Skip navigation

Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa

Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa

Sawadogo, Simon P., Costantini, Carlo, Pennetier, Cédric, Diabaté, Abdoulaye, Gibson, Gabriella and Dabiré, Roch K. (2013) Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasites & Vectors, 6 (1):275. ISSN 1756-3305 (Print), 1756-3305 (Online) (doi:10.1186/1756-3305-6-275)

[img]
Preview
PDF
12610_Gibson_Differences in timing of mating swarms (pub PDF OA) 2013.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (636kB) | Preview

Abstract

Background

The M and S molecular forms of Anopheles gambiae s.s. Giles appear to have speciated in West Africa and the M form is now formally named An. coluzzii Coetzee & Wilkerson sp.n. and the S form retains the nominotypical name (abbreviated here to An. gambiae). Reproductive isolation is thought to be the main barrier to hybridisation; even though both species are found in the same mating swarms, hybrid fertilisations in copulae have not been found in the study area. The aim of the study, therefore, was to determine whether differences in circadian and/or environmental control over the timing of swarming in the two species contribute to reproductive isolation.

Methods

The timing of male swarming in these species was recorded four nights per month over four years at five swarming sites in each of two villages. The timing of the start and end of swarming, and the concurrent environmental parameters, temperature, humidity and light intensity, were recorded for n = 20 swarms/month/species. The timing of 'spontaneous’ activity at dusk of individual An. coluzzii and An. gambiae males was video-recorded in an actograph outdoors for 21 nights.

Results

Of the environmental parameters considered, swarming was most strongly correlated with sunset (r2 > 0.946). Anopheles gambiae started and stopped swarming earlier than An. coluzzii (3:35 ± 0:68 min:sec and 4:51 ± 1:21, respectively), and the mean duration of swarming was 23:37 ± 0:33 for An. gambiae and 21:39 ± 0:33 for An. coluzzii. Accordingly, in principle, whenever both species swarm over the same marker, a mean of 15.3 ± 3.1% of An. gambiae swarming would occur before An. coluzzii males arrived, and 19.5 ± 4.55% of An. coluzzii swarming would occurred after An. gambiae males had stopped swarming. These results are consistent with the finding that An. gambiae males became active in the actograph 09:35 ± 00:22 min:sec earlier than An. coluzzii males.

Conclusions

The timing of swarming and spontaneous activity at dusk are primarily under circadian control, with the phase linked closely to sunset throughout the year. The mating activity of these two species is temporally segregated for 15-20% of the swarming period, which may contribute to the observed reproductive isolation of these species in local sympatric populations.

Item Type: Article
Additional Information: © Sawadogo et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License.
Uncontrolled Keywords: Activity rhythms, Actographs, Allochronic speciation, Behaviour, Circadian rhythms, Environmental factors, Mating swarms, Reproductive isolation, Anopheles coluzzii, Anopheles gambiae s.s
Subjects: Q Science > QH Natural history > QH301 Biology
Faculty / Department / Research Group: Faculty of Engineering & Science
Faculty of Engineering & Science > Natural Resources Institute
Faculty of Engineering & Science > Natural Resources Institute > Agriculture, Health & Environment Department
Faculty of Engineering & Science > Natural Resources Institute > Pest Behaviour Research Group
Last Modified: 18 Nov 2016 12:54
Selected for GREAT 2016: None
Selected for GREAT 2017: None
Selected for GREAT 2018: None
URI: http://gala.gre.ac.uk/id/eprint/12610

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics