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The vast majority of strategies aimed at controlling contagion processes on networks consider the
connectivity pattern of the system either quenched or annealed. However, in the real world, many
networks are highly dynamical and evolve, in time, concurrently to the contagion process. Here, we
derive an analytical framework for the study of control strategies specifically devised for a class of
time-varying networks, namely activity-driven networks. We develop a block variable mean-field
approach that allows the derivation of the equations describing the co-evolution of the contagion
process and the network dynamic. We derive the critical immunization threshold and assess the
effectiveness of three different control strategies. Finally, we validate the theoretical picture by sim-
ulating numerically the spreading process and control strategies in both synthetic networks and a
large-scale, real-world, mobile telephone call dataset.

PACS numbers: 89.75.Hc, 64.60.aq

The spreading of infectious diseases, malwares, sci-
entific ideas, and memes are just a few examples of
real world phenomena that can be modeled as conta-
gion processes on networks [1–4]. It has long been ac-
knowledged that network structures and connectivity
patterns are a relevant factor in determining the proper-
ties of spreading processes. Considering these findings,
a number of strategies aimed at controlling contagion
phenomena on the basis of the nodes’ properties such
as degree, k-core index, or betweenness have been pro-
posed [5–7]. The efficiency of each strategy is measured
by its effect on the contagion process when a fraction p
of nodes is removed from the system. More precisely,
the smaller the fraction p of nodes removed in order to
halt the contagion process, the more effective the strat-
egy.
Although most real world networks show a high level
of dynamic activity, the large majority of theoretical re-
sults concerning the control of contagion processes have
been obtained by using a complete timescale separation
between the contagion process, τP , and the change in
network’s structure, τG. In these approaches, the dy-
namical process takes place in either static (τP � τG)
or annealed (τP � τG) networks. However, when the
two time scales are comparable, these convenient ap-
proximations might introduce uncontrolled biases in the
characterization of the contagion process [8–32].
Here we investigate the effect of time-varying connec-
tivity patterns on contagion control strategies by con-
sidering the specific class of activity driven network
models [28]. In particular, we consider the susceptible-
infected-susceptible (SIS) contagion model [33] and de-
rive analytically its critical immunization threshold in
three different control strategies. We also validate qual-
itatively the findings obtained in synthetic networks by
studying the effect of each strategy in a large-scale mo-

bile telephone call dataset.
Activity driven models consider heterogenous popula-
tions where each node i is characterized by a specific
activity rate ai. This is the probability per unit time to
establish interactions with other individuals. The activ-
ity rates are assigned according to a given probability
distribution F (a). The generative network process is de-
fined according to the following rules (see Fig. 1-A-B): i)
At each discrete time step t, the network Gt starts with
N disconnected vertices; ii) With probability ai∆t, each
vertex i becomes active and generates m links that are
connected to m other randomly selected vertices; iii) At
the next time step t+ ∆t, all the edges in the network Gt
are deleted. All interactions have a constant duration
∆t. In the following, without loss of generality, we will
set ∆t = 1.
Activity driven networks are random and memoryless.
The full dynamics of the network and its ensuing struc-
ture is completely encoded in the activity distribution
F (a). Moreover, integrating very large activity driven
networks in finite time windows yield graphs charac-
terized by degree distributions following the functional
form F (a), see the Supplementary Information (SI) and
Ref. [28] for further details. We adopt heavy-tailed dis-
tributions of activity i.e. F (a) = Ba−γ with activities re-
stricted in the region a ∈ [ε, 1] to avoid divergences for
a→ 0, which approximate the behavior observed in real
data for a number of real-world networks [28, 29] and
more generally are found in human behavioral patterns.
The following calculations can be easily extended to any
functional form of the activity distribution, as shown
in the SI. Although activity driven models in their sim-
plest formulation do not account for many features such
as link persistence, homophily, and underlaying social
structures [8–23], they allow the analytical formulation
of the concurrent network and contagion process dy-
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FIG. 1: Schematic representation of activity driven model and
control strategies. Panels A and B show the temporal network
at two different time steps T1 and T2. Panel C presents the
integrated network over a certain period of time. The size
and color of each node describes its activity, while the width
and color of each link describes the weight. Panels D, E, and
F show random, targeted, and egocentric control strategy re-
spectively. Immunized nodes are marked in red; probes in yel-
low.

namics in the form of appropriate mean-field equations,
thus allowing the analytical study of the dynamical pro-
cess of interest [25, 28–32].

In the following, we study contagion processes using
the basic SIS model [33]. Each node at each time t can
be in the susceptible, St, or infectious, It, state. The ba-
sic SIS rules thus define a reaction scheme of the type
S + I → 2I with probability per unit time β and I → S
with probability per unit time µ, which represent the
contagion and recovery processes, respectively. We con-
sider the case in which these two probabilities are the
same for all the nodes, and defer the analysis of scenar-
ios characterized by heterogenous probability distribu-
tions for future works. A central concept of contagion
phenomena is the epidemic threshold. It defines the
conditions necessary for the spreading of the disease. In
networks, the threshold depends on the moments of the

degree distribution P (k) that specify the probability that
any node is connected to k distinct nodes. In uncorre-
lated annealed networks, the threshold condition reads
β
µ ≥

〈k〉2
〈k2〉 , where 〈k〉 and 〈k2〉 are the first and second

moment of the degree distribution, respectively [11]. In
this expression, β = λ〈k〉 takes into account the average
contacts per node 〈k〉 and the per contact probability of
transmission λ. While the expression might be differ-
ent in the case of static networks [34–36], the topological
properties of the underlying graph have critical effects
on the threshold.

In time-varying networks, the analytical study of con-
tagion processes is hindered by the difficulties in deal-
ing with the concurrent time scales of the contagion
and network evolution processes [37–42]. The contagion
timescale, τP , is defined by the average recovery time,
i.e. µ−1. The network timescale, τG, is instead depen-
dent on the convolution of the activity time scale, a−1,
of each node. Considering these observations, it is pos-
sible to derive the mean-field level dynamical equations
describing the contagion process. Let us define the ac-
tivity block variable Ita and Sta as the number of infected
and susceptible individuals, respectively, in the class of
activity a at time t. This allows us to write the mean-
field evolution of the number of infected individuals in
each group of nodes with activity a as

It+1
a = Ita − µIta + λm(Na − Ita −Rta)a

∫
da′

Ita′

N
+(1)

+ λm(Na − Ita −Rta)

∫
da′

Ita′a
′

N
,

where Na is the total number of individuals with ac-
tivity rate a (constant over time) and Rta are the nodes
in the class a at the time t that have been immu-
nized/removed from the network. In Eq. 1, the first
term considers the number of infected in class a at time
t. The second term describes the number of nodes that
recover going back in the class Sa. The third term rep-
resents the number of infected individuals generated
when nodes in the class Sta = Na − Ita − Rta are ac-
tive and connect with infected nodes in the other ac-
tivity classes. Finally, the last term considers the num-
ber of infected generated when nodes in the class Sta are
linked by active infected nodes in other activity classes.
In the absence of any controlling strategyRta = 0. In this
case, considering the convolution on all activity time
scales and ignoring the second order terms in I/N , we
can write It+1 = It − tµIt + λm〈a〉It + λmθt, where
θt =

∫
da′Ita′a

′. By multiplying both sides of Eq. 1 by a
and integrating, we obtain θt+1 = θt−µθt +λm〈a2〉It +
λm〈a〉θt. The system equations for It+1 and θt+1 pro-
vides an epidemic outbreak only if the dominant eigen-
value of the corresponding matrix is larger than 1. Thus,
the epidemic threshold reads as β

µ ≥ ξSIS ≡ 2〈a〉
〈a〉+
√
〈a2〉

,

where 〈a〉 and 〈a2〉 are the first and second moment of
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activity distribution [43] (see Ref. [28] and the SI for the
calculation details). Remarkably, the threshold does not
depend on the time-aggregated network representation.
It is defined by the interplay between the time scale of
the contagion process and the convolution of the net-
work time scales encoded in the activity distribution
moments. In particular, the network’s dynamics enter
in the expression as the average activity in the system
and its fluctuations.
By using this framework, we can study different immu-
nization strategies. First, let us consider the random
strategy (RS) in which a fraction p of nodes is immu-
nized with an uniform probability (see Fig. 1-D). In this
case, the system of equations describing the dynamic
process in activity-driven networks can be obtained by
setting Ra = pNa. The epidemic threshold condition
changes as

β

µ
≥ ξRS ≡ 1

1− p
2〈a〉

〈a〉+
√
〈a2〉

=
ξSIS

1− p
. (2)

As expected, when a fraction p of nodes is randomly im-
munized/removed, the epidemic threshold can be writ-
ten as the threshold with no intervention, ξSIS , rescaled
by the number of nodes still available to the spreading
process. Indeed, immunizing/removing random nodes
is equivalent to rescaling the per capita spreading rate
by the fraction of available nodes β → β(1 − p) (see
also the SI). Another important quantity is the critical
value of immunized/removed nodes, pc, necessary to
halt the contagion process. This quantity is a function
of network’s structure and the specific features of the
contagion process. The explicit value of pc can be ob-
tained by inverting Eq. 2. In Fig. 2-A, we plot pc as
a function of β/µ keeping fixed the statistical proper-
ties underlying network. We then simulate the process
for each pair of values and plot the average asymptotic
density of infected nodes, Ip∞, in 102 independent re-
alizations. The phase space of the diffusion process is
divided into two different regions separated by the red
solid line that represents pc as derived by Eq. 2. In the
region below the curve, the spreading process will take
over, p < pc. However, in the region above the curve,
the fraction of removed/immunized nodes is enough to
completely stop the diffusion process, p ≥ pc. To fur-
ther assess the efficiency of the immunization strategy
in Fig. 2-D (green triangles), we plot, as a function of
the density of removed/immunized nodes p, the ratio
Ip∞/I

0
∞ where I0∞ is the asymptotic density of infected

nodes when no-intervention is implemented. As shown
clearly in the figure, the random strategy allows a reduc-
tion in the fraction of infected nodes just for large values
of p.
In networks with heavy-tailed degree distributions, tar-

geting nodes with high degree centrality performs more
efficiently than random strategies [1, 3]. Analogously,
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FIG. 2: Panels A, B, and C show the phase space of an SIS pro-
cess under random, targeted, and egocentric control strategy,
respectively. Considering N = 104, m = 3, ε = 10−3, activ-
ity distributed as F (a) ∼ a−2.2, we plot I∞ as a function of
β/µ and p. Red curves represent the critical value pc. Panel
D shows the comparison of the stationary state of a SIS model
with and without control strategy, Ip∞/I0∞, as a function of p
when β/µ = 0.81. In green triangles, we consider the random
strategy, in blue diamonds the targeted strategy, and in orange
circles the egocentric strategy. Each plot is made averaging 102

independent simulations started with 1% of random seeds.

in activity driven networks, effective strategies shall tar-
get high activity nodes. For this reason, we rank nodes
in decreasing order of activity, immunizing/removing
the top ranking pN nodes, see Fig. 2-E. This method is
equivalent to fix a value ac so that any node with ac-
tivity a ≥ ac is immune to the contagion process [44].
Also, for this scheme, it is possible to derive the analytic
expression for the epidemic threshold (see SI):

β

µ
≥ ξTS ≡ 2〈a〉

〈a〉c +
√

(1− p)〈a2〉c
, (3)

where ξTS indicates the threshold in the case of the tar-
geted control strategy. In the above expression, we de-
fine 〈an〉c =

∫ ac
ε
anF (a)da as the moments of the activ-

ity distribution discounting the removed/immunized
nodes. Eq. (3) is not a simple rescaling of the origi-
nal threshold expression and implies a drastic change
in the behavior of the contagion process. As shown in
detail in the SI, the analytical predictions (Eq. 3) well
reproduce the behavior observed in numerical simula-
tions. In order to define the critical value of p neces-
sary to completely stop the spreading, we have to invert
Eq. 3. The moments of the distribution of the remaining
nodes are a function of p through ac. For this reason, it
is not possible to derive explicitly pc. However, it can
be easily evaluated numerically by solving the equation
ξTS−β/µ = 0 for different values of β/µ. In Fig. 2-B, we
show pc (red line) as a function of β/µ. The efficiency of
the targeted strategy is clear. Immunizing/removing a
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very small fraction of the most active nodes is enough to
stop the contagion process. This is confirmed in Fig. 2-
D (blue diamonds) where we plot the ratio Ip∞/I0∞. The
extreme efficiency of this strategy is due to the crucial
role of high activity nodes in the spreading process. Im-
munizing just the top 1% of nodes is enough to halt the
disease.
Unfortunately, the network-wide knowledge required
to implement targeted control strategies is generally not
available [6]. In the case of evolving networks, this issue
is even more pronounced as node’s characterization de-
pends on how long it is possible to observe the network
dynamics. Here we propose a strategy based on the lo-
cal sampling of the network. A fraction w of randomly
selected nodes act as “probes”. During an observation
time T , we monitor their egonet generated by their inter-
actions in the network. After the observation window,
we select randomly a node in the egonet of each probe,
immunizing/removing it (see Fig. 1-F). For the sake of
comparison with the previous control strategies, we de-
fine the fraction of actual immunized nodes as p (in gen-
eralw 6= p [45]), and the epidemic starts after nodes have
been immunized. In this scheme, the probability of im-
munization/removal for one node with activity a after
a time step is:

Pa = aw

∫
da′

mNa′

N
+ w

∫
da′a′

mNa′

N

1

m
. (4)

The first term on the r.h.s. considers the probability
that a node of class a is active and reaches one of the
probes; the second term, instead, takes into account the
probability that one node of class a gets a connection
from one active probe. Solving the integrals in Eq. (4),
we can write Pa = w (am+ 〈a〉). Thus, the probabil-
ity of immunization of one node in the activity class
a after t time steps is P ta = 1 − (1 − Pa)t, and there-
fore, summing over all the activity classes, we can es-
timate the total number of immunized individuals as
RT =

∑
aNaP

T
a =

∑
aNa

[
1− (1− Pa)T

]
. The equa-

tion for Pa does not consider the depletion of nodes in
each class due to the immunization process. The for-
mulation is then a good approximation for small w and
T , when the probability that a probe is selected more
than once is very small. Replacing the expression for the
removed/immunized individuals in the basic SIS equa-
tions (see SI) yields the following epidemic threshold for
the egocentric sampling strategy (ESS):

β

µ
≥ ξESS ≡ 2〈a〉

ΨT
1 +

√
ΨT

0 ΨT
2

, (5)

where we define ΨT
n =

∫
da an(1 − Pa)TF (a). This last

integral is a function of the observing time window T ,
the probability of immunization/removal of each class
and the activity distribution. We evaluate each Ψ term
through numerical integration. As shown in the SI, the

FIG. 3: Comparison of the stationary state of an SIS model
with and without control strategies. The Ip∞/I0∞ ratio of the fi-
nal fraction of diseased nodes of random (egocentric, targeted)
strategy I∞, and without intervention I0∞ is shown with green
triangles (orange circles, blue diamonds) as a function of p. Ev-
ery simulations was initiated with 1% infected seed, executed
102 times for T = 104 step with β/µ = 2.5. Each step was in-
tegrated for 6× 102 seconds, and periodic temporal boundary
condition was applied.

analytical predictions (Eq. 5) nicely reproduce the be-
havior observed in numerical simulations. As done for
the other two measures, we define the critical value of
p by solving numerically the equation ξESS − β/µ = 0
for different values of β/µ. In Fig. 2-C, we show pc (red
solid line) as a function of β/µ. Based on the plot, it is
clear how this strategy is much more efficient than the
random one, although not as performant as the targeted
scheme (see also Fig. 2-D). The efficiency of this strategy
is due to the ability to reach active nodes by a local ex-
ploration done observing the systems for few time steps.
Real world time-varying networks add a number of
complications to the simplified picture offered by activ-
ity driven networks. Indeed, they exhibit correlations
among nodes, persistency of links, and burstiness of the
activity pattern, just to cite a few [8–25]. Therefore, it is
extremely important to validate, at least in its basic phe-
nomenology, the above mean-field framework in real
world datasets. We consider a mobile phone call data
network consisting of 93, 190 connected phone users of
a single city involved in almost five million calls over
120 days. We simulate the SIS spreading process impos-
ing 1% of randomly chosen infectious nodes and imple-
ment the three immunization strategies previously de-
scribed (see SI for details on the numerical simulations).
We report in Fig. 3 the behavior of Ip∞/I0∞, providing a
measure of the effectiveness of each strategy. Remark-
ably, there is a qualitative agreement between what is
observed in real time-varying systems and the analyti-
cal results obtained in activity driven networks.

In summary, we have presented an analytical frame-
work that is able to capture the behavior of control
strategies for contagion processes in dynamical net-
works generated by heterogeneous activity distribu-
tions. Although the presented theoretical approach
deals with a simplified class of time-varying networks,
it can potentially extend to more realistic situations and
offer a general analytical and interpretative framework
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for the understanding of how we can control and miti-
gate (as well as enhance) contagion phenomena by act-
ing on the basic parameters of the system. Such results
find applications in a broad range of real world phenom-
ena ranging from the diffusion of emerging diseases to
information and communication processes.
This work has been partially funded by the NSF CCF-
1101743 and CMMI-1125095 awards to AV. We thank A.-
L. Barabási for the mobile telephone call dataset.
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