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Abstract - Simultaneous Location and Mapping (SLAM) is 

computationally expensive, and requires high-fidelity sensor data. 

This paper investigates the effects of transmission channel fidelity 

loss in Red-Green-Blue-Depth (RGBD) sensor data. A mobile 

robotic platform developed for Explosive Ordinance Disposal 

(EOD) is used, with a highly constrained data and video link to a 

base station which computes a SLAM solution. Experiments were 

conducted offline, using well known data-sets with ground truth 

data, and their results have been compared to determine the effect 

of fidelity loss under various multiplexing approaches with a 

constrained transmission channel. 
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I.  INTRODUCTION 

Explosive Ordinance Disposal (EOD) Unmanned Ground 
Vehicle (UGV) are a class of telepresence device that allows a 
remote operator to investigate, disarm or potentially destroy a 
suspected explosive device from a safe distance. Similar UGV 
systems are used in Search and Rescue (SAR) and environments 
that are too hazardous for direct human reconnaissance, for 
example in response to Chemical, Biological, Radiological or 
Nuclear (CBRN) accidents [1]. 

The platform used as a target in this paper is NIC Instruments 
LTD’s First Responder EOD UGV. This platform consists of a 
differential track drive chassis, with an articulated manipulator 
arm. The UGV is controlled remotely via radio link with a 
rugged control station. Live video is streamed back from the 
UGV via analog video radio, allowing the operator to view the 
UGV surroundings via five cameras attached to the UGV chassis 
and manipulator arm. 

Situational awareness in search and investigation scenarios 
can be invaluable. Using sensors to produce a 3D map of the 
environment around the UGV can allow the operator to better 
navigate through the environment. The 3D environment map can 
also be used to plot routes through the environment allowing for 
greater remote automation for the UGV. 

The generation of the 3D maps requires high-fidelity sensor 
data and considerable computing power [2]. Classically this has 
necessitated a client-server or client-cloud based architecture, 
offloading the generation of maps from local sensor data to a 
remote host optimized for this computation.  

This paper investigates the challenges of using a client-
server architecture with a low-fidelity radio link, and seeks to 
identify alternative approaches for computing these maps locally 
on the UGV using Commercially Off The Shelf (COTS) 
hardware, using the low-fidelity link to provide a remotely 
rendered view only. 

II. LITERATURE REVIEW 

A. Simultaneous Location And Mapping (SLAM) 

SLAM is the process of generating a model of the 
environment around a robot or sensor, while simultaneously 
estimating the location of the robot or sensor relative to the 
environment [3, 4]. SLAM has been performed in many ways, 
which can be categorized generally by their focus on 
localisation or environment mapping. 

SLAM systems focused on localising the sensor accurately, 
relative to the immediate environment, make use of sparse 
sensor data to locate the sensor. 

SLAM systems focused on map output use dense sensor 
output to create a high-fidelity 3D map of the environment, 
while using this data to also compute relative location of the 
sensor [5, 6]. Many modern SLAM algorithms combine both 
approaches, usually by extracting sparse features from the 
sensor and using these for efficiently computing the location of 
the sensor. This position is then used to construct a map from 
dense sensor data. 

1) Range SLAM 
SLAM computation using only distance from the sensor to 

the environment is common in many robot applications, using 
range sensors such as scanning laser range-finders [7], LiDAR 
and SONAR [8]. 

2) Visual SLAM 
Visual sensors used for SLAM range from single-camera 

(typically called Mono-SLAM), stereo-camera, or n-camera. A 
specialist sub-type of camera that is gaining popularity is the 
depth camera. These cameras use structured laser light and 
multiple calibrated cameras to read colour image and distance 
from the environment in-front of the camera [9]. 

3) RGB-Depth (RGBD) SLAM 

Depth cameras are able to provide dense sensor data in the form 

of 3D point clouds that can be used to construct detailed 3D 

representations of their field of view. 
Because depth cameras also provide standard video images, 

efficient sparse feature SLAM can be used to quickly estimate 
the pose of the sensor, reducing the computational load of 
merging the dense point-cloud into the map. 

RGBD SLAM [10] is a program built upon the Robotic 
Operating System (ROS) framework, and uses colour and depth 
image streams to estimate camera pose and construct a point-
cloud map. 

To provide a mechanism for benchmarking RGBD SLAM 
against alternate approaches, set of standardised datasets have 
are available and used to support this paper [11]. 



4) Common Architectures 

a) Client-server and cloud model SLAM  

Consumer products generally use a client-server or client-
cloud model. This architecture consists of a mobile device with 
sensors, typically a consumer smart phone or tablet, and a 
remote server, or cluster of servers, with hardware optimised to 
efficiently compute SLAM solutions [1]. 

Sensor data is recorded by the client device, transmitted to 
the server for computation, with the results being relayed back 
to the client if required.  

b) Client only model  

A client-only model is typically used on embedded devices 
which have either a time-critical requirement on the SLAM 
computation, or have constraints on data transmission to a 
remote server. An example of these are automated road 
vehicles, which must compute SLAM in real-time. 

c) Other notable examples 

An example of a communication constrained SLAM system 
is the Mars Science Laboratory, more commonly known as the 
Curiosity Rover, which has an incredibly constrained 
communication link to remote Earth-based servers that 
precludes any remote processing of sensor data [13]. 

Due to increased uptake of autonomous systems, client only 
models are now being researched more thoroughly, with an 
emphasis on development of tools for bench-marking and 
comparing new solutions and hardware [14]. 

B. Communications 

1) Data 
Data communication with a remotely operated vehicle is 

typically handled by a digital radio operating in either simplex, 
half duplex or full duplex mode.  

Transmission of data to and from the NIC First Responder 
is provided by a low-bandwidth serial data radio operating in 
half-duplex mode. Low carrier frequency and low transmission 
rate have been chosen to maximize the transmission distance 
between the OCU and the UGV. 

2) Video 
Video streams are transmitted from the NIC First Responder 

using a composite video simplex radio. This makes use of 
COFDM encoding that reduces signal loss and artefacts 
generated by enclosed interior environments, or non-line of 
sight (non-LOS) outdoor environments, with a range of up to 
2km LOS and 500m non-LOS. 

This trade-off has led to video transmission with increased 
range, at the expense of only having acceptable fidelity for the 
human eye.  

III. EXPERIMENTAL METHODOLOGY 

A. Hypothesis 

Considering the technical difficulties presented by the 
transmission of composite video data from a mobile UGV to a 
base station for post-processing, a great deal of vital image data 
may be lost in transit. It is hypothesised that local computation 
of SLAM and subsequent transmission of the solution will 
provide more accurate, higher-fidelity map output than SLAM 
solutions derived using transmitted composite video data.  

To test this hypothesis, an experiment was devised to analyse 
the possible fidelity loss to RGB-D sensor data when transmitted 

using the existing radio system. The results are presented and 
compared to existing bench-marking results of RGBD-SLAM. 
The SLAM solution is computed offline, using bench-marking 
data provided by the computer vision group, and their RGBD-
SLAM bench-marking tool [15]. 

B. Compression of Sensor Data 

The depth camera used, a Microsoft Kinect, provides two 
outputs: 

 An RGB video stream providing a colour image ahead of 
the camera, with approximately 45 degree field of view 
(FOV). The stream is formatted as a 640x480 16-bit RGB 
image. The RGB camera is calibrated to associate RGB 
pixels with depth pixels directly. Warping of the RGB 
image to match the depth image is handled in silicon on the 
connect sensor. 

 A depth video stream describing the distance as pixels in the 
FOV of the sensor, represented by a 640x480 16-bit grey-
scale image, with 1mm depth resolution. 

The data-sets used in the experiment were created from the 
original data, downloaded as a ROS bag file container 
containing colour, depth, IMU and ground-truth data. 

The ROS functions used to provide data from the sensor 
additionally provide camera calibration data for both cameras. 
Image frames from the sensor are not time matched, nor are they 
guaranteed to be sequential, and a nearest match was used to 
create image streams with synchronous frames. 

In order to transmit these frames over the single-channel 
radio link, three multiplexing approaches were attempted: 

 Interleaving alternate RGB and Depth frames. Matching 
frames were chosen based on a closest-time pattern. This 
process results in a 50% reduction in frame rate on both 
video streams. 

 Top/Bottom split-screen, with RGB and Depth frames 
stretched vertically to half their originally height, resulting 
in 640x240 frame size for both video streams. Matching 
frames were chosen based on a closest-time pattern. 

 Left/Right split-screen, with RGB and Depth frames 
stretched horizontally to half their originally height, 
resulting in 320x480 frame size for both video streams. 
Matching frames were chosen based on a closest-time 
pattern. 

To create the test sensor data for each of the above sets, the 
following procedure was taken: 
1. Select matching frames from the benchmark data set based 

on their closest-time neighbour 
2. Multiplex using interleaving, top and bottom and side by 

side 
3. Save the video into a video file 
4. Play back the multiplexed video from an embedded 

computer with composite output 
5. Transmit the video over a COFDM radio link 
6. Capture the video onto a second computer via the USB 

composite video capture device 
7. Record the captured video into a new video file 
8. De-multiplex using the reverse of the multiplexed method 
9. Place the image data back into a copy of the original 

datasets. 



Table 1 provides the observations made as a result of the 
initial testing of each approach. 

TABLE I.  COMPARISON OF VIDEO MULTIPLEXING APPROACHES 

Multiplexing 

Process 

Resulting Effective 

Resolution 

Resulting Effective 

Frame Rate 

Interleaved 100% 50% 

Top/Bottom 50% 100% 

Left/Right 50% 100% 

IV. RESULTS 

There is a perceptible drop in image-fidelity after 
transmission and reconstruction. This loss of fidelity presented 
itself through a greater contrast between the light and dark tones, 
and blurring of details. Contrast shift resulted in depth images 
that gave a poor representation of the original depth data. The 
meta-data associating greyscale tones with depth information 
became warped during transmission, leading to unreliable 
topographical output.  

Tearing was caused by re-timing the digital image stream 
from 25fps to 30fps. Once converted back to 25fps, frames were 
found to contain sections with inter- leaved lines from the next 
or preceding frame, as shown in Figure 1. This tearing rendered 
the interleaved frame multiplexed streams un-recoverable, and 
this multiplexing approach was discontinued.  

 

Figure 1.  Example of image distortion of multiplexed frames after 

transmission 

As a result of the frame rate change, the interleaved 
transmission produced an unusable video captured stream. 
Whilst the obvious solution is to use matching frame rates at all 
points in the system, the experiment was attempting to assess the 

suitability of such an approach using the existing technology of 
the NIC UGV. 

A. Image Analysis 

Frames that had been passed through the transmission stream 
were compared using ImageMagick [16] which provides Peak 
Signal to Noise Ratio (PSNR), Root Mean Squared Error 
(RMSE) and Max Absolute Error (MAE) metrics. 

Table 2 outlines the results of this comparison. Top/Bottom 
multiplexing showed the highest error in the RGB channel, with 
similar errors in the depth image in both multiplexing processes. 

TABLE II.  IMAGE COMPARISON RESULTS 

MUX Channel PSNR RMSE MAE 

Side/Side RGB 8.87025 23602.6 

(0.360153) 

17660.1 

(0.269475) 

Side/Side Depth 16.1778 10176.2 

(0.155279) 

8276.41 

(0.12629) 

Top/Bottom RGB 12.6852 15213 

(0.232135) 

11774 

(0.17966) 

Top/Bottom Depth 16.2149 10132.8 

(0.154616) 

8761.3 

(0.133689) 

B. SLAM Benchmark 

While the RGBD-SLAM benchmark tool was able to 
process the data, in the multiplexed data-sets, the error was 
considerably higher. Pose estimation was poor, as shown in 
Figure 2. 
Top/Bottom MUX was found to provide a close approximation 
of the original image depth data. An average error rate of 12% 
was observed, when comparing the original data to the 
Top/Bottom (T/B) MUX counting all additional and subtracted 
depth data.  

Side/Side (S/S) MUX degrades the image-data significantly. 
As shown in the third graph of Figure 2, there is little to no 
comparison between the results of transmission and 
reconstruction, and the original data. This would make for a very 
unreliable SLAM output, to the point where the data is 
functionally useless for mapping purposes.  

With the reduction in effective resolution taken into account, 
both T/B and S/S MUX result in a significant loss of data. T/B, 
including resolution loss, loses an average of 24% of the 
accuracy of the original, as the resolution is reduced by 50%, 
and an average of 12% of the reconstructed data is corrupted by 

Original Top/Bottom Side/Side 

   

Figure 2.  Example of the comparison of pose estimation between original and multiplexed data using the freiburg1_xyz dataset 

 



the transfer process. S/S MUX completely corrupts the image, 
providing no usable depth data.  

Figure 3 shows the results of the two multiplexing 
approaches and against the original dataset, comparing the 
outcomes of RGBD-SLAM. In both T/B and S/S, there is a large 
deviation from the original dataset for complex environments, 
with freiburg1_room showing between 0.92m and 1.02m of 
deviation from the mean. 

 

 

Figure 3.  Comparison of absolute trajectory error across several datasets 

T/B, across all samples, has a range of between 0.16m and 
1.02m mean error. S/S has a mean error range of between 0.21m 
and 0.92m. Locally computed original data has an error rate of 
between 0.03m and 0.39m, significantly lower than tested 
alternatives.  

It can be surmised that the effects of mobility in mapping 

an area are more pronounced for S/S, while T/B has more 

trouble with large areas. Both approaches are inferior to the 

locally computed original solution, when attempting to 

construct reliable, high-fidelity RGBD-SLAM output. 

V. CONCLUSION 

Transmission of RGB and Depth data from a remote mobile 
robot to a local base station, for the purpose of SLAM 
computation, requires a high-fidelity, high bandwidth 
connection between the robot-base station pair. In many 
common SAR and EOD operations, computation of a 3D map 
of the operational area would be beneficial to the operation.  

The platform targeted in this paper has data and video 
connections optimised for transmission range and image fidelity 
suitable for a human operator. Using this same transmission 
system to transmit RGB-D camera data back to the base station 
for SLAM computation has shown to result in poor performance, 
due to loss of fidelity in the image stream. In both cases, the loss 
of fidelity was too great for the data to be useful in generating a 
SLAM solution with over 1m of error in room size spaces. 

Analysis of two approaches to RGBD-SLAM data 
transmission found that T/B produced the highest errors per 
frame for the RGB channel. T/B and S/S were found to have 
similar depth-data errors. Both T/B and S/S were found to suffer 
serious degradation of output quality when profiled using the 

RGBD-SLAM benchmark tool. This resulted loss of depth-
related data made the computation of a reliable SLAM solution 
too challenging. 

Future work will focus on locally processed SLAM, using 
CUDA enabled embedded-processors. Combining this with an 
efficient transmission method for processed 3D map data, 
combined with task allocation [17], will enable autonomous 
drone-side self-navigation. 
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