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Abstract 

A new paradigm is proposed for assessing confidence in the identification of known metabolites in 

metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the 

analysis of the amount of metabolite identification information retrieved from NMR spectra relative 

to the molecular size of the metabolite. Several new indices are proposed: metabolite identification 

efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be 

easily calculated. These indices, together with some guidelines, can be used to provide a better 

indication of known metabolite identification confidence in metabonomics studies than existing 

methods. Since known metabolite identification in untargeted metabonomics studies is one of the 

key bottlenecks facing the science currently, it is hoped that these concepts based on molecular 

spectroscopic informatics, will find utility in the field. 
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1. Introduction 

 

Metabonomics is defined as ‘The study of the metabolic response of organisms to disease, 

environmental change or genetic modification’[1] and has emerged as a leading technology in a 

number of fields, including biology and medicine,[2] with new areas emerging recently, such as 

pharmacometabonomics for personalised medicine.[3-5] The alternative term metabolomics [6] was 

defined a little later as a ‘comprehensive analysis in which all the metabolites of a biological system 

are identified and quantified’. The two terms are now used interchangeably but in this article we will 

refer to the original term throughout. 

 

Metabonomics studies are typically conducted with either nuclear magnetic resonance (NMR) 

spectroscopy or a hyphenated mass spectrometry (MS) technology, such as liquid chromatography-

MS (LC-MS), to acquire information on the identities and quantities of metabolites in the particular 

samples of interest. The studies are conducted either in a targeted fashion, where a pre-defined set of 

metabolites are measured, or in an untargeted fashion, where no preconceptions of the metabolites of 
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importance are imposed. The choice of analytical technology used often depends upon the particular 

study requirements.  

 

In this article, the focus will be on the use of NMR spectroscopy rather than MS, although the two 

technologies are quite complementary and it is often advantageous to use them together in concert. 

 

Metabonomics/ metabolomics studies have a number of important elements including: 

 

1. definition of study aims e.g. understanding the metabolic consequences of disease 

progression in a particular group of patients 

2. ethical approval 

3. sample collection and storage 

4. sample preparation 

5. NMR data acquisition 

6. quality control of the acquired data to ensure adequate signal-to-noise, lineshape and 

resolution 

7. spectroscopic data pre-processing steps such as zero-filling, apodisation, Fourier transform, 

phasing and baseline correction 

8. statistical pre-processing steps such as peak alignment, scaling and normalisation of the data 

9. statistical analysis of the data to interrogate differences between groups of subjects e.g. 

healthy volunteers vs patients with disease 

10. identification of metabolites responsible for any inter-group differences discovered in the 

study 

11. rationalisation of the role of the discriminating metabolites in terms of physiological and 

biochemical changes in the subject 

 

Many of the 11 steps above have been subject to rigorous study and guidelines have emerged for 

several areas including NMR-based sample preparation, data acquisition, data pre-processing and 

statistical analysis of the data, especially by multivariate methods.[8-15] However, the critical step 

for many untargeted metabonomics studies is the identification of the metabolites that are 

responsible for discriminating between different groups of subjects in the study: step 10. This 

remains problematical for both MS[16,17] and NMR spectroscopy[14,18-24] and is a significant 

bottleneck for the development of the science.  

 

The issue with metabolite identification was nicely illustrated by Wishart who contrasted the 4 

different bases in the human genome, and the 20 natural amino acids in the human proteome, with 

the thousands of different metabolites in the human metabolome: this is the cause of the issue [25]. 

 

For studies where many samples are available, statistical methods of metabolite identification, such 

as STOCSY and variants thereof, are powerful tools that can be used for metabolite and biomarker 

identification.[26,27] In genome wide association studies on metabonomics data, the pathway 

information that can be gleaned can also be used to help identify key metabolites, including by 

metabomatching.[28,29]  

 

Metabolite identification by NMR spectroscopy has recently been significantly facilitated by the 

development of spectral databases of metabolites,[30] such as the Human Metabolome Database 

(HMDB),[31] the BioMagResBank (BMRB)[32] and the Birmingham Metabolite Library 

(BML).[33] These libraries not only store information on the NMR spectra of a vast array of 

metabolites, which helps metabolite identification, but more powerfully, some also allow 

downloading of the original NMR free induction decay data from the databases, to facilitate 
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comparison of spectral features of authentic metabolites with those of unidentified metabolites in 

users’ biological samples. 

 

Some progress has been made towards the automated identification of metabolites but these methods 

are not yet at the stage that they can be routinely used to identify more than a fraction of the 

metabolites in complex biofluids such as urine. The Birmingham Metabolite Library (BML) provides 

a facility for the matching of experimental 2D 
1
H J-resolved spectra with those of reference 

metabolites stored in a database, which is a good approach, but is limited by the low number of 

metabolites in that database.[33] Approaches such as MetaboHunter have been applied to the 

identification of mixtures of standard compounds but not to a biofluid[21]. An approach based on 1D 
1
H NMR profiles, has had success in identifying metabolites in human serum and cerebrospinal 

fluid, but was less successful in identifying metabolites in urine due to spectral complexity and the 

lack of a complete reference set.[34] A different 1D 
1
H NMR approach based on extraction of 

relevant variables for analysis (ERVA) has been applied to simulated mixtures and to the analysis of 

tomato extracts, but again relies on the availability of authentic spectra of the metabolites and fails 

for compounds that have only a single peak in their 1D 
1
H NMR spectrum.[24] Thus, at the present 

time, the only robust way to identify known metabolites in the 1D 
1
H NMR spectra of complex 

biofluids such as urine is by manual analysis by an expert NMR spectroscopist. 

 

The metabolite identification issue is in two distinct categories: first the structure elucidation of truly 

novel metabolites, not previously reported, and secondly, the structure confirmation or structure 

identification of previously reported or known metabolites. This simple language and description is 

consistent with decades of molecular structure elucidation literature, and is preferable to the more 

complex and confusing labelling of metabolites as ‘unknown unknowns’ or ‘known unknowns’ that 

has emerged more recently.[25,35] For the structure elucidation of truly novel metabolites, there is a 

consensus that the same rigorous processes used in the natural product field should be adopted in 

metabolite identification. This would usually involve extraction and purification of the novel 

metabolite, followed by full structure elucidation by ultraviolet, infrared and NMR spectroscopies in 

concert with MS.[36,37]  

 

However, the process of structure confirmation of known metabolites remains an issue, due to 

differences in approaches across the metabonomics/metabolomics community. In order to address 

the metabolite identification issue, the Metabolomics Standards Initiative (MSI)[38] set up a 

Chemical Analysis Working Group (CAWG) which proposed a 4-level classification system for the 

structure confirmation of known metabolites in 2007.[36]   

 

Table 1. The Four Levels of Known Metabolite Identification from the CAWG 2007.[36] 

Level 1 Identified Compound: A minimum of two independent and orthogonal 

data (such as retention time and mass spectrum) compared directly relative 

to an authentic reference standard  

Level 2 Putatively Annotated Compound: Compound identified by analysis of 

spectral data and/or similarity to data in a public database but without direct 

comparison to a reference standard as for Level 1 

Level 3 Putatively Characterised Compound Class: unidentified per se but the 

data available allows the metabolite to be placed in a compound class 

Level 4 Unknown Compound: unidentified or unclassified but characterised by 

spectral data 

 

In the seven years since these proposals were made, they have not been widely adopted by the 

community.[39] There are two basic problems with the original proposals: firstly, the requirement of 
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comparison of data to an authentic reference standard in the lab, is often too strict and not always 

appropriate for an NMR-based study, and secondly, the system is too coarse and does not define 

closely enough the confidence achieved in the metabolite identification. Recently, new proposals 

emerged to update the 4-level system with either: (i) addition of sub-levels to grade confidence 

better, (ii) an alternative quantitative identification points scoring system or (iii) quantitative 

enhancement of the current 4-level system to indicate confidence.[40] An overlapping subset of the 

same authors also proposed quantitative and alphanumeric metabolite identification metrics.[41] The 

quantitative scoring proposal in the latter publication contains a mixture of excellent metabolite 

identification criteria with precision e.g. accurate mass of parent ion (< 5 ppm) and processes such as 

having a COSY NMR, with no precision or scoring for matching. It was commented that it is 

difficult to see how scoring for matching of metabolite data to standards could be achieved.[41] A 

call to the community was made for engagement with this important problem.[40] 

 

This paper responds to those calls. A new approach to the understanding of the NMR spectroscopic 

information theoretically embedded in metabolites is put forward, and compared with the data that is 

actually obtained in the course of metabonomics experiments. Conclusions and proposals are arrived 

at in terms of a different approach to metabolite identification confidence, which should be 

applicable in spirit to any other analytical technology, in addition to NMR spectroscopy. 

 

2. Material and Methods 

2.1 subjects, sample preparation and NMR spectroscopy 

The 75 metabolites included in this study were identified manually from the proton NMR spectra of 

the urine from a C57BL/6 mouse at week 30 age, and the urine of a diabetic patient on an exercise 

study at La Sapienza University, Rome. Both studies were ethically approved.[42]  

 

The diabetic urine sample was prepared by mixing urine (630 μl) with phosphate buffer (70 μl of an 

81:19 (v/v) mixture of 1.0 M K2HPO4 and 1.0 M NaH2PO4 pH 7.4). After standing at room 

temperature for 10 minutes, the sample was centrifuged at 13,000 g for five minutes at 4°C to enable 

separation of clear supernatant (600 μl) from any particulate matter. The supernatant was mixed with 

a solution of the chemical shift reference material, sodium 3-(trimethylsilyl) propionate-2, 2, 3, 3-d4 

(TSP) in D2O (60 μl), to give a final TSP concentration of 0.18 mM.  

 

The mouse urine sample was prepared by mixing pooled urine (500 μl) from a single C57BL/6 

mouse with phosphate buffer (150 μl of a 81:19 (v/v) mixture of 0.6 M K2HPO4 and NaH2PO4 in 

100% 
2
H2O,  pH 7.4, containing 0.5 mM TSP as a reference and 9 mM sodium azide). The sodium 

azide was added to prevent bacterial growth in the urine sample.  

 

All NMR experiments were conducted on a Bruker Avance spectrometer operating at 600.44 MHz 

for 
1
H NMR, at ambient temperature, in 5 mm NMR tubes (508-UP-7). All chemical shifts are on the 

δH or δC scales relative to TSP at 0. 

 

The identification of the metabolites used a combination of standard 1D and 2D NMR methods, 

including J-resolved (JRES), COSY, TOCSY, HSQC and HMBC experiments. The 1D 
1
H NMR 

experiments used the 1D NOESY presaturation pulse sequence, noesypr1d. Free induction decays 

were collected into 65,536 data points with 256 scans and 4 dummy scans and a spectral width of 

12,019.2 Hz. The resulting spectra were zero-filled to 131,072 or 262,144 points, baseline corrected 

automatically, phase corrected automatically (with manual override, as required) and apodised for 

resolution enhancement using Gaussian multiplication. The detailed parameters for the acquisition of 

the 2D NMR spectra are given in Supplementary Table 1. 
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2.2. Theoretical analysis of the NMR spectroscopic information content of the 75 metabolites. 

All 75 metabolites were characterised by their common names, IUPAC name, HMDB code, 

SMILES string, InChi code and InChi key (see Table 4 and Supplementary data). 14 Molecular 

features were analysed manually for each of the 75 metabolites represented in this study (Table 2):  

 

Table 2: The 14 Molecular and Spectroscopic Features Calculated for the 75 Metabolites. 

1. number of hydrogen atoms 2. number of carbon atoms 3. number of oxygen atoms 

4. number of nitrogen atoms 5. number of sulphur atoms 6. nominal mass in Da 

7. number of chiral centres 8. number of 
1
H NMR chemical 

shifts 

9. number of multiplicities 

10. number of 2- or 3-bond H, 

H coupling constants 

11. second order flag = 0 or 1 12. number of 2D 
1
H COSY 

cross-peaks 

13. number of 2D 
1
H, 

13
C 

HSQC cross-peaks 

14. number of 2D 
1
H, 

13
C 

HMBC cross-peaks 

 

 

The following rules were applied to this feature analysis: 

1. Only non-exchanging protons were included in the analysis of the number of proton chemical 

shifts present in the metabolites, and this included non-exchanging (on the NMR timescale) 

amides but not hydroxyl, amine or acid protons 

2. The number of multiplicities is simply the sum total of the number of singlets, doublets, 

doublet of doublets etc contained in a metabolite: for example, if a metabolite has one singlet 

and two doublet proton signals, the multiplicity count for that metabolite is three 

3. The total number of coupling constants was calculated for all possible 2- and 3-bond proton-

to-proton couplings involving non-exchanging protons 

4. COSY cross-peaks between two protons were only counted once: therefore the number of 

COSY peaks must equal the number of coupling constants: long-range COSY connectivities 

were not counted 

5. All HSQC cross-peaks including those from non-equivalent methylene protons on the same 

carbon were counted. However, symmetrically-equivalent HSQC or HMBC cross-peaks, 

such as those that occur in succinic acid for example, were counted only once: the analysis 

reflects the number of peaks that can be seen in the spectra.  

6. The count of theoretical 
1
H, 

13
C HMBC NMR cross-peaks includes all possible 2- and 3-bond 

carbon-to-proton couplings, including those between pseudo-equivalent groups e.g. the 

methyl groups in trimethylamine, as these are real and provide useful information for the 

identification of small metabolites 

7. The second-order flag was only set in cases where the presence of magnetically non-

equivalent but chemically equivalent protons would give rise to additional transitions in the 

spectra, not merely for cases where the signals have intensity distortions. The flag is set to 1 

if there are > 1 of these second order features and 0 otherwise. 

8. For sugars, the count of features is applied to both anomers 

 

Thirteen parameters, A to M, were then calculated from the 14 features (Table 3): see also the 

Supplementary data.  

 

Table 3: Metabolite Identification Parameters Calculated for the 75 metabolites 

parameter calculation 

A. total number of heavy atoms sum of features 2 to 5 in Table 2 

B. total number of spectroscopic information bits 

available from 1D 
1
H NMR 

sum of features 8 to 11 

C. total number of spectroscopic information bits sum of features 8 to 12 
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available from 1D 
1
H and 2D 

1
H COSY NMR 

D. total number of spectroscopic information bits 

available from 1D 
1
H and 2D 

1
H COSY and 

HSQC NMR 

sum of features 8 to 13 

E. total number of spectroscopic information bits 

available from 1D 
1
H and 2D 

1
H COSY, HSQC 

and HMBC NMR 

sum of features 8 to 14 

F. theoretical metabolite identification carbon 

efficiency (MICE) for 1D 
1
H NMR 

(sum of features 8 to 11)/ number of carbon 

atoms 

G. theoretical metabolite identification carbon 

efficiency (MICE) for 1D 
1
H and 2D 

1
H COSY 

NMR 

(sum of features 8 to 12)/ number of carbon 

atoms 

H. theoretical metabolite identification carbon 

efficiency (MICE) for 1D 
1
H and 2D 

1
H COSY 

and HSQC NMR 

(sum of features 8 to 13)/ number of carbon 

atoms 

I. theoretical metabolite identification carbon 

efficiency (MICE) for 1D 
1
H and 2D 

1
H COSY, 

HSQC and HMBC NMR 

(sum of features 8 to 14)/ number of carbon 

atoms 

J. theoretical metabolite identification efficiency 

(MIE) for 1D 
1
H NMR 

(sum of features 8 to 11)/ number of heavy atoms 

K. theoretical metabolite identification efficiency 

(MIE) for 1D 
1
H and 2D 

1
H COSY NMR 

(sum of features 8 to 12)/ number of heavy atoms 

L. theoretical metabolite identification efficiency 

(MIE) for 1D 
1
H and 2D 

1
H COSY and HSQC 

NMR 

(sum of features 8 to 13)/ number of heavy atoms 

M. theoretical metabolite identification 

efficiency (MIE) for 1D 
1
H and 2D 

1
H COSY, 

HSQC and HMBC NMR 

(sum of features 8 to 14)/ number of heavy atoms 

 

2.3. Analysis of the NMR spectroscopic data and metabolite identification  

All spectral processing was conducted in MNova version 9.0.0-12821 (Mestrelab Research S.L.).  

Analysis of the spectroscopic information content of the urinary metabolites was conducted 

manually and captured and further analysed in Excel for Mac 2011 version 14.4.6 (Microsoft 

Corporation). Student t-tests were run in Excel using 2-tailed, unpaired calculations to determine the 

statistical significance of differences in values between groups of data. A p value of < 0.05 was used 

as the cut-off for statistical significance.[43] IUPAC names, SMILES strings and InChi codes for the 

metabolites were downloaded from either the Human Metabolome Database[31] or from 

ChemSpider (Royal Society of Chemistry). Although 2D 
1
H JRES NMR gives no new information 

(except for 2
nd

 order systems and the discrimination of homonuclear and heteronuclear coupling), it 

was used to assist with the analysis of the 1D 
1
H NMR spectra, and some coupling and multiplet 

information was abstracted from 2D 
1
H JRES NMR rather than the 1D 

1
H NMR spectra if 

appropriate. Similarly, TOCSY data was occasionally used to assist spectral analysis in crowded 

regions, although it theoretically provides no new information over COSY in the absence of spectral 

crowding. 

 

Features numbered 8 to 14 in section 2.2 above were then analysed in the actual 1D and 2D NMR 

spectra of the urines of the mouse and diabetic patient, as features 8’ to 14’ respectively. For 

example, the total number of 
1
H NMR chemical shifts (8’) for each metabolite (as opposed to the 

theoretical number calculated in section 2.2 above) was measured. Parameters equivalent to B to M 

in Section 2.2 above were then calculated from features 8’ to 14’ to give the values for B’ to M’ 
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respectively, for comparison with the theoretical values. For instance, the actual metabolite 

identification carbon efficiency (MICE) for 1D 
1
H NMR level data is parameter F’. The full 

spreadsheet containing all these data is available as Supplementary Data. 

 

3. Results and Discussion  

 

3.1 The identification of 75 human and mouse urinary metabolites. 

The manual analysis of a range of 1D and 2D NMR spectra of mouse and human urines from two 

recent studies[42] had resulted in the identification of a total of 75 metabolites. These metabolites 

were identified on the basis of NMR spectral analysis and comparison of the spectral data of the 

metabolites with that available for standard reference metabolites in the Human Metabolome 

Database[31], the BioMagResBank (BMRB)[32] and the Birmingham Metabolite Library 

(BML).[33] The exact methodology for the analysis will not be detailed here but typically involved: 

(i) comprehensive comparison of the 2D 
1
H, 

13
C HSQC data with reference data in the HMDB and 

(ii) further interrogation of the data using all available resolution-enhanced 1D 
1
H and 2D 

1
H JRES, 

COSY, TOCSY and HMBC data.  

 

As an example, the alpha and beta anomers of fucose (6-deoxy-L-galactose), a methyl sugar, were 

identified in the mouse urine. The process of this identification is described here. The 600 MHz 1D 
1
H NMR spectrum of the mouse urine is shown in Figure 1. Hundreds of signals are seen for dozens 

of metabolites. The identification of the known metabolite fucose commenced by matching the 

cross-peak at 1.25, 18.47 in the HSQC spectrum (Supplementary Figure 1) to the methyl group of the 

beta anomer of fucose by an HMDB 2D HSQC search. The database gives figures of 1.26, 18.3 for 

the beta anomer of fucose. In confirmation, the 
3
JH,H coupling constant of the doublet at ca 1.25 in 

the mouse urine was measured as 6.5 Hz, in accordance with the HMDB figure. Naturally, if the beta 

anomer of fucose is present, then the alpha anomer must also be detected, as they are in dynamic 

equilibrium, although it is expected to be present at lower levels.   
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Figure 1: the 600 MHz 

1
H NMR spectrum of the urine from a C57BL/6 mouse and an expansion in the region of the 

methyl signals from lactic acid and the two anomers of fucose. The spectrum is moderately resolution-enhanced by 

Gaussian multiplication. 

 

No signals for the alpha anomer were clearly visible in the 1D 
1
H NMR spectrum, but the HSQC 

spectrum displayed a cross-peak at 1.22, 18.4, which corresponded well with the HMDB data for the 

authentic reference material (1.20, 18.3). The 
3
JH,H coupling constant between the alpha methyl and 

H5 was 6.6 Hz, in good agreement with HMDB (6.7 Hz). This was measured in the 2D J-resolved 
1
H 

NMR spectrum (Figure 2), where the hidden alpha anomer signal is revealed by the spreading-out of 

the overlapped metabolite signals across a second dimension. 
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Figure 2: an expansion of the 600 MHz 2D 

1
H J-resolved NMR spectrum of the urine from a C57BL/6 mouse in the 

region of the methyl signals from lactic acid and the two anomers of fucose, underneath the corresponding region of the 

1D 
1
H NMR spectrum. 

 

Further confirmation that these signals belonged to fucose came from a 2D 
1
H COSY NMR 

spectrum (Supplementary Figure 2), which showed that the methyl doublets resonating at ca 1.25 

and at ca 1.21 in the mouse urine spectrum were connected to protons resonating at 3.80 and 4.20 

respectively, exactly as expected for the beta and alpha anomers of L-fucose according to 

HMDB00174, which gives 3.80 and 4.18 respectively. A 2D 
1
H, 

13
C HMBC NMR spectrum also 

showed that the methyl protons at ca 1.25 connected to a carbon resonating at 73.7, which is a good 

match for C5 in beta-L-fucose (HMDB00174 gives 73.5). 

 

In addition to these data, signals for the alpha and beta anomeric protons of L-fucose were detected 

at 5.22 (doublet (d), ca 4.0 Hz, COSY to H-2 at ca 3.78, HSQC to 95.5) and 4.57 (d, ca 7.8 Hz, 

COSY to 3.46, HSQC to 99.5) respectively (data not shown). Interestingly, the latter COSY revealed 

that there had been a data misinterpretation in HMDB (HMDB00174, accessed 29
th

 November 2014) 

as the resonance for H-2 beta is given as 3.64 instead of 3.46, even though the coupling data matches 

the signal reported in HMDB at 3.46 and not at 3.64. HMDB00174 gives 5.19 (d, 3.9 Hz), 95.1 and 

4.54 (d, 7.9 Hz), 99.0 for the anomeric protons and carbons of the alpha and beta anomers 

respectively. 

 

It seemed that the metabolite whose signals were observed in the mouse urine was definitely L-

fucose. However, according to the MSI guidelines, the identification could only be classified as 

putative, as the comparisons were made relative to the data in the HMDB, rather than to an authentic 

reference standard (Table 1). Indeed, all 75 metabolites identified in the studies of the mouse and 

human urine (Table 4) could only be described as tentatively identified by these rules. This seemed 
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inappropriate and unsatisfactory, as the confidence in the identification of the vast majority of these 

metabolites was very high. It seems that the MSI 4-Level system is too conservative for metabolite 

identification based on NMR spectroscopic data, which in comparison to chromatographic retention 

time data, or electrospray MS signal intensity data, for example, is more predictable and precise. 

 

In order to explore what information had been acquired and how it compared with what was 

theoretically available, an analysis of the spectroscopic information present in the 75 metabolites 

identified in the two metabonomics studies was undertaken. 

 

Table 4: The 75 metabolites identified by NMR spectroscopy in recent metabonomics studies 

on human and mouse urine. 
metabolite class common name IUPAC name 

carboxylic acids formic acid formic acid 

  acetic acid acetic acid 

  propionic acid propionic acid 

  butyric acid butanoic acid 

  isobutyric acid 2-methylpropanoic acid 

  isovaleric acid 2-methylbutanoic acid 

  ketoleucine 4-methyl-2-oxopentanoic acid 

  benzoic acid benzoic acid 

  phenylacetic acid 2-phenylacetic acid 

  para-hydroxy-phenylacetic acid 2-(4-hydroxyphenyl)acetic acid 

  hydrocinnamic acid 3-phenylpropanoic acid 

hydroxycarboxylic acids glycolic acid 2-hydroxyacetic acid 

  lactic acid (2S)-2-hydroxypropanoic acid 

  2-hydroxyisobutyric acid 2-hydroxy-2-methylpropanoic acid 

  3-hydroxyisobutyric acid (2S)-3-hydroxy-2-methylpropanoic acid 

dicarboxylic acids succinic acid butanedioic acid 

  L-malic acid (2S)-2-hydroxybutanedioic acid 

  tartaric acid (2R,3R)-2,3-dihydroxybutanedioic acid 

  methylsuccinic acid 2-methylbutanedioic acid 

  glutaric acid pentanedioic acid 

  2-hydroxyglutaric acid (2S)-2-hydroxypentanedioic acid 

  2-ketoglutaric acid 2-oxopentanedioic acid 

  2-isopropylmalic acid (2S)-2-hydroxy-2-(propan-2-yl)butanedioic acid 

tricarboxylic acids citric acid 2-hydroxypropane-1,2,3-tricarboxylic acid 

  isocitric acid 1-hydroxypropane-1,2,3-tricarboxylic acid 

  cis-aconitic acid (1Z)-prop-1-ene-1,2,3-tricarboxylic acid 

  trans-aconitic acid (1E)-prop-1-ene-1,2,3-tricarboxylic acid 

small alcohols  ethanol ethanol 

  chiral 2, 3-butanediol (2R,3R)-butane-2,3-diol or (2S,3S)-butane-2,3-diol 

  meso-2, 3-butanediol (2R,3S)-2,3-Butanediol 

ketones butanone butan-2-one 

  acetoin 3-hydroxybutan-2-one 

sugars and sugar acids D-xylose (3R,4S,5R)-oxane-2,3,4,5-tetrol 

  L-fucose (3S,4R,5S,6S)-6-methyloxane-2,3,4,5-tetrol 

  D-glucose (3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol 

  mannitol (2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol 

 D-glucaric acid (2R,3S,4S,5S)-2,3,4,5-tetrahydroxyhexanedioic acid 

 D-glucuronic acid 

(2S,3S,4S,5R,6S)-3,4,5,6-tetrahydroxyoxane-2-

carboxylic acid 

 para-cresol glucuronide 

(2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-(4-

methylphenoxy)oxane-2-carboxylic acid 

amines methylamine methanamine 

  dimethylamine dimethylamine 

  trimethylamine trimethylamine 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

New Paradigm for Metabolite Identification REV 1: J R Everett 11 

  trimethylamine N-oxide N,N-dimethylmethanamine oxide 

  ethanolamine 2-aminoethan-1-ol 

  choline (2-hydroxyethyl)trimethylazanium 

  3-methylhistamine 2-(1-methyl-1H-imidazol-5-yl)ethan-1-amine 

  hypotaurine 2-aminoethane-1-sulfinic acid 

  taurine 2-aminoethane-1-sulfonic acid 

  3-indoxyl sulphate 1H-indol-3-yloxidanesulfonic acid 

  putrescine butane-1,4-diamine 

  creatinine 2-imino-1-methylimidazolidin-4-one 

  creatine 2-(1-methylcarbamimidamido)acetic acid 

  L-carnitine (3R)-3-hydroxy-4-(trimethylazaniumyl)butanoate 

amino acids and amides glycine 2-aminoacetic acid 

  N-methylglycine, sarcosine 2-(methylamino)acetic acid 

  dimethylglycine 2-(dimethylamino)acetic acid 

  N,N,N-trimethylglycine, betaine 2-(trimethylazaniumyl)acetate 

  N-acetylglycine 2-acetamidoacetic acid 

  N-propionylglycine 2-propanamidoacetic acid 

  N-butyrylglycine 2-butanamidoacetic acid 

  N-isovalerylglycine 2-(3-methylbutanamido)acetic acid 

  hippuric acid, benzoylglycine 2-(phenylformamido)acetic acid 

  phenylacetylglycine 2-(2-phenylacetamido)acetic acid 

  guanidoacetic acid 2-carbamimidamidoacetic acid 

  ureidopropionic acid 3-(carbamoylamino)propanoic acid 

  L-alanine (2S)-2-aminopropanoic acid 

  beta-alanine 3-aminopropanoic acid 

  pyroglutamic acid (2S)-5-oxopyrrolidine-2-carboxylic acid 

  L-histidine (2S)-2-amino-3-(1H-imidazol-4-yl)propanoic acid 

  1-methylhistidine 

(2S)-2-amino-3-(1-methyl-1H-imidazol-4-yl)propanoic 

acid 

  allantoin (2,5-dioxoimidazolidin-4-yl)urea 

  trigonelline 1-methylpyridin-1-ium-3-carboxylate 

  1-methylnicotinamide 3-carbamoyl-1-methylpyridin-1-ium 

  cytosine 6-amino-1,2-dihydropyrimidin-2-one 

other metabolites para-cresol sulphate (4-methylphenyl)oxidanesulfonic acid 

 

The 75 metabolites from the two studies were combined to provide a realistic representation of the 

range of metabolites that a typical metabonomics study by high field NMR might identify. Analysis 

of these molecules showed that they had a molecular weight range of 31 to 284 Da (nominal mass) 

with an average of 126.7 ± 46.6 Da. The number of carbon atoms ranged from 1 to 13 with an 

average of 4.9 ± 2.2 (standard deviations). See the Supplementary Data for more information. 

 

The subsequent analysis was completed in three parts: (i) an analysis of the information content of 

1D and 2D 
1
H NMR spectra; (ii) an analysis of the NMR spectroscopic features theoretically present 

in the 75 metabolites and (iii) a comparison of the features theoretically present in the metabolites 

with those actually found in the course of the metabonomics studies. The aim of these analyses was 

to determine how much structural information was present in the metabonomics data and therefore 

how much confidence could be ascribed to metabolite identification. This analysis proved to be both 

informative and thought provoking. 

 

3.2. The information content of NMR spectra in the context of metabonomics experiments 

NMR spectroscopy provides a surprisingly rich quantity of information on the molecules under 

study. The following list of 11 NMR spectral features is not exhaustive but includes those that are 

useful for the purposes of metabolic profiling, and is focused on 
1
H NMR-detected experiments: (1) 

chemical shifts, (2) signal multiplicities, (3) coupling constants, (4) 1
st
 or 2

nd
 order signal nature, (5) 

signal half-bandwidth, (6) signal integral, (7) COSY cross peaks, (8) HSQC cross-peaks, (9) HMBC 
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cross-peaks, (10) TOCSY cross-peaks and (11) signal rate of change. A detailed analysis of these 

features is provided in Supplementary Table 2. 

 

3.3. Analysis of the theoretical 1D and 2D 
1
H NMR spectroscopic information content of 

metabolites. 

Of the 11 features of 1D or 2D 
1
H NMR spectroscopy outlined in Section 3.2 above, the analysis 

here focused on just 7: chemical shifts, multiplicities, coupling constants, 2
nd

 order nature and 

COSY, HSQC and HMBC cross-peaks, for further study, as these are of most importance for 

metabolite identification by NMR spectroscopy. A manual analysis of the number of each of these 7 

features expected to occur in each of the 75 metabolites was conducted (see Supplementary Data).  

 

Table 5 shows the number of bits of spectroscopic information theoretically present in the 1D or 2D 
1
H NMR spectra of the 75 metabolites, for a range of different approaches to metabolite 

identification. The first would involve just the use of 1D 
1
H NMR; the second, the additional use of 

COSY, the third the additional use of HSQC and finally, the additional use of HMBC information. 

For example, the number of bits of spectroscopic information in a metabolite for an approach based 

on just 1D 
1
H NMR would include the total number of 

1
H NMR chemical shifts, multiplicities and 

coupling constants in a metabolite, plus a flag for a second order spin system, if present. 

 

Table 5. The number of bits of spectroscopic information per metabolite theoretically contained 

in the group of 75 metabolites, from four NMR-based metabonomics approaches: each bit 

corresponds to a bit of metabolite identification information 

feature / 

methodology 

1D 
1
H NMR 1D 

1
H NMR plus 

2D COSY 

1D 
1
H NMR plus 

2D COSY and 

HSQC 

1D 
1
H NMR plus 

2D COSY, 

HSQC and 

HMBC 

minimum number 

of bits  

2 2 3 3 

maximum number 

of bits  

42 56 70 106 

average number 

of bits  

9.2 11.3 14.7 24.3 

median number of 

bits  

7 8 11 16 

standard deviation 7.9 10.6 13.1 21.8 

 

Thus, as expected, the amount of spectroscopic information available to assist with metabolite 

identification increases in going from approaches based solely on 1D 
1
H NMR, to those involving 

significant utilisation of 2D NMR methods. The distribution of the data across the 75 metabolites is 

informative (Figure 3). The bits of spectroscopic information can be considered to be bits of 

metabolite identification information, each of importance to the valid identification of metabolites. 

What is immediately apparent is that even with a simple 1D 
1
H NMR approach, some metabolites 

contain a surprisingly large number of bits of information that can be used to identify them: up to 42 

bits in one metabolite in this set. 
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Figure 3: the distribution of the theoretical number of bits of metabolite identification (ID) information available from 

three different NMR approaches across the 75 metabolites. The number of bits is calculated in bins ranging from 0 to 4, 5 

to 8 etc up to 105 to 108 bits. Each bit represents a 
1
H NMR chemical shift, multiplicity, coupling constant, 2

nd
 order 

flag, COSY cross-peak, HSQC cross peak or HMBC cross peak, that theoretically should be observed for the metabolite 

in question. Data for approaches using 
1
H plus COSY data not shown for clarity of presentation. 

 

It is important to understand how the metabolite identification information content of the metabolites 

varies with their structures. Figure 4 shows the variation in the number of bits of metabolite 

identification information against the number of carbon atoms in the molecule. An approximately 

linear relationship is observed, apart from three clear outliers (filled diamonds in Figure 4) due to the 

sugars xylose, fucose and glucose in the set. Removal of the three outliers improves the linear 

correlation to an R
2
 of 0.47, with the equation y = 1.74x -0.48. 

 

 
Figure 4: the number of metabolite identification (ID) information bits theoretically available from 1D 

1
H NMR plotted 

against the number of carbon atoms for all 75 metabolites. Three outliers due to xylose, fucose and glucose are 

highlighted with filled, as opposed to open diamonds. 
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The analysis was then developed using a concept from drug discovery. In 2004, Alex, Groom and 

Hopkins introduced the concept of ligand efficiency as a tool to assist lead and drug discovery. 

[45,46] The essence of this approach is to calculate the binding energy of ligands per heavy atom in 

the molecule, in order to drive drug discovery projects towards molecules that have the highest 

binding energy with the lowest molecular weight. A corresponding approach to metabolite 

identification analysis would use the concept of metabolite identification efficiency (MIE). In 

contrast to ligand efficiency (LE) where the total molecular weight is of importance, in MIE, the 

number of carbon atoms in the metabolite is also of importance, as the carbon atoms carry the vast 

majority of the non-exchangeable hydrogen atoms observed in 
1
H NMR experiments. We thus 

introduce the concept of metabolite identification efficiency in two forms: 

 

MIE = number of bits of metabolite identification information / number of heavy atoms in metabolite 

 

MICE = number of bits of metabolite identification information / number of carbons in metabolite 

 

where MICE is the Metabolite Identification Carbon Efficiency. Like MIE, MICE can be calculated 

separately for each metabolite according to the approach taken to the analysis of the metabonomics 

data, be that solely based on 1D 
1
H NMR, or involving significant utilisation of 2D NMR methods 

(Figure 5). 

 

 
Figure 5: the theoretical metabolite identification carbon efficiency (MICE) for all 75 metabolites and for four separate 

metabolic profiling approaches: 1D 
1
H NMR alone, 1D 

1
H plus COSY, 1D 

1
H plus COSY and HSQC data and 1D 

1
H 

plus COSY, HSQC and HMBC data. The histogram shows the number of metabolites for each approach with MICE 

values in bins of 0 to 1, > 1 to 2, > 2 to 3 etc up to > 17 to18. 

 

It is clear that the MICE for metabolites varies broadly and that the use of additional 2D technologies 

including COSY, HSQC and HMBC can significantly boost the theoretical amount of metabolite 

identification information per carbon atom in the metabolite. The theoretical MICE values range 

from an average of 1.8 ± 1.3 for 1D 
1
H NMR alone, to 2.2 ± 1.7 for approaches that include COSY 

data, to 2.9 ± 2.1 for approaches that also include COSY and HSQC and to 4.6 ± 3.3 bits per carbon 

atom (standard deviations) for approaches that also include HMBC.  
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For comparison, the theoretical MIE values range from an average of 1.0 ± 0.7 for 1D 
1
H NMR 

alone, to 1.2 ± 0.9 for approaches that also include COSY data, to 1.6 ± 1.1 for approaches that also 

include COSY and HSQC and to 2.6 ± 1.8 bits per heavy atom (standard deviations) for approaches 

that also include HMBC. The MIE values are naturally lower as the number of heavy atoms is 

approximately double the number of carbon atoms across this set of 75 metabolites. 

 

The amount of metabolite identification information per heavy atom or per carbon atom in the 

metabolites is quite high and gives a perspective on what can be achieved via modern, high field 

NMR spectroscopy approaches to metabonomics. This efficiency-based approach is critical in 

understanding how much metabolite identification information is being obtained relative to the 

molecular size of the metabolite. 

 

The theoretical MIE and MICE values also varied significantly according to the type of metabolites 

under study. The metabolites were sorted between those containing 1 to 5 chiral centres (n = 24) and 

those containing no chiral centres (n = 51). Table 6 shows the differences between the chiral and 

non-chiral metabolites in terms of their theoretical number of bits of metabolite identification 

information at the level of 1D 
1
H and 2D COSY and HSQC NMR data plus the corresponding MIE 

and MICE values. 

 

Table 6. A theoretical analysis of the total number of metabolite identification information bits, 

metabolite identification efficiency (MIE) and metabolite identification carbon efficiency 

(MICE) for chiral (24) vs non-chiral (n = 51) metabolites in this study (all analyses at the level 

of data from 1D 
1
H and 2D COSY and HSQC NMR 

 

feature / parameter average 
value 

standard 
deviation 

total number of 
metabolite identification 
information bits for chiral 
metabolites 

24.58 17.98 

total number of 
metabolite identification 
information bits for non-
chiral metabolites 

9.98 6.03 

metabolite identification 
efficiency MIE, chiral 

2.36 1.52 

metabolite identification 
efficiency MIE, non-chiral 

1.27 0.56 

metabolite identification 
carbon efficiency (MICE), 
chiral 

4.45 3.03 

metabolite identification 
carbon efficiency (MICE), 
non-chiral 

2.19 0.88 

 

The analysis above clearly shows that: (i) the information content of the chiral metabolites is 

significantly greater than that of the non-chiral metabolites (p = 0.0007), and also that (ii) the 

information density per heavy atom (MIE, p = 0.0022) or per carbon atom (MICE, p = 0.0014, all 

from two-tailed, unpaired student t-tests) is also significantly higher for chiral metabolites. In all 
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cases the p values from the student t-test are less than 0.05, the cut-off for statistical significance of 

the differences in the values, with 95% confidence. The reason for these significant differences is 

principally the raising of the chemical shift degeneracy for methylene protons in the environment of 

a chiral centre: this significantly increases the number of metabolite identification information bits in 

a metabolite. 

 

A similar theoretical analysis using an NMR approach including 1D 
1
H NMR, COSY and HSQC 

data was conducted of differences between the classes of metabolites in Table 4. This demonstrated 

that the MIE values for the tricarboxylic acids (0.8 ± 0.5, n = 4) are significantly lower than the 

corresponding values for the cluster formed of the small alcohols and ketones (1.9 ± 0.5, n = 5, 

grouped together) with a p value of 0.012. In addition the group of sugars and sugar acids have an 

MIE value (3.6 ± 2.1) that is significantly greater than those of all other groups (additional values 

are: 1.5 ± 0.4, 1.3 ± 1.1, 1.4 ± 1.0, 1.4 ± 0.6 and 1.4 ± 0.7 for the carboxylic acids, n = 11, the 

hydroxycarboxylic acids, n = 4, the dicarboxylic acids, n = 8, the amines, n = 14 and the amino acids 

and amides, n = 21 respectively) with p values all < 0.039, apart from the cluster formed of the small 

alcohols and ketones (p = 0.079).  

 

The corresponding theoretical MICE analysis (at the level of 1D 
1
H NMR, COSY and HSQC data) 

showed that the values of the sugars and sugar acids (7.1 ± 4.1) are significantly greater than those of 

all other groups, with p values ranging from 0.012 to 0.031. The MICE values for the other groups 

are 2.3 ± 0.6, 2.5 ±1.9, 2.7 ± 1.9, 1.7, ± 1.1, 2.8 ± 0.7, 2.5 ± 1.1 and 2.6 ± 1.2 for the carboxylic 

acids, the hydroxycarboxylic acids, the dicarboxylic acids, the tricarboxylic acids, the small alcohols 

and ketones, the amines, and the amino acids and amides, respectively. No other groups showed 

significantly different MICE values in pairwise comparisons. The non-significance (MIE) vs the 

significance (MICE) in the differences between the values for the sugars and sugar acids and the 

small alcohols and ketones, reflects the fact that the carbon to oxygen ratio is at least 2 to 1 for the 

alcohols and ketones whereas it is ca 1:1 for most of the sugars and sugar acids. This has the effect of 

scaling down the MIE values for the sugars and sugar acids and making the difference between their 

average values and those of the small alcohols and ketones non-significant. 

 

It is worth noting that a third approach, different from either the MIE or MICE approaches is 

possible. This third approach involves simply counting the number of bits of metabolite 

identification information theoretically present in each of the metabolites, with each level of NMR 

approach, from 1D 
1
H NMR alone, up to the combined usage of 1D 

1
H NMR together with COSY, 

HSQC and HMBC data. The number of theoretical metabolite ID information bits can then be 

compared with the actual number of bits experimentally observed to give a metabolite identification 

hydrogen fraction (MIHF). This analysis is conducted in Section 3.4 below. 

 

3.4. An analysis of the actual 1D and 2D 
1
H NMR spectroscopic information content of 

metabolites, retrieved from analysis of biofluid NMR spectra. 

Theoretical analyses are all well and good but a key question is how much metabolite identification 

information is actually retrieved in typical metabonomics experiments. Issues such as relatively low 

abundance of a particular metabolite and/or spectral crowding in some chemical shift regions will 

reduce the actual amount of metabolite identification information retrieved for metabolites, relative 

to the theoretical maximal amount. In addition, the small size and lack of hydrogen atoms in some 

metabolites limits the amount of information available.  

 

Table 7 lists the information obtained using four different levels of NMR spectroscopy for the 75 

metabolites studied in this work. A direct comparison with Table 5 will illustrate that there is a 

significant drop in the amount of information obtained from the analysis of the experimental NMR 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

New Paradigm for Metabolite Identification REV 1: J R Everett 17 

spectra, compared with that which is theoretically available. Table 8 provides another view of the 

data, providing the total number of bits of metabolite identification information actually obtained in 

four different modes of NMR-based metabonomics versus the bits of information theoretically 

available. 

 

Table 7. The bits of metabolite identification information per metabolite actually obtained from 

four NMR-based metabonomics approaches in the group of 75 metabolites 

feature / 

methodology 

1D 
1
H NMR 1D 

1
H NMR plus 

2D COSY 

1D 
1
H NMR plus 

2D COSY and 

HSQC 

1D 
1
H NMR plus 

2D COSY, HSQC 

and HMBC 

minimum number 

of bits  

2 2 2 2 

maximum number 

of bits  

22 28 31 31 

average number 

of bits  

6.2 7.5 9.2 10.3 

median number of 

bits  

5 6 8 9 

standard deviation 4.5 5.8 6.5 6.8 

 

The drop off in metabolite identification information observed relative to that theoretically available 

is particularly steep for the HMBC data. Only 82 bits of information out of a possible total of 725 

bits were obtained across all 75 metabolites from the HMBC experiment. This is unsurprising given 

the difficulty in acquiring HMBC data on low abundance metabolites in biofluids with good 

sensitivity in a reasonable period of time. However, for HSQC, an encouraging 129 bits of 

information were obtained from a theoretical maximum of 250 across the 75 metabolites. 

 

Table 8. A comparison of the total amount of metabolite identification information actually 

obtained versus that theoretically available from four NMR-based metabonomics approaches 

across the group of 75 metabolites as a whole 

feature / 

methodology 

1D 
1
H NMR 1D 

1
H NMR plus 

2D COSY 

1D 
1
H NMR plus 

2D COSY and 

HSQC 

1D 
1
H NMR plus 

2D COSY, HSQC 

and HMBC 

theoretical total 

number of 

metabolite 

identification bits 

available 

688 849 1099 1824 

actual total 

number of 

metabolite 

identification bits 

observed 

467 560 689 771 

 

Supplementary Figure 3 shows a histogram comparing the actual number of metabolite identification 

information bits retrieved in the experiments reported here compared with the amount theoretically 

available, for an approach combining information from 1D 
1
H NMR, COSY and HSQC experiments. 

The clustering of the actual information retrieved to lower bin sizes is clear. 
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Finally, Figure 6 shows the actual metabolite identification carbon efficiency (MICE) obtained in the 

experiments with four different NMR approaches. 

 

 
Figure 6: the actual experimental metabolite identification carbon efficiency (MICE) for all 75 metabolites and for four 

separate metabolic profiling approaches: 1D 
1
H NMR alone, 1D 

1
H plus COSY, 1D 

1
H plus COSY and HSQC data and 

1D 
1
H plus COSY, HSQC and HMBC data. The histogram shows the number of metabolites for each approach with 

MICE values in bins of 0 to 1, > 1 to 2, > 2 to 3 etc up to > 17 to18. 

 

The data in Figure 6 can be directly compared with that in Figure 5. It is clear that the actual, 

experimental MICE values for metabolites vary broadly and that the use of additional 2D 

technologies including COSY and HSQC does boost the actual amount of metabolite identification 

information per carbon atom in the metabolite. However, in these experiments, the additional 

information from HMBC did not augment the information available to anywhere near the extent 

theoretically possible. The actual average MICE values over all metabolites range from 1.3 ± 0.8 for 

1D 
1
H NMR alone, to 1.6 ± 1.0 for approaches that also include COSY, to 1.9 ± 1.1 for approaches 

that also include COSY and HSQC and to 2.2 ± 1.1 bits per carbon atom (standard deviations) for 

approaches that also include HMBC. The corresponding actual MIE values (Figure 7) averaged over 

all 75 metabolites are: 0.7 ± 0.4 for 1D 
1
H NMR alone, 0.9 ± 0.5 for approaches that also include 

COSY, 1.1 ± 0.6 for approaches that also include COSY and HSQC and 1.2 ± 0.6 bits per heavy 

atom (standard deviations). 
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Figure 7: the actual experimental metabolite identification efficiency (MIE) for all 75 metabolites and for four separate 

metabolic profiling approaches: 1D 
1
H NMR alone, 1D 

1
H plus COSY, 1D 

1
H plus COSY and HSQC data and 1D 

1
H 

plus COSY, HSQC and HMBC data. The histogram shows the number of metabolites for each approach with MIE values 

in bins of 0 to 0.2, > 0.2 to 0.4, > 0.4 to 0.6 etc up to > 3.0 to 3.2. 

 

As mentioned in Section 3.3 above, another approach to take to the question of metabolite 

identification confidence would be to compare simply the number of metabolite identification 

information bits obtained experimentally, with the number of bits theoretically present in each 

metabolite to arrive at a metabolite identification hydrogen fraction (MIHF) as defined below: 

 

MIHF = NMIIo / NMIIt 

 

NMIIo = Number of bits of Metabolite Identification Information actually observed 

 

NMIIt = Number of bits of Metabolite Identification Information theoretically present 

 

MIHF can be calculated for single metabolites, sub-groups of metabolites or an entire collection. 

 

This analysis is also illuminating (Figure 8). 
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Figure 8: a histogram of the number of metabolites in the collection of 75 metabolites analysed here against the 

metabolite identification hydrogen fraction in buckets of 0.1 from 0 to 1. The analysis is shown for four separate NMR 

approaches to metabolite identification: use of 1D 
1
H NMR data alone and the additional uses of COSY, HSQC and 

HMBC data. 

 

It is striking that 42 out of 75 metabolites (56%) have MIHF values of > 90% for a simple 1D 
1
H 

NMR approach to metabolite identification, indicating that the majority of metabolites studied here 

are displaying > 90% of the available 1D 
1
H NMR information bits. This % drops off as the NMR 

approach includes the use of more and more 2D NMR methods and is lowest for the approach 

combining 1D 
1
H NMR with 2D COSY, HSQC and HMBC approaches. This is due to the difficulty 

of observing all HMBC cross-peaks for metabolites present in a biofluid at relatively low 

concentrations. 

 

As discussed above, the MIHF values clustered significantly at the high end of the range of possible 

values and provided a less good discrimination between metabolites than the corresponding MIE or 

MICE values. In addition, the MIHF values can seem misleadingly low for chiral metabolites, where 

there is typically more information than is required for confident metabolite identification, due to the 

raising of the degeneracy of methylene proton signals. For instance, a comparison of achiral, 2-

hydroxyisobutyric acid (2-hydroxy-2-methylpropanoic acid, HMDB00729) with its chiral isomer, 3-

hydroxyisobutyric acid ((2S)-3-hydroxy-2-methylpropanoic acid, HMDB00023) shows that the 

former has a total of just 2 bits of spectroscopic information at the level of 1D 
1
H NMR information 

bits, whereas the latter has 12! Finally, it is also a concern that it may be easier for a small metabolite 

with a low number of signals to get a very high MIHF score, compared with a more complex 

metabolite with more signals. Consequently, the MIE and MICE measures of confidence in 

metabolite identification were used in the rest of this analysis in preference to the MIHF. 

 

3.5. How much NMR information is enough for confident metabolite identification?  
This is the key question. The Metabolomics Standards Initiative (MSI) approach differentiates 

between the situation where: (i) the experimental metabonomics data is compared with an authentic 

reference standard (Level 1, Identified Metabolite) and (ii) where comparison is made to the 

literature or a public domain database such as the HMDB (Level 2, Putatively Annotated 

Metabolite): see Table 1. On the basis of the analysis of the NMR-derived data in this study, that 

differentiation is not appropriate and it is perfectly possible to confidently identify known 

metabolites based on reference to the literature or the public databases. The guidelines to enable this 

are proposed to be as follows: 
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1. experimental metabolite identification carbon efficiency (MICE) ideally > 1 and/or 

metabolite identification efficiency (MIE) > 0.5, [these are guidelines, not rigid cut-offs, 

based on the experience with the metabolites in this study and are for MICE and MIE values 

with NMR approaches based on 1D 
1
H plus 2D COSY and HSQC data] 

2. the fit of the experimental data to reference data should be precise, generally within ± 0.03 

ppm for 1D 
1
H and ± 0.5 ppm for 

13
C NMR shifts and ± 0.2 Hz for homonuclear proton 

couplings: values outside these limits need explanation: in addition, the reference database 

entries should be double-checked for consistency with other literature values and general 

accuracy and self-consistency, including by downloading of actual free induction decay data 

e.g. from the HMDB[31] 

3. the NMR spectral data should provide ‘coverage’ of all parts of the molecule: for example, 

for para-cresol glucuronide, a molecule with two distinct parts, it is important to have NMR 

data from both the cresol and glucuronide parts for good confidence 

4. the signal-to-noise ratio and the resolution (actual and digital) in the spectra should be 

sufficient to measure the signal features with confidence, with high resolution having the 

added benefit of enabling the observation of long-range, homonuclear 
1
H  - 

1
H and two-bond 

1
H - 

14
N couplings that can be diagnostic for certain metabolites 

5. care needs to be applied in the assignments of signals in regions of the 
1
H NMR spectrum 

that are crowded with signals from other metabolites, as the possibility of miss-assignment is 

higher in these regions: high spectral and digital resolution is even more critical, as is the 

ability to correlate the correct signals together: TOCSY and J-resolved spectra can be 

enabling here 

6. HSQC data is extremely important in resolving metabolite identification issues, as the 

chemical shift sensitivity of 
13

C NMR is ca 20 x that of 
1
H NMR and it provides a superb 

orthogonal data source, as recommended by MSI: reliance solely on 1D 
1
H NMR data will 

lead to confident assignments of major metabolites but will struggle with the confident 

identification of less prominent metabolites in crowded spectral regions 

7. even though HMBC provided only a small proportion of the metabolite identification bits that 

were theoretically possible in these experiments, it is sometimes the only way to categorically 

identify metabolites. HMBC is extremely valuable for defining inter-atomic connectivities to 

quaternary carbon atoms, as well as through quaternary carbon atoms and heteroatoms, and 

should be used as much as possible. 

 

The example of the identification of L-fucose is a good one, if on the extreme end of proving a point. 

A total of 15 bits of 1D 
1
H NMR information were discovered in the experimental data. This figure 

increased to 20, 24 and 25 bits of information if COSY, COSY plus HSQC or COSY plus HSQC and 

HMBC data respectively, were considered in addition to the 1D 
1
H NMR data. The experimental 

MICE values were 2.5, 3.3, 4.0 and 4.2 for the 1D 
1
H NMR, 1D 

1
H plus 2D COSY, 1D 

1
H plus 2D 

COSY and HSQC, and 1D 
1
H plus 2D COSY, HSQC and HMBC data approaches respectively. The 

corresponding MIE values were: 1.4, 1.8, 2.2 and 2.3 respectively. All the experimental bits of 

metabolite identification information were in good agreement with those reported for authentic L-

fucose, HMDB00174, in the HMDB (see Section 3.1 above). These figures indicate great confidence 

in the metabolite identification and no need for any further direct comparisons with an actual sample 

of authentic L-fucose as recommended in the original MSI publication.[36] 

 

A metabolite with an MICE value just under average for approaches based on 1D 
1
H plus 2D COSY 

and HSQC data is ketoleucine (HMDB00695). This is a more normal example of a metabolite that 

was identified in the mouse urine. The methyl groups were observed as a doublet at 0.941 (d, 6.6 

Hz), 24.5 with a COSY to 2.098 (triplet of septets), and the latter signal had a COSY to 2.618 (d, 7.0 

Hz). The identification of three chemical shifts, three multiplicities, two coupling constants, two 
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COSY and one HSQC cross-peaks gave a total of 11 bits of information. The corresponding data for 

HMDB00695 was 2.60 (d, 7.0), 50.8; 2.09, 26.7 and 0.93 (d, 6.7 Hz), 24.4 and is an excellent match 

to the experimental data.  Ketoleucine has 6 carbon atoms, so the MICE value is 11/6 = 1.8, just 

under the average MICE value of 1.9 bits per carbon for all the metabolites in this study, and at this 

level. Ketoleucine, a metabolite with a below average MICE value is considered confidently 

identified. 

 

3.6. How confident can we be in metabolite identification with MIE < 0.5 or MICE < 1 (using 1D 
1
H plus COSY and HSQC NMR data)?  

This analysis will be exemplified for NMR approaches that use 1D 
1
H plus COSY and HSQC NMR 

data, as this is routine in metabonomics/metabolomics studies. Of the 75 metabolites in this study, 

five have a theoretical MIE of < 0.5 and four of these five have a theoretical MICE < 1 based on 

combined 1D 
1
H plus COSY and HSQC NMR data (See Supplementary Data). These metabolites 

are: 2-hydroxyisobutyric acid, succinic acid, tartaric acid, allantoin and guanidoacetic acid. All five 

metabolites have just a single singlet in their 1D 
1
H NMR spectrum, severely limiting the amount of 

NMR information that can be obtained. In practice, the relatively distinctive chemical shifts of the 

first four, the availability of HSQC information for all five and HMBC information for all except 2-

hydroxyisobutyric acid, means that their identification is unambiguous (see Supplementary 

Information). However, in these cases, where the MIE < 0.5 and/or MICE is < 1, it is critical to have 

orthogonal confirmation of metabolite identities via HSQC/HMBC data, as achieved in the 

experiments reported here, and all five metabolites are considered confidently identified. The actual 

experimental MICE, MIE values were: 2-hydroxyisobutyric acid (0.8, 0.4), succinic acid (0.8, 0.4), 

tartaric acid (0.8, 0.3), allantoin (0.8, 0.3) and guanidoacetic acid (1.0, 0.4), all being identical to the 

maximum theoretical values in this case. 

 

In addition, 13 of the 75 metabolites studied have actual MIE scores of < 0.5 and/or actual MICE 

scores of < 1.0 based on the combined experimental 1D 
1
H plus COSY and HSQC NMR data (See 

Supplementary Data). These 13 naturally include the five metabolites analysed above. Table 9 

extracts the data that was available for the MICE scores of the 8 additional metabolites from the 

Supplementary materials.  

 

Table 9: the actual NMR-based metabolic identification information available from 1D 
1
H plus 

COSY and HSQC NMR experiments on eight metabolites with MICE scores of < 1.0 

 
 

So, for these metabolites, how confident is their identification based on the information given in 

Table 9? For phenylacetic acid, three additional HMBC connectivities were observed from the acid, 

and ipso and ortho aromatic carbons to the methylene protons, which also had a long-range, 4-bond 

COSY to the ortho aromatic protons, so this identification is considered confident. For 

methylsuccinic acid, no additional information was available and therefore this metabolite should be 

described as putatively annotated, to keep consistency with the MSI nomenclature.  For trans-

common name

number of 

carbon 

atoms

number	of	

1D	1H
δH

number of

mult.

number of

nJHH

actual

2nd order 

flag

number of

COSY 

cross-

peaks

number of 

HSQC 

peaks

actual

total

info

1D 1H, 

COSY & 

HSQC

actual 

MICE 

based on 

1D 1H 

COSY 

HSQC

phenylacetic	acid 8 1 1 0 1 0 4 7 0.9
methylsuccinic	acid 5 1 1 1 0 1 0 4 0.8

trans-aconitic	acid 6 2 2 0 0 0 1 5 0.8
choline 5 1 1 0 0 0 1 3 0.6

L-carnitine 7 1 1 0 0 0 1 3 0.4
dimethylglycine 4 1 1 0 0 0 1 3 0.8

N,N,N-trimethylglycine,	betaine 5 1 1 0 0 0 1 3 0.6
N-propionylglycine 5 1 1 1 0 1 0 4 0.8
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aconitic acid, in addition to the 1D 
1
H NMR chemical shift, multiplicity and HSQC information, a 

long-range, 4-bond COSY was observed between the olefin and methylene protons, both of which 

displayed characteristic 0.8 Hz couplings on resolution enhancement of the spectra. Reprocessing the 

reference NMR data in HMDB (HMDB00958) with resolution enhancement reveals couplings of ca 

0.7 and 0.8 Hz on the methylene and olefin signals respectively, in agreement, so this metabolite is 

considered confidently identified. For choline, in addition to the 1D 
1
H NMR chemical shift, 

multiplicity and HSQC information, cross-methyl, and N-C carbon to methyl proton HMBC peaks 

were observed. Remarkably, due to the quasi-symmetrical environment of the quadrupolar nitrogen-

14 atom, resolution enhancement of the methyl signal revealed a small 
2
JNH of ca 0.6 Hz (triplet 

1:1:1) which is diagnostic and also present on reprocessing the HMDB reference spectrum with 

resolution enhancement (HMDB00097). This identification is thus considered confident. For L-

carnitine, in addition to the proton chemical shift and multiplicity of the methyl group, an HSQC 

cross-peak to the methyl carbon was observed, together with HMBC cross-peaks from the methyl 

carbon and the N-CH2 carbon to the methyl protons. This metabolite is considered putatively 

annotated however, as none of the metabolite identification information covers the carboxylic acid 

portion of the molecule (see Guideline 3 in Section 3.5 above). For dimethylglycine, in addition to 

the 1D 
1
H NMR chemical shift, multiplicity and HSQC information, cross-methyl and N-C carbon to 

methyl HMBC peaks were observed, confirming the identification of this metabolite. For betaine, in 

addition to the 1D 
1
H NMR chemical shift, multiplicity and HSQC information, cross-methyl, and 

N-C carbon to methyl proton HMBC peaks were observed, confirming the identification. For N-

propionylglycine however, no further information was available and thus, this metabolite should be 

described as putatively annotated also. 

 

In summary for 13 metabolites with actual MIE scores of < 0.5 and/or actual MICE scores of < 1.0 

based on the combined experimental 1D 
1
H plus COSY and HSQC NMR data, a total of three 

metabolites were classed as putatively annotated: the rest were confidently identified. Thus, even 

with relatively low MIE or MICE scores, it is still possible to confidently identify a very large 

number of metabolites, as long as additional, high quality 1D and 2D NMR data is available. 

 

4. Conclusions 

 

This work represents a novel, more quantitative approach to the issue of confidence in metabolite 

identification. The spectroscopic information content of the 1D and 2D 
1
H NMR spectra of 

metabolites has been investigated from a metabolite identification perspective for the first time. New 

theoretical and experimental measures of metabolite identification efficiency have been delineated: 

the metabolite identification efficiency (MIE), the metabolite identification carbon efficiency 

(MICE) and the metabolite identification hydrogen fraction (MIHF). These are expected to be useful 

in helping to establish the confidence of metabolite identifications in future 

metabonomics/metabolomics studies.   

 

The main recommendation emerging from this work is that the requirement for comparison with an 

authentic reference standard for confident metabolite identification is unnecessary for NMR-based 

metabolite identifications as long as the 7 recommendations for metabolite identification confidence 

below are acted upon (see also Section 3.5). Metabolites can be confidently identified by comparison 

with data in online databases such as HMDB.[31] Examples have been given of confident 

identifications of metabolites with high, average and relatively low MIE/MICE values, using data at 

the level of 1D 
1
H plus 2D COSY and HSQC data. Metabolites with low MIE/MICE values will 

need corroboration with other data. In the case of experiments run at the level of 1D 
1
H plus 2D 

COSY and HSQC data, this may be HMBC or long-range coupling data, for example. 
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The 7 recommendations for confident identification of known metabolites based on comparison with 

the NMR spectra of those metabolites in reference databases such as HMDB that emerged from this 

work (see Section 3.4 above for more details) are: 

1. the experimental metabolite identification carbon efficiency (MICE) obtained in the 

experiments ideally should be > 1, or the or the metabolite identification efficiency (MIE) > 

0.5: these are guidelines, not absolute numbers, and are for approaches using 1D 
1
H plus 2D 

COSY and HSQC data 

2. the fit of the experimental data to reference data should be precise, generally within ± 0.03 

ppm for 
1
H, and ± 0.5 ppm for 

13
C NMR shifts and ± 0.2 Hz for proton couplings: the 

database entries should be double-checked for self-consistency, accuracy and agreement with 

other literature, including by downloading of actual free induction decay data (HMDB) 

3. the NMR spectral data should provide ‘coverage’ of all parts of the molecule 

4. the signal-to-noise ratio and the resolution (actual and digital) in the spectra should be 

sufficient to measure the signal features with confidence 

5. care should be applied when assigning signals in crowded spectral regions   

6. HSQC data is important in metabolite identification, as it provides an excellent orthogonal 

data source via the 
13

C NMR chemical shift 

7. HMBC data should be used wherever possible to corroborate identifications 

 

A further recommendation from this work is that metabonomics/metabolomics researchers publish 

more detail on the spectroscopic data on which they are basing their metabolite identifications. This 

additional information could include the MIE or MICE values for each of the metabolites identified. 

Confidence in metabolite identification is critical for any subsequent biochemical or biological 

interpretation of the data. 

 

Thus, in summary, as long as the 7 recommendations above are acted upon, confident identifications 

of known metabolites can be made by reference to on-line databases such as the Human Metabolome 

Database (HMDB). Out of 75 known metabolites studied in this work, it is asserted that 72 of 75 

(96%) are confidently identified and only 3 metabolites (4%) fell into the putatively annotated 

category. 

 

One of the reasons for being less conservative in the identification of known metabolites using NMR 

spectroscopic methods is that NMR technology is stable and reproducible. Having an excellent 

resource like the HMDB[31] available, that not only provides access to information on the NMR 

spectra of the metabolites in both 1D and 2D forms, but also enables access to the raw free induction 

decay data, is equivalent in many cases to having access to an authentic reference standard for direct 

comparisons. However, as always, the researcher needs to double-check all database entries for 

coherence and accuracy: errors in the databases do occur. 

 

It is hoped that this work provides a new paradigm for NMR-based metabolite identification of 

known metabolites. It is expected that other researchers will investigate and test the methodology and 

no doubt develop it further. However, it is hoped and expected that the provision of a metabolite 

identification confidence index such as MIE or MICE will help solve the current issue of confidence 

in metabolite identification. Finally, it should be noted that the ideas herein are equally applicable to 

mass spectrometry, and to other analytical techniques, and should have broad utility. 
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6. Appendices 

 

6.1 Glossary of Terms 

term meaning 

1D one-dimensional 

2D two-dimensional 

CAWG Chemical Analysis Working Group 

CE-MS capillary electrophoresis mass spectrometry 

COSY COrrelated SpectroscopY 

δH hydrogen-1 or proton NMR chemical shift 

δC carbon-13 NMR chemical shift 

GC-MS gas chromatography mass spectrometry 

HMBC heteronuclear multiple bond correlation spectroscopy 

HMDB Human Metabolome Database 

HSQC heteronuclear single quantum correlation spectroscopy 

ID identification 
3
JH,H three-bond spin-spin coupling between two hydrogens 

JRES J-resolved spectroscopy 

LC-MS liquid chromatography mass spectrometry 

MIE metabolite identification efficiency 

MICE metabolite identification carbon efficiency 

MS mass spectrometry 

MSI Metabolomics Standards Initiative 

NOESY nuclear Overhauser spectroscopy 

NMR nuclear magnetic resonance 

TOCSY TOtal Correlation SpectroscopY 

TSP sodium 3-(trimethylsilyl) propionate-2, 2, 3, 3-d4 

UPLC-MS ultra-performance liquid chromatography mass spectrometry 
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