load balanced throughout the entire simulation. This
test was devised to explore the upper limits of speedup potential possible with
parallel buildingEXODUS.

The geometry is 4000 m long and 25 m wide producing an area of 100,000 m2.
There are twenty 5 m wide exit points located along one side of the geometry,
each separated by 200 m with the first and last exits being 100 m from each end
of the geometry. A population of 100,000 agents (1 person/m2) is uniformly dis-
tributed throughout the domain and move towards their nearest exit point.

In order to ensure the most optimal decomposition the domain is split into 20
equal sub-domains (each sub-domain has 5000 agents) and these are allocated to
each processor by taking the modulus of the sub-domain number with the total
number of processors used. Due to the layout of the geometry the population
does not have to cross between processor boundaries to reach an exit point.

Table 1
Case Studies Summary for the Parallel Implementation

Case Population size Area (m2) Exits

1. Idealised large geometry 100,000 100,000 20

2. Long open area 100,000 100,000 1

3. 50 Floor high-rise building 8000/16,000 90,000 8

4. Large public area 60,000/120,000 46,000 14
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The following configurations were used to test the speedup potential: 1, 2, 3, 4,
5, 7 and 10 single cores; 1, 2, 3, 4, 5 and 10 dual cores. Configurations that have
not been represented here would not give any speedup improvements on the con-
figurations that have been simulated. For example with 5 (single core) computers
each computer would have 4 sub-domains to process; if 6 (single core) computers
were utilised then 4 computers would have 3 sub-domains but 2 computers would
have 4 sub-domains and this would be limit the speedup to being the same as 5
(single core) computers. The analytical computational speedup in this instance is
calculated by dividing the total number of sub-domains by the maximum number
of sub-domains residing on any individual processor. The predicted evacuation
time for this scenario was 14 min 26 s and was consistent across all the parallel
simulations and the serial version of buildingEXODUS. The computational
speedup for the various permutations are presented in Fig. 10.

An impressive computational speedup of 10.9 was achieved using 10 computers
compared to a single computer. An examination of all the single core results
shows that a super-linear speedup, a speedup greater than the number of proces-
sors, is achieved for all the configurations. It is difficult to say precisely why a
super-linear speedup has resulted, but could be due to hardware effects [45, 46],
such as the increase in overall processor cache size.

The maximum computational speedup of 13.9 achieved with 10 dual core com-
puters is less than the analytical speedup of 20. The analytical speedup is based on
the premise that doubling the processor/core count would double the speedup.
This ignores the inter-processor communication cost and also the effect of cores
sharing the memory bus when the computer is utilising dual cores. These speedups
are good and are unlikely to be achieved for most practical scenarios. They do

Figure 10. Analytical and actual computational speedup for the ide-
alised large geometry (Case 1).
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however demonstrate a peak performance that can be achieved from this type of
application.

In a real scenario near peak performance will be achieved in the initial stages of
the simulation as there is likely to be a good load balance due to the initial popu-
lation distribution being reasonably uniform. However, as the simulation pro-
gresses it is expected that the parallel efficiency will decrease as the load becomes
unbalanced due to the movement of people.

It is also worth noting that on a single processor the simulation was some 3.5
times slower than real time for this particular simulation i.e. on a single processor
the run time was 3.5 times slower than the time required for the actual evacua-
tion. However, using 10 dual core processors produced a real-time speedup of 4.

3.2. Case 2: Long Open Area

This scenario consists of 100,000 agents in an open rectangular geometry measur-
ing 100 m by 1000 m producing an area of 100,000 m2 resulting in a crowd den-
sity of 1 person/m2. The crowd moves to the left to exit the geometry. The left
side of the geometry is completely open, creating a 100 m wide exit. This case can
be considered as a realisation of the analytical study in Sect. 2.3.

The geometry was sliced into N equally sized sub-domains in the same fashion
as illustrated in Fig. 9. For this case the domain was split into 20, 50 and 100
sub-domains respectively. Each of these partitions was examined using 1–10 com-
puters in both single and dual core processor modes and this resulted in 60 total
permutations for this one case.

The predicted evacuation time for this geometry is 14 min 20 s. This predicted
time was consistent across the various parallel implementations and with the serial
version of buildingEXODUS.

This particular simulation was designed to represent a non-congested exit flow
thus leading to a short overall predicted evacuation time with minimal computa-
tional requirements. The computational speedup for single and dual core configu-
rations are depicted in Fig. 11. The analytical speedup is calculated using Eq. 2.

Theoretically 100 sub-partitions should give the best speedup performance for
all the possible permutations due to the best load balance being maintained
throughout the simulation. In practice there are other factors that influence the
performance including the cost of communication, which increases with additional
sub-domains, and hardware effects such as increased cache size and, in the case of
multi-cores, a shared memory bus. The use of a shared memory bus and increas-
ing communication cost both reduce the actual performance from the analytical
prediction. Conversely the increased cache size made available by increasing the
number of computers improves the performance beyond the analytical prediction.
The actual speedup performance is therefore a combination of the load balance
and these other factors. When two computers are used, either in single or dual
core mode, the best partition is 20 sub-domains for this particular problem. This
is due to the analytical load balance being comparable to the other partitions but
the communication cost is far lower than the partitions with a higher number of
sub-domains. As the number of processor/cores is increased there is a greater
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divergence between the analytical speedups and therefore load balances. When 10
dual core computers are used the disadvantage of increased communication for
the 100 sub-domain partition compared to the 20 sub-domain partition is far out-
weighed by the improved load balance achieved.

The run time for a single core is 1.2 times faster than the predicted evacuation
time. The real-time speedup for 10 dual core processors using the 100 sub-domain
partition is 17.2. Additional processors should further improve the speedup.

3.3. Case 3: High-Rise Building

The high-rise building scenario consists of 50 floors with four emergency exit
staircases and a floor area for each floor of 1800 m2. The staircases are not
equally spaced within the building core leading to some of the staircases attracting
more people than others. This test case was run with two population sizes of 8000
agents (160 people per floor) and 16,000 agents (320 people per floor) that were
uniformly distributed throughout the building on each floor. Unlike the previous
case, this scenario involves a great deal of congestion as agents attempt to gain
access to the stairs and as they traverse down the stairs. The predicted evacuation
time for this case was 50 min for 8000 agents and 1 h 30 min for 16,000 agents.

The partitioning strategy adopted for this high rise building was based on divid-
ing the building into 25 sub-domains vertically i.e. two floors per sub-domain.
These sub-domains are then divided horizontally into four quadrants of equal
floor area with a staircase associated with each quadrant. In total there were 200
sub-domains used in the analysis.

The computational speedup obtained for both the single core and dual core
processors are presented in Fig. 12. We note that the computational speedup pro-
duced for the 16,000 agent population is significantly higher than the 8000 popu-
lation. Clearly, the performance of the parallel implementation improves with
increasing problem size. This is a well-known phenomenon with most parallel pro-
cessing problems where the speedup performance improves with increasing prob-

Figure 11. Single (a) and Dual (b) core actual and analytical compu-
tational Speedup for the Long Open Area (Case 2).
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lem size [47]. This is due to the relative decrease of communication time with
increasing computation size; this decrease is partly attributable to the fact that
network communications have a fixed start-up cost in addition to the cost of
sending the actual data. For this particular problem it is also related to the fact
that increasing the population size by a factor of two will approximately increase
the communication cost by a factor of two. However, the computational cost has
increased by a factor of 4.5 due to the increased congestion.

We also note from Fig. 12 that the performance for the 8000 population has
tailed off as more processors are added to the cluster, with no improvements being
derived from adding more than eight processors to the cluster. However, for the
16,000 population further improvements in performance could be derived by add-
ing additional computers (single core) to the cluster beyond 10, but the return
gained from adding additional computers is diminishing.

Using 8 single core computers, the evacuation of the 8000 population can be
simulated in 2 min 48 s. The predicted evacuation time is 50 min 7 s. This repre-
sents a real-time speedup of 17.9. The 16,000 population requires 1 h 30 min to
evacuate and using 10 processors the evacuation can be simulated in just over
7 min, representing a real-time speedup factor of 12.9.

From Fig. 12 it is noted that the dual core simulations can return poorer per-
formance than the single core simulations. Furthermore, unlike the single core
simulations, the speedup reaches a peak for the 8000 population with 7 processors
and 8 processors for the 16,000 population. Adding additional computers beyond
these critical values actually diminishes performance. As noted earlier, the perfor-
mance of the parallel implementation improves with increasing problem size. As
the dual core computers have a greater computational performance, they require a

Figure 12. Actual computational speedup for the high-rise building
(Case 3).
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larger problem size to make better use of the number of computers available in
the cluster.

3.4. Case 4: Large Urban Space

This case study is a rough approximation of the Trafalgar Square public area in
central London, UK. The usable pedestrian area measures approximately
46,000 m2 and there are 14 exit routes from the domain (see Fig. 13).

Two scenarios were created by populating the domain with 60,000 agents (1.3
p/m2) and 120,000 agents (2.6 p/m2). Unlike the other test cases the agents were
assigned exit points prior to the evacuation leading to more congestion than might
be expected from a more usual scenario where individuals leave via their nearest
exit point. The exit allocation is roughly proportional to the size of each exit and
the individuals allocated to a particular exit are randomly located in the domain.
The exit allocation used in this study is not intended to be an accurate representa-
tion of actual behaviour in large urban places but is simply used to test the paral-
lel implementation when agents will be contra-flowing and not simply exiting by
their ‘nearest’ exit.

The predicted overall evacuation time for 60,000 people is 10 min 27 s, and for
120,000 people is 21 min 49 s. It should be noted due to the lack of real data and
hypothetical exiting conditions for the individuals that no firm conclusions should
be drawn concerning the evacuation of Trafalgar Square from these simulations.
This test case is purely designed to investigate the performance of the parallel
implementation on a large urban space.

Figure 13. Example partition for large urban space (Case 4) with
five computers and 20 partitions.
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For this case the Metis [48] partitioning algorithm was utilised along with mul-
tiple sub-domains per processor. Metis is generally used for partitioning computa-
tional grids used in Computational Fluid Dynamics (CFD) and Finite Element
Analysis (FEA) for parallel processing. Metis divides the domain into a number
of sub-domains whilst minimizing the size of the sub-domain boundaries. For this
case 10, 20, and 32 sub-domains were created. An example partition is illustrated
in Fig. 13, where each coloured region represents each of 20 sub-domains within
the partition and each coloured sub-domain was allocated to one of five comput-
ers.

A visualisation of the evacuation of 60,000 agents is provided in Fig. 14 at 3
time slices and the congestion at a number of junctions is clearly shown. The com-
putational speedups for parallel buildingEXODUS on this test case are depicted in
Fig. 15 for a population sizes of 60,000 and 120,000 agents. Results for dual cores
are limited to 10 dual core processors due to time constraints and hardware avail-
ability.

While the performance derived from using 20 partitions with single cores
appears erratic it does produce the overall best single core performance for 60,000
agents returning a speedup of 4.73 from 10 processors. Clearly, as in Case 2, the
performance is dependent on the number of partitions used. Using the dual core
processors and 20 partitions a speedup of 5.3 from 10 processors is achieved.

It should be noted that the single processor performance is essentially equiva-
lent to real time i.e. it takes as long to compute the evacuation as it does to actu-
ally perform the evacuation. Using 10 single core processors with 20 partitions,
the run time is some 4.8 times faster than real time and runs in just over 2 min.

From Fig. 15 we note for the single core simulations, as the number of proces-
sors increases, the speedup also increases. Using 10 dual core processors with 20
partitions, the run time is some 5.31 times faster than real time and runs in just
under 2 min.

Using the best partition suggested by the study involving the population of
60,000 individuals the 20 sub-domain case was re-run using a population size of
120,000 agents.

(a) Start t = 0 minutes (b) t =2 minutes (c) t = 5 minutes 

Figure 14. Visualisation of the large public area evacuation (Case 4)
at 0, 2, and 5 min.
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As is expected, the larger problem size produces a greater computational
speedup. Using single cores, the run time on a single processor is more than twice
as long as the predicted evacuation time. However, using 10 single core processors
produces a speedup of 5.94 resulting in 10 single core processors running 2.6 times
faster than real time. Using 10 dual core processors the speedup is a factor of 6.89
on the single core processor time. This results in the 10 dual core processors run-
ning 3 times faster than real time.

In Fig. 15 there is an uncharacteristic drop off in performance for nine proces-
sors when 20 sub-domains are used. This is due to the nature of the distribution
of sub-domains on the computers. It is likely that one or two computers are sub-
stantially busier than the rest of the computers due to a poor load balance at
some stage of the simulation. Although this result is notable it can be seen that
the multiple sub-domains per processor is at least partially successful in maintain-
ing speedup on this non-idealised scenario where it is not possible a priori to
determine where the population load balance would exist.

4. Discussion

In all cases, the results suggest that better performance, in terms of greater speed-
ups and reduced run times could be achieved by adding additional processors
however; there is a practical limit to the improved performance that can be

Figure 15. Actual computational speedup graph for the large urban
space (Case 4).
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achieved. This limit in performance is dependent on the complexity of the prob-
lem, the domain decomposition, the problem size, the computing hardware, and
the networking. More complex problems tend to perform poorly compared to
simpler problems. The domain decomposition is a compromise between minimis-
ing communication, e.g. less sub-domains, and increasing load balance, e.g. more
sub-domains. Larger population sizes tend to return better computational perfor-
mance compared to smaller population sizes on the same domain, although smal-
ler population sizes are more likely to return higher real-time speedups. Faster
computing hardware although likely to return improved real-time speedup is likely
to return a poorer computational speedup when compared to slower computing
hardware. More ‘‘distributed’’ processors tend to perform better than the equiva-
lent ‘‘shared’’ processors. Faster networking will improve both computational and
real-time speedups.

Examining the cases performed it can be seen that computational speedup gen-
erally improves with larger numbers of agents. This can be seen for case 3 and 4
where that the computational speedup improves particularly for case 3 when the
population size is doubled. For case 3 the load balance should be close to ideal
but is not realised due to the comparatively high communication costs compared
to the amount of computation. When the population is doubled the amount of
computation (time taken) increases by a factor of 4.5 for case 3. This is due to the
increase in congestion that needs to be resolved when there are higher population
densities. The total evacuation time increases by a smaller factor, and therefore
means that although the computational speedup has significantly improved, the
real time speedup will be reduced in this case. For case 4 there is less of an
improvement as the computational speed up highly influenced by the poor load
balance in that instance.

Increasing the number of partitions will generally lead to an improved load bal-
ance when the movement of agents is ‘predictable’ as seen in case 2. When the
workload is unpredictable, as in case 4 due to the high level of contra-flow, then
increased partitioning will not always lead to a better load-balance. From the sin-
gle core results it can be seen that no particular partition is substantively better
than the others. The assignment of sub-domains to processors did not take into
account the relative computational loads on the sub-domains. It was not possible
a priori to determine how to optimally distribute these sub-domains amongst the
processors. In addition to this the size, shape and location of the sub-domains was
not optimised with regard to the load-balance.

As the number of processors increases the computational speedup generally
increases although there is a diminishing return with an increased number of pro-
cessors evident for case 3. It is apparent that the computational speedup increases
with the number of processors but there needs to be a sufficient population size to
offset the necessary communications. For case 4 there is a significant dip in com-
putational speedup for 9 processors when 120,000 agents are simulated. As was
previously mentioned the assignment of sub-domains to processors does not take
into account the workload of each sub-domain and has resulted in a particularly
poor load balance in this instance.

Fire Technology 2017



Although the strategy of multiple sub-domains per processor has been some-
what successful it can be seen that for case 4 additional work is needed on the
partitioning strategy to improve the computational speedup. Apart from possibly
improving the intitial partition some form of dynamic load balancing is required
that can optimise the workload, per processor, whilst the scenario is running.
Dynamic load balancing has been performed in parallel processing for a range of
problems, e.g. fire modelling [39]. The dynamic load balancing could either be per-
formed by: a) reassigning sub-domains from an initially defined partition depen-
dent on population/workload distribution or b) the entire partition could be
recalculated dependent on the evolving population/workload distribution.

While the computational speedup is of some interest, the most important con-
sideration is the wall clock time or run time. How long it takes to run an evacua-
tion simulation is one of the key considerations which will determine how
practical it is to use in applications such as an advice tool for incident comman-
ders for large building based scenarios, as part of an interactive emergency sig-
nage system, a training tool in an interactive desk top environment and as a
planning tool for large scale urban applications.

The performance enhancements achieved by the parallel implementation on the
various test cases are summarised in Table 2. As can be seen the performance of
the parallel implementation is complex and dependent on the type of problem
being addressed.

Computational speedups (parallel performance over single processor perfor-
mance) ranging from 2.59 to 13.99 were achieved while real-time speedups (par-
allel performance over real-time) of 3.09 to 17.99 were achieved for the various
problem types. Indeed, Case 3—50 floor high-rise building with 8000 agents—re-
turned the worst computational speedup (2.59) but returned the best speedup
over real-time (17.99).

Some of the problems represent very large cases and are extremely computa-
tionally demanding, requiring moderately long real evacuation times with single
processor execution times equal to or exceeding real evacuation times. These are
Case 1 (idealised large geometry case) and the Case 4 (large urban space). For
these problems, it is very difficult to achieve high real-time speedups because the

Table 2
Comparison of Runtime Performance of the Four Case Studies

Case Agents ET SPRT BPRT C-SP RT-SPS RT-SPP

1 100,000 14:26 51:01 3:40 13.9 0.28 3.9

2 100,000 14:20 11:32 0:50 13.8 1.24 17.2

3 8000 50:02 6:57 2:48 2.5 7.2 17.9

3 16,000 90:02 31:26 7:02 4.5 2.9 12.8

4 60,000 10:27 10:25 1:58 5.3 1.0 5.3

4 120,000 21:49 50:13 7:17 6.9 0.43 3.0

ET predicted total evacuation time (m:s), SPRT single processor run time (m:s), BPRT best parallel run time (m:s),

C-SP computational speedup (=SPRT/BPRT), RT-SPS real time speedup (single processor) (=ET/SPRT), RT-SPP

real time speedup (parallel) (=ET/BPRT)

Increasing the Simulation Performance of Large-Scale Evacuations



single processor performance is already significantly slower than real-time. For
example, in Case 1, the single processor performance is 3.59 slower than real-time
while in Case 4, the single processor performance is 2.39 slower than real time.
These cases will produce very good computational speedups (13.99 and 6.99 for
Case 1 and 4 respectively), but relatively poor real-time speedups (3.99 and
5.39 for Case 1 and 4 respectively). Thus for these applications, the parallel
implementation is very useful for an engineer using the software as part of a
design analysis as it reduces the time required to run the simulations but it is not
very useful for real-time applications which require the software to run many
times faster than real-time.

Other problems represent large real cases but are less computationally demand-
ing, requiring very long real evacuation times with single processor execution
times less than real evacuation times. These are Case 3a and Case 3b (high-rise
building with 8000 and 16,000 agents). For these problems, it is easier to achieve
high real-time speedups as the single processor performance is already faster than
real-time. For example, the single processor performance in Case 3a is 2.39 faster
than real-time while in Case 3b it is 2.99 faster than real-time. These cases pro-
duced relatively poor computational speedups (2.59 and 4.59 for Case 3a and 3b
respectively), but relatively good real-time speedups (17.99 and 12.99 for Case 3a
and 3b respectively). Thus these types of cases lend themselves to live applications
where it is essential that computation be performed much faster than real-time e.g.
dynamic signage or live incident support.

The results obtained from the idealised cases, cases 1 and 2, suggest that much
better speedups could have been obtained for the case 3. Case 2 is of particular
interest as it demonstrates the balance between computation vs communication.
Case 2 has a high amount of communication but it does not highly impact the
performance of the parallel implementation on the hardware configuration used
here and is probably due to the successful overlapping of communication and
computation. It also indicates that the relatively poor computational speedups
seen in case 4 are due to poor load balance rather than communication cost.

While the parallel implementation has achieved significant performance gains,
further gains in the real-time performance of the buildingEXODUS software are
desirable and indeed achievable. These performance enhancements can be cate-
gorised into hardware and software improvements. Hardware based improvements
include, using faster computers, more computers, and the possibility of using better
networking technology. The networking technology used in the current implementa-
tion utilises standard equipment and as such suffers from comparatively high net-
work latency. The use of specialist network cards and switches could improve the
speedup performance by reducing the latency in the communications. Improved
data transfer speeds, achieved by for example using high-speed optical fibre cables,
can also enhance the parallel performance by improving the bandwidth between
processors. The main disadvantage of this approach is the comparatively high price
associated with the equipment compared to conventional equipment.

Software based improvements include serial algorithmic changes, utilisation of
‘hybrid discretisation’ [19], improved partitioning strategies and dynamic load bal-
ancing. It is possible that further improvements can be made to the serial version
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of buildingEXODUS that would increase the runtime performance of the software
which would feed into the parallel implementation of buildingEXODUS.

Although this paper has focused on the buildingEXODUS evacuation software
most of the technology could be utilised by other evacuation models. The multiple
sub-domains per processor approach is very generalizable and the derived analyti-
cal expressions could be useful for model developers testing their own software.
The concept of halo regions could be used for CA based models and continuous
models. The movement algorithm and the use of boundary and non-boundary
proximity groupings of agents could also be adapted.

5. Conclusion

A parallel implementation of the rule based evacuation simulation software build-
ingEXODUS using the technique of domain decomposition has been achieved and
successfully demonstrated in a range of application cases from simple unidirectional
motion to large complex buildings and open spaces. The computational speedups
derived using a 10 processor system over the performance of a single processor var-
ied from 2.59 to 13.99, with real-time speedups varying from 3.09 to 17.99.

In all cases examined improved performance, in terms of enhanced speedups and
reduced run-times could be achieved by adding additional processors however; there
is a practical limit to the improved performance that can be achieved. This limit in
performance is dependent on the complexity of the problem, the domain decomposi-
tion, the problem size, the computing hardware, and the networking.

The complexity of the problem both in terms of geometry and agent behaviour
will tend to have improved computational speedup with decreasing complexity.
Good parallel performance seen with simpler problems may not necessarily be
repeated on more complex problems.

The domain decomposition affects the parallel performance, both in terms of
computational speedup and real time speedup, generally improves with the num-
ber of partitions as this generally improves the load balance across processors.
However, this can be affected by the complexity of the movement behaviour of
the agents. Where agent movement is not known a priori but evolves due to the
nature of the simulation simply increasing the number of partitions may not nec-
essarily lead to improved speedup.

The size of the problem affects the parallel performance, in terms of computa-
tional speedup, which generally increases with the number of agents. However,
real time performance may decrease in situations where the increase in the number
of agents leads to an increase in the population density.

The computing hardware will affect the performance. Generally a more ‘‘dis-
tributed’’ computer system will offer a higher parallel performance than an equiv-
alent less distributed system. For example 2 networked single cores provide a
greater performance than a single dual core computer. This is due to the increase
in cache and memory bandwidth offered by the more distributed systems. All
modern CPUs are now multicore but it would be better to have a distributed set
of multicore CPUs rather than a set of multicore CPUs on a single computer.
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The networking hardware is significant as communications between sub-do-
mains is a critical factor in determining parallel performance, it is suggested that
the faster the communications between CPUs the better the parallel performance.
Thus the faster the networking and the lower the latency within the cluster, the
better will be the parallel performance.

Unfortunately, even with good computational speedup the real-time speedup
could be insufficient for real-time applications. In cases where significant real-time
speedups cannot be significantly increased through enhanced hardware (more pro-
cessors, faster processors and faster networking) then other methods will be required
to increase the real-time speedup. This could be achieved by optimising the software
and using hybrid strategies that mix coarse and fine modelling techniques.

For innovative evacuation model application areas such as dynamic signage in
smart buildings, real-time incident support and virtual training environments, it is
suggested that real-time speedups of at least an order of magnitude must be
achieved before they can be considered viable. Parallel computing approaches
demonstrated in this paper have generated up to an 18 fold real-time speedup for
some problems. This approach, together with improved algorithms and improved
hardware performance offers a means to address these novel applications.

Furthermore, from the cases studied in this paper (particularly case 4), it is sug-
gested that to achieve even better parallel performance requires improving the
load balancing across the processors. This would need to incorporate a dynamic
load balancing algorithm as the work load is continuously varying over time.

Acknowledgements

The authors acknowledge the UK Home Office CBRN Science and Technology
Programme for financial support enabling the development of the concept for the
parallel implementation of the buildingEXODUS evacuation software.

Open Access

This article is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits unrestricted use, distribution, and reproduction in any medium, provided you
give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Appendix A: Derivation of Analytical Speedup
performance for Case Study 2 with N sub-domain
and P processors

A long area with exiting on the left open side of the domain is considered. It is
assumed that the domain is split into N equally sized sub-domains and are
assigned to P processors as illustrated in Fig. 16. It is assumed that N ‡ P. It is
assumed that all agents travel with the same speed and flow out of the left hand
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side with no congestion. The agents are uniformly distributed throughout the
domain. There are assumed to be no communications cost involved in moving the
occupants to the neighbouring sub-domain.

By considering that processor 1 (controlling the solid black sub-domains in the
figure below), will always be running at 100% and assuming the processor
throughput is independent of memory access patterns it is possible to calculate the
amount of work performed by that processor. In this analysis let:

l = length of the domain; z = the total initial population size; N = the num-
ber of sub-domains; P = the number of processors.

Simplified Derivation

In this initial analysis it is assumed that N is an integer multiple of P to simplify
the derivation. Therefore there are N/P regions consisting of P sub-domains label-
led 1 to P.

The work performed by processor 1 whilst area (a) is emptied is the number of
agents being computed by processor 1 9 (distance travelled by an agent) this is
represented by:-

worka ¼
z
P

� � l
N

� �
ð6Þ

Work to empty region i = 1 is:

work1 ¼
z
P
l
N

P � 1ð Þ þ 1

2

z
P
þ z

P
� z
N

� �� � l
N

ð7Þ

First part of Eq. (7) is emptying from P to 2 in region i = 1 (or N to N -

P + 2), the second part represents emptying sub-domain 1 (or N - P + 1) in
region i = 1.

For i = 2 region a similar analysis applies but the population size being
worked on by processor 1 has reduced by 1 sub-domain to

Exit 

P1 2

N-PN-2P+11

P1 2

P

i=2i=N/P

P1 2

NN-P+1

i=1

(a) (a) 

Figure 16. A domain decomposition for N sub-domains and P proces-
sors where N mod P = 0.
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z
P
� z
N

� �
¼ N

P
� P
P

� �
z
N

¼ N
P
� 1

� �
z
N

ð8Þ

Similarly the population size worked on by processor 1 for the ith region can be
expressed as

N
P
� i� 1ð Þ

� �
z
N

ð9Þ

Therefore substituting Z/P in (2) with (9) yields the work done by processor 1
whilst the ith region is emptied.

worki ¼
N
P
� i� 1ð Þ

� �
z
N

l
N

P � 1ð Þ

þ 1

2

N
P
� i� 1ð Þ

� �
z
N
þ N

P
� i� 1ð Þ

� �
z
N
� z
N

� �� �
l
N

ð10Þ

worki ¼
zl
N2

N
P
� i� 1ð Þ

� �
P � 1ð Þ þ 1

2

N
P
� i� 1ð Þ

� �
þ N

P
� i

� �� �� �
ð11Þ

Therefore the total work done by processor whilst clearing all regions is:

workN ; P
total ¼

zl
N 2

XN=P

i¼1

N
P
� i� 1ð Þ

� �
P � 1ð Þ þ 1

2

N
P
� i� 1ð Þ

� �
þ N

P
� i

� �� �� �

ð12Þ

The work needed to empty the domain with a single serial processor (number of
agents 9 average distance travelled) is

workserialtotal ¼ zl
2

ð13Þ

The work performed by a processor is assumed to be linearly related to the time
taken to perform the simulation.

So the (computational) speedup over a single processor using P processors over
N sub-domains can be calculated

speedup ¼ workserialtotal

workN ; P
total

ð14Þ

Substituting (12) and (13) into (14) leads to (15)
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speedup ¼ 1

2
N2

PN=P

i¼1

N
P � i� 1ð Þ
	 


P � 1ð Þ þ 1
2

N
P � i� 1ð Þ
	 


þ N
P � i
	 
� �� � ð15Þ

speedup ¼ 1

2
N2

PN=P

i¼1

N
P �

PN=P

i¼1

iþ
PN=P

i¼1

1

 !
P � 1

2

PN=P

i¼1

1

" # ð16Þ

Substituting the series summations

speedup ¼ 1
2
N2

N2

P 2 � 1
2
N
P

N
P þ 1
	 


þ N
P

	 

P � N

2P

� � ð17Þ

Simplifies to

speedup ¼ NP
N þ P � 1

ð18Þ

From Eq. (18) it can be seen that if N � P then speedup will tend to P. If N = P
then then the speedup will tend to P/2.

General Derivation applicable to Any Number of Sub-domains (N)

In the more general case when N is not an integer multiple of P (see Fig. 9) the
analysis is essentially the same although the first region (i = 1) needs to be given
special treatment.

The work performed by processor 1 whilst area (a) is emptied is number of peo-
ple being computed by processor 1 9 (distance travelled by an occupant) (19).

worka ¼ B
l
N

� �
ð19Þ

where,

K ¼ N mod P ð20Þ

M ¼ N � K ð21Þ

H Kð Þ ¼ 0; if K ¼ 0
1; if K > 0

�
ð22Þ
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B ¼ z
N

M
P
þ HðKÞ

� �
ð23Þ

In the previous example, i = 1 region there was necessarily P sub-domains. The
number of sub-domains in region 1 is now K. All other regions have P sub-do-
mains. There are [M/P + H(K)] regions.

The work performed by processor 1 whilst region i = 1 is emptied is:

work1 ¼ B
l
N

P þ K � 1� HðKÞPð Þ þ 1

2
Bþ B� z

N

� �� � l
N

ð24Þ

Equation (24) is analogous to (7) with the first part modified due to the number
of sub-domains being reduced to K. P and H(K)P are introduced so the equation
is valid when K = 0.

Equation (24) simplifies to

work1 ¼ B
l
N

P þ K � HðKÞPð Þ � z
2N

l
N

ð25Þ

This equation can be generalised for the ith region (27) by substituting the popu-
lation size processed by processor 1 for the ith region (26) into (25) and noting
K = 0 for i > 1.

B� ði� 1Þ z
N

� �
ð26Þ

worki ¼ B� ði� 1Þ z
N

� � l
N
P � 1

2

z
N

� � l
N

ð27Þ

Total work (28) is the summation of emptying all the regions. The first term in
(28) represents emptying the i = 1 region and the summation term represents
emptying regions 2 to (M/P + H(K))

worktotal ¼ B
l
N

P þ K � HðKÞPð Þ � z
2N

l
N

� �

þ
XM=PþHðKÞ

i¼2

B� ði� 1Þ z
N

� � l
N
P � 1

2

z
N

� � l
N

� � ð28Þ

This simplifies to (29), note the change in lower summation limit to i = 1.

worktotal ¼ B
l
N

K � HðKÞPð Þ þ
XM=PþHðKÞ

i¼1

B� ði� 1Þ z
N

� � l
N
P � 1

2

z
N

� � l
N

ð29Þ
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g ¼ M
P
þ HðKÞ ð30Þ

Introducing (30) into (29) and simplifying leads to (31).

worktotal ¼
zl
N

g
N

K � HðKÞPð Þ þ g
N
P þ P

N
� 1

2N

� �Xg
i¼1

1� P
N

Xg
i¼1

i

 !
ð31Þ

worktotal ¼
zl
N

g
N

K � HðKÞPð Þ þ g
N
P þ P

N
� 1

2N

� �
g� P

2N
gðgþ 1Þ

� �
ð32Þ

Simplifies to

worktotal ¼
zl
2N2

g 2 K � HðKÞPð Þ þ gP þ P � 1ð Þð Þ ð33Þ

Substituting the second g in (33) with (30)

worktotal ¼
zl
2N2

g 2K � HðKÞP þ M þ P � 1ð Þð Þ ð34Þ

Substituting g (30) in (34) leads to

worktotal ¼
zl
2N2

M
P
2K � HðKÞMP

P
þ M

P
M þMP

P
�M

P

� ��

þHðKÞ2K � HðKÞð Þ2P þ HðKÞM þ HðKÞP � HðKÞ
� ð35Þ

Simplifying (35) and noting that K � HðKÞK and HðKÞ � HðKÞð Þ2

workN ;P
total ¼

zl
2N2P

2MK þM M þ P � 1ð Þ þ 2PK � HðKÞPð Þ ð36Þ

Substituting (36) and (13) into (14) gives the speedup (37)

SNP ¼ N 2P
M M þ P � 1ð Þ þ 2KðM þ P Þ � HðKÞP ð37Þ

Substituting (21) into (37) and simplifying leads to (33)

SNP ¼ N 2P
N N þ P � 1ð Þ þ KP � K2 � HðKÞP ð38Þ
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Appendix B: Additional Tables of Results for Case Studies

Case 1: Idealised Large Geometry

See Tables 3 and 4.

Case 2: Long Open Area

See Tables 5, 6, 7 and 8.

Table 3
Single Core Timings and Computational Speedup for Case 1

No.

computers

Time

taken (m:s)

Max

sub-domains per

processor (MSDPP)

Analytical

computational

Speedup

(=20/MSDPP)

Actual

computational

speedup

Real

time

speedup

1 51:01 20 1 1 0.28

2 21:50 10 2 2.3 0.64

3 14:17 7 2.86 3.6 1.01

4 11:17 5 4 4.5 1.26

5 8:59 4 5 5.7 1.60

7 6:37 3 6.67 7.7 2.2

10 4:40 2 10 10.9 3.1

Table 4
Dual Core Timings and Computational Speedup for Case 1

No.

computers

(dual)

Time

taken (m:s)

Max

sub-domains per

PROCESSOR (MSDPP)

Analytical

computational

Speedup

(= 20/MSDPP)

Actual

computational

speedup

Real

time

speedup

1 (1 core) 51:01 20 1 1 0.28

1 (2 cores) 27:32 10 2 1.85 0.52

2 (4 cores) 14:41 5 4 3.47 0.97

3 (6 cores) 11:23 4 5 4.48 1.25

4 (8 cores) 8:58 3 6.67 5.69 1.59

5 (10 cores) 6:39 2 10 7.67 2.15

10 (20 cores) 3:40 1 20 13.9 3.9
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Table 5
Single Core Timings and Computational Speedup for Case 2

Time taken (m:s)

Analytical computa-

tional speedup

Actual computational

speedup

No. partitions fi
20 50 100 20 50 100 20 50 100No. computers fl

1 11:32 11:32 11:32 1 1 1 1.00 1.00 1.00

2 5:39 5:45 6:18 1.9 1.96 1.98 2.04 2.00 1.83

3 3:53 3:56 4:13 2.76 2.89 2.94 2.97 2.94 2.74

4 2:59 2:55 3:07 3.48 3.78 3.88 3.86 3.96 3.71

5 2:28 2:23 2:30 4.17 4.63 4.8 4.67 4.82 4.60

6 2:13 2:00 2:06 4.78 5.48 5.73 5.18 5.74 5.45

7 1:58 1:43 1:51 5.39 6.26 6.61 5.85 6.66 6.20

8 1:48 1:32 1:34 5.84 7.1 7.5 6.37 7.52 7.33

9 1:37 1:24 1:25 6.37 7.91 8.34 7.15 8.29 8.16

10 1:33 1:19 1:14 6.9 8.47 9.17 7.44 8.74 9.34

Table 6
Single Core Real Time Speedups for Case 2

No computers fi
1 2 3 4 5 6 7 8 9 10No partitionsfl

20 1.24 2.54 3.69 4.80 5.80 6.44 7.27 7.92 8.89 9.25

50 1.24 2.49 3.65 4.92 5.99 7.13 8.28 9.35 10.30 10.86

100 1.24 2.27 3.41 4.61 5.72 6.77 7.71 9.11 10.14 11.61

Table 7
Dual Core Timings and Computational Speedup for Case 2

Time taken (m:s)

Analytical computa-

tional speedup

Actual computational

speedup

No. partitions fi
20 50 100 20 50 100 20 50 100No. computers fl

1 (1 core) 11:32 11:32 11:32 1.00 1.00 1.00 1.00 1.00 1.00

1 (2 cores) 6:05 6:19 6:52 1.9 1.96 1.98 1.89 1.83 1.68

2 (4 cores) 3:16 3:14 3:28 3.48 3.78 3.88 3.52 3.56 3.32

3 (6 cores) 2:26 2:13 2:25 4.78 5.48 5.73 4.73 5.19 4.76

4 (8 cores) 2:00 1:43 1:46 5.84 7.1 7.5 5.78 6.72 6.51

5 (10 cores) 1:40 1:30 1:27 6.9 8.47 9.17 6.92 7.67 7.93

6 (12 cores) 1:33 1:15 1:13 7.5 9.91 10.9 7.43 9.19 9.37

7 (14 cores) 1:26 1:11 1:05 8.07 11.7 12.4 7.99 9.74 10.6

8 (16 cores) 1:24 1:05 0:58 8.74 12.4 14 8.20 10.7 12.0

9 (18 cores) 1:15 1:00 0:55 9.55 15.3 15.7 9.17 11.6 12.5

10 (20 cores) 1:12 0:58 0:50 10.3 15.7 16.8 9.61 11.9 13.8
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Case 3: High-Rise Building

See Tables 9 and 10.

Table 8
Dual Core Real Time Speedups for Case 2

No computers fi
1 2 3 4 5 6 7 8 9 10No partitionsfl

20 2.35 4.37 5.88 7.18 8.60 9.23 9.93 10.2 11.4 11.9

50 2.27 4.42 6.45 8.35 9.53 11.4 12.1 13.3 14.4 14.8

100 2.09 4.13 5.92 8.09 9.86 11.6 13.2 14.9 15.5 17.2

Table 9
Single Core Timings and Speedups for Case 3

Time taken (m:s)

Computational

speedup Real time speedup

Population size fi
8000 16,000 8000 16,000 8000 16,000No. computersfl

1 06:57 31:26 1 1 7.21 2.86

2 05:16 18:38 1.32 1.69 9.52 4.84

3 04:05 13:17 1.70 2.37 12.26 6.79

4 03:34 10:40 1.95 2.95 14.06 8.45

5 03:15 09:24 2.14 3.34 15.43 9.56

6 03:07 08:13 2.23 3.83 16.08 10.97

7 02:58 08:03 2.34 3.90 16.87 11.17

8 02:48 07:29 2.48 4.20 17.88 12.03

9 02:48 07:16 2.48 4.33 17.88 12.40

10 02:48 07:00 2.48 4.49 17.88 12.86

Table 10
Dual Core Timings and Speedups for Case 3

Time Taken (m:s)

Computational

speedup Real time speedup

Population size fi
8000 16,000 8000 16,000 8000 16,000No. computersfl

1 (1 core) 06:57 31:26 1 1 7.21 2.86

1 (2 cores) 06:56 22:59 1.00 1.37 7.21 3.92

2 (4 cores) 04:25 13:30 1.57 2.33 11.32 6.66

3 (6 cores) 03:42 10:41 1.88 2.94 13.55 8.41

4 (8 cores) 03:23 09:17 2.05 3.39 14.78 9.70

5 (10 cores) 03:11 08:27 2.18 3.72 15.72 10.64

6(12 cores) 03:03 07:42 2.28 4.08 16.44 11.67

7 (14 cores) 02:56 07:29 2.37 4.20 17.09 12.01

8 (16 cores) 03:00 07:19 2.32 4.30 16.73 12.30

9 (18 cores) 03:07 07:35 2.23 4.15 16.08 11.87

10 (20 cores) 03:10 07:40 2.19 4.10 15.79 11.73
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Case 4: Large Urban Space

See Tables 11 and 12.
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