Rhomboids and proteolysis in the Dicty mitochondrion

DR ELINOR THOMPSON
UNIVERSITY OF GREENWICH
Rhomboids

Membrane located proteases
◦ ‘Unusual’

Ubiquitous across evolution
◦ ‘One’ in prokaryotes: multigene families in eukaryotes

Well-conserved structure
◦ 6 or 7 t/m; catalytic dyad ...but poor sequence conservation
 ◦ Necessity of conserved motifs not yet fully understood but sequence and structure predicts mitochondrial location of a subfamily
 ◦ And functional vs non-enzymatically active subtypes

Influence development, signalling and infection in a range of eukaryotes and prokaryotes
◦ e.g., necessary for *Plasmodium* and *Toxoplasma* infection, EGF signalling in *Drosophila*

Substrate prediction is hard
Rhomboid philosophy – why are they interesting?

Proteolysis is not just housekeeping: a key regulatory mechanism in cell biology

- Proteases comprise 2-5% of organism genomes across evolution
- Protein activation, localisation, exposure of cryptic binding sites and release of neoproteins...
- Pathogenesis of disease: altered protease expression and substrate-proteolysis, e.g., in Parkinson’s and other neurodegenerative diseases

Proteolysis in cell membranes occurs via several families of ‘new’ intermembrane proteases:

- Regulated Intramembrane Proteolysis
- Includes the rhomboid family
Subset of mitochondrial rhomboids in eukaryotes

In Drosophila EGFR ligand (e.g., Spitz) cleaved and to release product outside cell for signalling

Orientation reversed in mitochondrial rhomboids
 ◦ Rhomboid cleavage is on opposite side of membrane
 ◦ Prokaryotes?

Lemburg & Freeman, 2007
Rhomboid subsets in *Dictyostelium*

Predicted *Dictyostelium* active rhomboids

<table>
<thead>
<tr>
<th></th>
<th>Sequence ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rho like</td>
<td></td>
</tr>
<tr>
<td>rhmA</td>
<td>DDB_G0295849</td>
</tr>
<tr>
<td>Mito like</td>
<td></td>
</tr>
<tr>
<td>rhmB</td>
<td>DDB_G0284937</td>
</tr>
<tr>
<td>Rho like</td>
<td></td>
</tr>
<tr>
<td>rhmC</td>
<td>DDB_G0281359</td>
</tr>
<tr>
<td>Mito like</td>
<td></td>
</tr>
<tr>
<td>rhmD</td>
<td>DDB_G0292430</td>
</tr>
</tbody>
</table>
rhmA – ‘active’, transcription peaks from unicellular-slug stages

RhmA (brown) vs. *E. coli* GlpG (2IC8, blue). WR (green); G^SG (red)
RhmA- phenotype

- aberrant phototaxis,
- slower chemotaxis to both cAMP and folate,
- significant although small reduction in directed movement (random cell movement the same)
Why defective motility – no actin defect
Respiratory defect? Not apparent via O2 uptake

Oxygen Consumption

- AX2
- rhm A⁻
ATP luciferase assay

![Graph showing ATP measurement in a bioluminescence assay](image-url)
Where is RhmA? GFP-RhmA in contractile vacuole/ cytoplasmic spots

No co-localisation with Mitotracker red

Reduced Mitotracker uptake in rhmA- (MMP?)
rhmA- mitochondrial morphology defect

Most rhmA- mito show same ultrastructural abnormality

RhmA not predicted/located in the mitochondrion
Rhomboid function in mitochondria –
dynamin family GTPase substrates

MAINTAINING TIGHT MITOCHONDRIAL CRISTAE IN VERTEBRATES
PARL RBD-C CELLS RELEASE CYTC AND HAVE MORE OPEN CRISTAE

REGULATING MITOCHONDRIAL FUSION DYNAMICS IN YEAST
Veg cell RTPCR (no diff in agg cells) - dynamin-like proteins.

Meanwhile...

Pulldown in RhmA-GFP yields band

Some ideas...

Activity assay ongoing in Prague

Transcription levels of dynamin related genes in vegetative cells.
RhmB... succinctly

- Slower growth axenic and reduced phagocytosis
- Larger cells
- Slower response to folate in one-drop and under-agarose assays
- Reduced adhesion – unicellular stage
- Transcription peak at aggregation (as Dictybase)
- Phototaxis as WT
Motility via actin assay
RhmB-GFP fusion protein located in mitochondria.
Oxygen Consumption

Time (Min)

O$_2$ (nmol/ml)

AX2
rh_mB$^-$

Amount of ATP measured in bioluminescence assay

mol ATP x 10$^{-8}$

AX2
rh_mB$^-$

ns
Substrate fishing...

RTPCR with dynamin-related proteins
Substrate and activity assays ongoing

RhmA/B double mutant
No growth on bacterial lawns

RhmD essential
RhmcC no pheno?
Add rhomboids to the proteolytic proteome of Dicty mitochondria?

- Rhomboids having regulatory roles in *Dictyostelium* mitochondria fits in with our increasing appreciation of the importance of proteolysis in signalling and development – not just house keeping function.
A tendency for specialisation?

~15 Arabidopsis rhomboids
G, H mutants
Arabidopsis organellar rhomboid

RBL10-GFP chloroplast rhomboid \rightarrow organelle outer membrane

Like other rhomboids, positioned to activate a protein within signalling cascade?

Thompson et al. 2012
Chloroplast RBL10 transcription in vegetative and floral tissues
RBL10 floral phenotype
Do rhomboids often act in concert/related pathways?

RhmA, B and D (of four ‘active’ RBDs in Dicty) are in/affect mitochondria

RTPCR suggests overlap

Double A/B mutant is very sick

Literature relates pathways utilising multiple proteolytic events

- Bacterial stress signalling --DegS and YaeL cleaving RseA
- Mitochondrial apoptotic pathways and stress /unfolded protein response
- Higher euk RBDL4 clipping in ER -> proteasome
- Photosystem II repair: DegP/FtsH sequential cleave events

- “members of the small subfamily of type II transmembrane serine proteases ...of particular interest ... compartmentalized expression patterns localizing activity to a limited number of cell types... demonstrated roles as direct contributors to cancer progression”
- “tumor-promoting proteases function as part of an extensive multidirectional network of proteolytic interactions”
Acknowledgements

MRC LMB Cambridge
Dr David Traynor
Dr Rob Kay
Dr John Nichols

RHUL
Prof Robin Williams
Dr Grant Otto

Greenwich
Dr Mehak Rafiq
Dr Iskander Ibrahim
Rebecca Vestal

Sheffield
Dr Jason King