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Abstract1

Clinical studies have used CD4 T cell counts to evaluate the safety or risk of2

plasma HIV-1 RNA-guided structured treatment interruptions (STIs), aimed at3

maintaining CD4 T cell counts above a safe level and plasma HIV-1 RNA below a4

certain level. However, quantifying and evaluating the impact of STIs on the5

control of HIV replication and on activation of the immune response remains6

challenging. Here we extend the virus-immune dynamic system by including a7

piecewise smooth function to describe the elimination of HIV viral loads and the8

activation of effector cells under plasma HIV-1 RNA-guided therapy, in order to9

quantitatively explore the STI strategies. We theoretically investigate the global10

dynamics of the proposed Filippov system. Our main results indicate that HIV11

viral loads could either go to infinity or be maintained below a certain level or12

stabilize at a previously given level, depending on the threshold level and initial13

HIV virus loads and effector cell counts. This suggests that proper combinations of14

threshold and initial HIV virus loads and effector cell counts, based on threshold15

policy, can successfully preclude exceptionally high growth of HIV virus and, in16

particular, maximize the controllable region.17

Keywords Structured treatment interruptions; Filippov system; sliding mode;18

pseudo-equilibrium19
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1 Introduction1

Highly active antiretroviral therapy (HAART) has been shown to significantly2

improve survival and reduce morbidity in HIV patients (Palella et al., 1998;3

Mocroft et al., 1998). However, long-term HAART continues to be associated with4

many problems such as adherence difficulties and the evolution of drug resistance5

(Zhang et al., 1999; Carr et al., 1999; Harrington and Carpenter, 2000; Johnson et6

al., 2004). Structured therapy interruptions (STIs) have been suggested as being7

capable of achieving sustained specific immunity for early therapy in HIV8

infection. As an alternative strategy, STI is a good choice for some chronically9

infected individuals who may need to take drugs throughout their lives, and it is10

beneficial for the patients’ immune reconstruction during the period when they are11

not taking the drugs (Maggiolo et al., 2009). Therefore, drug therapies targeted at12

boosting a virus specific immune response have attracted more and more attention.13

Recently, several clinical studies have been aimed at comparing STI strategies14

with continuous antiretroviral therapy, but conflicting results have been reported15

(Maggiolo et al., 2009; Ruiz et al., 2007; EL-Sadr et al., 2006; Anaworanich et al.,16

2006; Guerrero et al., 2005; Hadjiandreou et al., 2009; Lori et al., 2000; Maggiolo et17

al., 2004). In particular, Ruiz et al. (Ruiz et al., 2007) designed an experiment to18

evaluate the safety of CD4 cell counts and plasma HIV-1 RNA-guided structured19

treatment interruptions (STIs) aiming to maintain CD4 T cell counts higher than20

350 cells/μl and plasma HIV-1 RNA less than 100,000 copies/μl. They concluded21

that STIs were not as safe as continuing therapy. Although many mathematical22

models have been formulated to model continuous therapy(Kuznetsov et al., 1994;23

Blower et al., 2000; Rong et al., 2007; Tian and Liu, 2014), few attempts have been24

made to model structured treatment interruptions. In 2012, the authors (Tang et25

al., 2012) proposed a piecewise system to describe the CD4 cell count-guided STIs,26

to quantitatively explore STI strategies and to investigate their dynamic27

behaviors, which explained some controversial conclusions from different clinical28

studies. To the authors’ best knowledge, no mathematical model has yet been29
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proposed to model a plasma HIV-1 RNA-guided structured treatment strategy. An1

additional challenge remains regarding examination of whether the virus-guided2

structured treatment can successfully maintain plasma HIV-1 RNA below a certain3

level or not, and to determine under what conditions patients are suitable for4

structured treatment interruptions. Quantifying these issues through a5

mathematical modeling framework is the main objective of this study.6

The purpose of the study is to propose a mathematical model to describe plasma7

HIV-1 RNA-guided structured treatment, and examine the efficacy of this8

treatment for maintaining plasma HIV-1 RNA below a certain level. The paper is9

organized as follows. In the next section, we propose our model, provide the10

definitions for our Filippov system of the virus-immune system and describe the11

main dynamics of two subsystems. Then the sliding domain and the sliding12

dynamics are discussed in section 3. In section 4, we investigate the global13

dynamics of the proposed system. Finally, the biological meaning and the14

concluding remarks are discussed in section 5.15

2 Model equations and preliminaries16

The virus dynamic system was formulated to investigate the interaction between17

the virus and the effector cells (Pugliese and Gandolfi, 2008; Boer and Perelson,18

1998). The model equations without considering density dependent inhibition of19

the virus are as follows20 ⎧⎪⎨⎪⎩ ẋ = rx− βxy,

ẏ = ρxy
1+ωx

− μxy − δy,
(1)

where x and y represent the HIV viral loads and the density of effector cells,21

respectively and r is the growth rate of HIV virus which incorporates both22

multiplication and death of HIV virus, δ is the death rate of the effector cells, β23

denotes the rate of binding of the effector cells to the HIV viruses. As shown in24

(Abrahms and Brahmi , 1988; Callewaert et al., 1988; Komarova et al., 2003; Shu25

et al., 2014), the effector cells seem to have a limited ability to repeatedly kill26
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target cells during the interaction of the effector cells and target cells, which shows1

the inactivation of effector cells. Here, let μ represent the rate of inactivation of2

the effector cells. Note that that when the virus load is low, the level of immune3

response is simply proportional to both the viral load, x, and the density of4

effector cells, y. However, effector cell multiplication due to immune response has a5

maximum value as HIV viral load gets sufficiently large. Therefore, it is reasonable6

to suggest the nonlinear form ρxy/(1 + ωx) to model this (Shu et al., 2014).7

Based on the above virus dynamic system (1), we model the plasma HIV-18

RNA-guided therapy in order to maintain the amount of virus below a certain9

level and to activate the immune system. To this end, whenever the virus load10

exceeds a critical level (or threshold level Tc), antiretroviral drugs are applied to11

inhibit growth of the virus, and simultaneously interleukin (IL)-2 treatment is used12

to activate the immune response (e.g., promote maturation and cytotoxicity of13

CD4 cells (effector cells))(Marchetti et al., 2005; Napolitano, 2003). Hence the14

HIV virus dynamic system with HIV-1 RNA-guided therapy can be described15

following piecewise model16 ⎧⎪⎨⎪⎩ ẋ = rx− βxy − ε1Ψx,

ẏ = ρxy
1+ωx

− μxy − δy + ε2Ψy
(2)

with17

Ψ =

⎧⎪⎨⎪⎩ 0, if H(x) = x− Tc < 0,

1, if H(x) = x− Tc > 0,
(3)

and parameter ε1 represents the rate of elimination of HIV virus due to18

antiretroviral therapy and ε2 denotes the growth rate of the effector cells due to19

interleukin (IL)-2 treatment.20

System (2) with (3), a particular form of a Filippov system, can also be21

theoretically investigated by using a general dynamical method but this requires22

complicated and elaborate mathematical techniques (see details in (Kuznetsov et23

al., 2003; Bernardo et al,, 2008; Padmanabhan and Singh, 1995)). The following24

definitions on all types of equilibria of non-smooth system (2) with (3) are25

necessary throughout the rest of this paper.26
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Let R2
+ = {X = (x, y)|x ≥ 0, y ≥ 0}, S1 = {X ∈ R2

+|H(X) < 0}, and1

S2 = {X ∈ R2
+| H(X) > 0} with H(X) as a smooth scale function. Moreover, the2

discontinuity boundary Σ separating the two regions is described as3

Σ = {X ∈ R2
+| H(X) = 0}.

It is easy to see that R2
+ = S1

⋃
Σ
⋃
S2. Consider the following generic planar4

Filippov system5

Ẋ =

⎧⎪⎨⎪⎩ FS1(X), X ∈ S1,

FS2(X), X ∈ S2,
(4)

and denote6

σ(X) = 〈HX(X), FS1(X)〉〈HX(X), FS2(X)〉,

where 〈·, ·〉 is the standard scalar product and HX(X) represents the gradient of7

H(X) which is non-vanishing on Σ. Then the sliding mode domain is defined as8

ΣS = {X ∈ Σ|σ(X) ≤ 0}.

In what follows we will use the notation Fsi ·H(X) = 〈HX(X), FSi
(X)〉 for i = 1, 2.9

Definition 1. A point X∗ is called a regular equilibrium of system (4) if10

FS1(X
∗) = 0, H(X∗) < 0 or FS2(X

∗) = 0, H(X∗) > 0; A point X∗ is called a11

virtual equilibrium of system (4) if FS1(X
∗) = 0, H(X∗) > 0 or FS2(X

∗) = 0,12

H(X∗) < 0.13

Definition 2. A point X∗ is called a pseudo-equilibrium if it is an equilibrium14

of the sliding mode of system (4), i.e. λFS1(X
∗) + (1− λ)FS2(X

∗) = 0, H(X∗) = 015

with 0 < λ < 1 and16

λ =
〈HX(X

∗), FS2(X
∗)〉

〈HX(X∗), FS2(X
∗)− FS1(X

∗)〉 .

A point X∗ is called a boundary equilibrium of system (4) if FS1(X
∗) = 0,17
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H(X∗) = 0 or FS2(X
∗) = 0, H(X∗) = 0.1

Definition 3. A point X∗ is called a Σ−contact point of system (4) if X∗ ∈ ΣS2

and [Fs1 ·H(X∗)][Fs2 ·H(X∗)] = 0. A Σ−contact point X∗ is called a Σ−fold point3

of FS1 if FS1 ·H(X∗) = 0 but F 2
s1 ·H(X∗) �= 0. Moreover, X∗ is called a visible4

(invisible) Σ−fold point of FS1 if FS1 ·H(X∗) = 0 but F 2
S1

·H(X∗) > 05

(F 2
s1
·H(X∗) < 0). We call X∗ a Σ−fold point of the system (4) if it is a Σ−fold6

point either of FS1 or of FS2.7

3 Dynamics of two subsystems8

For convenience, we call the Filippov system (2) with (3) defined in the region S19

as subsystem S1, and the system defined in the region S2 as subsystem S2.10

Moreover, we assume that ρ− μ− δω > 2
√
μδω, δ > ε2 and r > ε1 hold true11

throughout this work, which guarantee that subsystem S1(S2) exists two positive12

equilibria, denoted by E11 = (x11, y11) and E12 = (x12, y12)(E21 = (x21, y21) and13

E22 = (x22, y22)), respectively. Here for i = 1, 2 we have14

x1i =
ρ− μ− δω ∓

√
(ρ− μ− δω)2 − 4μδω

(2μ
, y1i =

r

β

and15

x2i =
ρ− μ− (δ − ε2)ω ∓

√
(ρ− μ− (δ − ε2)ω)2 − 4μ(δ − ε2)ω

2μ
, y2i =

r − ε1
β

.

Thus, we have the following conclusions on the existence and stability of the16

equilibria of the two subsystems.17

Proposition 1. For the subsystem S1 (S2) there exists a trivial equilibrium18

E10 = (0, 0) (E20 = (0, 0)) which is a saddle point; The subsystem S1 (S2) has two19

positive equilibria E11 (E21) which is a center, and E12(E22) which is a saddle20

point. Also, there exists a homoclinic orbit with respect to E12 (E22), denoted as21
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Γ1
S1

( Γ1
S2
).1

The topological structure of the orbits of the both subsystems is shown in Fig.1.2

From which we can see that there is an intersection point of the homoclinic orbit3

Γ1
S1

(Γ1
S2
) with the line y = r/β (y = (r − ε1)/β), which is denoted by4

E13 = (x13, r/β) (E23 = (x23, (r − ε1)/β)).5

Lemma 1. The horizontal components of four positive equilibria of the two6

subsystems satisfy x21 < x11 < x12 < x22.7

Proof. Consider the function8

f(z) = ρ− μ− ωz −
√
(ρ− μ− ωz)2 − 4μωz.

By simple calculations we have f ′(z) > 0 if and only if ρ− z > −1. Thus, the9

function f(z) is strictly monotonically increasing when z < ρ+ 1. It follows from10

the existence conditions of the positive equilibria of the two subsystems that11

ρ− (δ − ε2) > ρ− δ > μβ > −1. Therefore, x11 > x21 always holds true. Further,12

we can verify that x12 < x22 is always true whenever they exist. This completes13

the proof.14

According to the definitions above, we have that if Tc < x21, then both the15

equilibria E21 and E22 are regular equilibria while E11 and E12 are virtual16

equilibria. As Tc increases and exceed x21, then the equilibrium E21 becomes a17

virtual equilibrium. If Tc continuously increases and crosses x11, equilibrium E1118

becomes a regular equilibrium while the equilibrium E12 becomes a regular19

equilibrium too when Tc > x12. Furthermore, if Tc > x22 holds true, the20

equilibrium E22 is a virtual equilibrium. Therefore, if we let the parameter Tc vary21

and fix all other parameters we have five different types of the regular/virtual22

equilibria of system (2) with (3) which are shown in Table 1.23

If we consider the subsystem S1 in the phase space, then y can be seen as a24

function of x with the following differential equation25
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dy

dx
=

y

x

ρx
1+ωx

− μx− δ

r − βy
,

and integrating above equation from (x1, y1) to (x, y), one yields1

∫ x

x1

(
ρ

1 + ωx
− μ− δ

x

)
=
∫ y

y1

(
r

y
− β

)
.

That is, the first integral H1(x, y) of subsystem S1 is as follows2

H1(x, y) = − ρ

ω
ln(1 + ωx) + δ ln(x) + μx+ r ln(y)− βy = h1, (5)

where h1 = H1(x1, y1) is a constant. Similarly, the subsystem S2 also has the3

following first integral4

H2(x, y) = − ρ

ω
ln(1 + ωx) + (δ − ε2) ln(x) + μx+ (r − ε1) ln(y)− βy = h2 (6)

with constant h2 = H2(x2, y2).5

Thus, according to the definition of the Lambert W function (Appendix A) and6

solving H1(x, y) = h1 with respect to y, one yields two roots7

yS1
l = − r

β
W
[
0,−β

r
exp

(
ρ ln(1+ωx)−δω ln(x)−μωx+h1ω)

rω

)]
(7)

and8

yS1
u = − r

β
W
[
−1,−β

r
exp

(
ρ ln(1+ωx)−δω ln(x)−μωx+h1ω)

rω

)]
. (8)

Similarly, solving H2(x, y) = h2 with respect to y, one has9

yS2
l = − r−ε1

β
W
[
0,− β

r−ε1
exp

(
ρ ln(1+ωx)−(δ−ε2)ω ln(x)−μωx+h2ω)

(r−ε1)ω

)]
(9)

and10

yS2
u = − r−ε1

β
W
[
−1,− β

r−ε1
exp

(
ρ ln(1+ωx)−(δ−ε2)ω ln(x)−μωx+h2ω)

(r−ε1)ω

)]
. (10)

In order to show that ySi
l and ySi

u (i = 1, 2) are well defined, the domains of the11

Lambert W function and its properties are used, which have been addressed in12

detail in Appendix A.13
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4 Basic properties of Filippov system (2)1

Based on the definitions and discussions in section 2, the interior of the sliding2

domain can be defined as3

intΣs = {X ∈ Σ| σ(X) < 0}

and according to the definition of σ(X) we have4

σ(X) = (rx− βxy)(rx− βxy − ε1x).

Solving the inequality σ(X) < 0, one yields (r − ε1)/β < y < r/β.5

Therefore, the sliding mode domain of Filippov system (2) with (3) can be6

defined as7

ΣS =

{
(x, y) ∈ R2

+| x = Tc,
r − ε1
β

≤ y ≤ r

β

}
.

Denote A = (Tc, r/β), B = (Tc, (r − ε1)/β), which are the two end-points of sliding8

segment ΣS. By simple calculation we have Fs1 ·H(A) = 0, F 2
s1 ·H(A) > 0,9

Fs1 ·H(B) = 0 and F 2
s1
·H(B) > 0. Therefore A (B) is a Σ−fold point of10

subsystem S1 (S2) which is visible.11

Next, we employ Utkin’s equivalent control method introduced in (Utikin et al.,12

2009) to obtain the sliding dynamics in the region ΣS. It follows from H = 0 and13

the first equation of system (2) that14

dH

dt
=

dx

dt
= rx− βxy −Ψε1x = 0. (11)

Solving equation (11) with respect to Ψ yields15

Ψ =
r − βy

ε1
.

Substituting Ψ into the second equation of system (2) gives16

dy

dt
= y

(
−ε2β

ε1
y +

ε2r

ε1
+

ρTc

1 + ωTc
− μTc − δ

)
.
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Therefore, the vector field of Filippov model (2) defined on the sliding domain1

can be described as follows:2

Ż(t) = Fs(X), X ∈ intΣs,

where Fs(X) = (Ps(X), Qs(X)) with3

Qs(X) = y(−ε2βy/ε1 + ε2r/ε1 + ρTc/(1 + ωTc)− μTc − δ) and Ps(X) = 0.4

Therefore, the sliding mode dynamics are described by dy/dt = Qs(X). There5

exist two roots of Qs = 0 given as follows:6

y0 = 0, yc =
r

β
+

ε1
βε2

(
ρTc

1 + ωTc
− μTc − δ

)
.

Theorem 1 If x21 ≤ Tc ≤ x11 or x12 ≤ Tc ≤ x22 holds true, then there exists7

one and only one pseudo-equilibrium Ec = (Tc, yc) of Filippov system (2) with (3),8

which is stable on the sliding domain ΣS. Further, if Tc = x21 (x11, x12, x22) holds9

true, then the positive equilibrium E21 (E11, E12, E22), the boundary point B (A, A,10

B) and the pseudo-equilibrium Ec will coincide into together.11

Proof. Define the function

g1(x) =
ρx

1 + ωx
− μx− δ.

According to Proposition 1 if ρ− μ− δω > 2
√
μδω, then there would be two12

positive roots of the equation g(x) = 0, which are x11 and x12. Simple analysis13

shows that if x11 < x < x12, then g1(x) > 0; If x < x11 or x > x12, then g1(x) < 0.14

This indicates that if Tc < x11 or Tc > x12 then yc < r/β; If x11 < Tc < x12 then15

yc > r/β.16

Rearranging yc yields17

yc =
r − ε1
β

+
ε1
βε2

(
ρTc

1 + ωTc
− μTc − δ + ε2

)
.

Similarly, we can define the function18

g2(x) =
ρx

1 + ωx
− μx− δ + ε2.
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Again from Proposition 1 if x21 < x < x22 then g2(x) > 0; If x21 < x or x > x221

then g2(x) < 0. This implies that if x21 < Tc < x22 then yc > (r − ε1)/β; If2

x21 < Tc or Tc > x22 then yc < (r − ε1)/β.3

Based on the above discussions, if x21 < Tc < x11 or x12 < Tc < x22, then we4

have (r − ε1)/β < yc < r/β. That is, when x21 < Tc < x11 or x12 < Tc < x22, then5

Ec = (Tc, yc) is a pseudo-equilibrium of system (2) with (3).6

Moreover, it is easy to have7

dQs

dy

∣∣∣∣∣
(Tc,yc)

= −ε2β

ε1
Tc < 0,

which shows that the pseudo-equilibrium Ec is locally stable on the sliding domain8

ΣS whenever it exists.9

Therefore, if we choose Tc = x21, then the boundary point B will coincide with10

the equilibrium E21 according to the definition of the sliding domain. Moreover,11

when Tc = x21, then g2(x) = 0 (i.e. yc = (r − ε1)/β) holds true. Therefore, the12

boundary point B of the sliding domain will also coincide with the13

pseudo-equilibrium Ec when Tc = x21. Thus, the three points including the14

boundary point B, the positive equilibrium E21 and the pseudo-equilibrium Ec15

coincide into one point as Tc = x21. A similar thing happens for Tc = x11, Tc = x1216

and Tc = x22. This completes the proof.17

5 Global analysis of Filippov system (2)18

In this section we discuss the global dynamics of Filippov system (2) with (3). It is19

interesting to note that here an important curve, which consists of some orbits of20

system (2) and/or of some segments of orbits of system (2), can be defined to21

identify the different dynamic behaviours. In order to define this key curve22

denoted by Υ and examine the global dynamics of Filippov system (2), we consider23

three different cases: (a) Tc < x23; (b) Tc > x22; and (c) x23 < Tc < x22.24

Case (a): Tc < x23. For this case there must be an orbit Γ4 of subsystem S225

tangent to x = Tc at point B shown in Fig.2. Let Γ4
u and Γ4

l represent the upper26
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and lower branches of the orbit Γ4, respectively. According to the topological1

structure of the subsystems, we have that there must be an orbit of subsystem S12

initiating from B, denoted as Γ5, and it intersects with line x = Tc at another3

point E4 = (Tc, y4). It follows from the first integral of subsystem S1 and equation4

(8) that y4 can be calculated as5

y4 = − r
β
W
[
−1,−β

r
exp

(
ρ ln(1+ωTc)−δω ln(Tc)−μωTc+h11ω)

rω

)]
(12)

with h11 = H1(Tc, r/β).6

Similarly, there should exist an orbit of the subsystem S2 passing through the7

point E4, and we denote it as Γ6. Therefore, the curve Υ can be defined as8

Γ6 ∪ Γ5 ∪ Γ4
u in this case. Define the region inside the curve Υ as DΥ, the region9

inside the orbit Γ4 as DΓ4 and the region inside the homoclinic orbit Γ1
Si

(i = 1, 2)10

as DΓ1
Si

(i = 1, 2).11

Moreover, the orbits initiating from DΓ4 can not reach the line x = Tc, and12

hence are free from switching. Therefore, the equilibrium E21 is a regular13

equilibrium which is locally stable within the region DΓ1
S2
. The orbits of subsystem14

S2 starting from the region DΓ4 \DΓ1
S2

will tend to (∞, 0), shown in Fig.2. Then,15

we consider the orbits inside the curve Υ (i.e. in DΥ). All orbits starting from the16

region DΥ either directly reach the segment BA or enter into the region S1 by17

crossing the segment AE4, then follows the dynamics of subsystem S1, and finally18

reaches the segment BA. Furthermore, any trajectory initiating from the segment19

BA slides down and approaches point B due to dy/dt = QS < 0. Therefore all the20

orbits initiating from the region DΥ will approach the point B and finally tend to21

(∞, 0) along Γ4
l .22

It follows from Fig.2 that any orbit starting from the region above the curve Υ23

initially reaches the switching line on {(Tc, y) : y > y4}, enters the region S1 and24

follows the dynamics of subsystem S1, then crosses the switching line again on25

{(Tc, y) : 0 < y < (r − ε1)/β} and enters S2 finally tending to (∞, 0) along the26

dynamics of subsystem S2. Based on the above discussion, we have the following27
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conclusion.1

Theorem 2 If Tc < x23 holds true, then the equilibrium E21 is a center and2

locally stable in DΓ1
S2
. All other orbits initiating from R2

+ \DΓ1
S2

will tend to3

(∞, 0). The global attractor of the Filippov system (2) is DΓ1
S2

∪ {(∞, 0)}.4

Case (b): Tc > x22. It is similar to case (a) and so there must be an orbit of5

subsystem S2 tangent to the line x = Tc at point B shown in Fig.3, which we also6

denoted as Γ4. The definition of the curve Υ is also the same to case (a). In such a7

case, equilibrium E11 is a regular equilibrium which is a center and locally stable8

within the region DΓ1
S1
. Any orbit in the region DΓ4 is free from switching and9

tends to (∞, 0) along subsystem S2. Similarly, any orbit initiating from the region10

DΥ \DΓ1
S1

will first approach point B and then tend to (∞, 0) along the orbit Γ4
l11

as shown in Fig.3. So when Tc > x22, the global dynamics of system (2) can be12

concluded as following results.13

Theorem 3 If Tc > x22 holds true, then the equilibrium E11 is a center and14

locally stable in DΓ1
S1
. All other orbits starting from R2

+ \DΓ1
S1

will tend to (∞, 0).15

And the global attractor of the switching system (2) is DΓ1
S1

∪ {(∞, 0)}.16

Case (C): x23 < Tc < x22. In this scenario, there would be two intersection17

points between the homoclinic orbit Γ1
S2

and line x = Tc denoted by E5 = (Tc, y5)18

and E6 = (Tc, y6) respectively, shown in Figs.4-8. It follows from the first integral19

of subsystem S2 and equations (9) and (10) that y5 and y6 can be calculated20

respectively as21

y5 = − r−ε1
β

W
[
0,− β

r−ε1
exp

(
ρ ln(1+ωTc)−(δ−ε2)ω ln(Tc)−μωTc+h21ω)

(r−ε1)ω

)]
(13)

and22

y6 = − r−ε1
β

W
[
−1,− β

r−ε1
exp

(
ρ ln(1+ωTc)−(δ−ε2)ω ln(Tc)−μωTc+h21ω)

(r−ε1)ω

)]
(14)

with h21 = H2(x22, y22).23

According to the topological structure of subsystem S1, there must be an orbit24

Γ7 of subsystem S1 initiating from the point E5, and it intersects with line x = Tc25

at another point E7 = (Tc, y7). And we can conclude that y7 > y6 holds true by26

14



using the Lemma 2 (see appendix B). It follows from the first integral of subsystem1

S1 and the equation (8) that y7 can be solved as:2

y7 = − r
β
W
[
−1,−β

r
exp

(
ρln(1+ωTc)−δωln(Tc)−μωTc+h12ω)

rω

)]
(15)

with h12 = H1(Tc, y5).3

Similarly, there must exist an orbit of subsystem S2 passing through the point4

E7, which is denoted by Γ8. Then the curve Υ for this scenario can be defined as5

Γ8 ∪ Ê7E5|S1 ∪ ̂E5E22|S2 ∪ Γ2
S2
. In the following we specify four subcases in terms of6

relationships among Tc, x21, x11 and x12.7

Subcase (C1): Suppose x23 < Tc < x21 holds true. Then there exists a closed8

orbit ζ1 of subsystem S2 which is tangent to line x = Tc at the point B shown in9

Fig.4. As we have discussed in section 3, B is a boundary point of the sliding10

domain which is also a visible Σ−fold point. Therefore the closed orbit ζ1 is a11

touching cycle of the Filippov system (2) (see (Kuznetsov et al., 2003)). Define the12

region inside the cycle ζ1 as Dζ1 . The equilibrium E21 is a regular equilibrium13

which is a center and locally stable in Dζ1 . Then we will show that all the orbits in14

DΥ \Dζ1 tend towards the touching cycle ζ1. To verify this conclusion, we need to15

consider two different situations:16

When y6 < r/β, any orbit initiating from DΥ \Dζ1 either directly reaches the17

segment BA or enters into the region S1 by crossing the segment AE7 as shown in18

Fig.4(a). Note that the orbit of subsystem S1 initiating from AE7 either directly19

reaches the segment BA or enters into the region S2 by crossing the segment E5B,20

follows the dynamics of subsystem S2, and finally reaches the segment BA.21

Therefore, all the orbits in the region DΥ \Dζ1 will first reach the segment BA.22

Furthermore, any trajectory initiating from the segment BA will slide down to23

point B, and then remain at the touching cycle ζ1, due to dy/dt = QS < 0. This24

verified the conclusion under this situation.25

When y6 > r/β, similarly, any orbit starting from the region DΥ \Dζ1 (see26

Fig.4(b)) will (i) directly reach the segment BA, or (ii) enter into the region S1 by27

crossing the segment AE7, and follow the dynamics of system S1 then approach the28

segment BA or enter to the region S2 by crossing the segment E5B, and follow the29

15



dynamics of system S2 then reaches to the segment BA or enter the region S1 again1

by crossing the segment AE7 and then it follows Lemma 2 (see Appendix B) that2

we can deduce that it will finally reach the segment BA. Moreover it is similar to3

the former case that any trajectory initiating from the segment BA will slide down4

and reach the touching cycle ζ1. This verified the conclusion for this situation.5

Next, we consider where the orbits initiating from the region R2
+ \DΥ go.6

Definitely, any orbit initiating from the region between Γ2
S2

and Γ3
S2

is free from7

switching, follows the dynamics of system S2 and finally tends to (∞, 0). Any orbit8

starting from the region above the curve Υ firstly reaches the switching line on9

{(Tc, y)|y > y7}, enters the region S1 and follows the dynamics of system S1, then10

crosses the switching line again on {(Tc, y)|0 < y < y5} and enters the region S211

again, finally tending to (∞, 0). Then we conclude that trajectories initiating from12

different region will approach the different states. It is more interesting to show13

the various simulations in Fig.5(a-b) in which all the parameter values are fixed as14

in Fig.4(a). It follows from Fig.5(a) that the viral load fluctuates at a certain level15

while (b) demonstrates that the viral load goes to infinity. Then the global16

dynamics of system (2) when x23 < Tc < x21 can be concluded as follows:17

Theorem 4 If x23 < Tc < x21 holds true, then system (2) has a touching cycle18

ζ1. The equilibrium E21 is a regular equilibrium which is a center and locally stable19

in Dζ1. The orbits initiating from the region DΥ \Dζ1 will tend towards the20

touching cycle ζ1, and the other orbits starting from R2
+ \DΥ finally tend towards21

(∞, 0). The global attractor of the Filippov system (2) is Dζ1 ∪ {(∞, 0)}.22

Subcase (C2): Suppose x21 < Tc < x11 holds true, it follows from theorem 123

that there exists a pseudo-equilibrium Ec which is locally stable on the sliding24

domain. Fig.6 shows that the orbits starting from DΥ initially reach the switching25

segment BA, and then slide down or up to the pseudo-equilibrium Ec.26

Simultaneously, we have that all the other orbits will tend to (∞, 0). Further,27

Fig.5(c) illustrates that the viral load is successfully controlled and stabilizes at a28

level of Tc and (d) shows that the viral load goes to infinity. Then we have the29

16



following conclusion.1

Theorem 5 If x21 < Tc < x11 holds true, then there exists a2

pseudo-equilibrium Ec of system (2) which is locally asymptotically stable in DΥ.3

Any orbit initiating from R2
+ \DΥ tends to (∞, 0). The global attractor of the4

Filippov system (2) is {Ec, (∞, 0)}.5

Subcase (C3): Suppose x11 < Tc < x12 holds true. Then there exists a closed6

orbit ζ2 of subsystem S1 which is tangent to line x = Tc at the point A. Based on7

the discussion in section 3, the point A is a boundary point while it is also a visible8

Σ−fold point of subsystem S1. Therefore, the closed orbit ζ2 is a touching cycle of9

system (2) (see (Kuznetsov et al., 2003)). Define the region bounded by the10

touching cycle ζ2 as Dζ2 . At this time, any orbit initiating from the segment BA11

will slide up and reach the point A. The global dynamics of the Filippov system12

(2) are similar to those of theorem 4. Here we conclude as follows:13

Theorem 6 If x11 < Tc < x12 holds true, then there also exists a touching14

circle ζ2. The equilibrium E11 is a regular equilibrium and is locally stable in Dζ2.15

Any orbit initiating from the region DΥ \Dζ2 finally tends to the touching cycle ζ2,16

all the other orbits starting from R2
+ \DΥ will tend to (∞, 0). The global attractor17

of the Filippov system (2) is Dζ2 ∪ {(∞, 0)}.18

Subcase (C4): Suppose x12 < Tc < x22. Then the equilibrium E11 is a regular19

equilibrium, and there also exists a pseudo-equilibrium Ec which is stable on the20

sliding domain according to theorem 1. The global dynamics of the Filippov21

system (2) are similar to the case when x11 < Tc < x12, and we then omit the22

proof. So we have the following conclusion.23

Theorem 7 If x12 < Tc < x22 holds true, then the equilibrium E11 is a regular24

equilibrium which is also a center and locally stable in DΓ1
S1
. There also exists a25

pseudo-equilibrium Ec with any orbit starting from the region DΥ \DΓ1
S1

finally26

tending to it. All the other orbits starting from R2
+ \DΥ will tend to (∞, 0). The27

global attractor of the Filippov system (2) is DΓ1
S1

∪ {Ec, (∞, 0)}.28

17



In summary, we have examined the global dynamics of the Filippov system (2).1

It has been shown that for relatively low or large level of threshold (i.e. Tc < x23 or2

Tc > x22) the Filippov system (2) behaves either like the controlled subsystem S23

or free subsystem S1. It indicates that the region DΓ1
S1

(or DΓ1
S2

) bounded by4

homoclinic orbit Γ1
S1

(or Γ1
S2
) is the only invariant set from which HIV virus load5

remains bounded. While for intermediate levels of threshold (i.e. x23 < Tc < x22),6

a new phenomenon was observed for this virus-guided therapy. In particular, we7

obtained a much bigger region DΥ bounded by the critical curve Υ from which8

HIV virus load can be maintained below a certain level, and hence we name the9

region DΥ as the controllable region. It is interesting to examine how the region10

DΥ change as the threshold Tc, elimination rate ε1 and growth rate of the effector11

cells ε2 vary. Since the region DΥ increases with increasing x, we choose a certain12

constant and sufficiently large value of x, say x = TΥ, such that the region is closed13

and can be evaluated.14

Without lose of generality, we assume that TΥ > x22 always holds true. Then the15

line x = TΥ divides the region DΥ into two subregions and we denote the left16

subregion as DL
Υ. Simultaneously, there exists an intersection point of the curve Υ17

to the line y = r/β, denoted as EΥ = (xΥ, r/β) (shown in Fig.4-8) and xΥ satisfy18

the following equation19

− ρ

ω
ln(1 + ωxΥ) + δ ln xΥ + μxΥ + r ln(

r

β
)− r − h12 = 0. (16)

It follows from the first integral of the subsystems and the definition of the20

Lambert W function that we can calculate the area of region SDL
Υ
as follows21

SDL
Υ

=
∫ Tc
xΥ

(
r
β

(
W
[
0,−β

r
exp

(
ρ ln(1+ωx)−δω ln(x)−μωx+h12ω)

rω

)]
− W

[
−1,− β

r−ε1
exp

(
ρ ln(1+ωx)−δω ln(x)−μωx+h12ω)

r−ω

)]))
dx+∫ TΥ

Tc

(
r−ε1
β

(
W
[
0,− β

r−ε1
exp

(
ρ ln(1+ωx)−(δ−ε2)ω ln(x)−μωx+h21ω)

(r−ε1)ω

)]
− W

[
−1,− β

r−ε1
exp

(
ρ ln(1+ωx)−(δ−ε2)ω ln(x)−μωx+h22ω)

(r−ε1)ω

)]))
dx

(17)

where22

h12 = H1(Tc, y5), h21 = H2(x22, y22), h22 = H2(Tc, y7). (18)
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Due to highly nonlinear properties of SDL
Υ
, we numerically investigate the variation1

in SDL
Υ
with parameters Tc, ε1, ε2. Fig.9(A-B) shows that for a given εi (i = 1, 2),2

SDL
Υ
initially increases and then turns to decline as the threshold Tc increases. This3

means that there exists an optimal threshold such that the area of the controllable4

region DL
Υ maximizes and hence in such a scenario HIV virus is maximally5

controlled. It follows from Fig.9(C-D) that for a given threshold Tc, SDL
Υ
becomes6

large as ε1 or ε2 increases.7

Remark: Based on the above discussions, it is interesting to observe that8

several bifurcations occur if we let bifurcation parameter Tc increase and keep all9

other parameters fixed. As Tc increases and exceeds x23, a touching cycle appears.10

When Tc reaches x21, the touching cycle disappears, and the pseudo-equilibrium11

appears and coincides with the boundary equilibrium B of the sliding domain.12

Then system (2) with (3) undergoes a sliding grazing bifurcation and the boundary13

center bifurcation at Tc = x21. As Tc increases and exceeds x21, the14

pseudo-equilibrium Ec coincides with the boundary point A for Tc = x11 at which15

the boundary center bifurcation occurs. As Tc continuously increases, a touching16

cycle appears again and it will disappear at Tc = x12. When Tc exceeds x12 the17

pseudo-equilibrium Ec appears, and the pseudo-equilibrium will coincide with the18

boundary saddle point A at Tc = x12. Finally, when Tc = x22, the19

pseudo-equilibrium coincides with the boundary saddle point B and the system (2)20

undergoes a boundary saddle bifurcation.21

6 Biological implications and discussion22

Although the strategies of STIs of antiretroviral therapies have been proposed for23

clinical management of HIV infected patients, clinical studies on STIs failed to24

achieve a consistent conclusion for this strategy. Many researchers suggested that25

in order to evaluate the benefits and risks of STIs, long-term studies are necessary26

and the choice of threshold may be pivotal for successful STIs (Maggiolo et al.,27

2009; Danel et al., 2006; DART Trial Team , 2008; Hirschel and Flanigan, 2009).28

19



In this study we have proposed and analyzed a viral dynamic model with a1

piecewise control function concerning a threshold policy for an HIV management2

strategy. The proposed model extends the classic model by including a piecewise3

elimination rate of HIV virus and growth rate of effector cells to represent therapy4

strategies (antiretroviral drugs and interleukin (IL)-2 treatment) being triggered5

once the HIV virus load exceeds a threshold level.6

We examined the sliding domain and the sliding dynamics of system (2), and7

then the global dynamics of system (2) is discussed by considering several different8

cases. Note that the pseudo-equilibrium Ec is feasible and is locally asymptotically9

stable for x21 < Tc < x11 or x12 < Tc < x22. In particular, when Tc < x23 (or10

Tc > x22), the region DΓ1
S2

(DΓ1
S1
) bounded by the homoclinic orbit Γ1

S2
(Γ1

S1
) is an11

invariant set, all other orbits initiating from R2
+ \DΓ1

S2
(R2

+ \DΓ1
S1
) approach12

(∞, 0). When the threshold satisfies x23 < Tc < x22, the critical curve Υ consisting13

of several critical orbits was defined, by which the global dynamics of system (2)14

can easily be obtained. It has been shown that the orbits starting from DΥ either15

(i) approach the pseudo-equilibrium Ec (Fig.6) or (ii) approach or remain in the16

invariant set Dζi(i = 1, 2) (shown in Fig.4, 7), or (iii) approach the17

pseudo-equilibrium Ec or remain in invariant set DΓ1
S1

(Fig.8), depending on the18

threshold and initial data. In such a scenario, other orbits starting from R2
+ \DΥ19

also approach (∞, 0). It is worth mentioning that choosing an appropriate20

threshold level for making the decision to trigger the intervention and for its21

suspension is crucial (Canchemez et al., 2009; Day et al., 2006; Wang and Xiao,22

2013; Tang and Liang, 2013; Xiao et al., 2012, 2015).23

It is important to emphasize that this policy led to interesting biological24

interpretations which can help us to develop an optimal treatment strategy. For a25

relatively low level of threshold Tc (e.g. Tc < x23), then orbits of the system (2)26

may finally either remain in the invariant set DΓ1
S2

or approach (∞, 0). This27

indicates that any patient whose initial viral loads and effector cells lie in the28

region DΓ1
S2

could successfully maintain their viral loads less than a certain level29

under such a treatment regime. Whereas other patients, whose initial viral loads30

20



and effector cells lie in the region R2
+ \DΓ1

S2
, may fail to control the increase in the1

viral loads. For a relatively high level of threshold Tc (e.g. Tc > x22), it follows2

from Fig.3 that the dynamics of the switching system (2) are the same as those for3

subsystem S1. This means that therapy is actually not triggered when the4

threshold is relatively large.5

For an intermediate threshold (e.g. x23 < Tc < x22), any orbit initiating from DΥ6

remains bounded, which implies that the HIV viral loads can be controlled. It also7

implies that any patient with initial HIV virus and effector cell populations in the8

region DΥ can maintain his/her HIV virus population less than a low level by9

carrying out HIV virus-guided therapy with a suitable threshold. Whereas,10

patients with initial HIV virus and effector cell populations outside the region DΥ11

can not prevent their HIV virus loads from increasing to infinity. Therefore, region12

DΥ can be thought of as a controllable region. In such a scenario, for a previous13

given threshold Tc (therapy regime is fixed), different patients may have very14

different treatment outcomes. For a given intensity of therapy (ε1 and ε2 fixed)15

there is an optimal threshold such that the area of region DΥ maximizes (as shown16

in Fig.9(A-B)). This indicates that for a patient with an initial HIV virus load may17

or may not maintain the growth of HIV virus loads, depending on the threshold18

level. Therefore, an individualized therapy is suggested, which indicates that the19

optimal choice of a treatment strategy for a given patient should depend on HIV20

virus and effector cell populations at outset and the proposed threshold level.21

When therapy is implemented continuously, system (2) is actually subsystem S222

and only those orbits starting from the invariant set DΓ1
S2

can be controllable.23

However, by using proper HIV virus-guided therapy strategy (i.e. for24

x23 < Tc < x22) the controllable region can be greatly enlarged. Moreover, it is25

worth mentioning that when x21 < Tc < x11 the pseudo-equilibrium Ec is an26

unique attractor within the region DΥ, in which the HIV virus stabilizes at the27

previously given value Tc. This suggests that proper combinations of threshold and28

initial HIV virus loads and effector cell counts based on a threshold policy can29

either preclude the uninhibited growth of HIV virus or lead to the HIV virus30

21



decreasing to a previously chosen level.1

The work presented here is an approach to the dynamics of HIV management2

when plasma HIV-1 RNA-guided therapy is initiated. Our main results indicate3

that HIV viral loads could be maintained either below a certain level or stabilize at4

a previously given level or go to infinity (corresponding to the effector cells5

vanishing), depending on the threshold level and the initial HIV virus load and6

effector cell counts. This would explain why some clinical studies support the7

implementation of STIs while others do not, mainly due to various threshold levels8

or recruited patients with differing initial HIV virus loads and effector cell counts.9

Therefore, the findings suggest that it is essential to carefully choose the10

thresholds of plasma HIV-1 RNA copies and individualize the STIs for each11

patient based on their initial plasma HIV-1 RNA copies and effector cell counts.12

Acknowledgements13

The authors are supported by the national Megaproject of Science Research no.14

2012ZX10001-001, by the National Natural Science Foundation of China(NSFC,15

1171268(YX)), by the International Development Research Center, Ottawa,16

Canada(104519-010).17

References18

Abrahms, S. I., Brahmi, Z., 1988. Mechanism of K562-induced human natural killer19

cell inactivation using highly enriched effector cells isolated via a new single-step20

sheep erythrocyte rossette assay. Ann. Inst. Pasteur. Immunol. 139, 361-381.21

Anaworanich, J., Nuesch, R., Le Braz, M., et al., 2006. CD4 guided scheduled22

treatment interruption compared to continuous therapy: results of the Staccato23

Trial. Lancet 368, 459-465.24

Bernardo, M.D., Budd, C.J., Champneys, A.R., Kowalczyk, P., Nordmark, A.B.,25

22



Tost, G.O., Pllrolnen, P.T., 2008. Bifurcations in nonsmooth dynamical system,1

SIAM Review 50(4), 629-701.2

Blower, S.M., Gershengorn, H.B., Grant, R.M., 2007. A tale of two futures: HIV3

and antiritroviral therapy in San Francisco. Science 287, 650-654.4

Callewaert, D.M., Meyers, P., Hiernaux, J., Radcliff, G., 1988. Kinetics of cellular5

cytotoxicity mediated by cloned cytotoxic T lymphocytes. Immunobiol. 178,6

203-214.7

Cauchemez, S., et al., 2009. Household transmission of 2009 pandemic influenza A8

(H1N1) virus in the United States. N. Engl. J. Med. 361, 2619-2627.9

Carr, A., Samaras, K., Thorisdottir, A., Kaufmann, G.R., Chisholm, D.J., Cooper,10

D.A., 1999. Diagnosis, prediction, and natural course of HIV-111

protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes12

mellitus: a cohort study. Lancet 353, 2093-2099.13

Corless, R.M., Connet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E., 1996. On14

the Lambert W function. Adv. Comput. Math. 5, 329-359.15

Danel, C., Moh, R., Minga, A., et al., 2006. CD4-guided structured antiretroviral16

treatment interruption stategy in HIV-infected adults in west Africa (Trivacan17

ANRS 1269 trial): a randomised trial. Lancet 367, 1981-1989.18

DART Trial Team, 2008. Fixed duration interruptions are inferior to continuous19

treatment in African adults starting therapy with CD4 cell counts<200 cells/μl.20

AIDS 22, 237-247.21

Day, T., Park, A., Madras, N., Gumel, A., Wu, J.H., 2006. When is quarantine a22

useful control strategy for emerging infectious diseases? Am. J. Epidemiol. 163,23

479-485.24

De Boer, R.J., Perelson, A.S., 1998. Target cell limited and immune control models25

of HIV infection: a comparison. J. Theor. Biol. 190, 201-214.26

23



EL-Sadr, W.M., Lundgren, J.D., Neaton, J.D., et al., 2006. CD4+ count-guided1

interruption of antiretroviral treatment. The strategies for Management of2

antiretroviral therapy study grou.. N. Engl. J. Med. 355, 2283-2296.3

Guerrero Fernandez, M.L., Rivas, P., Molina, M., Garcia, R., De Gorgolas, M.,4

2005. Long-term follow-up of asymptomatic HIV-infected patients who5

discontinued antiretroviral therapy. Clin. Infect. Dis. 41, 390-394.6

Hadjiandreou, M.M., Conejeros, R., Ian Wilson, D., 2009. Long-term HIV7

dynamics subject to continous therapy and structured treatment interruption.8

Chem. Eng. Sci. 64, 1600-1617.9

Harrington, M., Carpenter, C., 2000. Hit HIV-1 hard, but only when necessary.10

Lancet 355, 2147-2152.11

Hirschel, B., Flanigan, T., 2009. Is it smart to continue to study treatment12

interruptions? AIDS 23, 757-759.13

Johnson, V.A., Brun-Vezinet, F., Clotet, B., Conway, B., et al., 2004. Update of14

the drug resistance mutations in HIV-1: 2004. Topics HIV Med 12, 119-124.15

Komarova, N.L., Barnes, E., Klenerman, P., Wodarz, D., 2003. Boosting immunity16

by antiviral drug therapy: a simple relationship among timing, efficacy, and17

success. Proc. Natl. Acad. Sci. USA 100, 1855-1860.18

Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Petelson, A.S., 1994. Nonlinear19

dynamics of immunogenic tumors: parameter estimation and global bifurcation20

analysis, Bull. Math. Biol. 56(2), 295-321.21

Kuznetsov, Yu. A., Rinaldi, S., Grafnani, A., 2003. One parameter bifurcations in22

planar Filippov systems. Inter. J. Bif. Chaos. 13, 2157-2188.23

Lori, F., Maserati, R., Foli, A., et al., 2000. Structured treatment interruptions to24

control HIV-1 infection. Lancet 355, 287-288.25

24



Maggiolo, F., Airoldia, M., Callegaro, A., et al., 2009. CD4 cell-guided scheduled1

treatment interruptions in HIV-infected patients with sustained immunologic2

response to HAART. AIDS 23, 799-807.3

Maggiolo, F., Ripamonti, D., Grellegaro, A., et al., 2004. Effect of prolonged4

discontinuation of successful antiretroviral therapy on CD4 cells, a controlled,5

prospective trial. AIDS 18, 439-446.6

Marchetti, G., Franzetti, F., Gori, A., 2005. Partial immune reconstitution7

following highly active antiretroviral therapy: can adjuvant interleukin-2 fill the8

gap? J. Antimicrob. Chemother. 55, 401-409.9

Mocroft, A., Vella, S., Benfield, T.L., Chiesi, A., Miller, V., Gargalianos, P., et al.,10

1998. Changing patterns of mortality across Europe in patients infected with11

HIV-1. Lancet 352, 1725-1730.12

Napolitano, L.A., 2003. Approaches to immune reconstitution in HIV infection.13

Topics in HIV Medicine: a Publication of the International AIDS Society, USA14

11(5), 160-163.15

Padmanabhan, C., Singh, R., 1995. Dynamics of a piecewise nonlinear system16

subject to dual harmonic excitation using parametric continuation. J. Sound.17

Vib. 184(5), 767-799.18

Palella, F.J., Delaney, K.M., Moorman, A.C., Loveless, M.O., Fuhrer, J., Satten,19

G.A., et al., 1998. Declining morbidity and mortality among patients with20

advanced human immunodeficiency virus infection. New. Engl. J. Med. 338,21

853-860.22

Pugliese, A., Gandolfi, A., 2008. A simple model of pathogen-immune dynamics23

including specific and non-specific immunity. Math. Biosci. 214, 73-80.24

Rong, L.B., Feng, Z.L., Perelson, A.S., 2007. Emergence of HIV-1 Drug resistance25

during antiretroviral treatment. Bull. Math. Biol. 69, 2027-2060.26

25
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Appendix A1

(A1) The property of the Lambert W function2

The Lambert W function (Corless et al., 1996) is defined to be a multivalued3

inverse of the function z �→ zez satisfying4

LambertW(z) exp(LambertW(z)) = z.

And we denote it as W for simplicity. Note that the function z exp(z) has the5

positive derivative (z + 1) exp(z) when z > −1. Define the inverse function of6

z exp(z) restricted on the interval [−1,+∞) to be W (0, z). Similarly, we define the7

inverse function of z exp(z) restricted on the interval (−∞,−1] to be W (−1, z).8

The branch W (0, z) is defined on the interval [−e−1,+∞) and it is monotonically9

increasing with respect to z. And the branch W (−1, z) is defined on the interval10

[−e−1, 0) and it is a monotonically decreasing function with respect to z.11

(A2) The definition domain of yS1
l and yS1

u12

Let’s consider the following equation13

e−1 = −β

r
exp

(
ρ ln(1 + ωx)− δω ln(x)− μωx+ h1ω)

rω

)
,

and rearranging it gives14

ρ ln(1 + ωx)− δω ln(x) = μωx− h1ω + rω ln

(
re−1

β

)
.

Denote15

G1(x) = ρ ln(1 + ωx)− δω ln(x), G2(x) = μωx− h1ω + rω ln

(
re−1

β

)
,

then by simple calculations we have16

G′
1(x) =

ρω

1 + ωx
− δω

x
, G′′

1(x) = − ρω2

(1 + ωx)2
+

δω

x2
.

Solving G′
1(x) = 0 with respect to x, we get an extreme point, denoted by17

xG = δ/(ρ− δω), and xG > 0 holds true due to ρ− μ− δω > 0. Further, solving18

G′′
1(x) = 0 yields two inflexion points, denoted by x1

I and x2
I , where19
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x1
I =

δω +
√
ρδω

ω(ρ− δω)
, x2

I =
δω −√

ρδω

ω(ρ− δω)

with x1
I < xG < x2

I .1

Moreover, it is easy to see that limx→0+ G1(x) = +∞, and solving G′
1(x) = G′

2(x)2

with respect to x, yields two roots, which are exactly the first components of the3

two interior equilibria E11 and E12. Let4

l1 = H1(x11, y11), l2 = H1(x12, y12),

then the family of closed orbits of subsystem S1 is5

Γh = {(x, y)|H1(x, y) = h, l2 < h < l1}.

Furthermore, Γh converts to the equilibrium E11 as h → l1, and Γh becomes the6

homoclinic cycle as h → l2.7

Therefore, the two curves are tangent at x = x11 or x12. If we choose h as a8

bifurcation parameter, then the domains of two branches of yS1
l and yS1

u can be9

determined as follows:10

1. If l2 < h < l1, then there exist three intersect points between the two functions11

G1 and G2, denoted by xmin, xmid and xmax. In this case, the two branches of yS1
l12

and yS1
u are well defined for all x ∈ [xmin, xmid] ∪ [xmax,+∞) with yS1

l < r/β < yS1
u .13

2. If h ≤ l2 or h ≥ l1, then there is one intersect point between the two functions14

G1 and G2, denoted by xmin. In this situation, we have that the two branches of15

yS1
l and yS1

u are well defined for all x ∈ [xmin,∞) with yS1
l < r/β < yS1

u .16

Similar results for yS2
l and yS2

u can be obtained by using the same methods as17

above.18

Appendix B19

Lemma 2: If the solution trajectory initiating from the point P S2 = (Tc, y
S2
P )20

on the segment {(Tc, y) : y5 < y < (r − ε1)/β} first reaches the switching line21

x = Tc at P1 = (Tc, yP1) on the segment AE7 along the system S2, and enters the22

region S1 by crossing the switching line x = Tc, and then approaches the switching23
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line x = Tc again at the point P2 = (Tc, y
S1
P ) on the segment1

{(Tc, y) : y5 < y < (r − ε1)/β} along the system S1, then we have yS2
p < yS1

P .2

Proof. It follows from the first integral of the two subsystems and equations (8)3

and (10), we have that4

yP1 = − r−ε1
β

W

[
−1,− β

r−ε1
exp

(
ρ ln(1+ωTc)−(δ−ε2)ω ln(Tc)−μωTc+h

S2
P1

ω)

(r−ε1)ω

)]

= − r
β
W

[
−1,−β

r
exp

(
ρ ln(1+ωTc)−δω ln(Tc)−μωTc+h

S1
P1

ω)

rω

)]
,

(B.1)

which indicates that5

W

[
−1,− β

r−ε1
exp

(
ρ ln(1+ωTc)−(δ−ε2)ω ln(Tc)−μωTc+h

S2
P1

ω)

(r−ε1)ω

)]
<

W

[
−1,−β

r
exp

(
ρ ln(1+ωTc)−δω ln(Tc)−μωTc+h

S1
P1

ω)

rω

)]
.

(B.2)

Then, according to the property of the Lambert W function, we have that6

−W

[
0,− β

r−ε1
exp

(
ρ ln(1+ωTc)−(δ−ε2)ω ln(Tc)−μωTc+h

S2
P1

ω)

(r−ε1)ω

)]
<

−W

[
0,−β

r
exp

(
ρ ln(1+ωTc)−δω ln(Tc)−μωTc+h

S1
P1

ω)

rω

)]
.

(B.3)

That is, we have7

− r−ε1
β

W

[
0,− β

r−ε1
exp

(
ρ ln(1+ωTc)−(δ−ε2)ω ln(Tc)−μωTc+h

S2
P1

ω)

(r−ε1)ω

)]
<

− r
β
W

[
0,− r

β
exp

(
ρ ln(1+ωTc)−δω ln(Tc)−μωTc+h

S1
P1

ω)

rω

)]
.

(B.4)

Then it follows from equations (7) and (9) that there is yS2
P < yS1

P . This completes8

the proof.9
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Table 1: The different types of all possible equilibria of system (2)

Values of Tc E11 E12 E21 E22

x21 > Tc VE VE RE RE

x21 < Tc < x11 VE VE VE RE

x11 < Tc < x12 RE VE VE RE

x12 < Tc < x22 RE RE VE RE

x22 < Tc RE RE VE VE

Note that ‘RE’ denotes regular equilibrium and ‘VE’ represents virtual equilibrium
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Figure legend1

Figure 1:

The illustration of topological structure of the orbits of the subsystems. We2

denote the homoclinic orbit of the equilibrium Ei2 as Γ1
Si

(i = 1, 2). And we denote3

the stable codimension-1 manifolds and the unstable codimension-1 manifolds with4

respect to Ei2 as Γ2
Si

and Γ3
Si

(i = 1, 2), respectively. Here the curves are plotted5

using subsystem S1 and the parameter values as6

r = 1.8, β = 0.6, ω = 0.55, ρ = 0.8, μ = 0.23, δ = 0.3.7

Figure 2:

The topological structure of the Filippov system (2) when Tc < x23. All the8

parameter values are fixed as9

r = 2.6, β = 1, ρ = 0.5, ω = 0.1, μ = 0.23, δ = 0.5, ε1 = 0.8, ε2 = 0.1, Tc = 0.7.10

Figure 3:

The topological structure of the Filippov system (2) when Tc > x22. Here11

Tc = 10.5 and other parameters are fixed as those in Fig.2.12
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Figure 4:

The topological structure of the Filippov system (2) when x23 < Tc < x21 with1

(a) showing y6 < r/β and (b) showing y6 > r/β. Here parameter Tc = 1.2, r = 2.62

in (a) and r = 2 in (b) and other parameters are fixed as those in Fig.2.3

Figure 5:

Solutions of the Filippov system (2) when x23 < Tc < x21 in subplot (a-b) and4

x21 < Tc < x11 in subplot (c-d). Here Tc = 1.2 in (a) and (b) with the initial5

conditions of (9, 3.2) and (9, 5) respectively, and Tc = 2.5 in (c) and (d) with the6

initial conditions of (9, 3.2) and (9, 5) respectively. All the other parameters are7

fixed as those in Fig.2.8

Figure 6:

The topological structure of the Filippov system (2) when x21 < Tc < x11. Here9

Tc = 2.5 and other parameters are fixed as those in Fig.2.10
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Figure 7:

The topological structure of the Filippov system (2) when x11 < Tc < x12. Here1

Tc = 5.5 and other parameters are fixed as those in Fig.2.2

Figure 8:

The topological structure of the Filippov system (2) when x12 < Tc < x22. Here3

Tc = 6.5 and other parameters are fixed as those in Fig.2.4

Figure 9:

(A) The curves of SDL
Υ
as Tc increases with ε2 are fixed as 0.1; (B) The curves of5

SDL
Υ
as Tc increases with ε1 are fixed as 0.8; (C) The curves of SDL

Υ
as ε1 increases6

where ε2 = 0.1; (D) The curves of SDL
Υ
as ε2 increases where ε1 = 0.8. All other7

parameters are fixed as r = 2.6, β = 1, ω = 0.1, ρ = 0.5, μ = 0.23, δ = 0.5, TΥ = 10.8
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