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Abstract 
This paper discusses the design for reliability of a sintered silver structure in a power electronic module 

based on the computational approach that composed of high fidelity analysis, reduced order modelling, 

numerical risk analysis, and optimisation. The methodology was demonstrated on sintered silver interconnect 

sandwiched between silicon carbide chip and copper substrate in a power electronic module. In particular, 

sintered silver reliability due to thermal fatigue material degradation is one of the main concerns. Thermo-

mechanical behaviour of the power module sintered silver joint structure is simulated by finite element analysis 

for cyclic temperature loading profile in order to capture the strain distribution. The discussion was on methods 

for approximate reduced order modelling based on interpolation techniques using Kriging and radial basis 

functions. The reduced order modelling approach uses prediction data for the thermo-mechanical behaviour. The 

fatigue lifetime of the sintered silver interconnect and the warpage of the interconnect layer was particular 

interest in this study. The reduced order models were used for the analysis of the effect of design uncertainties 

on the reliability of the sintered silver layer. To assess the effect of uncertain design data, a method for 

estimating the variation of reliability related metrics namely Latin Hypercube sampling was utilised. The 

product capability indices are evaluated from the distributions fitted to the histogram resulting from Latin 

Hypercube sampling technique. A reliability based design optimisation was demonstrated using Particle Swarm 

Optimisation algorithm for constraint optimisation task consists of optimising two different characteristic 

performance metrics such as the thermo-mechanical plastic strain accumulation per cycle on the sintered layer 

and the thermally induced warpage.  

 

Keywords: Reduced Order Models, Power electronic module, Risk Analysis, Particle swarm optimisation, 

Kriging, Radial basis. 

 

1. Introduction 
In a power electronic module, the silicon chip is attached by die attach materials usually solder materials 

to package substrate material. The package substrate is typically composed of ceramic isolated by copper layers. 

Nowadays silicon chips are replaced by silicon carbide chips which is able to withstand a temperature up to 

500° C [1]. However die attach materials such as solders can’t endure a temperature of above 200° C.  Lead free 

solders such as SnAgCu has the melting temperature of 220° C. These lead free solders can be used as die attach 

material for up to 80% of the melting temperature before creep strain effects cause failure [1]. To enhance the 

thermo mechanical behaviour of die attach material, one of the approach is to use the sintered silver joint as die 

attach. Sintered silver joint has a high melting temperature, together with silicon carbide die is more suitable 

combination for high temperature application of power electronic module. The limitation of successful 

application of sintered silver interconnect is its long term reliability depends on the density of the sintered layer, 

types of substrates, substrate roughness, joint configuration (die sizes and interconnect thickness) formulation of 

sintered silver paste and other factors [2].  

Experimental observations of power module with thin sintered silver layer (20 μm) as die attach material 

subject to thermal cyclic loading are listed below from the study by Herboth et al [3] 
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 Cracks initiated and propagated into interconnected network cracks 

 Cracks penetrated through the sintered Ag layer nearly vertically 

The observation concluded that primary failure mechanism of sintered layer was due to deformation by 

plasticity and the fracture mechanism in the sintered layer was intergranular fracture caused by the grain 

boundary porosity [3]. This observation motivated us to conduct a finite element analysis on sintered silver 

structural model in the hope of replicating these observations.  Additionally this study is concluded with a 

reliability based design optimisation on sintered silver structure. Herboth’s experimental observation in [3] was 

in contrast to the experimental observation discussed by DeVoto et al [4].  In DeVoto’s article, it was reported 

that experimental observation of perimeter delamination of sintered silver layer as function of number of 

thermal cycles.  

A review of the finite element modelling of sintered silver joint in power module applications are 

discussed in this paragraph. A 2D finite element modelling of sintered silver structure using Anand visco-plastic 

constitutive model to simulate the inelastic strain deformation is discussed by Chen et al [5]. Chen’s article 

concluded that under thermal cycling conditions a ratcheting effect [6] of shear stress and strain in the sintered 

silver joint attached to chip. Another 2D FEA study on sintered silver structure for residual bending was 

simulated by Mei et al [7]. A simplified relationship for residual curvature versus joint size was also proposed 

with number of assumptions and FEA result was compared with experimental results [7]. In Herboth’s article 

[3] a 3D FEA was conducted using a linear elastic fracture mechanics based crack initiation and propagation 

model and concluded that maximum stress intensity is related to diameter of the sintered silver joint for same 

substrate size. Another Herboth article [8] discusses a FEA on sintered layer structure and concluded that the 

cracks initiate at the edges of the die/sintered layer interface. Bai et al [9] simulated 3D FEA on sintered silver 

attached to silicon carbide chip and observed that thermo mechanical stresses are high on the perimeter of the 

interface.  

 

2. Finite Element Analysis of Sintered silver in Power Module 
 

In this section, the method and results of using finite element analysis computer modelling to investigate 

the effect of varying thermal load on the residual stress in the sintered silver layer are presented. To simulate the 

thermo mechanical loading condition on a sintered silver structure in Ansys FEA software [10] we generated the 

three dimensional finite element models as shown in Fig 1, Dimensions of the structure are indicated in Fig 1. 

 

 
Fig 1: The dimensions of the sintered silver finite element model 

 

The length and width of the silicon carbide chip is 2.5 mm × 2.5 mm and the silicon nitride length and 

width are chosen as 7.5 mm × 7.5 mm. The elastic and thermal material properties of all the materials used in 

this model are listed in Table 1 and plastic material properties are listed in Table 2. The material properties of 

sintered silver interconnect were obtained from the thesis by Bai [11]. Additional sintered silver material 

properties are extracted from the technical report by Wereszczak et al [12]. Fig 1 shows geometry and materials 

of the different layers. According to Dudek et al [13] the sintered silver shows elastic-plastic behaviour without 

the strong creep of soft solder up to the high temperature range (150° C). Additionally Chen et al [6] concluded 

from their experiment that the process of damage evolution of sintered silver interconnects was temperature 

independent. Hence we utilised elastic-plastic behaviour of the sinter layer instead of creep characteristic. 

Beside, creep data for the sintered layer was unavailable at the time of the study. In this study, FEA simulations 

in Ansys were a passive thermo mechanical analysis using the element SOLID185. The parts in the model 

associated with critical regions of interest have finer mesh in order to ensure accurate FEA results.  

 

 

 

 



Table 1: Elastic and thermal material properties used in the FEA  

 Properties Silicon 

Carbide 

(SiC) 

Silicon Nitrate 

(Si
3
N

4
) 

Copper 

(Cu) 

Sintered Silver 

(80% dense) 

Pure Silver 

Thermal 

Conductivity  

(W/(Km)) 

370 70 401 240 430 

Specific Heat  

(J/(kgC) 

750 691 390 234 234 

Density (kg/cm
3
) 3.21 2.40 8.96 8.4 10.492 

Coefficient of 

Thermal Expansion 

(10
-6

/K) 

4.0 3.0 16.5 19 18.9 

Young‘s Modulus 

(GPa) 

410 314 128 10 83.5 

Poisson  Ratio  0.14 0.3 0.34 0.37 0.37 

 

Table 2: Plastic material property used in the FEA 

 

Fig 2. (a) Tensile stress versus strain plot of sintered silver and pure silver and (b) temperature cycling 

profile imposed on the finite element model. 

 

The three point movement restraining boundary condition were imposed on the model. All three degrees 

of freedom at a lower point are fixed and then two degrees of freedom of the next lower point is fixed and one 

degree of freedom of the third lower point is fixed. Temperature cyclic loading as in Fig 2(b) is imposed on a 

passive thermo-mechanical analysis. Due to convergence issue with iterative solver in Ansys mechanical 

software, we utilised discreet static analysis using LOAD STEP option in all finite element simulations. The 

output extracted from the finite element simulation are accumulated plastic strain as in Fig 3 and relative 

displacement as in Fig 4. In Fig 4, the point A is the upper middle point of the sintered silver layer and point B 

is the lower middle point of the sintered layer. Relative displacement between point A and B is defined as  

DR =      
2 2 2

A B A B A Bu u v v w w      

 Sintered Silver (80% dense) Pure Silver 

Yield Strength (Mpa) 43 55 

Tangent Modulus (Mpa) 0 133 



 Fig 3. (a) Accumulated plastic strain distribution on the complete model and (b) Accumulated plastic 

strain of the sintered silver layer  

 
 

The evaluation of predictive fatigue lifetime of solder joint can be categorised based on stress, plastic 

strain, plastic and creep strain, energy, and damage accumulation during a test [14].  For sintered silver 

interconnect with elasto plastic material properties we used a plastic strain based life prediction model which 

only considers plastic phenomena caused by coefficient of thermal expansion mismatch between various metals 

in the model. The Coffin-Manson fatigue life model one of the widely used model with the following equation 

were used in this study 

                                                                                           k

f plN C 


                                                                                                            (1) 

 where Δεpl is the accumulated equivalent plastic strain during a stabilised cycle. This damage metrics were used 

for sintered silver layer fatigue life prediction. For the calculation of number of cycles before failure we used a 

sub volume (20 microns thickness) of the sintered silver layer which has the interface with silicon carbide. To 

calculate the accumulated plastic strain we used the volume weighted average (VWA) method which is widely 

reported in the literature. Maximum strain value at the corner was not chosen as damage metric to avoid the 

stress singularity issue of finite element modelling. 
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where Vtot is the summation of volumes of all the elements in the volume, Vj is the volume of the jth element and 
j
pl is the associated accumulated plastic strain.  A study by Knoerr et al [1] for reliability assessment of 

sintered Nano silver die attachments for power semiconductors estimated the values of C and k in equation (1) 

as 0.16 and 2.96 respectively. This data set was used in the Coffin-Manson based relation of equation (1) to 

predict the cycles to failure for a specific cyclic loading profile. 

 
Fig 4: Relative displacement between the point A and B 

 

 One of the results from FEA simulation in ANSYS was the accumulated plastic strain (ANSYS command 

script output parameters for accumulated plastic strain is NL, EPEQ). A volume averaging technique described 

in equation (2) is then employed to calculate the accumulated plastic strain for 20 micron thick layer of sintered 

silver layer. In this study we used accumulated plastic strain as our response variable rather than number of 

cycles to failure  

 



The influence of the sintered silver layer thicknesses on strain and stresses within the layer was analysed 

by changing the thickness of the sintered layer. Three thicknesses were chosen such as 20, 40, 60 microns and 

associated finite element models were simulated for the cyclic temperature loading profile of Fig 2(b). The 

accumulated plastic strain for third cycle (between 255 seconds and 345 seconds) was extracted and the strain 

distribution for these three simulations are as in Fig 5. 

 

 
Fig 5: (a) accumulated plastic strain on 20 microns thickness layer, (b) accumulated plastic strain on 40 

microns thickness layer, and (c) accumulated plastic strain on 60 microns thickness layer. 

 

Accumulated average plastic strain at the third cycle for 20, 40, and 60 microns thickness sintered layer 

models are 0.0103, 0.0048, 0.0028 respectively, which implies that an increase in sintered silver layer thickness 

decreases the average plastic strain in the layer. Additionally accumulated plastic strain of the original 20 

microns thickness layer was compared with the accumulated plastic strain of the same thickness layer with 

width and length are doubled and the resulting accumulative plastic strain values didn’t have significant 

differences, hence the length and width of the model didn’t influence the accumulated strain in the layer.  

Accumulated plastic strain distribution along the path from centre to the corner of the layer was exponential 

increment behaviour as in the Fig 6(b). This trend was also observed along the other paths (Fig 6(a)) as well. 

Increasing the thickness by 20 microns reduced the maximum stain distribution by 60 % in all paths on the 

sintered layer/copper interface at the last time step. In the sintered silver layer/ silicon carbide die interface 

increasing the sintered silver layer thickness from 20 microns to 40 reduced the maximum strain distribution of 

extreme points by roughly 60% and increasing the thickness of the sinter layer from 40 to 60 micron reduced the 

maximum strain distribution of extreme points by roughly 30%. This trend was also observed in other paths on 

this interface. 

 

 
Fig 6: (a) The path numbering in the sintered silver layer, and (b) accumulated plastic strain distribution 

along the path 1 (from the centre to top left corner) 

 



 
Fig 7: (a) Accumulated plastic strain on 20 micron thickness layer, and (b) Accumulated plastic strain on 

layer with cylindrical voids  

 

In sintered silver layer with higher porosity, 80% dense sintered silver layer consists of 20 % void. One 

of the question arises is can these porosity cause any abnormally in the plastic strain distribution in the layer. A 

micromechanical finite element model was simulated by Dudek et al [13] to extract stress strain curve for 

various porosity rate. Replicating the voids in the full finite element model is computationally expensive, we 

employed a crude approximation in the finite element model by introducing 100 cylindrical shaped voids in the 

layer in order to observe change in strain distribution. These cylindrincal voids are equally distributed cylinders 

as in Fig 7(b). The remaining materials are assigned sintered silver materials property for consistency. Average 

plastic strain in both simulation (as in Fig 7(a) and Fig 7(b) ) were closer values. The model with voids have 

increased maximum accumulated plastic strain on the path in comparison with the model without void. The 

increment percentage of maximum accumulated plastic strain were between 9% to 14%. Introduction of voids 

slightly altered the plastic strain distribution on the sinter layer along the path, but not very significantly as in 

the Fig 7(b). Hence the introduction of voids did not capture the porosity of the sintered silver layer in finite 

element model.   

The plastic strain concentration and cracks are related [4]. Hence the concentration of plastic strain 

observed in the finite element model was on the perimeters of the interfaces as opposed to the observation of 

delamination appear everywhere in experiment caused by the porosity in the sintered silver layer. In the next 

section we proceed to conduct a reliability based design optimisation of sintered silver model subject to certain 

pre requirement.  

 

3. Reduced order modelling by Data Interpolation Approach 
 

          The complexity of a system resulting from FEA simulation is generally influenced by two aspects: the 

complexity of the physics involved and the complexity of the model structural composition. An approach to 

reduce the computational complexity in number of FEA simulations is to replace it by a reduced order models. 

The reduced order modelling strategy presented here is based on interpolation and uses data obtained through 

Design of Experiment (DoE) based statistical methods. The DoE is a specific way of obtaining the design points 

within the design space. Various DoE strategies exist in the literatures. The reduced order models are developed 

as functions of the selected design parameters under consideration for investigation. In this study the discussions 

were on two interpolation-based models, Kriging and radial basis models. Kriging models incorporate the 

correlation between the design variables and both Kriging and RBF are popular models widely used in various 

disciplines. In microelectronics, Kim et al [15] has utilised these models for shape optimisation on heat sinks for 

micro-electronic cooling. The main objective of applying these reduced order models in this paper was to 

enhance a reliability based design optimisation. The ROM models were demonstrated for the sintered silver 

structure in power electronic module. 

 

 

 



3.1. Design of Experiments 
Table 3 lists the key assembly parameters of interest to be optimised for specific characteristic 

performances. The second column specifies the value of the nominal (or initial) design of the sintered silver 

model while third column of the table provides details on some possible design variations of the model 

assembly parameters that are selected for this study. The fourth column of the table is the normalised design 

parameter variations.  

 

Table 3: Design parameters of the model 

Sintered silver Model Design 

Variables 

Nominal Values  Un-scaled limits  Scaled 

Limits/dimensionless 

Silicon carbide chip Thickness(mm) 0.41 0.395 to 0.425 -1 to 1 

Sintered silver Thickness(mm) 0.0275 0.02 to 0.035 -1 to 1 

 

By altering the value of these design variables within the selected range, various design modification of 

the sintered silver model can be generated. A set of values for the specified design variables that specify a 

particular design is referred as a design point.  

 

Table 4: DoE points and predicted sintered silver joint model responses from FEA 

DoE 

Points No 

Silicon Carbide Thickness 

(mm) 

Sintered Layer Thickness 

(mm) 

Accumulated 

Plastic Strain 

 ( ×10-3) 

Relative 

Displacement 

Dw (×10-7) Actual Scaled Actual Scaled 

1 0.395 -1 0.02 -1 10.2938 1.0463 

2 0.425 1 0.02 -1 11.0419 1.3718 

3 0.395 -1 0.035 1 5.7191 1.8296 

4 0.425 1 0.035 1 5.7763 1.8356 

5 0.41 0 0.0275 0 7.4815 1.4401 

6 0.41 0 0.02 -1 10.3231 1.0482 

7 0.41 0 0.035 1 5.7461 1.8321 

8 0.395 -1 0.0275 0 7.4535 1.4378 

9 0.425 1 0.0275 0 7.5133 1.4431 

 

      The first step in the ROM approach is to obtain performance characteristic data through DoE by evaluation 

of a limited number of design FEA simulations. From a design point of view, any design modification of the 

sintered silver model was restricted to changing the Silicon carbide chip thickness (hCHIP) and the sintered silver 

thickness (hSiAg).  

DoE methods were applied in the two-dimensional design space of the sintered silver model defined by 

the respective limits for the Silicon carbide chip thickness (0.395 mm to 0.425 mm) and the sintered silver layer 

thickness(0.02 mm to 0.035 mm). A two level full factorial design method was utilised to this design space to 

provide four design points. Additionally five points were derived through Box Behnhan DoE technique. From 

the nine design variables set nine FEA models were simulated. Increasing more DoE points increases the 

accuracy but it also increases the effort and computational cost in FEA model simulation. The DoE points are 

listed in Table 4. The table also shows the dimensionless scaled values of design variables over the range -1 to 1 

used in the following generation of the reduced order models. The last two columns list the finite element 

analysis predictions for accumulated plastic strain on the sintered silver layer and relative displacement between 

point A and B in the model for each of the DoE points in the table. The value of accumulated plastic strain was 

then used in equation (2) to predict the mean life time to failure of the sintered silver structure. The ROMs were 

generated for the characteristic performances for the accumulated plastic strain and relative displacement in 10-7 

meter, the last two columns of the Table 4.  

 

3.2. Kriging Reduced order models 
 

Kriging is a method of interpolation which predicts unknown performance data value or a particular point 

based on performance data already observed at known points. It minimises the error of predicted values which 

are estimated by distribution of observed data. Kriging response surface shows great promise for building 

accurate global approximation of design space. A Kriging model is defined as in equation (3) 

^
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                                                                                  (3) 



where X is the vector of the m design variables, X= (x1,..., xm) and βj (j=0,...,m) are the coefficients of the 

polynomials Pj(X) (j=0,...,m). In equation 1, αi  (i=1,...,n) are the coefficients of the basis functions ri (i=1,...,n) 

where n is the number of the DoE points. The polynomials Pj(X) in this study are linear (i.e. Pj(X)=xj , j =1,...,m 

and P0(X)=1). 

The basis function ri = φ(||X-Xi||) is called a variogram and has as argument the absolute distance between 

points X and Xi. There are many variogram models available. In this work, the spherical model was utilised as it 

is suitable for cases with small number of design variables, typically when m≤3 [16]. If hi = ||X-Xi|| (i=1,...,n), the 

spherical model is defined as: 
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where C1 and C2 are the variogram coefficients. The unknown coefficients in Kriging ROMs, βj (j=0,...,m), 

αi (i=1,...,n), C1 and C2 were computed so that the error of variation of the predicted and observed data is 

minimised [16].  

              

 
Fig 8: 3D plots of (a) relative displacement(× 10-1μm)  by Kriging ROM (equation (6)) and (b) plastic 

strain(× 10-3)  by Kriging ROM (equation (5)) 

 

The Kriging ROM, Kεp , for the accumulated plastic strain (× 10-7)  for two design variables silicon carbide 

chip thickness (hCHIP), and sintered silver layer thickness (hSiAg) on the subsection of sintered silver layer using the 

nine DoE points in Table 4 is defined as  
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The Kriging ROM for the maximum warpage (× 10-1μm) of the model using nine DoE points in Table 4 is 

defined as  
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               (6)  

where hi is as in (5). The 3D plots of two Kriging ROMs are in Fig 8(a) and 8(b). 

 

3.3. Radial Basis Reduced order models 
 

For a given data points and corresponding performance characteristic data a set of basis function is chosen 

in a way to form a linear combination of these set of basis to satisfy the interpolation condition. The interpolation 

condition generates a linear system of equation which determines the coefficients vector. If the data points are 

unique in the sense there are no duplication data point, many of the choices of basis functions produce non singular 

linear system matrix. For the higher dimensional data points above approach does not work. For higher 



dimensional data points the approach is instead forming linear combination of set of basis functions that are 

independent of data points, ones forms a linear combinations of translates of single basis function that is symmetric 

about a centre. This approach is defined as radial basis method.  

A response )(xy in a domain that has a set of data points niix ,,1,0}{  . The nodal response value is iy at data 

points. Radial basis response surface constructs the reduced order model function to pass through all these training 

data points using radial basis function )( jxx  and a polynomial )(xP  
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Where ia is the coefficient of  ixx   and jb  is the coefficient of the polynomial term jP [17 and 18]. A 

radial basis function has the following general form  

 ij rxx   )(  where ir is the Euclidean distance between interpolation point x and ix . Several types of 

radial basis function may be chosen for   [17]. In this paper we used a Gaussian radial basis function 

2

)( rer    where Gaussian radial basis function is most commonly used with 01.0 . Polynomial P is 

usually a lower order polynomial, in this paper we used a linear form. The reduced order models were 

implemented in our in-house software ROMARA [19] and utilised in this study. The radial basis reduced order 

model for the accumulated plastic strain (× 10-7) on sub section of volume of the sintered silver joint attached to the 

silicon carbide chip Rεp and warpage RDw (× 10-1μm) are in equation (8) and (9).   
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where i = 1,...,n (n = 13 DoE as in the Table 4), hi is as in equation (5) and the values of the coefficients are listed in 

Table 5. 

 

 

Table 5: Coefficients for Kriging and radial basis function models 

Sintered Silver model DoE scaled value Coefficients of Reduced order models  

Kriging Radial Basis 

(hCHIP)i (hSiAg)i ai
εp ai

RD ai
εp ai

RD 

-1 -1 -0.5615 -0.1029 1012396.76 463619.7 

1 -1 -2.0032 -17.2539 1027438.87 470657.99 

-1 1 -1.0807 -2.6978 997791.07 456793.54 

1 1 -0.5611 -0.1075 1012383.8 463624.02 

0 0 0.8488 -0.8926 3988255.15 1827058.46 

0 -1 0.4469 12.554 -2023693.9 -927368.87 

0 1 -0.4759 -1.9976 -1994033.14 -913508.74 

-1 0 1.2323 -2.0312 -1995451.9 -913503.66 

1 0 2.1544 12.5295 -2025086.72 -927372.43 

  

The 3D plots of two radial basis ROMs are in Fig 9(a) and 9(b). 

 



 Fig 9: 3D plots of (a) relative displacement (× 10-1μm) by Radial basis ROM (equation 9) and (b) plastic 

strain(× 10-3)  by Radial basis ROM (equation 8) 

 

4. Sintered Silver model Uncertainty and Product Capability Analysis 
   

 In microelectronics products and systems, it is important to gain the information about the impact of 

design variables and manufacturing uncertainties on the performance characteristic and to assess if key product 

characteristics fall outside acceptable specification limits. This would typically require an evaluation of the 

actual variation distribution of the performance characteristic parameters of interest. These distributions of 

performance characteristic can then be utilised for the purpose of capability calculations and risk mitigation. The 

techniques for probabilistic distribution estimation discussed here involve of sampling based technique namely 

Latin Hypercube sampling (LHS) 

LHS is a stratified sampling scheme developed by McKay et al [20]. It uses a technique known as 

‘stratified sampling without replacements’, see as described in [21]. For a model Y that is a function of other 

variables x1, x2, …, xn.  This method selects M different values from each n random variable using the following 

method. The probability distribution of each n random variable x1, x2, …, xn  is split into M non overlapping 

intervals based on an equal probability of occurrence. One value from each interval is selected at random with 

respect to the probability density in the interval. The M sample values obtained for x1 are paired in a random 

manner with the M values of x2. These M pairs are then paired in a random manner with the M values of x3 to 

form M triplets, and so on, until M by n tuples are formed. The next step involves the generation of M samples 

from M by n tuples. The response function is computed from M randomly permuted samples in all samples 

provided no two samples have any input corresponding to the same interval. The advantage of this method is 

that random samples are generated from all the ranges of possible values; therefore it extracts information for 

the tails of the probability distribution. 

LHS simulation based distribution estimation technique was utilised for the process or product variable 

distribution and a histogram was obtained. Fitting a distribution to this histogram is essential for product 

capability index calculation if the underlying distribution follow a non normal format. The Silicon carbide chip 

thickness and sintered silver layer thickness in the model were assumed to follow normal Gaussian distributions 

with standard deviations of 1.2 μm, and 0.6 μm respectively. Nominal Silicon carbide chip thickness was 

assumed as 0.41 mm and nominal sintered silver layer thickness was assumed as 0.0275 mm. The predictions 

for the plastic strain and relative displacement probability distribution from Latin Hypercube for the nominal 

design case of the Silicon carbide chip thickness (hCHIP = 41 mm, and sintered silver layer thickness (hSiAg = 

0.0275 mm) are shown in Figure 10 to 13. The values for the sintered silver model responses of interest were 

obtained using the Kriging and radial basis reduced order models.  

In practice microelectronic systems process or product variable distributions, in most situations follow a 

non normal distribution for which the product capability indices calculations need to be evaluated. There are 

several statistical measurements available to measure the capability of the process or product namely Cnp, Cnpk, 

Cnpm, Cnpu, and Cnpl. The terminology used in product capability analysis such as LSL, USL, T means the lower 

specification limit, upper specification limit and target value respectively. The product capability indices of the 

product or process variable for a non normal distributions are defined as [22, 23]: 

(0.99865) (0.00135)
np

USL LSL
C

p p





 



(0.5) (0.5)
min ,

(0.99865) (0.5) (0.5) (0.00135)
npk

USL p p LSL
C

p p p p

  
  

  
 

 

 
2

2
3

min (0.5), (0.5)

(0.99865) (0.00135)
(0.5)

6

npm

USL p p LSL
C

p p
p T

 


 
  

 

 

where p(0.99865), p(0.00135), and p(0.5) are the 99.865th percentile, 50th percentile and 0.135th 

percentile of the underlying distribution respectively. In this study, the values of LSL, USL for the plastic strain 

were assumed as 6.9 × 10-3 and 8.1× 10-3 respectively. Similarly LSL and USL for relative displacement were 

assumed as 0.134 and 0.155 microns respectively. For product capability analysis, the histogram data was 

skewed (non-symmetric), we fitted some non-normal distributions to the histogram data. Weibull distribution 

was fitted to the histogram resulting from LHS. The probability density function and cumulative density 

function of two parameter Weibull distribution are defined as equation (10) and (11):  
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where α is the scale parameter which is the characteristic value of the distribution, such as time to failure when 

considering this distribution to describe the life time of materials under fatigue and fracture loads. The shape 

parameter β of Weibull distribution controls the width of the frequency. Statistical software Minitab [24] was 

utilised in this study. The histogram and fitted Weibull distributions on cumulative distribution histogram 

generated in Minitab are on Fig 10 – 13. 

 

 
Fig 10: (a) Histogram of plastic strain (× 0.001) distribution by Radial basis model (b) Weibull 

distribution fitted to cumulative distribution of histogram by Radial basis model 

   



 
 Fig 11: (a) Histogram of plastic strain (× 0.001) distribution by Kriging (b) Weibull distribution fitted to 

cumulative distribution of histogram by Kriging 

 

 
  Fig 12: (a) Histogram of relative displacement (× 10-1 μm) distribution by Kriging (b) Weibull 

distribution fitted to cumulative distribution of histogram by Kriging 

   

 
Fig 13: (a) Histogram of relative displacement(× 10-1 μm)  distribution by radial basis model (b) Weibull 

distribution fitted to cumulative distribution of histogram by radial basis model 

 

 

× 10-7 m × 10-7 m 

× 10-7 m × 10-7 m 



Table 6: Mean and Standard deviation of various reduced order models, the data of various fitted 

distributions to histogram and product capability indices values 

  Plastic 

Strain(×0.001)by 

Kriging 

Plastic 

Strain(×0.001) 

by Radial basis 

Relative 

Displacement 

(×10-1 μm) by 

Kriging 

Relative 

Displacement 

(×10-1 μm) by 

Radial basis 

LHS simulation Mean  7.511 7.485 1.439 1.440 

Standard 

Deviation  

0.1842 0.1787 0.0303 0.0335 

Weibull 

Distribution 

Fitting to 

Histogram 

Scale value 7.591 7.561 1.452 1.454 

Shape value 38.98 41.47 48.31 43.76 

Lognormal 

Distribution 

fitting to 

histogram 

Location 

value 

2.015 2.011 0.3626 0.3629 

Scale value 0.0245 0.0239 0.0211 0.0233 

Gamma 

Distribution 

fitting to 

histogram 

Shape value 1670 1750 2248 1842 

Scale value 0.0045 0.0043 0.0006 0.0008 

Logistic 

Distribution 

fitting to 

histogram  

Location 

value 

7.493 7.471 1.437 1.438 

Scale value 0.105 0.1022 0.0173 0.0192 

Loglogistic 

Distribution 

fitting to 

histogram 

Location 

value 

2.014 2.011 0.363 0.363 

Scale value 0.014 0.0137 0.0121 0.0133 

Cnp (Weibull) 0.769 0.819 0.862 0.784 

Cnp (Lognormal) 1.087 1.119 1.153 1.044 

Cnp (Gamma) 1.09 1.12 1.155 1.045 

Cnp (Logistic) 0.865 0.889 0.917 0.83 

Cnp (Loglogistic) 0.866 0.888 0.916 0.828 

Cnpk (Weibull) 0.557 0.568 0.579 0.532 

Cnpk (Lognormal) 1.048 1.104 1.101 1.005 

Cnpk (Gamma) 1.066 1.092 1.089 0.991 

Cnpk (Logistic) 0.855 0.846 0.847 0.774 

Cnpk (Loglogistic) 0.837 0.885 0.884 0.806 

 

From the product capability indices values of Cnp and Cnpk based on fitted distributions on Table 6, we 

can observe that the values of Cnp and Cnpk  for most models based on lognormal and gamma distribution are 

greater than one. The numerical values of Cnp and Cnpk are greater than one means the product or process is 

capable, i.e. failure rate is below an acceptable tolerance value. To identify the best distribution that the data 

follows in all models, we applied Anderson Darling statistic test (AD). Lower AD values indicate a better 

distribution fit to the histogram. With a confidence interval of 95%, the best fitted distribution with lower AD 

value is Gamma distribution as in Fig 14. Hence the product capability indices Cnp, Cnpk were in acceptable 

range for the specified requirements since the the values of Cnp, Cnpk  generated from the Gamma distribution are 

above one. 
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Fig 14: Anderson Darling (AD) values of lognormal, logistic, Weibull and gamma distributions for 95 % 

confidence interval 

                                                                               

5.  Sintered silver model Design Optimisation 
  

The design optimisation task is to evaluate the optimal sintered silver structure for which the relative 

displacement of the model is minimised while satisfying a requirement that the maximum plastic strain in the 

sintered silver model does not exceed an upper limit (a value of 11.01 × 10-3, I.e. no lower than 100000 mean 

fatigue life cycles by Coffin Manson fatigue parameters of [1]). The design modifications were restricted to 

changes of the two design variables within the limit values. In this study, a design for the height of the silicon 

carbide chip and the height of the sintered silver layer are defined as optimal if it satisfies all defined constraints. 

The variation of the design variables followed Gaussian distribution with mean values are the nominal values. 

The following standard deviations specify the uncertainty of the sintered silver model design variables. The 

silicon carbide thickness (hCHIP) and sintered silver layer thickness (hSintered) as 1.2 μm, and 0.6 μm respectively.  

 

The uncertainty properties of the characteristic performances are usually unknown. Therefore, when 

uncertainties are included in the design optimisation task, we need to estimate the random properties of the 

responses or performance characteristic. In the section (4) we introduced Latin Hypercube sampling for 

estimating the distribution of a response model. This sampling method was utilised to obtain the information for 

uncertainty properties of response model and by using this information, we predicted the probability of failure 

with respect to the performance characteristic. In the reliability based optimisation the main objective was to 

accommodate the variations of the performance characteristic (response) that define the reliable design domain 

and to enforce the deterministic optimal solution is moved from the boundary of the active constraints inside the 

feasible domain. Therefore, the objective was to minimise and satisfy constraints that includes the system 

responses and the related probability of failure. This reliable optimum design is called a probabilistic or reliable 

optimum. To define the probabilistic optimum one must specify what probability of failure will be acceptable. 

To further clarify the reliability based design optimisation strategy, the following formulation of the design 

problem below was given. In this strategy when minimising an objective function, reliability constraints 

condition also need to be satisfied in the optimisation task. 

   Find values of hCHIP and hSiAg that  

   Minimise   RRD                                                                                                                                                                          (12) 

   Subject to  

                   (c1) Probability of failure ( Upper Specification Limit of Rεp  < 11.01 × 10-3) < 0.05 

                   (c2) 0.395 ≤ hCHIP  ≤ 0.425 mm 

                          Standard deviation (σ) hCHIP  = 1.2 μm 

                   (c3) 0.02 mm ≤ hSiAg  ≤ 0.035 mm 



                          Standard deviation (σ) hSiAg  = 6 μm 

                    

 The solution of this optimisation problem will account for the variation of the input design variables (the 

constraints (c1) –(c3)). The constraint (c1) states that the probability of the plastic strain being less than or equal 

to 11.01 × 10-3 must be no greater than 0.05 (i.e. 5% probability of failure limit with respect to the plastic strain 

requirement) as in the Fig 15. 

Similarly the constraint (c2) and (c3) are the bounds of the design variables. In a similar way for the 

reliability based design optimisation strategy, Optimisation task (13) is same except the ROM used in this 

scenario is Kriging ROM rather than radial basis ROM as in previous optimisation task (12). The above 

optimisation problems are defined and solved using VisualDOC [25]. The optimisation task was solved using 

particle swarm algorithm (PSO). The PSO scheme is based on a simplified social model that is originated from 

the swarming theory [26].  The scheme for updating the position of each particle is shown as 

1 1
i i i
k k kx x v t     

Where the 1
i
kx  represents the position of the particle i at iteration k+1 and 1

i
kv  represents the 

corresponding velocity vector defined as 

   
1 1 1 2 2*

i i g i
k k ki i

k k

p x p x
v w v c r c r

t t


 
  

 
 where r1 and r2 are random numbers between 0 and 1, pi 

is the best position found by particle i so far and 
g
kp is the best position in the swarm at time k. In this study, the 

constants w, c1, and c2 are defined as 1.4, 1.5, and 2.5 respectively. The 10,000 Latin Hyper cube sampling was 

generated at each iteration step for probability of failure distribution prediction. In both cases PSO technique 

converges to identify the global optimal solutions (within the algorithm tolerances) within few number of 

iteration as in Fig 16. The optimal results are listed in Table 7 [25]. 

 

 
Fig 15: picture of probability of failure constraint (c1) in the optimisation task. 

  

 

 Table 7: PSO Optimisation results of the optimisation task (12) and (13) 

 Radial basis ROM Kriging ROM 

Best objective value of Relative 

Displacement 

0.1016 μm 0.1047 μm 

Best constraint value of 

accumulated plastic strain of the 

sintered silver layer  

10.2416× 10-3 10.2823 × 10-3 

Standard deviation of plastic strain  0.2897 × 10-3 0.2369 × 10-3 

Height of silicon carbide chip  0.4004 mm  (scaled value is –

0.4875) 

0.4077 mm  (scaled value is –

0.1516) 

Height of sintered silver Layer 0.02 mm  (scaled value is -1) 0.02 mm  (scaled value is -1) 

 



 
Fig 16: (a) The value of objective function (Kriging ROM for warpage) versus iteration number and (b) 

The value of objective function (Radial basis ROM for warpage) versus iteration number 

 

Best objective value of lower relative displacement from the PSO optimisation was 0.1016 μm and the 

ROM generated this value was Radial basis ROM. An improvement of 3% in comparison with Kriging ROM. 

When we consider the best constraints obtained from the optimisation for these two ROMs, mean (μ) and 

standard deviation (σ) of accumulated plastic strain by Kriging ROM are 10.282 × 10-3 and 0.2369 × 10-3 

respectively. Assuming the accumulated plastic strain distribution follow a Gaussian distribution then, upper 

limit of the 95% confident interval (≈ {μ -1.959 σ, μ +1.959 σ}) for Kriging ROM 10.746 × 10-3. Similarly 

upper limit of the 95% confident interval by Radial basis ROM distribution is 10.809 × 10-3. In the optimisation 

task the constraint (c1) has the upper specification limit (USL) of 11.01 × 10-3. Within these two ROM’s 

distributions for accumulated plastic strain the higher difference between the upper limit from the upper 

specification limit belong to Kriging ROM accumulated plastic strain distribution. Overall, radial basis ROM 

slightly outperforms Kriging in this study. 

 

6. Conclusions 
           This paper has discussed a computational analysis of sintered silver interconnect sandwiched between the 

silicon carbide chip and the copper substrate in power electronic module assembly using finite element 

modelling. The objective of the finite element modelling was to observe how the plastic strain were distributed 

on the silicon carbide chip/ sintered silver layer interface. In the FEA results, it was observed that the 

accumulated strain distribution was concentrated on the perimeter of the interface. Additionally this paper has 

discussed a computational analysis framework integrated with reliability based design optimisation 

methodology. This approach was applied to estimate the fatigue failure of sintered silver structure in power 

electronic module. Emphasis was on the numerical design methodology that builds up the modelling framework. 

Fast design evaluation reduced order model based on results from thermal-mechanical finite element analysis 

and Design of Experiments methods were developed using Kriging and Radial basis functions. The reduced 

order modelling approach used the prediction data for the thermo-mechanical behaviour. The fatigue lifetime of 

the sintered silver layer as die and the relative displacement of the sintered layer are particular interest in this 

study. The reduced order models were used for the analysis of the effect of design uncertainties on the reliability 

of the sintered silver layer. The models were be used to predict the fatigue damage in sintered silver layer.  

A sample based distribution estimation technique namely Latin Hypercube sampling was utilised to 

predict the uncertainty effect on the characteristic performance metrics such as thermo-mechanical plastic strain 

accumulation per cycle of the sintered silver layer and the thermally induced warpage of the layer. Histograms 

generated from the Latin Hypercube sampling are fitted with various distributions for product capability indices 

evaluation for user specified limits. In the last section reliability based design optimisations were carried out. 

Latin Hypercube sampling method is combined for the purpose of carrying out reliability based design 

optimisation. The optimal design solution of the analysed sintered silver joint design in a power module with 

respect to reliability has been found in a very efficient way using stochastic global optimisation numerical 

technique such as particle swarm optimisation. The optimal solutions for Kriging and radial basis reduced order 

models with respect to reliability were compared.  
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