
Towards Automated Distributed Containment of 

Zero-day Network Worms 

Khurram Shahzad and Steve Woodhead 

Internet Security Research Laboratory 

Department of Electrical and Computer Engineering  

University of Greenwich 

London, UK 

ws01, sk81@gre.ac.uk 

 

 
Abstract— Worms are a serious potential threat to computer 

network security. The high potential speed of propagation of 

worms and their ability to self-replicate make them highly 

infectious.  Zero-day worms represent a particularly challenging 

class of such malware, with the cost of a single worm outbreak 

estimated to be as high as US$2.6Billion.  In this paper, we 

present a distributed automated worm detection and 

containment scheme that is based on the correlation of Domain 

Name System (DNS) queries and the destination IP address of 

outgoing TCP SYN and UDP datagrams leaving the network 

boundary.  The proposed countermeasure scheme also utilizes 

cooperation between different communicating scheme members 

using a custom protocol, which we term Friends.  The absence of 

a DNS lookup action prior to an outgoing TCP SYN or UDP 

datagram to a new destination IP addresses is used as a 

behavioral signature for a rate limiting mechanism while the 

Friends protocol spreads reports of the event to potentially 

vulnerable uninfected  peer networks within the scheme. To our 

knowledge, this is the first implementation of such a scheme. We 

conducted empirical experiments across six class C networks by 

using a Slammer-like pseudo-worm to evaluate the performance 

of the proposed scheme. The results show a significant reduction 

in the worm infection, when the countermeasure scheme is 

invoked. 

Keywords—malware, countermeasure, network worm, rate 

limiting 

I. INTRODUCTION 

Since the spread of the Morris worm in 1988 [1], computer 
network worms have become a persistent problem for internet 
users.  Melissa, Code Red, Blaster, SQL Slammer, Conficker 
etc. did considerable damage to the internet community.  SQL 
Slammer is considered to be the fastest random scanning worm 
in history as its infected population doubled in size every 8.5 
seconds with 90 % of vulnerable machines infected within 10 
minutes [2].  This worm achieved its full aggregate scanning 
rate, of over 55 million scans per second, only 3 minutes after 
it was released. It did not contain any malicious payload but 
the amount of traffic it generated, halted small parts of the 
internet for several hours. Flash, metamorphic and 
polymorphic worms are evolving categories of network worms 
considered a serious threat to the internet.   

Staniford et al. [3] hypothesized in 2004 the top speed of a 
properly configured flash worm.  They predicted that a UDP 

worm could saturate 95% of one million vulnerable hosts on 
the internet in 510 milliseconds.  Today a worm can spread 
much more quickly than in 2004 due to the continuing increase 
in internet bandwidth.  Due to the high speed and zero-day 
nature of many worms, traditional intrusion detection methods 
(i.e. generation and deployment of attack signatures) are 
ineffective [4].  These countermeasures also lack the ability to 
propagate malware warnings to uninfected sites in timely 
manner. Hence, in order to effect automatic detection and 
containment of zero-day worms, a rapid, accurate and 
distributed worm detection method is required.  

In this paper, we report the design of a worm detection and 
containment scheme, which we then implemented as a proof-
of-concept in C.  The scheme can be deployed on the routers of 
enterprise networks.  It uses the absence of a DNS lookup, 
prior to an outgoing TCP SYN or UDP datagram to a new 
destination IP address, as a behavioural signature to detect 
worm scanning activity.  Upon detection of such behaviour, the 
scheme blocks further traffic from the originating host and 
sends an alert message using the Friends protocol to peer 
routers which belong to the scheme. To our knowledge, this is 
the first implementation of a hybrid worm detection and 
containment mechanism, based on a combination of resource 
limiting and leap ahead solutions.  

The remainder of this paper is presented as follows: Section 
II discusses previously reported work on worm detection and 
prevention mechanisms and section III presents the basic 
methodology we employed for developing the reported 
countermeasure scheme. Section IV describes the high level 
system design. Section V describes the empirical evaluation of 
the prototype using the Slammer-like pseudo-worm. Section VI 
presents the experimental results while Section VII presents 
some analysis of the results.  Section VIII concludes the paper 
and presents some possible future work directions.  

II. RELATED WORK 

Researchers have proposed various techniques for worm 
detection, mitigation and containment.  For the purposes of this 
paper, we have chosen to adopt the classifications used by 
Porras et al [5]: 

 Resourse limiting (RL) solutions; 

 Leap ahead (LA) solutions; 

 Predesigned-preventative (PP) solutions; 



 Automatic signature generation (ASG) solutions; 

 Mobile combat (MC) solutions. 
 

A. Resource limiting solutions 

RL solutions explore ways in which systems may delay 
worm propagation through the limiting of resources that fast 
worms are known to consume at high rates.  Williamson [6] 
suggests that rate limiting the volume of outbound connections 
from a host to new machines can achieve a significant 
reduction in infection rate, without significantly hindering 
normal communications.  Chen et al. [7] proposed another rate 
limiting scheme based on the assumption that a host infected 
by a scanning worm will generate a large number of failed TCP 
connection requests.  Their scheme, which is implemented on 
the network router, attempts to rate limit outgoing datagrams 
from hosts that exhibits such behavior. Schechter et al [8], 
refined the outbound connection rate limiting concept. The 
scheme in [8] differs from that in [7] in two ways. First, it 
performs rate limiting exclusively on first contact outgoing 
connections for destination IP addresses that have not been 
visited previously.  Second, it analyses both failed and 
successful TCP connection statistics.  Gualtieri and Mosse [9] 
have proposed a scheme that dynamically calculates outbound 
connection rate limits on a per process basis.  Ganger et al. [10] 
proposed that the analysis of network connections not 
facilitated through DNS lookups provide a relevant signature 
for identifying potential worm traffic.  Wong et al. [11] 
explored the application of connection rate limiting to 
backbone routers by using the absence of DNS lookup 
statistics, suggesting that the throttling of IP-to-IP connection 
at the edge offers propagation reduction.  The main advantages 
of RL solutions   are their simplicity and ease of deployment 
but they are prone to a high rate of false positives as well as 
limited in terms of spreading malware threat warnings to 
uninfected hosts and networks.  

B. Leap ahead solutions 

LA solutions seek to spread malware warnings to network 
segments not yet affected.  These strategies share cooperative 
information either hierarchically or using peer to peer based 
models. For example, Nojiri et. al. [12] proposed a cooperative 
alert sharing scheme using a “Friends protocol”.  Anagnostakis 
et. al. [13] proposed a variation of the LA scheme called 
Coverage, in which a node randomly selects a set of remote 
nodes to poll for worm reports at periodic intervals. The LA 
concept is effective in spreading malware warnings to 
uninfected network segments, but these solutions are limited in 
terms of their implementation in current networks.  

C. Predesignated-preventative solutions 

PP solutions are considered to be those approaches which 
are designed to disrupt the discovery of susceptible nodes 
within an address space, potentially by dynamically altering the 
connectivity of networks or end nodes in the presence of worm 
propagation. Briesemeister et al. [14] discussed the idea of 
percolation theory or epidemic spread in artificial scale-free 
networks to suggest how networks could be designed to delay 
the spread of propagating malware while still maintaining high 
reliability of network links.  Gorman et al. [15] studied the use 
of scale-free properties within the autonomous system (AS) 

map of the internet, and proposed that the concentration of 
worm filtering services on the nodes with the highest 
connection density would yield the greatest benefit.  Antonatos 
et.al. [16] proposed the concept of network address space 
randomization (NASR)  against hit list worms which suggests 
frequently changing the IP addresses of hosts. Provos [17] 
suggested the placement of honeypot devices in a network that 
engage in slow connection dialogs as a method to dramatically 
slowing an aggressive worm’s ability to discover susceptible 
hosts within an address space. Riordan et al. [18] proposed a 
honeypot worm detection system which they term Billy Goat 
which is widely deployed throughout IBM.   

D. Automatic signature generation solutions 

ASG solutions refer to approaches which filter incoming 
traffic to a network and generate signatures on detecting 
anomalous activity (such as a network worm). For example; 
Kim et al. [19] proposed a system that they named Autograph 
that automatically generates signatures for Bro or Snort for 
novel internet worms that propagate using TCP transport. 
Singh et al. [20] proposed an automated worm fingerprinting 
mechanism which they named Earlybird. Earlybird detects 
previously unknown worms and viruses based on two key 
behavioral characteristics: a common exploit sequence together 
with a range of unique sources generating infections and 
destinations being targeted.  Although ASG solutions provide 
effective methods of worm detection, these solutions are prone 
to false positives and do not effectively spread malware 
warnings to uninfected networks. 

E. Mobile combat solutions 

MC solutions refer to approaches which involve an active 
strategy of interception and rapid patching. These techniques 
eliminate propagating malware by distributing a mobile self-
replicating code module that searches out for signs of a 
malicious resident code and vaccinates infected machines. For 
example, Toyozumi and Kara [21] presented an analysis of a 
predatory vaccination application called Predator. They 
employed the biologically inspired Lotka-Volterra equation 
[22] to model the interaction of the predator-prey relationship 
between the malicious code and mobile predator vaccination, 
with the goal of minimizing the number of predators required 
to eliminate the malware threat.  Although MC solutions 
present an effective approach for worm detection and patching, 
these approaches are not effective in terms of fast spreading 
worms.  

F. Related work summary 

Although, all of the above solutions provide 
countermeasures against network worms, none of these 
solutions provides an effective and efficient approach for zero 
day worm detection and containment in a disturbed 
environment. Hence a disturbed, automated worm detection, 
prevention and containment solution is required that will be 
effective against fast zero days worms.    

III. BASIC METHODOLOGY AND APPROACH 

The DNS is a globally distributed database that provides an 
IP address to domain name mapping.  Almost all network 
traffic leaving a workstation host for another internet host, with 
which it has not recently communicated, requires a DNS 



lookup. It is quite usual for network segments to be logically or 
physically separated in an enterprise network. Whyte et al. [23] 
divides the network into cells. According to Whyte et al. [23], 
the traffic generated by the propagation of fast scanning worms 
can be considered under the following three classifications: 
local to local (L2L), local to remote (L2R), and remote to local 
(R2L). In L2L, scanning worms target hosts within the 
boundaries of the enterprise network in which the source host 
resides. Topological worms employ this method to propagate.  
L2R refers to a scanning worm whose source host is within an 
enterprise network but which is targeting the whole internet. 
While in R2L propagation, scanning worms target hosts within 
an enterprise network from elsewhere within the internet. In 
this paper, our worm detection and containment scheme, 
detects the L2R propagation of worms, and alerts other peer 
networks using the Friends protocol in internal and external 
networks, of the detected worm event.  

Ganger et. al. [10] first proposed the lack of a DNS lookup 
from a host as a tell-tale sign of worm scanning activity.  In the 
case of a worm infection like Slammer [2], an infected host 
tries to send as many UDP datagrams as it can, in a short 
interval of time, without making any DNS requests. Our 
proposed scheme uses this behavioural signature as an 
indicator of scanning worm activity. Fig. 1 shows the 
placement of the elements of our resource limiting plus look 
ahead (RL+LA) scheme in an enterprise network. The RL+LA 
prototype is deployed on the internal network gateways and on 
the DMZ gateway to implement rate limiting and send internal 
Friends messages and on the border gateway of network in 
order to send Friends messages to external Friends peers on the 
internet.  Each host in any network cell is allowed to send up to 
N outbound TCP SYN or UDP datagrams without a 
corresponding DNS lookup in a unit interval of time.  If a host 
sends more than a threshold value, N, outbound UDP 
datagrams without appropriate DNS lookups in a specified 
time interval, the RL+LA implementation flags this as a worm 
infection indicator, use iptables to block further datagrams 
from the host from exiting the network cell, reduces the 
threshold to N/2 and sends an alert message to internal and 
external peers using the Friends protocol.  On receipt of such a 
message, each peer will reduce its detection threshold to N/2. 

IV. RL+LA SYSTEM DESIGN 

Our RL+LA proof-of-concept implementation is coded in 
the C programming language.  It uses the libpcap [24] library 
(for traffic capture) and the libpjlib [25] library (for parsing 
incoming DNS replies).  Fig. 2 shows the flowchart of the 
RL+LA algorithm.  For any TCP SYN or UDP datagram 
leaving the network, RL+LA looks for a corresponding DNS 
lookup in table A of Fig. 2, in the absence of a corresponding 
entry, it adds the source IP address to table B of Fig. 2 and 
increments the count value.   The result of all DNS lookups 
along with the corresponding source and destination IP 
addresses is saved in table A.  Table A serves as a DNS cache 
for all of the external hosts accessed by a host inside the 
network cell.  Different threshold values can be defined for 
different networks, depending on the nature of the typical 
traffic of that network.  .  Another time interval, k, is defined in 
table B to decrement the values in table B. The higher the rate  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Experimental Test Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flow Chart for Prototype RL+LA Algorithm 

External Friend2 Internal Network

                                      Cell1

External Friend1-Internal Network

                                      Cell1

DMZ

Cell4

University of Greenwich  Internet Security Research Laboratory (UoG-ISRL) Internal Network

Cell3Cell2Cell1

 Friends messages to External Friends 

Network:192.168.4.0/24 Network:192.168.5.0/24

Network:192.168.3.0/24

Network:192.168.2.0/24Network:192.168.1.0/24Network:192.168.0.0/24

RL + LA 

Protoype

Friends Protocol Messages

   DNS Server

   DNS Server

Friends Protocol 

Messages
Friends Protocol 

Messages

   DNS Server    DNS Server

Router A Router B Router C

Router D
BG:UoG-ISRL

BG:Ext Friend1 BG:Ext Friend2

Router F

RL + LA 

Protoype

RL + LA 

Protoype

RL + LA 

Protoype

RL + LA 

Protoype

RL + LA 

Protoype

RL + LA 

Protoype

RL + LA 

Protoype

RL + LA 

Protoype

Router E

 

Table A:
Network DNS Cache

Incoming data

Router with iptables
and RL+LA

prototype installed
Look up 

source and destination
IPs in Table A:  If there is a
hit, do nothing.  If no hit, 

increment element
in table B 

Decrement
all counters once per

K seconds

If any counter 
in Table B exceeds N,

 update iptables to block source
 IP and notify Friends

Outgoing
datagram
headers

Inbound DNS
lookup results

Table B:
Counters

 



of decrementing the values in table B, the lower the probability 
of a false positive being triggered.  It should also be noted that 
some legitimate network services generate UDP datagrams 
without a preceding DNS lookup, such as the DNS service 
itself, which obtains the IP address of the DNS servers by other 
means at boot time.  In order to address this situation, a small 
number of destination IP addresses are whitelisted in the   
system, such as those for the primary and secondary DNS 
servers, and other can be added. 

  Once the threshold value is reached in table B the RL+LA 
application blocks outgoing traffic from the offending host 
using iptables, reduces N to N/2 and sends an alert message 
using the Friends protocol to internal peer routers and to the 
border gateway, which in turn forwards the alert to external 
peers in the scheme, again using the Friends protocol.  Each 
alert message contains the router user name, a predefined 
password, and a command to half the threshold value in table 
B. 

V. PROTOTYPE EVALUATION  

A. Network Architucture 

To validate our RL+LA prototype, we set up a test bed 
consisting of six fully routable class C networks (192.168.0.0 
to 192.168.5.0) as shown in Fig. 1.  This test bed was 
implemented using virtualized hosts, with the underlying 
hardware consisting of an i7 based host with 24 GB of RAM 
for each class C network and a number of other hosts to 
implement the routers, etc. Each i7 host had VMware Exsi 
installed as its host operating systems.  The gateway for each 
network ran a Linux 2.6 kernel along with iptables, the Quagga 
routing package [26] and the RL+LA software. Each i7 host 
ran 254 virtual machines, each running a Linux 2.6 kernel. The 
gateways of networks 192.168.0.0/24, 192.168.1.0/24, 
192.168.2.0/24 and 192.168.168.3.0/24 ran RIP as routing 
protocol.   Border gateway protocol (BGP) was configured 
between these routers. Border router BG:UoG-ISRL 
(172.16.0.1/24) contains lists of external  scheme peers (in this 
case BG-Ext Friend1 (172.16.1.1/24) and BG-Ext Friend2 
(172.16.2.1/24)).  Routers A, B, C and D exchange Friends 
protocol alert messages directly whereas BG-ISRL forwards 
alert messages to external scheme peers. We have selected a 
test bed with 6 class C network for performing the experiment 
due to limitation of resources. 

B. Slammer-like Pseudo-worm Software 

In order to test the functionality of our prototype, we have 
developed a network daemon which implements a Slammer-
like pseudo-worm. The daemon listens on UDP port 1434 and 
upon receiving a datagram with an appropriate authentication 
string (included for safety reasons), it begins generating UDP 
datagrams addressed to port 1434 and to random IP addresses. 
The number of UDP datagrams generated, the speed of 
datagram generation per second and the pool from which the 
random destination IP addresses are chosen are configurable 
parameters.  We have also implemented a logging server in the 
C programming language. At the point of “infection”, the 
pseudo-worm daemon sends an infected time message to the 
logging server. All hosts in our test network are time-
synchronized by using a single NTP server.  

VI. EXPERIMENTAL RESULTS  

We conducted nine empirical experiments using the test 
network and tools described.  These experiments have 
investigated the effect of two key variables: 

 The proportion of hosts in the network, which are 
vulnerable to infection (ie are running the pseudo-
worm daemon).  We have tested values of 25, 20 and 
15%. These population values are selected to 
investigate the effectiveness of the RL+LA scheme as 
an initial proof-of-concept on the scale of a typical 
medium-sized enterprise.  

 The level of countermeasure implemented.  We have 
conducted tests with no countermeasure (i.e. to 
provide a base-line), with only the local rate limiting 
from infected hosts, and finally with both rate limiting 
and the alerting protocol implemented. 

For all nine tests, N was set to 15 datagrams in 5 seconds, 
and the counter in table B of Fig. 2 was decremented every 30s 
(i.e. K was set to 30s).  These values were selected as a 
compromise between achieving maximum countermeasure 
effects while minimizing false positives. Each experiment was 
started by infecting the host at ip address 192.168.0.10. 

 Each worm infected host is capable of generating 10 UDP 
datagrams in 2.5 seconds, choosing destination IP addresses in 
the pool of the 6 class C networks (192.168.0.0/24 to 192.168. 
5.0/24). These pseudo-worm parameters were selected due to 
the size of the networks and the capability of the logging 
instruments (i.e. the logging server) to record measurements.  
Fig. 3 shows the results of experiments one to three, conducted 
with 25 % vulnerable hosts.  Without any protection 
mechanism in place, all vulnerable hosts are infected within 
approximately 18 seconds. In the second experiment, with rate 
limiting only as the countermeasure (no alert messages 
between peers), 91 % (349) of vulnerable hosts are infected 
within approximately 17 seconds.  In the third experiment, rate 
limiting was implemented with alert messages and 63 % (242) 
of vulnerable hosts were infected, again in around 17 seconds.  

Fig. 4 shows the results of experiments four to six 
conducted with 20 % of hosts vulnerable.  In this case, without 
any countermeasures in place, all vulnerable hosts are infected 
within around 18 seconds. In the second experiment, with rate 
limiting only as the countermeasure (no alert messages 

 

 

 

 

 

 

 

 

Fig. 3. Experimental Results with 25% of Hosts Vulnerable to Infection 

 
0 2 4 6 8 10 12 14 16 18 20

0

50

100

150

200

250

300

350

400

Time (secs)

N
u

m
b

e
r 

o
f 
In

fe
c
te

d
 H

o
s
ts

 i
n

 S
ix

 C
la

s
s
 C

 N
e

tw
o

rk
s

Number of Infected Hosts Against Time for 25% Hosts Vulnerable

 

 

No Countermeasure

With Rate Limiting Countermeasure Only

With Rate Limiting and Look-Ahead Countermeasures



 

 

 

 

 

 

 

 

Fig. 4. Experimental Results with 20% of Hosts Vulnerable to Infection 

between peers), 88 % (271) of vulnerable hosts were infected 
in approximately 20 seconds.  In the third experiment, again, 
rate limiting was implemented with alert messages and, 60% 
(185) of vulnerable hosts were infected in around 20 seconds.  

 Fig. 5 shows the results of the experiments seven to nine, 
conducted with 15 % of the network hosts vulnerable to 
infection.  Without any countermeasure in place, all vulnerable 
hosts (231 hosts) were infected within approximately 17 
seconds.  In the second experiment, with rate limiting only as 
the countermeasure (no alert messages between peers), 87.5 % 
(271) vulnerable hosts were infected in approximately 17 
seconds.  In the third experiment, again, rate limiting was 
implemented with alert messages and 56.5 % (131) of 
vulnerable hosts were infected.  

VII. ANALYSIS  

Across all nine experiments, it can be seen that the RL 
countermeasure alone reduces the speed of propagation of the 
worm as well as the number of hosts ultimately infected.  
When the RL+LA countermeasure is employed, the speed of 
propagating and the number of hosts infected are further 
reduced.    In the best case scenario (15% of hosts vulnerable to 
infection) the number of hosts ultimately infected is 57% of 
those vulnerable to the worm.  This figure reduces with the 
percentage of hosts which are vulnerable. 

In order to further quantify the effectiveness of the 
countermeasures, we employed the susceptible-infected SI 
model [27], widely used to characterize the epidemiology of 
biological infections and proposed by Tidy et al [28,29] and 
Xiang et al [30] for similar use in characterizing the 
epidemiology of malware infections.  The basis of this model is  

 

 

 

 

 

 

 

 

Fig. 5. Experimental Results with 15% of Hosts Vulnerable to Infection 

set out in Eqn 1, where I represents the number of infected 
hosts at time, t, N represents the total population size and β 
represents the contact coefficient.  The particular solution to 
Eqn 1 is set out in Eqn 2, where I0 represents the number of 
infected hosts at time t = 0.   Fig. 6 plots the best fit SI model 
curve against the experimental data set for experiment one 
(25% hosts vulnerable and no countermeasure), showing the 
Pearson’s correlation  coefficient [31], r, as well as the value of 
β for the SI model.  Figure 7 plots the SI model curve against 
the data from experiment three.   

 

                    
𝑑𝐼

𝑑𝑡
=  𝛽. 𝐼. [𝑁 − 𝐼]                    

 

(1) 

 

          𝐼(𝑡) =
𝐼0

𝐼0 + [𝑁 −  𝐼0]. 𝑒−𝑁𝛽𝑡 
    

 

(2) 

 

Similar curves were fitted to each of the nine experimental data 
sets, and the resulting values are set out in Table I, with the 
relevant values of β plotted in Fig. 8. 

From the data shown in Table I it can be seen that for each 
value of susceptible hosts tested, the value of β reduces, as first 
the RA, and then the RL+LA countermeasures are 
implemented.  It is also worthy of note that the value of the 
correlation coefficient generally falls, as the countermeasures 
are implemented, indicating that the ability of the SI model to 
represent the experimental data reduces, as the 
countermeasures are invoked. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. SI Model Curve Fit for Experiment One Data  

 

 

 

 

 

 

 

Fig. 7. SI Model Curve Fit for Experiment Three Data  

 
0 2 4 6 8 10 12 14 16 18 20 22

0

50

100

150

200

250

300

350

Time (secs)

N
u

m
b

e
r 

o
f 
In

fe
c
te

d
 H

o
s
ts

 i
n

 S
ix

 C
la

s
s
 C

 N
e

tw
o

rk
s

Number of Infected Hosts Against Time for 20% Hosts Vulnerable

 

 

No Countermeasure

With Rate Limiting Countermeasure Only

With Rate Limiting and Look-Ahead Countermeasures

 
0 2 4 6 8 10 12 14 16 18 20

0

50

100

150

200

250

Time (secs)

N
u

m
b

e
r 

o
f 
In

fe
c
te

d
 H

o
s
ts

 i
n

 S
ix

 C
la

s
s
 C

 N
e

tw
o

rk
s

Number of Infected Hosts Against Time for 15% Hosts Vulnerable

 

 

No Countermeasure

With Rate Limiting Countermeasure Only

With Rate Limiting and Look-Ahead Countermeasures

 
0 2 4 6 8 10 12 14 16 18 20

0

50

100

150

200

250

300

350

400

Time (secs)

N
u

m
b

e
r 

o
f 
In

fe
c
te

d
 H

o
s
ts

 i
n

 S
ix

 C
la

s
s
 C

 N
e

tw
o

rk
s

Number of Infected Hosts Against Time for 25% Hosts Vulnerable no Countermeasure Employed

r = 0.99898

 = 0.506

 

 

Empirical Data

Susceptible-Infected Model

 
0 2 4 6 8 10 12 14 16 18 20

0

50

100

150

200

250

300

350

400

Time (secs)

N
u

m
b

e
r 

o
f 
In

fe
c
te

d
 H

o
s
ts

 i
n

 S
ix

 C
la

s
s
 C

 N
e

tw
o

rk
s

Number of Infected Hosts Against Time for 25% Hosts Vulnerable with RL + LA Countermeasure

r = 0.9763

 = 0.356

 

 

Empirical Data

Susceptible-Infected Model



TABLE I.  ANALYSIS SUMMARY 

Results for Tests 1 to 9 

Test Number 
Percentage of 

hosts susceptible 

Counter-

measure 
β r 

1 25 None 0.51 0.999 

2 25 RL 0.42 0.998 

3 25 RL+LA 0.36 0.976 

4 20 None 0.45 0.999 

5 20 RL 0.33 0.997 

6 20 RL+LA 0.27 0.986 

7 15 None 0.44 0.999 

8 15 RL 0.34 0.994 

9 15 RL+LA 0.31 0.993 

  
 

 

 

 

 

 

 

 

 

Fig. 8.  SI Model Contact Coefficient Values for Each of the Nine Experiments  

VIII. CONCLUSIONS AND FUTURE WORK  

This paper presents a detection and containment scheme for 
fast scanning zero-day worms which implements a resource 
limiting approach based on the lack of DNS lookups along 
with a Friends protocol to provide leap-ahead functionality. We 
have developed a fully functional scheme prototype and 
deployed this on Linux platforms along with open source 
routers. Our experimental results show that the proposed 
scheme reduces the virulence of the tested scanning worm. 

In terms of future work, DNS-lookup based detection is, 
itself, prone to compromise. One issue with the DNS based rate 
limiting mechanism is that an attacker can set up a fake 
external DNS server and issue a DNS query for each IP 
address, although adding this functionality to the worm code 
would significantly slow the scanning rate of the worm, as well 
as increasing the worm packet size.  We shall, therefore be 
looking at ways in which such compromise can be mitigated.  
We shall also be exploring a wider range of variables (such as 
the % of vulnerable hosts) and will be investigating other 
behavioral signatures which can be used to detect fast scanning 
worms.  Finally we hope to explore the performance of the 
proposed scheme for a small range of other worm types, and in 
the presence of a range of types of background traffic. 

 

 

REFERENCES 

[1] T. M. Chen and J.-M. Robert, “Worm epidemics in high-speed 
networks” in IEEE Computer 37, ppp 48–53, June 2004. 

[2] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, S and N. 
Weaver, “Inside the Slammer worm”, IEEE Security and Privacy 1, 4, 
July 2003. 

[3] S. Staniford, D. Moore, V. Paxson, and N.Weaver, “The top speed of 
flash worms”, in Proceedings of the 2nd ACM Workshop on Rapid 
Malcode (WORM), October 2004. 

[4] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Internet quarantine: 
Requirements for containing self-propagating code” in Proceedings of 
the 2003 IEEE Infocom Conference, San Francisco, CA, April 2003. 

[5] P. Porras, L. Briesemeister, K. Levitt, J. Rowe, and Y.-C. A. Ting, “A 
hybrid quarantine defense”. In Proceedings of the 2nd ACM Workshop 
on Rapid Malcode (WORM), pages 73-82, October 2004. 

[6] M. M. Williamson, “Throttling viruses: Restricting propagation to defeat 
malicious mobile code”, ACSAC, December 2002. 

[7] S. Chen and Y. Tang, “Slowing down internet worms”, in Proceedings 
of the 24th International Conference on Distributed Computing and 
Systems (ICDCS ’2004), Tokyo, Japan, March 2004. 

[8] S. Schechter, J. Jung and A. Berger, “Fast detection of scanning worm 
infections”, in Seventh International Symposium on Recent Advances in 
Intrusion Detection (RAID), Sophia Antipolois, France, September 
2004. 

[9] M. Gualtieri and D. Mosse, “Limiting worms via QoS degradation” 
University of Pittsburgh, 2003. 

[10] G. Ganger, G. Economou and S. Bielski, “Self-securing network 
interfaces: what, why, and how,” Carnegie Mellon University Technical 
Report, CMU-CS-02-144, August 2002. 

[11] C. Wong, S. Bielski, A. Studer, C. Wang, “Empirical analysis of rate 
limiting mechanisms”. In Recent Advances In Intrusion Detection 
(RAID), Seattle, WA, September 2005. 

[12] D. Nojiri, J. Rowe and K. Levitt, “Cooperative response strategies for 
large scale attack mitigation,” in Proceedings of the 3rd DARPA 
Information Survivability Conference and Exposition, April 2003. 

[13] K. Anagnostakis, M. Greenwald, S. Ioannidis, A. Keromytis and D. Li, 
“A cooperative immunization system for an untrusting internet,” in 
Proceedings of the 11th IEEE International Conference on Networks 
(ICON), Sydney, Australia, September 2003. 

[14] L. Briesemeister, P. Lincoln and P. Porras. “Epidemic profiles and 
defense of scale-free networks,” in Proceedings of the ACM Workshop 
on Rapid Malcode, Washington, DC, October 2003. 

[15] S. Gorman, R. Kulkarni, L. Schintler and R. Stough, “Least effort 
strategies for cybersecurity,” Technical Report, George Mason 
University, 2003. 

[16] S. Antonatos, P. Akritidis, E. P. Markatos and K. G. Anagnostakis, 
“Defending against hitlist worms using network address space 
randomization”, in Proceedings of the 2005 ACM Workshop on Rapid 
Malcode (WORM), pages 30–40, 2005. 

[17] N. Provos, “A virtual honeypot framework,” in Proceedings of the 12th 
USENIX Security Symposium, San Diego, California, August 2004. 

[18] J. Riordan, D. Zamboni and Y. Duponchel, “Building and deploying 
billy goat, a worm detection system”, in Proceedings of the 18th Annual 
FIRST Conference, 2006. 

[19] H. Kim and B. Karp, “Autograph: Toward automated, distributed worm 
signature detection”, in Proceedings of 13th USENIX Security 
Symposium, August 2004. 

[20] S. Singh, C. Estan, G. Varghese and S. Savage. “Automated worm 
fingerprinting”, in Proceedings of the 6th ACM/USENIX Symposium 
on Operating System Design and Implementation (OSDI), December 
2004. 

[21] H. Toyozumi and A. Kara, “Predators: Good mobile code combat 
against computer viruses”, New Security Paradigms Workshop, Virginia 
Beach, Virginia, September 2002. 

[22] A.J. Lotka, Elements of physical biology, Williams & Wilkins Co, 1925. 

 

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Test Number

C
o

n
ta

c
t 
C

o
e

ff
ic

ie
n

t,
 

Contact Coefficient,  for Tests 1 to 9

1 = 25% hosts vuln., no c. measure

2 = 25% hosts vuln., RL only c. measure

3 = 25% hosts vuln., RL + LA c. measure

4 = 20% hosts vuln., no c. measure

5 = 20% hosts vuln., RL only c. measure

6 = 20% hosts vuln., RL + LA c. measure

7 = 15% hosts vuln., no c. measure

8 = 15% hosts vuln., RL only c. measure

9 = 15% hosts vuln., RL + LA c. measure



[23] D. Whyte, E. Kranakis and P. van Oorschot, “DNS-based detection of 
scanning worms in an enterprise network”. In Network and Distributed 
Systems Symposium (NDSS), 2005.  

[24] Tcpdump and libpcap public repository. http://www.tcpdump.org, 
accessed Feb 2014.  

[25] PJLIB Library. http://www.pjsip.org/pjlib/docs/html/, accessed Feb 
2014. 

[26] Quagga Router Suite. http://www.nongnu.org/quagga/, accessed Feb 
2014. 

[27] W. Kermack and A. McKendrick, “A contribution to the 
mathematicaltheory of epidemics,” in Proceedings of the Royal Society 
of London, vol. A, no 115, pp 700–721, 1927. 

[28] L. Tidy, “Investigation of zero-day worms with the aid of large-scale, 
high fidelity simulation”, PhD Thesis, University of Greenwich, 2014. 

[29] L. Tidy, S. Woodhead and J. Wetherall, “Simulation of zero-day worm 
epidemiology in the dynamic, hetrogeneous internet, in Journal of 
Defence Modelling and Simulation. Published on-line October 2013. 

[30] Y. Xiang, X. Fan and W Zhu, “Propagation of active worms: a survey” 
in Computer Systems: Science and Engineering, volume 4, number 3, 
2009.   

[31] K. Pearson, “Notes on regression and inheritence in the case of two 
parents, in Proceedings of the Royal Society of London, no 58, pp 240-
242, 1895. 

 

 

 


