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Abstract

This paper presents a new computational formulation for large strain poly-
convex elasticity. The formulation is based on using the deformation gradient
(the fibre map), its adjoint (the area map) and its determinant (the volume
map) as independent kinematic variables of a convex strain energy func-
tion. Compatibility relationships between these variables and the deformed
geometry are enforced by means of a multi-field variational principle with
additional constraints. This process allows the use of different approxima-
tion spaces for each variable. The paper also introduces conjugate stresses to
these kinematic variables which can be used to define a generalised convex
complementary energy function and a corresponding complementary energy
principle of the Hellinger-Reissner type, where the new conjugate stresses are
primary variables together with the deformed geometry. Both compressible
and incompressible or nearly incompressible elastic models are considered.
A key element to the developments presented in the paper is the definition
of a new tensor cross product which facilitates the algebra associated with
the adjoint of the deformation gradient. Two particular choices of interpo-
lation spaces are considered to illustrate the formulation. The first is based
on quadratic displacements, constant pressure discontinuous across element
edges and linear discontinuous element stresses conjugate to the deformation
gradient and its adjoint. The second choice involves linear displacement and
continuous linear pressure stabilised using a Petrov-Galerkin technique.
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principle, complementary energy variational principle, incompressible
elasticity, finite elements

1. Introduction

Large strain elastic and inelastic analysis by finite elements or other com-
putational techniques is now well established for many engineering applica-
tions [1–8]. Often elasticity is described by means of a hyperelastic model
defined in terms a stored energy functional which depends on the deformation
gradient of the mapping between initial and final configurations [1, 9–17]. It
has also been shown that for the model to be well defined in a mathemati-
cal sense, this dependency with respect to the deformation gradient has to
satisfy certain convexity criteria [1, 12, 13]. The most well-established of
these criteria is the concept of polyconvexity [14–20] whereby the strain en-
ergy function must be expressed as a convex function of the components of
deformation gradient, its determinant and the components of its adjoint or
cofactor. Numerous authors have previously incorporated this concept into
computational models for both isotropic and non- isotropic materials for a
variety of applications [21–26].

The standard approach consist of ensuring that the stored energy func-
tion satisfies the polyconvexity condition first but then proceed towards a
computational solution by re-expressing the energy function in terms of the
deformation gradient alone. More recently, a mixed formulation has been
proposed in which the deformation gradient, its adjoint and its determinant
are retained as fundamental problem variables by means of a Hu-Washizu
type of mixed variational principle [24, 27]. The resulting formulation opens
up new interesting possibilities in terms of using various interpolation spaces
for different variables [28–31], leading to enhanced type of formulations [24].
There is extensive literature in the field of mixed and enhanced formulations
for large strain solid mechanics by numerous authors [32–43].

The present contribution aims to present a systematic framework for de-
veloping computational approaches for hyperelastic (or hyperelastic-plastic)
polyconvex materials. Similarly to reference [24, 44, 45], the framework pro-
posed is based on maintaining as independent variables the fundamental vari-
ables on which the strain energy is expressed as a convex function, namely,
the deformation gradient, its adjoint and its determinant. These variables
are, of course, not independent from each other but their relationships can
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be enforced by appropriate constraints in a multi-field variational principle
leading to an extended Hu-Washizu type of variational principle [1, 34]. In
contrast with previous work, the paper proposes a novel algebra to deal with
the additional kinematic variables based on the definition of the tensor cross
product. This new notation not only greatly simplifies the formulation but
it also provides new expressions for operators such as the tangent elasticity
tensor which are useful from a computational and theoretical point of view.

The paper also introduces a set of stress variables work conjugate to the
extended set of independent kinematic variables [46]. As a result of convexity
with respect to this extended set, it is possible to define a complementary
strain energy function which is convex with respect to this extended set of
conjugate stresses. This definition makes it possible to introduce Hellinger-
Reissner [34, 39] type of mixed variational principles in the context of large
strain elasticity, with a significantly reduced set of variables over a more
traditional Hu-Washizu type of functional.

In order to ensure that the new concepts proposed are presented in as
clear a manner as possible, the paper only considers a Mooney-Rivlin type of
constitutive model, both in the compressible and incompressible regime. This
is the simplest model available which contains all the features of general poly-
convex elasticity strain energy functions, that is a dependency with respect
to the deformation gradient, its adjoint and its determinant in a convex
manner. Extending the proposed formulation to more complex models is a
simple algebraic exercise.

Note that it is not the primary aim of this paper to propose specific
choices of interpolation spaces. Nevertheless, two examples of the use of the
framework are provided. First, an application of the complementary energy
functional with quadratic displacements and linear stresses is presented. This
is followed by a model for incompressible elasticity using stabilised linear
tetrahedral elements.

The paper is organised as follows. Section 2 introduces the novel tensor
cross product notation in the context of large strain deformation. This def-
inition is used to re-express the adjoint of the deformation gradient and its
directional derivatives in a novel, simple and convenient manner. Section 3
reviews the definition of polyconvex elastic strain energy functions and de-
fines a new set of stresses conjugate to the main kinematic variables. The
relationships between these stresses and standard stress tensors such as the
Piola-Kirchhoff stresses and Cauchy stresses are provided. The section also
derives complementary strain energy functions in terms of the new conju-
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gate stresses. The fourth order elasticity tensors are derived in this section
taking advantage of the new tensor cross product notation, which greatly
simplifies the algebra involved and leads to interesting insights into the con-
sequences of convexity. Both compressible and nearly incompressible cases
are discussed in the context of Mooney-Rivlin models, although the exten-
sion to more general strain energy functions is straight forward. Section 4
presents a range of multi-field variational principles based on the extended
set of kinematic and stress variables. This includes displacement based prin-
ciples, Hu-Washizu type of mixed principles including additional kinematic
and stress variables and Hellinger-Reissner principles including geometry and
stress variables. Section 5 illustrates the use of the above principles in the
context of finite element interpolations. The resulting discretised equations
are presented for two particular choices of interpolation spaces. A number
of benchmark examples are used in Section 6 in order to demonstrate the
validity and convergence characteristics of the formulation proposed. Finally
Section 7 provides some concluding remarks and a summary of the key con-
tributions of this paper.

2. Definitions and notation

2.1. Motion and deformation

Consider the 3-dimensional deformation of an elastic body from its initial
configuration occupying a volume V , of boundary ∂V , into a final configura-
tion at volume v, of boundary ∂v (see Figure 1). The standard notation and
definitions for the deformation gradient and its determinant are used:

F =
∂x

∂X
= ∇0x; J = detF =

dv

dV
(1)

where x represents the current position of a particle originally at X and
∇0 denotes the gradient with respect to material coordinates. Virtual or
incremental variations of x will be denoted δv and u, respectively. It will be
assumed that x, δv and u satisfy appropriate displacement based boundary
conditions in ∂uV . Additionally, the body is under the action of certain body
forces per unit undeformed volume f 0 and traction per unit undeformed area
t0 in ∂tV , where ∂tV ∪ ∂uV = ∂V and ∂tV ∩ ∂uV = ∅.

The element area vector is mapped from initial dA to final da configura-
tion by means of the two-point tensor H , which is related to the deformation
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Figure 1: Deformation mapping of a continuum and associated kinematics magnitudes:
F ,H, J .

gradient via Nanson’s rule [1]:

da = HdA; H = JF−T . (2)

Clearly, the components of this tensor are the order 2 minors of the defor-
mation gradient and it is often referred to as the co-factor or adjoint tensor.
This tensor and its derivatives will feature heavily in the formulation that
follows as it is a key variable for polyconvex elastic models. Its evaluation
and, more importantly, the evaluation of its derivatives using equation (2) is
not ideal, and a more convenient formula can be derived for 3-dimensional
applications. This relies on the definition of the tensor cross product given
in the next section.

2.2. Tensor cross product

One of the key elements of the framework proposed is the extension of
the standard vector cross product to define the cross product between second
order tensors and between tensors and vectors. For instance, the left cross
product of a vector v and a second order tensor A to give a second order
tensor denoted v A is defined so that when applied to a general vector w
gives:

(v A)w = v × (Aw) ; (v A)ij = EiklvkAlj (3)
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where Eikl denote the standard third order alternating tensor components,
repeated indices indicate summation and × is the standard vector cross prod-
uct. The effect of the above operation is to replace the columns of A by the
cross products between v and the original columns of A. Similarly, the right
cross product of a second order tensor A by a vector v to give a second
order tensor denoted A v is defined so that for every vector w the following
relationship applies:

(A v)w = A (v ×w) ; (A v)ij = EjklAikvl. (4)

The effect is now to replace the rows of A by the cross products of its
original rows by v.

Finally, the cross product of two second order tensors A and B to give a
new second order tensor denoted A B is defined so that for any arbitrary
vectors v and w gives:

v · (A B)w = (v A) : (B w) ; (A B)ij = EiklEjmnAkmBln. (5)

In the framework developed in this paper the tensor cross product will
be mostly applied between two-point tensors. For this purpose the above
definition can be readily particularised to second order two-point tensors or
material tensors as,

(A B)iI = EijkEIJKAjJBkK ; (A B)IJ = EIKLEJMNAKMBLN . (6)

Box 1 shows the practical evaluation of these products.

Remark 1: It is easy to show using simply algebraic manipulations based on
the permutation properties of E or the fact that EijkEkln = δilδjn−δinδjl, that
the above tensor cross products satisfy the following properties (note that v,
v1, v2, w, w1 and w2 denote arbitrary vectors and A, A1, A2, B, B1, B2

and C are second order tensors):

A B = B A (7)

(A B)T = AT BT (8)

A (B1 +B2) = A B1 +A B2 (9)

α (A B) = (αA) B = A (αB) (10)
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(A B) : C = (B C) : A = (A C) : B (11)

A I = (trA) I −AT (12)

I I = 2I (13)

(A A) : A = 6 detA (14)

CofA =
1

2
A A (15)

(v1 ⊗ v2) (w1 ⊗w2) = (v1 ×w1)⊗ (v2 ×w2) (16)

v (A w) = (v A) w = v A w (17)

A (v ⊗w) = −v A w (18)

(A B) (v ×w) = (Av)× (Bw) + (Bv)× (Aw) (19)

(A1 A2) (B1 B2) = (A1B1 A2B2) + (A1B2 A2B1) (20)

A1B A2B = (A1 A2) (CofB) (21)
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Box 1. Enumeration of tensor cross products:

[v A] =





vyAzx − vzAyx vyAzy − vzAyy vyAzz − vzAyz

vzAxx − vxAzx vzAxy − vxAzy vzAxz − vxAzz

vxAyx − vyAxx vxAyy − vyAxy vxAyz − vyAxz





[A w] =





Axyvz − Axzvy Axzvx − Axxvz Axxvy − Axyvx
Ayyvz − Ayzvx Ayzvx − Ayxvz Ayxvy − Ayyvx
Ayxvz − Axxvy Ayyvx − Axyvz Ayzvy − Axzvx





[A B] =





[A B]xx [A B]xy [A B]xz
[A B]yx [A B]yy [A B]yz
[A B]zx [A B]zy [A B]zz





[A B]xx = AyyBzz − AyzBzy + AzzByy − AzyByz

[A B]xy = AyzBzx − AyxBzz + AzxByz − AzzByx

[A B]xz = AyxBzy − AyyBzx + AzyByx − AzxByy

[A B]yx = AxzBzy − AxyBzz + AzyBxz − AzzBxy

[A B]yy = AzzBxx − AzxBxz + AxxBzz − AxzBzx

[A B]yz = AzxBxy − AzyBxx + AxyBzx − AxxBzy

[A B]zx = AxyByz − AxzByy + AyzBxy − AyyBxz

[A B]zy = AxzByx − AxxByz + AyxBxz − AyzBxx

[A B]zz = AxxByy − AxyByx + AyyBxx − AyxBxy

2.3. Alternative expressions for the area and volume maps

Using the ninth property in Remark 1, equation (15), it is now possible
to express the area map tensor H as:

H =
1

2
F F (22)

Moreover, the first and second directional derivatives of H with respect
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to geometry changes are now easily evaluated as:

DH [δv] = F DF [δv] = F ∇0δv (23)

D2H [δv,u] = DF [u] DF [δv] = ∇0δv ∇0u (24)

Similarly, the derivatives of the volume ratio J are easily expressed with
the help of (14) and (11) and the definition of H given by equation (22):

DJ [δv] = H : ∇0δv; D2J [δv,u] = F : (∇0δv ∇0u) (25)

The above formulas simplify the manipulation of the derivatives ofH and
J by avoiding differentiating the inverse of the deformation gradient. They
will be key to the development of the framework presented below.

It is also possible to derive alternative expressions for both H and J .
For instance, combining equation (22) with equation (1) and noting that the
derivatives of F are second derivatives of x and therefore symmetric, gives,
after simple use of the product rule:

H =
1

2
CURL (x F ) (26)

where the material CURL of a second order two point tensor is defined in
the usual fashion by:

(CURLA)iI = EIJK
∂AiK

∂XJ

. (27)

It is clear from equation (26) that the material divergence of H vanishes,
as does the material CURL of F , that is:

DIVH = 0; CURLF = 0 (28)

where the material divergence is defined by the contraction:

(DIVA)i =
∂AiI

∂XI

. (29)

Combining equations (1) and (2b) an alternative equation for J emerges as:

J =
1

3
H : ∇0x =

1

3
DIV

(

HTx
)

. (30)
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3. Polyconvex elasticity

3.1. The strain energy

Polyconvexity is now well accepted as a fundamental mathematical re-
quirement that must be satisfied by admissible strain energy functions used
to describe elastic materials in the large strain regime. Essentially, the strain
energy Ψ per unit undeformed volume must be a function of the deformation
gradient F via a convex multi-valued function W as:

Ψ (∇0x) = W (F ,H , J) (31)

where W is convex with respect to its 19 variables, namely, J and the 3× 3
components of F and H . Moreover, invariance with respect to rotations
in the material configuration implies that W must be independent of the
rotational components of F and H . This is typically achieved by ensuring
that W depends on F and H via the symmetric tensors C = F TF and
G = HTH , respectively. In fact, for isotropic materials, this dependency
can be further simplified through the use of invariants and the observation
that:

IC = F : F ; IIC = H : H ; IIIC = J2. (32)

For example, a general compressible Mooney-Rivlin material can be de-
scribed by an energy function of the type:

WMR = αF : F + βH : H + f (J) (33)

where α and β are positive material parameters and f denotes a convex
function of J . It is clear therefore that WMR is convex with respect to all
of its variables. The condition of vanishing energy at the initial reference
configuration can be established by ensuring that f (1) = − (3α + 3β) or by
adding an appropriate constant to WMR. Doing this, however, has no prac-
tical effect on the resulting formulation as this will be driven by derivatives
of the strain energy. Appropriate values for α and β and suitable functions
f will be found in the sections below.

3.2. Conjugate stresses and the first Piola-kirchhoff tensor

The three strain measures F , H , and J have work conjugate stresses ΣF ,
ΣH , and ΣJ defined by:

ΣF (F ,H , J) =
∂W

∂F
; ΣH (F ,H , J) =

∂W

∂H
; ΣJ (F ,H , J) =

∂W

∂J
.

(34)
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For instance, for the case of a Mooney-Rivlin material, these stresses
become:

ΣF = 2αF ; ΣH = 2βF ; ΣJ = f ′ (J) . (35)

The set of conjugate stresses defined in equation (34) enables the direc-
tional derivative of the stain energy to be expressed as:

DW [δF , δH , δJ ] = ΣF : δF +ΣH : δH + ΣJδJ. (36)

In order to develop a relationship between these conjugate stresses and the
more standard first Piola-Kirchhoff, recall first that the first Piola-Kirchoff
tensor is defined by the equation:

DΨ [δv] = P : ∇0δv; P =
∂Ψ(F )

∂F

∣

∣

∣

∣

F=∇0x

. (37)

With the help of the last two equations, the chain rule and equations (23)
and (25a) it is possible to express the virtual internal work as:

P : ∇0δv = DΨ [δv]

= DW [DF [δv] , DH [δv] , DJ [δv]]

= ΣF : DF [δv] +ΣH : DH [δv] + ΣJDJ [δv]

= ΣF : ∇0δv +ΣH : (F ∇0δv) + ΣJ (H : ∇0δv)

= (ΣF +ΣH F + ΣJH) : ∇0δv

(38)

which leads to the evaluation to the first Piola-Kirchhoff tensor as:

P = ΣF +ΣH F + ΣJH (39)

For instance, for the simple compressible Mooney-Rivlin material defined
above, this expression becomes:

P = 2αF + 2βH F + f ′ (J)H . (40)

The condition of a stress-free initial configuration, where F = H = I

and J = 1, together with property (13) of the tensor cross product leads to
the following constraint on the material parameters α, β and the function
f (J):

2α + 4β + f ′ (1) = 0. (41)
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3.3. Complementary energy

The convexity of the function W (F ,H , J) with respect to its variables
ensures that the relationships between {F ,H , J} and {ΣF ,ΣH ,ΣJ} is one
to one and invertible. It is therefore possible to define a complementary
energy function by means of a Legendre transform as:

Υ (ΣF ,ΣH ,ΣJ) = max
F ,H,J

{ΣF : F +ΣH : H + ΣJJ −W (F ,H , J)} . (42)

For instance, in the particular case of a Mooney-Rivlin material, the
complementary energy is easily evaluated as:

ΥMR (ΣF ,ΣH ,ΣJ) =
1

4α
ΣF : ΣF +

1

4β
ΣH : ΣH + g (ΣJ) (43)

where the complementary function g is defined by the Legendre transform
expression:

g (ΣJ) = ΣJJ (ΣJ)− f (J (ΣJ)) (44)

and the relationship J (ΣJ) is obtained inverting equation (35c), that is,
J (f ′ (x)) = x. Note that if either α or β is zero, the corresponding term
in the complementary energy also vanishes. For instance, the case β = 0
corresponds to a compressible neo-Hookean material, for which:

ΥNH (ΣF , J) =
1

4α
ΣF : ΣF + g (ΣJ) ; ΣH = 0. (45)

3.4. Tangent elasticity operator

A tangent elasticity operator will be required in order to ensure quadratic
convergence of a Newton-Raphson type of solution process. This is typically
evaluated in terms of a fourth order tangent elasticity tensor defined by:

D2Ψ [δv;u] = ∇0δv : DP [u] = ∇0δv : C : ∇0u; C =
∂P

∂F
=

∂2Ψ

∂F ∂F
.

(46)
Using equation (39) for the first Piola-Kirchhoff tensor and following a

chain rule derivation similar to equation (38) and making use of equations
(23) and (24) for the derivatives of H , yields after simple algebra:

D2Ψ [δv;u] = ∇0δv : DP [u]

= ∇0δv : DΣF [u] + (∇0δv F ) : DΣH [u] + (∇0δv : H)DΣJ [u]

+ (ΣH + ΣJF ) : (∇0δv ∇0u) .
(47)
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In general, the conjugate stresses {ΣF ,ΣH ,ΣJ} will be functions of each
of the strain variables {F ,H , J} and the resulting tangent operator can be
represented as:

D2Ψ [δv;u] =
[

(∇0δv) : (∇0δv F ) : (∇0δv : H)
]

[HW ]





: (∇0u)
: (∇0u F )
(∇0u : H)





+ (ΣH + ΣJF ) : (∇0δv ∇0u)

(48)
where the Hessian operator HW denotes the symmetric positive definite op-
erator containing the second derivatives of W (F ,H , J):

[HW ] =













∂2W
∂F ∂F

∂2W
∂F ∂H

∂2W
∂F ∂J

∂2W
∂H∂F

∂2W
∂H∂H

∂2W
∂H∂J

∂2W
∂J∂F

∂2W
∂J∂H

∂2W
∂J∂J













. (49)

Note that the first term in equation (48) is necessarily positive for δv =
u and therefore buckling can only be induced by the “initial stress” term
(ΣH + ΣJF ) : (∇0δv ∇0u).

Remark 2: Equation (48) makes it easy to highlight the relationship between
policonvexity and ellipticity. Ellipticity requires that the double contraction
of the elasticity tensor by an arbitrary rank-one tensor v ⊗ V should be
positive, that is,

(v ⊗ V ) : C : (v ⊗ V ) > 0. (50)

Taking ∇0δv = ∇0u = v⊗V in equation (48) makes the initial stress term
vanish since,

∇0δv ∇0u = (v ⊗ V ) (v ⊗ V ) = (v × v)⊗ (V × V ) = 0. (51)

This leaves only the contribution from the first positive definite term in equa-
tion (48). It is therefore easy to note that polyconvexity implies ellipticity
[13].
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It is helpful to consider the simple case of a compressible Mooney-Rivlin
material for which the off-diagonal terms of the Hessian matrix vanish and
the tangent elastic operator becomes:

D2ΨMR [δv;u] = 2α∇0δv : ∇0u+ 2β (∇0δv F ) : (∇0u F )

+ f ′′ (J) (∇0δv : H) (∇0u : H) + (ΣH + ΣJF ) : (∇0δv ∇0u) .
(52)

It is now possible to derive appropriate values for the material parameters
α, β and the function f (J) by ensuring that at the reference configuration
the above operator coincides with the classic linear elasticity operator, which
is typically expressed in terms of the Lame coefficients {λ, µ} as:

D2ΨLIN [δv;u] = λ (∇0δv : I) (∇0u : I)+µ
(

∇0δv : ∇0u+∇0δv
T : ∇0u

)

.
(53)

Substituting F = H = I; J = 1 into equation (52), making repeated
use of property (12) for the tensor cross product and taking into account the
zero initial stress condition (41) gives after lengthy but simple algebra:

D2ΨMR [δv;u]
∣

∣

I
= (2α + 2β)

(

∇0δv : ∇0u+∇0δv
T : ∇0u

)

+ (f ′′ (1)− 2α) (∇0δv : I) (∇0u : I) .
(54)

Identifying coefficients leads to the simple condition relating α, β to the
shear modulus µ:

α + β =
µ

2
(55)

and the conditions for the first two derivatives of f at the origin:

f ′ (1) = −2α− 4β

f ′′ (1) = λ+ 2α.
(56)

A commonly used convex expression for f that satisfies these requirements
is:

f (J) = −4βJ − 2α ln J +
λ

2ε2
(

Jε + J−ε
)

; ε ≥ 1. (57)

3.5. Nearly incompressible Mooney-Rivlin material

Very often it is convenient or even necessary to separate the distortional
component from the volumetric response of the material. This is invariably
the case when attempting to model either nearly-incompressible materials
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or truly incompressible solids using approximate finite element spaces. Typ-
ically, this is achieved by separating the strain energy into isochoric and
volumetric components, Ψ̂ and U respectively, as:

Ψ (∇0x) = Ψ̂ (∇0x) + U (det∇0x) ; Ψ̂ (∇0x) = Ψ
(

(det∇0x)
−1/3

∇0x
)

.

(58)
The first term in this energy expression leads to the deviatoric component

of the Piola-Kirchhoff tensor and the derivative of the function U accounts
for the pressure p. In the context of polyconvex elasticity, it is also possible
to construct a similar decomposition in the form:

W (F ,H , J) = Ŵ (F ,H , J) + U (J) . (59)

For the purpose of deriving the conditions that needs to satisfy in order
to ensure that alone accounts for the pressure, recall first that the pressure
is obtained from the first Piola-kirchhoff tensor via the contraction:

p =
1

3
J−1P : F . (60)

Note that the sign convention used above is positive pressure in tension,
negative in compression. Substituting the relationship between the Piola-
Kirchhoff stress tensor and the conjugate stresses given by equation (39),
yields a relationship between the pressure and the conjugate stresses as:

p =
1

3
J−1P : F

=
1

3
J−1 (ΣF +ΣH F + ΣJH) : F

=
1

3
J−1 (ΣF : F + 2ΣH : H + 3ΣJJ) .

(61)

Substituting the constitutive relationships (34) and decomposition (59)
into this equation for the pressure gives:

p =
1

3
J−1

(

∂Ŵ

∂F
: F + 2

∂Ŵ

∂H
: H + 3J

∂Ŵ

∂J

)

+ U ′ (J) .

Therefore the condition that Ŵ needs to satisfy in order to ensure a
correct decomposition into volumetric and deviatoric components is:

∂Ŵ

∂F
: F + 2

∂Ŵ

∂H
: H + 3J

∂Ŵ

∂J
= 0. (62)
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In order to satisfy this requirement, it is sufficient for Ŵ to satisfy the
following mixed homogeneous condition:

Ŵ
(

αF , α2H , α3J
)

= Ŵ (F ,H , J) . (63)

Differentiating this equation with respect to α at α = 1 quickly leads
to condition (62). A simple way to ensure that this requirement is satisfied
would be to construct Ŵ in terms of the isochoric components of F and H

as:
Ŵ (F ,H) = W

(

F̂ , Ĥ , 1
)

(64)

where the isochoric components could be defined in the usual fashion [1]:

F̂ = (detF )−1/3
F ; Ĥ = (detH)−1/3

H . (65)

Unfortunately, the resulting strain energy function constructed in this
manner will not be convex with respect to F and H . Alternative expressions
can be derived by re-defining the iscochoric components of F and H as:

F̂ = J−1/3F ; Ĥ = J−2/3H . (66)

Or, alternatively, noting that F : H = 3J , as

F̂ =

(

1

3
F : H

)

−1/3

F ; Ĥ =

(

1

3
F : H

)

−2/3

H . (67)

For instance, in the case of the Mooney-Rivlin material an equivalent
polyconvex isochoric energy function is obtained as [24]:

Ŵ (F ,H , J) = ηJ−2/3 (F : F ) + γJ−2 (H : H)3/2 . (68)

The most commonly used expression for the volumetric strain energy
component U (J) is given by:

U (J) =
1

2
κ (J − 1)2 . (69)

Note that the dependency of the isochoric strain energy function Ŵ with
respect to J implies that the pressure p and the conjugate stress ΣJ are not
identical. They are in fact related by:

ΣJ = Σ̂J + p; Σ̂J =
∂Ŵ

∂J
; p = U ′(J). (70)
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Finally, the tangent elastic operator of this nearly incompressible model
can be derived in a manner similar to equation (48) to give:

D2Ψ [δv;u] = D2Ψ̂ [δv;u] + U ′′ (∇0δv : H) (∇0u : H)

D2Ψ̂ [δv;u] =
[

(∇0δv) : (∇0δv F ) : (∇0δv : H)
]

[HŴ ]





: (∇0u)
: (∇0u F )
(∇0u : H)





+ (ΣH + ΣJF ) : (∇0δv ∇0u)

(71)

3.6. The Second Piola-Kirchhoff, Kirchhoff and Cauchy stress tensors

The formulation developed so far has been expressed in terms of the
main kinematic variables F , H and J . However, material frame indifference
implies that the dependency of the strain energy with respect to F , H must
be via the right Cauchy-Green tensor C = F TF and its cofactor G =
HTH = 1

2
C C. It is therefore possible to express the strain energy as

a function of these symmetric tensors as:

Ψ (∇0x) = W̃ (C,G, C) (72)

where, for consistency, C = detC = J2 is being used instead of J as the
variable describing the volumetric change. Note, however, that the function
W̃ need not to be strictly convex with respect to its variables. For instance,
in the case of a Mooney-Rivlin material, W̃ is linear with respect to both C

and G as,

W̃MR (C,G, C) = αC : I + βG : I + f̃ (C) ; f̃ (C) = f
(√

C
)

. (73)

Using the work conjugacy expresion between the second Piola-Kirchhoff
S and the right Cauchy-Green tensor C given by:

DΨ [δv] = S :
1

2
DC [δv] ; S = 2

∂Ψ(C)

∂C

∣

∣

∣

∣

C=(∇0x)
T (∇0x)

(74)

and defining the conjugate stresses to C, G and C as:

ΣC = 2
∂W̃

∂C
; ΣG = 2

∂W̃

∂G
; ΣC = 2

∂W̃

∂C
(75)
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enables an expression for the second Piola-Kirchhoff tensor to be derived
using the same steps employed in equation (38) for the derivation of the first
Piola-Kirchhoff tensor to give:

S = ΣC +ΣG C + ΣCG. (76)

It is also possible to derive the total Lagrangian elasticity tensor in terms
of the Hessian matrix of W̃ following similar steps to those employed in
previous sections. This derivation will not be pursued here as it will not be
used in the computational framework proposed later.

In addition to the first and second Piola-Kirchhoff stresses, it is necessary
to derive expressions for the Cauchy and Kirchhoff stresses as often these
tensors are needed in order to express plasticity models or simply to display
solution results. Such expressions can be relatively easily derived from the
standard relationship between these tensors [1]:

Jσ = τ = PF T . (77)

Substituting equation (39) for the first Piola-Kirchhoff tensor and recall-
ing that HF T = JI gives,

Jσ = τ = ΣFF
T + (ΣH F )F T + JΣJI. (78)

The middle term in this expression can be transformed with the help of
property (21) of the tensor cros product by taking B = F , A1 = J−1ΣHHT

and A2 = I to give,

(ΣH F )F T = ΣHHT I. (79)

Thus giving an expression for the Kirchhoff stresses as:

Jσ = τ = ΣFF
T +

(

ΣHHT I
)

+ JΣJI. (80)

Alternatively, introducing the notation:

τF = ΣFF
T ; τH = ΣHHT ; τJ = JΣJ (81)

gives,
Jσ = τ = τF + τH I + τJI (82)
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4. Variational formulations

This section presents several possible variational formulations. The sec-
tion starts reviewing the standard displacement based variational principle.
For this case the present framework does not provide any practical advan-
tages, other than the evaluation of the first Piola-Kirchhoff stress and the
tangent modulus via equations (39) and (48), respectively. It is simply pre-
sented here in order to provide a useful background for comparison with
mixed and complementary energy variational principles presented later in
the section. The aim of the section is to present the concepts in as simple a
manner as possible, rather than to provide precise mathematical statements
given that, in practice, the concepts presented here will be implemented in
well defined discrete finite element spaces described in the following section.

4.1. Standard displacement based variational principle

The solution of large strain elastic problems is often expressed by means
of the total energy minimisation variational principle as:

Π(x∗) = min
x







∫

V

Ψ(∇0x) dV −
∫

V

f 0 · x dV −
∫

∂tV

t0 · x dA







(83)

where x∗ denotes the exact solution. The stationary condition of this func-
tional leads to the principle of virtual work (or power), commonly written
as:

DΠ [δv] =

∫

V

P x : ∇0δv dV −
∫

V

f 0 · δv dV −
∫

∂tV

t0 · δv dA = 0. (84)

In this expression, the first Piola-Kirchhoff tensor P x is evaluated in
the standard fashion using equation (39) in terms of the gradient of the
deformation ∇0x. For convenience and in order to simplify the notation, it
is useful to introduce the definition of the geometrically compatible strain
measures as:

F x ≡ ∇0x; Hx ≡ 1

2
∇0x ∇0x; Jx ≡ det∇0x. (85)

In this manner, the first Piola-Kirchhoff tensor P x becomes:

P x = Σx

F
+Σx

H
F x + Σx

JHx (86)
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where the superscript x in the above stresses indicates that they are evaluated
in terms of the geometric deformation gradient as:

Σx

F
= ΣF (F x,Hx, Jx)

Σx

H
= ΣH (F x,Hx, Jx)

Σx

J = ΣJ (F x,Hx, Jx) .

(87)

An iterative Newton-Raphson process to converge towards the solution is
usually established by solving a linearized system for the increment u as:

D2Π [δv;u] = −DΠ(xk) [δv] ; xk+1 = xk + u (88)

where, in the absence of follower forces, the second derivative of the total
energy functional is given by:

D2Π [δv;u] =

∫

V

D2Ψ [∇0δv,∇0u] dV . (89)

The tangent operator is evaluated using equation (48), taking F = ∇0x,
H = 1

2
∇0x ∇0x and J = det∇0x.

4.2. Mixed Variational Principle

An equivalent but alternative expression for the total energy variational
principle can be written in terms of the geometry and strain variables as a
constrained minimisation problem in the form:

Π(x∗) = min
x,F ,H, J, s.t.

F = Fx,

H = Hx,

J = Jx







∫

V

W (F ,H , J) dV −
∫

V

f 0 · x dV −
∫

∂tV

t0 · x dA







.

(90)
Using a standard Lagrange multiplier approach to enforce the compati-
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bility constraints gives the following augmented mixed variational principle:

ΠM(x∗,F ∗,H∗, J∗,ΣF
∗,Σ∗

H
,Σ∗

J) = min
x,F ,H,J







max
ΣF ,ΣH ,ΣJ







∫

V

W (F ,H , J) dV

+

∫

V

ΣF : (F x − F ) dV +

∫

V

ΣH : (Hx −H) dV +

∫

V

ΣJ(Jx − J) dV

−
∫

V

f 0 · x dV −
∫

∂tV

t0 · x dA













.

(91)
This expression belongs to the general class of Hu-Washizu type of mixed

variational principles which have been widely used for the development of
enhanced finite element formulations [1]. Note that the stress variables
{ΣF ,ΣH ,ΣJ} in this expression, at this stage, are simply Lagrange mul-
tipliers and are as yet unconnected to the strain variables.

The stationary condition of the above augmented Lagrangian with respect
to the first variable enforces equilibrium in the form of the principle of virtual
work as:

D1ΠM [δv] =

∫

V

PM : ∇0δv dV −
∫

V

f 0 · δv dV −
∫

∂tV

t0 · δv dA = 0 (92)

where the first Piola-Kirchhoff stress now emerges as:

PM = ΣF +ΣH F x + ΣJHx. (93)

The stationary conditions with respect to the three strain variables en-
force the constitute relationships between the stresses and the derivatives of
the strain energy in a weak form:

D2,3,4ΠM [δF , δH , δJ ] =

∫

V

(

∂W

∂F
−ΣF

)

: δF dV +

∫

V

(

∂W

∂H
−ΣH

)

: δH dV

+

∫

V

(

∂W

∂J
− ΣJ

)

δJ dV = 0.

(94)
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Finally, the stationary conditions with respect to the stress variables en-
force the geometric compatibility conditions between strains and geometry:

D5,6,7ΠM [δΣF , δΣH , δΣJ ] =

∫

V

δΣF : (F x − F ) dV +

∫

V

δH : (Hx −H) dV

+

∫

V

δJ (Jx − J) dV .

(95)

Remark 3. It is important to note that for, certain choices of interpolation
spaces insufficiently rich, the above variational formulation may not ensure
that the kinematic compatibility constraints are enforced at every point in the
domain. In fact, in cases such as incompressible elasticity, the interpolation
spaces will be chosen for this very reason. However, this weak enforcement of
compatibility can have unwanted consequences such as the lack of symmetry
of Cauchy (or Kirchhoff) stresses if these are calculated by the product:

τM = PMF T
x

= ΣFF
T
x + (ΣH F x)F

T
x + ΣJHxF

T
x

= ΣFF
T
x +

(

ΣHHT
x

)

F T
x + JxΣJI.

(96)

In the above expression it is very unlikely that the terms ΣFF
T
x and ΣHHT

x

will be symmetric given the weak enforcement of the compatibility con-
straints. Note, however, that this Kirchhoff stress tensor is not part of
the solution process. Nevertheless, it will often be required so that ap-
propriate stress fields, such as Cauchy stresses, can be given as output of
the computation. For this purpose, it is important that these stresses are
evaluated using equation (82) directly, where τF and τH are evaluated in-
dependently using fully compatible kinematic-stress pairs. For instance, by
taking τF = ΣF (F )F T and τH = ΣH(H)HT .

In order to complete the formulation, it is necessary to develop a Newton-
Raphson iterative process and the appropriate tangent operators. For this
purpose, note first that a process equivalent to equation (88) for the ex-
tended set of variables is established by first solving a linear system for the
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increments of this set of variables {u,∆F ,∆H ,∆J,∆ΣF ,∆ΣH ,∆ΣJ} as:

D2
1...7;1...7ΠM [δv, δF , δH , δJ, δΣF , δΣH , δΣJ ;u,∆F ,∆H ,∆J,∆ΣF ,∆ΣH ,∆ΣJ ] =

−D1...7ΠM [δv, δF , δH , δJ, δΣF , δΣH , δΣJ ] ; ∀δv, δF , δHδJ, δΣG, δΣH , δΣJ .
(97)

This is followed by the incremental updates:

xk+1 = xk + u; F k+1 = F k +∆F ; Hk+1 = Hk +∆H ; Jk+1 = Jk +∆J ;

Σk+1
F

= Σk
F
+∆ΣF ; Σk+1

H
= Σk

H
+∆ΣH ; Σk+1

J = Σk
J +∆ΣJ .

(98)
The second derivatives that make up the linear operator in equation (97)

can be derived with relative ease component by component. For instance,
the second derivative with respect to the geometry, is obtained differentiating
again the principle of virtual work, equation (92), with the help of equation
(93) to give the ”initial stress” component of the tangent operator as:

D2
1;1ΠM [δv;u] =

∫

V

(ΣH + ΣJF x) : (∇0δv ∇0u) dV . (99)

The terms involving second derivatives with respect to the strain variables
emerge from the Hessian of the strain energy function W (F ,H , J) as:

D2
2,3,4;2,3,4ΠM [δF , δH , δJ ; ∆F ,∆H ,∆J ] =

∫

V

[

δF : δH : δJ
]

[HW ]





: ∆F

: ∆H

∆J



 dV .

(100)
The second derivative with respect to stresses vanishes as the functional

is linear with respect to the stress tensors. There are, however, a number of
cross derivative terms that do not vanish. These are, the cross derivatives
with respect to strains and stresses and their symmetric counterpart, which
are easily derived from either equation (94) or (95) to give:

D2
2,3,4;5,6,7ΠM [δF , δH , δJ ; ∆ΣF ,∆ΣH ,∆ΣJ ] = −

∫

V

(δF : ∆ΣF + δH : ∆ΣH + δJ∆ΣJ) dV

D2
5,6,7;2,3,4ΠM [δΣF , δΣH , δΣJ ; ∆F ,∆H ,∆J ] = −

∫

V

(δΣF : ∆F + δΣH : ∆H + δΣJ∆J) dV .

(101)
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And the cross derivatives with respect to geometry and stresses, which
emerge after some simple algebra from equations (92), (93) and (95) as:

D2
1;5,6,7ΠM [δv; ∆ΣF ,∆ΣH ,∆ΣJ ] =

∫

V

[∇0δv : ∆ΣF + F x : (∇0δv ∆ΣH)

+ ∆ΣJHx : ∇0δv] dV
(102)

D2
5,6,7;1ΠM [δΣF , δΣH , δΣJ ;u] =

∫

V

[∇0u : δΣF + F x : (∇0u δΣH)

+ δΣJHx : ∇0u] dV.
(103)

The set of equations derived in this section enables the use of arbitrary
discretisation spaces for each of the problem variables. This level of flexibility
may be useful but it is costly given the large number of unknowns generated
in the process. An alternative approach that significantly reduces the number
of problem variables is presented in the next section.

4.3. Complementary Energy Principle

In order to derive a variational principle in terms of the complementary
energy, recall first the mixed variational principle (91) with a different order-
ing of terms:

ΠM(x∗,F ∗,H∗, J∗,ΣF
∗,Σ∗

H
,Σ∗

J) = min
x,F ,H,J

{

max
ΣF ,ΣH ,ΣJ

{

−
∫

V

[ΣF : F +ΣH : H + ΣJJ −W (F ,H , J)] dV −
∫

V

f 0 · x dV −
∫

∂tV

t0 · x dA

+

∫

V

ΣF : F x dV +

∫

V

ΣH : Hx dV +

∫

V

ΣJJx dV













.

(104)
Comparing the term in square brackets in the first integral with the def-

inition of the complementary energy given by equation (42), enables a com-
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plementary variational principle to be established as3:

ΠM(x∗,ΣF
∗,Σ∗

H
,Σ∗

J) = min
x∈H







max
ΣF ,ΣH ,ΣJ







−
∫

V

Υ(ΣF ,ΣH ,ΣJ) dV

+

∫

V

ΣF : F x dV +

∫

V

ΣH : Hx dV +

∫

V

ΣJJx dV −
∫

V

f 0 · x dV −
∫

∂tV

t0 · x dA













.

(105)
This represents a Helinger-Reissner type of variational principle [1]. The

stationary condition of this principle with respect to its first variable, the
geometry, enforces equilibrium in a manner identical to equations (92) and
(93), that is,

D1ΠC [δv] = D1ΠM [δv] =

∫

V

PM : ∇0δv dV −
∫

V

f 0 · δv dV −
∫

∂tV

t0 · δv dA = 0

P C = PM =ΣF +ΣH F x + ΣJHx.
(106)

Similarly, the stationary conditions with respect to stresses, enforce the
geometric compatibility conditions, now expressed as,

D2,3,4ΠC [δΣF , δΣH , δΣJ ] =

∫

V

δΣF :

(

F x − ∂Υ

∂ΣF

)

dV +

∫

V

δH :

(

Hx − ∂Υ

∂ΣH

)

dV

∫

V

δΣJ

(

Jx − ∂Υ

∂ΣJ

)

dV .

(107)
The second derivatives of the complementary energy functional required

for a Newton-Raphson process are mostly the same as those derived in the
previous section for the mixed variational principle. In particular, the fol-

3Note that this step relies on the strong duality property of the mixed functional which
allows the order of the min and max operations with respect to strains and stresses to be
swapped. This is the case here given the convexity of the strain energy function.
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lowing terms are identical:

D2
1;1ΠC [δv;u] =D2

1;1ΠM [δv;u]

D2
2,3,4;1ΠC [δΣF , δΣH , δΣJ ;u] =D2

5,6,7;1ΠM [δΣF , δΣH , δΣJ ;u]

D2
1;2,3,4ΠC [δv; ∆ΣF ,∆ΣH ,∆ΣJ ] =D2

1;5,6,7ΠM [δv; ∆ΣF ,∆ΣH ,∆ΣJ ] .
(108)

A new term, however, emerges when taking the second derivatives with
respect to stresses, leading to a constitutive expression similar to equation
(100) but now involving the second derivative of the complementary energy
function. This term can be evaluated by differentiating again equation (107)
to give:

D2
2,3,4;2,3,4ΠC [δΣF , δΣH , δΣJ ; ∆ΣF ,∆ΣH ,∆ΣJ ] =

−
∫

V

[

δΣF : δΣH : δΣJ

]

[HΥ]





: ∆ΣF

: ∆ΣH

∆ΣJ



 dV .
(109)

Where [HΥ] denotes the Hessian matrix of the complementary energy
function. Note that this component is clearly negative on account of the
variational principle involving a maximisation with respect to stresses. It is
possible to change this sign by simply changing the overall the sign of the
principle (105). This would also change the sign of D2

1;1ΠC [δv;u] but this
term is neither positive nor negative since it contains tensor cross products
of the gradient of δv and u. For practical purposes, however, this will not be
necessary, as the stress variables will typically be eliminated locally in each
finite element. What is essential is that the Hessian matrix is invertible,
which is ensured by the convexity of the function Υ.

4.4. Variational principles for incompressible and nearly incompressible mod-

els

Many applications of practical importance rely on the decomposition of
the strain energy into isochoric and volumetric components. For such cases,
it is possible to modify the variational formulations above in such a way that
different approaches are used for the isochoric and volumetric components.
In particular, it is often useful to follow a standard displacement based formu-
lation for the isochoric component and a mixed approach for the volumetric
terms [2]. In the present framework, this leads to the following hybrid mixed
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variational principle:

Π̂M(x∗, J∗, p∗) = min
x,J







max
p







∫

V

Ŵ (F x,Hx, Jx) dV +

∫

V

U (J) dV +

∫

V

p (Jx − J) dV

−
∫

V

f 0 · x dV −
∫

∂tV

t0 · x dA













(110)
where Ŵ and U are the isochoric and volumetric components of the strain
energy defined in Section 3.5. Note that, in general Ŵ , will be a direct func-
tion of volume ratio. This volume ratio is expressed differently in the two
terms making up the strain energy: it is directly evaluated from the geom-
etry in the iscochoric strain energy, whereas it is expressed an independent
variable J in the volumetric component. The third integral term above en-
forces the compatibility between these two measures. The particular case of
full incompressibility can be obtained by simply taking J = 1 in the above
expression to give:

Π̂I
M(x∗, p∗) = min

x,J







max
p







∫

V

Ŵ (F x,Hx, Jx) dV +

∫

V

p (Jx − 1) dV

−
∫

V

f 0 · x dV −
∫

∂tV

t0 · x dA













.

(111)
The stationary conditions of these hybrid functionals are evaluated in

the same fashion as above. For instance, the first derivative with respect to
geometry gives the principle of virtual work as:

D1Π̂M [δv] = D1Π̂
I
M [δv] =

∫

V

P I : ∇0δv dV −
∫

V

f 0 · δv dV

−
∫

∂tV

t0 · δv dA = 0
(112)

where the first Piola-Kirchoff stress tensor is now evaluated as:

P I = Σx

F
+Σx

H
F x + ΣJHx; ΣJ = Σ̂x

J + p (113)
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and the last term in (113) indicates that the volumetric conjugate stress
includes a component due to the independent variable p as well as a contri-
bution due to the isochoric strain energy function as:

Σ̂x

J =
∂Ŵ (F x,Hx, Jx)

∂Jx
. (114)

The first derivative with respect to J enforces the volumetric component
of the constitutive model as:

D2Π̂M [δJ ] =

∫

V

(U ′ − p) δJ dV = 0. (115)

Finally, the stationary condition with respect to the pressure enforces
geometric compatibility between J and det∇0x as:

D3Π̂M [δp] =

∫

V

(Jx − J) δp dV = 0

D2Π̂
I
M [δp] =

∫

V

(Jx − 1) δp dV = 0.

(116)

The evaluation of second derivatives required for a Newton-Raphson pro-
cess proceeds along the same lines as in the previous sections. For instance,
the second derivative with respect to geometry contains the isochoric tangent
operator as given by equation (71):

D2
1;1Π̂M [δv;u] = D2

1;1Π̂
I
M [δv;u] =

∫

V

D2Ψ [δv;u] dV . (117)

The second derivative with respect to J is easily evaluated from equation
(115) to give:

D2
2;2Π̂M [δJ ; ∆J ] =

∫

V

U ′′δJ∆J dV . (118)

There are also cross derivative terms different from zero. For instance,
the cross derivative with respect to J and p is:

D2
2;3Π̂M [δJ ; ∆p] = −

∫

V

∆pδJ dV ; D2
3;2Π̂M [δp; ∆J ] = −

∫

V

δp∆J dV .

(119)
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Finally, the cross derivative terms between pressure and geometry are:

D2
1;3Π̂M [δv; ∆p] = D2

1;2Π̂
I
M [δv; ∆p] =

∫

V

(Hx : ∇0δv)∆p dV

D2
3;1Π̂M [δp;u] = D2

2;1Π̂
I
M [δp;u] =

∫

V

δp (Hx : ∇0u) dV .

(120)

5. Finite Element implementation

It is not the purpose of this paper to provide an exhaustive analysis of
different finite element interpolation strategies to discretise the equations de-
rived in previous section. However, two particular examples will be provided
in order to demonstrate the validity of the formulation presented.

5.1. General remarks

The implementation of the various variational principles described in the
previous section is based on a finite element partition of the domain into a
set of elements. Inside each element the problem variables are interpolated
in terms of a set of shape functions Na as:

x =
nx
∑

a=1

xaN
x

a ; F =

nF
∑

a=1

F aN
F

a ; ...; x =

nΣF
∑

a=1

ΣF aN
ΣF

a ; ... (121)

where a denotes the nodes or other degrees of freedom used in the interpo-
lation of the above variables. In general, different interpolations can (and
are often) used to describe different variables. However, the same interpo-
lation space will invariably be used for strain-stress conjugate pairs; that is,
NF

a = NΣF

a , etc. The virtual and incremental equivalents of the variables
are also interpolated using the same spaces as:

δv =
nx
∑

a=1

δvaN
x

a ; δF =

nF
∑

a=1

δF aN
F

a ; ...; δΣF =

nF
∑

a=1

δΣa

F
NΣF

a (122)

u =
nx
∑

a=1

uaN
x

a ; ∆F =

nF
∑

a=1

∆F aN
F

a ; ...; ∆ΣF =

nF
∑

a=1

∆Σa

F
NΣF

a . (123)

Finite element equations are derived by simply substituting the above
expressions into the functional expressions provided in the previous section.
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In many cases this is a rather standard process and leads to well established
equations. For instance, substituting the above interpolation for the virtual
velocity into any of the virtual work statements given above by equations
(84), (92), (106) or (112) leads to the standard definition of the residual
forces as:

D1Π [δv] =
∑

a

Ra
x
· δx; Ra

x
=

∫

V

P∇0N
x

a dV −
∫

V

f 0N
x

a dV −
∫

∂tV

t0N
x

a dA

(124)
where the Piola-Kirchhoff stress above will be evaluated in accordance with
each of the formulations presented in the previous section. Similar expres-
sions for other residual terms can be easily derived. For instance, the ge-
ometric compatibility residuals emerge from the discretisation of equations
(95) or (107) as:

Ra
ΣF

=

∫

V

(F x − F )NF

a dV ; Ra
ΣH

=

∫

V

(Hx −H)NH

a dV ;

Ra
ΣJ

=

∫

V

(Jx − J)NJ
a dV .

(125)

Very similar equations emerge in the case of the mixed potential for the
constitutive equation residuals:

Ra
F
=

∫

V

(

∂W

∂F
−ΣF

)

NF

a dV ; Ra
H

=

∫

V

(

∂W

∂H
−ΣH

)

NH

a dV ;

Ra
J =

∫

V

(

∂W

∂J
− ΣJ

)

NJ
a dV .

(126)

In order to complete the finite element formulation it is necessary to
derive equations for the components of the tangent matrix by discretising
the tangent operators defined in the previous section. For the case of the
mixed formulation, the resulting matrix operator can be represented as:

D2ΠM [δv, δD, δΣ;u,∆D,∆Σ] =
[

δv δD δΣ
]





Kxx 0 KxΣ

0 KDD KDΣ

KΣx KΣD 0









u

∆D

∆Σ





(127)
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where D = {F a,Ha, Ja} denotes the set of strain variables and Σ =
{ΣF a,ΣHa,ΣJa} denotes the set of stress conjugate variables. Alternatively,
for the case of a complementary energy potential the equivalent expression
becomes:

D2ΠC [δv, δΣ;u,∆Σ] =
[

δv δΣ
]

[

Kxx KxΣ

KΣx KΣΣ

] [

u

∆Σ

]

. (128)

Some of the terms in the above matrices are very straightforward to ob-
tain. For instance the term KDΣ relating stresses and strains in equation
(127) follows from the discretisation of the corresponding tangent operator
component given in equation (101) as:

Kab
DΣ

= −
∫

V





NF

a NF

b I 0 0

0 NH

a NH

b I 0

0 0 NJ
a N

J
b I



 dV (129)

where I denotes the components of the fourth order identity tensor.
The diagonal components of the tangent matrix relating associated with

strains or stresses, KDD and KΣΣ respectively, can be obtained from the
discretisation of the corresponding Hessian term in the tangent operator. For
instance, the strain term becomes:

Kab
DD

=

∫

V





NF

a NF

b H
FF

W NF

a NH

b H
FH

W NF

a NJ
b H

FJ
W

NH

a NF

b H
HF

W NH

a NH

b H
HH

W NH

a NJ
b H

HJ
W

NJ
a N

F

b H
JF
W NJ

a N
H

b H
JH
W NJ

a N
J
b H

JJ
W



 dV (130)

And the corresponding tangent stress term:

Kab
ΣΣ

= −
∫

V





NF

a NF

b H
ΣFΣF

Υ NF

a NH

b H
ΣFΣH

Υ NF

a NJ
b H

ΣFΣJ

Υ

NH

a NF

b H
ΣHΣF

Υ NH

a NH

b H
ΣHΣH

Υ NH

a NJ
b H

ΣHΣJ

Υ

NJ
a N

F

b H
ΣJΣF

Υ NJ
a N

H

b H
ΣJΣH

Υ NJ
a N

J
b H

ΣJΣJ

Υ



 dV

(131)
The final two terms of the tangent matrix involve derivatives with respect

to geometry and require more careful analysis. Consider first the top diagonal
component Kxx. This term emerges from the discretisation of the initial
stress component of the tangent operator defined in equation (99). After
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discretisation and some simple algebra using property (16) of the tensor cross
product, the component relating nodes a, b of this operator becomes:

D2
1,1ΠM [δvaN

x

a ;ubN
x

b ] =

∫

V

(ΣH + ΣJF x) : [(δva ⊗∇0N
x

a ) (ub ⊗∇0N
x

b )] dV

=

∫

V

(ΣH + ΣJF x) : [(δva × ub)⊗ (∇0N
x

a ×∇0N
x

b )] dV

= (δva × ub) ·
∫

V

(ΣH + ΣJF x) (∇0N
x

a ×∇0N
x

b ) dV

= (δva × ub) · kab
xx

= δva ·Kab
xx
ub

(132)
where the initial stress vector kab

xx
and equivalent skew symmetric matrix

Kab
xx

are:

kab
xx

=

∫

V

(ΣH + ΣJF x) (∇0N
x

a ×∇0N
x

b ) dV

[

Kab
xx

]

ij
= Eijk

[

kab
xx

]

k

(133)

Similar derivations starting from equation (102) yield the final component
relating geometry changes to stress changes KxΣ. For clarity, however, the
terms relating to each one of the conjugate stresses is derived individually.
The first term relating geometry to conjugate stress ΣF is obtained as:

D2
x;ΣF

ΠM

[

δvaN
x

a ; ∆Σb
F
NF

b

]

=

∫

V

(δva ⊗∇0N
x

a ) : ∆Σb
F
NF

b dV

= δva ·





∫

V

(I ⊗∇0N
x

a )N
F

b dV



 : ∆Σb
F

= δva ·Kab
xΣF

: ∆Σb
F

(134)
where the third order tensor Kab

xΣF
is:

K
ab
xΣF

=

∫

V

(I ⊗∇0N
x

a )N
F

b dV (135)
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The third term relating geometry to conjugate stress ΣJ is obtained as:

D2
x;ΣJ

ΠM

[

δvaN
x

a ; ∆Σb
JN

J
b

]

=

∫

V

∆Σb
JN

J
b Hx : (δva ⊗∇0N

x

a ) dV

=δva ·





∫

V

NJ
b Hx∇0N

x

a dV



∆Σb
J

=δva · kab
xΣJ

∆Σb
J

(136)

where the vector kab
xΣJ

is:

kab
xΣJ

=

∫

V

NJ
b Hx∇0N

x

a dV (137)

Finally, the term relating geometry to changes in ΣH is:

D2
x;ΣH

ΠM

[

δvaN
x

a ; ∆Σb
H
NH

b

]

=

∫

V

[F x (δva ⊗∇0N
x

a )] : ∆Σb
H
NH

b dV

=− δva





∫

V

(F x ∇0N
x

a )N
H

b dV



 : ∆Σb
H

=δva ·Kab
xΣH

: ∆Σb
H

(138)
with:

[

K
ab
xΣH

]

ijI
= Eijk





∫

V

(F x ∇0N
x

a )N
H

b dV





kI

(139)

5.2. Complementary energy application case

The equations provided above can be implemented using a variety of finite
element spaces. Of course, not all choices will lead to effective or valid finite
element formulations. Moreover, the cost of implementation of mixed formu-
lation may be significantly higher than that of standard displacement based
approaches given the number of additional unknowns created. However, care-
ful analysis of the continuity required for each of the variables, shows that
only displacements need to be continuous across elements. Stress and strain
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variables can actually be discretised independently on each element of the
mesh. This enables a static condensation process to be carried out before
assembly of the global tangent matrix. In order to illustrate this process
and as an example of the complementary energy formulation proposed, this
section describes a choice of interpolation functions that permits such a con-
densation. In particular, a quadratic tetrahedron element is proposed for
the geometry discretisation, with linear element by element interpolations
for the stresses conjugate to the deformation gradient and its co-factor and a
constant interpolation for the stress conjugate to the Jacobian. The resulting
element is very similar to that proposed in reference [24].

The resulting formulation is obtained by applying the set of equations
derived in the previous section with shape functions Nx

a (a = 1, ..., 10) that
are quadratic and continuous across elements; NF

a = NH

a (a = 1, ..., 4) linear
and discontinuous across elements and NJ

a (a = 1) constant and discontin-
uous across elements. The fact that the shape functions associated with
stresses are discontinuous across elements allows for the elimination of stress
unknowns inside each element to take place. In order to illustrate this, note
that for a given element the system of equations to be solved can be written
as:

[

Ke
xx

Ke
xΣ

Ke
Σx

Ke
ΣΣ

] [

ue

∆Σe

]

= −
[

Re
x

Re
Σ

]

. (140)

The second row of equations enables the stress increments to be expressed
in terms of displacements as:

∆Σe = − [Ke
ΣΣ

]−1 (Ke
Σx

ue +Re
Σ
) . (141)

Substituting this relationship into the first row of equation (140) gives an
augmented set of equations for the displacement vector:

K̄
e
xx
ue =− R̄

e
x
;

K̄
e
xx

= Ke
xx

−Ke
xΣ

[Ke
ΣΣ

]−1
Ke

Σx
; R̄

e
x
= Re

x
−Ke

xΣ
[Ke

ΣΣ
]−1

Re
Σ

(142)
These augmented stiffness matrix and residual vector can now be assem-

bled into a global system in the usual finite element manner.

5.3. Stabilised linear tetrahedron for incompressible elasticity

As a final case study of the application of the present framework, a linear
tetrahedron for modelling full incompressible elasticity is described. This
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will also serve as an example of the introduction of Petrov-Galerkin type of
stabilisation to a mixed formulation in which the discretisation spaces do not
satisfy the LBB condition.

In the proposed formulation, both the geometry and pressure are discre-
tised using linear tetrahedral elements in terms of the same standard shape
functions Na as:

x =
4
∑

a=1

xaNa; p =
4
∑

a=1

paNa. (143)

Note that in this case the pressure is continuous across elements and
therefore cannot be eliminated locally. This adds to the number of global
degrees of freedom but the resulting tetrahedron will be capable of simu-
lating incompressible deformations without locking [47]. Unfortunately, it
is well know that an incompressible mixed formulation with linear displace-
ments and linear pressures on tetrahedral element spaces does not satisfy the
necessary LBB condition and leads to unstable solutions [3]. The classical
solution to this problem is to introduce Petrov-Galerkin stabilisation [46–49].
In particular, this is done here by defining the stabilised virtual pressures and
velocities as:

δpst = δp− τp (Hx : ∇0δv) (144a)

δvst = δv − τv (Hx∇0δp) . (144b)

Note that in the usual Petrov-Galerkin manner, the term in parenthesis
in (144a) is the derivative of the constraint equation det∇0x = 1 and that
τp has the same units as an elastic constant. The stabilised term in (144b) is

defined following [46], namely τv = αh2

2µ
, where µ is an elastic constant, h is the

mesh size and α is a non-dimensional stabilisation parameter. Substituting
expression (144a) into the constraint equation (116) leads to an additional
term in the principle of virtual work (112) as:

D1Π̂
st
M [δv] =

∫

V

P st : ∇0δv dV −
∫

V

f 0 · δv dV −
∫

∂tV

t0 · δv dA = 0

(145)
where the stabilised first Piola-Kirchhoff tensor is:

P st = Σx

F
+Σx

H
F x + Σst

J Hx; Σst
J = Σ̂x

J + p+ τp (Jx − 1) . (146)

35



Substituting equation (144b) into the principle of virtual work (112) leads
to an additional term in the constraint equation (116),

D2Π̂
st
M [δp] =

∫

V

δp (Jx − 1) dV −
∫

V

τv (Hx∇0δp) · (Hx∇0p) dV . (147)

Clearly, as the mesh is refined and the enforcement of the volumetric
constraint is improved, the stabilisation terms in (146) and (147) will tend to
zero. Introducing the discretisation equations for the geometry and pressure
gives the equilibrium and constraints residuals as:

Ra
x
=

∫

V

P st∇0Na dV −
∫

V

f 0N
x

a dV −
∫

∂tV

t0N
x

a dA (148a)

Ra
p =

∫

V

(Jx − 1)Na dv −
∫

V

τv (Hx∇0Na) · (Hx∇0p) dV . (148b)

The system of liner equations to be solved at each Newton-Raphson iter-
ation is now expressed globally as:

[

Kst
xx

kxp

kst
px kst

pp

] [

u

∆p

]

= −
[

Rx

Rp

]

. (149)

The off-diagonal term kxp of (149) is in fact identical to that obtained in
the previous section relating the volumetric stress and geometry via equation
(137), that is:

kab
xp =

∫

V

NbHx∇0Na dV (150)

The diagonal component Kst
xx

in the above tangent matrix can be bro-
ken down into three terms: a constitutive component due to the Hessian
of the isochoric strain energy Ŵ , an initial stress term similar to that de-
rived in equation (133) plus a contribution from geometric derivative of the
stabilisation term τp (Jx − 1) , that is:

Kst
xx

=
(

KŴ +K0 +Kτp

)

. (151)
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The stabilisation component is easily evaluated for equations (145) and
(146) as:

δva ·Kab
τpub =

∫

V

τp [Hx : (δva ⊗∇0Na)]DJx [ubNb] dV

=

∫

V

τp [Hx : (δva ⊗∇0Na)] [Hx : (ub ⊗∇0Nb)] dV

=

∫

V

τp (δva ·Hx∇0Na) (ub ·Hx∇0Nb) dV

= δva ·





∫

V

τp (Hx∇0Na)⊗ (Hx∇0Nb) dV



ub

(152)

which gives:

Kab
τp =

∫

V

τp (Hx∇0Na)⊗ (Hx∇0Nb) dV (153)

The initial stress component is given by equation (133) with a volumetric
stress component that includes the additional stabilisation term, that is:

kab
0 =

∫

V

(ΣH + ΣJF x) (∇0Na ×∇0Nb) dV

[

Kab
0

]

ij
= Eijk

[

kab
0

]

k

(154)

Finally, the constitutive component is given by the Hessian of the iso-
choric strain energy as:

δva ·Kab
Ŵ
ub =

∫

V

[

DF x [δvaNa] : DHx [δvaNa] : DJx [δvaNa]
]

[HΥ]





: DF x [ubNb]
: DHx [ubNb]
DJx [ubNb]



 dV

(155)
The off-diagonal term kst

px in (149) can be broken down into three terms
stemming from the linearisation of the right hand side of equation (147) with
respect to the geometry, that is:
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kst
px = kJ − kH1

− kH2
(156)

where

δpak
ab
J · ub =

∫

V

δpaNaDJx [ubNb] dV = δpa





∫

V

NaHx∇0Nb dV



ub (157)

which gives

kab
J =

∫

V

NaHx∇0Nb dV (158)

Computation of the directional derivative of the second term on the right
hand side of equation (147) and use of properties (7) and (11) yields:

δpak
ab
H1

· ub = δpa

∫

V

τv (Hx∇0Na) · (DHx [ubNb]∇0p) dV

= δpa

∫

V

τv (Hx∇0Na) · [(F x (ub ⊗∇0Nb))∇0p] dV

= δpa

∫

V

τv [(Hx∇0Na ⊗∇0p) F x] : (ub ⊗∇0Nb) dV

= δpa





∫

V

τv [(Hx∇0Na ⊗∇0p) F x]∇0Nb dV



 · ub

(159)

which gives

kab
H1

=

∫

V

τv [(Hx∇0Na ⊗∇0p) F x]∇0Nb dV (160)

Analogously,

kab
H2

=

∫

V

τv [(Hx∇0p⊗∇0Na) F x]∇0Nb dV (161)
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Finally, the diagonal term kst
pp is given as,

kst,ab
pp = −

∫

V

τv (Hx∇0Na) · (Hx∇0Nb) dV (162)

6. Numerical examples

The objective of this section is to present a series of numerical examples
in order to prove the robustness, accuracy and applicability of the compu-
tational framework presented above. Numerical results dealing with both
compressible and incompressible polyconvex constitutive models will be pre-
sented.

For the compressible case, four different formulations are presented: i) a
standard displacement {x} based formulation as described in Section 4.1,
hereby denoted as DF; ii) a seven field {x,F ,H , J,ΣF ,ΣH ,ΣJ} mixed
formulation as described in Section 4.2, denoted as M7F; iii) a four field
{x,ΣF ,ΣH ,ΣJ} mixed formulation based on the complementary energy
principle described in Section 4.3, denoted by MCF and iv) an alterna-
tive five field {x,H , J,ΣH ,ΣJ} mixed formulation, denoted as M5F. In
this last case, the deformation gradient is enforced to coincide strongly with
the material gradient of the spatial coordinates, namely F = ∇0x.

All of the numerical results presented correspond to the following selection
of functional spaces: continuous quadratic interpolation of the displacement
field (geometry) x, piecewise linear interpolation of the strain and stress fields
F , H , ΣF and ΣH and piecewise constant interpolation of the Jacobian J
and its associated stress conjugate ΣJ . With these functional spaces, the
three mixed formulationsM7F,MCF andM5F will render identical results.

For the incompressible case, a two field {x, p} mixed formulation is em-
ployed, as described in Section 4.4. In this case, two interpolations will be
compared. First, a P1-P1 linear continuous interpolation for both displace-
ment and pressure fields (e.g. with the help of stabilisation) and, second,
a P2-P0 continuous quadratic interpolation for the displacement field and
piecewise constant interpolation for the pressure field (e.g. without stabili-
sation).

From the post-processing standpoint, the numerical results in terms of
stresses will be reported for the Cauchy stress components σ and the hydro-
static pressure p (e.g. p = 1

3
σ : I). It is important to emphasise that their

evaluation is carried out via equation (82).
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6.1. Patch test

The first numerical example includes a standard three dimensional patch
test in order to assess the correctness of the computational implementation.
This problem was already presented in [24]. Two different polyconvex com-
pressible constitutive models are considered. The first polyconvex model is
a standard Mooney-Rivlin model, based on equation (33), as follows:

Ws (F ,H , J) = αs (F : F ) + βs (H : H) + fs(J) (163a)

fs(J) = −4βslnJ − 2αslnJ +
λs

2ε2s

(

Jεs − J−εs
)

(163b)

where αs, βs, λs and εs are user defined material parameters given by

αs = 126kPa, βs = 252kPa, λs = 81512kPa, εs = 20. (164)

A second polyconvex constitutive model, based on that presented in [24],
is defined as follows,

Wq (F ,H , J) = αq (F : F )2 + βq (H : H)2 + fq(J) (165a)

fq(J) = −24βqlnJ − 12αqlnJ +
λq

2ε2q

(

Jεq − J−εq
)

(165b)

where αq, βq, λq and εq are user defined material parameters. Note that for
this second polyconvex model Wq, F and H can be expressed in terms of
their respective conjugate stresses ΣF and ΣH , respectively, as,

F =
1

4αq

(ΣF : ΣF )
−1/3

ΣF (166a)

H =
1

4βq

(ΣH : ΣH)−1/3
ΣH . (166b)

Above equations (166) enable the explicit computation of the strain vari-
ables in terms of their stress conjugates without having to resort to a numer-
ical solution via a Newton-Raphson nonlinear solver. This will be of interest
when using the complementary energy mixed formulation MCF. On the con-
trary, the Jacobian J can only be obtained in terms of its conjugate stress
ΣJ after solving numerically above equations (163b) and (165b).

The material parameters used for this constitutive model are taken as:

αq = 21kPa, βq = 42kPa, λq = 8000kPa, εq = 20. (167)
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For both constitutive models Ws and Wq, the linear elasticity constitutive
operator in the reference configuration renders the same material parameters,
namely shear modulus µ = 756kPa and Poisson’s ratio ν = 0.49546.

A homogeneous deformation mapping is defined through a stretch ∆L/L =
0.5 in the OX direction, applied to a cubic shape domain of side L, as de-
picted in Figure 2. To achieve this deformation, non-zero normal Dirichlet
boundary conditions are applied on the boundary faces perpendicular to the
OX axis and zero normal Dirichlet boundary conditions are defined on two
adjacent faces perpendicular to the OY and OZ axes. Zero Neumann bound-
ary conditions are defined everywhere else.

The domain is discretised using two different meshes of (2× 2× 2) × 6
tetrahedral elements. First, a structured mesh is shown in Figure 2(a) and,
second, a distorted mesh is shown in Figure 2(b) (as presented in reference
[24]) where the interior node is displaced randomly. The objective of this
example is to demonstrate that the same solution is obtained for both meshes.

As expected, hence passing the patch test, for the three mixed formula-
tions defined above, namely M7F, MCF and M5F, the results are identical
for both meshes (the only numerical difference due to machine accuracy). A
resulting Cauchy stress component of σxx = 929.9kPa is obtained for the
model Ws and a value of σxx = 1, 087.4kPa is obtained for the model Wq,
which is identical to that reported in reference [24]. The homogeneous defor-
mation gradient tensors for both constitutive models, namely FWs

and FWq
,

are

FWs
=





1.5 0 0
0 0.8161 0
0 0 0.8161



 , FWq
=





1.5 0 0
0 0.8170 0
0 0 0.8170



 .(168)

For completeness, the quadratic convergence of the Newton-Raphson al-
gorithm is displayed in Figure 3.
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(a) (b) (c)

Figure 2: Three dimensional patch test. (a) View of half undistorted mesh in the reference
configuration. (b) View of half distorted mesh in the reference configuration. (c) Example
of deformed geometry after stretching of ∆L/L = 0.5 in the OX direction for a Mooney-
Rivlin model Ws defined in (163) with parameters defined in (164).
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Figure 3: Three dimensional patch test. Quadratic convergence of the Newton-Raphson
linearisation procedure.
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6.2. Cook type cantilever problem.

In this section, we analyse the same problem presented in [24] where a
Cook type cantilever problem of thickness t = 10m is analysed. The geometry
of the problem is shown in Figure 4(a) where, as it can be observed, the
cantilever is clamped on its left end and subjected to an upwards parabolic
shear force distribution applied on its right end of maximum value τmax =
16kPa. Note that this force is not considered to be a follower-load during
the deformation process.

The problem is analysed with two polyconvex compressible constitutive
models. The first polyconvex model is given by a Mooney-Rivlin material
defined as,

Wp (F ,H , J) = αp (F : F ) + βp (H : H) + fp(J) (169a)

fp(J) = −4βplnJ − 2αplnJ +
λp

2
(J − 1)2 (169b)

where the material parameters are chosen as

αp = 126kPa, βp = 252kPa, λp = 81512kPa. (170)

The second polyconvex model, Wq, is identical to that presented in (165)
with material parameters those in (167). This renders for both Wp and Wq

models an identical linear elasticity operator in the reference state defined by
a shear modulus µ = 756kPa and a Poisson’s ratio ν = 0.49546. The nearly
incompressible nature of the material will emphasise the differences between
the DF formulation and the alternative mixed formulations, particularly in
terms of stresses.

Notice that in the case of the polyconvex model defined by Wp, the stress
conjugate ΣJ to the Jacobian J is obtained as,

ΣJ = −2 (αp + 2βp)

J
+ λp (J − 1) . (171)

Notice also that this simple expression enables, without the need to em-
ploy a Newton-Raphson procedure, to express directly the Jacobian J in
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Mesh Elems. Dofs. x Dofs. F ,H ,ΣF ,ΣH Dofs. J,ΣJ

Coarse 1,470 2, 475× 3 1, 470× 4× 9 1, 470× 1
Medium 3,600 5, 730× 3 3, 600× 4× 9 3, 600× 1
Fine 5,880 9, 251× 3 5, 880× 4× 9 5, 880× 1

Table 1: Cook type cantilever problem. Mesh discretisation details. Column 2: number of
tetrahedral elements (Elems.). Column 3: number of degrees of freedom (Dofs.) associated
to the spatial coordinates x. Column 4: number of degrees of freedom (Dofs.) associated
to the strain/stress fields F ,H,ΣF ,ΣH . Column 5: number of degrees of freedom (Dofs.)
associated to the strain/stress fields J,ΣJ .

terms of its conjugate stress ΣJ as follows,

J =
(λs + ΣJ) +

√

(λs + ΣJ)
2 + 8λs (αs + 2βs)

2λs

, ifλs > 0 (172a)

J = −2 (αs + 2βs)

ΣJ

, ifλs = 0. (172b)

These expressions are particularly useful when using the complemen-
tary energy formulation MCF. Three discretisations are considered, namely
coarse, medium and fine, comprised of (7× 7× 5)× 6, (10× 10× 6)× 6 and
(14× 14× 5) × 6 tetrahedral elements, respectively. The fine mesh is dis-
played, as an example, in all of the numerical results presented in Figures
4(c)-(d) and thereafter. For completeness, Table 1 displays the discretisation
details for each of the meshes employed. Notice how the number of degrees of
freedom associated to the strain/stress variables is proportional to the num-
ber of tetrahedral elements of the mesh. As presented in previous sections,
these degrees of freedom are condensed out at an element level.

For the three discretisations and the two constitutive models above de-
scribed, the four implementations DF, M7F, MCF and M5F where anal-
ysed. For instance, Figures 4(c) and 4(d) display the displacement field uy

and the stress field σxx for the fine discretisation and the constitutive model
Wq by using the various mixed formulations (i.e. the three implementations
render identical results).

Figures 5 to 7 display the contour plot of different stress magnitudes (σxx,
σyy and pressure) using the constitutive model Wp and the fine discretisa-
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tion. Results are presented comparing the mixed formulations, which render
identical results (see Figures 5(a), 6(a) and 7(a)) versus the DF formulation
(see Figures 5(b), 6(b) and 7(b)).

A more detailed comparison is established in Tables 2 and 3, where results
obtained with the four formulations, namely the three mixed formulations
and theDF formulation are displayed. Results are presented for both stresses
and displacements sampled at points A, B and C, as depicted in Figure 4(b).
As can be noticed, theDF implementation underestimates the displacements
obtained with the alternative mixed formulations. It can be seen how the
DF implementation converges from below whereas the alternative mixed
formulations converge from above. In addition,the results obtained with the
constitutive model Wq match very well those presented in reference [24].

As expected (e.g nearly incompressible material), regarding the stresses,
the differences are more significant, specially for the Wq constitutive model.
The higher nonlinearity of the Wq model with respect to the Wp model high-
lights the differences between both formulations. Whereas the results for the
DF formulation do not seem to converge with clear pressure oscillations, the
results for the alternative mixed formulations show a very defined conver-
gence pattern. The results obtained with the constitutive model Wq match
very well those presented in reference [24].

Finally, it is important to mention that the equivalence between theMCF

formulation and the other mixed formulations can be badly affected with the
choice of the parameter εq used in equation (165) (εs in equation (163)). The
higher the coefficient εq (εs) the higher the error tolerance must be when
solving numerically equation (165b) (or equation (163b)) via the Newton-
Raphson nonlinear solver. Otherwise, small variations in the Jacobian J
can introduce significant changes in the conjugate stress ΣJ and make the
MCF formulation to yield different results to those of the M7F and M5F

formulations.
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Wp model Wq model

Fine Medium Coarse Fine Medium Coarse

σA
xx -103.12 -105.31 -106.64 -114.36 -117.63 -116.46

σB
xx 120.35 121.98 118.17 171.37 172.83 166.76

σA
yy -113.89 -116.18 -117.27 -147.38 -150.96 -148.07

σB
yy 196.49 197.99 194.78 366.43 365.96 364.85
uC
x -20.76 -20.78 -20.81 -20.32 -20.30 -20.25

uC
y 18.93 18.95 18.98 18.66 18.66 18.66

uC
z 0.010 0.016 0.036 -0.001 -0.0005 0.007

Table 2: Cook type cantilever problem. Stress components (kPa) and displacements (m)
at points A, B and C as displayed in Figure 4(b). Results are obtained using the mixed
formulations. Coarse, medium and fine discretisations of (7× 7× 5)×6, (10× 10× 6)×6
and (14× 14× 5)×6 tetrahedral elements, respectively. Wp model (columns 2 to 4) defined
in (169) with parameters given in (170). Wq model (columns 5 to 7) defined in (165) with
material parameters in (167).

Wp model Wq model

Fine Medium Coarse Fine Medium Coarse

σA
xx -94.40 -75.28 -189.83 -98.39 -79.41 -192.31

σB
xx 232.99 305.44 88.03 238.37 310.57 94.58

σA
yy -134.17 -114.81 -223.26 -132.36 -115.06 -221.94

σB
yy 419.31 485.52 279.44 426.22 492.28 286.87
uC
x -20.55 -20.43 -20.21 -20.20 -20.00 -19.86

uC
y 18.83 18.80 18.74 18.60 18.57 18.51

uC
z -0.060 -0.086 -0.143 -0.061 -0.087 -0.143

Table 3: Cook type cantilever problem. Stress components (kPa) and displacements
(m) at points A, B and C as displayed in Figure 4(b). Results obtained using the DF

formulation. Coarse, medium and fine discretisations of (7× 7× 5)× 6, (10× 10× 6)× 6
and (14× 14× 5)×6 tetrahedral elements, respectively. Wp model (columns 2 to 4) defined
in (169) with parameters given in (170). Wq model (columns 5 to 7) defined in (165) with
material parameters in (167).
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(a) (b)

(c) (d)

Figure 4: Cook type cantilever problem. (a) Geometry of the problem and boundary
conditions, where a parabolic upwards shear stress distribution with maximum value
τmax = 300kPa is applied on its right end. Axes OX1 and OX2 coincide with ox
and oy in (b), respectively. (b) Representation of the finest discretisation employed with
(14× 14× 5) × 6 tetrahedral elements. (c) Contour plot of displacement field uy(m) for
the polyconvex model Wq defined in (165) with material parameters in (167). (d) Contour
plot of stress field σxx(Pa) for the polyconvex model Wq defined in (165) with material
parameters in (167).
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(a) (b)

Figure 5: Cook type cantilever problem. Contour plot of the distribution of stress co-
efficient σxx(Pa) for (a) mixed formulations and (b) DF formulation. Mooney-Rivlin
model Wp defined in (169) with material parameters given in (170). Discretisation of
(14× 14× 5)× 6 tetrahedral elements.
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(a) (b)

Figure 6: Cook type cantilever problem. Contour plot of the distribution of stress co-
efficient σyy(Pa) for (a) mixed formulations and (b) DF formulation. Mooney-Rivlin
model Wp defined in (169) with material parameters given in (170). Discretisation of
(14× 14× 5)× 6 tetrahedral elements.
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(a) (b)

Figure 7: Cook type cantilever problem. Contour plot of the distribution of the hydro-
static pressure p(Pa) for (a) mixed formulations and (b) DF formulation. Mooney-Rivlin
model Wp defined in (169) with material parameters given in (170). Discretisation of
(14× 14× 5)× 6 tetrahedral elements.
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6.3. Compressible short column subjected to transverse shear force.

In this example, a short column of squared cross sectional area is analysed
when subjected to large deformations, as depicted in Figure 8(a). The height
of the column is h = 5m and the size of the square defining the cross section
is a = 1m. The column is clamped at its bottom end and it is subjected
at the top end to a shear stress distribution parabolic in the OY direction
and constant in the OX direction, of maximum value τmax = 76kPa. Note
that this force is not considered to be a follower-load during the deformation
process.

The constitutive model is a compressible Mooney-Rivlin type material
defined by an energy function Wc as

Wc (F ,H , J) = αc (F : F ) + βc (H : H) + fc(J) (173a)

fc(J) = −4βclnJ − 2αclnJ (173b)

where the material parameters are chosen as

αc = 47.25kPa, βc = 141.75kPa. (174)

The selection of these material parameters yield a linear elasticity consti-
tutive operator in the origin defined by a shear modulus µ = 378kPa and a
Poisson’s ratio ν = 0.3.

The objective of this example is to demonstrate the p-order of accuracy
of the different mixed formulations, as a function of the chosen finite element
approximation spaces. For this purpose, the column is initially discretised
with (2×2×10)×6 tetrahedral elements (see Figure 8(b)) and, subsequently,
h-refinement is carried out generating a total of four discretisations. As a
closed form solution is not available for this problem, the finest mesh is used
to generate numerically the so-called “benchmark” solution (for each mixed
formulation) for comparison purposes. The error between the benchmark
solution and the other discretisations is measured in the L2 norm for all the
unknown variables.

Let us define for a tensor (e.g. scalar, vector or second order) field, the
L2 norm as

‖ζ‖L2 =

[
∫

V

(ζ : ζ) dV

]1/2

(175)

associated with the magnitude of the tensor field ζ. In our case, ζ can be any
of the kinematic or kinetic unknowns, namely x, F , H , J , ΣF , ΣH and ΣJ .
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This enables the definition of the following error norm ‖ζi − ζb‖L2/‖ζb‖L2 ,
where ζb stands for the benchmark solution and ζi the solution of the i-th
mesh, with i = 1, . . . , (b−1). This can then be used to assess the convergence
of the algorithm under h-refinement.

Figure 9 displays the contour plot distribution of the stress σxx for dif-
ferent stages of the deformation. The results presented are identical for all
of the mixed formulations. As can be observed, the stress distribution is
smooth (absence of pressure modes) and the deformation does not show any
locking in its deformation pattern.

Figure 10 shows the order of accuracy of the different unknown vari-
ables for the mixed formulations (all yielding identical convergence pattern).
Figure 10(a) displays the convergence of the kinematic variables x, F , H
and J whereas Figure 10(b) displays the convergence of the kinetic variables
ΣF , ΣH and ΣJ . As expected, the convergence observed is p + 1 in all the
variables.

For completeness, Figure 11 has been included to demonstrate the quadratic
convergence of the Newton-Raphson linearisation procedure.
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2X τ
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Figure 8: Compressible short column of height h = 5m and squared cross section defined
by its size a = 1m. (a) Boundary conditions: clamped bottom end and parabolic stress
distribution at the top end. Axes OX1 and OX2 coincide with oy and oz in (b), respec-
tively. (b) Example of finite element discretisation: coarsest mesh with (2 × 2 × 10) × 6
tetrahedral elements.
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(a) (b)

(c) (d)

Figure 9: Contour plot of the stress σxx(Pa) distribution for the compressible short column
example using a mixed formulation. Results after application of an incremental loading of
(a) 5% (b) 25% (c) 50% and (d) 100% of the total external shear stress τ = τmax. Mooney-
Rivlin model Wp defined in (169) with material parameters given in (174). Results shown
for a discretisation of (4× 4× 20)× 6 tetrahedral elements (3, 321× 3 degrees of freedom
associated to the spatial coordinates x).

54



−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Logeh

L
og

e
e
r
r
o
r

m
a
x
(e
r
r
o
r
)

 

 

1
1

2

1
3

1

u
F
H
J

(a)

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4
−2.5

−2

−1.5

−1

−0.5

0

Logeh

L
og

e
e
r
r
o
r

m
a
x
(e
r
r
o
r
)

 

 

1

1

2

1

ΣF

ΣH

ΣJ

(b)

Figure 10: Compressible short column example: order of accuracy of different strain and
stress magnitudes for the mixed formulations. (a) Order of accuracy of the kinematic
variables x, F , H and J . (b) Order of accuracy of the kinetic variables ΣF , ΣH and ΣJ .
Mooney-Rivlin model Wp defined in (169) with material parameters given in (174).
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Figure 11: Compressible short column example: quadratic convergence of the Newton-
Raphson linearisation procedure. Mooney-Rivlin model Wp defined in (169) with material
parameters given in (174).
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6.4. Incompressible long column subjected to transverse shear force.

A very similar example to that presented in the previous section is anal-
ysed. In this case, a longer column of height h = 10m of squared cross
sectional area is analysed when subjected to large deformations. As in the
previous section, the size of the square defining the cross section remains
a = 1m. The column is clamped at its bottom end and subjected to a
parabolic (only in the OY direction) shear stress distribution at the top end
of maximum value τmax = 14.4kPa. Note that this force is not considered to
be a follower-load during the deformation process.

The constitutive model is taken as incompressible Mooney-Rivlin defined
via a polyconvex isochoric energy function Ŵi defined as

Ŵi (F ,H , J) = νiJ
−2/3 (F : F ) + γiJ

−2 (H : H)3/2 (176)

where the material parameters are chosen as

νi = 189kPa, γi = 72.75kPa. (177)

The selection of these material parameters yield a linear elasticity con-
stitutive operator in the origin defined by shear modulus µ = 756kPa and
Poisson’s ratio ν = 0.5.

The objective of this example is to demonstrate the behaviour of the
stabilisation technique as presented in Section 5.3. For this purpose, two
interpolation techniques will be considered: first, a P1-P1 linear continuous
interpolation for both displacement and pressure fields (e.g. with the help
of stabilisation) and, second, a P2-P0 continuous quadratic interpolation for
the displacement field and piecewise constant interpolation for the pressure
field (e.g. without stabilisation).

For the P1-P1 interpolation, an unstructured mesh of 17,575 tetrahedral
elements is used (3, 859 × 3 degrees of freedom associated to the spatial
coordinates x) (refer to Figures 12(a)-(c)) and for the P2-P0 interpolation,
an unstructured mesh of 3,962 tetrahedral elements is used (6, 675×3 degrees
of freedom associated to the spatial coordinates x) (refer to Figures 12(d)).
Notice that a very fine P2-P0 discretisation has been chosen in order to
adequately benchmark the solution obtained with the alternative stabilised
P1-P1 formulation.

Figures 12 and 13 display the contour plot distribution of the hydrostatic
pressure and the displacement field ux, respectively. Within these figures, the
solution by using the non-stabilised P2-P0 implementation is displayed in the
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sub-figures (d) whereas sub-figures (a) to (c) present the results for the sta-
bilised P1-P1 implementation, with stabilisation parameter α = 0.1, 0.2, 0.5,
respectively. In all of the P1-P1 analyses, stabilisation coefficient τp = 0 was
employed.

The results show an excellent agreement between the non-stabilised P2-P0
formulation (see Figures 12(d) and 13(d)) and the stabilised P1-P1 formula-
tion when using α = 0.2 (see Figures 12(b) and 13(b)). Larger values of the
stabilisation parameter α lead to stiffer solutions (i.e. volumetric and shear
locking) and viceversa. It is also clear that for the stabilised P1-P1 imple-
mentation, smooth distributions of stresses are obtained, removing possible
spurious pressure oscillations.
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(a) (b)

(c) (d)

Figure 12: Contour plot of the hydrostatic pressure distribution p(kPa) for the incom-
pressible long column example. (a) Stabilised P1-P1 formulation with τp = 0 and α = 0.1.
(b) Stabilised P1-P1 formulation with τp = 0 and α = 0.2. (c) Stabilised P1-P1 formu-
lation with τp = 0 and α = 0.5. (d) Non-stabilised P2-P0 formulation. Incompresible

Mooney-Rivlin model Ŵi defined in (176) with material parameters given in (177). Re-
sults shown in (a) to (c) are for a discretisation of 17,575 tetrahedral elements (3, 859× 3
degrees of freedom associated to the spatial coordinates x). Results shown in (d) are for
a discretisation of 3,962 tetrahedral elements (6, 675× 3 degrees of freedom associated to
the spatial coordinates x).
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(a) (b)

(c) (d)

Figure 13: Contour plot of the displacement ux(m) distribution for the incompressible long
column example. (a) Stabilised P1-P1 formulation with τp = 0 and α = 0.1. (b) Stabilised
P1-P1 formulation with τp = 0 and α = 0.2. (c) Stabilised P1-P1 formulation with τp = 0
and α = 0.5. (d) Non-stabilised P2-P0 formulation. Incompresible Mooney-Rivlin model
Ŵi defined in (176) with material parameters given in (177). Results shown in (a) to
(c) are for a discretisation of 17,575 tetrahedral elements (3, 859 × 3 degrees of freedom
associated to the spatial coordinates x). Results shown in (d) are for a discretisation
of 3,962 tetrahedral elements (6, 675 × 3 degrees of freedom associated to the spatial
coordinates x).

60



6.5. Twisting cantilever beam

The last example includes the twisting of a cantilever beam of length L =
6m and a squared cross sectional area of side a = 1m. The beam is clamped
at its left end and subjected to a torsion on its right end. This example
is included to demonstrate the robustness of the mixed formulations. The
torsion at the right end is generated through Dirichlet boundary conditions
as follows

(I −EY ⊗EY )x = θEY ×X (178)

where EY is the unit vector normal to the cross section in the reference
configuration, X are the initial coordinates, θ is the angle of rotation and x

are the final coordinates. As can be observed, the section is not restricted to
in-plane torsion and zero Neumann boundary conditions are imposed normal
to the cross sectional area. A similar example has been presented by the
authors in previous references [47, 49].

The geometry and boundary conditions for the problem are depicted in
Figure 14(a). The constitutive model is a compressible Mooney-Rivlin de-
fined by an energy function Wu defined by

Wu (F ,H , J) = αu (F : F ) + βu (H : H) + fu(J) (179a)

fu(J) = −4βulnJ − 2αulnJ (179b)

where the material parameters are chosen as

αu = 9.0kPa, βu = 9.0kPa. (180)

The selection of these material parameters yield a linear elasticity con-
stitutive operator in the origin defined by shear modulus µ = 36kPa and
Poisson’s ratio ν = 0.25. The analysis is carried out with a finite element
discretisation comprised of 2,304 tetrahedral elements (4, 009× 3 degrees of
freedom associated to the spatial coordinates x).

Figure 15 displays the contour plot distribution of the stresses σxy (see
Figure 15(a) and 15(b)) and σyy (see Figure 15(c) and 15(d)). Results dis-
played in Figures 15(b) and 15(d) are obtained by using the DF implemen-
tation whereas results in Figures 15(a) and 15(c) are obtained by using the
alternative mixed formulations, namely M7F, MCF and M5F, all yielding
identical results.
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As can observed, important differences in terms of stresses can be ob-
served between the DF formulation and the alternative mixed formulations.
This deformation pattern is very demanding for the DF formulation and im-
proved results would require h-refinement. It is important to emphasise that
the results are similar in terms of deformation as the problem is displacement
driven by the boundary conditions.

The extreme deformation undertaken by the beam leads to a buckled
configuration that can be observed in Figure 16, where the out-of-plane con-
figuration can be clearly observed along with the hydrostatic pressure distri-
bution, where negative values (compressive areas) can be identified.

Finally, for completeness, different results concerning some of the com-
ponents of the kinematic variables F , H and J are shown in Figures 17 and
18. It is possible to observe the smooth distribution of the different fields.

3X

2X

1X

T(0,0,0)

T(1,1,0)

T(1,1,6)

(a) (b)

Figure 14: Twisting cantilever beam problem of length h = 6m and squared cross section
defined by its size a = 1m. (a) Boundary conditions: clamped left end and twisting
rotation applied at the right end. Axes OX1, OX2 and OX3 coincide with ox, oy and
oz in (b), respectively. (b) Example of finite element discretisation: 2,304 tetrahedral
elements (4, 009× 3 degrees of freedom associated to the spatial coordinates x).

7. Concluding remarks

This paper has provided a novel approach to formulate large polyconvex large
strain elasticity in the computational context. The key novel contributions
of the work presented here are:
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(a) (b)

(c) (d)

Figure 15: Contour plot of the stress σxy(Pa) ((a) and (b)) and σyy(Pa) ((c) and (d))
distribution for the twisting cantilever beam example. Results obtained with the DF

formulation ((b) and (d)) and alternative mixed formulations ((a) and (c)). Mooney-
Rivlin model Wu defined in (179) with material parameters given in (180). Results shown
for a discretisation of 2,304 tetrahedral elements (4, 009× 3 degrees of freedom associated
to the spatial coordinates x).
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Figure 16: Lateral and plan view of the contour plot of the hydrostatic pressure distribution
p(Pa) for the twisting cantilever beam example. Results obtained with the alternative
mixed formulations. Mooney-Rivlin model Wu defined in (179) with material parameters
given in (180). Results shown for a discretisation of 2,304 tetrahedral elements (4, 009× 3
degrees of freedom associated to the spatial coordinates x).

• The definition of a tensor cross product which greatly facilitates the
algebraic manipulations of expressions involving the adjoint of the de-
formation gradient and its derivatives.

• The definition of stresses {ΣF ,ΣH ,ΣJ} conjugate to the main extended
kinematic variable set {F ,H , J} and the development of relationships
between these stresses and more classical stress tensors such as the
Piola-Kirchhoff stress.

• The definition of a convex complementary strain energy functional in
terms of the new set of conjugate stresses {ΣF ,ΣH ,ΣJ}.

• The derivation of the elasticity tensor using the simplified algebra fa-
cilitated by the tensor cross product definition.

• The formulation of several mixed variational principles including novel
Hellinger-Reissner two field versions which reduce the number of prob-
lem variables over more traditional three field Hu-Washizu type of prin-
ciples.

• The introduction of a stabilised Petrov-Galerkin discretisation in the
context of mixed principles described above.
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(a) (b)

(c) (d)

Figure 17: Contour plot of the distribution of the components (a) F11, (b) F12, (c) F32,
(d) H12, for the twisting cantilever beam example. Results obtained with the alternative
mixed formulations. Mooney-Rivlin model Wu defined in (179) with material parameters
given in (180). Results shown for a discretisation of 2,304 tetrahedral elements (4, 009× 3
degrees of freedom associated to the spatial coordinates x).
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(a) (b)

(c) (d)

Figure 18: Contour plot of the distribution of the components (a) H22, (b) H21, (c) H32,
and (d) J , for the twisting cantilever beam example. Results obtained with the alternative
mixed formulations. Mooney-Rivlin model Wu defined in (179) with material parameters
given in (180). Results shown for a discretisation of 2,304 tetrahedral elements (4, 009× 3
degrees of freedom associated to the spatial coordinates x).
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The examples provided in the paper have demonstrated that the formulation
proposed is capable of modelling complex problems in large strain elasticity
and provide order of convergence which is appropriate for the discretisation
space chosen. The additional cost involved in the extra variables involved in
mixed formulations is significantly reduced in the case of Hellinger-Reissner
type of approaches. Moreover, the use of discretisation spaces in which de-
formation or stress fields are discontinuous across element faces enables these
variables to be resolved locally leading to computational cost very compara-
ble to those of displacement based approaches.
Future work will consider the extension of the present framework to solid dy-
namics using appropriate conservation laws for the extended set of kinematic
variables in the manner proposed in references [47, 49–54].
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[23] J. Schröder, P. Neff, V. Ebbing, Polyconvex energies for trigonal, tetrag-
onal and cubic symmetry groups, in: IUTAM-Symposium on variational
concepts with applications to the mechanics of materials : Proceedings
of the IUTAM-Syposium.

[24] D. B. J. Schröder, P. Wriggers, A new mixed nite element based on differ-
ent approximations of the minors of deformation tensors, Computational
Methods for Applied Mechanical Engineering 200 (2011) 3583–3600.
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