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SUMMARY 

Cassava brown streak disease (CBSD) has become a major constraint to cassava 

production in East and Central Africa. The identification of new sources of CBSD 

resistance is essential to deploy CBSD mitigation strategies as the disease is 

progressing westwards to new geographical areas. A stringent infection method based 

on top cleft grafting combined with precise virus titer quantitation was utilized to screen 

fourteen cassava cultivars and elite breeding lines. When inoculated with mixed 

infections of Cassava brown streak virus (CBSV) and Ugandan cassava brown streak 

virus (UCBSV), the scions of elite breeding lines KBH 2006/18 and KBH 2006/26 

remained symptom-free during a 16-week period of virus graft inoculation, while 

susceptible varieties displayed typical CBSD infection symptoms at 4 weeks after 

grafting. The identified CBSD resistance was stable under the co-inoculation of CBSV, 

UCBSV with cassava geminiviruses (CGMs).  

Double grafting experiments revealed that transmission of CBSV and UCBSV to CBSD 

susceptible top scions was delayed when using intermediate scions of elite breeding 

lines KBH 2006/18 and KBH 2006/26. Nonetheless, comparison of virus systemic 

movement using scions from KBH2006/18 and a transgenic CBSD resistant 60444 line 

(60444-Hp9 line) showed that both CBSV and UCBSV move at undetectable levels 

through the stems. Further, protoplast-based assays of virus titers over time showed 

that the replication of CBSVs is inhibited in the resistant line KBH2006/18, suggesting 

that the identified CBSD resistance is at least partially based on inhibition of virus 
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replication. Our molecular characterization of CBSD resistance in cassava offers a 

robust virus–host system to further investigate the molecular determinants of CBSD 

resistance.   
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INTRODUCTION 

Cassava (Manihot esculenta, Crantz) is a food security crop in Africa due to its relatively 

good performance under difficult growing conditions and the capacity of its starch-rich 

storage roots to be maintained in the ground, allowing progressive harvest (Fermont et 

al., 2010). Despite its superior agronomic performance under adverse conditions 

cassava production is severely constrained by viral diseases. Of these, cassava mosaic 

disease (CMD) and cassava brown streak disease (CBSD) are the most widespread 

and severe cassava diseases in Africa (Patil and Fauquet, 2009). While CMD has long 

been viewed as the main constraint to cassava production in Africa (Seif, 1982; 

OtimNape et al., 1997), CBSD has recently become a major problem due to its re-

emergence in East Africa and its rapid spread into new geographical areas in central 

African countries (Alicai et al., 2007; Bigirimana et al., 2011; Mulimbi et al., 2012; Patil 

et al., 2015). 

Viral disease management in cassava fields has mostly relied on the identification of 

existing sources of virus resistance, the introgression of virus resistance traits into 

farmer-preferred cultivars and the deployment of virus-resistant varieties in the field 

(Thresh and Cooter, 2005). These strategies have been particularly important for 

mitigating the impact of CMD in the CMD pandemic regions of Africa (Legg et al., 2006). 

However, the CMD-resistant cultivars and landraces deployed in CMD-affected regions 

were not tested for resistance to CBSD. They later appeared to be susceptible to CBSD 

(Legg et al., 2006), which may have facilitated the spread of CBSD in East and Central 

Africa during the last two decades. Thus, renewed measures to identify, characterize 
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and preserve CBSD resistance in cassava germplasm are required for sustainable 

disease management strategies.  

Cassava brown streak virus (CBSV) was confirmed to be the causal agent of CBSD in 

the 1950s (Lister, 1959), but it was only recently that CBSV was taxonomically grouped 

into the genus Ipomovirus (family Potyviridae) (Monger et al., 2001) and that the full 

genome sequence became available (Mbanzibwa et al., 2009a). Sequencing efforts of 

CBSD infected cassava samples from different regions in East Africa led to the 

identification of two viral species (Mbanzibwa et al., 2009b; Monger et al., 2010; Winter 

et al., 2010; Ndunguru et al., 2015) now referred to as Cassava brown streak virus 

(CBSV), and Ugandan cassava brown streak virus (UCBSV). Despite their initial 

identification from distinct geographical zones, co-occurrence of CBSV and UCBSV has 

been reported and recent outbreaks of CBSD are not uniquely associated with a 

particular virus species (Legg et al., 2011; Mbanzibwa et al., 2011a).  

CBSD resistance originating from Manihot glaziovii, Manihot melanobasis and a few 

cassava varieties of Brazilian origin, was initially reported in the cassava improvement 

programmes at the Amani Research Station throughout the 1940’s and 1950’s (Hillocks 

et al., 2001; Jennings and Iglesias, 2002). However, recent evaluations of the cassava 

germplasm have identified only tolerance rather than resistance to CBSD (Legg et al., 

2011). It remains unclear whether the CBSD resistance was lost through selective 

breeding for CMD (Hillocks et al., 2001) or that initial reports of CBSD resistance were 

actually referring to CBSD tolerance due to inconsistent use of the terminology (Cooper 

and Jones, 1983).  
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Leaf and root symptoms triggered by CBSD infection vary largely in terms of localization 

and intensity in susceptible and tolerant cassava varieties (Winter et al., 2010; 

Mohammed et al., 2012). Molecular tools available today for detecting and 

discriminating CBSV species offer new opportunities to better determine the tolerance 

and resistance levels to CBSVs as well as to investigate cassava response to CBSD 

(Abarshi et al., 2010; Mbanzibwa et al., 2011a; Moreno et al., 2011; Abarshi et al., 2012; 

Tomlinson et al., 2013). Importantly, such tools should also be used to investigate the 

robustness of CBSD resistance when exposed to mixed infections of ipomoviruses and 

cassava mosaic geminivirus (CMG), which do co-occur in several cassava growing 

regions (Alicai et al., 2007; Legg et al., 2011).  

Here we report the screening of selected cassava farmer-preferred varieties and elite 

breeding lines for CBSD resistance using a robust and reproducible inoculation method 

in combination with selected CBSV and UCBSV isolates. We monitored viral replication 

titer over time in order to determine the level of resistance and performed co-inoculation 

of CBSV and UCBSV isolates with a severe CGM isolate to test the robustness of 

CBSD resistance under mixed virus infection conditions. We also used double grafting 

experiments and protoplast-based assays in order to study the resistance mechanism 

exhibited by the elite breeding line KBH 2006/18 identified as resistant against the 

CBSV and UCBSV isolates tested in the present study. This first comprehensive 

characterization of CBSD resistance in cassava under controlled conditions opens new 

perspectives of investigating the molecular mechanism of CBSD resistance and 

screening for resistant elite breeding lines and farmer-preferred cassava varieties.  
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Results 

Identification of cassava genotypes resistant to CBSD 

Farmer-preferred cassava varieties were selected based on their geographical origin 

and reported CMD resistance (Supplementary Table 1). Our selection also included 

elite breeding lines from the Great Lakes Cassava Initiative (CRS, 2012).  Disease-free 

scions were grafted onto cassava variety 60444 rootstocks carrying a mixed infection of 

CBSV [TAZ-DES-01] and UCBSV [TAZ-DES-02]. The top cleft grafting method 

(Supplementary Figure 1) previously established in our laboratory (Moreno et al., 2011; 

Vanderschuren et al., 2012) resulted in a high survival rate (over 90%) and 100% CBSD 

infection in control 60444 scions. CBSD foliar symptoms appeared in scions from 

susceptible varieties at 4 weeks after grafting (wag) (Table 1). The symptom severity 

differed between susceptible varieties. In particular, variety MTAI 25 was highly 

susceptible with early CBSD symptoms followed by dieback of the scions—an 

observation previously made in the field on highly susceptible cassava varieties 

(Hillocks et al., 1996; Hillocks et al., 2001). Varieties SC 8, 60444 and TMS 30572 also 

showed an early onset of CBSD symptoms (Supplementary Figure 2 A) but the scions 

survived during the 16 weeks observation period. The varieties TME 3, TME 7, 

UMUCASS 33, KBH 2006/12 and KBH 2002/363 developed mild CBSD symptoms 

between 4 to 8 wag. The appearance of symptoms on scions of TMS 30001 (a variety 

that developed few symptoms of restricted distribution when infected with CMGs 

(Thresh and Cooter, 2005)) was either delayed or not observed in all scions. No CBSD 

symptoms could be detected in scions of KBH 2006/18 and KBH 2006/26 even at 16 

wag (Supplementary Figure 2 B). Results from four independent grafting experiments 
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are compiled in Table 2. The reported CBSD resistance results in controlled 

greenhouse conditions are consistent with results from the Great Lakes Cassava 

Initiative, in which the two elite breeding lines KBH 2006/18 and 2006/26 were identified 

as CBSD resistant breeding lines in the field (CRS, 2012). However, no further data 

have been reported on these varieties.  

At completion of one grafting experiment, scions from 60444, KBH 2006/18 and KBH 

2006/26 were propagated via stem cuttings in the glasshouse. Cuttings of KBH 2006/18 

(84%) and KBH 2006/26 (92%) displayed a higher survival rate compared to 60444 

(60%) for mixed infection of CBSVs (Supplementary Table 2). All 60444 cuttings 

showed CBSD symptoms while all propagated KBH 2006/18 and KBH 2006/26 cuttings 

remained symptom-free (Supplementary Table 2).   

We reported earlier a correlation between CBSD symptom severity and virus titers 

(Moreno et al., 2011). Virus titers were monitored in 60444, KBH 2006/18 and KBH 

2006/26 to investigate the presence of CBSVs in symptom-free plants. We quantitated 

virus levels by reverse transcription-quantitative PCR (RT-qPCR) using the cassava 

PP2A gene as an internal control (Moreno et al., 2011). Quantitation of virus titers in 

60444 rootstocks confirmed that scions were exposed to high levels of infection 

pressure (Supplementary Figure 3). Neither CBSV [TAZ-DES-01] nor UCBSV [TAZ-

DES-02] were detectable at 8 wag in the scions of KBH 2006/18 and KBH 2006/26 

grafted onto 60444 rootstocks carrying mixed infection of CBSVs (Figure 1 A&B). Both 

CBSV [TAZ-DES-01] and UCBSV [TAZ-DES-02] were detected in 60444 scions that 

showed typical CBSD symptoms. As previously observed (Vanderschuren et al., 2012), 

UCBSV was on average, detected at higher titers than CBSV in 60444 scions.  
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Identified CBSD resistance is independent of the grafting procedure 

Top cleft grafting on virus-infected rootstocks has proven highly effective for CBSV and 

UCBSV transmission with 100% infection rates in control plants ((Moreno et al., 2011); 

Table 2). In order to investigate virus replication in roots, we performed top grafting of 

CBSV [TAZ-DES-01] and UCBSV [TAZ-DES-02] infected scions on virus-free 

rootstocks from a resistant (KBH 2006/18) and susceptible (60444) variety. CBSD 

symptoms appeared in susceptible 60444 rootstocks in the growing shoots after 

removal of the inoculating scion at 4 wag.  Shoots from KBH 2006/18 rootstocks 

remained symptom-free. Furthermore, RT-qPCR quantitation of virus titers in storage 

roots of inoculated rootstocks confirmed the absence of CBSV [TAZ-DES-01] and 

UCBSV [TAZ-DES-02] in KBH 2006/18 at 8 weeks after removing the inoculating scion 

(Figure 2). Propagation of the inoculated rootstock plants via stem cuttings resulted in a 

low percentage of cutting survival for 60444 compared to KBH 2006/18 (Supplementary 

Table 3). All established 60444 cuttings developed typical CBSD symptoms while 

cuttings from KBH 2006/18 remained symptom-free (Supplementary Table 3). 

CBSD resistance holds against different CBSV and UCBSV isolates  

Resistance of KBH 2006/18 and KBH 2006/26 to CBSD was tested further using 

UCBSV [UG:Kab4-3:07] – a virus isolate from the epidemic area of Kabanyolo, Uganda 

(Mbanzibwa et al., 2011b; Mohammed et al., 2012). Top cleft grafting on UCBSV 

[UG:Kab4-3:07] – infected AR34.2 roostocks was performed using 60444, KBH 2006/18 

and KBH 2006/26 scions. UCBSV [UG:Kab4-3:07] titers were quantitated in the 

rootstock plants (Supplementary Figure 4) and in the scions (Supplementary Figure 5). 
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High levels of UCBSV [UG:Kab4-3:07] titers could be detected in all susceptible scions 

but remained undetectable in the scions from KBH 2006/18 and KBH 2006/26 at 8 wag 

(Supplementary Figure 5).  

Additional testing using side grafting method according to Mohammed and colleagueset 

al. (2012) was performed to assess resistance of KBH 2006/18 and KBH 2006/26 to 

mixed CBSV [MZ:Nam1-1:07] and UCBSV [UG:Kab4-3:07] infections. Accumulation of 

CBSV [MZ:Nam1-1:07] was detected in the susceptible 60444 plants at 8 wag 

(Supplementary Figure 6). No virus could be detected in the resistant varieties even at 

16 wag (Supplementary Figure 6).  

KBH 2006/18 is resistant to mixed CBSVs and CMG infection 

Co-occurrence of CBSD and CMD has been reported in the field (Thresh et al., 1994; 

Alicai et al., 2007). However, field data do not support synergism between CBSVs and 

CMGs (Legg et al., 2011). We inoculated KBH 2006/18 with a single CMG species 

(ACMV-NOg and EACMV-Ug, in independent infections) by using the top-grafting 

method. KBH 2006/18 scions remained symptom-free and control 60444 scions 

displayed CMD symptoms at 2 wag for both viral species. In the same experiment, we 

also inoculated scions of the TME 7 landrace that was previously identified as CMD 

resistant (Fregene et al., 2000; Raji et al., 2008). In contrast to KBH 2006/18 scions that 

remained symptom-free after CMD infection until the final observation stage at 24 wag, 

CMD symptoms appeared on the first emerging leaves of TME 7 scions followed by a 

recovery phenotype typical of CMD tolerant cultivars. Subsequent viral DNA quantitation 

revealed that ACMV-NOg was detectable in both control 60444 and TME 7 scions while 
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EACMV-Ug viral particles were only detectable in 60444 control scions (Supplementary 

Figure 7). Both ACMV-NOg and EACMV-Ug could not be detected in KBH 2006/18 

scions.  

In order to evaluate resistance of the KBH 2006/18 elite breeding line to a mixed CBSD 

and CMD infection, disease-free KBH 2006/18 and 60444 scions were grafted on 60444 

rootstocks carrying two combinations of CBSVs and CMGs: 1) EACMV-Ug + CBSV 

[TAZ-DES-01] + UCBSV [TAZ-DES-02], 2) EACMV-Ug + UCBSV [UG:Kab4-3:07]. Viral 

symptoms appeared in 60444 scions at 3 wag and CMD symptoms were prominent 

over CBSD symptoms. KBH 2006/18 scions did not show either CMD or CBSD 

symptoms. Virus detection at 8 wag in inoculated scions revealed that both EACMV-Ug 

and CBSVs could replicate in 60444 scions (Figure 3). EACMV-Ug and CBSVs titers 

varied between scions. We also noticed that CBSV [TAZ-DES-01] was not detectable in 

the 60444 scions grafted on 60444 rootstocks carrying the EACMV-Ug, CBSV [TAZ-

DES-01] and UCBSV [TAZ-DES-02] mixed infection (Figure 3). Viruses used in the 

mixed infections were below the detection limit in KBH 2006/18 scions. We therefore 

concluded that CBSD resistance in the elite breeding line KBH 2006/18 holds even 

when inoculated with mixed infections of CBSVs and EACMV-Ug. 

CBSVs are transmitted through KBH 2006/18 scions  

In order to test if the elite breeding line KBH 2006/18 restricts viral movement, we 

performed double-grafting experiments (Supplementary Figure 8 A). KBH 2006/18 and 

60444 scions (referred to as first scions) were grafted on susceptible 60444 rootstocks 

infected with CBSV [TAZ-DES-01] and UCBSV [TAZ-DES-02]. Following graft 
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establishment and stem hardening, uninfected 60444 scions (referred to as second 

scions) were grafted onto the established first scions. When grafted on 60444 first 

scions, 60444 second scions developed typical CBSD symptoms as early as 4 wag 

(Supplementary Figure 8 B). When grafted on KBH 2006/18 first scions, CBSD 

symptoms in the 60444 second scions only appeared at 10 wag (Supplementary Figure 

8 B).  CBSV [TAZ-DES-01] and UCBSV [TAZ-DES-02] were detectable in 60444 first 

scions but could not be detected in KBH 2006/18 first scions (Supplementary Figure 9). 

Consistent with symptom development, CBSV [TAZ-DES-01] and UCBSV [TAZ-DES-

02] could be detected in 60444 second scions grafted on 60444 first scions at 4 wag. 

UCBSV [TAZ-DES-02] could also be detected in 60444 second scions grafted on KBH 

2006/18 first scions at 4 wag, even though these second scions were non-symptomatic. 

Eventually, CBSD symptoms were observed on 60444 second scions from all the grafts 

at 10 wag (Supplementary Figure 7B). The double grafting experiment clearly indicates 

that both susceptible and resistant varieties allow movement of CBSV [TAZ-DES-01] 

and UCBSV [TAZ-DES-02] through the stem.  

In an independent double-grafting experiment, we observed that susceptible second 

scions grafted onto a CBSD resistant transgenic 60444 (60444-hp9) (Vanderschuren et 

al., 2012) first scion developed CBSD symptoms at 10 weeks after grafting 

(Supplementary Figure 8 C). In contrast susceptible second scions grafted onto control 

60444-wt scions developed symptoms at 4 weeks after grafting. The similarity in results 

of double grafting experiments with 60444-hp9 and KBH 2006/18 first scions suggests 

that those two genetic backgrounds do not differ in restriction of CBSV movement. Our 

results also suggest that KBH 2006/18 and 60444-Hp 9 have similar resistance levels to 
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CBSVs since both CBSV [TAZ-DES-01] and UCBSV [TAZ-DES-02] remained 

undetectable in the leaves and stems of KBH 2006/18 and 60444-Hp 9 first scions 

(Supplementary Figure 9).  

Virus replication is inhibited in KBH 2006/18 protoplasts 

To further elucidate the mode of resistance exhibited by KBH 2006/18, we assayed 

virus replication in leaf mesophyll protoplasts at 6 hours post-transfection. We extracted 

virions (Berger and Shiel, 1998) from greenhouse-grown 60444 cassava plants infected 

with CBSV [TAZ-DES-01] and UCBSV [TAZ-DES-02] and transfected the virion extract 

into protoplasts obtained from 60444 and KBH 2006/18 leaves (Yoo et al., 2007). RT-

qPCR quantitation of relative virus (CBSV [TAZ-DES-01] and UCBSV [TAZ-DES-02]) 

levels indicated that virus levels increased in 60444 protoplasts over the duration of the 

experiment. In contrast, UCBSV [TAZ-DES-02] and CBSV [TAZ-DES-01] levels 

decreased in KBH 2006/18 protoplasts at 6 hours post-transfection (Figure 4). The 

results of the protoplast replication assay suggest that the characterized CBSD 

resistance in the KBH 2006/18 elite breeding line is at least partially based on inhibition 

of one or several step(s) following virus entry in the cell, from uncoating to genome 

amplification. 

Discussion  

Natural CBSD resistance is key to control CBSD in African regions where it has become 

a major constraint to cassava production. This is also critical to minimize the threat of 

dissemination to regions where CBSD is currently absent. Diagnostics and precise 

characterization of virus resistance require standard procedures and terminology that 
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need to be commonly accepted to allow selection and utilization of plant material by 

virologists and plant breeders. The use of terms for plant responses to virus inoculation 

has long been debated (Cooper and Jones, 1983). Here we used a stringent top cleft 

grafting method for inoculation of selected cassava cultivars and elite breeding lines 

with CBSVs. Our virus inoculation method resulted in 100% infection rates in the 

susceptible 60444 scions in all experiments. Infection rates obtained by the top grafting 

method are more consistent and reproducible compared to other inoculation methods 

reported to date (Maruthi et al., 2005; Mohammed et al., 2012; Ogwok et al., 2012). 

Because the top grafting method provides a constant virus inoculum from the infected 

rootstock to the scion, it also allows the assessment of resistance over several weeks of 

inoculation. Using a mixed CBSV and UCBSV infection we identified two cassava elite 

breeding lines, KBH 2006/18 and KBH 2006/26, that remained symptom-free even at 16 

wag. Cultivar TMS 30001 only developed inconspicuous CBSD symptoms but CBSV 

accumulated in scions developing disease symptoms.  

CBSD infected susceptible varieties usually develop a dry brown-black necrotic rot of 

the tuberous roots. Despite evidence that CBSVs accumulate in symptomatic and non-

symptomatic root tissues (Abarshi et al., 2010; Moreno et al., 2011), the role of root 

organs in CBSV replication and cycle has not yet been elucidated. Studies in other 

plant-virus systems suggest that virus accumulation is not homogenous in root systems 

and that primary roots can sustain high level of virus replication (Dalmay et al., 2000; 

Valentine et al., 2002). Side grafting and top grafting experiments with CBSV-infected 

60444 scions on virus-free KBH 2006/18 rootstocks confirmed that the KBH 2006/18 

rootstocks are also resistant to CBSVs. Cumulatively, our data show that the top 
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grafting method is suitable for identification of CBSD resistance and that resistance 

against the mixed CBSV – UCSBV infections used in our screen was robust in two elite 

breeding lines.  

CBSV and UCBSV differ in their virulence on cassava cultivars (Winter et al., 2010; 

Mohammed et al., 2012). We therefore used different combinations of CBSV and 

UCBSV isolates to assess the stability of the CBSD resistance. KBH 2006/18 and KBH 

2006/26 remained symptom-free with all combinations of virus isolates and inoculation 

methods.  

Successful virus disease management of vegetatively propagated crop requires the 

selection of symptomless cultivars that do not support virus replication and 

accumulation (van den Bosch et al., 2007). Characterization of plant responses to virus 

diseases therefore requires molecular quantitation of virus titers in inoculated plants. 

CBSV and UCBSV were near or below the detection limit in KBH 2006/18 and KBH 

2006/26, indicating that these elite breeding lines qualify as resistant (Cooper and 

Jones, 1983). Comparison of Ct values obtained in RT-qPCR assays of mock controls 

and inoculated scions of KBH 2006/18 suggests that CBSV and UCBSV do not replicate 

in leaves of this variety.  

Our results also demonstrate that co-inoculation of CBSVs with a severe CMG isolate 

does not break CBSD resistance in the resistant elite breeding lines. Moreover, co-

inoculation does not affect the ratio of the CBSD virus isolates initially present in the 

susceptible cassava 60444 line, suggesting that both types of viruses do not interfere 

with their respective replication mechanisms. 
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Based on the results of our double-grafting experiment, it appears that KBH 2006/18 

can transmit CBSVs. The susceptibility of a plant to virus infection depends on both the 

ability of the virus to gain access to the phloem long-distance transport (Wang et al., 

1999; German-Retana et al., 2000) as well as host factors, such as restricted TEV 

movement (RTM) proteins (Chisholm et al., 2001; Cosson et al., 2010) that permit or 

inhibit viral movement in vascular tissues. However, the results of double grafting 

experiments with KBH 2006/18 and a CBSD resistant transgenic 60444 line (60444-

hp9) (Vanderschuren et al., 2012) did not reveal any significant difference as both 

genotypes were able to transmit CBSVs to susceptible second scions, and at similar 

time points after grafting. Examining virus replication at the cellular level using cassava 

leaf mesophyll protoplasts also revealed that the CBSV [TAZ-DES-01] and UCBSV 

[TAZ-DES-02] titers initially transfected to KBH 2006/18 protoplasts decline over time. 

On the contraty, both virus isolates had increasing titers over time in 60444 protoplasts.  

While our protoplast assay results suggest an intra-cellular activity against both CBSV 

[TAZ-DES-01] and UCBSV [TAZ-DES-02] isolates, the key virus replication steps, from 

uncoating to genome amplification, inhibited in the KBH 2006/18 elite breeding lien 

remained to be identified. The cassava protoplast assay established in the present 

study will be instrumental to further characterize the presented CBSD resistance. Future 

characterization of the CBSD resistance in KBH 2006/18 and KBH 2006/26 will also 

require the development of CBSV and UCBSV infectious clones to determine viral 

mutations that can overcome the CBSD resistance reported in the present study. 

In addition, analysis of cassava varieties with contrasting CBSD resistance using 

genome sequencing and transcriptome profiling could be particularly instrumental in 
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identifying genes and their expression patterns that are key for compatible and 

incompatible interactions in the CBSV – cassava pathosystem. Furthermore, isolation of 

CBSV isolates capable of breaking CBSD resistance in KBH 2006/18 and KBH 2006/26 

elite breeding lines will also provide further insights into CBSV virulence factors. 
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Material and methods 

Plant material and virus isolates 

Disease-free varieties and elite cassava breeding lines used for the study were obtained 

from international and national research institutes in Africa as well as lines from ongoing 

breeding programs (Supplementary Table 1). Cassava plants were grown under 

greenhouse conditions (27°C, 16h light, 60% humidity). The virus isolates were 

obtained from field infected cassava plants. Mixed infections were generated through 

grafting and subsequent propagation of scions carrying mixed infections.  
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Virus inoculation method 

Individual plants were assessed for their viral resistance by using the top cleft grafting 

procedure (Supplementary Figure 1) and side grafting method as previously described 

(Mohammed et al., 2012). Mock plants consisted of disease-free scions grafted onto 

disease-free rootstocks. The double grafting procedure involved establishment of the 

first scion for 14 weeks and subsequent grafting of a second scion following the top cleft 

grafting procedure. CBSD symptoms were observed at 12 weeks for the plants derived 

from scions propagated via stem cuttings.  

Lower and upper stem samples from 1st scion corresponded to the stem sections 15 – 

20 centimeters and 20 – 25 centimeters above the point of grafting, respectively. For 

detection of CBSVs in the lower and upper stem sections of KBH 2006/18, 60444–Hp 9 

and 60444 (Figure 5), the bark of the stems were removed to have a larger fraction of 

vascular tissues in the samples. 

Virus titer quantitation  

Total RNA was extracted from leaf samples using a protocol modified from a pine tree 

RNA extraction protocol (Chang et al., 1993; Moreno et al., 2011). First strand cDNA 

was synthesized according to the manufacturer instructions (Fermentas) with random 

hexamer primers mix and 1 µg of total RNA in a final reaction volume of 20 µl. Real-time 

PCR reactions were performed with the 7500 Fast Real Time PCR System (Applied 

biosystems, Foster City, CA) using the SDS software. Virus titers were quantitated 

relative to internal control MePP2A as previously described (Moreno et al., 2011). All 

primers used for virus detection and internal control are listed in Supplementary table 4. 
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Virion Extraction 

CBSV and UCBSV virions were extracted from 20-80g of greenhouse grown, infected 

leaf material following and adapted potyvirus extraction protocol as described by Berger 

and Shiel, 1998.  

Protoplast isolation and transfection 

Cassava leaf mesophyll protoplasts were extracted from mature leaves of in vitro grown 

60444 and KBH 2006/18 plants and transfected following the Arabidopsis leaf 

mesophyll protoplast transfection protocol developed by Yoo and colleagues (2007). 

Total RNA extraction using Isol-RNA (5Prime GmbH) at a ratio of 200 microL of Isol-

RNA solution per two million protoplasts was performed. Virus level quantitation was 

performed as described above. Due to the low amount of RNA obtained in some 

samples, a cut-off of MePP2A Ct <30 was applied to all samples.  

Legends 

Table 1:  CBSD resistance screening on selected cassava varieties and elite breeding 
lines 

Table 2: Summary of all grafting experiments performed 

Supplementary Table 1: List of cassava elite breeding lines and varieties used in the 
study 

Supplementary Table 2: Stem propagation of scions inoculated by top grafting on 
infected rootstocks. 

Supplementary Table 3: Stem propagation of rootstocks inoculated by top grafting of 
infected scions.  

Supplementary Table 4: List of primers.  
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Figure 1: RT-qPCR quantitation of virus titers in scions from selected accessions 

grafted on rootstocks carrying mixed CBSV [TAZ-DES-01] and UCBSV [TAZ-DES-02] 

infection. The Y-axis represents mean fold change of virus CP over MePP2A. Error bars 

represent mean ± standard deviation for 3 biological replicates. 

Figure 2: RT-qPCR quantitation of virus titers in rootstocks from selected accessions 

inoculated with scions carrying mixed CBSV [TAZ-DES-01] and UCBSV  [TAZ-DES-02].  

infection. The Y-axis represents fold change of virus CP over MePP2A. Error bars 

represent mean ± standard deviation for 3 biological replicates. 

Figure 3: Virus detection in KBH 2006/18 and 60444 scions grafted on 60444 

rootstocks carrying mixed CBSVs and geminivirus infection at 8 wag. “+” and “-” indicate 

absence and presence of listed virus isolates in 60444 rootstocks. A. Multiplex PCR 

with EACMV-AC1 and PP2A primers, B. RT-PCR with CBSDDF2 and CBSDDR 

primers. 

Figure 4: RT-qPCR quantitation of CBSV [TAZ-DES-01] and UCBSV [TAZ-DES-02] 

(relative to MePP2A) from transfected protoplasts over time. Virus levels are expressed 

as fold change over control (non-PEG transformed) values to account for only 

successful transfection events. Error bars represent mean ± standard deviation for a 

minimum of 3 biological replicates. 

Supplementary Figure 1: Schematic representation of the top cleft grafting method 

Supplementary Figure 2: Diversity of CBSD symptoms on cassava accessions. A. 

Leaves from scions inoculated with CBSV [TAZ-DES-01] + UCBSV [TAZ-DES-02]. B. 

Leaves from scions inoculated with UCBSV [UG:Kab4-3:07] 
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Supplementary Figure 3: RT-qPCR quantitation of virus titers on 60444 rootstocks 

carrying mixed infection of CBSV [TAZ-DES-01] and UCBSV [TAZ-DES-02] and used 

for top grafting of 60444 (A), KBH 2006/18 (B) and KBH2006/26 (C) scions. The Y-axis 

represents mean fold change of virus CP over MePP2A. Error bars represent 

mean ± standard deviation for 3 biological replicates. 

Supplementary Figure 4: RT-qPCR quantitation of virus titers on AR34.2 rootstocks 

carrying UCBSV [UG:Kab4-3:07] and used for top grafting of 60444 (A), KBH 2006/18 

(B) and KBH2006/26 (C) scions. The Y-axis represents mean fold change of virus CP 

over MePP2A. Error bars represent mean ± standard deviation for 3 biological 

replicates. 

Supplementary Figure 5: RT-qPCR quantitation of virus inoculated plants: UCBSV 

[UG:Kab4-3:07] detection in scion inoculated by top grafting method on UCBSV 

[UG:Kab4-3:07] infected rootstocks.  

Supplementary Figure 6: CBSV [MZ:Nam1-1:07] detection at 8 and 16 wag in plants 

inoculated by side grafting method with CBSV [MZ:Nam1-1:07] and UCBSV [UG:Kab4-

3:07] infected scions. The Y-axis represents mean fold change of virus CP over 

MePP2A. Error bars represent mean ± standard deviation for 3 biological replicates. 

Supplementary Figure 7: qPCR quantitation of geminivirus titers in scions inoculated 

by top grafting method on geminivirus infected rootstocks. The Y-axis represents mean 

fold change of CMG AC1 over MePP2A. Error bars represent mean ± standard deviation 

for 3 biological replicates. 
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Supplementary Figure 8: Summary of the double grafting experiments. (A) The double 

grafting scheme. Foliar CBSD symptom observation on first and second scions: (B) with 

KBH 2006/18 first scions and (C) with 60444-hp9 first scions. “+” and “-” indicate the 

presence and absence of foliar CBSD symptoms for each biological replicate. 

Supplementary Figure 9: Detection of CBSV and UCBSV in stems and leaves of KBH 

2006/18, 60444-Hp 9 and 60444 scions. 

TABLES 

Table 1: CBSD resistance screening by top grafting with selected cassava varieties and 
elite breeding lines 

Table 2: Summary of all grafting experiments performed 

Supplementary Table 1: List of cassava elite breeding lines and varieties used in the 
study 

Supplementary Table 2: Stem propagation of scions inoculated by top grafting 
method. 

Supplementary Table 3: Stem propagation of rootstocks inoculated by top grafting of 
infected scions. 

Supplementary Table 4: List of primers. 
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