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Abstract

There is growing interest in exploring fetal functional brain development,
particularly with Resting State fMRI. However, during a typical fMRI ac-
quisition, the womb moves due to maternal respiration and the fetus may
perform large-scale and unpredictable movements. Conventional fMRI pro-
cessing pipelines, which assume that brain movements are infrequent or at
least small, are not suitable. Previous published studies have tackled this
problem by adopting conventional methods and discarding as much as 40%
or more of the acquired data.
In this work, we developed and tested a processing framework for fetal Rest-
ing State fMRI, capable of correcting gross motion. The method comprises
bias field and spin history corrections in the scanner frame of reference, com-
bined with slice to volume registration and scattered data interpolation to
place all data into a consistent anatomical space. The aim is to recover an
ordered set of samples suitable for further analysis using standard tools such
as Group Independent Component Analysis (Group ICA).
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We have tested the approach using simulations and in vivo data acquired at
1.5T. After full motion correction, Group ICA performed on a population of
8 fetuses extracted 20 networks, 6 of which were identified as matching those
previously observed in preterm babies.

Keywords: Fetal fMRI, Slice to volume registration, Resting state
networks, Scattered interpolation, Bias field correction, Spin history
correction

1. Introduction

Resting State Networks (RSNs) are consistently mapped in different human
populations with functional MRI (fMRI) and are the topic of extensive Neu-
roscience research (Van Den Heuvel and Hulshoff Pol, 2010). RSNs are char-
acterized by low frequency temporal fluctuations of the blood-oxygen-level-
dependent (BOLD) signal which are correlated between distinct anatomical
regions when a subject is imaged at rest, or at least with no prescribed activ-
ity or stimulus (Biswal et al., 1995; Buckner et al., 2008). Spatial mapping
of RSNs in adults suggests that involved areas are functionally relevant, and
include regions involved in motor, visual, auditory, executive and memory
functioning (Damoiseaux et al., 2006). RSNs have also been described in
infants, and include many of those regions seen in the mature brain (Gao
et al., 2009; Damaraju et al., 2010; Fransson et al., 2007, 2009, 2011).
The emergence of RSNs during the preterm period was explored by Smyser
et al. (2010) and Doria et al. (2010), who were able to map a full repertoire
of networks encompassing the visual, auditory, somatosensory, motor, and
executive control areas. These infant studies have identified a maturational
trend during this period (equivalent to the third trimester of gestation) con-
sisting of a progression from lateralized networks to bilateral patterns at full
term equivalent post-menstrual age (PMA).
The studies on preterm babies suggest that it is of great interest to look at
the development of RSNs directly in utero. However, this is a challenge, as
during the several minutes taken to acquire a typical fMRI dataset, the fetal
brain undergoes large-scale motion caused by changes in fetal position within
the womb and also as a result of maternal respiration.
Fetuses move sporadically and in an unpredictable fashion (Malamateniou
et al., 2013). These movements take place in both the in-plane and the out-
of-plane directions. Motion, particularly head rotations and nodding, can be
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rapid. The quality and duration of periods of motion varies with gestational
age, such that, as the fetuses get larger later in pregnancy, they may have
longer quiet periods and body motion is more constrained (Hayat et al.,
2011).
Some preliminary studies have explored fetal RSNs using conventional pro-
cessing pipelines. Schöpf et al. (2012) acquired fMRI data from 87 healthy
fetuses and used single subject Probabilistic ICA (Beckmann and Smith,
2004) to identify RSNs. However, because of large motion levels, 71 datasets
couldn’t be processed. Thomason et al. (2013) analysed a set of 25 healthy
subjects in the second and third trimester of gestation using Group ICA
(Calhoun et al., 2009) and correlation analysis. In this study, individual
time frames were rejected, with single volumes removed for the time series
when there was judged to be excessive motion. The reported rejection rate
was 41.28%.
Figure 1 illustrates an example of changes in fetal position for a 28 week old
fetus over a period of 4 minutes. The Figure shows 3 images taken from a real-
time balanced steady state free precession (bSSFP) cine sequence acquired
at 3.3 frames per second. The fetal head position changes in a complex series
of 3 dimensional movements that cause the anatomical content within a slice
at a fixed location in the scanner to change substantially. Within any single
stack of slices that provide whole brain coverage the fetus may therefore
change position significantly, so that the conventional approach of correcting
motion by realigning whole imaging volumes is likely to result in registration
errors (Kim et al., 1999).
This work proposes a framework for processing fetal fMRI data that is de-
signed to operate when there is large-scale and frequent movement. The ap-
proach seeks to directly accommodate movement on a slice-by-slice timescale
and to correct for signal variations due to changes in position of the fetal
head with respect to a spatially varying receiver coil sensitivity distribu-
tion. A consequence of fetal motion is that anatomical locations are sampled
at irregular time intervals introducing spin history effects that are likely to
be variable (Bhagalia and Kim, 2008; Yancey et al., 2011). The proposed
method seeks to model and correct for these, before rendering the now scat-
tered data samples back onto a regular coordinate system, enabling further
analysis by standard methods such as Group ICA. The aim is to achieve a
robust framework that allows as much as possible, ideally all, of the acquired
data to be retained and used as part of the Resting State Network analysis.
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(a) Frame 1. (b) Frame 2. (c) Frame 3.

Figure 1: Three different frames taken from a real time cine MR sequence
showing significant motion in a fetal subject at 28 weeks of gestation. The
frames were extracted approximately at 18, 36 and 90 s from the beginning

of the acquisition.

2. Materials and Methods

2.1. Acquisition

The data used in this study were from 16 fetuses (mean gestational age:
30.37 ± 4.35 weeks) who had been assessed as normal and were scanned on
a Philips Achieva 1.5T scanner with a 32 channel receiver coil using single
shot EPI (TR = 4000 ms, TE = 50 ms with an in-plane resolution of 2.5 · 2.5
mm2 and slice thickness of 5 mm). During each TR interval, 35 slices were
acquired with interleaved slice ordering (1-3-5-7...2-4-6-8...). We denote the
time to acquire a single slice as TS.
To make the sampling as dense as possible, the slice positions were overlapped
by up to 2.5 mm, with the overlap selected to ensure a large enough stack
volume to encompass the fetal brain with a margin for motion.
A SENSE factor of 2 was used for all EPI acquisitions with calibration scans
obtained at the beginning of the examination. Since the receiver coil used
was fixed relative to the maternal anatomy, fetal movements within the womb
changed only local anatomical content, with no substantial effects on coil sen-
sitivity maps. The SENSE calibration scans were rerun if the mother changed
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her position substantially with respect to the scanner bore during the exam-
ination. This was easily detected as all fetal images also contain substantial
information about the maternal anatomy.
A complete fMRI acquisition consisted of 100 volumes acquired in a single
dynamic time series. We also acquired a smaller number of volume stacks of
slices in the coronal and sagittal planes to assist the registration algorithm by
providing spatial information from different orientations. The phase encoding
direction for transverse and coronal views was Anterior-Posterior, so that
spatial distortions were nominally in the same direction for these acquisitions.
The number of acquired frames in the coronal and sagittal directions was
chosen depending on the available scanning time. Single shot Fast Spin Echo
(ssFSE) images were also acquired in 3 nominally orthogonal anatomical
planes for all subjects (TR = 15000 ms, TE = 180 ms, 5 packages with
a resolution of 1.25 · 1.25 mm2, 2.5 mm slice thickness overlapped by 1.25
mm).
Functional studies employ prolonged data acquisitions, in this case almost
7 minutes for the transverse view. This is longer than routinely used for
purely anatomical imaging, which in our practice consists of multiple shorter
acquisitions typically lasting 1-2 minutes each. There is thus an increased
risk that fetuses may change position substantially in the womb during an
fMRI acquisition. Despite prescribing imaging stacks with larger anatomical
coverage than the actual fetal brain dimensions, there were 3 subjects that
moved sufficiently to cause part of the brain to be outside the field of view,
resulting in unrecoverable data loss (Figure 2a). In a further 2 subjects there
was substantial localized signal loss in part of the brain caused by gas bubbles
in the maternal gut (see example in Figure 2b). These 5 cases were excluded
from this study.
Table 1 summarizes gestational age, slice overlap and the number of frames
that were acquired in the coronal and sagittal directions for every subject
that was imaged. Those subjects that were excluded because of incomplete
data are shaded in blue.
The remaining 11 datasets constituted the study population upon which the
methods were tested; in these instances subjects labelled 1-8 could be fully
processed, and those labelled 9-11 couldn’t be corrected because of excessive
motion not recoverable by the registration algorithm.
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Fetus Weeks Overlap (mm) Frames (Cor, Sag) Comments
1 32 1.5 10, - Corrected
2 34 2 10, 10 Corrected
3 26 2.5 10, 10 Corrected
4 30 2.5 2, - Corrected
5 27 2.5 10, - Corrected
6 38 1 10, 10 Corrected
7 36 2.5 10, 10 Corrected
8 33 2 10, 10 Corrected
9 33 1.5 20, - Excessive motion
10 25 2.5 20, - Excessive motion
11 26 2.5 20, 20 Excessive motion
12 34 2.5 20, - Out of FOV
13 26 2.5 2, - Out of FOV
14 27 2.5 20, - Out of FOV
15 25 2.5 -, 20 Bubble
16 34 2.5 20, - Bubble

Table 1: Fetal gestational age, amount of overlap between slices and
number of frames in coronal and sagittal directions.

(a) Brain out the field
of view.

(b) Signal drop due to
bubble artefact.

Figure 2: In (a) the fetus moved so that part of the brain was no longer
within the imaging volume (red arrow). In (b) a gas bubble in the maternal

intestine caused signal loss in the fetal brain (red arrow).
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2.2. Processing Pipeline

To process the acquired data we define two distinct coordinate systems: S1

denotes the native scanner space, and S2 represents a coordinate system
fixed relative to the moving fetal brain. Different processing stages operate
either in S1 or S2, and are schematically represented in Figure 3 (all reported
symbols will be defined later on).

Figure 3: Processing Pipeline.

The proposed framework is divided into 4 different parts: prior to any mo-
tion correction, bias field correction is applied to remove spatially variable
receiver coil sensitivity. This is done in the native scanner coordinates since
the bias field is fixed relative to the maternal anatomy. Following this, a ro-
bust slice to volume registration realigns each acquired slice into a consistent
anatomical space. Information from image registration is then incorporated
into a forward model of the imaging process to quantify saturation effects so
that fMRI data can be corrected for these incidental fluctuations. Finally,
the corrected scattered data in S2 space is interpolated onto an uniform voxel
grid so that it is suitable for subsequent fMRI analysis. Two different inter-
polation approaches for this important step were tested using simulated data
for which a ground truth is known. The method with best performances was
selected and used on in vivo data.

2.2.1. Bias Field Correction

As a preprocessing step, a binary mask was manually delineated around each
fetal head. Masks were kept as close as possible to the fetal brain, but needed
to be large enough to contain its full range of motion.
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Inhomogeneity of the radio-frequency receive sensitivity (B1) effects the voxel
intensities of the acquired fMRI data as a multiplicative shading artefact
(Juntu et al., 2005). The receiver coils are strapped to the mother’s abdomen,
and therefore B1 is consistent in the space of acquisition (S1) and does not
vary with time provided the mother does not perform any gross movements.
The coil elements are necessarily some distance from the fetal brain, so B1

is generally slowly varying in space on the scale of the fetal head. However,
due to fetal motion, this intensity variation is not consistent with respect to
the fetal anatomy and so can effect both the performance of the registration
algorithm used to perform motion-correction as well as the estimated fMRI
signal.
There have been numerous studies in the literature attempting to perform
correction of B1 field inhomogeneity in MRI (Sled et al., 1998; Styner et al.,
2000; Vovk et al., 2007). The majority of these methods dealt with high
resolution T1 or T2 weighted images in adults and, in one case, anatomical
T2 weighted images in the fetus (Kim et al., 2011).
Unlike previous fetal MRI bias-correction methods (Kim et al., 2011; Kuklisova-
Murgasova et al., 2012) which were designed to correct bias field inconsis-
tencies between acquired slices, our proposed method estimates the global
volumetric bias field in the scanner space and can be considered an exten-
sion of the method proposed in the work of Wells III et al. (1996). We take
advantage of the fact that our fetal fMRI data have very low contrast be-
tween different brain tissues (white matter, grey matter and cerebro-spinal
fluid) and amniotic fluids. Only narrow regions of low signal are detected
from bone in the skull.
To estimate B1, we separate the voxels in the region of interest into two
classes by fitting a mixture of Gaussians using the EM algorithm (Dempster
et al., 1977; Duda et al., 2001). The multiplicative bias field impacts the
higher intensity class much more significantly than the lower intensity class,
thus separation of these two classes is preserved even in presence of relatively
high B1 inhomogeneity and we found it effective for all our datasets.
Voxels classified as having high intensities are used to fit a model for the
bias field. Due to the low resolution, the data are strongly effected by partial
volume effects that can influence the estimation of the bias field. Partial vol-
ume voxels are on the boundary between the two classes, and are therefore
removed from the estimation using an erosion operation on the high-intensity
class.
Let xi denote locations of acquired voxels and uj(xi) their intensities in the jth
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frame. Let sij be a segmentation of the high-intensity class, such that it is one
if the voxels belong to this class and zero otherwise. Let u∗

j(xi) = uj(xi)e
−b(xi)

denote the bias corrected intensities (in this formulation the bias field is
modelled as B1(xi) = eb(xi) and therefore its estimation is equivalent to the
estimation of b).
Similarly to work presented byWells III et al. (1996) and Kuklisova-Murgasova
et al. (2013), we estimate the bias field by fitting a non-parametric regular-
ized field. Specifically, the estimation of b is performed by minimizing the
following cost function:

b = argmin
b

∑

ij

sij(uj(xi)e
−b(xi) − µ)2 +R(b) (1)

where µ is the mean intensity of the fMRI voxels and R(b) a regularisation
term that ensures spatial smoothness of b.
To minimize 1 an iterative strategy is adopted; the estimation of b at a generic
iteration n is interleaved with the calculation of the mean intensity

µn =

∑

ij sij(u
∗

j(xi))
n

∑

ij sij
(2)

which serves as the estimated mean of the bias free intensities. b can therefore
be estimated by comparing the corrected acquired intensities to this value.
At each iteration we calculate the bias residuals rnj (xi) = log((u∗

j(xi))
n/µn).

This is followed by weighted spatial (3D) Gaussian smoothing of the residu-
als rnj (xi) in each time-frame with weights wn

ij = (u∗

j(xi))
nsij and averaging

in time to calculate the residual △bn(xi) still present at the nth iteration

△bn(xi) =
1

NF

∑

j

∑

l w
n
ljφσb

(dil)r
n
j (xl)

∑

l w
n
ljφσb

(dil)
(3)

where dil represents the euclidean distance between voxels i and l, φσb
is a

Gaussian kernel with standard deviation σb for the smoothness of b, and NF

is the number of time-frames. The bias-corrected image is then updated as
follows: (u∗

j(xi))
n+1 = (u∗

j(xi))
ne−△bn(xi).

2.2.2. Slice to Volume Registration

Echo Planar Imaging (EPI) in single shot mode allows the acquisition of a
single slice in about 100 ms, and so intra-slice motion artefacts are generally
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small in the fetal brain and we will not model these in what follows. Inter-
slice motion is, however, still present and can be many millimeters or even
many centimeters in scale. In this work we have so far not accounted for
image distortions and so have applied a rigid body motion model for the
correction of each slice.
Motion correction methods seek a geometrical transformation of the data
to place it in a self consistent coordinate system in which the fetal brain
appears to be stationary (Rousseau et al., 2006; Jiang et al., 2007; Kuklisova-
Murgasova et al., 2012). Here we used the approach developed by Jiang et al.
(2007), in which a hierarchical registration pipeline was built and successfully
applied to reconstruct anatomical T2 weighed fetal brains with high SNR
levels.
The processing pipeline is organized as follows (see Figure 4). As a first
step, complete stacks of slices (fMRI time series plus coronal and sagittal
volumes) are registered and a reference image is formed by averaging the
entire dataset. Data are then divided into temporally contiguous blocks (in
Figure 4 each block is color coded), containing fewer slices. Rigid body
registration to the reference is then performed, and the reference image is
subsequently updated. This process is repeated, with progressively smaller
temporal groupings, stopping when each block contains one slice. The last
iteration of the algorithm corresponds to direct slice to volume registration.
The cost function minimized by the algorithm is sum of squared difference
(SSD).
This process results in a set of rigid transformations that map all the slices
from the fixed (i.e. stationary) scanner coordinate system S1 into the moving
fetal brain reference system S2. Using a single cumulative strictly positive
index k to label each slice acquired during the whole fMRI time series we
write:

S2,k = TkS1 (4)

where Tk is a 6 degrees of freedom transformation applied to the kth slice
which was acquired at absolute time (k − 1) TS. In this formulation the first
slice is assumed to be acquired at time zero.

2.2.3. Correction of Spin History Artefacts

Spin history artefacts will appear as a natural consequence of motion, where
successive slices acquired at the same scanner coordinate system are effec-
tively sampling the fetal brain at different anatomical positions. Changes of
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Figure 4: Motion correction Pipeline. Here each temporal block is
color-coded and it represents the temporal unpacking of the data acquired

during an interleaved acquisition.

the baby’s position will therefore disrupt the steady state of the longitudi-
nal magnetization (T2 decay is assumed to remove any significant coherence
effects between successive excitations), and each measure is then effected by
an unknown scaling factor (Bhagalia and Kim, 2008). To model spin history
effects, we incorporate information from image registration into a forward
model of the longitudinal and transverse magnetization components (Mk

L

and Mk
T ) immediately after the kth slice has been excited.

If no motion occurs (S1 = S2), the evolution of these two quantities at the
time scale of TS is given by (Haacke et al., 1999):







Mk
L(x) = [M0 − (M0 −Mk−1

L (x)) · e
−

TS

T1 ] cos[α · φ(|x− xslicek|)]

Mk
T (x) = [M0 − (M0 −Mk−1

L (x)) · e
−

TS

T1 ] sin[α · φ(|x− xslicek|)]
(5)

where x a generic position in S1 and xslicek its perpendicular projection onto
the centerline of slice k. M0 = 1 is the normalized longitudinal magnetization
at equilibrium, T1 the longitudinal relaxation time, α = 90o is the nominal flip
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angle used at acquisition and φ the slice excitation profile. In this work, φ is
approximated as a Gaussian function of FWHM of 5 mm such that φ(0) = 1,
and T1 set at a typical value for neonatal brain of 1500 ms (Williams et al.,
2005). The model steps through time units of TS, updating the current state
of magnetization (Mk

L(x) and Mk
T (x)) using the longitudinal magnetization

computed at the previous iteration (Mk−1
L (x)). As initial conditions, the

longitudinal and transverse magnetization components M0
L(x) and M0

T (x)
were set to M0 and 0 respectively.
Assuming that slice to volume registration provides the correct transforma-
tion matrices to map slices from S1 into S2, the equations for the longitudinal
and transverse magnetization components in the presence of motion become:







Mk
L(yk) = [M0 − (M0 −Mk−1

L (yk−1)) · e
−

TS

T1 ] cos[α · φ(|yk − yslicek
|)]

Mk
T (yk) = [M0 − (M0 −Mk−1

L (yk−1)) · e
−

TS

T1 ] sin[α · φ(|yk − yslicek
|)]

(6)
where yk = Tkx and yslicek

= Tkxslicek .
We run both equations 5 and 6 on a 1 mm isotropic grid, obtaining a high
resolution estimate of the magnetization components for each subject for
each slice both with and without the estimates of motion.
Since spin history corrections are applied directly to the original moving data
(defined in S1 at the original coarse resolution), in the case of no motion,
all the samples within each voxel xi in S1 of sizes 2.5 · 2.5 · 5 mm3 (in-plane
resolution versus slice thickness) were averaged. For equation 6, all voxels at
the fine resolution scale that were falling into yi,k (projection of xi into S2,k)
were also averaged, and stored the resulting value at the original location in
S1.
This produced two estimates of the transverse magnetizations, labelled re-
spectively M j,A

T (xi) and M j,B
T (xi), defined for each frame j, at the original

coarse resolution relative to the scanner coordinate system S1. The labels B
and A stand for the transverse magnetization components that are obtained
when the presence of motion is and is not simulated.
To remove the variable saturation effects caused by intra-slice motion, each
bias corrected fMRI voxel u∗

j(xi) was weighted using the following formula:

u∗∗

j (xi) = u∗

j(xi)
M j,A

T (xi)

M j,B
T (xi)

(7)
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with u∗∗

j (xi) representing the bias-spin corrected voxel acquired within the
jth frame at location xi.

2.2.4. Scattered Data Interpolation

The transformations determined by image registration provide a direct means
of transforming from the original slice positions in S1 to the corresponding
positions in S2. The slice data are irregularly positioned in S2 and need to
be interpolated onto a uniform grid for further fMRI analysis. This is a key
part of the pipeline where data can be degraded so we tested two different
scattered data interpolation strategies, utilising both spatial and temporal
proximity in different ways. Each method performs locally linear interpola-
tion based on Delaunay triangulation (Delaunay, 1934).
Although complete stacks of fMRI slices are repeatedly acquired, each indi-
vidual slice is a single-shot, which results in systematic timing offsets for each
slice in scanner coordinates (in steps of TS). Also, temporally adjacent slices
do not necessarily have to be spatially adjacent, as slice time ordering can
be chosen by the operator. There are thus two clear options; to regard the
data as scattered in a 3D space, grouped into coarse time bins of duration
TR (stack repeat time), or to treat all the data as 4D space-time observations
in which the distance between locations depends on both the spatial and
temporal separation. To create a distance metric in space-time, we scaled

the time dimension by a factor of res(z)
TR

, where res(z) is the resolution of the

image in the through slice direction.

Delaunay Linear interpolation: the Delaunay triangulation constructs a mesh
by connecting nearest neighbours with straight edges. In 2D this results in a
mesh of triangles, in 3D a mesh of tetrahedrons and so on. A Delaunay mesh
is a tessellation such that the circumspheres associated with each simplex do
not contain any other vertices in their interior. As a consequence of that, the
Delaunay tessellation ensures that vertices belonging to the same simplex
are also nearest neighbours. This property of the Delaunay mesh renders
it particularly suitable for efficient scattered data interpolation, providing
a means to estimate a value at a specific location from values in the local
neighbourhood (De Berg et al., 2008). In this case we used piece-wise linear
interpolation from the vertices for each simplex that contains the target point.

The choice of Delaunay interpolation over previously proposed multilevel B-
splines scattered data interpolation (Jiang et al., 2007) and super-resolution

13



reconstruction approaches (Kuklisova-Murgasova et al., 2012) is due to the
following reason; while reconstruction of anatomical T2 weighted images can
exploit an oversampling factor that comes naturally by imaging the fetal
brain multiple times for multiple views, in the context of fetal fMRI what is
really desired is the reconstruction of time series. The consequence of this is
that the natural rate of scattered positions versus points to infer is 1 to 1.
This relationship may also get worse when big motion occurs, by opening up
holes between slices that are spatially adjacent.
B-splines can be unreliable in this type of application because of isotropic
kernels and an inability to fill areas with missing data. Furthermore super
resolution approaches are suitable when oversampling in the data can be used
to improve its resolution. In fetal fMRI data there is no oversampling and
therefore their usage is very undesirable.

2.2.5. Validation of Interpolation Methods

A forward simulation was used to validate the interpolation schemes. In the
first step, a synthetic dataset was constructed by taking a fetal head mask
and defining a set of five spatial regions, color coded in Figure 5. Each
mask was spatially smoothed to avoid ringing effects when resampling. A
specific synthetic time course was assigned to each of these regions as follows:
s1(t) = sin(2π ·0.05 · t), s2(t) = cos(2π ·0.01 · t), s3(t) = sawtooth(2π ·0.02 · t),
s4(t) = repbox(2π ·0.03 ·t), s5(t) = sin(2π ·0.08 ·t), with sawtooth and repbox
representing a train of repeated sawtooth and boxcar functions respectively.
A global mean of 500 units was assigned to the entire volume mask.
The simulation was set up at the time scale of TS. To match the temporal
structure of real data acquisition, a TR = 4 sec and a total number of 35
slices for each stack were used. The spatial resolution of the simulated data
was 1 mm isotropic.
The first step was to model the sampling of the object that the scanner per-
forms. Initially, the transformations between S1 and S2 were set to identity,
so that the object was stationary in S1. The simulated slice data consisted
of voxels xi in S1 of size of 2.5 · 2.5 · 5 mm3 (in-plane resolution versus slice
thickness). The simulated “acquired” signals were calculated as the mean of
the values from all the voxels in the high-resolution model that fall within
xi. In order to investigate possible effects of different slice overlaps on the
final result, complete simulations were run with overlaps of 1 mm and 2.5
mm, which correspond to the minimum and maximum amount of overlap in
the real data. Acquisition slice ordering was interleaved (1-3-5-7...2-4-6-8...)
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Figure 5: Spatial distribution of the five regions used in the forward
simulation.

and 100 volumes were acquired.
After simulated acquisition, i.i.d. Gaussian noise was added to each voxel.
The variance of the noise was selected to provide a low BOLD effect-to-
noise ratio, typical of RSNs, where the explained variance in adult studies is
around 2 or 3%. The simulated data were then analyzed using Probabilistic
ICA as implemented in FSL Melodic (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)
to determine if the temporal-spatial patterns built into the model could be
detected.
ICA is a data driven method used to find a set of components in which statis-
tical independence is maximized (Hyvärinen and Oja, 2000). In the context
of fMRI, ICA splits the data into a set of spatial statistically independent
components, each of which is associated with an unique time trend. Prob-
abilistic ICA includes isotropic noise in the definition of the model to allow
for the uncertainties associated with each measure.
Before running Probabilistic ICA, data were spatially smoothed with a Gaus-
sian Kernel of FWHM of 2 mm.
Motion was then simulated by applying to each slice in S1 the set of rigid
transformations observed in the subject in our study population that exhib-
ited the largest level of movement. Each “acquired” voxel, xi, in S1 was
therefore projected into S2,k, obtaining its projected version yi,k. The signal
for each position in S1 was then assigned to the average of the voxel values
at the fine resolution that were within yi,k. Independent Gaussian noise with
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the same variance as before was then added to the signal for each acquired
voxel in the moving object in S1.
Finally, to test each interpolation scheme, the simulated acquired (noisy)
slice data in S1 was projected back into S2 to produce scattered data ready
for analysis. Regular spaced data was then recovered using each of the in-
terpolation schemes outlined in section 2.2.4 and “Resting State Networks”
identified using standard Probabilistic ICA, after smoothing with a Gaussian
Kernel of 2 mm.

2.2.6. Group Independent Component Analysis

Group Probabilistic ICA was used to discover Resting State Networks at
the population level from the fetal data after correcting for bias field, spin
history and motion. Brain extraction was performed on each subject using
a manually delineated fetal brain mask.
The data from all subjects were placed into a common space defined by se-
lecting a fetal T2 weighted atlas of 32 weeks of gestation (the mean gestational
age of the group). The atlas was created from separate data according to
the method described by Serag et al. (2012). The required registrations were
carried out in two separate steps; first, for each subject separately, the fMRI
data were rigidly registered to their corresponding T2 weighted brain volume
produced from the ssFSE images that had been realigned and reconstructed
as described in Jiang et al. (2007). The T2 weighted volume reconstructions
were aligned to the common target space using affine registration. The in-
dividual reconstructed fetal brain volumes achieve self-consistency, but may
appear in an arbitrary pose. It was therefore frequently necessary to supply a
starting transformation estimate. The transformations obtained by the two
registration processes were composed and applied to fetal fMRI data in a
single step. Finally, each dataset was spatially smoothed with a Gaussian
Kernel of 2 mm.

3. Results

The following sections first report the results obtained on the synthetic
dataset, and then those obtained from in vivo data.

3.1. Scattered Data Interpolation

Figure 6 shows the components recovered by Probabilistic ICA for the 1 mm
and 2.5 mm overlap cases, when no motion is included in the simulation
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(S1 = S2). The Figure shows z-score maps thresholded using the cut-off
value given by FSL Melodic. When running ICA the number of components
was automatically estimated correctly to be five. As expected, in both cases,
ICA is capable of recovering spatial-temporal patterns, that, if compared
with Figure 5, demonstrate a good level of overlap.

(a) Overlap of 1 mm. (b) Overlap of 2.5 mm.

Figure 6: Components recovered by ICA for the two different levels of
overlap.

Running ICA on the moving object without motion correction does still par-
tially recover some signal for the 5 components, but with substantial damage
(Figure 7).

Figure 7: Spatial distribution of the 5 components in a moving simulated
dataset when motion is not corrected. Here we are showing the result with

slice overlap of 1 mm.
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Figure 8 shows the recovered components obtained on the motion corrected
objects after having performed scattered interpolation. Columns show the
result obtained by using Delaunay 3D and 4D, and rows recovered maps for
the two different level of overlap. In all cases, we are able to recover the in-
troduced components, with no substantial differences between the two levels
of overlap.
To evaluate the performances of the two different scattered interpolation
schemes, we calculated the normalized root mean square error (NRMSE)
between the motion free dataset (obtained when S1 = S2) and motion cor-
rected ones. The calculation was carried out on all noise free datasets and
the NRMSE (in %) is shown in Figure 9.
Based on a visual inspection and the NRMSE results, the Delaunay 3D
method appears to perform best for the problem in question, and we subse-
quently decided to apply this method to in vivo data.

Figure 8: Spatial distribution of the 5 components for Delaunay 3D and 4D
and for the two different overlaps each of which is corrected for motion.
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Figure 9: NRMSE for all scattered interpolation methods and for the two
levels of overlap.

3.2. Bias Field Correction

Figure 10 shows a slice in the transverse plane before (a) and after (b) bias
correction for one of the subjects that presented with strong bias effects.
The shading given by the inhomogeneities of B1 is largely resolved. The
estimated bias field is shown in Figure 10c; its application results in much
more homogeneous image properties, although this is hard to quantify in the
absence of a ground truth estimate.
Means and standard deviations for the estimated bias fields over the region
of interest were 1.024 ± 0.138, 1.036 ± 0.223, 0.994 ± 0.106, 1.005 ± 0.120,
0.932 ± 0.154, 1.002 ± 0.069, 0.993 ± 0.049 and 1.007 ± 0.078.
We have finally performed an exhaustive simulation on the data from this
study to measure the performances of our bias correction algorithm. Having
corrected every subject, we applied all the resulting bias field estimates to the
corrected images of every other subject. Each bias field was projected and in-
terpolated onto the space defined by the fetal head and the bias field applied
to each image independently. We therefore obtained a set of 56 examples, each
of which was characterized by a different subject-bias field combination.
The bias correction algorithm was then run on this set of 56 images, and
the performances measured by calculating the NRMSE between the esti-
mated bias fields and the corresponding ground truth. This led to the Table
reported in Figure 11, where each row represents a subject, and each col-
umn the associated bias field. The NRMSE was 1-2% for the majority of the
cases, reaching peaks of 5-6% when using the bias field from subject number
5 (fifth column). Despite this bigger error, we observed good results even in
this case; the bottom part of same Figure reports images before and after
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(a) Image presenting strong
bias effect.

(b) Image after bias
correction.

(c) Bias field.

Figure 10: Bias field correction results. An EPI slice (a) before and (b)
after bias field correction using the bias field shown in (c).

bias field correction using this B1 map, and shows a substantial reduction of
inhomogeneities in all cases.
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Figure 11: (a) NRMSE between estimated bias and ground truth in the
permutation test. (b) Comparison between the 7 subjects corrupted with

bias field number 5 and the corresponding bias corrected images.
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3.3. Slice to Volume Registration

In order to assess the registration performances, we used a forward simula-
tion. We chose from our cohort of registered subjects the one that exhibited
the highest level of motion (fetus number one from Table 1) and selected one
volume with no substantial motion artefacts as reference. The entire volume
was then projected into the space of acquisition by using the transformation
matrices that had been previously computed when registering the original
data. The signal coming from the projected volumes was then interpolated
onto the space defined by each slice using B-splines (Lee et al., 1997). The
use of B-Splines is here convenient as the scattered space formed by the pro-
jected volumes is regular. Isotropic noise was finally added to each voxel to
reach typical levels of SNR.
The synthetic moving dataset was then fed into the registration framework
and the estimated motion parameters compared with the ground truth. Means
and standard deviations of the absolute error were 0.047 ± 0.066 mm, 0.039
± 0.075 mm, 0.066 ± 0.096 mm for translations, and 0.194 ± 0.147◦, 0.174
± 0.130◦, 0.122 ± 0.122◦ for rotations.

Table 2 summarizes motion of all the corrected subjects showing that there
was substantial translation and especially rotation. The grey row of the Ta-
ble reports the means and standard deviations of the motion parameters
obtained from one of the three subjects for which the registration algorithm
failed, whereas the blue one refers to one of those subjects that exceeded the
field of view.
In the case of excessive motion, the registration procedure reduced the ob-
servable motion substantially, but residual movement was still clearly seen
and at some time points the interpolated volumes were obviously damaged.
The motion estimates, although incorrect, do give an indication of the mag-
nitude of the motion exhibited, which was higher than all the other subjects
in most motion parameters.
Figure 12 shows the estimated motion parameters plotted against the ac-
quired volume index for subject number one. Parameters are arranged ac-
cording to the slice acquisition order. The translations are comparable in
magnitude with the dimensions of each voxel. Estimated rotations take val-
ues within the range −20◦ and +10◦ around the x and y axes, reaching a
peak of −60◦ for rotations around the z axis. To illustrate the accuracy of
the registration algorithm, we focus on the red segment of Figure 12, which
corresponds to volumes 23 and 24 in the original data and coincides to the
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Translation Rotation
Fetus tx (mm) ty (mm) tz(mm) rx (◦) ry (◦) rz(◦)
1 -0.37 ± 0.55 1.10 ± 0.72 -1.69 ± 0.82 0.56 ± 3.72 0.48 ± 2.15 -4.41 ± 7.21
2 -0.41 ± 1.09 -1.03 ± 1.07 -0.48 ± 0.52 1.52 ± 3.32 -0.93 ± 4.03 2.09 ± 2.64
3 0.69 ± 0.61 -1.37 ± 1.10 1.36 ± 1.13 2.13 ± 1.9 1.01 ± 1.5 0.75 ± 1.30
4 0.98 ± 0.62 -2.86 ± 1.30 2.94 ± 1.97 4.18 ± 3.4 3.4 ± 1.91 -0.78 ± 1.47
5 1.66 ± 1.70 0.16 ± 0.64 0.42 ± 1.19 -0.28 ± 2.27 2.94 ± 5.98 1.18 ± 5.49
6 0.04 ± 0.59 0.69 ± 1.33 0.35 ± 0.76 0.87 ± 2.13 0.97 ± 3.12 -1.84 ± 4
7 -0.25 ± 0.89 0.98 ± 1.27 0.96 ± 0.96 -0.04 ± 3.46 0.25 ± 3.05 -0.79 ± 2.91
8 0.61 ± 1.12 -0.53 ± 0.88 0.59 ± 0.89 0.14 ± 2.07 -2.42 ± 3.59 1.37 ± 3.16
9 6.70 ± 4.0 -1.12 ± -1.79 -2.03 ± 2.57 13.53 ± 16.38 7.85 ± 9.28 8.59 ± 17.73
12 -0.79 ± 2.86 3.33 ± 2.97 0.043 ± 2.49 0.79 ± 5.27 -0.79 ± 4.66 -7.26 ± 9.57

Table 2: Mean and standard deviation of rigid body motion parameters for
all the corrected subjects (1-8), for one of the fetuses for which the

registration algorithm failed (9) and for one that exceed the field of view
(12).

period in which fetus one moved the most.

Figure 12: Behaviour of the estimated motion parameters. The red
segments of the curves (indicated also by the red arrow) will serve as

illustration of the performances of the registration later on.

Figure 13a shows an 8 second period of the time course. The same motion

23



estimates, but rearranged in geometrical slice order, are shown in Figure 13b.
The oscillating nature of the reconstructed motion parameters in b derives
from the interleaved slice ordering used at acquisition. This oscillatory be-
haviour appears to decline at the edges of the stacks of slices in Figure 13b
(region shown in lighter blue), where the acquired slices are in fact outside
the brain at its superior and inferior extremes. These slices cannot be aligned
to the target reconstructed brain during the final slice-by-slice stages of reg-
istration process and so their parameters remain static after the registration
with other slices that are inside the brain; the hierarchical strategy proposed
by Jiang et al. (2007) initializes the registration of each sub-block of slices
with an initial transformation computed when performing the registration of
the corresponding parent block. Sudden jumps of the motion estimates in
Figure 13b between volumes 23 and 24 do not correspond to sudden move-
ments, but are a natural effect of the registration framework.
Figure 13c (first two rows) shows slices taken at two different levels of the
brain from volume stacks 23 and 24. The Figure provides a striking, but
not untypical, illustration of how fetuses frequently change position, partic-
ularly by rotation within the time taken to acquire a single complete stack.
The lower half of Figure 13c shows the same set of slice locations after mo-
tion correction. The corresponding motion estimates are also highlighted in
Figure 13 with colored circles.
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Figure 13: (a) Reconstructed motion parameters with temporal ordering for
the red segment of Figure 12. (b) Motion parameters presented in

geometrical slice order. Slices belonging to the brain are highlighted, those
beyond the superior and inferior margins of the brain are in lighter blue.
(c) Two slices taken from the 3D slice stack at volumes 23 and 24 before
motion correction, i.e. in scanner coordinates S1 (first two rows), and after

motion correction, i.e. in patient coordinates S2 (last two rows).

Finally, in order to be able to provide a measure of absolute motion for those
examples in which the registration algorithm failed, the pupil of the left eye
was chosen as a landmark, and its motion tracked by taking the distance of
its position between the 2 volumes of the time series in which the motion
excursion was maximal. The same calculation was repeated for subjects la-
belled 12 to 14 of Table 1, but for these cases the start and end frames were
the first volume of the time series and the volume in which the fetus first
moved partly outside the imaged region. The calculated absolute displace-
ments were 55.2, 37.6 and 36.2 mm for subjects 9, 10 and 11, and of 36.5,
22.3 and 53.7 mm for subjects 12, 13 and 14.

3.4. Correction of Spin History Artefacts

The transverse magnetization at a specific space-time location in functional
imaging is proportional to the stored longitudinal magnetization that is avail-
able at that spatial location just prior to the application of the excitation
RF pulse. If the spin history model is correct then we would expect correla-
tion between the time courses of the observed fMRI data and the predicted
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saturation factors. Conversely, if the model did not predict these effects, the
saturation factors would not related to the data at all, so there would only
be chance correlation.
We therefore calculated the cross correlation between the predicted time vary-
ing saturation factor (MB

T ) at each location in anatomical space (S2) and the
recorded time series after motion correction. To do this, the saturation fac-
tors for each slice calculated in scanner coordinates S1 were transformed into
S2 and interpolated onto a regular grid. Figures 14a shows the resulting cor-
relation map for subject number one and suggests that the signal is generally
correlated with the saturation time courses predicted by the model. Consid-
ering the subject group as a whole and taking the average correlation score
across each brain shows mean values of -0.79% for the least correlated subject
and 24.63% for the most correlated one.
To test the performance of the model, a permutation test was conducted on
subject number one. The saturation time courses for each voxel predicted by
the model were randomly assigned to another voxel position in S2. Corre-
lation maps between the original fMRI data and this new configuration of
saturation factors was then recalculated. The procedure was repeated 1000
times and the mean correlation score calculated each time. We then tested
the null hypothesis that these 1000 correlation scores are a realization of a
Gaussian distribution. This null hypothesis was accepted (p > 0.05).
Finally, in order to see whether the original configuration (i.e. without reshuf-
fling) of the saturation factors is capable of describing sensible variations in
the data, we tested the hypothesis that its mean correlation score belongs
to the Gaussian distribution computed in the previous step. This test had
negative outcome as the mean correlation score was found to lie beyond 70
standard deviations from the center of the Gaussian distribution, confirming
that the time saturation factors as given by the spin history model are cor-
related with the fMRI signals by more than chance and therefore justifying
their removal.
To assess the sensitivity of the spin history model to changes of T1, the es-
timation MB

T was repeated using a T1 = 3000 ms and the correlations with
the fMRI data recalculated. Results for subject one are shown Figure 14c,
and confirm that the correlation score does not depend strongly upon the
choice of T1. However, a t-test under the null hypothesis of the results in
Figures 14a and c being realizations of Gaussian random variables with iden-
tical means and variances was rejected (p < 0.05), confirming that the choice
of T1 does influence the estimation of the saturation factor to be applied at
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each spatial-temporal voxel location in a detectable way.

Figure 14: (a) Correlation score between MB
T given by the model and the

corresponding fMRI time series (T1 = 1500 ms). (b) Correlation score
between the same fMRI data with saturation factors from the permutation
test. (c) Correlation score between original data and model prediction using

T1 = 3000 ms.

3.5. Group Independent Component Analysis

Group ICA extracted 20 components, 6 of which (Figure 15) were identi-
fied as spatially resembling those previously described in preterm neonates
by Smyser et al. (2010) and by Doria et al. (2010).
These consisted of: (A) lateral visual network encompassing the extra-striate
visual areas; (B) a medial visual network comprising the striate and parastri-
ate areas; (C) a bilateral sensori-motor network in the superior parietal lobe
encompassing the primary motor and somatosensory cortices (anterior and
posterior to the central sulcus respectively); (D) a primitive default mode
network in the medial prefrontal and anterior cingulate cortices; (E) and (F)
unilateral auditory networks in the superior temporal and insular areas in
the left and right hemispheres respectively. In accordance with the findings
of studies with preterm infants, a trend towards a more bilateral network
representation (between one region and its homotopic counterpart) was seen
in those encompassing medial areas (such as the sensori-motor and medial
visual networks). In contrast, networks presumed to demonstrate more long-
range connectivity in their mature forms (such as the auditory and default
mode networks) were found to be unilateral or incomplete.
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Figure 15: Transverse, coronal and sagittal views of RSNs given by Group
ICA overlaid onto a fetal template of 32 weeks (all z-score maps were

thresholded using the cut-off value given by Melodic). The left side of the
Figure corresponds to the left side of the brain.

4. Discussion and Conclusions

This paper proposes a framework to investigate spontaneous fluctuations of
the BOLD signal in the human brain during a key period of development,
before the natural term of birth. Performing fMRI of the fetus in utero re-
quires methods that are tolerant of the large displacements caused both by
maternal respiration and by unpredictable spontaneous movements by the
fetus, leading to a challenging motion correction problem. Previous studies
on fetuses employed methods directly adapted from those applied to adult
data, in which complete stacks of slices covering the whole brain volume are
processed together assuming negligible intra-stack movement. This assump-
tion is frequently violated and results in a high rejection rate of data. The
larger the fraction of the data that is excluded the greater the risk of bias.
Such an approach is also inefficient in data usage, so loses statistical power.
In this paper we have presented methods designed to directly address the
consequences of motion with the aim of utilizing as much as possible of the
acquired data.
The proposed method is a combined approach of slice to volume registration
and scattered data interpolation with bias field and spin history corrections.
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The method was tested both with simulations and on in vivo data acquired
from fetal subjects. Starting from raw stacks of EPI images acquired as
parallel slices in scanner coordinates, it outputs data on a regular grid in an
anatomical space in which the subject is static over the time course. These
regular data are then available for any choice of fMRI analysis method. In this
case, Group ICA was applied and was able to recover Resting State Networks
that are consistent with those already mapped in preterm babies (Smyser
et al., 2010; Doria et al., 2010) and have common features with RSNs found
in older, term born neonates (Fransson et al., 2007, 2009).
The modular approach adopted in this study, in which motion correction is
a separate step from functional data analysis offers great flexibility and is
in line with most other processing pipelines currently adopted. It allowed
us to focus on the key challenging feature of fetal datasets while providing
results that are directly comparable with other analyses. A more integrated
approach would be possible and there have been a number of studies in the
adult fMRI literature that attempt to jointly address motion correction and
functional analysis (Liao et al., 2005). A natural extension of the current
approach for group analyses would be to project the scattered data directly
into standard space and only then interpolate onto a standard regular grid.
This is something we will explore in future studies.
The key enabling process in the proposed pipeline is alignment of each ac-
quired slice within anatomical space (S2). The simulations demonstrated
that without this step the capability to detect functional signals is substan-
tially reduced and there is supporting evidence from adult studies (Kim et al.,
1999). Slice by slice alignment is well established for anatomical fetal imag-
ing and proved effective in this application. However, there were three fetal
subjects in the cohort for which we were not able to sufficiently correct for
movement. The babies in question had moved rapidly for extended periods
so that the earlier stages of the alignment processes, which rely on working
with packages of temporally contiguous slices to robustly determine approx-
imately correct slice locations, failed. Developing registration methods that
can succeed with such chaotic data remains a challenge to be addressed fur-
ther. A possible aid in this could be the adoption of multi-band acquisitions
methods in which there is simultaneous acquisition of several slices (Larkman
et al., 2001; Feinberg and Setsompop, 2013).
EPI images are extremely vulnerable to geometrical distortions caused by
magnetic field inhomogeneity (Jezzard and Balaban, 1995). However, dis-
tortions in utero are much less pronounced than in other fMRI experiments
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for the simple reason that the fetal brain is surrounded by amniotic fluid
and maternal soft tissue; tissue susceptibility differences at air-tissue bound-
aries are therefore generally not present close to the fetal head. For the data
acquired at 1.5T for this study, we found that distortion was not the first
priority to be addressed and so focused on other challenges. The framework
in its current form is however easily extendable, and does not prevent the
inclusion of a distortion correction as preprocessing step.
Another failure mode for fetal fMRI occurs when the fetal head moves out
of the prescribed imaging volume. Despite trying to enlarge the sampling
volume to match the fetal brain size, this occurred in three cases in our sam-
ple. As increasing spatial coverage takes more time or requires less dense
sampling in the slice selection direction, there is a tension between reducing
the risk of data loss through large-scale changes in position and other key
factors. In this study we adjusted the sampling density to enlarge the sam-
pled volume in order to keep the other parameters matched across subjects.
Fetal motion can cause gaps to open up between sampled slices in anatomical
space, which is clearly sub-optimal and likely to be more severe with lower
sampling density schemes. The focus in this study was to demonstrate a vi-
able approach. It remains to be explored how data sampling density impacts
on RSNs detection.
Notwithstanding the limitations discussed above, we were able to identify
in the fetuses studied six RSNs with spatial representations consistent with
those previously described in preterm infants. Networks that are likely to in-
volve an underlying structure of long-range connectivity in full term neonatal
subjects were found to be unilateral or incomplete in our fetal population,
further supporting theories that their maturation is associated with rapid
neuronal growth in the third trimester of human gestation (Doria et al.,
2010). Because of the limited numbers of subjects in this pilot study, all
were treated as a single group for the analysis, which means that a range
of gestational ages and hence maturational states were combined. This will
have increased the variability in the data, and the extracted networks are
likely to emphasize the most conserved features, without sensitivity to de-
tect emerging or rapidly changing features within the age range. Applying
the proposed techniques to a larger study population will enable changes with
gestational age to be explored. It can also equally be applied to experiments
that seek to correlate fetal brain activity to external stimuli (Gowland and
Fulford, 2004).
By fully correcting for fetal motion and the secondary effects of variable bias
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field and spin history, it is now possible to start to systematically perform
fMRI in utero on a larger scale without the need to discard large fractions
of data. The presented framework, which can be applied to resting state
and stimulus based paradigms, holds promise as the basis for reliable and
detailed functional brain mapping across the third trimester of gestation.
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