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ABSTRACT

This paper presents a statistical analysis of Hterausic nota-
tion corpus. The corpus contains around 435,00@stréptions
of which just over 400,000 are folk and traditionalsic. There
is significant duplication within the corpus andastarge part of
the paper discusses methods to assess the ledelpb€ation

and the analysis then indicates a headline figliower 165,000
distinct folk and traditional melodies. The paptsoadescribes
TuneGraph, an online, interactive user interfaaeeiploring

tune variants, based on visualising the proximitgp of the
underlying melodies.

1. INTRODUCTION

1.1 Background

Abc notation is a text-based music notation sygpepu-
lar for transcribing, publishing and sharing folkusit,
particularly online. Similar systems have been adofor
a long time but abc notation was formalised (anche)
by the author in 1993 (Walshaw, 1993). Since itejn

small collections (especially if the abc code has
to be manually inserted into the HTML code)
and so these are omitted from the search. How-
ever, there are 3 larger collections which are in-
cluded (by parsing the HTML and looking for
identifiable start and end tags).

JavaScript links: for a small number of sites the
file download is enacted via JavaScript, making
the link to the .abc file difficult to harvest.

1.1.3 Growth

Starting with an initial database of 36,000 tune2009

the index has expanded to over 435,000 abc tramiscrs

at the time of writing (May 2014). Most of these dolk
tunes and songs from Western Europe and North Ameri
ca, although two massive multiplayer online rolayhg
games, Lord of the Rings Online and Starbound, have
adopted abc for their in-game music system regultira

tion he has maintained a website, now at abcnota-number of dedicated websites with mixed collectiohs

tion.com, with links to resources such as tutoriatsft-
ware and tune collections.

1.1.1 Tune search engine

In 2009 the functionality of the site was signifitig en-
hanced with an online tune search engine, the lisis
which is a robot which regularly crawls known sifes
abc files and then downloads them. The downloaded a
code is cleaned and indexed and then stored itabalse
which backs the search engine front end. Usershef t
tune search are able to view and/or download ta# st
notation, midi representation and abc code for danh,
and the site currently attracts around % milliositers a
year.

1.1.2 Breadth

The aim of the tune search is to index all abc tedta
transcriptions from across the web. However theecaa
number of reasons why it is unable to do this ceteby:
Unknown / new abc sites: the robot indexer is

seeded from around 350 known URLs (some of
which are no longer active), but it does not
search the entire web.

HTML based transcriptions: in the main, the in-
dexer searches for downloadable abc file types
(.abc, or sometimes .txt). However, there are a
number of sites where the abc code is embedded
directly into a webpage. Mostly these tend to be

rock, pop, jazz and, sometimes, folk melodies. The
~35,000 transcriptions from these sites are ignéoethe
purposes of this paper, leaving just over 400,00«
analysed (though this number changes every timeathe
bot runs).

Importantly, although each of the transcriptionsnes
from a distinct URL, over half are duplicates ahdde
are a major focus of this study.

1.2 Aims

The original intention for this paper was to praseista-
tistical surveyof the abc music notation corpus in its cur-
rent state (i.e. mid-2014) including analyses efc¢brpus
segmented by key, meter and tune type. The punpase
threefold:

To provide a historical marker of the notation
system in its 2 year (abc2mtex v1.0, a tran-
scription package which contained the first de-
scription of the abc syntax, was released in De-
cember 1993).

To discuss the composition of this large online
resource and give some insights into the issues
of curating and managing it.

To invite other academics to explore the corpus
in detail: the author is willing to grant excep-
tional access to the database for academic study



and interested in collaborating with projects that 2.1 Eliminating duplicates

wish to make use of it.

For the most part this paper still has these afitosvever,
in investigating the data, a fundamental questimsex
how many distinct tunes are there in the corpusi,Tih
addition to the supplementary question: what ismhég
“distinct” in the context of aural traditions (witall the
variation that implies) which are transcribed elecical-
ly (sometimes in sketch form), published onlinenfse
times temporarily), and subsequently copied anditrep
lished freely by other web users (often with no ifica-
tions, but sometimes with additional notes and emrr
tions)?

The remainder of this paper is organised as follows

e Section 2 discusses duplication and attempts to
answer the question of how many distinct tunes
there are in the corpus. It also presents on-going
development of a user interface to allow the ex-

ploration of tune variants.
» Having decided on a methodology for discount-

2.1.1 Classification

To discuss this topic further it is helpful to cates the
structure of an abc tune transcription (see exanmmple
Figure 1).

X: 1 _|-reference number
T. Tune title

C: Conposer tune header

M4/ 4

K- C

CDEF GABc | cBAG FEDC | tune
CEDF EGFA | GBAc BcC2 |11 pody

Figure 1. An example abc transcription.

Each tune consists oftane header (including arefer-
ence number) and thetune body.

The header contains descriptive meta-data mosibyigh
not exclusively, with no musical information. Typlty
this includes the title and composer (where knowoui,
amongst other data may also include informationuabo

ing duplicates, section 3 presents a (straightfor- Where the tune was sourced (book, recording, et

ward) statistical analysis of the corpus together
with a number of observations and comments on

the data.

transcribed it, historical notes and anecdotes iastiu-
mentation details (particularly for multi-voice nitjs

The tune body contains the music, and may alscagont
song lyrics.

+ Finally, section 4 presents some conclusions andwith this structure in mind, duplication can bessidied

ideas for further work.

2. DUPLICATION

Duplication occurs widely within the abc corpus far
number of observable reasons:

e Compilations: particularly in the past, certain
enthusiasts have published compilations of all
the abc tunes they could find, gathered from
across the web.

» Selections: some sites, usually those containing
repertoires (perhaps that of a band or an open
session), publish a selection of tunes gathered
from other sites.

» Ease-of-access: a number of sites publish col-
lections or sub-collections both as one-tune-per-
file together with a single file containing all of
the tunes.

With respect to the tune search engine, therdétlis fioint
in presenting users with dozens of identical resaiftd so
an important part of the pre-indexing clean-up lage
identifying and, where appropriate, removing dugtis
from the index. However, it is not necessarily chediich
level of duplication to remove.

Furthermore, in the context of this paper, the iglation
of duplicates is a fundamental process in detengini
how many distinct tunes there are in the corpustaed
subsequent statistical analysis.

into 4 increasingly broad categories:

e Electronic: the duplicates are electronically
identical (the exact same string of characters) —
i.e. the tune headers and bodies are identical
(although in practice this is relaxed somewhat by
ignoring the reference number and any
whitespace).

* Musical: the duplicates are musically identical
(including song lyrics) although they may con-
tain different meta-data in the tune header — i.e.
the tune bodies are identical.

 Meélodic: neglecting any song lyrics, grace
notes, decorations and chord symbols, the first
voice of each duplicate is identical — i.e. the
primary melodies are identical.

* Incipit: when transposed to the same key, the
duplicates are melodically identical over the first
few bars of the tune.

2.1.2 Implementation

Code which analyses and counts the size of eaely@at

has been developed. In the first three categohissis

done without actually parsing the abc music notatio

the tune body: for the most part it involves stifgpthe

transcriptions of data, for example by extractiagt and
removing decorations, lyrics, grace notes, etc.

For each duplication class, the code derives a aosgn

string from each abc transcription which is themmeo
pared with all other comparison strings in thassiaden-
tical strings indicate duplicates.



As a small percentage of transcriptions contaiorsrand

/ or extraneous text, part of the parsing task lwves ex-
ception handling. These can arise for a numbeeadans
including: misplaced characters which do not fithwi
agreed abc syntax and transcription errors suchnas
matched start / end tags (for example, in abc gymtace
notes are delimited with curly braces, { ... }, —excep-
tion is thrown if one of the braces is missing).
Transcriptions which cannot be parsed, or are enfially
back on the previous classification. In other woifdan
exception is thrown when a transcription is beiagspd
for incipit comparison, the comparison string reverts to a
melodic comparison string. Likewise, if a transcription
contains an empty tune body (as can often happemwh
abc headers are used as placeholders or for ingiexin
poses) then thenelodic and musical comparison strings
would revert taelectronic.

2.1.3 Results

Table 1 shows the duplication results for the 4lidape
classes. Here duplicate cluster refers to a group of
identical transcriptions. A cluster of sinehas 1 primary
transcription anch — 1 duplicates, so the number of du-
plicates (column 4) refers to the total number wblatat-
ed transcriptions with a contribution of— 1 duplicates
from each cluster.

Class #duplicate | max. duplicate #duplicates
clusters cluster size

Electronic 71,156 39 171,203

Musical 75,752 132 222,241

Melodic 73,199 1372 232,528

Incipit 58,090 207 281,552

Table 1. The different levels of duplication.

As one might expect, the number of duplicates (gued
maximum duplicate cluster size) increases with eaxh
cessive class, since the duplication refers tavarishing
portion of each transcription. The increase andssub
guent decrease of duplicate clusters is less myibut is
easily explained: for example, if there are two lohape
clusters of sizes;, andn, which differ from each other
only after the % bar, then under melodic duplication this
would result in two clusters whereas under inaijuipli-
cation it would result in a single cluster of siget n,.

To interpret the figures further, consider melodigli-
cates: of the 400,160 transcriptions, 232,528 ®3.4re
duplicates and can be excluded from the statistioaly-
sis. Of the remaining 167,632 transcriptions, 79,19
(18.3%) have a duplicate in the excluded set ardeth
fore 94,433 (23.6%) are not duplicated anywheréhn
corpus. The maximum duplicate cluster size is 182 (
other words there is 1 tune with 131 excluded duaydis)
and the average cluster size is 4.18, i.e. (232,528
73,199) / 73,199.

Whilst this indicates a very substantial amountopli-
cation within the corpus, this gives a headlinaurfig of
167,632 distinct melodies, even when all of the anet
data, decoration and lyrics are stripped away. Hlesd
that some of these are very minor variants or ctioes,

but nonetheless it indicates that the abc musiatioot
corpus represents a substantial online resource.

2.2 Exploring variants

The algorithm that is used for identifying incigitipli-
cates is actually based on a difference metric winig-
merically quantifies the difference between each ph
incipits. Pairs of melodies with a difference oafe du-
plicates (at least for the length of the incipliyt those
with small difference values are very likely to hee
variants.

Tune variants are an important part of folk musasal
tradition and so near duplicates which appear onthe
incipit category are of interest to researchers ami-
cians alike. However they are not always easy ¢otitly
by eye from a large number of search results.

2.2.1 TuneGraph

To facilitate user exploration of such variants thehor

is developing TuneGraph (Walshaw, 2014), an online
tool for the visual exploration of melodic similgi out-
lined below.

Given a corpus of melodies, the idea behind TunglGra
is to calculate the difference between each pameio-
dies numerically with a difference metric or simitg
measure (e.g. Kelly, 2012; Stober, 2011; Typke,riNig

& Veltkamp, 2005). Next a proximity graph is formbyg
representing every tune with a vertex and including
(weighted) edges for every pair of vertices whigk a
“similar”. Finally, the resulting graph can be vidised
using standard graph layout techniques such as-forc
directed placement, (e.g. Walshaw, 2003), eith@lieg

to the entire graph or just to a vertex and itghleours
(i.e. a tune and similar melodies).

The concept is not dissimilar to a number of otheit-
ware systems which give a visual display of relahips
between tunes, often based on a graph (e.g. La2g¢0,
Orio & Roda, 2009; Stober, 2011).

TuneGraph consists of two parts — TuneGraph Builder
which analyses the corpus and constructs the msdjuir
graphs, and TuneGraph Viewer, which provides the
online and interactive visualisation.

2.2.2 The difference metric

In the current implementation, each melody is regné
ed by quantising the first 4 bars (the incipit)oirit/64"
notes and then constructing a pitch vector (orhpiton-
tour) where each vector element stores the inteiinal
semitones, between the corresponding note andirte f
note of the melody (neglecting any anacrusis). &Sive-
rything is calculated as an interval it is invatiamder
transposition.

The difference metric then calculates the diffeecbe-
tween two pitch vectors either using the 1-norre. (ihe
sum of the absolute values of the differences betwe
each pair of vector elements) or the 2-norm (ike t
square root of the sum of squared differences hatwe
each pair of vector elements). The 1-norm has lozen
available as part of the abc2mtex indexing faetiti
(Walshaw, 1994), but experimentation suggests ttmat
2-norm gives marginally better results (Walshaw] 40



If the pitch vectors have different lengths thea sum is
over the length of the shorter vector (although lselew
—section 2.2.4).

Similarity measures of this kind are well exploiadhe
field of music information retrieval, (e.g. Kell\2012;
Typke et al., 2005), and there may be other, mare a
vanced similarity measures that would work evenebet
However, in principle any suitable metric can bediso
build the proximity graph, provided that it expresgshe
difference between pairs of melodies with a single
merical value. Indeed, even combinations of sintilar

tion preferences (although not universally as It f&il to
connect related melodies, such as Irish single jidsch
are variously transcribed in 6/8 and 12/8, and Emedr
time bourrées, which can be either 3/4 or 3/8).

Each pitch vector length results in a subset oplgnzerti-
ces: in all there were 314 subsets, ranging in Sam
63,581 vertices (for length 256 — e.g. 2/2 andtdfes),
down to 115 subsets containing just one vertex. ¢l
98.7% of vertices are in a subset of size 100 aerand
99.7% are in a subset of size 10 or more.

The small subsets generally result from unusuatovec

measures could be used by forming a weighted linearlengths, usually because of errors in the trangorip

combination of their values.

2.2.3 Building the proximity graph

The proximity graph is formed by representing euene
with a vertex and including (weighted) edges foergv
pair of vertices which are “similar” (i.e. everyipwhere

the numerical difference is below some thresholde)a
However the question arises: what is a suitablestiold
and how should it be chosen?

Perhaps the simplest choice, and one which is well-
known for geometric proximity graphs, is to findeth
smallest threshold value which results in connected
graph, i.e. a graph in which a path exists betwaary
pair of vertices. Although computationally expemsithis
can be done relatively straightforwardly startinghwan
initial guess at a suitable threshold and theneeittou-
bling or halving it until a pair of bounding valuese
found, one of which is too small (and does not ltasua
connected graph) and one of which is large enoagh (
does give a connected graph). Finally the mininal-c
necting threshold (minimal so as to exclude unresmgs
edges) can be found with a bisection algorithmediiag

the interval between upper and lower bounds each-it
tion.

This was the first approach tried but it resultedyiaphs
with an enormous number of edges; the test codeuan
of memory as the number
200,000,000 and the threshold under test had nhothag
point, yielded a connected graph.

Further investigation revealed the basic problehe t
graph is potentially very dense in some regiongh wi
many similar melodies clustered together, wherdses- e
where there are outlying melodies which are notlaim
to any others. This means that in order to contiecbut-
liers, and hence the entire graph, the threshaddtdide
so large that in the denser regions huge cliquegeaner-
ated.

2.2.4 Segmentation by meter

In order to reduce the density of the graph, oreessful
approach tested was to segment the graph by meter —
so that tunes with different meters are never coteake In
fact a simple way to implement this is to avoid mect-
ing pitch vectors with different lengths. This hhe add-
ed benefit that some meters can be connectedtt{ose
with the same bar length such as 2/2 and 4/4) mgani
that the strategy is blind to certain variationgramscrip-

(i.e. extra notes or incorrect note lengths) aretehwas
often no close relation between the melodies, nmgani
that a very high threshold would have to be usedoto

nect that subset. To avoid connecting very diffeteam-
scriptions, for each segment the edge threshold was
somewhat arbitrarily limited to the length of théch
vector for that segment. In most cases, this ufipst

was never needed, but for very small subsets ietioms
meant that no edges were generated at all.

2.2.5 Average degree

Even with segmentation by meter in place the mettaod
still generate huge graphs. However, there is mtocpéar
reason that the graph needs to be connected sdethef
trying to build a connected graph (or connected- sub
graphs, one for each pitch vector length) was atvaed
as unpractical. Nevertheless, it is attractive sseetially
parameter-free and it does work for small collewiof
relatively closely related tunes (for example, HEstgl
morris tunes, where there are many similar variahthe
same melody).

For the purposes of representing the entire cogsus
(disconnected) proximity graph, this still leavelse t
choice of a suitable edge threshold open, but ratren
picking a value out of the air, insteadtaxget average
degree is chosen for the resulting graph. With this aver-

of edges approachedage degree as a user-selected parameter the saimd- bo

ing and bisection method as above can be usedddHe
smallest threshold that yields this average degree.

An important observation was that the small nundfer
vertices which have very many similar neighbounsege
ate a relatively large number of edges in the gréjun
example a cluster of, say, 100 very similar melsdid|
form a (near) clique with up to 4,950 edges. Thisi§-
cantly skews the average if it is expressed asrtaan
degree. However, using the median degree ignoeseth
outlying values and gave much more useful resatigie
ically and so the current implementation uses théas-
ure to calculate the average.

Considerable experimentation has been carried thtav
number of average degree values (see Walshaw, &i14,
a full discussion) and the best — i.e. the one Wwiyields
local graphs (see below) that are small enouglhetade-
ful in search but which are sufficiently rich enbug ex-
press similarities visually — seems to be an aee(age-
dian) degree of 3.
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Figure 2. Some sample local graphs.

2.2.6 Extracting local graphs

gests that they should be small enough not to dvelrw
the user, but rich enough to convey some usefarinf

Once suitable parameters have been chosen the graph mation. In particular the aim was to limit the nmaxim

built as a series of proximity (sub-)graphs (onedach
one for each pitch vector length). Each proximityps
graph is unlikely to be connected and as a reselgtaph
as a whole can be highly disconnected.

One option is to use multilevel force directed drap

placement (Walshaw, 2003), to find a layout for ¢inére
graph. This has been tried and yields an intergsbut
not necessarily very useful, representation ottrpus.

Instead, to allow exploration of similarities in amerac-
tive online setting, the TuneGraph Builder codeapts a

local graph for each non-isolated vertex. One way to do

this is simply to extract the vertex, plus alliigighbours

plus any edges between them. However, this canttead

cligue-like local graphs where edges are hardgoeain.
Instead, the local graph is built in layers: thedséayer
0) is the original vertex for which the local graigtbeing
built, layer 1 is any vertices neighbouring layear® lay-
er 2 is any vertices (not already included) neighlngy
layer 1, etc. In order to maximise the clarity ¢ tlocal
graph, it only includes edges between layers actudgs
edges between vertices in the same layer.

If the local graphs are just built from layers @dn each
will be star-like, as in Figure 2(a) and Figure )2@aeld-
ing limited immediate visual information to the ugeth-
er than the number of neighbours and the strenigtheo
relationships). Instead the builder code uses fagerl
and 2, e.g. Figure 2(c) to Figure 2(f), to show sahthe
richness of certain neighbourhoods. Here colowtikate
the layers, with layer 0 shown in crimson, layen Zight
blue, and layer 1 interpolated between the twdefit.
Finally, the graph edges are all weighted in in@gugso-
portion to the difference between the two trandiis

local graph size but maximise the average sizeeixp
mentation was carried out with a number of diffénea-
rameter settings (Walshaw, 2014) and often a small
change can make a huge difference — for exampégh
ing the target median degree from 3 to 4 incredises
maximum local graph size from 121 to 724. Howetleg,
best parameters found were:

« Difference norm: ||} see section 2.2.2

e Segmentation by meter: true — see section 2.2.4

« Edge threshold limit: pitch vector length — see
section 2.2.4

e Target average degree: median of 3 — see section
2.25

Using these settings results in a large numbesaléied
vertices, usually because there are no closelyectiael-
odies in the corpus or, less commonly, because ther
no other transcriptions with the same pitch lengiimi-
nating these isolated vertices gave a final graph o
111,230 vertices in 31,784 connected subsets (mdthy
as few as 2 vertices). The graph contains 250,H§2%
with a maximum degree of 68 and a minimum degree of
1, but is very sparse since the average degragyisic.
From this 111,230 local graphs were produced with a
average size of 6.1 vertices. The maximum size 124s
vertices and 468 edges. Whilst the largest locaplys
can be difficult to visualise well, a random sampltehe
rest are of a size and complexity which both helps
plore similarities without overwhelming the user.

Figure 2 shows some interesting examples: Herar{d)
(b) come from local clique-like graphs with no inufiete

that they connect (Walshaw, 2014). Since graph edgeneighbours (recall that edges between verticesh&n t

weights are indicated in the online tool by thhickness
this conveys helpful visual information to the udmer
showing the more closely related tunes with thidkess
between them (and also affects how the graph dsdat
by force directed placement).

2.2.7 Results
It is difficult to say exactly what features aresulable in
the final graph, but experience with the local ¢rapug-

same layer are not included in the local graph ctoafi
edges of the clique are shown). The tree shown)iin¢
dicates a number of tunes which are related buigily
not immediate relations of each other. The graph@l)
and (e) are similar to (b) only with some outlyiumes
related to those in the clique. Finally the graph(f)
shows a tune on the edge of a tightly coupled eliqu
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Black Jack
Black Joke

www .abcnotation com/tunes

Figure 3. An example webpage.

2.2.8 TuneGraph Viewer

Although only in prototype version, TuneGraph Viewe
contains a number of interactive features. Thellgcaph

is displayed on a webpage alongside the tune iteeor
sponds to. It is visualised as a dynamic layoutgi)3.js
(Bostock, 2012), a JavaScript library for manipinigt

Broadly speaking the analysis is qualitatively &mie-
gardless of which method is used for eliminatingldu
cates. As a single example, neglecting the 171¢p83
tronic duplicates, 29.8% of the remaining melodies are
transcribed in 4/4. With 222,24rhusical duplicates re-
moved this figure is 30.3% and respectively comasab
30.7% and 32.4% when the 232,528 odic or 281,552
incipit duplicates are removed.

To avoid filling the paper with statistics the redtthis
section therefore concentrates on just one categfody-
plicates. In factjncipit duplicates may not be duplicates
at all — they may just have the same first fouispao all
of the following figures analyse the 167,632 distimel-
odies remaining when the 232,52®lodic duplicates are
removed from the corpus.

First note that, although abc is primarily used fawno-
phonic tunes, of these 167,632 melodies, 6,480%B.9
are polyphonic and 12,574 (7.5%) are songs (i.th k-
ics included in the abc transcription).

The tables below show an analysis of the corpus seg
mented by meter, rhythm (i.e. tune type), and iigalar
the key (a very expressive field in abc which aBotlie
specification by mode).

It was also intended to include a table showingctivpus
segmented by origin. However, this proved problémnat

documents based on data, and employing the inbuiltiy; "5 number of reasons specifically:

force-directed placement features.

It provides the following user interface:

The graph vertices find their own natural posi-
tion dynamically via force directed placement
and vertices can be dragged to rearrange the lay-
out (other vertices then relocate accordingly).
Vertex colour indicates the relationship to the
root vertex.

Edge thickness indicates visually how closely
related two vertices are (i.e. how similar their
corresponding tunes are).

Moving the mouse over a vertex reveals its
name and displays the associated melody.
Double clicking on a vertex (other than the root
vertex) takes the user to the corresponding page
(with its own tune graph).

Figure 3 shows an example webpage corresponditigeto
tune Black Jack (a well-known English tune). Theetis
displayed on the left (the abc notation would appes
derneath) and the local tune graph is shown omigjtné.

If the user moves their mouse over one of the gregpti-
ces, the tune associated with that vertex appedosvb

3. STATISTICAL ANALYSIS

This section presents a brief and straightforwaatissi-
cal analysis of the current abc music corpus (May42
based on those tunes found online by the abc search
gine. It does not, of course, cover unpublishetectibns
and so there are no real means to estimate whpbpro
tion of the abc corpus it represents.

The abc header field to specify origi@x () al-
lows free text and hence a wide variation in at-
tribution and even spelling.

The origin header field is not widely used and
only 26.2% of tunes in the corpus make use of
it.

One particularly large collection (a compilation
of other collections) has the default origin set to
“England”, when many of the tunes are clearly
identifiable as Irish or Scottish — this signifi-
cantly distorts the results.

Nevertheless, the origin analysis does indicateifibgnt
diversity, with substantial contributions (i.e. raothan
1,000 transcriptions) from, in alphabetical ord€hina,
England, France, Germany, Ireland, Scotland, Swe&den
Turkey.

For each of the three tables that are included,skgya-
ture, meter and rhythm, the table shows all valitis a
count of 100 or more; any values with fewer thaf i@
stances are aggregated at the bottom.

3.1 Key signature

Table 2 shows the corpus segmented by key signature
In abc, the key field is very expressive and alldkes use
of modes and even arbitrary accidentals, i.e. fipdcin
the key signature and applied to all notes in thme t(un-
less overridden by another accidental applied ¢oirthli-
vidual note or notes in that bar).

There is even an option for the Great Highland Bagp
(written K: HP in abc notation) where, by convention,
tunes are usually played in Bb mixolydian but venttin
A mixolydian with no key signature (i.e. the C# art



are assumed but not written on the score). Thisis 3.2 Meter

throwback to the early days of abc and might novbéte Table 3 shows the corpus segmented by meter.

ter handled with an “omit-key-signature” outputdla It is noticeable that much of the corpus is repmeess by
Nonetheless, there are 2,326 transcriptions oftyipis. meters common in Western European / North American
Of more interest is the use of modes, the most comm folk music but there are significantly fewer of theore
being A dorian with 3,638 transcriptions. In facswavey complex meters such as 7/8, 11/8, 15/8, etc., détend

of the entire range of key signatures (includingragat- in Eastern Europe (9/8 is well represented but @iso
ed values at the bottom of the table) shows theadas cludes slip jigs, commonly found in the Britishes).

used for 9,008 transcriptions (5.4% of the corpog)o-

lydian for 4,772 (2.9%), phrygian for 418 (0.3%)dian | Meter Count| Percentage Cumulatiye
for 85 (0.1%), aeolian for 84 (0.1%), ionian fo(@G0%) 0 4
and locrian for 4 (0.0%). In addition, 19,596 crtscripi- 4/ 51,493 30.72% 30.72%6
tions (11.69%) are specified as being in a mingr ke 6/8 34,840 20.78% 51.50%
2/4 22,378 13.35% 64.85%
Key signature Count| Percentage Cumulatjve 212 19764 11.79% 76.64%
G 45561  27.189 27.18% 34 19,614 11.709%  88.34%
D 37,834) 22579 49.75%  free 6,006 3.58° 91.92%
c 14,583 8.709 58.45%  Tgrg 3679 2.199 94.12%
A 12,132 7.24% 65.69% 3/8 5166 1299 95.41%
F 9,784 5.84% 71.52% 6/ 1868 1119 96.53%
E minor 5,017 2.999 74.52% 12/8 1425 0.850 97 3846
A minor 5,005 2.99% 77.50% 32 1411 0.849 98.22%
0, 0,
Bb 4,613 275%  80.25% 75 400]  024%  98.46%
1 0, [0
D minor 3,708 2.21 82.46% 718 371 0.22% 98.68%
I 0, q
A dorian 3,638 217 84.63% /8 317 0.19% 98 87%
I 0, q
G minor 2,995 1.79 86.42% o/4 302 0.18% 99 05%
I 0,
E dorian 2,478 1.48% 87.90% 10/8 593 0179 99 23%
i 0, 0,
g;t;?)tipé-hghland 2,326 1.39% 89.29% 5/ 120 0.07% 99 30%
A mixolydian 1,957 1.179 90.45% 5/8 113 0.07% 99.37%
B minor 1,945 1.169 91.61% [other meters] 1,061 0.63% 100.00%
none 1,798 1.07% 92.69%6 Table 3. A breakdown of the corpus by meter.
D mixolydian 1,768 1.059 93.74%
Eb 1,461 0.879 94.61%
i S ] 3.3 Rhythm
D dorian 1172 0.70% 95.31% Table 4 shows the corpus segmented by rhythm (tune
E 1,115 0.67% 95.98% type).
G dorian 1,067 0.64% 96.61% Unlike key signatur_e and meter thi_s is not a corsmuyl
5 3 or assumed field (i.e. if no meter is specifiedmeooon
other 997 0.59 97.21%  {ime is assumed) and as result not all transcrigticave
G mixolydian 593 0.359 97.56% a rhythm indicated; nonetheless, 104,792 (62.5%) of
: them do.
C minor 561 0.33¢ 97.90¢
> > ’ Of interest in this table are the rhythms that ¢até a
Ab 286 0.17% 98.07% specific origin. Reels, jigs and hornpipes are tbwide-
C dorian 269 0.16% 98.23% ly in music from the British Isles and North Amexiand
C mixolydian 220 0.149 98.37% the waltz, polka and S(_:hottische even more wid_el)_/ i
. Western European music. However, the strathspely ind
B dorian 177 0.119 98.48% cates a Scottish origin — anecdotally there maysbe
F minor 127 0.089 98.55% many because of the large number of T®ntury tune-
: books being transcribed into abc.
0, q
F# mlno-r 127 0.08 98.63¢ The polska and sléngpolska indicate a Nordic origin
E phrygian 117 0.07% 98.70%  mostly likely Swedish, but found in other countrie®
other keys] 2.181 1.30% 100.000% and many come from a thriving wiki-based website,

www.folkmusic.se.
Table 2. A breakdown of the corpus by key.



Rhythm Count Percentage Cumulatiye
no rhythm 62,840 37.49% 37.49%
specified

reel 27,881 16.63% 54.12%
jig 20,353 12.149% 66.26%
hornpipe 6,943 4.14% 70.40%
waltz 4,636 2.779 73.17%
strathspey 4,227 2.52% 75.69%
air 3,923 2.34% 78.03%
polka 3,863 2.309 80.33%
march 2,343 1.40% 81.73%
slip jig 2,085 1.24% 82.98%
song 1,878 1.12% 84.10%
polska 1,663 0.99% 85.09%
barndance 1,181 0.70% 85.79%
country dance 1,126 0.67% 86.46%
slide 1,110 0.669 87.13%
slangpolska 787 0.47% 87.60%
double jig 772 0.469 88.06%
mazurka 581 0.35% 88.40%
dance 498 0.30% 88.70%
schottische 433 0.26% 88.96%
bourrée 386 0.23% 89.19%
triple hornpipe 379 0.23% 89.41%
quadrille 359 0.219 89.63%
xiraldilla 247 0.15% 89.78%
minuet 221 0.139 89.91%
miscellaneous 200 0.12% 90.03%
schottis 170 0.10% 90.13%
zwiefacher 135 0.08% 90.21%
single jig 123 0.079 90.28%
other 108 0.069 90.35%
set dance 106 0.06% 90.41%
[other 16,075 9.59% 100.00%
rhythms]

Table 4. A breakdown of the corpus by rhythm.

4. CONCLUSION

This paper has presented a straightforward staisti
analysis of the abc music notation corpus. The uorp
contains around 435,000 transcriptions of which guer
400,000 are folk and traditional music.

There is significant duplication within the corpasd so a
large part of the paper has discussed methodssesss
the level of duplication. This has indicated a Hieadfig-
ure of over 165,000 distinct folk and traditionaglodies.

Much of the corpus seems to come from Western Euro-
pean and North American traditions, but there iside
diversity included.

The paper has also described TuneGraph, an onliee i
active user interface for exploring tune variabtsed on
building a proximity graph of the underlying meledi
Although currently only in prototype form the intem is
to deploy it on two sites with which the authoriis
volved, abcnotation.com and the Full English Dighe
chive at the Vaughan Williams Memorial Library
(EDFSS, 2013).

4.1 Futurework

The main focus for future work is to enhance thpaeca
bilities of TuneGraph. In particular it is intendéal ex-
plore some of the wide range of similarity measuhesd
are available as a means to build the proximityplkyras
was indicated in section 2.2.2 there may be otmere
advanced similarity measures, or combinationsirof-s
larity measures, that would work better than theom
of the difference between pitch vectors.
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