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Insects such as locusts and some moths can transform from a solitarious phase when they
remain in loose populations and a gregarious phase, when they may swarm. Therefore, the key
to effective management of outbreaks of species such as the desert locust Schistocercagregaria
is early detection of when they are in the threshold state between the two phases, followed by
timely control of their hopper stages before they fledge because the control of flying adult swarms
is costly and often ineffective. Definitions of gregarization thresholds should assist preventive
control measures and avoid treatment of areas that might not lead to gregarization. In order
to better understand the effects of the threshold density which represents the gregarization
threshold on the outbreak of a locust population, we developed a model of a discrete switching
system. The proposed model allows us to address: (1) How frequently switching occurs from
solitarious to gregarious phases and vice versa; (2) When do stable switching transients occur,
the existence of which indicate that solutions with larger amplitudes can switch to a stable
attractor with a value less than the switching threshold density?; and (3) How does random
perturbation influence the switching pattern? Our results show that both subsystems have refuge
equilibrium points, outbreak equilibrium points and bistable equilibria. Further, the outbreak
equilibrium points and bistable equilibria can coexist for a wide range of parameters and can
switch from one to another. This type of switching is sensitive to the intrinsic growth rate and
the initial values of the locust population, and may result in locust population outbreaks and
phase switching once a small perturbation occurs. Moreover, the simulation results indicate that
the switching transient patterns become identical after some generations, suggesting that the

∗Author for correspondence

http://dx.doi.org/10.1142/S0218127416300378


December 15, 2016 13:32 WSPC/S0218-1274 1630037

evolving process of the perturbation system is not related to the initial value after some fixed
number of generations for the same stochastic processes. However, the switching frequency and
outbreak patterns can be significantly affected by the intensity of noise and the intrinsic growth
rate of the locust population.

Keywords : Discrete switching system; stable switching transient; phase change; random pertur-
bation; bistability.

1. Introduction

Insects such as locusts and some moths are
polyphenic. They can change their “phase” from
one condition to another, usually in response to
changes in their population densities. Locusts are
distinguished from grasshoppers by this ability.
They spend much of their lives in a “solitarious”
phase, behaving just like any other species of
grasshopper, until an increase in their density
will cause them to begin a switch to being in a
“gregarious” phase [Uvarov, 1921; Uvarov et al.,
1977]. For instance, the desert locust Schistocerca-
gregaria changes color, body dimensions, physiol-
ogy and behavior as it enters a “transiens” phase
before becoming fully gregarious when, as this name
implies, it becomes highly social. The developing
stages, within hopper bands, alter from being green-
ish to black and yellow and moult to become swarm-
ing adults. These swarms move by day, in contrast
to the nocturnal movements of solitarious desert
locusts, and are capable of very long distance migra-
tions following characteristic pathways determined
by the season and prevailing meteorological condi-
tions [Pedgley, 1981, 1980]. The mechanisms elicit-
ing phase changes in locusts and noctuid moths are
many and varied, including tactile responses with
increasing densities [Simpson et al., 1999] which
in turn are triggered by environmental influences
[Cheke & Holt, 1993; Cheke & Tratalos, 2007; Trat-
alos et al., 2010] and have been reviewed by Pener
[1991], Pener and Simpson [2009] and Wang and
Kang [2014], amongst others. See also Buhl et al.
[2006] for a study of hopper band behavior. Holt
and Cheke [1996] presented a model of insects with
phase change, which can be used to simulate and
predict the insects population dynamics for com-
parisons with observed data. Cheke et al. [2014]
expanded the Holt and Cheke [1996] model by
including predation together with carrying capac-
ity and population growth rate changes. Here we
present and investigate alternative models of phase

switching in locusts and demonstrate that they
have a rich and varied suite of dynamics including
chaos, periodic solutions and coexistence of multiple
attractors. We also investigate the effects on the
dynamics of different intensities of random noise.

We begin modeling locust dynamics by utilizing
the well-known discrete single-population Moran–
Ricker model [Ricker, 1954; Moran, 1950] as follows:

H(t + 1) = H(t) exp
[
r

(
1 − H(t)

K

)]
, (1)

where H(t) denotes the density of the locust pop-
ulation in generation t, r represents the intrinsic
growth rate, and K is the carrying capacity of the
environment. Next, we introduce the term g(H)
in order to consider the effect of predation, which
was proposed for insect outbreak systems using the
spruce budworm Choristoneurafumiferana and bal-
sam fir Abiesbalsamea system as an example [Lud-
wig et al., 1978].

g(H) =
βH2

α2 + H2
, (2)

where the parameters β and α are constants. The
form of this term takes the following into account:
(1) when the insect density is high enough (H →
∞), the predation rate should approach an upper
limit β, and (2) when the insect population is low
(H → 0), the predator will seek other sources of
food H (g(H) → 0).

Thus, based on (1) and (2), we have the follow-
ing basic model in the present study to address the
phase change of the locust species, i.e. we have

H(t + 1) = H(t) exp
[
r

(
1− H(t)

K

)
− βH(t)

α2 + H(t)2

]
.

(3)

It follows from literature [Drury, 2012] that
model (3) is a bistable system, which could exist
in two stable steady states for particular parameter
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spaces, as shown in Fig. 1(a). For example, if the
intrinsic growth rate of the locust population is rel-
atively low, then it can stabilize at the low density
(called a refuge equilibrium); once the intrinsic
growth rate increases and exceeds some critical
value, the density of the locust population can
suddenly jump to a high level which is called a
high-density outbreak equilibrium [Ludwig et al.,
1978].

There is evidence that the intrinsic growth rate
for gregarious populations is larger than that for
solitarious populations in both the desert locust
[Cheke, 1978] and the African armyworm moth
Spodopteraexempta [Cheke, 1995] and, further, Holt
and Cheke [1996] assumed that the carrying capac-
ity of solitarious populations is less than that of gre-
garious populations because the latter expand their
geographical range from the recession area into the
much larger invasion area (see Fig. 3 of [Cheke &
Tratalos, 2007]). Based on these assumptions, a dis-
crete desert locust population model is proposed by
using the Ricker equation with switches in intrin-
sic growth rate and carrying capacity, which can
mimic the phase changes of the desert locust pop-
ulation when a random perturbation is introduced
into the carrying capacity.

The marked changes of dynamics of the locust
and its phases have been revealed by carefully
designed experiments and comparing the results
with simulations of a self-propelled particle model
[Buhl et al., 2006], which revealed a critical density
at which marching locusts will spontaneously and
suddenly adopt directed collective motion without
external perturbation. In an alternative approach
towards defining the locust density threshold for
transformations to the gregarious stage, Cisse et al.
[2013] used field data from the RAMSES database
for Mauritania from 2003 to 2011 to explore rela-
tions between locust density, phase status and veg-
etation, by investigating the influence of vegetation
on the gregarization thresholds of the desert locust.
They showed that the latter varied from 208 to 1525
adults ha-1, dependent upon vegetation cover and
condition. However, it is difficult to explore the gre-
garization threshold in the field due to the complex-
ity of the parameters involved in the dynamics of
the locust population.

Therefore, in order to better understand the
effects of a gregarization threshold on locust out-
breaks and outbreak frequency, we propose the fol-
lowing models that assume that the dynamics of the

locust population are bistable with varying carrying
capacity and population growth rate, plus a thresh-
old for the phase switches using methods derived
from threshold control strategies for integrated pest
management [Tang et al., 2015a; Tang et al., 2015b;
Tang & Liang, 2013; Tang et al., 2008]. Based on
locust density threshold control, we redescribe the
above model as a discrete switching insect outbreak
system as follows:



H(t + 1)

= H(t) exp
[
r

(
1 − H(t)

K

)
− βH(t)

α2 + H(t)2

]
,

when H(t) < DT ,

H(t + 1)

= H(t) exp
[
r1

(
1 − H(t)

K1

)
− βH(t)

α2 + H(t)2

]
,

when H(t) ≥ DT ,

(4)

where r < r1, K < K1 and DT represent the locust
density threshold for solitarious to gregarious trans-
formation. This means that the locust population
has a low intrinsic growth rate and a low carrying
capacity during the solitarious phase, while both
the intrinsic growth rate and carrying capacity can
significantly increase during the gregarious phase
[Holt & Cheke, 1996]. The two regions G1 and G2

are defined as follows:

G1 = {H |H < DT ,H > 0},
G2 = {H |H ≥ DT ,H > 0}

and consequently we call system (4) defined in
region G1 as subsystem SG1, and in region G2

subsystem SG2 . Our main aim here is to investigate
the key factors which can influence the transition
from the solitarious phase to the gregarious phase
of the locust population, and then address the com-
plex dynamics of model (4).

2. Equilibrium and Its Stability

The existences and stabilities of equilibria of both
systems SG1 and SG2, and, in particular, the bista-
bilities play key roles in determining the switching
patterns and complex dynamics of model (4).
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2.1. Equilibria of the subsystems

Letting Ht = Ht+1 = H∗, then the equilibrium H∗
of subsystem SG1 satisfies the following equation

H∗ = H∗ exp
(

r

(
1 − H∗

K

)
− βH∗

α2 + H2∗

)
. (5)

Rearranging the above equation (5), yields

r

(
1 − H∗

K

)
=

βH∗
α2 + H2∗

, (6)

and solving it with respect to r we have

r =
βH∗K

(α2 + H2∗)(K − H∗)
. (7)

In order to determine the number of equilib-
ria of model (4) [i.e. the positive roots of Eq. (7)]
numerically, we choose the intrinsic growth rate as
a bifurcation parameter and fix all others as given
in the legend for Fig. 1. The equilibrium bifurcation
curve with respect to r is shown in Fig. 1(a), from

which we can see that the density of the locust
population increases as r increases along the path
DB ′A(r ∈ (0, 0.8042)) and BA′C(r ∈ (0.4887,
1.15)), and there are two stable equilibria for all r
in the interval AB(r ∈ (0.4487, 0.9042)) and in this
region the bistability occurs. The bistability phe-
nomenon provides one explanation of how locust
populations switch from a low-density, refuge equi-
librium, to a high-density, outbreak equilibrium once
the population density has exceeded a threshold.

There are five different patterns for the equi-
librium points as r increases. In order to explain
the different equilibrium points in more detail, we
plotted the left- and right-hand sides of Eq. (6) sep-
arately, with the equilibrium points being where the
two graphs intersect [see Figs. 1(b)–1(d)].

• Case (i). 0.4887 < r < 0.9042

There exist three equilibrium points as shown
in Fig. 1(b), which lie on the curve B′ABA′ in
Fig. 1(a). H∗1 is a stable refuge equilibrium point,
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Fig. 1. Equilibrium points of system (3). (a) Bifurcation curve of equilibrium points with respect to r. (b)–(d) The existence
of equilibria for different values of parameter r. The other parameters are fixed as follows: β = 1, K = 8, α = 1.
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H∗3 is a stable outbreak equilibrium point, and H∗2
is an unstable equilibrium point.

• Case (ii). r > 0.9042

Figure 1(c) shows that only one equilibrium point
can exist and it is a stable outbreak equilibrium
point.

• Case (iii). r = 0.9042

There are two equilibrium points [see Fig. 1(d)]. H∗1
is a refuge stable equilibrium point, H∗4 is a semi-
stable equilibrium point. Moreover, H∗4, where the
two graphs are tangent to one another, is a bifurca-
tion point.

• Case (iv). r = 0.4887

Two equilibrium points coexist, one is the outbreak
equilibrium point, the other is a point of tangency,
a semi-stable equilibrium point.

• Case (v). 0 < r < 0.4887

Only the stable refuge equilibrium point exists.
The existence and stability of equilibrium of

subsystem SG2 can be discussed similarly, so we
omit them here.

2.2. Equilibria for the switching
system

Recently, switching systems have been studied
extensively, and differential or difference equations
with discontinuous right-hand sides are known
as Filippov systems or piecewise smooth systems
determined by different equations according to
which regions of phase space the solutions pass
through [Filippov & Arscott, 1988]. The classifi-
cation and stability of all types of equilibria of
these systems have been defined and investigated in
[Glendinning, 2015; Dercole et al., 2011; Kuznetsov
et al., 2003; Xiao et al., 2013; Tang et al., 2012]. In
order to investigate the dynamics of locust popula-
tions and address how they change between the soli-
tarious phase and the gregarious phase, we define
the regular equilibrium and virtual equilibrium for
the discrete switching system (4) based on the ref-
erences [Glendinning, 2015; Dercole et al., 2011;
Kuznetsov et al., 2003].

Definition 2.1. An equilibrium point H∗ is called
a regular equilibrium of system (4) if H∗ is an equi-
librium of subsystem SG2 and H∗ < DT ; or if H∗
is an equilibrium of subsystem SG1 and H∗ ≥ DT .

These equilibria will be denoted by Er
SG2

and Er
SG1

,

respectively. A point H∗ is called a virtual equilib-
rium of system (4) if H∗ is an equilibrium of subsys-
tem SG2 and H∗ ≥ DT ; or if H∗ is an equilibrium
of subsystem SG1 and H∗ < DT . These equilibria
will be denoted by Ev

SG2
and Ev

SG1
, respectively.

Note that the stabilities of equilibrium points
of system (3) depend on all of the parameters
r,K, β, α, and the positions of all equilibria of
model (4) related to the regions G1 and G2 are
quite important for investigations of the dynam-
ics. Thus, we choose the r and K as the bifur-
cation parameters and fix β and α, and plot the
bifurcation diagram in r–K parameter space for
model (3) in Fig. 2(a). There exist three differ-
ent regions including two monostable regions and a
bistable region. The monostable regions are region
I (outbreak region marked with purple) and region
II (refuge region marked with cyan), the bistable
region (i.e. region III) is marked as red with three
different equilibrium points in it.

To show the effects of r1 and K1 on the equilib-
ria of switching system (4), we choose r1 = r + 0.1
and K1 = K + 2 to ensure that r < r1 and K < K1

in model (4). It follows from Fig. 2(b) that the dis-
tribution and stability of the equilibrium points for
both subsystem SG1 and subsystem SG2 have been
clearly provided. Where the green area is the unsta-
ble region, and the red point is a critical r value
which can suddenly switch from the refuge equilib-
rium point to the unstable equilibrium point or vice
versa once the value of r slightly changes from that
critical value. The blue curve represents the
special case with r = r1 and K = K1, as shown
in Fig. 2(b). The effects of different values of r and
K (i.e. r1 and K1) on the distributions of equilib-
ria clarify that how to switch the model from the
outbreak phase to the refuge phase and to maintain
the density of the locust population below the DT
threshold are crucial for control purposes.

Therefore, determining the regions of the whole
parameter space and identifying the stabilities of
all equilibria of model (4) are useful for address-
ing the switching frequency from outbreak phase
to refuge phase, i.e. from gregarious phase to soli-
tarious phase, and then it can help us to design
successful control strategies. To do this, we assume
that the gregarious phase subsystem SG2 stabilizes
at the outbreak equilibrium or is bistable, while the
solitarious phase subsystem SG1 either stabilizes at
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(a) (b)

Fig. 2. Stability regions of equilibrium points. (a) Steady state diagram identifying the regions of parameter space r–K of
model (3). The monostability regions are region I (outbreak region marked with purple) and region II (refuge region marked
with cyan); the bistability region is region III marked with red. The other parameters are fixed as β = 1, α = 1. (b) Comparison
of equilibrium points between subsystems SG1 and SG2 . For SG2 , the parameters r1 and K1 are changed based on the values
of parameters r and K, i.e. we have r1 = r + 0.1 and K1 = K + 2 which can ensure that r < r1 and K < K1.

the refuge equilibrium or is bistable. Furthermore,
the stable refuge equilibrium point in subsystem
SG2 and the outbreak equilibrium for subsystem
SG1 should be neglected because they are irrele-
vant to locust outbreaks and the solitarious phase
dynamics. Hence, we provide the parameter spaces
based on the following four cases:

(1) SG2 bistability, SG1 refuge;
(2) SG2 bistability, SG1 bistability;
(3) SG2 outbreak, SG1 refuge;
(4) SG2 outbreak, SG1 bistability.

It is difficult to find closed forms for the interior
equilibria of these two subsystems, so we employ
numerical methods to examine the existence of dif-
ferent types of equilibria and show their coexistence.
For system (4), we denoted ER∗G1 and EO∗G1 as the
refuge equilibrium point and the outbreak equilib-
rium point, respectively, and EBr∗G1 and EBo∗G1

as bistable equilibrium points in subsystem SG1

with EBr∗G1 < EBo∗G1, which represent the refuge
state and outbreak state of the bistability equilib-
rium points, respectively. Similarly, ER∗G2, EO∗G2,
EBr∗G2 and EBo∗G2 represent the different types of
equilibria for subsystem SG2 .

• Case (i). SG2 bistability and SG1 refuge

In order to investigate the interior equilibria of two
subsystems, we choose r = 0.3 and K = 8 to ensure

a refuge equilibrium point for subsystem SG1 , and
choose r1 = 0.5 and the appropriate K1 to give
a bistable state in subsystem SG2 [see Fig. 2(a)].
Moreover, we choose k1 and DT as bifurcation
parameters, and the density threshold DT can vary
from 0.2 to 10 and the carrying capacity K1 can
vary from 8.1 to 18.

For Case (i), the parameter space has been
divided into four regions, which have been marked
in different colors, as shown in Fig. 2(a). This clar-
ifies that the existence and stability of these equi-
libria depend on the values of DT and K1. Note
that if the density threshold DT is large enough,
then all equilibrium points of the two subsystems
are below DT (i.e. DT > EBo∗G2 > EBr∗G2 >
ER∗G1), which indicates that both subsystems can
switch freely from one to the other [region I in
Fig. 3(a)]. Thus, we do not concern ourselves with
this region later. Meanwhile, the density threshold
line H = DT should be above the regions III and
IV [see Fig. 3(a)]. In region IV, the density thresh-
old is relatively small, and we have ER∗G1 > DT ,
EBr∗G2 > DT and EBo∗G2 > DT . In region III, we
have ER∗G1 < DT , EBr∗G2 > DT and EBo∗G2 >
DT . Both regions have a low-density threshold, and
the refuge state of the bistable equilibrium points in
subsystem SG2 is greater than DT (EBr∗G2 > DT ).
This is not realistic and may be irrelevant to locust
phase changes and outbreaks, so we only focus on
the regions I and II in this case.
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Fig. 3. Parameter bifurcation diagrams in DT–K1 space of (4). (a) Case (i) with SG2 bistability and SG1 refuge, where
r = 0.3, K = 8, r1 = 0.5. (b) Case (ii) with SG2 outbreak and SG1 refuge, where r = 0.3, K = 8 , r1 = 2.5. (c) Case (iii) with
SG2 bistability and SG1 bistability, where r = 0.45, K = 10, r1 = 0.5. (d) Case (iv) with SG2 outbreak and SG1 bistability,
where r = 0.45, K = 10, r1 = 1.5. The other parameters are fixed as β = 1, α = 1.

It follows from the region II of Fig. 3(a)
that EBo∗G2 > DT > EBr∗G2 > ER∗G1, and
we denote the corresponding equilibria as Ev

Bo∗G2,
Er

Br∗G2, Ev
R∗G1 according to Definition 2.1. More-

over, Ev
Bo∗G2, Ev

R∗G1 and Er
Br∗G2 can coexist in

region II (red) [as shown in Fig. 3(a)], which could
result in changing locust phases from the solitarious
to the gregarious.

Therefore, for relatively larger density thresh-
olds DT (for example H(t) = DT > EBo∗G2),
the solitarious phase subsystem SG1 only has the
refuge equilibrium [region I in Fig. 3(a)]. Thus,
we have EBo∗G2 > DT > EBr∗G2 > ER∗G1 [see
Fig. 3(a)], and we denote the corresponding equi-
libria as Ev

Bo∗G2, Ev
R∗G1, Er

Br∗G2 according to Def-
inition 2.1. Moreover, Ev

Bo∗G2, Ev
R∗G1 and Er

Br∗G2
can coexist in region II (red) [as shown in Fig. 3(a)],
which could result in transformation of the locust

phases from the solitarious to the gregarious. Thus,
for this case we have, based on Fig. 3(a)

region I, DT > EBo∗G2 > EBr∗G1 > ER∗G1,
Er

Bo∗G2, E
r
Br∗G2, E

v
R∗G1 can coexist;

region II, EBo∗G2 > DT > EBr∗G1 > ER∗G1,
Ev

Bo∗G2, E
r
Br∗G2, E

v
R∗G1 can coexist;

region III, EBo∗G2 > EBr∗G1 > DT > ER∗G1,
Ev

Bo∗G2, E
v
Br∗G2, E

v
R∗G1 can coexist;

region IV, EBo∗G2 > EBr∗G1 > ER∗G1 > DT ,
Ev

Bo∗G2, E
v
Br∗G2, E

r
R∗G1 can coexist.

• Case (ii). SG2 outbreak and SG1 refuge

This case can be discussed in a similar way as for
Case (i), as shown in Fig. 3(b). In particular, choos-
ing r1 = 2.5 can ensure that subsystem SG2 has
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only an outbreak equilibrium point. There exist
three regions in K1–DT parameter space and region
II has two virtual equilibria Ev

O∗G2 and Ev
R∗G1 which

can coexist, in conclusion we have

region I, DT > EO∗G2 > ER∗G1, Er
O∗G2 and Ev

R∗G1
which can coexist;

region II, EO∗G2 > DT > ER∗G1, Ev
O∗G2 and Ev

R∗G1
which can coexist;

region III, EO∗G2 > ER∗G1 > DT , Ev
O∗G2 and

Er
R∗G1 which can coexist.

• Case (iii). SG2 bistability and SG1 bistability

Both subsystems have bistable states in this sit-
uation, where r = 0.45, k = 10, r1 = 0.5.
Figure 3(c) shows that there exist five different
regions. In region II (red) and region III (purple)
all Ev

Bo∗G2, Er
Br∗G2, Ev

Bo∗G1, Ev
Br∗G1 and Ev

Bo∗G2,
Er

Br∗G2, Er
Bo∗G1, Ev

Br∗G1 can coexist, and we have

region I, DT > EBo∗G2 > EBo∗G1 > EBr∗G2 >
EBr∗G1, Er

Bo∗G2, Er
Br∗G2, Ev

Bo∗G1, Ev
Br∗G1 can

coexist;

region II, EBo∗G2 > DT > EBo∗G1 > EBr∗G2 >
EBr∗G1, Ev

Bo∗G2, Er
Br∗G2, Ev

Bo∗G1, Ev
Br∗G1 can

coexist;

region III, EBo∗G2 > EBo∗G1 > DT > EBr∗G2 >
EBr∗G1, Ev

Bo∗G2, Er
Br∗G2, Er

Bo∗G1, Ev
Br∗G1 can

coexist;

region IV, EBo∗G2 > EBo∗G1 > EBr∗G2 > DT >
EBr∗G1, Ev

Bo∗G2, Ev
Br∗G2, Er

Bo∗G1, Ev
Br∗G1 can

coexist;

region V, EBo∗G2 > EBo∗G1 > EBr∗G2 > EBr∗G1 >
DT , Ev

Bo∗G2, Ev
Br∗G2, Er

Bo∗G1, Er
Br∗G1 can coexist.

• Case (iv). SG2 outbreak and SG1 bistability

Subsystem SG2 has only outbreak equilibrium point
with r1 = 1.5. There are four different regions in
Fig. 3(d). In region II, Ev

O∗G2, Ev
Bo∗G1, Ev

Br∗G1 can
coexist and in region III, Ev

O∗G2, Er
Bo∗G1, Ev

Br∗G1
can also coexist. So we have

region I, DT > EO∗G2 > EBo∗G1 > EBr∗G1, Er
O∗G2,

Ev
Bo∗G1, Ev

Br∗G1 can coexist;

region II, EO∗G2 > DT > EBo∗G1 > EBr∗G1,
Ev

O∗G2, Ev
Bo∗G1, Ev

Br∗G1 can coexist;

region III, EO∗G2 > EBo∗G1 > DT > EBr∗G1,
Ev

O∗G2, Er
Bo∗G1, Ev

Br∗G1 can coexist;

region IV, EO∗G2 > EBo∗G1 > EBr∗G1 > DT ,
Ev

O∗G2, Er
Bo∗G1, Er

Br∗G1 can coexist.

Although control measures should be applied
once the density of the locust population reaches
the threshold density DT (i.e. control tactics should
be involved in subsystem SG2), we mainly focus on
the switching frequency and the complex dynam-
ics of model (4) without control strategies in the
coming sections. Model (4) with chemical and bio-
logical control tactics will be studied in the near
future. Based on the analyses of the above cases,
the interesting regions which will be investigated in
more detail are regions II in Figs. 3(a)–3(d) and
regions III in Figs. 3(c) and 3(d). Note that the
equilibria Ev

O∗G2 or Ev
Bo∗G2 exist in these regions.

3. Numerical Investigation
of Model (4) with Density
Threshold

In this section, we describe numerical investiga-
tions of system (4) by employing bifurcation analy-
sis, heatmap and random perturbation methods. In
particular, we determine the key factors which can
reveal the existence of multiple attractors, coexis-
tence, initial sensitivity and switching behavior.

3.1. Bifurcation analysis and
complex behavior

In order to gain preliminary insights into the prop-
erties of the dynamical system, we first give the one-
dimensional bifurcation diagram with respect to the
intrinsic growth rate r such that r < r1 for fixed r1.
Note that for the parameter set given in Fig. 4 we
can see that both subsystems SG1 and SG2 have
outbreak equilibrium points.

We first choose r as the bifurcation parame-
ter and fix all other parameters as follows: DT =
3.5, β = 1.1,K = 4, α = 0.1, r1 = 3.5,K1 = 5.6 and
initial values H0 = 0.5. It follows from Fig. 4(a)
that the switching system can exhibit very com-
plex dynamics as the intrinsic growth rate increases.
Compared with the Ricker model without switch-
ing between two subsystems, we found that the
switching could result in more complex bifurcation
behavior, as shown in Fig. 4(a), from which we
can see that the periodic, quasi-periodic, chaotic
solutions and Hopf or period-doubling bifurca-
tions occur frequently as the parameter varies. For
example, as the parameter r increases from 2.1
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Fig. 4. Bifurcation diagrams of model (4). (a) Parameter bifurcation diagram. The other parameters are fixed as DT =
3.5, β = 1.1, K = 4, α = 0.1, r1 = 3.5, K1 = 5.6, the initial value H0 = 0.5. (b) Initial value regions with respect to different
values of r for (a).

to 2.2, the system’s behavior suddenly changes to
period-doubling bifurcations, and a chaotic attrac-
tor abruptly appears at r = 2.3. Once the bifurca-
tion parameter r exceeds the threshold value around
2.35, then a period-halving bifurcation occurs and
another chaotic attractor emerges abruptly around
r = 2.5.

There exist three different types of attractors
which are denoted as regions I–III for a wide range
of values for parameter r [as shown in Fig. 4(b)].
The attractor I is close to a refuge equilibrium point
with quite low values such as 0.05, which is much
lower than the density threshold DT (DT = 3.5).
Note, especially, that this attractor can coexist for
a large range of r with both attractors II and III.
When r is increased from 2 to 2.35, we find that
the attractor I can coexist with attractor II and this
attractor is stable and below DT . The stable attrac-
tor III is completely determined by the switching
system (4) which switches around DT when r is
increased from 2.05 to 2.6. The stable attractor III
indicates that the locust phases can change from
solitarious to gregarious forever, and consequently
outbreaks of the locust population occur frequently.

In order to explain the effects of the initial val-
ues on those three attractors in more detail, the
basins of attraction of the initial values with differ-
ent r values are presented in Fig. 4(b). There exist
three different regions corresponding to Fig. 4(a).
The region I (purple) is the basin of attraction

region of attractor I, and the initial values are less
than 0.6. Moreover, as the parameter r increases,
the basin of attraction region becomes smaller. The
region II (red) is the basin of attraction region of
attractor II and the region III (blue) corresponds to
the same for attractor III. It follows from regions II
and III that the intrinsic growth rate and the initial
values of the locust population are sensitive, which
may result in the outbreak of locust populations and
phase switching once a small perturbation occurs.
The questions are: (1) How frequently does switch-
ing occur from solitarious to gregarious and vice
versa; (2) When does the transition occur such that
the solutions with larger amplitudes from region III
can switch to a stable attractor in region II? and (3)
How does the random perturbation influence the
switching pattern? We will discuss these issues in
more detail in the following sections.

3.2. Switching transients for phase
change

The analysis in Sec. 3.1 showed that different attrac-
tors can coexist for a wide range of values for the
intrinsic growth rate r. What we want to know
is whether switching could occur among different
attractors as initial values vary, i.e. how do the
switch-like transitions change as parameter values
and initial values vary? In this context, it is inter-
esting to note that studies on lakes, coral reefs,
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oceans, forests and arid lands have shown that
smooth changes can be interrupted by sudden dras-
tic switches to a contrasting state [Scheffer et al.,
2001]. To address such switching behavior, we define
switching transients as follows:

Definition 3.1. If the attractors switch from one
attractor to another, then this switch-like transi-
tional change is called the switching transient. Also,
the generation at which the attractor III can shift
to the stable attractor II is called a stable transient
point.

To compute the stable transient point for sys-
tem (4) conveniently and realistically, we only
calculate the stable transient point within 5000

generations. Therefore, we set the switching tran-
sient point to be 5000 but if the phase change does
not occur within 5000 generations, and if the initial
values lie in attractor I and are much lower than
DT, then the phase change will never occur and
consequently we denote its transient point as 0.

The color map in Matlab was employed to show
how fast the switching occurs, as shown in Fig. 5(a),
where the highest stable transient point is indicated
by a warm (red) color whereas the lowest stable
transient point is indicated by a cold (blue) color.
Note that when the initial values lie around the
intervals [0, 0.5] and [9.1, 9.8], the locust popula-
tions do not change their phase at all and according
to the definition the attractor switching point is 0.
Two examples are shown in Figs. 5(d) and 5(g).

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 5. Switching transients of model (4). (a) Stable transient point over 5000 generations as the initial value varies from
0 to 9.8. (b) The time series with initial value = 2.5. (c) The time series with initial value = 5.1. (d) The time series
with initial value = 0.45. (e)–(g) are enlargements of (b)–(d), respectively. The other parameters are fixed as follows:
DT = 3.5, β = 1.1, K = 4, α = 0.1, r1 = 3.5, K1 = 5, r = 2.28.
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It is obvious that the switching transient exists
in Figs. 5(b) and 5(c). Figures 5(e) and 5(f) are
enlargements of Figs. 5(b) and 5(c) with initial val-
ues 2.5 and 5.1, respectively. Moreover, the stable
transient point occurs at the 1172-th generation in
Fig. 5(e), and the stable transient point in Fig. 5(f)
is at the 4652-th generation. Note that the final
states shown in Figs. 5(b) and 5(c) indicate that
the densities of the locust population are less than
DT. If so, the switching transient may be beneficial
for locust control in this case.

However, the switching transients may be
harmful once multiple attractors can coexist,
as shown in Figs. 6(b)–6(d). The switch-like
transitions occur frequently among different attrac-
tors, which depend on the intrinsic growth rate r

and initial values. Morever, there is almost no stable
transient point for the intrinsic growth rate r = 2.9
and the wide range of initial values (here from 0.5
to 9.8), as shown in Fig. 6(a). The frequent switch-
ing transients indicate that the pest population can
have outbreaks at different scales. Note that when
the initial values lie in the interval [0, 0.5], the locust
population does not change its phase at all.

The sensitivity of the stable transient point
with respect to the parameters of the intrinsic
growth rate r, initial values and the threshold den-
sity DT are crucial for successful pest control. In
order to show this in more detail, by employing the
heat-map we address switching transients numeri-
cally as shown in Fig. 7. The largest stable transient
point is indicated by a warm (red) color whereas the
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Fig. 6. Switching transients of model (4) with r = 2.9. (a) Stable transient point over 5000 generations as the initial value
varies from 0 to 9.8. (b) The time series with initial value = 2.5. (c) The time series with initial value = 5.1. (d) The time series
with initial value = 0.45, respectively. The other parameters are fixed as DT = 3.5, β = 1.1, K = 4, α = 0.1, r1 = 3.5, K1 =
5, r = 2.9.
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Fig. 7. Heat map of switching transients with different values of r and initial values. The threshold density DT = 3.5 for (a)
and DT = 4 for (b). The other parameters are fixed as follows: β = 1.1, α = 0.1, K = 4, K1 = 5, r1 = 3.5.

smallest stable transient point is indicated by a cold
(blue) color. It follows from the heat-map shown
in Fig. 7 that the intrinsic growth rate, initial val-
ues and the threshold density DT can significantly
influence the stable transient points. For example,
in Fig. 7(a) with DT = 3.5, when r belongs to the
interval (2.24, 2.29), the stable transient points vary
frequently. For a different threshold density DT the
results shown in Fig. 7(b) indicate that the stable
transient points vary even more frequently when
r ∈ (2.36, 2.462). Note that the two stable attrac-
tors must coexist for r ∈ (2.14, 2.18) in (a) and
r ∈ (2.24, 2.27) in (b). The changes of the stable
transient points also indicate that the locust pop-
ulation could switch irregularly, which may result
in complexity for the implementation of control
measures.

3.3. The effects of random
perturbation on the stable
transient point

Locust populations are often subject to the effects
of environmental fluctuations. For models with a
bistable deterministic skeleton, this means that
understanding when and how stochastic events will
promote or inhibit attractor switching transients,
requires careful study of a stochastic version of the
model [Guttal & Jayaprakash, 2007; Serizawa et al.,
2009]. In order to investigate the locust population’s
bistable dynamics with random perturbation, we
redescribe the discrete switching insect outbreak
model in the following text, aiming to address how
stochastically forced attractor switching occurs and
the shifting of two attractors.




H(t + 1) = H(t) exp
[
r

(
1 − H(t)

K

)
− βH(t)

α2 + H(t)2

]
+ τt

}
when H(t) < DT ;

H(t + 1) = H(t) exp
[
r1

(
1 − H(t)

K1

)
− βH(t)

α2 + H(t)2

]
+ τt

}
when H(t) ≥ DT,

(8)

where τt = 0 means that random perturbation does not exist at generation t and τt = σu indicates that
there is random perturbation at generation t, and u is a uniformly distributed variable on [0, 1] and σ > 0
represents the intensity of noise.
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Based on the previous discussion and Fig. 4,
we know that attractors I–III can coexist simul-
taneously for a wide range of parameters such as
r ∈ (2, 2.35). It follows from Figs. 5 and 8(a) that
the solutions can finally stabilize at the attrac-
tor II after some generations of oscillations, which
means that the density of the locust population can
remain below the threshold density DT if the pop-
ulation does not experience any random perturba-
tion. Therefore, what we want to address is how the
random perturbation affects the switching behavior
of the locust population. To do this, the time series
of model (8) with or without random perturbations
are shown in Fig. 8. Figure 8(a) shows the system
has switching transients and the stable transient
point is about 20 (without random perturbation,
σ = 0).

If we choose same intensity of noise which has
been generated firstly based on the number of iter-
ations to the solution and different initial values,

the results shown in Figs. 8(b) and 8(c) indicate
that multiple switchings occur between attractors II
and III, which show that the switching patterns
could significantly vary for different random per-
turbation and initial values. Note that an inter-
esting result shown in Figs. 8(b) and 8(c) is that
the switching transient patterns become identical
after 480 generations (point A, red dashed line),
suggesting that the evolving process of the pertur-
bation system (8) is not related to the initial value
after some fixed number of generations for the same
stochastic processes, which indicates that the den-
sity of the population is also the same after a fixed
number of iterations.

In the following section, based on Definition 3.1
we will discuss the switching frequency for different
noise intensities and different values of r. That is,
the two interesting questions are: how many attrac-
tor switches can exist, and at what generation num-
bers can the switching system (8) switch?
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Fig. 8. The effects of random perturbation on the switching transient for model (8). (a) The intensity of noise σ = 0 and initial
value H0 = 5.2. (b) The intensity of noise σ = 0.05 and initial value H0 = 5.2. (c) The intensity of noise σ = 0.05 and initial
value H0 = 7.2. The other parameters are fixed as follows: DT = 3.5, β = 1.1, α = 0.1, r = 2.28, k = 4, r1 = 3.5, K1 = 5.6.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Number of stable transient switches for system (8). (a), (c) and (e) with r = 2.3, 2.26 and 2.1, respectively. (b), (d)
and (f) with σ = 0.04, 0.08 and 0.1, respectively. The other parameters are fixed as follows: DT = 3.5, β = 1.1, K = 4, α =
0.1, r1 = 3.5, K1 = 5.6.

For a better explanation of the influence of the
number of attractor switches, we discuss them in
the context of different values of the parameter r
and intensity of noise σ. Figure 9 shows different
numbers of attractor switches with different param-
eters. In order to avoid the effects of initial values
on the switching patterns [see Figs. 8(b) and 8(c)],
we omit the first 1000 generations for each sim-
ulation. The numbers of attractor switches were
calculated between the 1001-th generation and the
9900-th generation. Firstly, let the parameter r be
fixed and the intensity of noise vary from 0.04 to
0.14, Figs. 9(a), 9(c) and 9(e) show different num-
bers of attractor switches with r = 2.3, r = 2.26
and r = 2.1, respectively. When r = 2.3, the maxi-
mum number of switches is at σ = 0.065, and there
exists an interval σ ∈ (0.05, 0.08) in which the num-
ber of switches is more than 50. Moreover, the num-
ber of switches decreases with increasing intensity of

noise from 0.08 to 0.14. In Fig. 9(c), the number of
switches are about 0 when the intensity of noise lies
in the interval (0.04, 0.05). The maximum number
of switches is about 150, and those over 100 lie in the
interval σ ∈ (0.065, 0.12). When r = 2.1, Fig. 9(e)
shows that the number of switches increases with
increasing intensity of noise from 0.07 to 0.09 and
is 0 when σ ∈ (0.04, 0.07). However, the maximum
number of switches is about 400, and those exceed-
ing 250 belong to σ ∈ (0.1, 0.135).

Next, we fixed the intensity of noise and var-
ied the parameter r from 2 to 2.55. Three different
stable transient switches with σ = 0.04, 0.08, 0.1
are shown in Figs. 9(b), 9(d) and 9(f), respec-
tively. When σ = 0.04, the switching times are 1
for r ∈ (2, 2.3). It means that the system switches
from the initial oscillation to the attractor II, when
the system finally stabilizes. The maximum num-
ber of switching times is about 20 at r = 2.32 and
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switching times over 5 lie in the interval of r ∈ (2.45,
2.5). In particular, the switching times are 1 for a
long interval (r ∈ (2, 2.3)), which implies that the
system has the attractor II (below DT ) and the
system has no locust outbreak. However, there exist
two intervals whose switching times are 0, the inter-
vals are at r ∈ (2.505, 2.55), when the switching
system does not switch. Moreover, the same phe-
nomena occur when σ = 0.08, 0.1, when the switch-
ing times are 0 in different intervals [see Figs. 9(d)
and 9(f)]. Figures 9(d) and 9(f) show that the max-
imum switching times are 180 and 250 respectively.

4. Discussion and Biological
Implications

The modeling that we have described successfully
captured essential features of polyphenic insects
insofar as phase changes are related to popula-
tion densities, intrinsic rates of increase, carrying
capacities and predation. To achieve this we treated
the insect populations as a Filippov system, vari-
ants of which have been widely used for modeling
real world biological problems with switching sur-
faces [Tang et al., 2012; da Silveira Costa & Faria,
2010; da Silveira Costa, 2007; da Silveira Costa &
Meza, 2006; Dercole et al., 2007]. The Filippov sys-
tem is determined by different differential equations
according to which the regions of phase space the
solutions pass through [Filippov & Arscott, 1988].
Similarly, based on the equilibria definitions of the
Filippov system, discrete switching systems have
been developed for pest control [Xiang et al., 2014a;
Xiang et al., 2014b]. Based on an insect outbreak
model which has bistability [Ludwig et al., 1978],
we developed a discrete switching model to address
desert locust outbreak problems and their complex
dynamics.

By employing the equilibria analysis method
introduced in [Tang et al., 2014], we first discussed
the equilibria of the switching system according to
six cases, which were (SG2 bistability, SG1 refuge),
(SG2 bistability, SG1 bistability), (SG2 bistability,
SG1 outbreak), (SG2 outbreak, SG1 refuge), (SG2

outbreak, SG1 bistability), (SG2 outbreak, SG1 out-
break). It is interesting that all cases of the dis-
crete switching system (4) may exist within the
same region, and that subsystem SG2 has a virtual
equilibrium point. We can control subsystem SG2

such that the densities of the locust population
fall below DT . Moreover, numerical investigations

clarify that the pest population can be successfully
controlled when a threshold control policy is applied
(see Fig. 3).

When the two subsystems have outbreak equi-
librium points (Case (vi)), the system has rich
dynamics. The parameter bifurcation about r shows
that there are three kinds of attractors which can
coexist at the same value of parameter r [see
Fig. 4(a)]. By extensive numerical bifurcation inves-
tigations, we found that when choosing different val-
ues for parameter r and the initial values, attractors
I–III have different regions as shown in Fig. 4(b). In
particular, attractor III can switch to attractor II,
finally, for some values of parameter r. In order to
investigate the switching behavior for different val-
ues of parameter r we selected to compute attrac-
tor switching points (see Figs. 5–7). The results
showed that the switching behavior is sensitive to
the parameter r and initial values. For a better
explanation of the factors influencing the numbers
of attractor switches, we discussed these in rela-
tion to different values of the parameter r and the
intensity of noise σ (see Figs. 8 and 9). The results
showed that the number of attractor switches may
be affected dramatically by small changes in the
values of the intensity of noise, and in the values
of r. Our results confirm that the switching fre-
quencies depend heavily on the different noise inten-
sities and different values of the intrinsic growth
rate, which further indicates that the outbreak pat-
tern of the locust populations may vary and could
be very complex. This supports earlier suggestions
that locust population dynamics could be chaotic
[Cheke & Holt, 1993, 1996].
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“A behavioural analysis of phase change in the desert
locust,” Biol. Rev. 74, 461–480.

Tang, S., Xiao, Y. & Cheke, R. A. [2008] “Multiple
attractors of host-parasitoid models with integrated
pest management strategies: Eradication, persistence
and outbreak,” Theoret. Popul. Biol. 73, 181–197.

Tang, S., Liang, J., Xiao, Y. & Cheke, R. A. [2012]
“Sliding bifurcations of Filippov two stage pest con-
trol models with economic thresholds,” SIAM J. Appl.
Math. 72, 1061–1080.

Tang, S. & Liang, J. [2013] “Global qualitative anal-
ysis of a non-smooth Gause predator–prey model
with a refuge,” Nonlin. Anal.: Th. Meth. Appl. 76,
165–180.

Tang, S., Tang, G. & Qin, W. [2014] “Codimension-1
sliding bifurcations of a Filippov pest growth model
with threshold policy,” Int. J. Bifurcation and Chaos
24, 1450122.

Tang, S., Pang, W., Cheke, R. A. & Wu, J. [2015a]
“Global dynamics of a state-dependent feedback con-
trol system,” Adv. Diff. Eqs. 2015, 1–70.



December 15, 2016 13:32 WSPC/S0218-1274 1630037

Tang, S., Tang, B., Wang, A. & Xiao, Y. [2015b] “Holling
II predator–prey impulsive semi-dynamic model with
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