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Abstract

When the neural element number n of neural networks is larger than the sample

size m, the overfitting problem arises since there are more parameters than ac-

tual data (more variable than constraints). In order to overcome the overfitting

problem, we propose to reduce the number of neural elements by using com-

pressed projection A which does not need to satisfy the condition of Restricted

Isometric Property (RIP). By applying probability inequalities and approxi-

mation properties of the feedforward neural networks (FNNs), we prove that

solving the FNNs regression learning algorithm in the compressed domain in-

stead of the original domain reduces the sample error at the price of an increased

(but controlled) approximation error, where the covering number theory is used

to estimate the excess error, and an upper bound of the excess error is given.

Keywords: regression learning; neural networks; compressed projection

1. Introduction

In machine learning, feedforward neural networks (FNNs) and radial basis

function networks (RBFNs) are usually considered as a hypothesis space for the

study of the convergence performance of learning algorithms. For example, Bar-

ron [1] gave the convergence rate of least square regression learning algorithm5

by using the approximation property of FNNs. RBFNs have become one of the
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most popular feedforward neural networks with applications in regression, clas-

sification and function approximation problems (see Chen et. al. [2], Haykin [3]

and Bishop [4]).

In 2006, Hamers and Kohler [5] obtained the non-asymptotic bounds on the10

least square regression estimates by minimizing the empirical risk over suitable

set of FNNs. Recently, Kohler and Mehnert [6] presented an analysis on the

convergence rate of least squares learning algorithms in set of FNNs for smooth

regression function. All these mentioned analysis on regression learning algo-

rithm are based on the assumption that the sample size m is higher than the15

neural element number n. However, in many real situations, m is less than n.

It will lead to the overfitting problem. In other words, many minimizers of the

empirical risk exist.

To overcome the overfitting problem, several approaches have been proposed

in the literature. These approaches can be catergorised as follows:20

(1) Regularization. That is, the empirical error is combined with a penalty

term, for examples, `1 norm (see Lasso [[7]), `2 norm (see ridge-regression [8]),

`1/2 norm (e.g. [9]), group Lasso (e.g. [10][11]) or overlapping group Lasso

(e.g. [12]) and many others.

(2) Minimising norm. That is, to find the minimizers of the empirical25

error with minimal norm (`1 or `2) (e.g. [13]). However, the regularization

parameter in the regularization term has not been addressed theoretically.

On the other hand, for large n, finding solutions of minimal norm (for `1

or `2-norm problem) is numerically expensive.

In the paper, we propose to study the minimizer of the empirical error in30

the compressed hypothesis space instead of the original hypothesis space. That

is, we propose to find solutions in the compressed hypothesis space. In recent

years, dimension reduction and random projections in various learning areas has

received considerable interests. Zhou et. al. [14] proposed to use compressed

linear regression, in which the data set Y is compressed by the multiplication35

of a matrix A which satisfies the “Restricted Isometric Property” in a linear
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regression model Y = Xβ + ε where β is the coefficient and ε is noise. For the

purpose of classification, Calderbank et. al. [15] studied an SVM algorithm in

a compressed space and showed that their algorithm has good generalization

properties. They also gave some analysis on the Lasso estimator which built in40

these compressed data.

Davenport et. al. [16] discussed how compressed measurements may be

useful to solve many detection, classification and estimation problems without

having to reconstruct the signal. Interestingly, they made no assumption about

the signal being sparse. Blum et. al. [17] and Rahimi et. al. [18] showed how to45

map a kernel k(x, y) = Φ(x)×Φ(y) into a low-dimensional space, while they still

approximately preserved the inner products. Maillard et. al. [19] studied the

compressed least squares regression and gave the upper bound of the excess risk,

using compressed projections. Motivated by those mentioned jobs, we aim to

study the regression estimate in neural networks by the approximation property50

of neural networks and compressed projection in the paper.

The main contributions of the paper include that 1) we prove that the FNNs

regression learning algorithm in the compressed domain reduces the sample error

but at the price of an increased (but controlled) approximation error; 2) we give

an estimation on the excess error and an upper bound of the excess error for55

the first time in literature for the compressed neural network regression. The

new results provide a profound understanding of the overfitting problem and a

mathematical estimation on the accuracy that the compressed neural network

regression can reach. Moreover, the analysis applied in this paper also provide

a mathematical framework for analysing the error bounds in the new network60

model, which has been studied little.

The rest of the paper is organized as follows. In Section 2, we present a

brief introduction of regression learning and neural networks. In Section 3, we

give the compressed projection of regression learning algorithm and give the

convergence rate of the compressed regression learning algorithm. Section 465

concludes the paper.
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2. Preliminaries on neural networks and regression learning

In the paper, we use FNNs set as the hypothesis space. That is, FNNs with

one hidden layer and n hidden neurons. These FNNs can be formulated as a

real-valued function on Rd of the form70

N(x) =
n∑

j=1

cjσ
(
αTj x+ βj

)
,

where σ : R → [0, 1] is called a sigmoidal function and αj ∈ Rd, βj , cj ∈ R(j =

1, 2, . . . , n) are the parameters that determine the neural networks.

Let φj : Rd → R(j = 0, 1, . . . , n) be a family of real functions, then we

define

N(x) =
n∑

j=1

cjφj(x), cj ∈ R,

and

N d
n,φ =



N(x) : N(x) =

n∑

j=1

cjφj(x), cj ∈ R



 .

Clearly, N(x) can be understood as a model of FNNs. In form, it looks quite

similar to RBFNs (see [20][21]).75

Neural computation research has developed powerful methods for approx-

imating continuous or integrable functions on compact subsets of Rd since

1980’s. Most approximation schemes using FNNs and RBFNs have been stud-

ied (e.g. [20] [22] [23]). In such schemes, function approximation capabilities

critically depend on the activation function nature of the hidden layer.80

In the following, we introduce a class of activation function φj : Rd → R,

defined by

φj(x) = φj(x,B) =
e−Bρ(x,aj)∑n
i=1 e

−Bρ(x,ai) , j = 1, 2, . . . , n,

where a1, . . . , an are the data in Rd, ρ(a, b) denotes the Euclidean distance

between two points a and b in Rd, and B > 0 is a parameter. Furthermore, we

define the linear combination of φj(x,B) as

N(x) =
n∑

j=1

cjφj(x,B).
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Obviously, N(x) can be understood to be a FNN with four layers: the first

layer is the input layer, the input is x ∈ Rd; the second layer is the processing

layer for computing values ρ(x, aj)(j = 0, 1, . . . , n), between the input x and the

prototypical input points aj , and it is the input of the third layer that contains

n+ 1 neurons; φj(x,B) is an activation function of the j-th neuron; the fourth85

layer is the output layer, and the output is N(x).

It is well known that the sigmoidal function σ(x) = 1
1+e−x is a logistic model.

This model is important and has been widely used in biology, demography and

so on (see [24][25]). Naturally, the functions

φj(x) =
e−Bρ(x,aj)∑n
i=1 e

−Bρ(x,ai) , j = 1, 2, . . . , n

can be regarded as a multi-class generalization of the logistic model (see section

10.6 in [26]), which was also used in a regression model for the case of multi-class

in the classification problems. Although the functions φj(x) are not sigmoidal,

they possess some properties that common sigmoidal functions do not have, for

example

0 < φj(x) ≤ 1, j = 1, 2, . . . , n,
n∑

j=1

φj(x) = 1.

On the other hand, it follows from their structures that φj(x) contain the

information of the interpolation samples. The second layer of the network com-

posed of φj(x) can be regarded as the processing layer and the input of the third

layer, which is more convenient for the study of network interpolations. Moti-90

vated by those properties of φj(x), we introduce functions φj(x) as activation

functions in the hidden layer of networks. In [27], we studied the convergence

rate of neural networks N(x) approximating continuous function by continuous

modulus.

Let (X, d) be a compact metric space, Y = R and ρ be a probability distri-95

bution on Z = X × Y . Denote by z = {zi}mi=1 = {(xi, yi)}mi=1 ∈ Zm a set of

random samples, which are independently drawn according to ρ. Let ρX , ρ(y|x)

be margin probability measure and condition probability measure of ρ respec-

tively. In the paper, we define the set Fm,n as the hypothesis space according
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to the neural networks N(x):100

Fm,n =



N(x) =

n∑

j=1

cjφj(x) : cj ∈ R,
n∑

j=1

|cj | ≤M lnm



 ,

where M is a positive number.

Since every φj is bounded in absolute value by 1, the functions in Fm,n are

bounded in absolute value by M lnm. For f ∈ Fm,n, we define the empirical

square error

Ez(f) =
1
m

m∑

i=1

(f(xi)− yi)2.

and the generalization square error105

E(f) =
∫

Z

(f(x)− y)2dρ. (1)

The function fρ that minimizes the error (1) is called the regression function.

It is given by

fρ(x) =
∫

Y

ydρ(y|x), x ∈ X. (2)

The aim of learning theory is to find an approximated function fz:

fz = arg min
f∈Fm,n

1
m

m∑

i=1

(f(xi)− yi)2

of fρ such that the excess risk

E(fz)− E(fρ) =
∫

X

(fz(x)− fρ(x))2dρX

=
{
E(fz)− inf

f∈Fm,n
E(f)

}
+
{

inf
f∈Fm,n

∫

X

(f(x)− fρ(x))2dρX

}
(3)

is minimized.110

The first term of (3) is called the sample error, and the second one, which

measures the distance between fρ and the neural networks set Fm,n, is called the

regularized error. We assume that for some M ≥ 0, ρ(·|x) is almost everywhere

supported on [−M,M ], that is, |y| ≤M almost surely holds (with respect to ρ)

in the paper. It follows from the definition (3) of fρ that |fρ(x)| ≤M for every115

x ∈ X, i.e, ‖fρ‖∞ ≤M .
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3. Compressed regression learning algorithm

We now introduce the compressed neural networks set which is obtained

from the set by the compressed matrix A, i.e., the compressed neural networks

set:120

Gk = {g =
k∑

i=1

βi

n∑

j=1

Ai,jφj , β = (β1, β2, . . . , βk)T ∈ Rk}.

Let ϕi =
∑n
j=1Ai,jφj for i = 1, 2, . . . , k. Obviously, the set Gk can be written

as

Gk =

{
g =

k∑

i=1

βiϕi, β = (β1, β2, . . . , βk)T ∈ Rk,
k∑

i=1

|βi| ≤M lnm

}
.

We define the estimator of the regression function fρ in Gk:

gz = arg min
g∈Gk

1
m

m∑

i=1

(g(xi)− yi)2.

Let A = {Ai,j}1≤i≤k,1≤j≤n be a k × n matrix of elements independently drawn

for some distribution µ. Three examples of distributions are as follows:125

• Gaussian random variables N (0, 1/k),

• ± Bernoulli distributions, i.e. which takes values ±1/k with equal proba-

bility 1/2,

• Distribution taking values ±
√

3/k with probability 1/6 and 0 with prob-

ability 2/3.130

In the following, we give the upper bound of the approximation error in

compressed neural networks set Gk and compare it with that of original neural

networks set. In order to estimate the approximation error, we need to introduce

the following lemma:

Lemma 3.1. (see [28]) For the matrix Ak×n, u ∈ Rn, 0 < ε < 1, we have135

P
(
‖Au‖2 ≥ (1 + ε)‖u‖2

)
≤ e−k(ε2/4−ε3/6)

P
(
‖Au‖2 ≤ (1− ε)‖u‖2

)
≤ e−k(ε2/4−ε3/6).
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It is easy to see that the inequality

(Au)TAv ≤ uT v + ε‖u‖2‖v‖2 (4)

holds with probability at least 1− 4ne−k(ε
2/4−ε3/6) for u, v ∈ Rn.

Define f∗ =
∑n
j=1 c

∗
jφj = arg minf∈Fm,n

∫
X

(f(x) − fρ(x))2dρX . From (4),

we can obtain the following theorem.

Theorem 3.2. For δ ≥ 0, k ≥ 15 ln 8m
δ , let A be a random k × n matrix, and140

Gk be the compressed neural networks set by the matrix projection A. Then the

inequality

inf
g∈Gk

∫

X

(g(x)− fρ(x))2dρX ≤
24(lnm)2 ln 4n

δ

k
+ 2 inf

f∈Fm,n

∫

X

(f(x)− fρ(x))2dρX

holds with probability at least 1− δ.

Proof. For f∗ =
∑n
j=1 c

∗
jφj , we may define g∗ =

∑k
i=1

(∑n
j=1Ai,jc

∗
j

)
(
∑n
t=1Ai,tφt) ∈

Gk. The upper bound of the approximated error in compressed neural networks145

set is as follows:

inf
g∈Gk

∫

X

(g(x)− fρ(x))2dρX ≤
∫

X

(g∗(x)− fρ(x))2dρX

≤ 2
∫

X

(g∗(x)− f∗(x))2dρX + 2
∫

X

(f∗(x)− fρ(x))2dρX

= 2
∫

X

(g∗(x)− f∗(x))2dρX + 2 inf
f∈Fm,n

∫

X

(f(x)− fρ(x))2dρX ,

where the second inequality is obtained from the definition of fρ. Let c∗ =

(c∗1, c
∗
2, . . . , c

∗
n)T and φ(x) = {φ1(x), φ2(x), . . . , φn(x)}T , then

∫
X

(g∗(x)−f∗(x))2dρX

may be written as
∫

X

(g∗(x)− f∗(x))2dρX =
∫

X

(
(Ac∗)T ·Aφ(x)− (c∗)Tφ(x)

)2
dρX .

Let u = c∗ = (c∗1, c
∗
2, . . . , c

∗
n)T , v = φ(x) = (φ1(x), φ2(x), . . . , φn(x))T . From (4),

the inequality

(Ac∗)TAφ(x)− (c∗)Tφ(x) ≤ ε‖c∗‖2‖φ‖2

holds with probability at least 1 − 4ne−k(ε
2/4−ε3/6). Let δ = 4ne−k(ε

2/4−ε3/6),

then we obtain
ε2

4
− ε3

6
=

ln 4n
δ

k
.
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For 0 < ε ≤ 1, we have ε2 ≥ ε3 and ε2 ≤ 12 ln 4n
δ

k . Since g ∈ Gk, every gi is a

continuous function. Therefore,150

∫

X

(g∗(x)− f∗(x))2dρX =
∫

X

(
(Ac∗)TAφ(x)− (c∗)Tφ(x)

)2
dρX

≤ sup
x∈X

(Ac∗)TAφ(x)− (c∗)Tφ(x))2 ≤ sup
x∈X

12 ln 4n
δ

k
‖c∗‖22‖φ(x)‖22.

Now, it remains to estimate ‖c∗‖22 and ‖φ(x)‖22. According to the definition of

Fm,n, we know that ‖c∗‖22 ≤ (M lnm)2. Since φi = e−Bρ(x,xi)∑n
j=1 e

−Bρ(x,xj) , we have

sup
x∈X
‖φ(x)‖22 = sup

x∈X

n∑

i=1

∣∣∣∣∣
e−Bρ(x,xi)∑n
j=1 e

−Bρ(x,xj)

∣∣∣∣∣

2

= sup
x∈X

n∑

i=1

e−2Bρ(x,xi)

(∑n
j=1 e

−Bρ(x,xj)
)2

= sup
x∈X

∑n
i=1 e

−2Bρ(x,xi)

(∑n
j=1 e

−Bρ(x,xj)
)2 ≤ 1.

So the inequality
∫

X

(g∗(x)− f∗(x))2dρX ≤ sup
x∈X

12 ln 4n
δ

k
‖c∗‖22‖φ(x)‖22 ≤

12(lnm)2 ln 4n
δ

k

holds with probability at least 1− δ.
Therefore, there holds with probability at least 1− δ155

inf
g∈Gk

E(g)− E(fρ) ≤
24(lnm)2 ln 4n

δ

k
+ 2 inf

f∈Fm,n
{E(f)− E(fρ)}.

Theorem 3.2 gives the tradeoff in terms of the approximation error of an

estimator gz obtained in the compressed neural networks set compared to an

estimator fz obtained in the original neural networks set:

(1) Since k < n, the upper bounds on the sample error of gz in Gk are much160

smaller than that of fz in Fm,n.

(2) Theorem 3.2 shows that the approximation error in Gk increases by at

most 12(lnm)2 ln 4n
δ

k compared with that in Fm,n.

It remains to estimate the sample error E(gz)− infg∈Gk E(g) in Gk by using

the probability inequalities and covering number. We give the upper bound of165
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the sample error E(gz)− infg∈Gk E(g) in Gk. Let g′ = arg ming∈Gk E(g). We may

divide the sample error

E(gz)− E(g′) ≤ E(gz)− Ez(gz) + Ez(gz)− Ez(g′) + Ez(g′)− E(g′)

≤ {E(gz)− Ez(gz)}+ {Ez(g′)− E(g′)} = {E(gz)− E(fρ)− Ez(gz) + Ez(fρ)}

+{Ez(g′)− Ez(fρ)− E(g′) + E(fρ)}. (5)

Here we use the definition of gz in the last inequality. In order to estimate the

sample error, we need the following lemma.

Lemma 3.3. (see [29]) Let P be a probability measure on Z = X × Y and set

z1 = (x1, y1), . . . , zn = (xm, ym) be independent random variables distributed

according to P . Given a function g : Z → R, set S =
∑m
i=1 g(zi), b = ‖g‖∞

and σ2 = mEg2. Then

Probz∈Zm {|S −ES| ≥ t} ≤ 2 exp

{
− t2

2
(
σ2 + bt

3

)
}
.

Using Lemma 3.3, we obtain the following theorem.170

Theorem 3.4. For every 0 < δ < 1, with confidence 1− δ
2 , there holds

|E(g′)− E(fρ)− (Ez(g′)− Ez(fρ))| ≤
8
(

3M +
√

3
k lnm

)2

3m
ln

4
δ

+
1
2
D,

where D = E(g′)− E(fρ).

The proof follows the proof of a similar result for regression algorithms by the

reference [30]. In particular, the random variable {E(g′)− E(fρ)− (Ez(g′)− Ez(fρ))},
representing the difference between the expected and empirical errors of the175

minimizing function g′ in the hypothesis space Gk and the target function fρ, is

shown to satisfy the conditions of Lemma 2. The details of proof are provided

in Appendix A.

In the following, we estimate the second part of Eq. (5). Because the

random variable ξ = (gz(x)− y)2 − (fρ(x)− y)2 is involved with the sample z,180

the estimation is difficult. We thus solve it by using the covering number.
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Definition 1. (see [30]) Let S be a metric space and η > 0, the covering number

N (S, η) of S is the minimal integer b ∈ N so that there exist b disks with radius

η covering S.

The covering number has been extensively studied, see, e.g. [31][32]. We185

denote by N (η) the covering number of the unit ball of E in X. From [30], we

know if d is the dimension of E, then the ball BR = {f ∈ S : ‖f‖∞ ≤ R} of the

set E is

N (BR, η) ≤
(

4R
η

)d
. (6)

Theorem 3.5. For all δ > 0, there holds

E(gz)− E(fρ)− (Ez(gz)− Ez(fρ))

≤
16
(

3M + 2
√

3
k lnm

)2
(
k ln

(
32m

(
M +

√
3
k lnm

)2
)

+ 1
)

3m
+D

with probability at least 1− δ
2 .190

The proof of Theorem 3.5 uses Bernstein inequality in Lemma 2 and is

similar to that of Theorem 3.4, with two main differences. First, Bernstein’s

inequality is applied to obtain a bound conditioned on a concrete function g′

in Theorem 3.4, and the probability inequality is applied to obtain a bound

conditioned on the hypothesis space Gk in Theorem 3. Second, the constants b195

and σ2 in the application of Bernstein’s inequality are different. Details of the

proof are provided in Appendix B.

Combining Theorems 3.2, 3.4 and 3.5, we may obtain the excess error of

regression function fρ in neural networks set Fm,n.

Theorem 3.6. For any δ > 0, there holds200

E(gz)− E(fρ) ≤
16
(

3M + 2
√

3
k lnm

)2

k ln
(

32m
(
M +

√
3
k lnm

)2
)

3m
+

12(lnm)2 ln 4n
δ

k

+
16
(

3M + 2
√

3
k lnm

)2

ln 4
δ

3m
+

8
(

3M +
√

3
k lnm

)2

3m
ln

4
δ

+
5
2

{
inf

f∈Fm,n
E(f)− E(fρ)

}
.

with probability at least 1− δ.
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For any g ∈ Fm,n, we have

inf
f∈Fm,n

E(f)− E(fρ) = inf
f∈Fm,n

∫

X

(f(x)− fρ(x))2dρX

≤ inf
f∈Fm,n

‖f − fρ‖2∞ ≤ ‖g − fρ‖2∞.

For any x ∈ X = [0, 1]2, we give the upper bound of |g(x) − fρ(x)| if the

regression function fρ satisfies some smoothness condition in [27].

4. Related work205

In Section 3, we have studied the convergence performance of least square

learning algorithm in compressed neural networks set. We have derived the up-

per bound of regression learning algorithms by using the approximation prop-

erty of neural networks and covering number. In this section we discuss how

our results relate to other recent studies.210

4.1. Comparison with generalization bounds for regression

Our convergence analysis of regression learning algorithms is based on a

similar analysis for regression algorithms by Kohler and Mehnert in [6]. There

are two differences between our work and that of Kohler and Mehnert. The first

difference is that we analyze the regression learning algorithm in the case that215

the number of neurons is larger than the sample size. Secondly, we obtained

a different generalization bound. The difference between the bounds is partly

due to the difference in network model, and partly due to a slight difference in

decomposition of approximation property of neural networks.

4.2. Comparison with the work of Maillard and Munos220

The work that is closely related to ours is that of Maillard and Munos [19],

in which the generalization properties of linear regression algorithm using com-

pressed projection in a linear space span {ϕn : X → R, 1 ≤ n ≤ N} is studied.

The sample setting considered by Maillard and Munos [19] is similar to ours:
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the learner is given a sample set {(xi, yi)}mi=1, and the goal of the ranking prob-225

lem is to learn objection function which approximates the regression function

according to random samples and approximation property of hypothesis space.

Although uniform convergence bounds for regression learning algorithms

have replied on the smoothness of the regression function, we have obtained

the explicit upper bound of regression learning algorithms. There are two im-230

portant differences between our work and that of [19]. First, Maillard and

Munos [19] considered generalization properties of linear algorithms by using

compression projection in a linear space. Although they have studied the gen-

eralization properties of regression learning algorithms, the uniform convergence

bounds for regression learning algorithm have not been derived explicitly.235

5. Experiments and analysis

In this section, we give some numerical experiments to verify the feasibility

and efficiency of compressed neural networks regression learning. All the exper-

iments in the following are carried out in the Matlab 2012 environment running

in Intel(R) Core(TM) i3-M330 processor with the speed of 2.13 GHz. In the240

experiment shown below, the regression performances between original neural

networks and compressed neural networks methods are performed on a smooth

function

f(x) =
50000∑

j=1

cjσ(αTj x)

where cj , 1 ≤ j ≤ 50000 are a set of coefficients which are sampled from a

normal distribution N (0, 1), each αj ∈ R300 is sampled from
∏300
k=1N (−1, 0.5)245

and x ∈ R300. The sample number is set to be 300, while white Gaussian noise

with variance 0.05 is added to the samples. In both of original neural networks

and compressed neural networks methods, the number of hidden-layer nodes is

set to be 50000, and the sparse ratio of hidden-layer nodes is set to be 0.03

(that is, 97% of the coefficients are set to zero). The classical FNN and the250

compressed FNN were repeated 10 times respectively on the samples and the

13



regression results were averaged. The results are shown in the following figures

and tables.

As shown in Fig. 1, the blue lines stand for the original data, the regression

results are represented by the red zones for better visual effects, and the green255

lines show the error of regression. Therefore, the milder the green line goes, the

better regression ability the algorithm holds. It’s obvious for us to find that,

compared with original neural networks methods, the regression performance

of compressed neural networks is quite satisfactory. The RMSE comparison

between the two methods can also demonstrate the outstanding performance of260

compressed neural networks, as shown in Table 1.

Table 1: RMSE Comparison between original and the compressed method

Method # Nodes RMSE

original method 50000 6.5903e-05

compressed method 1500 3.1474e-06

Generally speaking, the experimental results shown above are consistent

with the theoretical results claimed in this article. We may draw conclusion

that compressed neural networks regression learning is feasible and effective in

the sense that much less number of neural elements used in compressed neural265

network does not mean the scarification of generalization capability.

6. Conclusions

In this paper, we have studied the error bounds on the least square learning

algorithm in compressed neural networks set in the case that the neuron number

is larger than the sample size m. Approximation property of neural networks270

and compressed projection were applied in the study, where the compressed

projection was used to reduce the number of neurons (which does not need to

satisfy the condition of restricted isometric property). On the other hand, the

approximation properties of the FNN has been revealed by the application of

some probability inequalities, and the upper bound of the excess error were275

14



(a) The results obtained by the original NN method.

(b) The results obtained by the compressed NN method.

Figure 1: In the figure, horizontal axis denotes data dimension; the left vertical axis denotes

sample number, and the right vertical axis denotes error.
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obtained explicitly in the compressed domain instead of the original domain.

Moreover, the uniform convergence bounds for regression learning algorithms

have been explicitly obtained.

Appendix A. Proof of Theorem 3.4

Proof. Since g′ =
∑k
i=1 β

′
i

(∑n
j=1Ai,jφj

)
∈ Gk and the element of the matrix280

A satisfies the above distributions in Section 3.1, we obtain

|g′(x)| =

∣∣∣∣∣∣

k∑

i=1

β′i(x)




n∑

j=1

Ai,jφj



∣∣∣∣∣∣

≤
k∑

i=1

|β′i|

∣∣∣∣∣∣

n∑

j=1

Ai,jφj

∣∣∣∣∣∣

≤
k∑

i=1

|β′i|max
i,j
|Ai,j |

∣∣∣∣∣∣

n∑

j=1

φj

∣∣∣∣∣∣

≤
√

3
k

lnm.

Let h(z) = 1
m

(
(g′(x)− y)2 − (fρ(x)− y)2

)
. Since |y| ≤ M , we obtain

|fρ(x)| ≤ M for any x ∈ X. So we can obtain |h(z)| ≤ 1
m

(
3M +

√
3
k lnm

)2

.

Then we have b = ‖h‖∞ ≤ 1
m

(
3M +

√
3
k lnm

)2

. So

Eh2 =
1
m2

E
(
(g′(x)− y)2 − (fρ(x)− y)2

)2

=
1
m2

E (g′(x) + fρ(x)− 2y)2 (g′(x)− fρ(x))2

≤ 1
m2

(
3M +

√
3
k

lnm

)2

E (g′(x)− fρ(x))2

=
1
m2

(
3M +

√
3
k

lnm

)2

{E(g′)− E(fρ)} =

(
3M +

√
3
k lnm

)2

m2
D.

Therefore

σ2 = mEh2 ≤

(
3M +

√
3
k lnm

)2

m
D.
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Now we apply Lemma 3.3 with t =
√
ε(ε+D) to h = 1

m ((g′(x)−y)2− (fρ(x)−285

y)2). It asserts that for every ε > 0, with confidence at least

1− 2 exp




− ε(ε+D)

2

((
3M+
√

3
k lnm

)2

m D +

(
3M+
√

3
k lnm

)2√
ε(ε+D)

3m

)





≥ 1− 2 exp




− 3mε

8
(

3M +
√

3
k lnm

)2




,

there holds
|E(g′)− E(fρ)− (Ez(g′)− Ez(fρ))|√

E(g′)− E(fρ) + ε
≤ √ε.

Recall an elementary inequality:

ab ≤ 1
2

(a2 + b2) ∀a, b ∈ R,

we have

|E(g′)− E(fρ)− (Ez(g′)− Ez(fρ))| ≤
ε

2
+

1
2

(D + ε)

= ε+
1
2
D.

Let δ
2 = 2 exp

{
− 3mε

8
(
3M+
√

3
k lnm

)2

}
, then

ε =
8
(

3M +
√

3
k lnm

)2

3m
ln

4
δ
.

Therefore, with confidence 1− δ
2 , there holds

|E(g′)− E(fρ)− (Ez(g′)− Ez(fρ))| ≤
8
(

3M +
√

3
k lnm

)2

3m
ln

4
δ

+
1
2
D.
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Appendix B. Proof of Theorem 3.5290

Proof. For any g1, g2 ∈ Gk, we have

|(y − g1(x))2 − (y − g2(x))2| = |(g1(x)− g2(x))(g1(x) + g2(x)− 2y)|

≤ 2

(
M +

√
3
k

lnm

)
‖g1 − g2‖∞.

So we can obtain

|E(g1)− Ez(g1)− E(g2) + Ez(g2)| ≤ 4

(
M +

√
3
k

lnm

)
‖g1 − g2‖∞, g1, g2 ∈ Gk.

Let U = {g1, g2, . . . , gl} ⊂ Gk be a γ-net of Gk with the size l = N (Gk, γ).

So we have

sup
g∈Gk

|E(g)− Ez(g)− E(fρ) + Ez(fρ)|

≤ sup
g∈U
|E(g)− Ez(g)− E(fρ) + Ez(fρ)|+ 4

(
M +

√
3
k

lnm

)
γ.

Using the similar way of Theorem 2, there holds for any gi ∈ U ,295

Probz∈Zm{|E(gi)− E(fρ)− (Ez(gi)− Ez(fρ))| ≥ ε} ≤ 2 exp




− 3m

(
ε− 1

2D
)

8
(

3M + 2
√

3
k lnm

)2




,

which implies that

Probz∈Zm {|E(gz)− E(fρ)− (Ez(gz)− Ez(fρ))| ≥ ε}

≤ Probz∈Zm
{

sup
g∈Gk

|E(g)− E(fρ)− (Ez(g)− Ez(fρ))| ≥ ε
}

≤ Probz∈Zm

{
sup
g∈U
|E(g)− E(fρ)− (Ez(g)− Ez(fρ))| ≥ ε− 4

(
M +

√
3
k

lnm

)
γ

}

≤ N (Gk, γ) sup
g∈U

Probz∈Zm

{
|E(g)− E(fρ)− (Ez(g)− Ez(fρ))| ≥ ε− 4

(
M +

√
3
k

lnm

)
γ

}

≤ 2N (Gk, γ) exp




−3m

(
ε− 4(M + lnm)γ − 1

2D
)

8
(

3M + 2
√

3
k lnm

)2




.
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We take γ = ε

8
(
M+
√

3
k lnm

) , then

Probz∈Zm {|E(gz)− E(m)− (Ez(gz)− Ez(m))| ≥ ε}

≤ 2N


Gk,

ε

8
(
M +

√
3
k lnm

)


 exp




− 3m (ε−D)

16
(

3M + 2
√

3
k lnm

)2




.

For the compressed neural networks set

Gk =

{
g =

k∑

i=1

βiφi, β = (β1, β2, . . . , βk)T ∈ Rk,
k∑

i=1

|φi| ≤ lnm

}
,

it is easy to see that the dimension of the minimal space that includes the set Gk
is k. From (6), we know that the covering number of the set Gk can be bounded

by

N (Gk, γ) ≤




4
√

3
k lnm

ε



k

.

So we can obtain

lnN


Gk,

ε

8
(
M +

√
3
k lnm

)


 ≤ k ln

32
(
M +

√
3
k lnm

)2

ε
.

Therefore

Probz∈Zm {|E(gz)− E(fρ)− (Ez(gz)− Ez(fρ))| ≥ ε}

≤ 2 exp




k ln

32
(
M +

√
3
k lnm

)2

ε
− 3m (ε−D)

16
(

3M + 2
√

3
k lnm

)2




.

We discuss two cases for ε ≥ 1
m and ε < 1

m .300

(i) When ε ≥ 1
m , we know that

Probz∈Zm {|E(gz)− E(fρ)− (Ez(gz)− Ez(fρ))| ≤ ε}

≥ 1− 2 exp




k ln

32
(
M +

√
3
k lnm

)2

ε
− 3m (ε−D)

16
(

3M + 2
√

3
k lnm

)2





≥ 1− 2 exp




k ln


32m

(
M +

√
3
k

lnm

)2

− 3m (ε−D)

16
(

3M + 2
√

3
k lnm

)2




.
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We take

δ

2
= 2 exp




k ln


32m

(
M +

√
3
k

lnm

)2

− 3m (ε−D)

16
(

3M + 2
√

3
k lnm

)2




,

then

ε =
16
(

3M + 2
√

3
k lnm

)2

k ln
(

32m
(
M +

√
3
k lnm

)2
)

3m

+
16
(

3M + 2
√

3
k lnm

)2

ln 4
δ

3m
+D ≥ 1

m
.

So there holds

E(gz)− E(fρ)− (Ez(gz)− Ez(fρ))

≤
16
(

3M + 2
√

3
k lnm

)2

k ln
(

32m
(
M +

√
3
k lnm

)2
)

3m

+
16
(

3M + 2
√

3
k lnm

)2

ln 4
δ

3m
+D.

If ε ≤ 1
m , then we have

E(gz)− E(fρ)− (Ez(gz)− Ez(fρ)) ≤
1
m
.

Combining the cases ε > 1
m with ε ≤ 1

m , there holds

E(gz)− E(fρ)− (Ez(gz)− Ez(fρ))

≤
16
(

3M + 2
√

3
k lnm

)2

k ln
(

32m
(
M +

√
3
k lnm

)2
)

3m

+
16
(

3M + 2
√

3
k lnm

)2

ln 4
δ

3m
+D

with probability at least 1− δ
2 .305
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