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Summary 

1. Animals that use flight as their mode of transportation must cope with the fact that their

migration and orientation performance is strongly affected by the flow of the medium they 

are moving in, i.e. by the winds. Different strategies can be used to mitigate the negative 

effects and benefit from the positive effects of a moving flow. The strategies an animal can 
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use will be constrained by the relationship between the speed of the flow and the speed of 

the animal’s own propulsion in relation to the surrounding air. 

2. Here we analyse entomological and ornithological radar data from north-western Europe 

to investigate how two different nocturnal migrant taxa, the noctuid moth Autographa gamma 

and songbirds, deal with wind by analysing variation in resulting flight directions in relation to 

the wind-dependent angle between the animal’s heading and track direction.  

3. Our results, from fixed locations along the migratory journey, reveal different global 

strategies used by moths and songbirds during their migratory journeys. As expected, 

nocturnally migrating moths experienced a greater degree of wind drift than nocturnally 

migrating songbirds, but both groups were more affected by wind in autumn than in spring.  

4. The songbirds’ strategies involve elements of both drift and compensation, providing 

some benefits from wind in combination with destination and time control. In contrast, moths 

expose themselves to a significantly higher degree of drift in order to obtain strong wind 

assistance, surpassing the songbirds in mean ground speed, at the cost of a comparatively 

lower spatiotemporal migratory precision.  

5. Moths and songbirds show contrasting but adaptive responses to migrating through a 

moving flow, which are fine-tuned to the respective flight capabilities of each group in 

relation to the wind currents they travel within. 

 

Key-words: Autographa gamma, drift compensation, flight behaviour, noctuid moths, 

passerines, seasonal migration, windborne migration. 

 

Introduction 

Each spring, immense numbers of insects and birds migrate polewards into temperate 

regions of the world to exploit seasonal resources for reproduction, before they and/or their 

progeny return to lower latitudes in the autumn (Holland, Wikelski & Wilcove 2006; Hahn, 

Bauer & Liechti 2009; Chapman et al. 2010; Drake & Reynolds 2012; Stefanescu et al. 2013; 

Bauer & Hoye 2014). Long-range migration to high-latitude breeding regions confers 

substantial benefits to individuals which survive the journey, via several nonexclusive 

mechanisms. Newly arrived migrants may experience reduced rates of competition 

(Alerstam, Hedenstöm & Åkesson 2003), predation (McKinnon et al. 2010), parasitism 

(Stefanescu et al. 2012), and/or pathogen infection (Altizer, Bartel & Han 2011; Chapman, 
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Reynolds & Wilson 2015). In addition, migrants often have increased reproductive 

productivity, and/or a greater number of generations per annual cycle, compared to non-

migrants (Spitzer, Rejmánek & Soldán 1984; Rohwer, Hobson & Rowher 2009; Chapman et 

al. 2012; Sibly et al. 2012). However, these benefits will be offset by costs, as the physical 

act of travelling hundreds of kilometres is energetically demanding and carries an elevated 

risk of mortality (Sillett & Holmes 2002; Alerstam 2011; Hawkes et al. 2011; Drake et al. 

2014; Klaassen et al. 2014). Travel costs are compounded by the fact that aerial (and 

aquatic) migrants move through a medium which is moving itself (Chapman et al. 2011b), 

often in a direction which will hinder progress along the ‘preferred direction of movement’ 

(PDM; Kemp et al. 2012). In order to reduce the energetic cost and mortality risk associated 

with long-range movements, migrants are expected to have evolved mechanisms for 

identifying favourably-directed flows and flight altitudes / swimming depths (Dokter et al. 

2011, 2013; Reynolds et al. 2010; Bishop et al. 2015; Fossette et al. 2015), and for selecting 

optimal headings that cope with unfavourable flows (Shamoun-Baranes & van Gasteren 

2011; Hays et al. 2014; McLaren et al. 2014).  

 

Nocturnally migrating moths often fly at altitudes between 200–800 m above the ground, 

where they usually aggregate in layers at the altitude of the fastest winds (Chapman et al. 

2008a, 2008b, 2010; Alerstam et al. 2011). By contrast, nocturnal songbird migrants 

habitually fly higher, usually between 500–2500 m above the ground (Dokter et al. 2011, 

2013), where winds are typically somewhat slower than those experienced by migrating 

moths. At the flight altitudes selected by migrating moths and songbirds, wind speeds are 

generally in the range of 6–22 m·s-1 (Shamoun-Baranes & van Gasteren 2011; Drake & 

Reynolds 2012); thus winds will either provide significant assistance, produce substantial 

lateral displacement (drift), or strongly oppose the movement, depending upon the direction 

of the flow relative to the animal’s PDM and self-powered airspeed (Chapman et al. 2011b). 

Migrating songbirds have airspeeds between 8–16 m·s-1 (Alerstam et al. 2007; Karlsson et 

al. 2012; Nilsson et al. 2013, 2014); thus under most wind conditions, songbirds can usually 

make some progress along their seasonal PDM (albeit often rather slowly, and not at all in 

the case of strong headwinds). However, they must cope with crosswind drift whenever the 

downwind direction is not closely aligned with the PDM. By contrast, noctuid moths have 

much slower airspeeds of 3–5 m·s-1 (Chapman et al. 2010; Drake & Reynolds 2012); thus in 

order to progress along their seasonal PDM they must, by necessity, migrate in airstreams 

with a large tailwind component, and when flying in even slight crosswinds they will 

experience significantly more drift than songbirds. 
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Given these differences in flight performance in relation to wind speeds, one would expect 

songbirds to exert a greater degree of control over their track directions (direction of 

movement relative to the ground), and to have faster ground speeds, than noctuid moths. 

However, a comparative radar study of songbirds – Old World warblers (Sylvidae), thrushes 

(Turdidae) and flycatchers (Muscicapidae) – and noctuid moths (Autographa gamma) 

migrating over north-western Europe produced the surprising result that the moths, despite 

being much smaller and slower flying (and thus far more reliant on wind assistance), 

achieved the same ground speeds and track directions as the faster-flying songbirds 

(Alerstam et al., 2011). An ability to identify suitably-directed currents for providing transport 

along the seasonal PDM would be an advantage to all swimming and flying goal-oriented 

migrants, but it would be of the greatest benefit for those species with relatively limited 

movement capacity in relation to current speeds (noctuid moths in this case). However, the 

mechanisms that nocturnally-flying migrants use to determine suitable wind directions, 

facilitating transport along their seasonal PDM, remain to be determined. The orientation 

strategies (Chapman et al. 2011b) that these migrants employ under different wind 

conditions also require critical analysis.  

 

In this study we investigate the question of orientation strategies by carrying out detailed 

comparative analyses of data collected in north-western Europe, comprising thousands of 

radar tracks of night-flying songbirds above southern Sweden (n = 4,178), and A. gamma 

moths above southern England (n = 8,184), during multiple spring and autumn migrations. In 

order to determine the seasonal PDM, the amount of lateral drift experienced, the orientation 

strategies utilized, and the degree of compensation achieved, robust statistical methods 

(Green & Alerstam 2002; Karlsson et al. 2010; Grönroos, Green & Alerstam 2013) have 

been employed. Our primary aim is to carry out, for the first time, identical quantitative 

analyses of the orientation responses of A. gamma moths and songbirds to wind flows, 

which allow us to classify their orientation strategies within a conceptual framework (see 

Chapman et al. 2011b) in a comparative manner, enabling a better understanding of the 

precise relationships between winds, flight behaviours and resulting migration directions in 

songbird and noctuid moth migrants. 
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Materials and methods 

ORNITHOLOGICAL RADAR TRACKING AND DATA ANALYSIS 

Nocturnal passerine migrants were recorded with X-band (3.2 cm wavelength) tracking 

radars (200 kW peak power, 0.25 µs pulse duration, 504 Hz pulse repetition frequency, 1.5° 

beam width) in Lund, south Sweden (spring: 13-27/4 1999, 28/4-25/5 2004, 2/5-7/6 2006, 

6/5-10/6 2008; autumn: 22/9-11/10 1999, 25/7-31/8 2006, 8-26/8 2008) and Falsterbo, south 

Sweden (spring: 7/4-26/5 2010, 10/4-31/5 2011; autumn: 19/8-21/10 2009, 11/8-14/9 2010, 

24/8-24/10 2011). Lund and Falsterbo data were highly consistent, and are therefore 

combined. All tracks were collected during dark hours, ~3–4 hours either side of midnight 

(local time). The radar operator searched for echoes from migrating birds by scanning 

manually at a range of antenna elevations between ~5 and 40°. After finding a target, 

typically at distances of between 2 and 6 km, the radar was switched into automatic tracking 

mode, and readings of azimuth, elevation and range were transferred to a computer every 2 

s. Discrete Fourier transformation analysis was applied to the echo signature data, and only 

targets that were considered to be single individual songbirds (indicated by the characteristic 

radar echo signature pattern associated with bounding flight typical of songbirds) were 

included in this study. Minimum tracking time for each target was 30 s, with mean tracking 

time ~60 s. Wind data were measured within 2 h of all bird tracks, by releasing and tracking 

helium balloons with reflectors. Songbird airspeed and heading direction were calculated by 

subtraction of the wind vector at the altitude where the bird was flying from the bird’s track 

and ground speed vector. Overall mean speeds (ground speed, airspeed, vertical speed and 

wind speed), directions (track direction, heading direction and wind direction) and flight 

altitudes (above the radar) were calculated for each individual songbird. A few tracks with 

airspeeds < 5 or > 20 m·s-1 were excluded, as these are unrealistic values for migrating 

songbirds. To be directly comparable with moth data, means of all variables were calculated 

for each night of ‘mass migration’, which was achieved by restricting analysis to nights with 

25 or more individual tracks (comprising 4,178 tracks from 89 nights, accounting for 83% of 

the total sample of individual tracks collected during the study period). The radar operating 

procedures and data handling have been described in further detail elsewhere (Bäckman & 

Alerstam 2003; Karlsson et al. 2012). 

 

ENTOMOLOGICAL RADAR OPERATING PROCEDURES AND DATA ANALYSIS 

We studied the flight behaviour of silver Y moths Autographa gamma engaged in spring and 

autumn high-altitude migratory flights using data collected by two purpose-built, X-band 

vertical-looking entomological radars (VLR) situated in inland southern England. The first 
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has been at Rothamsted, Harpenden, Hertfordshire (lat. 51° 48’ 32” N, long. 0° 21’ 27” W) 

from 1999 to present; the second was at Malvern, Worcestershire (lat. 52° 06’ 04” N, long. 2° 

18’ 38” W) from 2000 to 2003, and then at Chilbolton, Hampshire (lat. 51° 8’ 40” N, long. 1° 

26’ 13” W) from 2004 to present. The VLR equipment and operating procedures are 

described in detail elsewhere (Chapman et al. 2002, 2003, 2011a). Briefly, individual targets 

flying within 15 defined altitude bands above the radar (between 150–1188 m) are 

interrogated when they pass through the vertically-pointing beam. These height-bands are 

45 m deep and separated by a 26-m non-sampling interval. Usually, the majority of signals 

are resolved, and the analysis procedure yields the horizontal speed, displacement direction 

(track), body alignment, and three radar scattering parameters of each insect (from which 

body mass and shape factors are calculated). Migrating A. gamma moths were identified by 

restricting the analysis to the spring (May and June) and autumn (August and September) 

migration periods of 3 recent mass invasion years of this species (2000, 2003 and 2006), 

and then using the well-established methodology of separating radar targets produced by 

this species from other insects based on characteristics of the returned signals and timing of 

flight activity (Chapman et al. 2008a, 2008b, 2010, 2012). Means of all variables were 

calculated for each night of ‘mass migration’, which was achieved by restricting analysis to 

nights with 25 or more individual tracks recorded during a 2-hour period from 22:00 – 00:00 

GMT and within a height range of 300–600 m above the ground (comprising 8,184 tracks 

from 118 nights, accounting for 78% of the total sample of A. gamma moths detected during 

the selected 2-h time period and 300-m altitude range of the study period). 

 

STATISTICAL ANALYSIS 

Using the Rayleigh test of uniformity for circular data (Fisher 1993), the mean track (i.e. the 

migration direction relative to the ground) and the mean flight heading, plus associated 

circular statistics, were calculated for all mass migration nights of songbirds and A. gamma. 

For each mass migration night, the Rayleigh test was used to calculate the following three 

parameters for the distributions of individual tracks and flight headings: (i) the mean 

direction; (ii) the mean vector length ‘r’ (a measure of the clustering of the angular 

distribution of headings or tracks ranging from 0 to 1, with higher values indicating tighter 

clustering around the mean) for each distribution; and (iii) the probability that the distributions 

of tracks and headings differed from a uniform distribution (a P-value of < 0.05 indicates that 

the distribution is significantly unimodal, and hence the individuals in that mass migration 

event show a significant degree of common alignment of their tracks or headings). All mass 

migration nights had significantly unimodal distributions of tracks and headings. We then 
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calculated the overall mean track and heading directions of the songbird and A. gamma 

mass migration events in the spring and autumn periods, by analysing the nightly mean 

tracks and headings with the Rayleigh test once again (Fig. 1). The seasonal distributions of 

track and heading directions for songbirds and moths were also significantly unimodal, and 

we therefore assumed that both taxa had a consistent preferred direction of movement 

(PDM) during each migration season. These preferred directions, and the orientation 

strategies employed to achieve movement along the PDM, were identified by the regression 

method of Green & Alerstam (2002) as described in the results section. 

 

Results 

DIRECTIONS AND SPEEDS 

Mean track directions (movement relative to the ground) of both taxa were northwards in the 

spring (songbirds: mean direction = 23°, n = 47 nights; moths: 348°, n = 43 nights; Fig. 1) 

and southwards in the autumn (songbirds: 183°, n = 42 nights; moths: 187°, n = 75 nights; 

Fig. 1), similar to previous reports (Chapman et al. 2010; Karlsson et al. 2010). Songbirds 

and moths also had overall mean headings in seasonally-adaptive directions, relatively close 

to the corresponding track directions, during both spring (songbirds: 13°, n = 47 nights; 

moths: 354°, n = 43 nights; Fig. 1) and autumn (songbirds: 217°, n = 42 nights; moths: 204°, 

n = 75 nights; Fig. 1). Even though the migration performance of songbirds and moths 

converged on similar movement directions, headings and speeds (see Alerstam et al. 2011), 

they employed different adaptive strategies to achieve this, as there were clear differences in 

the wind currents selected by songbirds and moths for migration. Songbirds migrated under 

a wide range of wind directions in both seasons, but most frequently on downwind directions 

towards the east (spring: 89°, n = 47 nights; autumn: 99°, n = 42 nights; Fig. 1), which is the 

prevailing wind situation in this area of Sweden. By contrast, moths selected a narrower 

range of wind directions, and mass migration events were restricted to nights when 

downwind directions were seasonally-favourable, i.e. towards the north in the spring (345°, n 

= 43 nights; Fig 1) and towards the south in the autumn (179°, n = 75 nights; Fig. 1). 

 

In addition, songbirds migrated on significantly slower winds than moths (2-way analysis of 

variance (ANOVA), effect of taxa: F1,203 = 53.7, P < 0.001), and although wind speeds in 

general did not differ between spring and autumn (2-way ANOVA, effect of season: F1,203 = 

0.04, P = 0.838), there was a significant interaction, indicating that winds utilised by moths 

during spring were the fastest of all (2-way ANOVA, taxa x season interaction: F1,203 = 13.5, 
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P < 0.001; Fig. 2a, Table 1). It was not possible to directly measure the airspeed (self-

powered flight speed) of the moths (which was assumed to be 4 m·s-1 in both seasons; 

Chapman et al. 2010), but songbirds had significantly faster airspeeds in spring than in 

autumn (t = 2.72, n = 89, P = 0.008; Table 1). The fast and favourably-directed winds 

selected by A. gamma moths resulted in this taxon achieving significantly greater ground 

speeds (movement speeds during a bout of migration) than songbirds (2-way ANOVA, effect 

of taxa: F1,203 = 16.5, P < 0.001), while the greater airspeed of songbirds in the spring and 

the stronger tailwinds used by moths in the spring resulted in a significant seasonal effect on 

ground speeds (2-way ANOVA, effect of season: F1,203 = 13.8, P < 0.001; Fig. 2b, Table 1). 

Songbirds typically migrated in airstreams which were somewhat slower than their self-

powered airspeeds (ratio of wind speed to airspeed: mean 0.62 ± 0.29 SD; Fig. 2c), while 

moths nearly always migrated in airstreams which moved considerably faster than their 

airspeed (ratio of wind speed to airspeed: 2.88 ± 1.09; Fig 2c). 

 

ORIENTATION IN RESPONSE TO WINDS 

Chapman et al. (2011b) defined eight orientation strategies that a flying or swimming animal 

can exhibit with respect to the flow direction. Of those eight strategies, five are relevant to 

this study, as follows (in order of increasing shifting of the track away from the flow direction 

and towards the PDM; Fig. 3): (i) ‘downstream orientation’ (taking up a heading coincident 

with the flow); (ii) ‘compass-biased downstream orientation’ (shifting the heading a small 

amount from the flow direction towards the preferred direction, so that it lies between 

downstream and the PDM); (iii) ‘full drift’ (maintaining a heading in the direction of the PDM 

irrespective of the flow direction); (iv) ‘partial compensation’ (shifting the heading further from 

the flow, so that it lies on the other side of the PDM from the downwind direction); and (v) 

‘complete compensation’ (shifting the heading even further from the flow, so that the 

resulting track becomes coincident with the PDM). To identify the PDM and determine the 

orientation strategy of songbirds and moths in each season, we used the method of Green & 

Alerstam (2002). This method involves plotting the mean track direction on each night 

against the value of Į (the angle between the mean track and mean heading; Fig. 3) for 

each night, and we did this separately for songbirds and moths during spring and autumn 

migrations (Fig. 4). The value of the track direction at the intercept with Į = 0 corresponds to 

the PDM, while the slope of the regression line indicates the orientation strategy employed: 

slope = 0 indicates ‘complete compensation’, slope > 0 and < 1 indicates ‘partial 

compensation’, slope = 1 indicates ‘full drift’, slope > 1 indicates ‘compass-biased 

downstream orientation’; in the case of ‘downstream orientation’ there will be no difference 

between track and heading (Į = 0) and thus all data points would fall on a vertical line 
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(Green & Alerstam 2002). 

Our results indicated that spring songbird migrants had a PDM towards the NNE (18°), and 

the regression slope of 0.5 indicated a strategy of partial compensation, by which they 

managed to compensate for 50% on average of the wind-induced drift away from the PDM 

(Fig. 4, Table 2). The autumn PDM of songbirds was reversed by ~180° compared to the 

spring direction, lying between SSW and SW (214°; Fig. 4, Table 2). The regression slope in 

the autumn (0.90) indicated a strategy of a smaller degree of partial compensation, 

compensating for just 10% of wind-induced drift on average (although a strategy of full drift 

cannot be ruled out as the 95% CI just overlap with 1; Table 2). The spring and autumn 

regression slopes were significantly different from each other (Table 3).  

 

Moths showed a lower degree of compensation than the songbirds in both seasons (Table 

3). During spring migration, although there was some variation between years (Fig. S1a) and 

sites (Fig. S1b), the regression slope for the combined data corresponded to the case of full 

drift (i.e. maintaining a constant course towards the PDM irrespective of the wind), as the 

regression slope (0.93) was not significantly different from 1 and the 95% CI greatly 

exceeded 1 (Fig. 4, Table 2). The regression analysis for the combined data indicated that 

the PDM was very close to north (353°); thus it seems likely that the PDM of spring migrating 

A. gamma moths is northwards, and they selected flight headings and tailwinds (whenever 

possible) in this direction, with little attempt to correct for drift. During the autumn, the PDM 

of the moths was very similar to the songbirds, also lying between SSW and SW (210° for 

the combined data; Fig. 4, Table 2), and there was very little variation in the predicted PDMs 

between years (Fig. S2a) and sites (Fig. S2b), with values between 203° and 219° in all 

cases. However, the regression slope for the combined data was considerably larger than 1 

(1.99), and the 95% CI did not overlap with 1 (Table 2), corresponding to a strategy of 

‘compass-biased downstream orientation’ (CBDO). These results were robust and only 

changed slightly (PDM 211°, slope 1.74) when tested with only nights with track directions 

between 90–270°, indicating that the circular nature of the autumn data was not a problem. 

When combined with selection of broadly favourable winds, the strategy of CBDO maximizes 

the speed of transport while also somewhat influencing the direction of transport when the 

downwind direction is not that closely aligned with the PDM (Chapman et al. 2011b). Testing 

the possible differences in orientation responses to wind for different variables (Table 3) 

demonstrated that moths and songbirds oriented in significantly different ways, so that track 

directions were more affected by wind (steeper slopes) for moths than for songbirds in both 

seasons. In addition, the orientation of moths and songbirds differed between seasons, with 
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track directions being more affected by winds during autumn than spring in both taxa. There 

were no significant differences in the orientation responses to wind depending on wind 

speed or altitude, except for songbirds in autumn, which showed a pattern of more extensive 

drift with higher wind speed (Table 3). 

 

Discussion 

Our study is the first detailed comparative analysis of the orientation behaviour of migrating 

songbirds and insects, and provides new insights into the evolution of migration strategies in 

these groups. The results demonstrated that track directions of songbirds and moths were 

clearly influenced by wind (with the angle Į reflecting potential wind influence), but that the 

drift effect was stronger for moths than for songbirds (steeper slopes in Fig. 3, Table 3). It is 

very likely that this drift effect to a large degree reflects the orientation of individuals under 

changing wind conditions, but it should be noted that the results may possibly be biased by 

differential departures of migrant populations with different PDMs under different wind 

conditions, causing so-called ‘pseudo-drift’ (Evans 1966; Nisbet & Drury 1967; Alerstam 

1978). However, in this study we conclude that pseudo-drift is of less importance than 

individual orientation to account for the observed drift effects, in both the songbirds and 

moths, for the following reasons. In the case of A. gamma moths, only a single species is 

involved and inter-population differences in orientation behaviour over UK airspace are 

extremely unlikely in such a widespread insect migrant. In the case of the songbirds 

migrating over Sweden, recent radio telemetry studies during autumn migration in southern 

Sweden (Sjöberg et al. 2015) have verified true drift, as individually-tracked nocturnal 

songbird migrants (from a range of species) with preferred south-westerly orientation were 

regularly drifted by westerly winds to south-easterly courses. This supports the assumption 

that true drift is of much greater importance than pseudo-drift to explain the drift effects 

recorded in the current study. 

 

Songbirds and moths were exposed to very different wind speeds relative to their own self-

powered airspeeds, such that the mean relative wind speed (wind speed divided by 

airspeed) was 0.5–0.7 for the songbirds and 2.6–3.3 for the moths (Table 1, Fig. 2c). Hence, 

for songbirds the airspeed/heading vector is of primary importance in the triangle of 

velocities. In the ornithological literature it is most common to consider the effect of adding a 

smaller wind vector and to evaluate if and to what degree the heading/airspeed vector is 

directed into the wind to counteract drift from PDM. In contrast, for moths (and other insects) 
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the wind vector is of dominating importance, and the discovery that migrating moths have 

adaptive orientations (Chapman et al. 2008a), rather than merely random ones, means that 

we are obliged to consider how the addition of a smaller heading/airspeed vector can modify 

the resulting track direction, considering the much larger effect of the downwind vector.  

 

When wind speeds exceed the animal’s airspeed the resulting track direction can only be 

modified by a limited amount from the downwind direction (Chapman et al. 2011b). This is 

the situation for the moths, which can modify the track direction up to only 18–23° away from 

the downwind direction at the mean wind speeds experienced in this study. Thus moths 

typically migrate under wind conditions that are prohibitive for achieving complete 

compensation and maintaining a resulting track direction towards the PDM. To achieve this, 

moths would have to restrict migration to nights with downwind directions very close to the 

PDM, or alternatively fly in much slower winds. These choices would be associated with 

severely negative consequences: either a reduced number of nights available for migration, 

or reduced travel speed, respectively. One would think that it might be useful for the moths 

to direct their self-vector towards the PDM, adopting the strategy of full drift (Fig. 3). This 

was the strategy observed during their spring migration, but during the autumn moths 

employed a strategy of compass-biased downwind orientation (CBDO), whereby they shifted 

their heading away from the downwind direction and towards the PDM by only a small 

degree (typically not as far as the PDM), and only when the downwind direction was > 20° 

from the PDM (Chapman et al. 2010). Although a strategy of CBDO provides a very high 

ground speed this behaviour would often render it difficult to reach a well-defined goal in an 

economical way (compensation flights would be required after the extensive drift). Migratory 

birds generally have much more narrowly defined goal areas and arrival times compared to 

insects, which is probably a crucial reason why they do not favour very high ground speed at 

the expense of extremely high drift as moths seem to do. 

 

The orientation responses (Fig. 3) of individuals passing a fixed site under different wind 

conditions, as recorded in this study, may reflect the responses adopted throughout the 

migratory journey – in which case the local strategies observed in the current study (Fig. 4, 

Table 2) correspond to global strategies. Hence, a global strategy of (i) complete 

compensation may be adaptive when winds remain constant along the migration route 

(Alerstam 1979a; McLaren et al. 2014), while (ii) full drift may be adaptive if completely 

balanced winds from the left and right occur along the migration route (Alerstam 1990; 

McLaren et al. 2014), and also in some cases with unbalanced winds if the constant vector 
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orientation (PDM) is flow-adjusted (McLaren et al. 2014). The adaptive value in (iii) a global 

strategy of compass-biased downwind orientation (also termed ‘over-drift’; Green & Alerstam 

2002) lies in the exploitation of favourable tailwinds in combination with some degree of 

corrective orientation towards the preferred direction of movement, allowing the moths to fly 

with following winds from a wider sector than they would be able to do with pure downwind 

orientation without losing too much in destination accuracy (Chapman et al. 2008a). This 

strategy may be particularly favourable for flights through strong rotational flows (McLaren et 

al. 2014). 

 

However, global orientation strategies may be more complex, with different responses to 

wind in different regions/situations along the migration route. One such global strategy in 

birds is that of (iv) ‘adaptive drift’, where drift is adjusted to minimize the remaining distance 

to the destination after each flight step. If winds are shifting more or less randomly between 

different flight steps, it will be optimal to use a flexible behaviour of partial compensation, 

with more drift far away from the destination and more compensation near the destination 

(Alerstam 1979a). Another complex global strategy is that of (v) ‘combined drift and 

overcompensation’, which is optimal under certain conditions of predictable horizontal or 

vertical shear flow patterns along the migration route (Alerstam 1979b; Hays et al. 2014; 

McLaren et al. 2014). 

 

Since songbirds can master winds to a much higher degree than insects, strategies involving 

compensation are generally feasible only for songbirds (cf. McLaren et al. 2014). Thus, while 

all five global strategies are possible for birds, only the strategies of full drift or CBDO (or 

straightforward downstream orientation) seem to be feasible for moths (global strategies (ii) 

and (iii) above). Our results of full drift (autumn) or partial drift (spring) among the songbirds 

agree mainly with global strategies (ii) and (iv), while global strategies (i) and (iii) can be 

excluded for the songbirds. The pattern of increased drift in autumn compared to spring is in 

agreement with strategy (iv), since the songbirds were recorded at rather northerly latitudes 

when they were far away from their destinations (winter area) during autumn, but closer to 

their destinations (breeding area) in spring. Another possible contributory cause of the 

extensive drift in autumn may be the large fraction of young birds during autumn migration, 

since young migrants may be more likely to use vector orientation strategy (ii) (Berthold 

2001; Thorup et al. 2003). The significant effect of wind speed on drift behaviour of 

songbirds in autumn may indicate that more complex responses to wind shear are involved 

(global strategy (v)). The strategy of combined drift and overcompensation in vertical shear 
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flow has been observed mainly among diurnal passerine migrants (Alerstam 1979b). The 

results for the moths are in agreement with overall strategies (iii) in the autumn, and (ii) or 

(iii) in the spring, while other global strategies can be excluded.  

 

CONCLUSIONS 

Moths and passerines show contrasting adaptive responses to migrating through a moving 

flow. Insects are constrained by their limited self-propelled airspeeds, but take advantage of 

wind assistance to a much higher degree. Insects use strategies of full drift, compass-biased 

downstream orientation and active downstream orientation to maximize the amount of wind 

assistance, gaining fast ground speeds at the cost of precision in time and space. Waiting for 

the right wind conditions to occur will however increase the total duration of migration and 

limit the total migration distance in years with a low frequency of favourable tailwinds.. 

Songbirds on the other hand, with their strategy of partial compensation retain temporal and 

spatial control over their journey, but adoption of this strategy requires that they do not wait 

to fly only on nights with the most favourable winds but that they regularly travel on nights 

with crosswinds and opposing winds too. 
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Fig. S1a. Linear regression of migratory track against Į (the angle between track and 

heading) for moths during the spring in the three study years (2000, 2003 and 2006). 

 

Fig. S1b. Linear regression of migratory track against Į (the angle between track and 
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heading) for moths during the spring at the three study sites (Chilbolton, Malvern and 

Rothamsted). 

 

Fig. S2a. Linear regression of migratory track against Į (the angle between track and 

heading) for moths during the autumn in the three study years (2000, 2003 and 2006). 

 

Fig. S2b. Linear regression of migratory track against Į (the angle between track and 

heading) for moths during the autumn at the three study sites (Chilbolton, Malvern and 

Rothamsted). 

 

 

Figure Legends 

 

Fig. 1.  Distributions of track, heading and downwind directions during mass migrations of 

songbirds and noctuid moths (Autographa gamma). Small filled circles on the periphery of 

the large circles represent the mean direction on each night: red, inner circles are moth data 

and blue, outer circles are songbird data. Migratory track directions were northwards during 

spring (songbirds: mean direction = 23°, vector directedness (r) = 0.94, n = 47 nights, P < 

0.001; moths: 348°, r = 0.80, n = 43 nights, P < 0.001) and southwards during autumn 

(songbirds: 183°, r = 0.79, n = 42 nights, P < 0.001; moths: 187°, r = 0.54, n = 75 nights, P < 

0.001). Flight headings were also northwards during spring (songbirds: 13°, r = 0.94, n = 47 

nights, P < 0.001; moths: 354°, r = 0.84, n = 43 nights, P < 0.001), and southwards during 

autumn (songbirds: 217°, r = 0.94, n = 42 nights, P < 0.001; moths: 204°, r = 0.67, n = 75 

nights, P < 0.001). Downwind directions during mass migration nights were more variable: 

songbirds migrated on winds blowing towards a wide variety of directions, but with a 

significant bias towards the east (spring: 89°, r = 0.28, n = 47 nights, P < 0.005; autumn: 99°, 

r = 0.56, n = 42 nights, P < 0.005), while moth migrations occurred almost exclusively on 

seasonally-favourable tailwinds (spring: 345°, r = 0.76, n = 43 nights, P < 0.001; autumn: 

179°, r = 0.49, n = 75 nights, P < 0.001). 

 

Fig. 2. (a) Mean wind speeds associated with spring and autumn migrations of songbirds 

and A. gamma moths. Songbirds migrated on significantly slower winds, most noticeably in 

the spring. (b) Mean ground speeds associated with spring and autumn migrations of 

songbirds and A. gamma moths. A combination of slower tailwinds, and less selectivity of 

favourably-directed tailwinds, resulted in songbirds having slower ground speeds than moths 

in both seasons. (c) Relationship between wind speed and self-propelled airspeed for moths 
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(red) and songbirds (blue), shown as the ratio of wind speed over airspeed (drawn on a log 

scale). Dotted line indicates a ratio of 1, above which the wind speed is greater than the 

airspeed. Airspeed of moths is assumed to be 4 m·s-1. Means and standard deviations of 

data in (a, b) are presented in Table 1. 

 

Fig. 3. Triangles of velocities for five possible orientation strategies in response to flows, 

modified from (Chapman et al. 2011b). Each diagram shows the downwind vector (solid 

black line), heading vector (solid coloured line), track vector (dashed coloured line), and the 

preferred direction of migration (PDM; dashed grey line) for each strategy under the same 

conditions (downwind direction = 135° and PDM = 200° in all cases). The angles Į (the 

angle between track and heading), ȕ (the angle between downwind and track), and į (the 

angle between downwind and heading) are illustrated. The regression slopes expected for 

each strategy when data is plotted as in Fig. 4 are shown beneath each triangle of velocities. 

CBDO = compass-biased downstream orientation, which may also be called ‘over-drift’. 

 

Fig. 4. Analyses of the extent of drift and degree of compensatory flight behaviour in 

songbirds (a, b; blue circles) and moths (c, d; red circles) during the spring (a, c) and autumn 

(b, d). Mean track is plotted against Į (the angle between track and heading) for each mass 

migration night, following Green & Alerstam (2002), so that orientation responses to winds 

from different directions can be investigated. The regression lines show the change in track 

direction resulting from the combined effect of the downwind direction and the flight heading, 

for spring migrations of songbirds and moths (left panel) and autumn migrations of songbirds 

and moths (right panel). Slopes and intercepts (estimates of orientation strategy and 

preferred direction of movement, respectively, in each taxa and season) are presented in 

Table 2. 
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Table 1.  Wind speeds, ground speeds and airspeeds of migrating songbirds and 

moths 

 Migration 

nights 

Wind speed 

± 1 SD (m·s-1) 

Ground speed 

± 1 SD (m·s-1) 

Airspeed 

± 1 SD (m·s-1) 

Songbirds spring 47 6.77 ± 3.22 13.48 ± 3.32 12.70 ± 0.97 

Moths spring 43 13.21 ± 4.66 16.57 ± 4.58 4.00* 

Songbirds autumn 42 8.80 ± 3.89 12.14 ± 3.53 12.05 ± 1.43 

Moths autumn 75 10.58 ± 3.89 13.75 ± 3.78 4.00* 

*Moth airspeeds were set at 4.00 m·s-1 and were not measured in this study. 
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Table 2.  Slopes and intercepts for the regressions of track direction in relation to the angle between 

track and heading direction (Į) 

 N (nights) Slope  

(95% CI) 

Corresponding 

strategy 

PDM 

(intercept) 

P-value 

of slope

R2

Songbirds spring 47 0.50  

(0.35–0.65) 

Partial compensation 18° <0.001 0.45 

Moths spring 43 0.93  

(0.39–1.48) 

Full drift, CBDO 353° <0.001 0.21 

Songbirds autumn 42 0.90  

(0.74–1.05) 

Partial/full drift 214° 0.001 0.78 

Moths autumn 75 1.99  

(1.35–2.61) 

CBDO 210° <0.001 0.35 
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Table 3. Tests of differences in orientation responses to wind 

Variable  Case Effect on drift Test statistic P-value 

Taxon Spring More drift in moths than birds F1,80.7 = 9.9 0.002 

 Autumn More drift in moths than birds F1,113 = 12.1 0.001 

Season Moths More drift in autumn than spring F1,112.3 = 5.3 0.023 

 Songbirds More drift in autumn than spring F1,85 = 12.7 0.001 

Wind speed Moths, spring No difference F1,37.1 = 0.1 N.S. 

 Moths, autumn No difference F1,71 = 2.6 N.S. 

 Songbirds, spring No difference F1,41.7 = 1.9 N.S. 

 Songbirds, autumn More drift in high wind speeds F1,37.2 = 10.6 0.002 

Altitude Songbirds, spring No difference F1,42.2 = 0.2 N.S. 

 Songbirds, autumn No difference F1,38 = 0.0 N.S. 

The table shows the effects on track direction of the interactions between angle Į and different focal variables 

(left column) according to mixed GLMs with track direction as the dependent variable and angle Į and the 

focal variable as covariate/fixed factors, along with the interaction between the variables, and with year as a 

random factor. Test statistics refers to the interaction effect of angle Į * focal variable. 
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