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Highlights

• We developed a discrete pest growth model with evolution of pesticide resistance.

• Two threshold conditions for extinction of pest population have been provided.

• The optimal pesticide switching times and related key factors have been discussed.

• The effects of dynamic complexity of pest population on its control were studied.
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Abstract: Pest resistance to pesticides is usually managed by switching between

different types of pesticides. The optimal switching time, which depends on the

dynamics of the pest population and on the evolution of the pesticide resistance,

is critical. Here we address how the dynamic complexity of the pest population,

the development of resistance and the spraying frequency of pulsed chemical control

affect optimal switching strategies given different control aims. To do this, we de-

veloped novel discrete pest population growth models with both impulsive chemical

control and the evolution of pesticide resistance. Strong and weak threshold condi-

tions which guarantee the extinction of the pest population, based on the threshold

values of the analytical formula for the optimal switching time, were derived. Fur-

ther, we addressed switching strategies in the light of chosen economic injury levels.

Moreover, the effects of the complex dynamical behaviour of the pest population

on the pesticide switching times were also studied. The pesticide application pe-

riod, the evolution of pesticide resistance and the dynamic complexity of the pest

population may result in complex outbreak patterns, with consequent effects on the

pesticide switching strategies.

Keywords: Discrete model; Pest resistance; Pesticide switching; Pesticide appli-

cation period; Threshold condition; Dynamic complexity
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1 Introduction1

Agricultural pests are usually controlled with pesticides, a preferred method because of2

its efficiency. However, because of the long-term use of pesticides more than 500 species3

of targeted pests have developed resistance to them since 1945 [1, 2, 3]. Consequently,4

farmers’ crop losses to pests are increasing, even though more pesticides are being used.5

For example, in the USA, farmers lost 7% of their crops to pest damage in the 1940s, but6

the percentage lost had increased to 13% by the 1980s [4].7

Therefore, how to reduce or delay pest resistance to pesticides and how to use pesticides8

reasonably are important questions. Based on the frequency and dosage of pesticide9

spraying and the genetics of pest resistance, many proposals have been suggested to deal10

with the problem including rotation or switching between different kinds of pesticides [5],11

adopting an integrated pest management (IPM) strategy [6, 7, 8, 9, 10] and using other12

control techniques without pesticides such as leaving untreated refuges where susceptible13

pests can survive [5].14

The forecasting of a pests population density, which can be estimated by mathematical15

modelling of growth trends, is an important step in the design of a pest control strategy.16

For example, if the density of a pest population with overlapping generations is very large,17

it can be treated as continuous growth. Therefore, many pest population growth trends18

and studies of pest control strategies have been modelled using continuous mathematical19

models [11, 12, 13, 14, 15, 16, 17].20

Recently, we also modelled pest resistance with a continuous mathematical model and21

studied the optimal time for switching pesticides under three different switching strategies22

[18]. Moreover, we introduced the development of pesticide resistance into pest-natural23

enemy interaction models in which the optimal numbers of natural enemies to be released24

were studied in relation to the development of pest resistance [19, 20].25

In the real world, the growth of most pest populations is not continuous, especially for26

those with non-overlapping generations, so they cannot be assumed to have continuous27

growth. Thus, for such pest populations and for the genetics of pest resistance, discrete28

mathematical models are more realistic.29

Given the above, questions that arise are (1) how to model the evolution of pest re-30

sistance to a pesticide when the pest population growth is discontinuous? (2) How best31

to switch pesticides when aiming to eradicate a pest population? And(3)in which pest32

generation will pesticide switching be optimal?33

To address the above questions, we developed novel discrete pest population models34

with impulsive chemical control and the evolution of pest resistance to pesticides. The35

main purpose was to address how the dynamic complexity of a pest population, develop-36
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ment of pesticide resistance and pulsed chemical control and its spraying frequency affect37

optimal switching strategies, given different control aims. We have derived strong and38

weak threshold conditions which guarantee the extinction of the pest population, as well39

as an analytical formula for the optimal switching time. Further, we addressed switching40

strategies for a given economic injury level (EIL). Moreover, the effects of the complex41

dynamical behaviour of the pest population on the pesticide switching times were stud-42

ied. In particular, the effects of the complex dynamics of the pest population and the43

pesticide application period on the pesticides’ switching frequency are discussed in more44

detail. The main results indicated that the pesticide application period, the evolution45

of pesticide resistance and the dynamic complexity of the pest population may result in46

complex outbreak patterns, and consequently can significantly affect pesticide switching47

strategies.48

2 Model formulation49

In this section, we introduce a simple discrete pest population model with a Beverton-50

Holt growth function, in which the evolution of pest resistance is considered. In particular,51

the effects of both the frequency of pesticide applications and their cumulative number on52

the evolution of pest resistance are investigated.53

2.1 Simple pest growth model with pesticide resistance54

Throughout this study, the pest population is assumed to follow the classic Beverton-

Holt model [21, 22, 23, 24, 25, 26], i.e. we have

Pt+1 =
aPt

1 + bPt
,

where Pt denotes the pest population size at generation t, a is the intrinsic growth rate,55

b = (a − 1)/K, and K is the carrying capacity . The dynamical behaviour of the above56

model is completely determined by the parameter a, i.e. a ≤ 1 means that the pest57

population will die out eventually, and a > 1 indicates that all solutions of the model58

with positive initial conditions will tend to its unique positive equilibrium K globally.59

As mentioned in the introduction, the main purpose of this study is to address how the60

evolution of pesticide resistance affects the success or failure of pest control when chemical61

control is applied. Thus, we assume a > 1 throughout this paper.62

In the following, we divide the total pest population at generation t into two parts.63

Susceptible pests, very sensitive to the pesticide, are denoted by PS
t , accounting for a64

proportion ωt of the total pest population, and resistant pests, denoted by PR
t , accounting65
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for 1 − ωt of the total pest population. This indicates that PS
t = ωtPt and PR

t = (1 −66

ωt)Pt. Thus, ωt may be thought of as the effectiveness of the pesticide at generation t.67

With increasing pest generations, the pest’s resistance to the pesticide develops, and the68

effectiveness of the pesticide decreases, indicating that ωt is a decreasing function of t.69

Therefore, the evolution of pest resistance can be described by the variable ωt. Further,70

we assume that the death rates due to pesticide applications of the susceptible pests and71

the resistant pests are d1 (0 < d1 < 1) and d2 (0 ≤ d2 < 1), respectively. Based on these72

assumptions, we have the following discrete pest growth model with pesticide resistance73







PS
t+1 = (1−d1)ωtaPt

1+bPt
,

PR
t+1 = (1−d2)(1−ωt)aPt

1+bPt
.

(1)

Since Pt+1 = PS
t+1 + PR

t+1, the evolution of the total pest population is given by74

Pt+1 =
[(1− d1)ωt + (1− d2)(1− ωt)]aPt

1 + bPt
. (2)

It follows from ωt = PS
t /Pt that the evolution of the pest’s resistance can be modelled as75

follows:76

ωt+1 =
PS
t+1

Pt+1

= (1−d1)ωt

(1−d1)ωt+(1−d2)(1−ωt)
.

(3)

Therefore, model (1) can be written as77







Pt+1 = [(1−d1)ωt+(1−d2)(1−ωt)]aPt

1+bPt
,

ωt+1 = (1−d1)ωt

(1−d1)ωt+(1−d2)(1−ωt)
.

(4)

It follows from 0 < d1 < 1 and 0 ≤ d2 < 1 that 0 < ωt < 1 (t = 1, 2, · · · ) holds true78

provided that 0 < ω0 < 1.79

In reality, farmers usually spray pesticide within a quite short period, and the effect80

of the pesticide on the pest is instantaneous, so its population density can be reduced81

instantaneously once the pesticide is applied. To depict this realistic control measure, we82

employ an impulsive difference equation based on model (4). Thus, we assume that the83

pesticides are applied periodically at every qth generation, then the number of pests killed84

at the qkth generation is (ωqkd1 + (1 − ωqk)d2)Pqk, k = 1, 2, · · · . Therefore, we have the85

following impulsive difference equation86















Pt+1 =
aPt

1+bPt
, t = 0, 1, 2, · · · ,

Pqk+ = (1− ωqkd1 − (1− ωqk)d2)Pqk, k = 1, 2, · · · ,

ωt+1 =
(1−d1)ωt

(1−d1)ωt+(1−d2)(1−ωt)
,

(5)

where Pqk+ represents the number of pests after a single pesticide application at generation87

qk, and the initial value P0+ = P0 > 0. That is to say the initial density of the pest88

population in model (5) is chosen as the density of pests after the first pesticide spraying.89
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However, for simplificity, we assume that the resistant pests have near-complete resis-90

tance to the pesticide, which means that d2 ≈ 0 [27], so system (5) becomes91















Pt+1 =
aPt

1+bPt
, t = 0, 1, 2, · · · ,

Pqk+ = (1− ωqkd1)Pqk, k = 1, 2, · · · ,

ωt+1 =
(1−d1)ωt

1−d1ωt
.

(6)

Model (6) indicates that, obviously, the killing efficacy of the pesticide decreases as the92

resistance develops.93

2.2 The effect of the frequency of pesticide applications on the evolution94

of pest resistance95

The third equation of model (6) describes how the proportion of susceptible pests in96

the population develops with increasing pest generations, and thus the evolution of pest97

resistance with increasing time, so we call it the evolution of pest resistance equation. In98

reality, the frequency of pesticide applications, the pesticide application period and the99

dosage of the applications are also factors contributing to the pest resistance. Therefore, in100

order to understand the system in more detail, all of these factors should also be involved101

in this equation. Although achieving this was challenging, we employed the following102

simple method to tackle the task.103

By using the general Beverton-Holt equation we extend the third equation of model (6)104

as follows:105

ωt+1 =
(1− d1)ωt

1− d1ω
rk
t

, qk ≤ t < (k + 1)q, (7)

here at each qkth (k = 1, 2, · · · ) generation one pulse of pesticide is applied, and the106

dynamic parameter rk, which depends on the total number of pesticide applications, was107

introduced to represent the effects of their period and dosage on the evolution of pest108

resistance. So rk should be a function of the interval of q generations between the kth and109

(k+1)th pesticide applications, the number of pesticide applications k and the dosage Dk110

of the kth pesticide application for all k = 1, 2, · · · . We know that the values of d1 and111

d2 strictly depend on the pesticide dosage Dk. For simplicity, we assume that the same112

dosage of pesticide is applied at each control event, and so, without loss of generality,113

we let Dk = 1 and d1, d2 represent the death rates of the pest after one unit of sprayed114

pesticide. Thus the simplest formula for rk could be defined as rk = k+1
q

, i.e. r0 = 1/q115

for t = 1, 2, · · · , q − 1; r1 = 2/q for t = q, q + 1, · · · , 2q − 1; · · · ; rk = (k + 1)/q for116

t = kq, kq+1, · · · , (k+1)q− 1. In order to show how the spraying period and the number117

of pesticide applications or frequency of pesticide applications affect the development of118

6
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resistance, the evolution of ωt with four different rk are shown in Fig.1, from which we can119

see that the smaller spraying period, the faster the evolution of pest resistance. This is120

because the smaller the spraying period the greater the number of pesticide applications,121

and thus faster decreases of the pest’s sensitivity to the pesticide and accelerated evolution122

of pest resistance.123

By induction, we can get the recursion formula for ωt of equation (7) as follows:124

ωt =
Atω0

Mt
, t = 1, 2, · · · , (8)

where A = 1 − d1, Mt = Mt−1

(

1−A(t−1)rkQkM
−rk
t−1

)

, Qk = d1ω
rk
0 for t = kq, kq +125

1, · · · , (k + 1)q − 1, and M0 = 1.126

In particular, if rk = 1, i.e. the evolution of ωt satisfies the third equation of model (4),127

then128

ωt =
Atω0

1− (1−At)ω0
, t ≥ 0. (9)

3 Pest extinction resulting from control and the optimal129

time to switch pesticides130

One of the main purposes of this paper is to investigate how to spray pesticides and131

manage the evolution of pest resistance such that the pest population will be eradicated132

eventually or be maintained at a density below a given value (i.e. EIL). In order to address133

this topic, we introduce two methods, and for each method we investigate the threshold134

condition which guarantees the extinction of the pest population and discuss the optimal135

pest generation when pesticides should be switched.136

3.1 Switching pesticides with a strong threshold condition137

Strong threshold condition for pest extinction: Considering the effects of pest control on138

the evolution of pest resistance, model (6) becomes the following periodic control model:139



















Pt+1 =
aPt

1+bPt
, t = 0, 1, 2, · · · ,

Pqk+ = (1− ωqkd1)Pqk, k = 1, 2, · · · ,

ωt+1 =
(1−d1)ωt

1−d1ω
rk
t

.

(10)

where q is the period of pesticide applications and rk = (k + 1)/q, P0+ = P0.140

Note that the pest resistance equation in model (10) (i.e. the third equation) is inde-141

pendent of the pest population growth equation (i.e. the first equation), thus ωt can be142

studied independently using the formula for it given by (8).143
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Solving the first equation of model (10) in pulse interval kq < t ≤ (k + 1)q, k =144

0, 1, 2, · · · , yields145

Pt =
at−qkPqk+

1 + b

(

t−qk−1
∑

i=0
ai

)

Pqk+

, (11)

which means that146

P(k+1)q =
aqP

kq+

1+bP
kq+

(

q−1
∑

i=0
ai

)

=
(1−ωkqd1)a

qPkq

1+b(1−ωkqd1)Pkq

(

q−1
∑

i=0
ai

) .
(12)

Denote Yk = Pqk, then we have the following difference equation147

Yk+1 =
(1− ωkqd1)a

qYk

1 + b(1− ωkqd1)

(

q−1
∑

i=0
ai
)

Yk

, (13)

which is a non-autonomous Beverton-Holt difference equation, and Yk depends on ωkq or148

the third equation of model (10). For recent studies of non-autonomous Beverton-Holt149

difference equations with or without impulsive effects see [24, 25, 26, 28].150

In this study, the stability of the zero solution of equation (13) is our main interest,151

given the practical problem of eradicating the pest population. It follows from equation152

(13) that the inequality153

Yk+1 < (1− ωkqd1)a
qYk

holds true for all k = 1, 2, · · · . Thus, we can define the dynamic threshold value R0(n, T )154

as follows:155

R0(k, q)
.
= (1− ωkqd1)a

q (14)

where ωkq can be calculated by (8). Therefore, if R0(k, q) < 1 for all k = 1, 2, · · · (called a156

strong threshold condition for pest eradication), then the zero solution of equation (13) is157

globally asymptotically stable. This indicates that the pest population will be eradicated158

if the threshold value R0(k, q) < 1 for all k = 1, 2, · · · . The key factors including the159

evolution of pesticide resistance (i.e. ωkq), the instantaneous killing rate (i.e. d1), the160

intrinsic growth rate (i.e. a) and the period of pesticide application (i.e. q) are all involved161

in the formula for the threshold value, which is very dynamic. We will address the effect162

of the period of pesticide applications on the threshold value R0(k, q) in more detail later.163

In particular, if rk = 1 for k = 1, 2, · · · (i.e. ω(t) satisfies equation (4)), then164

R0(k, q) =

(

1−
d1A

kqω0

1− (1−Akq)ω0

)

aq
.
= R1

0(k, q). (15)

8
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Fig.2 describes the effects of the spraying time k and the spraying period q on the165

threshold value R0(k, q), from which we can see that R0(k, q) is an increasing function166

with respect to k, and that it will reach and exceed 1 after several pesticide applications.167

These results confirm that the pesticide is effective at the initial stage. However, with the168

development of pesticide resistance, there will be an outbreak of the pest population after169

a certain number of pesticide sprays. Fig.2 also indicates that R0(k, q) is an increasing170

function with respect to period q, and the longer the spraying period, the fewer the number171

of times that the pesticide applications remain efficient due to the evolution of the pesticide172

resistance.173

In Fig.3 we have plotted the solutions of model (10) for different q values to show how174

fast the solutions reach or exceed the given EIL and to show the effects of the pesticide175

application period on the density of the pest population. From Fig.3 we can see that176

the density of the pest population is decreasing at the first few pesticide applications,177

but it increases, even reaching or exceeding the EIL quickly, as the number of pesticide178

applications increase. This is because of the strengthening of the pest’s resistance to the179

pesticide and the decreasing efficacy of the pesticide.180

Fig.3 also shows that the longer the period of pesticide applications q (i.e. low frequency181

of pesticide applications), the higher the probability that there will be a pest outbreak.182

However, the smaller the period of pesticide applications q (i.e. higher frequency of pes-183

ticide applications), the faster the development of pest resistance, and the easier it is for184

the pest to reach outbreak levels. Therefore, the question is how to control pest resistance185

(i.e. what is the optimal generation of the pest after the start of control operations when186

a switch to a new type of pesticide is best) such that the pest population will die out or its187

density will fall below the EIL? We will address this question in the following subsection.188

Justifications and the optimal time to switch pesticides: As mentioned in the introduc-189

tion, pest control will fail if the pest has developed resistance to some pesticides and190

people repeatedly use those pesticides. If so, the density of the pest population will grow191

quickly (as shown in Fig.3), and even result in pest outbreaks or resurgence. Therefore, in192

order to control pests successfully, people usually switch from using one type of pesticide193

to spraying another type of pesticide to avoid or decrease the development of resistance.194

Thus, in order to optimally use the same type of pesticides, it is important to choose the195

optimal switching time with the aim of controlling the pest population economically and196

effectively. In the following, we will provide a method based on our model (10) to de-197

termine the optimal time for switching pesticides according to a threshold condition. We198

assumed that for each new type of pesticide, the evolution of pest resistance to it follows199

the same trend (i.e. ω follows the same equation) and has the same initial condition ω0.200

9
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From Fig.2, we can see that R0(k, q) is increasing with respect to k and it will exceed201

1 after several pesticide applications. According to the definition of R0(k, q), if the aim202

of pest control is to eradicate the pest population, the threshold value R0(k, q) should be203

below one for all k = 1, 2, · · · , i.e. the strong threshold condition should be satisfied. To204

maintain the threshold value R0(k, q) below one, we must switch to using another kind of205

pesticide before the threshold value R0(k, q) reaches one. Therefore, the optimal pesticide206

switching tactics should be implemented at the last spraying time before R0(k, q) reaches207

one. Without loss of generality, we assume that the threshold value R0(k, q) will increase208

and exceed one unit after k
(1)
1 sprays of the same kind of pesticide, i.e.209

k
(1)
1 = max{k : R0(k, q) ≤ 1}, (16)

thus the optimal switching time is k
(1)
1 q.210

In order to determine k
(1)
1 analytically, we let R0(k, q) = 1, then211

ωkq =
1− a−q

d1
,

where ωkq is given by (8) and (1− a−q)/d1 ≤ ω0. Therefore,212

k
(1)
1 =

[{

k : ωkq =
1− a−q

d1

}]

,

and [x] is defined as the greatest integer no larger than x.213

In particular, R0(k, q) = R1
0(k, q) for rk = 1. In this special case, letting R1

0(k, q) = 1214

and solving this equation with respect to k, we can obtain the optimal switching time215

k
(1)
1 q, where216

k
(1)
1 =

[

1

q
logA

(

(1− a−q)(1− ω0)

ω0(d1 − (1− a−q))

)]

.

Thus, according to the above pesticide switching strategy, the pest population will be217

eradicated completely after several pesticide switches. In order to understand this strategy218

intuitively, we plotted some numerical simulations in Fig.4 (a), from which we can see219

that the pest population will be eliminated eventually, with k
(1)
1 = 2. This indicates that220

farmers should switch to another type of pesticide after three pesticide sprays of one type221

of pesticide (here we assume that the first pesticide spraying is at time t = 0) to eliminate222

the pest population quickly.223

3.2 Switching pesticides with a weak threshold condition224

Note that if the strong threshold condition for pest eradication is satisfied, then we have225

10
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Pq > P2q > P3q > · · · > Pnq > · · · ,

and Pnq → 0 when n is large enough. This switching method could result in more severe226

environmental pollution due to the speed of switching between pesticides. Therefore, the227

question is how to reduce the switching frequency such that the pest population can still228

be eradicated or maintained at a density below the given EIL? To realize this purpose, we229

propose the following weak threshold condition for pest extinction.230

Weak threshold condition for pest extinction: We assume that after ni times of spraying231

with the ith pesticide, farmers should switch to using the (i + 1)th pesticide, that is the232

ith pesticide can be used ni times at most. For example, the first type of pesticide is233

sprayed at the beginning, at pest generation q, generation 2q, · · · , generation (n1 − 1)q,234

and the second type of pesticide is applied at generation n1q, generation (n1 + 1)q ,235

· · · , generation(n1 + n2 − 1)q, · · · . Thus, all pesticides are switched at generation n1q,236

generation (n1 + n2)q, generation (n1 + n2 + n3)q, and so on.237

Denoting

P
(m)
kq = P(

∑m
i=1 ni+k)q, k = 0, 1, · · · , ni,

which is the density of the pest population at the k+ 1th pesticide spray and after m+ 1238

pesticide switches. Specifically, P
(m)
0 = P(

∑m
i=1 ni)q.239

From (12), we have240

P
(m)
q =

aqP
(m)

0+

1+b

(

q−1
∑

i=0
ai

)

P
(m)

0+

=
aq
(

1−d1ω
(m)
0

)

P
(m)
0

1+b

(

q−1
∑

i=0
ai

)

(

1−d1ω
(m)
0

)

P
(m)
0

,

(17)

thus,

P
(m)
q+

=
aq
(

1− d1ω
(m)
0

)(

1− d1ω
(m)
q

)

P
(m)
0

1 + b

(

q−1
∑

i=0
ai
)

(

1− d1ω
(m)
0

)

P
(m)
0

,

and

P
(m)
2q =

aqP
(m)

q+

1+b

(

q−1
∑

i=0
ai

)

P
(m)

q+

=
a2q
(

1−d1ω
(m)
0

)(

1−d1ω
(m)
q

)

P
(m)
0

1+b

(

q−1
∑

i=0
ai

)

(

1−d1ω
(m)
0

)

P
(m)
0 +b

(

q−1
∑

i=0
ai

)

aq
(

1−d1ω
(m)
0

)(

1−d1ω
(m)
q

)

P
(m)
0

,

P
(m)
2q+

=
a2q
(

1− d1ω
(m)
0

)(

1− d1ω
(m)
q

)(

1− d1ω
(m)
2q

)

P
(m)
0

1 + b

(

q−1
∑

i=0
ai
)

(

1− d1ω
(m)
0

)

P
(m)
0 + b

(

q−1
∑

i=0
ai
)

aq
(

1− d1ω
(m)
0

)(

1− d1ω
(m)
q

)

P
(m)
0

,
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P
(m)
3q =

aqP
(m)

2q+

1+b

(

q−1
∑

i=0
ai

)

P
(m)

q+

=
a3q

2
∏

i=0

(

1−d1ω
(m)
iq

)

P
(m)
0

1+b

(

q−1
∑

i=0
ai

)

P
(m)
0

(

2
∑

k=0

k
∏

j=0

(

1−d1ω
(m)
jq

)

aiq

) ,

where ω
(m)
iq is the proportion of susceptible pests in the population at generation iq with241

the (m+ 1)th pesticide. By induction, we have242

P (m)
nm+1q

=

anm+1q
nm+1−1
∏

i=0

(

1− d1ω
(m)
iq

)

P
(m)
0

1 + b

(

q−1
∑

i=0
ai
)

P
(m)
0

(

nm+1−1
∑

k=0

k
∏

j=0

(

1− d1ω
(m)
jq

)

aiq

) . (18)

Due to P
(m+1)
0 = P

(m)
nm+1q, therefore, we have the following equation243

P
(m+1)
0 =

anm+1q
nm+1−1
∏

i=0

(

1− d1ω
(m)
iq

)

P
(m)
0

1 + b

(

q−1
∑

i=0
ai
)

P
(m)
0

(

nm+1−1
∑

k=0

k
∏

j=0

(

1− d1ω
(m)
jq

)

aiq

) , (19)

this is the well-known Beverton-Holt model, which has a zero equilibrium P ∗

1 = 0. It is244

stable provided that245

Ri
0
.
= aniq

ni−1
∏

j=0

(

1− d1ω
(i−1)
jq

)

< 1, for all i = 1, 2, · · · . (20)

Therefore, the pest population will be eradicated if condition (20) holds true. We define246

the above condition as the weak threshold condition for pest eradication in this paper.247

Specially, if the pest has the same resistance to a different pesticide, then ni = ni+1
.
= ñ248

and ω
(i−1)
jq = ω

(i)
jq = ωjq for all i = 1, 2, · · · . Thus,249

Ri
0 = añq

ñ−1
∏

j=0

(1− d1ωjq)
.
= R̃0(ñ, q, d1). (21)

Note that250

R̃0(ñ, q, d1) = aq (1− d1ω0) · a
q (1− d1ωq) · · · a

q
(

1− d1ω(ñ−1)q

)

=
ñ−1
∏

j=0

Wj , (22)

where Wj = aq (1− d1ωjq), and Wj is increasing with respect to j.251

Justifications and the optimal time to switch pesticides: We want to know how many252

times each pesticide can be sprayed or what is the optimal time for switching pesticides253

which can eradicate the pest population after some pesticide switches. As before, in254
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order to eradicate the pest population we should maintain Ri
0 < 1 for all ni, i ∈ N .255

This indicates that farmers should switch pesticides once Ri
0 goes to one. Because of the256

complexity of Ri
0, we only focus on the special case, i.e. R̃0. We assume that the threshold257

value R̃0(ñ, q, d1) will exceed one after k
(2)
2 pesticide applications. From (21), we can see258

that R̃0(ñ, q, d1) is an increasing function with respect to ñ, so259

k
(2)
2 = max{ñ : R̃0(ñ, q, d1) ≤ 1}, (23)

i.e.260

k
(2)
2 =

[

{ñ : R̃0(ñ, q, d1) = 1}
]

. (24)

It follows from expressions (14) and (22) that R0(k, q) < 1 implies Wk < 1, which261

indicates Wi < 1 for all i ≤ k, and then
∏k

j=0Wj < 1. Therefore, R̃0(k, q, d1) < 1, which262

means that the condition R0(k, q) < 1 is stronger than the condition R̃0(k, q, d1) < 1.263

These results confirm that k
(2)
2 ≥ k

(1)
1 , i.e. the same type of pesticide can be used more264

times under the weak threshold condition for pest eradication than under the strong265

threshold condition.266

Fig.4 (b) gives numerical simulations with the weak threshold condition for pest eradica-267

tion. From Fig.4 (b) we can see that the pest population dies out eventually with k
(2)
2 = 3268

in the case of R̃0(ñ, q, d1) < 1. However, if R̃0(ñ, q, d1) > 1, then the pest population269

will oscillate periodically under the weak threshold condition (see Fig.5 (a)) and finally270

its density could exceed the given EIL.271

4 Pest control with EIL as a guide272

Considering the importance of reducing pollution and the cost to farmers of pest control273

measures, farmers usually implement them such that the density of the pest population274

cannot exceed the EIL. It follows from Fig.3 that if we only repeat using one kind of275

pesticide to control the pest, then the resistance of the pest to the pesticide is developed276

and the efficiency of the pesticide declines. Thus, the density of the pest population277

increases quickly and eventually exceeds the given EIL. Therefore, in order to control the278

density of the pest below the EIL, farmers usually switch to another type of pesticide279

before the EIL is exceeded. Therefore, we want to know what is the optimal switching280

time or what is the optimal frequency of one type of pesticide applications for a given281

EIL?282

In this section, we assume that after k pesticide applications, farmers should switch283

to another type of pesticide. This indicates that Pkq ≤ EIL and there exists a positive284

integer m (0 ≤ m ≤ q) such that Pkq+m ≥ EIL.285
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From (12), we have286

P(k+1)q =
AkPkq

1 +BkPkq

> EIL, (25)

where Ak = aq(1− d1ωkq) and Bk = bAk(
∑q−1

i=0 a
i−q). According to (25), we can get287

(Ak −BkEIL)Pkq > EIL. (26)

It follows from Pkq ≤ EIL that

Ak −BkEIL = Ak

(

1− bEIL

q−1
∑

i=0

ai−q

)

> 1,

or

Ak >
1

1− bEIL
∑q−1

i=0 a
i−q

> 0.

This indicates that q should be satisfied288

b

q−1
∑

i=0

ai−q = b

q
∑

i=0

1

ai
<

1

EIL
. (27)

From (26), we have289

PkqAk

(

1− bEIL

q−1
∑

i=0

ai−q

)

> EIL, (28)

thus

PkqAk >
EIL

1− bEIL
∑q−1

i=0 a
i−q

.

Since PkqAk is an increasing function with respect to k, we have290

k =

[{

l

∣

∣

∣

∣

PlqAl =
EIL

1− bEIL
∑q−1

i=0 a
i−q

}]

+ 1. (29)

Fig.5 (b) gives the numerical simulation under this tactic of switching pesticides, from291

which we can see that pest control will tend towards periodic control after a certain292

number of pesticide switches. In reality, pest control can also tend towards periodic293

control under the weak threshold condition provided that the control period q is long294

enough (i.e. R̃0(ñ, q, d1) > 1) (see Fig.5 (a)). However, under the weak threshold condition295

with R̃0(ñ, q, d1) > 1, unless the switching frequency is more than with the EIL guided296

switching strategy, the density of the pest population will exceed the EIL.297

5 The effects of dynamic complexity of the pest population298

on the control measures299

In the previous section, we assumed that the pest population followed the classic300

Beverton-Holt difference equation, which means that the pest population either tends to301
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zero or to the unique positive equilibrium if no control tactics are involved. The question302

now is how do the complex dynamics of the pest population affect the pest control? Also,303

of particular interest is how does this complexity affect the pesticide switching frequency304

and the optimal switching time under different switching justifications?305

To address the above questions, we extended model (6) by employing the general306

Beverton-Holt function to describe the growth of the pest population, i.e. we have307



















Pt+1 =
aPt

1+bPm
t
, t = 0, 1, 2, · · · ,

Pqk+ = (1− ωqkd1)Pqk, k = 1, 2, · · · ,

ωt+1 =
(1−d1)ωt

1−d1ω
rk
t

.

(30)

where m is a positive integer.308

Although we can investigate model (30) by employing the same methods as those for309

model (10), it is very difficult to provide the threshold conditions related to the different310

pesticide switching strategies. So we turn to numerical methods aiming to show how the311

dynamic complexity of the pest population affects the pesticide switching strategies and312

then how it affects the pest control. To address those questions, we first apply bifurcation313

analyses, as shown in Fig.6.314

With m as a bifurcation parameter, bifurcation diagrams of system (30) without a315

pesticide switching strategy are plotted in Fig.6 (a) and with the switching strategy under316

the weak threshold condition in Fig.6 (b). The results indicate that system (30) may317

exhibit complex dynamical behaviour such as period doubling bifurcations and multiple318

attractors co-existing for a wide range of parameters.319

In order to analyze the effects of the dynamic complexity of the pest population with320

the weak threshold condition guiding the pesticide switching strategy, we depict the pest321

population growth trends of models (6) and (30) with different control period q in Fig.7.322

From Fig.7 (a) and (c), we can see that one type of pesticide should be switched to323

another after two sprays in models (6) and (30) with control period q = 2 and the pest324

population can be eradicated after several pesticide switches. Comparing Fig.7 (a) and325

(c) we conclude that the density of the pest population decreases more quickly in model326

(30) than that in model (6). Increasing the period q from 2 to 3, it follows from Fig.7327

(d) that the pest population oscillates periodically, and the switching frequency is two328

in model (6), and from Fig.7 (b) we can see that the pesticide switching trends become329

more complex, and the density of the pest population oscillates periodically with a related330

large amplitude in model (30) which could more easily exceed the given EIL. Thus, the331

dynamic complexity of the pest population may result in complex outbreak patterns, and332

consequently can significantly affect the pesticide switching strategies.333
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When choosing the EIL as the guide for the pesticide switching strategy, we focused on334

how the parameter m affects the EIL switching strategy. To address this question, we let335

m vary and fixed all other parameters in model (30), as shown in Fig.8. The main results336

indicate that for different values of parameter m, the pesticide switching frequencies are337

quite different: the larger the m value, the more frequent the need for switching, as shown338

in Fig.8 (a-c). In particular, each type of pesticide can be applied for about three periods339

(3q here), and then switching should occur in the middle of the third pest control period340

for m = 1 (Fig.8(a)). If we increase m from 1 to 2, then control with each type of pesticide341

can be implemented for about two periods (2q here), and then the switching should occur342

in the middle of the second control period (Fig.8(b)). Farmers should switch pesticide343

within one period q once m = 3, as shown in Fig.8(c). However, if we increase m to344

4 as in Fig.8(d), then each type of pesticide can be used one more time compared with345

when m = 3. These results confirm that the dynamic complexity of the pest population346

can result in more complex pesticide switching strategies if the EIL guided method is347

employed.348

6 Discussion349

Pest control is an important part of agricultural management, for which chemical control350

by spraying pesticides is the main method. However, more and more pests have developed351

resistance to pesticides with the frequent use of only one or two kinds of pesticides for352

lengthy periods. This can lead to pest resurgence and serious losses for farmers so pest353

resistance management is important.354

Control in pulses such as pesticide sprays or natural enemy releases is a common method355

for pest control in IPM and can be modelled with impulsive equations. For instance, recent356

studies of impulsive equations have been applied in the analysis of pulsed pest control in357

theory, such as the spraying of pesticides at critical times and killing pests instantly358

[11, 12, 13, 14, 15, 29, 30] and for biological control by releasing natural enemies at critical359

times [16, 17, 31, 32, 33, 34, 35, 36, 37]. The existence of high density pest populations with360

overlapping generations was a common assumption in those studies, which mainly focused361

on the effects of chemical control on the extinction or permanence of pest populations362

and the effects of pesticide resistance were seldom considered. However, in this paper, we363

developed a discrete pest population growth model which addressed pesticide resistance.364

Furthermore, the effects of the spraying period and the number of pesticide applications365

or the frequency of pesticide applications on the development of pest resistance, and366

consequently on the success or failure of pest control, were investigated.367
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In order to fight pesticide resistance and avoid pest resurgence, many principles have368

been proposed. Switching pesticides between two or more types is a common and effective369

tactic to delay or reduce the evolution of pest resistance. For instance, for controlling the370

peach potato aphid Myzus persicae, farmers have had to switch successively since the late371

1940s from organophosphate pesticides to cyclodienes, to carbamates to pyrethroids and,372

finally, to neonicotinoids and now there is also resistance to the latter [38]. However, if the373

aim of pest control is to eradicate the pest population, what is the optimal justification374

for switching from one type of pesticide to another or others? How to determine the375

period or the frequency of pesticide application for pesticide switches? And if the aim376

of pest control is getting the density of the pest population below an EIL, what is the377

optimal time for switching pesticides? Although our results show that modelling can aid378

in answering such questions, it is also important for decision-makers to be aware of factors379

such as the biochemistry of resistance mechanisms, the extent of cross-resistance to more380

than one pesticide type and the likelihood of resistance to novel compounds developing,381

as discussed by Bass et al. [38] regarding the management of peach potato aphids. If such382

approaches had been used more carefully in the past, resistance by rats to anticoagulant383

rodenticides [39] and many other such examples of pests developing resistance to a variety384

of products might have been avoided or at least delayed.385

To answer these questions, we provided two methods including strong and weak thresh-386

old conditions, respectively, for pest eradication to judge when we should switch pesticides387

if the aim is eradication of the pest population. For the former method, we provided a388

strong threshold condition for pest eradication, and the optimal period of pesticide appli-389

cation for one type of pesticide. Moreover, we investigated the optimal switching time or390

frequency of pesticide applications for pesticide switches. In order to maximise the utiliza-391

tion of a pesticide, we provided a weak threshold condition for pest eradication in a second392

method and we also investigated the optimal switching time and the frequency of pesticide393

applications between pesticide switches and discussed the advantages and disadvantages394

of both methods.395

According to the definition of IPM, the EIL is an important threshold value for pest396

control. Therefore, we provided one switching method with the EIL as a switching guide397

and the optimal number of sprays for one type of pesticide was investigated. In order to398

show how the dynamic complexity of the pest population influences the pest control and399

pesticide switching strategies, we extended the model using the generalized Beverton-Holt400

function. The main results from this model indicated that the switching frequency can401

be significantly affected by the dynamical behaviour of the pest population, as shown in402

Figs.7 and Fig.8.403
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IPM is another tactic for fighting pest resistance, which usually controls pest popu-404

lations by combining chemical control and biological control. Our future research will405

address questions such as how best to design IPM control tactics if the generations of406

pest populations do not overlap i.e. how to introduce biological control in discrete pest407

population growth models in theory? And what is the balance between the evolution of408

pest resistance and the rate of natural enemy releases?409
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Figure 1: The effects of the frequency of pesticide applications on the evolution of ωt with

d1 = 0.6. Four curves for ωt are plotted with respect to rk = k + 1, (k + 1)/2, (k + 1)/3

and constant 1.
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Figure 2: The effects of the period of pesticide applications on the threshold condition

R0(k, q) for q = 2(•), q = 3(◦), q = 4(∗), respectively.
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Figure 3: The effects of the period of pesticide applications on the density of the pest

population predicted by model (10) for q = 2, q = 4, q = 6, respectively. The baseline

parameter values were fixed as follows: d1 = 0.6, a = 1.2, b = 0.4, ω0 = 0.99, EIL = 0.3

and the initial value of P+
0 = 0.2.
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Figure 4: Illustrations of two different switching methods. The baseline parameter values

are as follows: d1 = 0.6, a = 1.2, b = 0.4, ω0 = 0.99, q = 3, P0 = 0.2. (a) Numerical

simulations of model (10) with several pesticide switches determined by the strong thresh-

old condition; (b) Numerical simulations of model (10) with several pesticide switches

determined by the weak threshold condition.

25



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

P
t

t

0 50 100 150 200 250 300 350
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
t

t

Figure 5: Illustrations of switching methods based on the weak threshold and on using the

EIL-guided method. The baseline parameter values are as follows: d1 = 0.6, a = 1.2, b =

0.4, ω0 = 0.99, q = 8, P0 = 0.2 and EIL = 0.4. (a) Numerical simulations of model (10)

with several pesticide switches determined by the weak threshold condition; (b) Numerical

simulations of model (10) with several pesticide switches determined by the EIL guide.
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Figure 6: Bifurcation diagram for model (30) with bifurcation parameter m. The baseline

parameter values are as follows: d1 = 0.6, a = 2, b = 1, ω0 = 0.99, q = 3. (a) Pest

control with no pesticide switching strategy; (b) Pest control with the switching strategy

determined by the weak threshold condition.
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Figure 7: Illustrating the difference between model (30) and model (10) with switching

strategies guided by the weak threshold condition. The baseline parameter values are as

follows: d1 = 0.6, a = 2, b = 1,m = 5, ω0 = 0.99, P0 = 0.2. (a) Numerical simulations

of model (30) with several pesticide switches which are guided by the weak threshold

condition and q = 2; (b) Numerical simulations of model (30) with several pesticide

switches which are guided by the weak threshold condition and q = 3; (c) Numerical

simulations of model (10) with several pesticide switches which are guided by the weak

threshold condition and q = 2; (d) Numerical simulations of model (10) with several

pesticide switches which are guided by the weak threshold condition and q = 3.
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Figure 8: Illustrations of switching methods with the EIL-guided strategy for model (30)

with different m. The baseline parameter values are as follows: d1 = 0.6, a = 2, b = 1, ω0 =

0.99, q = 3, P0 = 0.2 and EIL = 0.8. (a) m = 1; (b) m = 2; (c) m = 3; (d) m = 4.
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