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Abstract 

In order to overcome some of the challenges that 
current, conventional computing faces, a large set of 
research is being performed into unconventional 
computing platforms, most often inspired by discoveries 
in neuroscience. This tends to result in Artificial Neural 
Networks, which are commonly an oversimplified version 
of their biological equivalent, where various aspects are 
being ignored, e.g. the aspect of time. This tends to 
prevent these networks from handling temporal sequences 
directly in the time domain. Hence, this research studies 
how the intrinsic timing of a neuron cell can be used to 
design a hierarchical neural network with feedback. The 
network is based on a simple Leaky Integrate and Fire 
RC-model for each neuron where the intrinsic timing is 
determined by the capacitor discharge. The results show 
that the model is able to differentiate between temporally 
different stimuli. Moreover, feedback allows the model to 
put lower level cells in a predictive state. Finally, the 
hierarchical model allows for higher-level cells to remain 
stable for a longer period and therefore allow for a better 
combination of sequential information at lower levels. 
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Introduction 

Many aspects of the human body that are controlled by the 
brain require some aspect of timing [1]. However, timing 
within the brain itself is not well understood to date [2], but is 
of capital importance in controlling the signalling between 
neurons, which is key in neural functioning [3]. Many 
scientists believe that timing in the brain lies within the 
neurons themselves [4] whereby the spikes not only carry 
information but would also provide the necessary triggers for 
the brain’s “clocking mechanism”.  

Additionally, in modelling the human brain Artificial 
Neural Networks (ANN) are currently used most regularly, 
but they often only handle spatial comparison, and do not 
allow for direct temporal comparisons [5]. This is due to the 
fact that cells within the ANN would trigger based on the 
number of active inputs at a certain discrete time step, without 
considering when these inputs occurred in time. This problem 
becomes increasingly more challenging in a hierarchical 
model where feedback from a higher level would need to 
interact with the input to the lower level and that with the 
correct timing. The use of correct timing is important to 
identify which neuron will fire next, based on the learnt 
information and/or to ensure a sustained activity in order to 

allow temporally close events to be associated together. 
 

Background 

One of the most important experiments in understanding the 
functions of the brain was performed by Hubel and Wiesel [6]. 
The experiment observed the reaction of a cat’s brain towards 
certain visual stimulus. While the experiments revealed that 
the group of neurons being probed were active when a 
specific stimulus was present, they also indicated that the rate 
of spiking was related to how close the detected stimuli was 
to the diagonal white light that these neurons reacted to. The 
observation was a strong indication that the signalling 
between neuron relies on time. 

The neuron is the main “computational block” that makes 
up the brain. It is a complex system with electrical as well as 
chemical reactions and is the main system that drives a 
human’s function [7]. Considering the complexity of each 
neuron, understanding the functioning of the brain as such is 
quite complicated, let alone replicating it artificially. While 
the brain inspires ANNs, they do not achieve the same as the 
brain itself. Quite a few models these days are based on a 
rather simplistic model of the neuron, which builds upon a 
simplistic sigmoid transfer function. One major shortcoming 
of this model lies in the lack of dynamism in time that the 
brain is known to exhibit. As a consequence, these ANNs are 
not able to handle sequences in time directly. This has given 
rise to more and more complex architectures that attempt to 
bring the ability to ANNs to handle sequential processing. 

Frameworks such as Recurrent Neural Networks (RNN) 
and Convolutional Neural Networks (CNN) have shown 
ability to process sequential data [8, 9]. To achieve this, 
layers of the network evolve at each time step and depend on 
the previous state of that layer. While this method has 
allowed the use of RNN and CNN in problems such as speech 
processing they are known to scale up badly, requiring 
enormous amounts of computing resources. The reason for 
this is that since ANNs are made of simplistic neuron models, 
in order to handle complex tasks, a more complex architecture 
is needed.  

Spiking Neural Network (SNN) is another type of neural 
network that tends to be based upon a more realistic model of 
the neuron. One of the major differences between SNN and 
ANN is the introduction of time information at each neuron 
level. This is based on a believe that precise relative timing is 
important in controlling information encoding and signalling 
between the neuron.  

The relative timing concept stands in contrast to the 
timing used in conventional computing which is built around 
a centralised configuration. There is however no evidence that 



 
the brain would use such a centralised clocking system and 
most recent studies infer the use of a more distributed timing 
system that is intrinsic to the neurons themselves akin to the 
concept used in the SNN model. Two schools of thought 
support this theory of intrinsic timing. Firstly, neuronal 
populations synchronise themselves with dedicated spike 
trains as discussed in [4]. Secondly, some researchers think 
that timing in the brain arises from non-dedicated neurons 
involved in processing of information itself [10]. The 
implication of the latter is that processing at neuron level is 
not only probabilistic spatially but also temporally.  

Hence to develop a model with intrinsic timing, there is a 
need to look at neuron models that provide an intrinsic timing 
within each neuron. Therefore, one of the models that is 
interesting in this context is the Leaky Integrate and Fire 
(LIF) model [11], as first proposed by Louis Lapique [12], 
who modelled the neuron as a Leaky RC circuit. In this 
context, the constant discharge of the capacitor, which 
follows an inverse exponential law, acts as an indication of 
elapsed time. 
 

Modelling the System 

A. Model Specifications 
The aim of this model is to provide a platform to test a 

relative timing approach that is intrinsic to the neuron. To 
implement the neuron network LTSpice was used because it 
provides a way to model and test the network in terms of 
electronic components as proposed in Lapique’s paper [12]. 
Additionally, LTSpice allows for a pseudo-parallel execution 
of the various components within the circuit. The ability to 
have a network with multiple neural cells running 
simultaneously is of significant importance and would have 
been more complicated to achieve when a low level 
programming language was chosen.  

 

 
Figure 1: Model Block Diagram 

Figure 1 shows the three level hierarchical network model 
that was designed to test the intrinsic neuron-timing model. 
Each cell is implemented as an identical LIF cell and sparsely 
connected to the other cells. Sensory input is provided using 6 
pulse generators, which are driven independently to test the 

various aspects of this network. Within the system learning 
takes place based on establishment of connection, therefore 
A1, A2 and A3 fires before B1, B2 and B3. Hence, cell A can 
be associated with cells B1, B2 and B3 so that when A fires 
due to lower level cells, it can put cells B1, B2 and B3 in a 
state that allows them to fire earlier in time.  
 
B. LIF Neuron Model 

The first step in this project was the development of a LIF 
neuron model using an RC circuit. Figure 2 shows the various 
sub block of this circuit.  

 

 
Figure 2: Neuron RC Circuit 

An input current pulse charges capacitor C1 to voltage V0. 
Following this spike, the initial potential across the capacitor 
decays exponentially. The relationship between time t is 
given by Equation 1 and is indicated by the instantaneous 
voltage Vm across the capacitor. 

t = RC ⋅ ln V)V*
 
 

(1) 

Subsequent spikes accumulate and increase the capacitor 
Voltage. When the voltage exceeds the threshold set by V2, 
which is 210 mV in this case, op-amp U2 triggers MOSFET 
M1 and the capacitor discharges across R3. The rate of 
discharge of the capacitor is determined by the value of 
R3||R1. To keep the discharge channel open long enough for 
the capacitor to discharge completely, another RC circuit 
consisting of R2 and C2 is used. The value of R2 and C2 are 
selected so that their RC constant is 5 times the RC constant 
of R1 and C1. As long as the discharge channel remains open, 
stimulus would not cause the membrane potential to increase. 
The period where the channel is open therefore acts as a 
refractory period. 
 
C. Connectivity between the Neurons 

A further step is needed to use the RC neuron model to 
implement the hierarchical network shown in Figure 1. 
Considering cell A in the network, there are multiple inputs to 
the cell and multiple outputs branching out from the cell. 
Multiple outputs imply that the output current spike would be 
divided and with an increasing number of outputs, the current 
would divide equally across each of the paths and therefore 
become insignificant. To maintain the simplicity of the 
network it is therefore important to ensure that the spike along 
any connection is of a similar level. To achieve this a Voltage 
Controlled Voltage Source (VCCS) was used at the output 
(Axon) of a cell.  Considering that the membrane potential 



 
capacitor is a charge device also implies that it is important to 
maintain the amount of charge contributed by each spike and 
arriving at a neuron is similar. This was also achieved by the 
use of a Voltage Controlled Current Source at the input end 
(Dendrite).  

Consequently, the complete unit cell of the network 
becomes the one shown in Figure 3. In order to ensure a 
constant voltage peak value across the VCCS, diode D3 is 
added.  

 

 
Figure 3: Neuron Cell 

In order to establish the response of this cell to input, 
Figure 4(a) shows a set of inputs, to which Figure 4(b) shows 
the evolution of the membrane potential, with the axon output 
shown in Figure 4(c). As can be noticed, the membrane 
potential decreases constantly as soon as it is above zero, 
giving an indication of the elapsed time. Hence, an output 
spike depends on the temporality of the input spikes as well 
as on a set threshold.  
 

 
(a) Input Spikes 

 
(b) Membrane Potential 

 
(c) Output Spike 

 
 
This threshold, along with the rate of the input spikes 

determines the firing rate of a neuron cell. A higher set 
threshold implies either a larger number and/or faster 
succession of spikes to make the particular neuron fire.  

Subsequently the neuron cell implemented was 
encapsulated into a higher level two terminal component. The 
terminals were the axon and the dendrite. The design of the 
neuron allowed multiple connections to the dendritic end and 
also allowed multiple fan-out from the axon. 
 

Results and Discussion 

The implemented network is tested for its ability to 
produce decisions in terms of spikes produced across the 
network.  The first test was performed to evaluate how the 
network is influenced when the period of the given pattern 
changes. Another test was performed to demonstrate how the 
network handles prediction via the formation of stable 
representation.  
 
A. Discrimination of Temporally Different Sequences 

Having established how the membrane potential brings an 
element of time intrinsic to each neuron, there is a need to see 
how different blocks use this intrinsic time to interact with 
each other. The time elapsed between input spikes is 
important as it determines the state of any particular cell at 
any particular point in time.  
 

 
Figure 5: The Hierarchical Neural Network 

To test the network, 6 independent current pulse sources 
are instantiated to ensure that the combination of all these 
source forms results in a certain stimulus. The first test 
consisted of observing how the firing pattern of the network 
changed with a variation in the time gap between the input 
pulse trains. Table 1 shows the spiking pattern of Level 3 Cell 
C and Level 2 Cells A and B spiking 3 times each. 
 

Sensory 
Input Period 

Variation 
(ms) 

Number of 
Spikes at A 

Number of 
Spikes at B 

Number of 
Spikes at C 

0 3 3 2 
+2 3 2 1 
+4 2 3 2 
+6 2 2 2 
+8 2 3 1 

+10 2 2 1 
+12 2 1 0 

Table 1: Spike Pattern with a decrease in input spike frequency 

Figure 4: Neuron Cell Characteristic 



 
The results in Table 1 indicate that the network responds 

to a variation in sensory input frequency. There is even a 
limited immunity to the variation of the input time based on 
the range of values for the variation of the period. As can be 
deduced from Hubel and Wiesel’s cat experiment [6], the rate 
variation tested here would be akin to a reduced spiking rate 
noticeable when the external visual stimulus was not close to 
what the group of probed neurons reacted to. This 
corresponds with the fact that at a higher level within the 
hierarchy a decrease of firing can be noticed when the 
stimulus rate at the sensory/input level decreases. 
 
B. Prediction and Stable Representation 

The use of hierarchy requires one to consider two 
additional items within the context of timing. As discussed in 
[13] and [14], prediction is the brain’s way to become more 
efficient. It also allows e.g. for attention shifting where it 
allows a person to shift their focus to something that is not 
usual. Prediction obviously takes place before the actual event, 
and in this network that is incorporated through feedback. 
This is due to the fact that through feedback a higher level 
cell can predict the normal order of how cells would fire in 
certain situations, which then feeds the lower level cells to 
ensure they fire earlier in time. Spikes being fed back to a 
lower level cell result in that cell having an increased 
membrane potential which allows them to fire earlier in time. 
In the context of the tested network this led to lower level 
cells firing 20 milliseconds earlier when compared to the 
absence of feedback. 

A second timing related aspect of hierarchical structures 
lies in stable representation, which covers the aspect of 
stability of the system over time. Within a hierarchical 
context the use of stability over time is more important for 
higher level cells which requires these levels to trigger less 
quickly in comparison to lower level cells. This is achieved 
by giving the higher levels a higher membrane potential, 
which in its turn then also determines how far in time new 
stimuli will get linked with the precedent active neuron. 
 

Conclusion and Future Work 

In this paper, a neural model with inherent timing is 
proposed where time is distributed throughout the network 
and is not centralised. The network can also deal with 
feedback and has a certain tolerance towards time variance on 
the input. From this model, one can derive that there is no 
need for centrally controlled timing or to incorporate 
time-stamps within the signals, but that the use of a 
distributed model where each cell has its own timing and 
cooperates with the other cells to achieve an overall aim is 
perfectly achievable.  

The use of LTSpice for the simulation allowed for rapid 
modelling of the system without requiring detailed low level 
developments, although it limits the ability to learn the 
system with actual data, for which a low level coding model 
will be developed next.  
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