
An Assessment of the Contemporary Threat Posed
by Network Worm Malware

Luc Tidy, Khurram Shahzad, Muhammad Aminu Ahmad and Steve Woodhead

Internet Security Research Laboratory

Faculty of Engineering and Science
University of Greenwich

Email: {l.j.tidy, k.shahzad, m.ahmad, s.r.woodhead}@greenwich.ac.uk

Abstract—The cost of a zero-day network worm outbreak has been estimated

to be up to US$2.6 billion. Additionally zeroday network worm outbreaks have

been observed that spread at a significant pace across the global Internet, with

an observed infection level of more than 90 percent of vulnerable hosts within

10 minutes. The threat posed by such fast-spreading malware is therefore

significant, particularly given the fact that network operator / administrator

intervention is not likely to take effect within the typical epidemiological

timescale of such infections. This paper presents a classification of wormable

vulnerabilities, demonstrating a method to determine if a vulnerability is

wormable, and presents a survey into the cause of the reduction of worm

outbreaks in recent years, as well as their viability in the future. It then goes

on to explore recent wormable vulnerabilities, and points out the issues with

operating system security in relation to techniques used by zero-day worms.

Keywords—Cyber Defence; Malware; Network Worm; Zero-Day; Worm; Simulation;

Modelling

I. INTRODUCTION

As a type of malware that exploits vulnerabilities that have not been patched or
acknowledged at the point of an outbreak, with an automatic propagation method
that can spread pervasively throughout a network, zero-day worms are particularly
virulent. The effects are exacerbated by either a lack of detection or a high speed of
propagation [1]. The threat presented by such malware to the Internet, national
security and defence systems is therefore significant.

In the first few years of the twenty-first century, there were a number of notable zero-
day worm outbreaks [2][3][4] however, since these events the number of zero-day
worm outbreaks has reduced. Understanding this reduction, and assessing whether
such worm outbreaks are still viable in a modern setting are essential. This paper
presents a discussion of historical worm events to ascertain why they occurred, and
then discusses the motivations for malware attacks to assess why worm outbreaks
have seen this reduction. The paper then presents a discussion on recent wormable

vulnerabilities and operating system security, in order to assess whether zero-day
worm outbreaks are still viable on the modern Internet.

The remainder of this paper is presented as follows: Section II presents a lexicon as
a definition of terms. Section III presents related work, focusing on similar studies
into the assessment of potential threats. Section IV presents a discussion on the
motivations for carrying out a malware attack. Sections V and VI present a summary
of recent wormable vulnerabilities, and addressing the particular issue of operating
system security. Finally, the paper is concluded in Section VII.

II. LEXICON

A lexicon has been presented for the clarification of the following terms, owing to
their specific use in this paper.

Zero-Day Worm: In this paper, this is defined as a type of malicious software that

propagates automatically without human interaction, using a vulnerability that has
not been patched or widely acknowledged at the point of an outbreak. In particular,
this paper reports findings on fast, random-scanning worms [5]. This is a similar
definition to the taxonomy described by Weaver et al. [6], and other published
literature (see [2][3][4]).

Wormable Vulnerability: A vulnerability that has the potential for use in worm
propagation, as defined by being network accessible, allowing the execution of
arbitrary code and whether a not a vulnerability can be exploited remotely. This is in
accordance with the model reported by Nazario et al. [7].

III. RELATED WORK

Research into worms and their outbreaks has been reported in three key areas: the
classification of worms and wormable vulnerabilities, potential worm outbreak
scenarios and the investigation of previous worm outbreaks. In addition, this paper
also considers contemporary malware threats.

A. Classification of Worms and Wormable Vulnerabilities

The taxonomy reported by Weaver et al. [6] presents an overall method of classifying
worms. The classification is made under the following categories: target discovery,
propagation method, activation, payloads, motivations and attackers. Similar
categories are reported by Li et al. [8], which classified worms under a number of
schemes: target finding, propagation, transmission and payload. Smith et al. [9] also
uses the taxonomy reported by Weaver, however, expands this further to consider
evasion and detection methods, which incorporate different propagation methods
and payloads. For the purposes of this paper, we choose to focus on self-carried
worms, or worms that do not require other network traffic in order to propagate.

Another factor of classifying worms is the vulnerability they exploit in order to
propagate. As reported by Nazario et al. [7], a wormable vulnerability can be
summarised in (1), where wormability, W, is a product of the exploit characteristics,
E, population characteristics, P, and the time since the disclosure of the vulnerability
to account for development of the worm. Nazario et al. also defines the characteristics
of a wormable exploit, as shown in (2), where the exploit characteristics, E, are
defined by the fractional population of exploit architecture, fEp, the fractional
availability of an exploit for a given vulnerability, fEa, the number of chances available

to attempt an exploit, Ec, the fraction of exploit reliability, fEr , the Boolean value of
whether the exploit is able to be made remotely, R, if the impact of the vulnerability
is execution of code, Ie and if the impact of the vulnerability permits network access,
In.

W = E _ P _ L (1)

E = fEp (fEa + 0:067) (Ec – 1+ fEr)RIeIn (2)
 Ec

Using the key factors reported by Nazario et al., and those reported by Weaver et al.,
Li et al., and Smith et al., a wormable vulnerability can be summarised in the Boolean
equation (3), where a wormable vulnerability, Vw, is determined by not requiring
human interaction, H, is network reachable, Nr, provides remote code execution, R,
and provides network access, Na once exploited.

Vw = _H_ Nr _ R _ Na (3)

In addition to the reported work that provides a classification, there are also a
number of resources that focus on providing details for known vulnerabilities. One
such source is the Common Vulnerabilities and Exposures (CVE) system [10], which
provide details for a range of vulnerabilities. The CVE system notes the access vector,
for instance if the vulnerability is network reachable or requires human interaction,
and the impact if the vulnerability were to be exploited, for instance providing remote
code execution or network access. These details provide information in order to
assess whether a vulnerability is wormable.

B. Potential Worm Outbreak Scenarios

Potential worm outbreak scenarios often focus on new technologies or methods that
a worm may use in order to spread faster. As far as the authors are aware, the first
notable instance of this was the work reported by Weaver in 2001 [11], which
described a Warhol worm - where using a combination of a list of known vulnerable
hosts, known as a hitlist, and by dividing up how each worm scans for new
susceptible hosts, known as permutation scanning, the worm increases in virulence.
Such methods were seen in the Witty outbreak of 2003 [4], and the second version
of Code Red, Code Red II, in 2001, respectively.

Work reported by Staniford et al. [12], presents results on the impact of very fast,
what is termed as Flash worms, on a contemporary Internet as of 2004. Using
simulation, Staniford estimates that an optimised Flash worm could spread within
seconds. Similar fast outbreaks are further corroborated in work reported by Tidy et
al. [13], as well as reporting work on other potential scenarios in [5], where a worm
uses an intentionally slow phase before switching to a fast, random-scanning method
in order to increase the number of infected hosts prior to its fast phase; resulting in
an impact similar to having a hitlist.

The work in potential worm outbreaks assume that a wormable vulnerability exists,
however, there is limited work in investigating contemporary vulnerabilities in order
to determine if they are wormable, and the possible worm outbreaks that could occur.

C. Previous Worm Outbreaks

There have been a number of large-scale zero-day worm outbreaks, most notable of
which are the Morris Worm outbreak of 1988 [14], the Code Red outbreak of 2001
[2], the Slammer outbreak of 2003 [3] and Witty outbreak of 2004 [4]. Table I
summarises these worms, detailing the platform/service that had the wormable
vulnerability, the port/s used for propagation, and the exploit method. This shows
that these notable events all used a buffer overflow in order to infect susceptible
hosts, propagated using different ports and exploited vulnerabilities on a number of
different platforms.

Another reported characteristic of these worm outbreaks centre around their
payload. Both the Morris and Slammer worms contained no destructive or directly
malicious content as part of its payload. Similarly, the Code Red worm only began to
undertake a denial of service attack after it had completed a propagation phase. As
reported by Shannon and Moore [4], the Witty worm was the first to carry a

destructive payload, overwriting randomly chosen sections of the infected hosts hard
drive with the phrase “(^.^) insert witty message here (^.^)”.

Owing to the lack of malicious payload in the Slammer worm, the intentional pause
in propagation in the Code Red worm and as the Morris worm was described by its
author to be designed to gauge the size of the ARPANET, it can be argued that the
motivation to release these worms was one of discovery. Similarly, as the Witty worm
was the first of these to carry a destructive payload, it could have been released to
assess whether a destructive payload was feasible.

TABLE I
SUMMARY OF NOTABLE WORM CHARACTERISTICS

Name Vulnerable Platform/Service Port/s Exploit Method
Morris DECX Sun 3, sendmail finger 25,79 Buffer overflow
Code Red Microsoft IIS web service 80 Buffer overflow
Slammer Microsoft SQL Server 2000 1434 Buffer overflow

Witty Internet Security Systems firewall Random Buffer overflow

D. Contemporary Malware Threats

Since the large outbreaks at the beginning of the 21st century, the number of large-
scale worm outbreaks has decreased significantly. Panda Security [15] reports that
worms only constituted approximately 6% of all malware infections in the first
quarter of 2013, it is also reported that trojans constitute the majority of the malware
infections with 80% of all malware infections being of this type. One of the largest of
these is the Zeus trojan [16], which is designed in order to commit fraud
by gaining access to banking details on infected hosts and sending these details to
the attacker. This is defined by Wilson [17] as cybercrime, or criminal activity that is
“enabled by, or that targets computers”.

A return to worm-like characteristics can be seen in the Stuxnet [18] outbreak, which
targeted industrial control systems in order to cause damage. It is suggested that
Stuxnet is an example of cyberwarfare [19], where the intent was to cause damage
to the targeted industrial systems. This is a distinct difference in the cybercriminal

activity, as instead of criminal gain the motivation of released Stuxnet was one of
causing damage.

IV. MOTIVATIONS FOR MALWARE ATTACKS

One of the main factors in understanding malware outbreaks is the motivation of the
attacker. A difference in motivation can influence the choice of malware that an
attacker will choose, given that different malware is more effective at certain tasks
than others. In the case of worm outbreaks, this is demonstrated by the reduction
in events, owing to a change in the motivation of attackers. Figure 1 illustrates this
change, plotting the trend of worm prevalence against time, along with three
categories of attacker motivation: experimentation or discovery, cybercrime and
cyberwarfare.

Up to the first few years of the 21st century, the use of malware was comparatively
in its infancy, and the notable worm outbreaks during this period can be argued to

have been for experimental purposes, with the main motivation of the attacker to see
if they are feasible; or in the case of the Morris worm to measure the size of the
ARPANET. From around 2004 onward, the use of malware for cybercrime has
increased. Such criminal activity, as shown by the prevalence of Trojans like Zeus
[16], has focused on gaining access to confidential data or disrupting services, such
as a Distributed Denial-of- Service attack (DDoS) [20], through the use of controlling
a large number of machines through a botnet created using a trojan.

Although worms can be used in order to create botnets and carry out DDoS attacks,
other methods have been chosen by attackers. Part of the reasoning for this, is that
a large-scale, fast random-scanning worm outbreak is easily detectable, and it is
often the intent of an attacker to avoid detection for as long as possible. Additionally,
as has been shown by the Slammer outbreak [3], there is the possibility that a
particularly fast worm can impede the network traffic, that in the case of a botnet,
may disrupt the ability of an attacker to issue commands to or receive information
from infected hosts.

As it has been shown by the worm-like Stuxnet outbreak [18], if it is the intention of
an attacker to cause damage then the use of worms becomes a more attractive option.
Although these have been isolated to targeted attacks to date, if it is the intention of
an attack to disrupt communication or target the network infrastructure, such as in
a cyberwarfare scenario, then the use of worms becomes a much more viable option.
Additionally, if the motivation of an attack is to cause disruption of the Internet, then
worms also present a viable option for attackers, even in the absence of a payload
that causes damage.

Given the further shift of motivation from cybercrime to cyberwarfare, this also
depends on the existence of wormable vulnerabilities, in order to exploit and carry
worm attacks in the future.

V. RECENT WORMABLE VULNERABILITIES

Equation 3 presents a method of assessing whether or not a vulnerability is
wormable. This Section presents five case studies of contemporary wormable
vulnerabilities, along with their CVE code [10] for reference.

Microsoft Remote Desktop Protocol (RDP) - 13/03/2012 - CVE-2012-0002

The Microsoft RDP is a method for users to remotely access Windows-based hosts
across a network. This vulnerability was present in a number of Windows versions,
including XP, Vista, 7, Server 2003 and Server 2008. This allows an attacker to
send a crafted packet on port 3389 to the host running RDP, and then potentially
gain remote code execution. Having gained access to execute remote code, the
attacker could then use this to send copies of the malicious packet.

This wormable vulnerability is of particular note owing to the potentially large
number of susceptible hosts to such an attack. W3Counter [21] reports that these
recent editions of Windows constituted of approximately 3 billion Internet connected
hosts in 2012. As RDP is disabled by default, this requires being enabled manually.
One estimate for the number of RDP enabled hosts is one in every 10,000 [22], or
300,000 hosts; resulting in a similar proportion of vulnerable hosts to the Code Red
outbreak in 2001. As has been reported in two of the authors previous work [5], such
a large proportion of susceptible hosts could result in a particularly virulent worm
outbreak.

BigAnt Message Server - 09/01/2013 - CVE-2012-6275

The BigAnt instant messaging (IM) software is an instant messaging solution targeted
towards business use. By using a buffer overflow present in the message server
portion of the software, an attacker is able to send a crafted packet and execute
remove code on the targeted machine. As the software links with Microsoft Active
Directory, this can include ascertaining user account details, potentially having a
wider impact than just the host running the message server. This can also lead to
network access, allowing copies of the malicious packet to be sent to other hosts
running the message server software. Although lacking the install base of the
Microsoft RDP vulnerability, this is of particular note owing to its use in a corporate
setting, as well as potentially allowing access to further details that could lead to
further issues. This vulnerability, as far as the authors are aware, also has yet to be
patched and details of how to exploit this vulnerability are publicly available.

VMWare vCenter - 25/04/2013 - VMSA-2013-0006.1

VMWare vCenter is a management platform for virtualised hosts. A number of CVEs
reported under the VMWare security advisory VMSA-2013-006.1 [23] detail how an
attacker may leverage Microsoft Active Directory integration in order to gain
authentication on Windows-based servers running vCenter (CVE-2013-3107), and
then use this authentication in order to execute remote code using another
vulnerability (CVE-2013-3079). This access provides administrative privileges to the
host system, enabling the attacker to then send copies of the malicious packet/s
used to other susceptible hosts. As one of the largest vendors for virtualisation
software, a vulnerability in VMWare software presents a scenario where a substantial
number of hosts may be susceptible to an attack. Furthermore, access to the
virtualisation environment may further allow access to the virtualised hosts that are

currently running on it. This vulnerability has since been patched by VMware,
however, it demonstrates that virtualisation can present a vulnerability for future
worm outbreaks.

ASUS RT-AC66U Router - 26/07/2013 - CVE-2013-4659

The ASUS RT-AC66U router is a router produced for the consumer and small office
market. Using a vulnerability in the Broadcom ACSD service allows an attacker to
send a crafted packet on port 5916 causing a buffer overflow. This allows

administrative access on the target device, providing remote code execution and the
ability for the router to send copies of the malicious packet to other susceptible hosts.
As far as the authors are aware, no known patch is available for this vulnerability
and proof of concepts are currently available.

This vulnerability demonstrates that not only do server and desktop hosts require
consideration when considering potential worm outbreaks, but also that of routing
infrastructure. In addition to gaining access to further propagate itself,
administrative access to the router may also allow for further attacks, including man-
in-the-middle or denial of service attacks against hosts connecting to the Internet
through this router.

systemd 208 and prior - 20/09/2013 - CVE-2013-4391

Designed specifically for Linux-based operating systems, systemd is a system
management service, or daemon, that forms part of the Linux startup process. By

using a crafted packet, a buffer overflow can be cause resulting in allowing remote
code execution. In addition with another vulnerability, CVE-2013-4394 [10],
administrative access can be gained, therefore allowing network access to send
copies of the malicious packet/s to other susceptible hosts. This vulnerability
demonstrates that other operating systems, aside from Windows, can also be subject
to a wormable vulnerability. It also demonstrates that software required by an
operating system for basic functionality, as opposed to additional functionality in the
case of the Microsoft RDP vulnerability, can also be vulnerable.

A. Host Discovery

As highlighted in the work reported by Shannon et al. [4] and Staniford et al. [12],
the use of a hitlist is one key method of increasing the virulence of a worm outbreak.
Given that a number of unpatched vulnerabilities have been highlighted, it is of note
that there now exist a number of services that catalogue information provided
through the use of meta-data. One such service, Shodan [24], is freely available and
allows the collated download of search results at a small price. Such a service could
be used in order to collate information prior to a worm outbreak, in order to create a
hitlist.

B. Susceptible Population

A key factor in determining the virulence of a worm is the number of susceptible
hosts that a worm can infect. As has been demonstrated in some of the authors
previous work [5][13], and the measure of exploitability by Nazario et al. [7], the
larger the proportion of susceptible hosts on a network both virulence and
exploitability increase. In the case studies presented, those vulnerabilities that
would provide the greatest number of susceptible hosts, are vulnerabilities in
operating systems. Therefore, it is pertinent to further investigate operating system

security.

VI. OPERATING SYSTEM SECURITY

A. Operating System Memory Security

The main method for exploited vulnerable hosts, allowing for remote code
execution, has been the use of buffer overflow exploits (as demonstrated in table I).
This has prompted the development of a number of techniques in order to prevent

the writing of arbitrary data in the memory addresses that are being used by a
program; and therefore providing remote code execution. The prevention techniques
that are widely adopted in modern day operating systems are Address Space Layout
Randomisation (ASLR), Data Execution Prevention (DEP), using No eXecution (NX)
and canaries.

1) Address Space Layout Randomisation: ASLR is a countermeasure mechanism
[25] adopted by operating systems to randomize the positions of executable code and
data in memory at each run of a program. Randomising the base address of
important memory structures, such as the stack and heap, makes the virtual
address needed to perform a controlflow hijacking attack unknown. However, some
techniques [26][27] have been reported that can bypass the randomness of ASLR
mechanism.

a) Non-ASLR Memory: A non-ASLR module that runs on ASLR enabled operating
system can be used to circumvent the ASLR protection mechanism. This can be a
shared library in Microsoft Windows compiled without ASLR support for
compatibility reasons. When an application that is non-ASLR is executed, the

application tends to load its executables at runtime at a fixed memory address, thus
allowing critical memory sections to be overwritten, or changing memory location.
Additionally, using return-oriented programming techniques the contained data can
be abused in order to leak additional memory addresses.

b) Information Disclosure: An information disclosure vulnerability can be used to
leak memory locations of elements known to be at fixed addresses. For example, an
out-of-bounds memory access vulnerability can be used to read a function pointer,
and then send the value back to the remote server. Consequently, the server will
control the size parameter of the function and accurately trigger an out-of-bounds
read. As a result, the address of the public function is leaked. Based on this address,
the memory layout of a corresponding executable file can be inferred.

c) Heap Spraying: Heap spraying is a technique used to allocate a substantially
large amount of memory and fill it with a concatenation of multiple copies of a block
of data. This is intended to create heap blocks using scripting languages so that a
reliable location can be attained, then execute shellcode without looking for an offset
in the memory address. This can greatly increase the probability that a chosen
address will point to the beginning of the block even in the presence of
randomisation.

2) Data Execution Prevention: Execution prevention [27][28] is another important
countermeasure used to prevent arbitrary code execution even when an attacker has
gained control over the processor’s instruction pointer. This technique marks
memory regions of executable application or service as writable or executable, but
not both at a time. Popularly known as DEP on Microsoft Windows systems, it utilizes
a hardware feature of the processor known as the NX bit. This marks writable
memory regions, including the stack, as nonexecutable. Thus, when an address from
this memory region is loaded as the instruction pointer, the processor will notice the
non-executable flag and then raises a kernel level exception. The kernel will then
send a segmentation fault signal to the program and thus terminate the program.
Techniques used to circumvent DEP include return into libc, Return-Oriented
Programming (ROP) and stack pivoting.

a) Return into libc: This technique [25] bypasses DEP by using the code of the
running program or its shared libraries for malicious purposes instead of its intended
use. This is achieved since the code is used by the running program itself, then the
memory space utilised by the program is marked as executable. For example, in the
Windows operating system an attack that uses WinExec and its functions (normally
found in ntdll.dll) bypasses DEP as these are stored in an executable part of the
memory. Thus malicious code can be copied to the executable memory space giving
the attacker control of applications and services as described in [29].

b) Return-oriented Programming: This technique [25] allows an attacker to take
control of the processor’s instruction pointer and the stack area where return
addresses are stored. Small pieces of code called gadgets are chained together to
execute a chosen functionality instead of executing the intended functions. These
gadgets are simple instructions followed by a return statement. For example, the
statement in Figure 2 moves the content of the stack esp to ecx and then loads the
next address from the top of the stack into the processor’s instruction pointer
through the return statement. This technique can successfully bypass DEP using
WinExec as reported in [30].

c) Stack Pivoting: This technique [25] is an improvement of return-oriented
programming by utilizing a special ROP gadget in order to make return-oriented
programming possible through arbitrary overwrites. Having taken control of the
processor’s instruction pointer, an attacker will use the pointer to jump to a gadget
that modifies the stack pointer to make it point to a controlled location. This can be
accomplished directly through an arithmetic operation or by gadgets containing the
popq instruction. It is intended that the controlled stack area will contain the ROP

shellcode that will be executed subsequently.
3) Canaries: This is a compiler technique [31] that protects the stack by inserting

a guard, a randomly chosen integer, at the start of the program between the protected
region of the stack and the local buffers, i.e., a canary value is placed after the return
address. Therefore, overwriting the return address will change the canary value,
which is normally checked before a function uses the return address. The function
will compare the value on the stack and the original value of the canary, if these
values are different, then a message is generated in the system logs and the program
will be terminated.

B. The Windows XP Opportunity

It has been estimated that Windows XP still constitutes 26% of all operating systems
installed on desktop hosts [32]. As of the 8th April 2014, the extended support for
Windows XP was discontinued. This meant that from this date there were no longer
any security patches or support for this version of the operating system being made
available for free. Although what is termed “critical patches” will be made available
to paying customers. Additionally, after the 14th July 2015, the built-in anti-
malware tools, Security Essentials and the Malicious Software Removal Toolkit, will
no longer be supported. Given this lack of support, if vulnerabilities are found in this
version of the Windows operating system, it increases the likelihood that these
systems will be susceptible to a future worm outbreak. This presents a particular
issue, for instance, Slammer was able to cause disruption with less than 1% of the
hosts at the time being susceptible to its infection vector [3], therefore it is reasonable
that should a Windows XP vulnerability be exploited by a Slammer-like attack it
could cause significant network disruption.

VII. CONCLUSION

Since the turn of the 21st century, zero-day worms have constituted a considerable
threat to the Internet. Since 2005 there has been a reduction in the number of worm
outbreaks, which can be attributed to a shift in the motivation of attackers from a
period of experimentation and discovery to that of criminal activity. As such activity
is better suited to the use of other types of malware, such as trojans, this reduction
is reasonable. With the advent and increase in prevalence of cyberwarfare, worms
once against become a weapon of choice for attackers, owing to their fast propagation
and ability to cause considerable damage.

This paper explored the contemporary availability of wormable vulnerabilities and
discusses the increased proportion of susceptible hosts made available by
exploiting operating system vulnerabilities, highlighting the common techniques
used in order bypass the most common techniques for preventing the exploitation
methods used by zero-day worms. Furthermore, it highlights the opportunity that
has arisen for attackers with the end of extended support, and future end of anti-
malware support, for the Windows XP operating system.

REFERENCES

[1] B. Ediger, “Simulating Network Worms - NWS Network Worm Simulator,”

http://www.stratigery.com/nws/, Sep. 2003, retrieved: 28th July

2014.

[2] C. C. Zou, W. Gong, and D. Towsley, “Code red worm propagation modeling and analysis,”

in Proceedings of the 9th ACM conference on
Computer and communications security. ACM, 2002, pp. 138–147.

[3] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and

N. Weaver, “The spread of the sapphire/slammer worm,” IEEE Security

and Privacy, vol. 1, no. 4, pp. 33–39, 2003, retrieved: July, 2014.

[4] C. Shannon and D. Moore, “The spread of the witty worm,” Security &
Privacy, IEEE, vol. 2, no. 4, pp. 46–50, 2004.

[5] L. Tidy, S. Woodhead, and J. Wetherall, “A large-scale zero-day worm

simulator for cyber-epidemiological analysis,” vol. 3, no. 1. Universal

Association of Computer and Electronics Engineers, 2013, pp. 69–73.

[6] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy

of computer worms,” in Proceedings of the 2003 ACM workshop on
Rapid malcode. ACM, 2003, pp. 11–18.

[7] J. Nazario, T. Ptacek, and D. Song, “Wormability: A description for

vulnerabilities,” Arbor Networks (October 2004), 2004, retrieved: July,

2014.

[8] P. Li, M. Salour, and X. Su, “A survey of internet worm detection
and containment,” Communications Surveys & Tutorials, IEEE, vol. 10,

no. 1, pp. 20–35, 2008.

[9] C. Smith, A. Matrawy, S. Chow, and B. Abdelaziz, “Computer worms:

Architectures, evasion strategies, and detection mechanisms,” Journal of

Information Assurance and Security, vol. 4, pp. 69–83, 2008.

[10] M. Corporation. (2014, April) CVE - common vulnerabilities
and exposures. Online. Retrieved: July, 2014. [Online]. Available:

https://cve.mitre.org/

[11] N. Weaver, “Warhol Worms: The potential for very fast internet

plagues,” http://www.iwar.org.uk/comsec/resources/worms/warholworm.

htm, 15 Aug. 2001, retrieved: July, 2014.
[12] S. Staniford, D. Moore, V. Paxson, and N. Weaver, “The top speed of

flash worms,” in Proceedings of the 2004 ACM workshop on Rapid

malcode. ACM, 2004, pp. 33–42.

[13] L. Tidy, S. Woodhead, and J. Wetherall, “Simulation of zero-day

worm epedimiology in the dynamic heterogeneous internet,” Journal

of Defense Modeling and Simulation, 2013, in Press.
[14] E. H. Spafford, “The internet worm program: An analysis,” ACM

SIGCOMM Computer Communication Review, vol. 19, no. 1, pp. 17–57,

1989.

[15] Panda Security. (2013, May) Pandalabs q1 report: Trojans

account for 80malware infections, set new record. Online.
Panda Security. Retrieved 28 July 2014. [Online]. Available:

http://press.pandasecurity.com/news/pandalabs-q1-report-trojansaccount-

for-80-of-malware-infections-set-new-record/

[16] K. Stevens and D. Jackson, “Zeus banking trojan report,” Atlanta, DELL

Secureworks. http://www. secureworks. com/research/threats/zeus, 2010,

retrieved: July, 2014.

[17] C. Wilson, “Botnets, cybercrime, and cyberterrorism: Vulnerabilities and

policy issues for congress.” DTIC Document, 2008.
[18] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” Tech.

Rep., 2011.

[19] S. Cherry, “How stuxnet is rewriting the cyberterrorism playbook,”

IEEE Spectrum. http://spectrum. ieee. org/podcast/telecom/security/howstuxnet-

is-rewriting-the-cyberterrorism-playbook, 2012.

[20] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos
defense mechanisms,” ACM SIGCOMM Computer Communication Review,

vol. 34, no. 2, pp. 39–53, 2004.

[21] Awio Web Services LLC. (2012, November) W3counter - global web

stats. Retrieved: July, 2014. [Online]. Available: http://www.w3counter.

com/globalstats.php
[22] B. Krebs. (2012, October) Service sells access to fortune 500

firms. Online. Retrieved: July, 2014. [Online]. Available: https://

krebsonsecurity.com/2012/10/service-sells-access-to-fortune-500-firms/

[23] VMWare Inc. (2013, October) Vmsa-2013-0006.1 vmware security

updates for vcenter server. Online. VMWare Inc. Retrieved: July,

2014. [Online]. Available: https://www.vmware.com/security/advisories/
VMSA-2013-0006

[24] D. Goldman, “Shodan: The scariest search engine on the internet,”

Webseite, Stand, pp. 01–21, 2014.

[25] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks

against kernel space aslr,” in Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013, pp. 191–205.

[26] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee, “Jekyll on ios:

when benign apps become evil,” in Proceedings of the 22nd USENIX

conference on Security. USENIX Association, 2013, pp. 559–572.

[27] S. Röttger, “Malicious code execution prevention through function

pointer protection,” 2013.
[28] A. Cugliari, L. Part, M. Graziano, and W. Part, “Smashing the stack in

2010,” no. July, pp. 1–73, 2010.

[29] N. Stojanovski, M. Gusev, D. Gligoroski, and S. Knapskog, “Bypassing

data execution prevention on microsoftwindows xp sp2,” in Availability,

Reliability and Security, 2007. ARES 2007. The Second International
Conference on. IEEE, 2007, pp. 1222–1226.

[30] V. Katoch. Whitepaper on bypassing aslr/dep. Online. Secfence

Technologies. Retrieved: July, 2014. [Online]. Available: http://www.

exploit-db.com/wp-content/themes/exploit/docs/17914.pdf

