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A miniaturized substrate-integrated coaxial line (SICL) bandpass filter with improved upper stopband using asymmetrical
spiral stub-loaded resonators is presented in this paper. Owing to the space-filling feature of the spiral structure, the size
of the proposed filter is significantly reduced. A theoretical analysis is carried out to examine the resonance property of
the proposed resonator. It is found that the frequency ratios of the second and third harmonics to the fundamental frequency
can be extended to 2.86 and 4.4. Benefiting from the circuit structure and SICL technology, the designed filter has a small size,
wide stopband, low crosstalk, and high-density integration ability. The measured results show that the proposed filter, with
dimensions of 0.051l0 × 0.044l0, operates at 1.056 GHz and the 20-dB rejection band is extended to 3.94f0.
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I . I N T R O D U C T I O N

Bandpass filter (BPF) is one of the most widely used compo-
nents in modern radiofrequency (RF)/microwave systems.
Due to the space restriction and the existence of unwanted
harmonics, BPFs with small size and wide stopband are
highly desired for high-density circuit integration and high-
performance applications [1–3]. Compact microstrip BPFs
with wide stopband have been studied extensively in the
past decade [4–6]. High-density integration also requires
shielding between circuits to reduce the interference and
crosstalk. Substrate-integrated waveguide (SIW)-based filters
represent a good compromise between performance and
planar circuit compatibility [7, 8]. However, the SIW would
be too large at low-frequency bands. A relatively new
concept of the substrate-integrated coaxial line (SICL) has
been proposed in recent years [9–11]. This type of transmis-
sion line is shielded and non-dispersive. SICL also presents
a broadband transverse electromagnetic propagation without
cut-off wavelength. The SICL BPF potentially offers remark-
able size reduction while producing comparable performance
with the SIW components. Some work has been reported in
BPF designs with SICL technology for size reduction or

stopband improvement, such as the quarter-wavelength
stepped impedance resonators (SIRs) [9, 10], and the cavity
resonators [11].

In this paper, a miniaturized SICL BPF with improved
upper stopband is proposed. With the shielded structure of
the SICL, the electromagnetic compatibility is greatly
improved. The proposed BPF employs two interdigitally
coupled asymmetrical spiral stub-loaded resonators to
reduce the circuit size. Analysis shows the second and third
harmonics can be pushed to higher frequencies, which
improves the upper stopband.

I I . D E S I G N A N D A N A L Y S I S

Figure 1 depicts the geometrical layout of the proposed min-
iaturized wide stopband BPF. By using the SICL technology,
the filter is sandwiched between two grounded dielectric
layers and surrounded by metallized via arrays. Two asym-
metrical spiral stub-loaded resonators, each containing two
short-ended branches and a spiral open stub (Fig. 2), are
coupled to form the second-order BPF. The interdigitally
coupled spiral stubs provide the electrical and magnetic
mixed couplings, which are determined by the coupling gap
g1. Meanwhile, the two resonators are joined together at the
short-circuit ends using two metal vias, which provide the
extra magnetic coupling between the resonators [12, 13].
Owing to the space filling feature of the spiral structure, the
size of the proposed BPF is significantly reduced.

For each resonator as shown in Fig. 2, Zs is the character-
istic impedance of the transmission lines. u1, u2, and u3 are the
electrical length of the resonator branches. The resonance
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property of the resonator can be determined by:

tan(u1) −
1

tan(u2)
− 1

tan(u3)
= 0. (1)

By denoting a21 ¼ u2/u1 and a23 ¼ u2/u3, (1) can be rewritten
in the following form:

tan
u2

a21

( )
− 1

tan(u2)
− 1

tan(u2/a23)
= 0. (2)

The ratio of the resonant frequencies as a function of a21 and
a23 can be determined using (2), as shown in Fig. 3. It can be
seen that the second ( f1) and third ( f2) harmonics are pushed
to higher frequencies with the decreasing a21 but increasing
a23. Once the distributions of the fundamental frequency,
second and third harmonics are fixed, the electrical lengths
of the branches u1, u2, and u3 can be obtained using equation
(1). The bandwidth of the proposed filter depends on the
external quality factors (Qe) and the coupling between the
two spiral stub-loaded resonators. The total coupling includes

the electrical and magnetic couplings produced by the coupled
spiral stubs and the extra magnetic coupling generated by the
common grounded metal vias. These couplings can be con-
trolled by the parameters of coupling gap g1 and via diameter
d1. The Qe is determined by the tapped position of the feeding
line, and it can be derived analytically. Now we will look at two
cases. First, when the feeding line is tapped at the branch u2 as
shown in Fig. 4(a), the input admittance, seen from the input
port is:

Yin = jYs
tan u tan u3 + tan u1 tan u3 − 1

tan u3 − tan u1 tan u3 tan u+ tan u

+ Ys

j tan(u2 − u) . (3)

When the input port moved to branch u3 as shown in
Fig. 4(b), equation (3) can be rewritten as:

Yin = jYs
tan u tan u2 + tan u1 tan u2 − 1

tan u2 − tan u1 tan u2 tan u+ tan u

+ Ys

j tan(u3 − u) . (4)

Fig. 2. Proposed spiral stub-loaded resonator. Fig. 3. Resonance property of the proposed resonator.

Fig. 1. The proposed miniaturized BPF. (a) 3D view, (b) mid-layer signal strips.
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The Qe can be derived by [1]:

Qe =
v0

Y0

∂Im [Yin]
∂v

|v=v0
, (5)

where Y0 is the characteristic admittance of the input port, and
v0 is the center angular frequency. Substituting (3) or (4) into
(5), the Qe can be calculated.

The design procedures of the proposed filter are as follows:

1. Determine the electrical lengths of the spiral stub-loaded
resonator by using equation (1) and Fig. 3.

2. Obtain the coupling coefficient k and external quality
factor Qe from the desired filter bandwidth with the follow-
ing expressions [1]:

Qei =
g0g1

FBW
, Qeo =

g2g3

FBW
, k = FBW�����

g1g2
√ , (6)

where FBW is the fractional bandwidth of the filter, and g0,
g1, g2, and g3 are the low-pass prototype parameters.

3. Determine the coupling gap g1, via diameter d1 and feed
position u, and construct the filter as shown in Fig. 1.

In this paper, we propose a BPF operating at f0 ¼ 1.056 GHz
with the FBW of 5%. From Fig. 3, we choose a21 ¼ 0.2, a23 ¼

0.79, and the second ( f1) and third ( f2) harmonics are pushed
to 2.86f0 and 4.4f0, respectively. The physical dimensions
shown in Fig. 1 are W1 ¼ 0.53 mm, W2 ¼ 2.55 mm, W3 ¼

0.8 mm, L ¼ 9.78 mm, Ld ¼ 1.27 mm, g1 ¼ 0.49 mm, and
d1 ¼ 0.5 mm.

I I I . I M P L E M E N T A T I O N A N D
D I S C U S S I O N

For verification, a prototype device is fabricated on Rogers
4350 substrate with a relative dielectric constant of 3.48 and
a thickness of 0.762 mm. Electromagnetic simulator Ansoft
high-frequency structure simulation (HFSS) is used for the
EM analysis. The photograph of the fabricated SICL BPF is
given in Fig. 5. The active area of the proposed filter is only
14.6 mm × 12.57 mm, which is about 0.051l0 × 0.044l0,
where l0 is the wavelength of free space at the central fre-
quency. Agilent 8361C vector network analyzer is used to
test the performance.

The simulated and measured results are shown in Fig. 6
and good agreements have been achieved. The measured fun-
damental, second and third harmonics are at 1.04, 3.11
(2.99f0) and 4.63 GHz (4.45f0), respectively, consistent with
the analysis. The measured 3-dB bandwidth is 52 MHz with
a fractional bandwidth of 4.81%. The minimum passband
insertion loss is 1.65 dB as compared with the simulated loss
of 0.96 dB. Due to the electrical and magnetic mixed couplings
from the interdigitally coupled spiral stubs and common
metal vias, two transmission zeros at 0.88 and 1.57 GHz are
realized to improve the frequency selectivity [12, 13]. The
current density distribution at the fundamental frequency
and second harmonic are shown in Fig. 7. It is observed
that the coupling between the two resonators at the second
harmonic frequency is weak, which attributes to the second
harmonic being suppressed to below 220 dB. Similarly,
another two transmission zeros at 2.78 and 3.83 GHz appear
on both sides of the second harmonic passband. As a result,

Fig. 4. (a) Feeding line is tapped at branch u2. (b) Feeding line is tapped at branch u3.

Fig. 5. Photograph of the fabricated filter.
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the 20-dB rejection band is extended to 4.16 GHz, which is
about 3.94 f0.

The proposed filter is compared with some previously pub-
lished compact BPFs in Table 1. Compared with those based
on SIW, SICL, and microstrip, this work exhibits the smallest
circuit size, while keeping excellent electromagnetic
performances.

I V . C O N C L U S I O N

A miniaturized SICL BPF with wide upper stopband is
designed, fabricated and measured. Because of the spiral struc-
ture of the resonator and the interdigital coupling structure,
the size of the filter is remarkably reduced and the stopband
is significantly extended. The experimental results show excel-
lent agreement with the theoretical analysis and simulation.
Merits of small circuit sizes, wide stopband, low crosstalk,
and high-density integration ability make the proposed BPF
very attractive for modern RF/communication systems.
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