The Use of Bile Salt Micelles for the Prediction of Human Intestinal Absorption

Laura J. Waters ^{1, *}, Dina S. Shokry ¹, Gareth M.B. Parkes ¹, John C. Mitchell ²

¹ School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK

² Faculty of Engineering and Science, Medway Centre for Formulation Science, University of Greenwich, Chatham, Kent ME4 4TB, UK

Abstract : Human intestinal absorption (HIA) will dictate biopharmaceutical performance through its influence on absorption, distribution, metabolism, and elimination and can vary significantly depending upon the nature of the compound under consideration. In this study, an *in vitro* assay method is proposed for the prediction of HIA through the measurement of drug solubility in an aqueous phase containing micellar bile salt, namely sodium deoxycholate. A series of twenty compounds, displaying a range of physico- chemical properties and known HIA values, were analyzed using UV spectroscopy to determine a solubilization ratio for each compound. A micelle/water partition coefficient (Kxm/a) was calculated and then used to develop an equation through simple linear regression; logit HIA = $-0.919 + 0.4618 \log K_{xm/a}$ (R² = 0.85). From this

equation, a value for % HIA was determined which compared well with literature.

Furthermore, 4 additional drugs were then analyzed using the developed equation and found to match well with literature, confirming the suitability of the method. Using a simple, economic, and robust UV bile salt assay allows prediction of HIA and avoids many of the disadvantages of other techniques, such as animal-based methods.

Introduction

Human intestinal absorption (HIA) is the mechanism through which drugs traverse from the intestine into the bloodstream. The vast majority of active pharmaceutical ingredients are administered orally; thus, it is essential that they are absorbed within the intestine to reach the intended site of action. Although it is possible to measure the percent HIA (% HIA) during clinical studies, it is far more useful to be able to predict the value much earlier on during drug development. It is for this reason that a significant amount of research has been undertaken in an attempt to develop a reliable, robust, and accurate method to predict % HIA.

Several different predictive approaches have been undertaken, including computational (in silico)

methods,^{1,2} such as quantitative structure-activity relationships^{3,4} and physiologically based pharmacokinetic modelling.⁵ These techniques have a clear advantage in that they remove the need for costly laboratory-based experi- mental measurement yet their predictive ability can be limited.

In vitro models for the prediction of absorption include the application of dissolution analysis,⁶ chromatographic analysis,⁷ and dynamic gastric models.⁸ Many of these *in vitro* models have included the presence of physiologically relevant solvent compo- sitions, mainly because it is known that solvent composition dictates intestinal drug solubility which, in turn, is an important factor in determining the rate, and extent, of absorption.⁹ The

specific components within human intestinal fluids that dramati- cally alter drug solubility are bile salts. The main biological function of bile salts is to solubilize lipids and vitamins in the intestine with a similar effect encountered for orally administered drugs. For a full review of the absorption-enhancing effects of bile salts.¹⁰

In humans, the composition of bile salts is rather complex and for the purposes of this study was simplified to consider 1 bile salt in particular, namely sodium deoxycholate (NaDC). NaDC is a well-characterized amphiphilic molecule which can undergo micellar

aggregation,^{11,12} stabilized by polar interactions,¹³ with compara-

tively small aggregation numbers as a result of the rigid molecular structure.¹⁴ Previous research within our group has shown that NaDC, when in the presence of drugs, will exhibit modified physi-

cochemical properties, for example, a variable (drug-specific) reduction in critical micellar concentration.¹⁵

When quantifying (or comparing) enhancement in solubility for a specific drug, or series of drugs, it is possible to evaluate the solubilization ratio (SR), where SR is equal to the moles of drug solubilized per mole of bile salt. One study in particular calculated SR for a series of steroids and then used these data to calculate micelle/water partition coefficients (Km/w) which were then

correlated with octanol/water partition coefficients (Po/w).¹⁶ Using

this same theory as a basis for drug-NaDC measurement, this article describes the evolution of measuring SR and then using these values as the basis to form an equation to permit prediction of % HIA, thereby presenting an *in vitro* method to predict *in vivo* behavior.

Materials

Aqueous solutions of NaDC (97%), used as purchased from Sigma-Aldrich (Dorset, UK), were prepared by dilution from a 20 mM stock solution with distilled water as necessary to achieve concentrations of 7, 9, 11, 13, 17, and 20 mM (i.e., always at con- centrations greater than the stable micelle critical micellar con-

centration of NaDC¹²). The following 24 compounds considered in

this work were used as purchased: acetaminophen (99%; Sigma- Aldrich), acetyl salicylic acid (99%; Acros Organics, Geel, Belgium), alprenolol (98%; Sigma-Aldrich), amitriptyline (98%; Sigma- Aldrich), carbamazepine (99%; Sigma-Aldrich), cimetidine (Sigma- Aldrich), diclofenac (98%; TCI Europe, Zwijndrecht, Belgium), diphenhydramine (98%; TCI Europe), fenoprofen (97%; Fluka, Dorset, UK), fluconazole (98%; Sigma-Aldrich), flurbiprofen (98%; TCI Europe), gemfibrozil (98%; TCI Europe), ibuprofen (98%; BASF, Cheshire, UK), indomethacin (99%; Sigma-Aldrich), ketoprofen (98%; Sigma-Aldrich), lidocaine (98%, Sigma-Aldrich), mannitol (98%; Sigma-Aldrich), meloxicam (98%; TCI Europe), naproxen (98%; Sigma-Aldrich), phenylbutazone (99%; Sigma-Aldrich), pir-

oxicam (98%, Sigma-Aldrich), propranolol (99%; Sigma-Aldrich), quinine (96%; Fluka), and terbutaline (96% Sigma-Aldrich). All experimental work was conducted without altering the pH or ionic strength to avoid the formation of a surfactant-gel hydropolymer.

Method

A calibration plot was established at each of the 6 bile salt concentrations using the Agilent Cary 60 UV-Vis Spectrophotom- eter set at wavelength of maximum absorbance for each drug as follows: acetaminophen Λ_{max} . 243 nm, acetyl salicylic acid Λ_{max} . 295 nm, alprenolol Λ_{max} . 270 nm, amitrityline Λ_{max} . 240 nm, carba- mazepine Λ_{max} . 284 nm, cimetidine Λ_{max} . 218 nm, diclofenac Λ_{max} . 276 nm, diphenhydramine Λ_{max} . 221 nm, fenoprofen Λ_{max} . 271 nm, fluconazole Λ_{max} . 260 nm, flurbiprofen Λ_{max} . 247 nm, gemfibrozil Λ_{max} . 274 nm, ibuprofen Λ_{max} . 272 nm, indomethacin Λ_{max} . 320 nm, ketoprofen Λ_{max} . 261 nm, lidocaine Λ_{max} . 262 nm, mannitol Λ_{max} . 295 nm, meloxicam Λ_{max} . 362 nm, naproxen Λ_{max} . 230 nm, phen- ylbutazone Λ_{max} . 264 nm, piroxicam Λ_{max} . 355 nm, propranolol Λ_{max} . 292 nm, quinine Λ_{max} . 332 nm, terbutaline Λ_{max} . 280 nm; also,

the sample cell was thermostated at 37°C. Separately, an excess of

drug was added to 1 mL of each bile salt concentration in a microcentrifuge tube and placed in a shaking water bath for 48 h at 37^oC, then centrifuged at 13,000 rpm, filtered, and diluted using the corresponding bile salt concentration. Using the regression equa- tion obtained from the established calibration plot of each drug at each bile salt concentration, the concentration of solubilized drug was determined. A plot of the amount solubilized with bilesalt concentration facilitated calculation of the SR whereby the mole fraction solubilized (X_m) is equal to SR/(1 SR) and can be com- bined with the literature-based calculated mole fraction aqueous solubility (X_a) to determine the micelle/water partition coefficient

(Kxm/a) as follows¹⁷: Kxm/a=Xm/Xa

Results from the UV analysis permitted the development of a dataset that contained $\log K_{xm/a}$ values for 20 compounds along with their physicochemical parameters (e.g., molecular weight, rotatable bonds, molar volume, number of hydrogen bond accep- tors) and published HIA values, facilitating development of an equation to relate $\log K_{xm/a}$ with HIA using simple linear regression in combination with the established equation:

Logit HIA = $\log [\% HIA(100 - \% HIA)]^{18}$

A further 4 compounds were then similarly analyzed by measuring $\log K_{Xm/a}$ to predict % HIA. A comparison was then made between the predicted values and those published in literature. Simple linear regression analysis was carried out using Minitab $17^{\text{(R)}}$ (Minitab Inc., State College, PA; licensed to the University of Hud- dersfield) where the previously mentioned dataset was imported

into it. The final model was obtained by excluding molecular de- scriptors which were not statistically significant (p value > 0.05), and those with unacceptably high levels of variance inflation factor, which is considered as a multicollinearity indicator, were not included in the final model. Cook's distance and residuals were used to detect whether any of the model variables had high leverage. The optimal final model was then obtained including only logK_{xm/a} as a predictor for logit HIA, and the model was then validated using 4 compounds.

In total, 24 drugs were analyzed to determine the concentration of drug in solution as a function of NaDC concentration; these were selected to cover a range of physicochemical properties, such as reported HIA, log $P_{O/W}$, and other properties. All data were then plotted to determine a SR value for each drug (i.e., the slope), a selection of which can be seen in Figure 1.

Figure 1 clearly shows a linear relationship between the con- centration of drug and the concentration of NaDC. Only linear sections of the plots were incorporated to calculate SR, some were deemed to be nonlinear, such as the lower concentrations of qui- nine and the higher concentrations of acetaminophen (data not shown). These nonlinear relationships may be due to preferential drug-drug interactions rather than drug-NaDC interactions as suchdrugs are known to self-associate.¹⁹ The majority of the compounds did exhibit a linear relationship over the concentration range studied (7-20 mM), ensuring confidence in the experimental sys- tem. Using the calculated SR value, along with the mole fraction of aqueous solubility for the drug, facilitated calculation of a micelle/ aqueous partition coefficient for each drug. Analyzing these values alongside reported % HIA literature data (Table 1) enabled the application of simple linear regression to construct an equation to permit calculation of % HIA for any compound through measurement of its solubility in NaDC.

Figure 1. Plots of the concentration of a selection of analyzed compounds in solution with NaDC concentration to determine the SR. Each data point = mean, $n = \ge 3$, $\pm SD$.

Table 1

Calculated SR, X_m, X_a, and K_{xm/a} for the 20 Compounds Studied to Create the Database for Subsequent Simple Linear Regression Analysis

Drug	SR	Xm	Xa	logK _{xm/a}
Acetaminophen	2.5694	0.7198	4.94E-04	3.164
Alprenolol	0.0751	0.0699	1.36E-05	3.711
Amitriptyline	0.2163	0.1777	6.30E-07	5.450
Carbamazepine	0.0550	0.0521	1.35E-06	4.587
Cimetidine	1.2403	0.5536	6.69E-4	2.918
Diclofenac	0.0790	0.0732	1.34E-07	5.737
Diphenhydramine	5.8665	1.2055	2.16E-04	3.747
Fluconazole	0.0400	0.0385	5.88E-08	5.816
Flurbiprofen	0.1028	0.0932	5.89E-07	5.199
Gemfibrozil	0.0561	0.0531	2.00E-06	4.424
Ibuprofen	0.1292	0.1144	5.97E-06	4.283
Ketoprofen	0.1407	0.1233	3.61E-06	4.534
Lidocaine	0.5387	0.3501	3.15E-04	3.046
Mannitol	3.1794	0.7607	2.09E-02	1.561
Meloxicam	0.0311	0.0302	3.66E-07	4.916
Naproxen	0.1151	0.1032	1.24E-06	4.919
Phenylbutazone	0.0903	0.0828	8.40E-06	3.992
Propranolol	0.1166	0.1044	4.28E-06	4.387
Quinine	2.0472	0.6718	2.77E-05	4.384
Terbutaline	5.7796	0.8525	1.67E-02	1.707

Using data presented in Table 1, simple linear regression analysis was used to create an optimized equation to predict HIA:

Logit HIA =
$$-0.919 + 0.4618 \log K_{xm/a}$$

S = 0.236264, R² = 0.8492, R²_{adj.} = 0.8409, R²_{Pred.} = 0.8232,

The p values obtained for this model indicate that the relationship between % HIA and logKxm/a values was statistically significant at the 95% confidence level where they were <0.05, and the model's F-ratio was found to be statistically significant. Also, logKxm/a was found to have a 95% confidence interval of 0.365-0.558 and a t-value of 10.069. According to Cook's distance and residuals, no drug among the model's dataset was found to be influential or having high leverage. The unadjusted R2 of 0.8492 derived from the current data indicates that the fit of the sampled drugs to the model is good. The View the MathML source R2 (Pred) value of 0.8232 indicates that the fit of the drugs to the model is valid and confirms the potential suitability of UV measurement of solubility using NaDC to predict oral drug absorption in the human GI tract. The close values of View the MathML source R2 (adj.) and View the MathML source R2 (Pred) show no evidence of the current model overfitting the data. A Durbin-Watson statistic value of 2.309 proves the absence of autocorrelation in the current regression model. A summary of predicted % HIA values using the established equation alongside published literature values for % HIA can be seen in Table 2 including validation compounds.

A plot of calculated % HIA with corresponding literature values can be seen in Figure 2.

Table 2

Experimental logK _{xm/a} , % HIA _{calc} ,	and % HIA _{lit}	Values for	the Compour	nds Analyzed
Including 4 Validation Compound	ds (*)			

Drug	logK _{xm/a}	% HIA _{calc}	% HIA _{lit}
Acetaminophen	3.164	77.71	80.00 ²⁰
Alprenolol	3.711	86.18	93.00 ²⁰
Amitriptyline	5.450	97.54	95.00 ²¹
Aspirin*	2.671	67.37	68.00 ²²
Carbamazepine	4.587	94.06	97.00 ²³
Cimetidine	2.918	72.86	68.00 ²⁴
Diclofenac	5.737	98.17	99.00 ²⁵
Diphenhydramine	3.747	86.63	72.00 ²⁶
Fenoprofen*	4.398	92.83	85.00 ²⁷
Fluconazole	5.816	98.32	97.50 ²⁰
Flurbiprofen	5.199	96.81	95.00 ²⁸
Gemfibrozil	4.424	93.01	95.00 ²⁶
Ibuprofen	4.283	91.97	85.00 ^{25,29}
Indomethacin*	5.785	98.26	100.00 ²⁰
Ketoprofen	4.534	93.74	95.00 ^{20,28}
Lidocaine	3.046	75.54	75 ^{26,27,30}
Mannitol	1.561	38.81	38.67 ³¹
Meloxicam	4.916	95.74	97.00 ²⁶
Naproxen	4.919	95.75	97.67 ²⁰
Phenylbutazone	3.992	89.37	90.00 ²²
Piroxicam*	3.995	89.40	99.00 ²⁰
Propranolol	4.387	92.75	95.00 ²⁰
Quinine	4.384	92.73	85.00 ³²
Terbutaline	1.707	42.55	44.00 ^{29,33}

Figure 2. A plot of calculated % HIA (% HIA_{calc}) versus published literature % HIA (% HIA_{iit}), standard compounds used to derive the equation (×) and validation compounds (\blacksquare).

Conclusions

Overall, the development of an equation to predict % HIA using a simple UV-based technique via calculation of the micelle/water partition coefficient has been shown to be statistically appropriate and reliable as a method to determine intestinal absorption. Using a simple, economic, and robust UV bile salt assay allows prediction of HIA and avoids many of the disadvantages of other techniques, such as animal-based methods.

References

- Egan WJ, Lauri G. Prediction of intestinal permeability. *Adv Drug Deliv Rev.* 2002;54(3):273-289.
- 2. Votano JR, Parham M, Hall LH, Kier LB. Mol Divers 2004;8(4):379-
- 3. Basant N, Gupta S, Singh KP. Predicting human intestinal absorption of diverse chemicals using ensemble learning based QSAR modeling approaches. *Comput Biol Chem.* 2016;61:178-196.
- 4. De Julian-Ortiz JV, Zanni R, Galvez-Llompart M, García-Domenech R. Curr *Drug Metab.* 2014;15(4):380-388.
 - 5. Kostewicz ES, Aarons L, Bergstrand M, et al. Eur J Pharm Sci. 2014;57(1):300-321
- 6. Kostewicz ES, Abrahamsson B, Brewster M, et al. In vitro models for the pre- diction of in vivo performance of oral dosage forms. *Eur J Pharm Sci.* 2014;57(1):342-366.
- 7. Waters LJ, Shokry DS, Parkes GM. Predicting human intestinal absorption in the presence of bile salt with micellar liquid chromatography. *Biomed Chromatogr.* 2016;30(10):1618-1624.
- B. Guerra A, Denis S, le Goff O, et al. Development and validation of a new dy- namic computercontrolled model of the human stomach and small intestine. *Biotechnol Bioeng*. 2016;113(6):1325-1335.
- Augustijns P, Wuyts B, Hens B, Annaert P, Butler J, Brouwers J. A review of drug solubility in human intestinal fluids: implications for the prediction of oral absorption. *Eur J Pharm Sci.* 2014;57(1):322-332.
- Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts.
 Molecules. 2015;20(8):14451-14473.
- Esposito G, Giglio E, Pavel NV, Zanobi A. Size and shape of sodium deoxycholate micellar aggregates. J Phys Chem. 1987;91(2):356-362.
- Matsuoka K, Moroi Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (part 1). *Biochim Biophys Acta Mol Cell Biol Lipids*. 2002;1580(2-3):189-199.
- D'Alagni M, D'Archivio AA, Galantini L, Giglio E. Structural study of the micellar aggregates of sodium chenodeoxycholate and sodium deoxycholate. *Langmuir*. 1997;13(22):5811-5815.
- 14. Bogdanova LR, Gnezdilov OI, Idiyatullin BZ, Kurbanov RK, Zuev YF, Us'yarov OG. Micellization in

sodium deoxycholate solutions. Colloid J. 2012;74(1):1-6.

- 15. Waters LJ, Hussain T, Parkes GMB. Thermodynamics of micellisation: sodium dodecyl sulfate/sodium deoxycholate with polyethylene glycol and model drugs. *J Chem Thermodyn*. 2014;77(0):77-81.
- Wiedmann TS, Liang W, Kamel L. Solubilization of drugs by physiological mixtures of bile salts.
 Pharm Res. 2002;19(8):1203-1208.
- Wiedmann TS, Kamel L. Examination of the solubilization of drugs by bile salt micelles. J Pharm Sci. 2002;91(8):1743-1764.
- 18. Akamatsu M, Fujikawa M, Nakao K, Shimizu R. In silico prediction of human oral absorption based on QSAR analyses of PAMPA permeability. *Chem Bio- divers*. 2009;6(11):1845-1866.
- Casabianca LB, De Dios AC. 13C NMR study of the self-association of chloro- quine, amodiaquine, and quinine. J Phys Chem A. 2004;108(40):8505-8513.
- 20. Castillo-Garit JA, Can-izares-Carmenate Y, Marrero-Ponce Y, Torrens F, Abad C. Prediction of ADME properties, part 1: classification models to predict Caco-2 cell permeability using atom-based bilinear indices. *Afinidad*. 2014;71(566):129-138.
- 21. Varma MVS, Sateesh K, Panchagnula R. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: contribution of passive permeability to P-glycoprotein mediated efflux transport. *Mol Pharmaceutics*. 2005;2(1):12-21.
- 22. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. *J Med Chem.* 2002;45(12):2615-2623.
- Dressman JB, Amidon GL, Fleisher D. Absorption potential: estimating the fraction absorbed for orally administered compounds. *J Pharm Sci.* 1985;74(5): 588-589.
- 24. Linnankoski J, Makela JM, Ranta VP, Urtti A, Yliperttula M. Computational prediction of oral drug absorption based on absorption rate constants in humans. J Med Chem. 2006;49(12):3674-3681.
- 25. Balon K, Riebesehl BU, Müller BW. Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. *Pharm Res.* 1999;16(6): 882-888.
- 26. Paix-ao P, Gouveia LF, Morais JAG. Prediction of the human oral bioavailability by using in vitro and in silico drug related parameters in a physiologically based absorption model. *Int J Pharm*. 2012;429(1-2):84-98.
- 27. Hou T, Wang J, Zhang W, Xu X. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. *J Chem Inf Model*. 2007;47(1):208-218.
- 28. Molero-Monfort M, Escuder-Gilabert L, Villanueva-Caman-as RM, Sagrado S,

Medina-Hern andez MJ. Biopartitioning micellar chromatography: an in vitro technique for predicting human drug absorption. *J Chromatogr B Biomed Sci Appl.* 2001;753(2):225-236.

- 29. Sanghvi T, Ni N, Mayersohn M, Yalkowsky SH. Predicting passive intestinal absorption using a single parameter. *QSAR Comb Sci.* 2003;22(2):247-257.
- 30. Yan A, Wang Z, Cai Z. Prediction of human intestinal absorption by GA feature selection and support vector machine regression. *Int J Mol Sci.* 2008;9(10): 1961-1976.
- 31. Palm K, Stenberg P, Luthman K, Artursson P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. *Pharm Res.* 1997;14(5): 568-571.
- 32. Newby D, Freitas AA, Ghafourian T. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. *Eur J Med Chem.* 2014;90:751-765.
- 33. Subramanian G, Kitchen DB. Computational approaches for modeling human intestinal absorption and permeability. *J Mol Model*. 2006;12(5): 577-589.