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Abstract. Being able to reliable estimate the occupancy of areas inside
a building can prove beneficial for managing an emergency situation,
as it allows for more efficient allocation of resources such as emergency
personnel. In indoor environments, however, occupancy detection can be
a very challenging task. A solution to this can be provided by the use
of Bluetooth Low Energy (BLE) beacons installed in the building. In
this work we evaluate the performance of a BLE based occupancy detec-
tion system geared towards emergency situations that take place inside
buildings. The system is composed of BLE beacons installed inside the
building, a mobile application installed on occupants’ mobile phones and
a remote control server. Our approach does not require any processing to
take place on the occupants’ mobile phones, since the occupancy detec-
tion is based on a classifier installed on the remote server. Our real-world
experiments indicated that the system can provide high classification
accuracy for different numbers of installed beacons and occupant move-
ment patterns.

1 Introduction

Thanks to its exceptionally low power requirements, low cost and compatibil-
ity with most mobile devices and computers, Bluetooth low energy (BLE) is
rapidly proving to be a very practical technology in e-health, sports, fitness,
marketing in malls and other applications. We argue that its ability to provide
proximity information with sufficient accuracy can extend its use in emergency
management too, especially in buildings and other confined spaces, where tra-
ditional localisation technologies often fail. For example, having a mechanism
to estimate the occupancy of different areas within a building can help emer-
gency personnel produce a more optimal plan of action. In the literature on
emergency management supporting technologies, it is often assumed that the
emergency personnel or unmanned technical systems involved are aware of the
locations where there are individuals requiring assistance/rescue [5,6,12], but
this assumption can be highly inaccurate in many real-life situations. For exam-
ple, during the 2015 terrorist attack in a Tunis museum, two tourists spent the
night hiding in the museum only to be found the next day. Afraid to attract the
attention of the terrorists, they had refrained from using their phones. BLE can
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help both occupancy detection and indoor localisation, as has been acknowl-
edged in a US Federal Communications Commission roadmap for BLE use in
conjunction with WiFi to help locate 911 callers inside buildings.

There is a wide range of BLE based applications targeted to building occu-
pants, including indoor navigation [7], activity recognition [1] and remote health-
care monitoring [11]. With respect to indoor occupancy estimation and localisa-
tion, we can find various approaches targeting different area types. The authors in
[4] discuss the use of Apple’s iBeacon protocol for building occupancy detection.
They evaluated their approach using a single room and predicted whether the
occupant was inside or outside. A system that detects the locations of occupants
inside an office is presented in [2]. This is used to control a building management
system that the authors evaluate inside an office area. The estimation of a build-
ing’s occupancy using Arduino based beacons is described in [3]. The authors
evaluate the system by estimating an occupant’s presence inside or outside a
single room. The authors in [9] employ iBeacons inside the floor of a building in
order to evaluate the performance of an occupancy estimation system for hospi-
tals. Their system has a high overall accuracy but there are no accuracy results
for individual areas. In [10] the authors propose an indoor localisation system
that uses BLE beacons inside an office building. Their approach achieves a high
localisation accuracy (for 75 % of the time the localisation error is lower than
1.8 m) however they have not evaluated the effect of walking speed or beacon
locations. Finally, the authors in [8] propose an indoor localisation system based
on BLE beacons. The system is evaluated inside a single room and although
they claim a high accuracy rate, their results are limited.

Our approach is targeted towards emergency situations and aims to provide
an estimate of the number of occupants inside areas such as offices, laboratories
and conference rooms. Even if our proposed system stops functioning (e.g., due to
a natural or man-made disaster), it is still able to provide very useful information
related to the spatial distribution of the occupants at the time before the incident
took place.

2 Description of the System

Our approach is based on the use of BLE beacons located inside the building that
communicate with a mobile application installed on the occupant’s phone. The
beacons use a non-connectible mode, the BLE advertising mode, to periodically
broadcast advertisement packets that include information such as the beacon’s
unique ID. A mobile phone located in the vicinity of a beacon receives the
packets and processes them using a mobile application. In a commercial setting
the main assumption is that the mobile application has knowledge of the beacons’
location inside the building and of the mapping between beacons and rooms or
areas. This information is then used by the mobile application, in conjunction
with the received BLE packets, in order to calculate the user’s location inside
the building. Finally, the mobile application sends its location to a remote server
which then replies with contextual information (such as a targeted micro-location
based advertisement).
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Fig. 1. System architecture

Figure 1 illustrates our system’s operation in an emergency situation that
takes place inside a building. The mobile application installed on the occupants’
phones receives BLE messages from multiple beacons. It then sends their RSSI
values and respective beacon IDs to the remote control server. Finally the server,
upon reception of this information from a mobile device, uses a trained classi-
fier to update the building occupancy estimation. Our approach has numer-
ous advantages. Firstly, the mobile phone does not need to know the mapping
between beacon ID and location of beacons inside the building. Also, the mobile
phone does not process the received beacon packets to calculate its location and
the remote control server does not send information back to the mobile phone.
Since our system does not involve localisation related processing by the mobile
application, we can use mobile devices that have low computational power and
memory capacity. The remote control server is responsible for processing the
data that the mobile application sends and for calculating the building occu-
pancy. To achieve this, we conduct a single data gathering phase during which
the data gathered are used to train a classifier. Section 3 provides further details
on this process. After the data gathering phase has been completed, the system
is able to operate in normal mode as shown in Fig. 1.

For our BLE beacons we used a Raspberry Pi 2 with a Bluetooth 4 BLE USB
module. We implemented the iBeacon protocol, which is the BLE beacon imple-
mentation proposed by Apple. By using an open platform such as the Raspberry
Pi, we avoided the limitation of being tied to a specific beacon manufacturer.
To identify the iBeacons, we used a Universally Unique Identifier (UUID), a
major number and a minor number for each of them. The UUID is used to
separate the iBeacons being used in our experiments from other unassociated
Bluetooth devices. The major number is used to define local groups of iBeacons
(e.g. belonging to a certain building or floor) and the minor number is used to
define each individual iBeacon within a local group. We can use our Android
mobile application for the data gathering phase as well as for the normal oper-
ation of the system. When the mobile application receives a BLE advertising
data packet from an iBeacon during the data gathering phase, it extracts and
logs the UUID, major number, minor number and transmission (Tx) power of
the beacon from the packet’s payload. The application also logs the received
signal strength indicator (RSSI) of each received BLE packet. Finally, an area
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label is manually assigned to each packet by the user based on his actual location
inside the building. Under normal operation mode, the mobile application simply
receives BLE packets from beacons and sends their RSSI values and respective
beacon IDs to the server. The remote control server processes the data sent by
the mobile application in order to calculate the occupancy of the building. In
normal operation mode, the server receives information from the mobile appli-
cation running on an occupant’s mobile phone and uses a trained classifier to
update the building occupancy estimation. The training of this classifier is per-
formed during the initial data gathering phase. We must note, however, that it is
not necessary for the training to take place in the server. The only requirement
is that the trained classifier model is stored on the server so that it can be used
during normal operation.

3 Experimental Evaluation

We evaluated the performance of our system in the computer laboratory of the
University of Greenwich. This is essentially an office space that includes objects
such as desks, benches, computers, panels and chairs. We have identified five
areas inside the laboratory (A1-A5), as illustrated in Fig. 2. An orthogonal grid
was used to map the experimental area, with each grid square equal to an area of
1 m2. We investigated two beacon deployment configurations: one involving four
beacons and one involving seven beacons, as shown in Figs. 2(a)–(b). For the data
gathering phase, we used our mobile application in data gathering mode. The
beacons’ transmission frequency was set to 8 Hz and their transmission power to
4 dBm. To increase the level of realism, instead of standing inside each area we
moved according to a “Walk and Stop” pattern that involved spending 10 s on
each grid point before moving to the next one. For each BLE packet received the
mobile application logged the UUID, major number, minor number and RSSI

(a) 4 beacons (B1-B4) (b) 7 beacons (B1-B7)

Fig. 2. Experimental area and beacon positions for the two different configurations
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and we assigned an area label (A1 to A5) based on our actual location. For each
of the two beacon setups, we conducted two runs of this data gathering phase.
This resulted in a dataset size of over 44,000 packets for the 4 beacon setup and
of over 78,000 packets for the 7 beacon setup.

We modelled our problem as a multi-class classification problem, with the
number of classes equal to the number of areas in our environment (i.e. five
classes). Our raw dataset contained individual packets coming from specific bea-
con IDs, with a respective RSSI value and an area label. To transform this to
a dataset that can be used to train a classifier, we used a data segmentation
approach involving a non-overlapping sliding window. For each beacon inside a
specific area, we calculated the average and the standard deviation of its RSSI
over the window samples and used these as the features of our classification
problem. For the four beacon setup, this resulted in eight features while for the
seven beacon setup we had fourteen features. For our classifier we have chosen
a support vector machine with radial basis function kernel (SVM). The reason
behind this choice is that SVMs can successfully deal with non-linearly sepa-
rable data. We partitioned the dataset into 80 % training set and 20 % test set
and used 10-fold cross validation for hyper-parameter tuning. We used a confu-
sion matrix for presenting our classification results, where its rows represent the
instances in an actual class and its columns the instances in a predicted class.
The values of the matrices are normalised by the number of elements in each
class, to better illustrate the classification accuracy for each class.

3.1 Results for “Walk and Stop” Scenario

Figure 3 illustrates our classification results for the “Walk and Stop” scenario
and the four beacons setup. In the case of a 0.5 s window, we can observe that
the classification accuracy ranges from 64 % to 89 %. Increasing the window size
to 1 s, as depicted in Fig. 3(b), improves the classification performance especially
for Area 2 where its classification accuracy has now increased from 64 % to 81 %.
Further increasing the window size to 2 s, as shown in Fig. 3(c), does not provide
a clear improvement of the classification accuracy. For example, although Area 1
is now classified with 100 % accuracy, the performance of the classifier for Area 2
has dropped to 68 %. By inspecting Figs. 3(a)–(c) we can observe a consistently
low performance of our classifier with respect to Area 2. This can be explained if
we look at the spatial distribution of beacons with respect to areas, as depicted
in Fig. 2(a). We can observe that the number of beacons is less than the number
of areas (four versus five respectively). Moreover, each Area can be associated
with one specific beacon which is closest to it: Area 1 with Beacon 1, Area 4
with Beacon 2, Area 5 with Beacon 4 and Area 3 with Beacon 3. However, there
is no one Beacon that can be associated with Area 2. The two closest beacons to
Area 2 are Beacon 4 and Beacon 3. This sparse beacon deployment explains the
low classification performance for Area 2. We can also verify from Figs. 3(a)–(c)
that Area 2 is consistently misclassified as Area 3 or Area 5, which are the two
areas closest to Beacon 3 and Beacon 4.
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A1 A2 A3 A4 A5
A1 0.82 0 0.04 0.13 0.01
A2 0 0.64 0.17 0.01 0.17
A3 0.03 0.11 0.8 0.05 0
A4 0.16 0.01 0.01 0.81 0
A5 0.04 0.07 0 0 0.89

(a) Window=0.5 s

A1 A2 A3 A4 A5
A1 0.86 0.02 0 0.04 0.09
A2 0 0.81 0.12 0 0.06
A3 0.02 0.22 0.76 0 0
A4 0.12 0.03 0 0.82 0.03
A5 0.03 0.11 0 0 0.86

(b) Window=1 s

A1 A2 A3 A4 A5
A1 1 0 0 0 0
A2 0 0.68 0.16 0 0.16
A3 0.04 0.24 0.72 0 0
A4 0.09 0 0 0.91 0
A5 0.05 0.05 0 0 0.9

(c) Window=2 s

Fig. 3. Confusion matrices for SVM, using 4 beacons and different window sizes (“Walk
and Stop” Scenario)

A1 A2 A3 A4 A5
A1 0.92 0 0.01 0.06 0
A2 0.01 0.92 0.01 0 0.05
A3 0.02 0.06 0.88 0.02 0.01
A4 0.05 0 0 0.94 0.01
A5 0 0.04 0.1 0 0.86

(a) Window=0.5 s

A1 A2 A3 A4 A5
A1 1 0 0 0 0
A2 0 0.95 0.05 0 0
A3 0.05 0.02 0.91 0 0.02
A4 0.06 0 0.03 0.91 0
A5 0 0.02 0.05 0 0.93

(b) Window=1 s

A1 A2 A3 A4 A5
A1 0.94 0 0 0.06 0
A2 0 1 0 0 0
A3 0.1 0 0.9 0 0
A4 0.04 0 0 0.96 0
A5 0 0 0 0 1

(c) Window=2 s

Fig. 4. Confusion matrices for SVM, using 7 beacons and different window sizes (“Walk
and Stop” Scenario)

By increasing the number of beacons to seven, we observed a significant
improvement in the classification accuracy for all window sizes, as depicted in
Fig. 4. For a window size of 0.5 s the classification accuracy ranges from 86 %
to 94 %, as shown in Fig. 4(a). Figure 4(b) illustrates the results for a window
size equal to 1 s. We can verify that increasing the window size improves the
classification accuracy, which now ranges from 91 % to 100 %. Finally, further
increasing the window size to 2 s does not yield a significant improvement in
accuracy, as Fig. 4(c) shows. We should also note that in the seven beacon con-
figuration we do not observe the consistent misclassification of Area 2, as was
the case in the four beacon configuration.

3.2 Results for “Random Walk” Scenario

To investigate the effect of the movement pattern on the classification accuracy,
we have conducted an additional experiment with the seven beacon configura-
tion. This time, we moved inside each area without stopping on grid points. The
movement involved randomly choosing a destination grid square point within
each area, walking towards it, then choosing another one and repeating the
same procedure for each area. The total duration of this “Random Walk” sce-
nario was equal to that of the “Stop and Walk” scenario for the seven beacon
configuration, in order to achieve the same dataset size.

As we can observe from Fig. 5, the classification accuracy is lower compared
to the one shown in Fig. 4. For a window size of 0.5 s, the accuracy ranges
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A1 A2 A3 A4 A5
A1 0.96 0.01 0 0.02 0
A2 0.02 0.88 0.05 0 0.05
A3 0.01 0.08 0.84 0.02 0.04
A4 0.02 0.02 0.04 0.9 0.01
A5 0 0.08 0.03 0.01 0.87

(a) Window=0.5 s

A1 A2 A3 A4 A5
A1 0.98 0 0 0.02 0
A2 0.03 0.97 0 0 0
A3 0 0.05 0.85 0.05 0.05
A4 0.1 0 0.05 0.85 0
A5 0 0.05 0 0 0.95

(b) Window=1 s

A1 A2 A3 A4 A5
A1 0.95 0 0 0.05 0
A2 0 0.94 0.06 0 0
A3 0 0.04 0.81 0.08 0.08
A4 0 0 0 1 0
A5 0 0 0 0.06 0.94

(c) Window=2 s

Fig. 5. Confusion matrices for SVM, using 7 beacons and different window sizes (“Ran-
dom Walk” Scenario)

between 84 % and 96 %. Increasing the window size from 0.5 s to 1 s results in an
improvement in accuracy which ranges between 85 % and 97 %. A window size
of 2 s improves the classification accuracy further, especially for Area 4 which
increases to 100 % from the 85 % of the 1 s window case.

This was expected, as the constant movement of the occupant in the “Ran-
dom Walk” makes training the system more challenging, resulting in reduced
accuracy compared to the more static “Walk and Stop” case. At the same time,
increasing the size of the window results in averaging RSSI values over a longer
time interval for each data point. This compensates for the constant movement
of the occupant but reduces the responsiveness of the system, because under
normal system operation the server would have to wait for 2 s before receiving
RSSI data from the mobile application.

4 Conclusions and Future Work

In this work, we have evaluated the performance of a BLE based occupancy
detection system geared towards emergency situations that take place inside
buildings. The system is composed of BLE beacons installed inside the build-
ing, a mobile application installed on occupants’ mobile phones and a remote
control server located outside the building. We do not require any localisation
calculations to take place on the mobile phone, since the occupancy detection is
based on a classifier installed on the remote server. Our real-world experiments
indicated that the system can provide a high classification accuracy for different
beacon deployment configurations and movement patterns of the building occu-
pants. In future work, we will investigate a greater range of occupant walking
speeds and beacon deployment configurations. We also plan to study how our
system’s performance is affected by different beacon transmission frequencies.
Finally, we believe it is worth investigating the use of machine learning algo-
rithms based on neural networks and deep learning to evaluate whether they
can further improve the classification accuracy of our system.

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
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medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.
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