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1 Introduction

It is well known that a few recent studies show that bio-economic modelling of the exploitation

of biological resources has gained importance. In fact, the techniques and issues associated

with the bio-economic exploitation of these resources have been discussed in detailed by Clark

[1, 2]. Let x(t) and y(t) denote, respectively, the densities of prey and predator, and a general

predator-prey system with harvesting can be written as




dx(t)
dt

= rx
(
1− x

K

)
− ϕ(x)y −H1(x),

dy(t)
dt

= −dy − sy2 + fϕ(x)y −H2(y),
(1.1)

where r is the biotic potential (or the intrinsic growth rate) of the prey in the absence of

the predator, K is the prey’s carrying capacity, d is the mortality rate and s is intra-specific

competitive rate of the predator, f stands for the efficiency rate with which captured prey

are converted to new predators, ϕ(x) represents the functional response of the predator and

satisfies the following assumption

ϕ(0) = 0, ϕ′(x) > 0 (x > 0),

and the functions H1(x), H2(y) are non-negative and represent the effects of harvesting

on the prey and predator, respectively. If H1(x) ≡ 0,H2(y) ≡ 0, the terms represent no

harvesting. If H1(x) and H2(y) are positive constants, the terms represent constant time

rates at which prey and predator are harvested from system (1.1), respectively. And if

H1(x) = H̄1x,H2(y) = H̄2y, the terms stand for that harvesting is proportional to the

densities of prey and predator, respectively.

Note that many prey spend much of their lives near or in refuges to avoid predators,

which include holes, crevices, thick vegetation, shells or tubes and so on. Since Gause et

al.[3] and Maynard Smith [4] introduced a quantity xR of the prey that involves refuges, the

concept of prey refuges has attracted the attention of ecologists and mathematicians because

it exists extensively in predator-prey communities. A lot of literatures showed that prey

refuges have significant effects on the population dynamic (see [5, 6, 7, 8, 9, 10, 11, 12] in

detail). Incorporating prey refuges in the above system, system (1.1) turns into




dx(t)
dt

= rx
(
1− x

K

)
− ϕ(x− xR)y −H1(x),

dy(t)
dt

= −dy − sy2 + fϕ(x− xR)y −H2(y).
(1.2)

In view of [5], the quantity xR can be considered from two points: the quantity of prey using

refuges is proportional to the density of prey, that is xR = mx (0 < m < 1); the quantity of

prey using refuges is a constant number, that is xR = R.
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In this paper, with xR = mx and proportional harvesting, we consider the following

predator-prey system




dx(t)
dt

= rx
(
1− x

K

)
− c(1−m)xy − q1E1x,

dy(t)
dt

= −dy − d1y
2 + e(1−m)xy − q2E2y,

(1.3)

where c means the decreasing rate of prey due to presence of predator and e = cf . E1, E2 and

q1, q2 stand for the harvesting efforts and the catchability coefficients of prey and predator,

respectively, and the catch-rate functions q1E1x1 and q2E2x2 are satisfied CPUE (catch-per-

unit-effort) hypothesis [1].

As we know, harvesting has an important influence on the dynamic evolution of a pop-

ulation. Researchers treat the problem of harvesting policy in managing natural resources

as a dominant theme in ecology owing to its significance. Optimal harvesting problem have

been studied in environmental and renewable resource economics. A lot of good work on this

topic is emerged in recent years (see [13, 14, 15, 16, 17, 18, 19] in detail). Song and Chen

[15] researched a competitive population model of two species with harvesting. The study of

one prey one predator harvesting model with imprecise biological parameters was presented

by Pal et al. in [17]. Liu and Bai [19] gained the optimal harvesting policy for a stochastic

predator-prey model. A problem on optimal harvesting policy is also discussed in this article.

On the other hand, the parameters in system (1.3) are always accurate, however, this

assumption is impossible due to the lack of information, lack of data, mistakes in the mea-

surement process and determining the initial conditions. Therefore, the model with imprecise

parameters are more realistic and significant in nature. Stochastic approach, fuzzy approach,

fuzzy-stochastic approach, etc. are useful approaches in managing the models with imprecise

parameters, see [17, 18, 19] for example. In this contribution, we prepare to discuss imprecise

parameters using fuzzy approach. To this end, we firstly give the following two definitions.

Definition 1.1 (see [17]). (Interval number) An interval number A is represented by closed

interval [al, au] and defined by A = [al, au] = {x|al ≤ x ≤ au, x ∈ R}, where R is the set of

real numbers and al, au are the left and right limit of the interval number respectively. Also

every real number can be represented by the interval number [a, a], for all a ∈ R.

Definition 1.2 (see [17]). (Interval-valued function) Let a > 0, b > 0 and consider the

interval [a, b]. From a mathematical point of view, any real number can be represented on a

line. Similarly, we can represent an interval by a function. If the interval is of the form [a, b],

the interval-valued function is taken as h(k) = a(1−k)bk for k ∈ [0, 1].

For any two interval numbers A = [al, au] and B = [bl, bu], we define the following arith-

metic operations on interval valued functions:

Addition: A + B = [al, au] + [bl, bu] = [al + bl, au + bu] if al + bl > 0. The interval-valued

function for the interval A + B is defined as h(k) = (aL)(1−k)(aU )k where aL = al + bl and
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aU = au + bu.

Subtraction: A−B = [al, au]− [bl, bu] = [al−bu, au−bl] if al−bu > 0. The interval-valued

function for the interval A − B is defined h(k) = (bL)(1−k)(bU )k where bL = al − bu and

bU = au − bl.

Scalar multiplication:

αA = α[al, au] =

{
[αal, αau] if α ≥ 0

[αau, αal] if α < 0
if al > 0.

The interval-valued function interval αA is defined as

h(k) = (vL)(1−k)(vU )k if α ≥ 0 and h(k) = −(wU )(1−k)(wL)k if α < 0,

where vL = αal, vU = αau, wU = |α|au and wL = |α|al.

Considering impreciseness of the parameters in system (1.3), we denote r̄, c̄, d̄, s̄ and ē by

the interval numbers of r, c, d, s and e, respectively. Then, system (1.3) can be expressed as




dx(t)
dt

= r̄x
(
1− x

K

)
− c̄(1−m)xy − q1E1x,

dy(t)
dt

= −d̄y − s̄y2 + ē(1−m)xy − q2E2y,
(1.4)

where r̄ ∈ [rl, ru], c̄ ∈ [cl, cu], d̄ ∈ [dl, du], s̄ ∈ [sl, su], ē ∈ [el, eu] and rl > 0, cl > 0, dl > 0, sl >

0, el > 0.

Motivated by Theorem 1 in [17], we can easily proof that system (1.4) is equivalent to the

following system




dx(t; k)
dt

= (rl)1−k(ru)kx− (ru)1−k(rl)k x2

K
− (cu)1−k(cl)k(1−m)xy − q1E1x,

dy(t; k)
dt

= −(du)1−k(dl)ky − (su)1−k(sl)ky2 + (el)1−k(eu)k(1−m)xy − q2E2y.
(1.5)

If we neglect the roles of the intra-specific competitive rates of the prey and predator, and

the prey refuges, then system (1.5) can be reduced to equations (7) and (8) in [17]. In this

paper, some results which are different from that in [17] are obtained.

The rest of this paper is organized as follows. In the next section, the existence and

stability of the equilibria of system (1.5) are analyzed in detail. Also, the existence of bionomic

equilibria of system (1.5) is discussed in Section 3. Furthermore, we have studied the optimal

harvesting policy for system (1.5) in Section 4. Finally, in Section 5, we give three numerical

examples and two tables to substantiate our analytical results.

2 Existence and stability of equilibria

In this section, the existence and stability of equilibria of system (1.5) are investigated.
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After an algebraic calculation, we derive the equilibria of system (1.5) as follows

(i) Trivial equilibrium: A0 = (0, 0).

(ii) Axial equilibrium: A1 =
(

K[(rl)1−k(ru)k−q1E1]
(ru)1−k(rl)k , 0

)
exists if (rl)1−k(ru)k − q1E1 > 0.

(iii) Interior Equilibrium: A∗ = (x∗, y∗), where

x∗ =
K(su)1−k(sl)k[(rl)1−k(ru)k − q1E1] + K(cu)1−k(cl)k(1−m)[(du)1−k(dl)k + q2E2]

(ru)1−k(rl)k(su)1−k(sl)k + K(cu)1−k(cl)k(el)1−k(eu)k(1−m)2
,

y∗ =
(el)1−k(eu)k(1−m)x∗ − [(du)1−k(dl)k + q2E2]

(su)1−k(sl)k
,

(2.1)

exists if

(el)1−k(eu)k(1−m)x∗ > (du)1−k(dl)k + q2E2. (2.2)

Now we begin to study the local stability of equilibria A0, A1 and A∗, respectively.

Theorem 2.1. The following conclusions are satisfied:

(i) The trivial equilibrium A0 is locally asymptotically stable if (rl)1−k(ru)k < q1E1;

(ii) The axial equilibrium A1 exists and is locally asymptotically stable if

(rl)1−k(ru)k > q1E1

and

K(el)1−k(eu)k(1−m)[(rl)1−k(ru)k − q1E1] < (ru)1−k(rl)k[(du)1−k(dl)k + q2E2],

while the trivial equilibrium A0 becomes unstable;

(iii) The interior equilibrium A∗ exists and is locally asymptotically stable if

(el)1−k(eu)k(1−m)x∗ > (du)1−k(dl)k + q2E2,

where x∗ is defined in (2.1).

Proof. The Jacobian matrix of system (1.5) is given by

M =

(
[(rl)1−k(ru)k − q1E1]− 2(ru)1−k(rl)k x

K − (cu)1−k(cl)k(1−m)y

(el)1−k(eu)k(1−m)y

−(cu)1−k(cl)k(1−m)x

−[(du)1−k(dl)k + q2E2]− 2(su)1−k(sl)ky + (el)1−k(eu)k(1−m)x

)
.

(2.3)

The Jacobian matrix M0 = M(0, 0) of the system (1.5) at A0 is

M0 =

(
(rl)1−k(ru)k − q1E1 0

0 −(du)1−k(dl)k − q2E2

)
. (2.4)

The characteristic equation of the above matrix can be expressed as det(M0 − λI) = 0 (I

represents an identity matrix), then

λ1 = (rl)1−k(ru)k − q1E1, λ2 = −(du)1−k(dl)k − q2E2. (2.5)
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Hence, A0 is a stable node when (rl)1−k(ru)k < q1E1; A0 is a saddle point when (rl)1−k(ru)k >

q1E1.

The Jacobian matrix M1 = M(K[(rl)1−k(ru)k−q1E1]
(ru)1−k(rl)k , 0) of the system (1.5) at A1 is

M1 =

(
−[(rl)1−k(ru)k − q1E1]

0

−K(cu)1−k(cl)k(1−m)[(rl)1−k(ru)k − q1E1]
(ru)1−k(rl)k

−[(du)1−k(dl)k + q2E2] +
K(el)1−k(eu)k(1−m)[(rl)1−k(ru)k − q1E1]

(ru)1−k(rl)k


 .

(2.6)

The characteristic equation of the above matrix is written as det(M1 − λI) = 0, then

λ1 = −[(rl)1−k(ru)k − q1E1],

λ2 = −[(du)1−k(dl)k + q2E2] +
K(el)1−k(eu)k(1−m)[(rl)1−k(ru)k − q1E1]

(ru)1−k(rl)k
.

(2.7)

We know that if (rl)1−k(ru)k > q1E1, then A1 exists. So A1 is a stable node when

K(el)1−k(eu)k(1−m)[(rl)1−k(ru)k − q1E1] < (ru)1−k(rl)k[(du)1−k(dl)k + q2E2], (2.8)

and A1 is a saddle when

K(el)1−k(eu)k(1−m)[(rl)1−k(ru)k − q1E1] > (ru)1−k(rl)k[(du)1−k(dl)k + q2E2]. (2.9)

The Jacobian matrix M∗ of system (1.5) at A∗ is

M∗ =


 −(ru)1−k(rl)k x∗

K
−(cu)1−k(cl)k(1−m)x∗

(el)1−k(eu)k(1−m)y∗ −(su)1−k(sl)ky∗


 . (2.10)

It is easy to see that

det(M∗) =
[(ru)1−k(rl)k(su)1−k(sl)k

K
+ (cu)1−k(cl)k(el)1−k(eu)k(1−m)2

]
x∗y∗ > 0,

(2.11)

and

trace(M∗) = −(ru)1−k(rl)k x∗

K
− (su)1−k(sl)ky∗ < 0. (2.12)

So if the condition in (2.2) holds, then the interior equilibrium A∗ of system (1.5) is locally

asymptotically stable.

3 Bionomic equilibria

The term bionomic equilibrium is a combination of the concepts of biological equilibrium

and economic equilibrium. It is known that the biological equilibrium is achieved by dx
dt =
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dy
dt = 0, which is discussed in Section 2. And the economic equilibrium is obtained if TR (the

total revenue obtained by selling the harvested biomass) equals TC (the total cost for the

effort devoted to harvesting). In this section, the bionomic equilibria of system (1.5) will be

discussed in detail. First of all, we denote c1, c2 the fishing cost per unit effort for the prey

x and the predator y, respectively. p1, p2 measure the price per unit biomass of the prey x

and the predator y, respectively.

The net economic rent or net revenue (N) is expressed as

N = (p1q1x− c1)E1 + (p2q2y − c2)E2 = N1 + N2, (3.1)

where

N1 = (p1q1x− c1)E1, N2 = (p2q2y − c2)E2. (3.2)

Here, N1 and N2 represent the net revenues for the prey x and the predator y, respectively.

Then we obtain the bionomic equilibria (x∞, y∞, E1∞, E2∞) of system (1.5) by the following

equations

(rl)1−k(ru)kx− (ru)1−k(rl)k x2

K − (cu)1−k(cl)k(1−m)xy − q1E1x = 0,

−(du)1−k(dl)ky − (su)1−k(sl)ky2 + (el)1−k(eu)k(1−m)xy − q2E2y = 0,

(p1q1x− c1)E1 + (p2q2y − c2)E2 = 0.

(3.3)

From the following four cases, we can obtain the bionomic equilibria of system (1.5).

Case I. If c1 > p1q1x, that is, the cost is more than the revenue for the prey x, so fishing of

the prey x is not suitable and should be stopped. Then only the predator y fishing remains

possible. Hence E1 = 0 and c2 < p2q2y, we calculate that y∞ = c2
p2q2

and (x∞, E2∞) will be

any point on the line

(el)1−k(eu)k(1−m)x− q2E2 = (du)1−k(dl)k + (su)1−k(sl)k c2

p2q2

in the first quadrant of the xE2-plane.

Case II. If c2 > p2q2y, that is, the cost is more than the revenue for the predator y, thus

fishing of the predator y is not practicable and should be stopped. Then only the prey x

fishing remains operational. Therefore E2 = 0 and c1 < p1q1x, it is easy to see that x∞ = c1
p1q1

and (y∞, E1∞) will be any point on the line

(cu)1−k(cl)k(1−m)y + q1E1 = (rl)1−k(ru)k − c1(ru)1−k(rl)k

Kp1q1

in the first quadrant of the yE1-plane if (rl)1−k(ru)k > c1(ru)1−k(rl)k

Kp1q1
.

Case III. If c1 > p1q1x and c2 > p2q2y, that is to say, the costs of the prey x and the predator

y are more than the revenue, so we should stop harvesting both the prey x and the predator

y i.e., the whole system will be closed.
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Case IV. If c1 < p1q1x and c2 < p2q2y, then fishing of both the prey x and the predator y

will be in operation. One yields that x∞ = c1
p1q1

and y∞ = c2
p2q2

. Substituting the values of

x∞ and y∞ into the first and second equations of (3.3) we have

E1∞ =
Kp1p2q1q2(rl)1−k(ru)k − c1p2q2(ru)1−k(rl)k −Kc2p1q1(cu)1−k(cl)k(1−m)

Kp1p2q2
1q2

(3.4)

and

E2∞ =
c1p2q2(el)1−k(eu)k(1−m)− p1p2q1q2(du)1−k(dl)k − c2p1q1(su)1−k(sl)k

p1p2q1q2
2

. (3.5)

We easily know that E1∞ > 0 and E2∞ > 0 provided

Kp1p2q1q2(rl)1−k(ru)k > c1p2q2(ru)1−k(rl)k + Kc2p1q1(cu)1−k(cl)k(1−m) (3.6)

and

c1p2q2(el)1−k(eu)k(1−m) > p1p2q1q2(du)1−k(dl)k + c2p1q1(su)1−k(sl)k. (3.7)

Therefore, from conditions (3.6) and (3.7), there exists the nontrivial bionomic equilibrium

(x∞, y∞, E1∞, E2∞).

Based on the above discussion we have the following Theorem 3.1.

Theorem 3.1. The following conclusions are satisfied:

(i) The trivial bionomic equilibrium (x∞, y∞, 0, E2∞) exists, in which y∞ = c2
p2q2

and

(x∞, E2∞) will be any point on the line

(el)1−k(eu)k(1−m)x− q2E2 = (du)1−k(dl)k + (su)1−k(sl)k c2

p2q2

in the first quadrant of the xE2-plane;

(ii) The trivial bionomic equilibrium (x∞, y∞, E1∞, 0) exists if (rl)1−k(ru)k > c1(ru)1−k(rl)k

Kp1q1
,

in which x∞ = c1
p1q1

and (y∞, E1∞) will be any point on the line

(cu)1−k(cl)k(1−m)y + q1E1 = (rl)1−k(ru)k − c1(ru)1−k(rl)k

Kp1q1

in the first quadrant of the yE1-plane;

(iii) The nontrivial bionomic equilibrium (x∞, y∞, E1∞, E2∞) exists if (3.6) and (3.7) hold,

in which x∞ = c1
p1q1

, y∞ = c2
p2q2

, and E1∞ and E2∞ are defined in (3.4) and (3.5), respectively.

4 Optimal harvesting policy

In this section, to achieve the optimal harvesting policy of system (1.5), that is, to maximize

the following objective function J of system (1.5), optimal control theory provides the correct

approach. The form of J is expressed as follows

J(E1, E2) =
∫ ∞

0
e−δt[(p1q1x− c1)E1(t) + (p2q2y − c2)E2(t)]dt, (4.1)
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which subject to the state equation (1.5) by invoking Pontryagin’s maximal principle [20] and

the control variables Ei(t) are subjected to 0 ≤ Ei(t) ≤ Emax
i , i = 1, 2, and δ represents the

instantaneous annual rate of discount.

We firstly construct the Hamiltonian as follows

H = e−δt[(p1q1x− c1)E1 + (p2q2y − c2)E2] + λ1[(rl)1−k(ru)kx− (ru)1−k(rl)k x2

K
−(cu)1−k(cl)k(1−m)xy − q1E1x] + λ2[−(du)1−k(dl)ky − (su)1−k(sl)ky2

+(el)1−k(eu)k(1−m)xy − q2E2y],

(4.2)

where λ1 and λ2 represent the adjoint variables. A simple computation shows that

∂H

∂E1
= e−δt(p1q1x− c1)− λ1q1x = µ1(t),

∂H

∂E2
= e−δt(p2q2y − c2)− λ2q2y = µ2(t). (4.3)

Obviously, the optimal control Ei(t)(i = 1, 2) must satisfy the following conditions

Ei(t) =

{
Emax

i if µi(t) > 0,

0 if µi(t) < 0.
(4.4)

The functions µi(t)(i = 1, 2) are called switching functions as a result of that µi(t) lead Ei(t)

to switch between level 0 and Emax
i . It follows from the sign of the switching functions µi(t)

that the optimal control Ei(t) are bang-bang switchings from one extreme point to other

one. But if µi(t) = 0, the Hamiltonian function H will be independent of the control variable

Ei(t) and the optimal control can not be determined by the above procedure. Then they

become singular controls E∗
i (t), 0 < E∗

i (t) < Emax
i , i = 1, 2. Hence the corresponding optimal

harvesting policy should be

Ei(t) =





Emax
i if µi(t) > 0,

0 if µi(t) < 0,

E∗
i if µi(t) = 0,

for i = 1, 2. (4.5)

When µi(t) = 0 (i = 1, 2), from (4.3) we derive that

λ1 = e−δt
(
p1 − c1

q1x

)
, λ2 = e−δt

(
p2 − c2

q2y

)
. (4.6)

By Pontryagin’s maximum principle [20], the adjoint equations are

dλ1

dt
= −∂H

∂x
,

dλ2

dt
= −∂H

∂y
. (4.7)

It follows from the first equation of (4.7) and (4.2) that

dλ1

dt
= −e−δtp1q1E1 − λ1[(rl)1−k(ru)k − 2(ru)1−k(rl)k x

K
− (cu)1−k(cl)k(1−m)y − q1E1]− λ2(el)1−k(eu)k(1−m)y,

(4.8)

9



Preprint

which, by equilibrium conditions, becomes

dλ1

dt
= −e−δtp1q1E1 + λ1(ru)1−k(rl)k x

K
− λ2(el)1−k(eu)k(1−m)y. (4.9)

Substituting (4.6) into (4.9), one has

dλ1

dt
= −e−δtp1q1E1 + e−δt(ru)1−k(rl)k x

K

(
p1 − c1

q1x

)

−e−δt(el)1−k(eu)k(1−m)y
(
p2 − c2

q2y

)
.

(4.10)

On integration of (4.10) we have

λ1 =
1
δ
e−δt

[
p1q1E1 − (ru)1−k(rl)k x

K

(
p1 − c1

q1x

)
+ (el)1−k(eu)k(1−m)y

(
p2 − c2

q2y

)]
, (4.11)

in which, we neglect the constant of integration in order to guarantee shadow price λ1e
δt of

the prey x is bounded. Similarly, we obtain that

λ2 =
1
δ
e−δt

[
p2q2E2 − (cu)1−k(cl)k(1−m)x

(
p1 − c1

q1x

)
− (su)1−k(sl)ky

(
p2 − c2

q2y

)]
. (4.12)

According to the first equation of (4.6) and (4.11), one yields that

e−δt
(
p1 − c1

q1x

)
=

1
δ
e−δt

[
p1q1E1 − (ru)1−k(rl)k x

K

(
p1 − c1

q1x

)

+(el)1−k(eu)k(1−m)y
(
p2 − c2

q2y

)]
.

(4.13)

Analogously, from the second equation of (4.6) and (4.12) that

e−δt
(
p2 − c2

q2y

)
=

1
δ
e−δt

[
p2q2E2 − (cu)1−k(cl)k(1−m)x

(
p1 − c1

q1x

)

−(su)1−k(sl)ky
(
p2 − c2

q2y

)]
.

(4.14)

Therefore, we achieve the optimal harvesting efforts E1 and E2 as follows

E1 =

[
δ + (ru)1−k(rl)k x

K

](
p1 − c1

q1x

)
− (el)1−k(eu)k(1−m)y

(
p2 − c2

q2y

)

p1q1
(4.15)

and

E2 =

[
δ + (su)1−k(sl)ky

](
p2 − c2

q2y

)
+ (cu)1−k(cl)k(1−m)x

(
p1 − c1

q1x

)

p2q2
. (4.16)

Together with (4.15) and (4.16), solving steady state equations we gain the optimal equilib-

rium (xδ, yδ) and optimal harvesting effort (E1δ, E2δ).
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5 Numerical simulations and discussions

In this section, we give three numerical examples and two tables to illustrate the feasibility

of our analytical results.

Example 5.1. Consider the following system with imprecise parameters:




dx

dt
= (2.0)1−k(2.4)kx− (2.4)1−k(2.0)k x2

5
− (1.5)1−k(1.2)k(1− 0.1)xy − q1E1x,

dy

dt
= −(0.5)1−k(0.3)ky − (0.08)1−k(0.06)ky2 + (0.6)1−k(0.8)k(1− 0.1)xy − q2E2y.

(5.1)

We set k = 0, q1 = 0.2, q2 = 0.2, E1 = 15 and E2 = 10, it is easy to verify that

(rl)1−k(ru)k − q1E1 ≈ −1 < 0. (5.2)

Then consider (i) in Theorem 2.1, the trivial equilibrium A0 = (0, 0) is locally asymptotically

stable (see Figure 1). These figures show that both the prey x and the predator y decrease

to zero, that is, system (5.1) approaches to the trivial equilibrium A0.

Assign k = 0, q1 = 0.2, q2 = 0.2, E1 = 5 and E2 = 15, a simple computation shows that

(rl)1−k(ru)k − q1E1 ≈ 1 > 0,

K(el)1−k(eu)k(1−m)[(rl)1−k(ru)k − q1E1]− (ru)1−k(rl)k[(du)1−k(dl)k + q2E2] ≈ −5.7 < 0,

(5.3)

which, together with (ii) in Theorem 2.1, means that the axial equilibrium A1 = (2.0833, 0)

is locally asymptotically stable (see Figure 2). From the figures, the prey x exists, however,

the predator y goes to extinct, which is equal to that system (5.1) approaches to the axial

equilibrium A1.

Considering k = 0, q1 = 0.2, q2 = 0.2, E1 = 5 and E2 = 2, it derives that

(el)1−k(eu)k(1−m)x∗ − [(du)1−k(dl)k + q2E2] ≈ 0.0113 > 0. (5.4)

According to (iii) in Theorem 2.1, we easily know that the axial equilibrium A2 = (1.6875, 0.14

07) is locally asymptotically stable (see Figure 3). In these figures, both the prey x and the

predator y exist, i.e. system (5.1) approaches to the interior equilibrium A∗.

On the other hand, from Figures 4-6, we consider the effect of imprecise parameters.

In Figure 4, assign q1 = 0.2, q2 = 0.2, E1 = 15 and E2 = 10, it implies that the trivial

equilibrium A0 of system (5.1) always exists for different values of k (k ∈ [0, 1]), and the

values of the prey x and the predator y are invariant in zero with increasing k. In Figure 5,

set q1 = 0.2, q2 = 0.2, E1 = 5 and E2 = 15, we can see that the axial equilibrium A1 of system

(5.1) exists for all k ∈ [0, 1], and the values of the prey x is increasing and the predator y

is invariant in zero with increasing k. For q1 = 0.2, q2 = 0.2, E1 = 5 and E2 = 2, Figure 6

shows that the interior equilibrium A∗ of system (5.1) always exists for different values of

11



Preprint

k (k ∈ [0, 1]), and the values of the prey x is decreasing but the predator y is increasing with

increasing k.

The following example is used to illustrate the existence of the nontrivial bionomic equi-

librium.

Example 5.2. Consider the following system with imprecise parameters:




dx

dt
= (1.5)1−k(1.6)kx− (1.6)1−k(1.5)k x2

10
− (0.3)1−k(0.25)k(1− 0.1)xy − q1E1x,

dy

dt
= −(0.5)1−k(0.45)ky − (0.2)1−k(0.15)ky2 + (1.3)1−k(1.35)k(1− 0.1)xy − q2E2y,

(5.5)

with q1 = 0.92, q2 = 0.95, p1 = 20, p2 = 25, c1 = 30, c2 = 15 and k ∈ [0, 1]. A simple

computation shows that

Kp1p2q1q2(rl)1−k(ru)k − c1p2q2(ru)1−k(rl)k −Kc2p1q1(cu)1−k(cl)k(1−m) ≥ 4669.8000 > 0

(5.6)

and

c1p2q2(el)1−k(eu)k(1−m)−p1p2q1q2(du)1−k(dl)k− c2p1q1(su)1−k(sl)k ≥ 559.9250 > 0. (5.7)

According to (iii) in Theorem 3.1, system (5.5) exists the nontrivial bionomic equilibria for

different values of k. In Table 5.1, we show the nontrivial bionomic equilibria (x∞, y∞, E1∞,

E2∞).

Table 5.1. Nontrivial bionomic equilibria for different k.

k Nontrivial bionomic equilibrium (x∞, y∞, E1∞, E2∞)

0 (1.6304, 0.6316, 1.1615, 1.3487)

0.2 (1.6304, 0.6316, 1.1930, 1.3824)

0.5 (1.6304, 0.6316, 1.2402, 1.4318)

0.8 (1.6304, 0.6316, 1.2873, 1.4802)

1 (1.6304, 0.6316, 1.3188, 1.5118)

From Table 5.1, we can see that x∞ and y∞ are invariable with increasing k, and E1∞ and

E2∞ are increasing as k increases.

In order to find the optimal equilibrium and optimal harvesting effort, we consider the

following example.

Example 5.3. Consider the following system with imprecise parameters:




dx

dt
= (1.8)1−k(1.85)kx− (1.85)1−k(1.8)k x2

10
− (2.5)1−k(2.45)k(1− 0.1)xy − q1E1x,

dy

dt
= −(0.015)1−k(0.012)ky − (0.01)1−k(0.008)ky2 + (0.2)1−k(0.21)k(1− 0.1)xy − q2E2y,

(5.8)
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with q1 = 0.95, q2 = 0.85, p1 = 30, p2 = 25, c1 = 25, c2 = 15, δ = 0.001 and k ∈ [0, 1]. So, for

different values of k, the optimal equilibria (xδ, yδ) and optimal harvesting efforts (E1δ, E2δ)

are displayed in Table 5.2.

Table 5.2. Optimal equilibria and optimal harvesting efforts for different k.

k Optimal equilibrium (xδ, yδ) Optimal harvesting effort (E1δ, E2δ)

0 (0.9310, 0.7199) (0.0083, 0.1711)

0.2 (0.9322, 0.7281) (0.0072, 0.1743)

0.5 (0.9340, 0.7405) (0.0054, 0.1791)

0.8 (0.9359, 0.7530) (0.0035, 0.1840)

1 (0.9371, 0.7616) (0.0022, 0.1871)

According to Table 5.2, it is easy to see that the optimal equilibria are increasing with

increasing k. Also, the optimal harvesting efforts of the predator y are increasing as k

increases, however, the optimal harvesting efforts of the prey x are decreasing as k increases.

6 Conclusions

In this paper, we study a predator-prey model with a prey refuge under harvesting. As far as

we know, most ecological models with precise biological parameters are investigated, however,

the accurate estimate in our real world can not come true easily. So the method of interval-

valued function is applied in our system for solving the problem about imprecise parameters.

And then we analyze the sufficient conditions for the existence and stability of equilibria of

our imprecise harvesting system. All possible bionomic equilibria of the system are obtained

in detail. We also discuss the optimal harvesting policy by applying Pontryagin’s maximal

principle, and the optimal equilibrium and optimal harvesting effort can be derived. In our

opinion, the factor on the impreciseness of parameters for many bioeconomic models can not

be ignored, and the fuzzy approach is good for handling such type of model in practice, so

many existing models of biomathematics can be considered under impreciseness by the above

approach. On the other hand, for the above model with a constant prey refuge, or with other

types of functional response, we leave it for later discussion.
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Figure legends

Figure 1. (a) Time-series of the prey x and the predator y with k = 0, q1 = 0.2, q2 = 0.2, E1 = 15, E2 = 10

and initial values x(0) = 0.25 and y(0) = 0.15 for t ∈ [0, 50]. (b) Phase portrait of x and y with k = 0, q1 =

0.2, q2 = 0.2, E1 = 15, E2 = 10 and different initial values for t ∈ [0, 50].

Figure 2. (a) Time-series of the prey x and the predator y with k = 0, q1 = 0.2, q2 = 0.2, E1 = 5, E2 = 15

and initial values x(0) = 0.25 and y(0) = 0.15 for t ∈ [0, 50]. (b) Phase portrait of x and y with k = 0, q1 =

0.2, q2 = 0.2, E1 = 5, E2 = 15 and different initial values for t ∈ [0, 50].

Figure 3. (a) Time-series of the prey x and the predator y with k = 0, q1 = 0.2, q2 = 0.2, E1 = 5, E2 = 2

and initial values x(0) = 0.25 and y(0) = 0.15 for t ∈ [0, 50]. (b) Phase portrait of x and y with k = 0, q1 =

0.2, q2 = 0.2, E1 = 5, E2 = 2 and different initial values for t ∈ [0, 50].

Figure 4. (a)-(e) Time-series of the prey x and the predator y with q1 = 0.2, q2 = 0.2, E1 = 15, E2 = 10 and

initial values (0.25, 0.15) for k = 0, k = 0.2, k = 0.5, k = 0.8 and k = 1, respectively, t ∈ [0, 50]. (f) Dynamical

behavior of the prey x and the predator y with respect to k and the values of other parameters are the same

to the above values.

Figure 5. (a)-(e) Time-series of the prey x and the predator y with q1 = 0.2, q2 = 0.2, E1 = 5, E2 = 15 and

initial values (0.25, 0.15) for k = 0, k = 0.2, k = 0.5, k = 0.8 and k = 1, respectively, t ∈ [0, 50]. (f) Dynamical

behavior of the prey x and the predator y with respect to k and the values of other parameters are the same

to the above values.

Figure 6. (a)-(e) Time-series of the prey x and the predator y with q1 = 0.2, q2 = 0.2, E1 = 5, E2 = 2 and

initial values (0.25, 0.15) for k = 0, k = 0.2, k = 0.5, k = 0.8 and k = 1, respectively, t ∈ [0, 50]. (f) Dynamical

behavior of the prey x and the predator y with respect to k and the values of other parameters are the same

to the above values.
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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