

A STATISTICAL ANALYSIS OF THE ABC MUSIC NOTATION
CORPUS: EXPLORING DUPLICATION

Chris Walshaw
Department of Computing & Information Systems,
 University of Greenwich, London SE10 9LS, UK

c.walshaw@gre.ac.uk

ABSTRACT

This paper presents a statistical analysis of the abc music nota-
tion corpus. The corpus contains around 435,000 transcriptions
of which just over 400,000 are folk and traditional music. There
is significant duplication within the corpus and so a large part of
the paper discusses methods to assess the level of duplication
and the analysis then indicates a headline figure of over 165,000
distinct folk and traditional melodies. The paper also describes
TuneGraph, an online, interactive user interface for exploring
tune variants, based on visualising the proximity graph of the
underlying melodies.

1. INTRODUCTION

1.1 Background
Abc notation is a text-based music notation system popu-
lar for transcribing, publishing and sharing folk music,
particularly online. Similar systems have been around for
a long time but abc notation was formalised (and named)
by the author in 1993 (Walshaw, 1993). Since its incep-
tion he has maintained a website, now at abcnota-
tion.com, with links to resources such as tutorials, soft-
ware and tune collections.

1.1.1 Tune search engine
In 2009 the functionality of the site was significantly en-
hanced with an online tune search engine, the basis of
which is a robot which regularly crawls known sites for
abc files and then downloads them. The downloaded abc
code is cleaned and indexed and then stored in a database
which backs the search engine front end. Users of the
tune search are able to view and/or download the staff
notation, midi representation and abc code for each tune,
and the site currently attracts around ½ million visitors a
year.

1.1.2 Breadth
The aim of the tune search is to index all abc notated
transcriptions from across the web. However there are a
number of reasons why it is unable to do this completely:

• Unknown / new abc sites: the robot indexer is
seeded from around 350 known URLs (some of
which are no longer active), but it does not
search the entire web.

• HTML based transcriptions: in the main, the in-
dexer searches for downloadable abc file types
(.abc, or sometimes .txt). However, there are a
number of sites where the abc code is embedded
directly into a webpage. Mostly these tend to be

small collections (especially if the abc code has
to be manually inserted into the HTML code)
and so these are omitted from the search. How-
ever, there are 3 larger collections which are in-
cluded (by parsing the HTML and looking for
identifiable start and end tags).

• JavaScript links: for a small number of sites the
file download is enacted via JavaScript, making
the link to the .abc file difficult to harvest.

1.1.3 Growth
Starting with an initial database of 36,000 tunes in 2009
the index has expanded to over 435,000 abc transcriptions
at the time of writing (May 2014). Most of these are folk
tunes and songs from Western Europe and North Ameri-
ca, although two massive multiplayer online role-playing
games, Lord of the Rings Online and Starbound, have
adopted abc for their in-game music system resulting in a
number of dedicated websites with mixed collections of
rock, pop, jazz and, sometimes, folk melodies. The
~35,000 transcriptions from these sites are ignored for the
purposes of this paper, leaving just over 400,000 to be
analysed (though this number changes every time the ro-
bot runs).
Importantly, although each of the transcriptions comes
from a distinct URL, over half are duplicates and these
are a major focus of this study.

1.2 Aims
The original intention for this paper was to present a sta-
tistical survey of the abc music notation corpus in its cur-
rent state (i.e. mid-2014) including analyses of the corpus
segmented by key, meter and tune type. The purpose was
threefold:

• To provide a historical marker of the notation
system in its 20th year (abc2mtex v1.0, a tran-
scription package which contained the first de-
scription of the abc syntax, was released in De-
cember 1993).

• To discuss the composition of this large online
resource and give some insights into the issues
of curating and managing it.

• To invite other academics to explore the corpus
in detail: the author is willing to grant excep-
tional access to the database for academic study

and interested in collaborating with projects that
wish to make use of it.

For the most part this paper still has these aims. However,
in investigating the data, a fundamental question arose:
how many distinct tunes are there in the corpus? That, in
addition to the supplementary question: what is meant by
“distinct” in the context of aural traditions (with all the
variation that implies) which are transcribed electronical-
ly (sometimes in sketch form), published online (some-
times temporarily), and subsequently copied and repub-
lished freely by other web users (often with no modifica-
tions, but sometimes with additional notes and correc-
tions)?
The remainder of this paper is organised as follows:

• Section 2 discusses duplication and attempts to
answer the question of how many distinct tunes
there are in the corpus. It also presents on-going
development of a user interface to allow the ex-
ploration of tune variants.

• Having decided on a methodology for discount-
ing duplicates, section 3 presents a (straightfor-
ward) statistical analysis of the corpus together
with a number of observations and comments on
the data.

• Finally, section 4 presents some conclusions and
ideas for further work.

2. DUPLICATION

Duplication occurs widely within the abc corpus for a
number of observable reasons:

• Compilations: particularly in the past, certain
enthusiasts have published compilations of all
the abc tunes they could find, gathered from
across the web.

• Selections: some sites, usually those containing
repertoires (perhaps that of a band or an open
session), publish a selection of tunes gathered
from other sites.

• Ease-of-access: a number of sites publish col-
lections or sub-collections both as one-tune-per-
file together with a single file containing all of
the tunes.

With respect to the tune search engine, there is little point
in presenting users with dozens of identical results and so
an important part of the pre-indexing clean-up involves
identifying and, where appropriate, removing duplicates
from the index. However, it is not necessarily clear which
level of duplication to remove.
Furthermore, in the context of this paper, the elimination
of duplicates is a fundamental process in determining
how many distinct tunes there are in the corpus and the
subsequent statistical analysis.

2.1 Eliminating duplicates

2.1.1 Classification

To discuss this topic further it is helpful to consider the
structure of an abc tune transcription (see example in
Figure 1).

Figure 1. An example abc transcription.

Each tune consists of a tune header (including a refer-
ence number) and the tune body.
The header contains descriptive meta-data mostly, though
not exclusively, with no musical information. Typically
this includes the title and composer (where known), but
amongst other data may also include information about
where the tune was sourced (book, recording, etc.), who
transcribed it, historical notes and anecdotes and instru-
mentation details (particularly for multi-voice music).
The tune body contains the music, and may also contain
song lyrics.
With this structure in mind, duplication can be classified
into 4 increasingly broad categories:

• Electronic: the duplicates are electronically
identical (the exact same string of characters) –
i.e. the tune headers and bodies are identical
(although in practice this is relaxed somewhat by
ignoring the reference number and any
whitespace).

• Musical: the duplicates are musically identical
(including song lyrics) although they may con-
tain different meta-data in the tune header – i.e.
the tune bodies are identical.

• Melodic: neglecting any song lyrics, grace
notes, decorations and chord symbols, the first
voice of each duplicate is identical – i.e. the
primary melodies are identical.

• Incipit: when transposed to the same key, the
duplicates are melodically identical over the first
few bars of the tune.

2.1.2 Implementation
Code which analyses and counts the size of each category
has been developed. In the first three categories this is
done without actually parsing the abc music notation in
the tune body: for the most part it involves stripping the
transcriptions of data, for example by extracting parts and
removing decorations, lyrics, grace notes, etc.
For each duplication class, the code derives a comparison
string from each abc transcription which is then com-
pared with all other comparison strings in that class: iden-
tical strings indicate duplicates.

X:1
T:Tune title
C:Composer
M:4/4
K:C
CDEF GABc | cBAG FEDC |
CEDF EGFA | GBAc BcC2 |]

reference number

tune header

tune
body

As a small percentage of transcriptions contain errors and
/ or extraneous text, part of the parsing task involves ex-
ception handling. These can arise for a number of reasons
including: misplaced characters which do not fit with
agreed abc syntax and transcription errors such as un-
matched start / end tags (for example, in abc syntax grace
notes are delimited with curly braces, { … }, – an excep-
tion is thrown if one of the braces is missing).
Transcriptions which cannot be parsed, or are empty, fall
back on the previous classification. In other words if an
exception is thrown when a transcription is being parsed
for incipit comparison, the comparison string reverts to a
melodic comparison string. Likewise, if a transcription
contains an empty tune body (as can often happen when
abc headers are used as placeholders or for indexing pur-
poses) then the melodic and musical comparison strings
would revert to electronic.

2.1.3 Results
Table 1 shows the duplication results for the 4 duplicate
classes. Here a duplicate cluster refers to a group of
identical transcriptions. A cluster of size n has 1 primary
transcription and n – 1 duplicates, so the number of du-
plicates (column 4) refers to the total number of duplicat-
ed transcriptions with a contribution of n – 1 duplicates
from each cluster.
Class #duplicate

clusters
max. duplicate
cluster size

#duplicates

Electronic 71,156 39 171,203
Musical 75,752 132 222,241
Melodic 73,199 132 232,528
Incipit 58,090 207 281,552

Table 1. The different levels of duplication.

As one might expect, the number of duplicates (and the
maximum duplicate cluster size) increases with each suc-
cessive class, since the duplication refers to a diminishing
portion of each transcription. The increase and subse-
quent decrease of duplicate clusters is less intuitive, but is
easily explained: for example, if there are two duplicate
clusters of sizes n1 and n2 which differ from each other
only after the 4th bar, then under melodic duplication this
would result in two clusters whereas under incipit dupli-
cation it would result in a single cluster of size n1 + n2.
To interpret the figures further, consider melodic dupli-
cates: of the 400,160 transcriptions, 232,528 (58.1%) are
duplicates and can be excluded from the statistical analy-
sis. Of the remaining 167,632 transcriptions, 73,199
(18.3%) have a duplicate in the excluded set and there-
fore 94,433 (23.6%) are not duplicated anywhere in the
corpus. The maximum duplicate cluster size is 132 (in
other words there is 1 tune with 131 excluded duplicates)
and the average cluster size is 4.18, i.e. (232,528 +
73,199) / 73,199.
Whilst this indicates a very substantial amount of dupli-
cation within the corpus, this gives a headline figure of
167,632 distinct melodies, even when all of the meta-
data, decoration and lyrics are stripped away. Doubtless
that some of these are very minor variants or corrections,

but nonetheless it indicates that the abc music notation
corpus represents a substantial online resource.

2.2 Exploring variants
The algorithm that is used for identifying incipit dupli-
cates is actually based on a difference metric which nu-
merically quantifies the difference between each pair of
incipits. Pairs of melodies with a difference of 0 are du-
plicates (at least for the length of the incipit), but those
with small difference values are very likely to be tune
variants.
Tune variants are an important part of folk music’s aural
tradition and so near duplicates which appear only in the
incipit category are of interest to researchers and musi-
cians alike. However they are not always easy to identify
by eye from a large number of search results.

2.2.1 TuneGraph
To facilitate user exploration of such variants the author
is developing TuneGraph (Walshaw, 2014), an online
tool for the visual exploration of melodic similarity, out-
lined below.
Given a corpus of melodies, the idea behind TuneGraph
is to calculate the difference between each pair of melo-
dies numerically with a difference metric or similarity
measure (e.g. Kelly, 2012; Stober, 2011; Typke, Wiering,
& Veltkamp, 2005). Next a proximity graph is formed by
representing every tune with a vertex and including
(weighted) edges for every pair of vertices which are
“similar”. Finally, the resulting graph can be visualised
using standard graph layout techniques such as force-
directed placement, (e.g. Walshaw, 2003), either applied
to the entire graph or just to a vertex and its neighbours
(i.e. a tune and similar melodies).
The concept is not dissimilar to a number of other soft-
ware systems which give a visual display of relationships
between tunes, often based on a graph (e.g. Langer, 2010;
Orio & Roda, 2009; Stober, 2011).
TuneGraph consists of two parts – TuneGraph Builder,
which analyses the corpus and constructs the required
graphs, and TuneGraph Viewer, which provides the
online and interactive visualisation.

2.2.2 The difference metric
In the current implementation, each melody is represent-
ed by quantising the first 4 bars (the incipit) into 1/64th
notes and then constructing a pitch vector (or pitch con-
tour) where each vector element stores the interval, in
semitones, between the corresponding note and the first
note of the melody (neglecting any anacrusis). Since eve-
rything is calculated as an interval it is invariant under
transposition.
The difference metric then calculates the difference be-
tween two pitch vectors either using the 1-norm (i.e. the
sum of the absolute values of the differences between
each pair of vector elements) or the 2-norm (i.e. the
square root of the sum of squared differences between
each pair of vector elements). The 1-norm has long been
available as part of the abc2mtex indexing facilities
(Walshaw, 1994), but experimentation suggests that the
2-norm gives marginally better results (Walshaw, 2014).

If the pitch vectors have different lengths then the sum is
over the length of the shorter vector (although see below
– section 2.2.4).
Similarity measures of this kind are well explored in the
field of music information retrieval, (e.g. Kelly, 2012;
Typke et al., 2005), and there may be other, more ad-
vanced similarity measures that would work even better.
However, in principle any suitable metric can be used to
build the proximity graph, provided that it expresses the
difference between pairs of melodies with a single nu-
merical value. Indeed, even combinations of similarity
measures could be used by forming a weighted linear
combination of their values.

2.2.3 Building the proximity graph
The proximity graph is formed by representing every tune
with a vertex and including (weighted) edges for every
pair of vertices which are “similar” (i.e. every pair where
the numerical difference is below some threshold value).
However the question arises: what is a suitable threshold
and how should it be chosen?
Perhaps the simplest choice, and one which is well-
known for geometric proximity graphs, is to find the
smallest threshold value which results in connected
graph, i.e. a graph in which a path exists between every
pair of vertices. Although computationally expensive, this
can be done relatively straightforwardly starting with an
initial guess at a suitable threshold and then either dou-
bling or halving it until a pair of bounding values are
found, one of which is too small (and does not result in a
connected graph) and one of which is large enough (and
does give a connected graph). Finally the minimal con-
necting threshold (minimal so as to exclude unnecessary
edges) can be found with a bisection algorithm, bisecting
the interval between upper and lower bounds each itera-
tion.
This was the first approach tried but it resulted in graphs
with an enormous number of edges; the test code ran out
of memory as the number of edges approached
200,000,000 and the threshold under test had not, at that
point, yielded a connected graph.
Further investigation revealed the basic problem: the
graph is potentially very dense in some regions, with
many similar melodies clustered together, whereas else-
where there are outlying melodies which are not similar
to any others. This means that in order to connect the out-
liers, and hence the entire graph, the threshold has to be
so large that in the denser regions huge cliques are gener-
ated.

2.2.4 Segmentation by meter
In order to reduce the density of the graph, one successful
approach tested was to segment the graph by meter – i.e.
so that tunes with different meters are never connected. In
fact a simple way to implement this is to avoid connect-
ing pitch vectors with different lengths. This has the add-
ed benefit that some meters can be connected (i.e. those
with the same bar length such as 2/2 and 4/4) meaning
that the strategy is blind to certain variations in transcrip-

tion preferences (although not universally as it will fail to
connect related melodies, such as Irish single jigs, which
are variously transcribed in 6/8 and 12/8, and French 3-
time bourrées, which can be either 3/4 or 3/8).
Each pitch vector length results in a subset of graph verti-
ces: in all there were 314 subsets, ranging in size from
63,581 vertices (for length 256 – e.g. 2/2 and 4/4 tunes),
down to 115 subsets containing just one vertex. However,
98.7% of vertices are in a subset of size 100 or more and
99.7% are in a subset of size 10 or more.
The small subsets generally result from unusual vector
lengths, usually because of errors in the transcriptions
(i.e. extra notes or incorrect note lengths) and there was
often no close relation between the melodies, meaning
that a very high threshold would have to be used to con-
nect that subset. To avoid connecting very different tran-
scriptions, for each segment the edge threshold was
somewhat arbitrarily limited to the length of the pitch
vector for that segment. In most cases, this upper limit
was never needed, but for very small subsets it sometimes
meant that no edges were generated at all.

2.2.5 Average degree
Even with segmentation by meter in place the method can
still generate huge graphs. However, there is no particular
reason that the graph needs to be connected so the idea of
trying to build a connected graph (or connected sub-
graphs, one for each pitch vector length) was abandoned
as unpractical. Nevertheless, it is attractive as essentially
parameter-free and it does work for small collections of
relatively closely related tunes (for example, English
morris tunes, where there are many similar variants of the
same melody).
For the purposes of representing the entire corpus as a
(disconnected) proximity graph, this still leaves the
choice of a suitable edge threshold open, but rather than
picking a value out of the air, instead a target average
degree is chosen for the resulting graph. With this aver-
age degree as a user-selected parameter the same bound-
ing and bisection method as above can be used to find the
smallest threshold that yields this average degree.
An important observation was that the small number of
vertices which have very many similar neighbours gener-
ate a relatively large number of edges in the graph. For
example a cluster of, say, 100 very similar melodies will
form a (near) clique with up to 4,950 edges. This signifi-
cantly skews the average if it is expressed as the mean
degree. However, using the median degree ignores these
outlying values and gave much more useful results empir-
ically and so the current implementation uses this meas-
ure to calculate the average.
Considerable experimentation has been carried out with a
number of average degree values (see Walshaw, 2014, for
a full discussion) and the best – i.e. the one which yields
local graphs (see below) that are small enough to be use-
ful in search but which are sufficiently rich enough to ex-
press similarities visually – seems to be an average (me-
dian) degree of 3.

Figure 2. Some sample local graphs.

2.2.6 Extracting local graphs
Once suitable parameters have been chosen the graph is
built as a series of proximity (sub-)graphs (one for each
one for each pitch vector length). Each proximity sub-
graph is unlikely to be connected and as a result the graph
as a whole can be highly disconnected.
One option is to use multilevel force directed graph
placement (Walshaw, 2003), to find a layout for the entire
graph. This has been tried and yields an interesting, but
not necessarily very useful, representation of the corpus.
Instead, to allow exploration of similarities in an interac-
tive online setting, the TuneGraph Builder code extracts a
local graph for each non-isolated vertex. One way to do
this is simply to extract the vertex, plus all its neighbours
plus any edges between them. However, this can lead to
clique-like local graphs where edges are hard to discern.
Instead, the local graph is built in layers: the seed (layer
0) is the original vertex for which the local graph is being
built, layer 1 is any vertices neighbouring layer 0 and lay-
er 2 is any vertices (not already included) neighbouring
layer 1, etc. In order to maximise the clarity of the local
graph, it only includes edges between layers and excludes
edges between vertices in the same layer.
If the local graphs are just built from layers 0 and 1, each
will be star-like, as in Figure 2(a) and Figure 2(b), yield-
ing limited immediate visual information to the user (oth-
er than the number of neighbours and the strength of the
relationships). Instead the builder code uses layers 0, 1
and 2, e.g. Figure 2(c) to Figure 2(f), to show some of the
richness of certain neighbourhoods. Here colours indicate
the layers, with layer 0 shown in crimson, layer 2 in light
blue, and layer 1 interpolated between the two of them.
Finally, the graph edges are all weighted in inverse pro-
portion to the difference between the two transcriptions
that they connect (Walshaw, 2014). Since graph edge
weights are indicated in the online tool by their thickness
this conveys helpful visual information to the user by
showing the more closely related tunes with thicker lines
between them (and also affects how the graph is laid out
by force directed placement).

2.2.7 Results
It is difficult to say exactly what features are desirable in
the final graph, but experience with the local graphs sug-

gests that they should be small enough not to overwhelm
the user, but rich enough to convey some useful infor-
mation. In particular the aim was to limit the maximum
local graph size but maximise the average size. Experi-
mentation was carried out with a number of different pa-
rameter settings (Walshaw, 2014) and often a small
change can make a huge difference – for example, chang-
ing the target median degree from 3 to 4 increases the
maximum local graph size from 121 to 724. However, the
best parameters found were:

• Difference norm: ||.||2 – see section 2.2.2

• Segmentation by meter: true – see section 2.2.4

• Edge threshold limit: pitch vector length – see
section 2.2.4

• Target average degree: median of 3 – see section
2.2.5

Using these settings results in a large number of isolated
vertices, usually because there are no closely related mel-
odies in the corpus or, less commonly, because there are
no other transcriptions with the same pitch length. Elimi-
nating these isolated vertices gave a final graph of
111,230 vertices in 31,784 connected subsets (many with
as few as 2 vertices). The graph contains 250,182 edges,
with a maximum degree of 68 and a minimum degree of
1, but is very sparse since the average degree is only 4.5.
From this 111,230 local graphs were produced with an
average size of 6.1 vertices. The maximum size was 121
vertices and 468 edges. Whilst the largest local graphs
can be difficult to visualise well, a random sample of the
rest are of a size and complexity which both helps ex-
plore similarities without overwhelming the user.
Figure 2 shows some interesting examples: Here (a) and
(b) come from local clique-like graphs with no immediate
neighbours (recall that edges between vertices in the
same layer are not included in the local graph so not all
edges of the clique are shown). The tree shown in (c) in-
dicates a number of tunes which are related but probably
not immediate relations of each other. The graphs in (d)
and (e) are similar to (b) only with some outlying tunes
related to those in the clique. Finally the graph in (f)
shows a tune on the edge of a tightly coupled clique.

(a)
(c)

(b) (d)

(e)

(f)

2.2.8 TuneGraph Viewer
Although only in prototype version, TuneGraph Viewer
contains a number of interactive features. The local graph
is displayed on a webpage alongside the tune it corre-
sponds to. It is visualised as a dynamic layout using D3.js
(Bostock, 2012), a JavaScript library for manipulating
documents based on data, and employing the inbuilt
force-directed placement features.
It provides the following user interface:

• The graph vertices find their own natural posi-
tion dynamically via force directed placement
and vertices can be dragged to rearrange the lay-
out (other vertices then relocate accordingly).

• Vertex colour indicates the relationship to the
root vertex.

• Edge thickness indicates visually how closely
related two vertices are (i.e. how similar their
corresponding tunes are).

• Moving the mouse over a vertex reveals its
name and displays the associated melody.

• Double clicking on a vertex (other than the root
vertex) takes the user to the corresponding page
(with its own tune graph).

Figure 3 shows an example webpage corresponding to the
tune Black Jack (a well-known English tune). The tune is
displayed on the left (the abc notation would appear un-
derneath) and the local tune graph is shown on the right.
If the user moves their mouse over one of the graph verti-
ces, the tune associated with that vertex appears below.

3. STATISTICAL ANALYSIS

This section presents a brief and straightforward statisti-
cal analysis of the current abc music corpus (May 2014)
based on those tunes found online by the abc search en-
gine. It does not, of course, cover unpublished collections
and so there are no real means to estimate what propor-
tion of the abc corpus it represents.

Broadly speaking the analysis is qualitatively similar re-
gardless of which method is used for eliminating dupli-
cates. As a single example, neglecting the 171,203 elec-
tronic duplicates, 29.8% of the remaining melodies are
transcribed in 4/4. With 222,241 musical duplicates re-
moved this figure is 30.3% and respectively comes out at
30.7% and 32.4% when the 232,528 melodic or 281,552
incipit duplicates are removed.
To avoid filling the paper with statistics the rest of this
section therefore concentrates on just one category of du-
plicates. In fact, incipit duplicates may not be duplicates
at all – they may just have the same first four bars, so all
of the following figures analyse the 167,632 distinct mel-
odies remaining when the 232,528 melodic duplicates are
removed from the corpus.
First note that, although abc is primarily used for mono-
phonic tunes, of these 167,632 melodies, 6,480 (3.9%)
are polyphonic and 12,574 (7.5%) are songs (i.e. with lyr-
ics included in the abc transcription).
The tables below show an analysis of the corpus seg-
mented by meter, rhythm (i.e. tune type), and in particular
the key (a very expressive field in abc which allows the
specification by mode).
It was also intended to include a table showing the corpus
segmented by origin. However, this proved problematic
for a number of reasons, specifically:

• The abc header field to specify origin (O:) al-
lows free text and hence a wide variation in at-
tribution and even spelling.

• The origin header field is not widely used and
only 26.2% of tunes in the corpus make use of
it.

• One particularly large collection (a compilation
of other collections) has the default origin set to
“England”, when many of the tunes are clearly
identifiable as Irish or Scottish – this signifi-
cantly distorts the results.

Nevertheless, the origin analysis does indicate significant
diversity, with substantial contributions (i.e. more than
1,000 transcriptions) from, in alphabetical order, China,
England, France, Germany, Ireland, Scotland, Sweden &
Turkey.
For each of the three tables that are included, key signa-
ture, meter and rhythm, the table shows all values with a
count of 100 or more; any values with fewer than 100 in-
stances are aggregated at the bottom.

3.1 Key signature
Table 2 shows the corpus segmented by key signature.
In abc, the key field is very expressive and allows the use
of modes and even arbitrary accidentals, i.e. specified in
the key signature and applied to all notes in the tune (un-
less overridden by another accidental applied to the indi-
vidual note or notes in that bar).
There is even an option for the Great Highland Bagpipe
(written K:HP in abc notation) where, by convention,
tunes are usually played in Bb mixolydian but written in
A mixolydian with no key signature (i.e. the C# and F#

Figure 3. An example webpage.

are assumed but not written on the score). This is a
throwback to the early days of abc and might now be bet-
ter handled with an “omit-key-signature” output flag.
Nonetheless, there are 2,326 transcriptions of this type.
Of more interest is the use of modes, the most common
being A dorian with 3,638 transcriptions. In fact a survey
of the entire range of key signatures (including aggregat-
ed values at the bottom of the table) shows that dorian is
used for 9,008 transcriptions (5.4% of the corpus), mixo-
lydian for 4,772 (2.9%), phrygian for 418 (0.3%), lydian
for 85 (0.1%), aeolian for 84 (0.1%), ionian for 6 (0.0%)
and locrian for 4 (0.0%). In addition, 19,596 of transcripi-
tions (11.69%) are specified as being in a minor key.

Key signature Count Percentage Cumulative

 G 45,561 27.18% 27.18%

 D 37,834 22.57% 49.75%

 C 14,583 8.70% 58.45%

 A 12,132 7.24% 65.69%

 F 9,784 5.84% 71.52%

 E minor 5,017 2.99% 74.52%

 A minor 5,005 2.99% 77.50%

 Bb 4,613 2.75% 80.25%

 D minor 3,708 2.21% 82.46%

 A dorian 3,638 2.17% 84.63%

 G minor 2,995 1.79% 86.42%

 E dorian 2,478 1.48% 87.90%

Great Highland
Bagpipe

2,326 1.39% 89.29%

 A mixolydian 1,957 1.17% 90.45%

 B minor 1,945 1.16% 91.61%

 none 1,798 1.07% 92.69%

 D mixolydian 1,768 1.05% 93.74%

 Eb 1,461 0.87% 94.61%

 D dorian 1,172 0.70% 95.31%

 E 1,115 0.67% 95.98%

 G dorian 1,067 0.64% 96.61%

 other 997 0.59% 97.21%

 G mixolydian 593 0.35% 97.56%

 C minor 561 0.33% 97.90%

 Ab 286 0.17% 98.07%

 C dorian 269 0.16% 98.23%

 C mixolydian 240 0.14% 98.37%

 B dorian 177 0.11% 98.48%

 F minor 127 0.08% 98.55%

 F# minor 127 0.08% 98.63%

 E phrygian 117 0.07% 98.70%

 other keys] 2,181 1.30% 100.00%

Table 2. A breakdown of the corpus by key.

3.2 Meter
Table 3 shows the corpus segmented by meter.
It is noticeable that much of the corpus is represented by
meters common in Western European / North American
folk music but there are significantly fewer of the more
complex meters such as 7/8, 11/8, 15/8, etc., often found
in Eastern Europe (9/8 is well represented but also in-
cludes slip jigs, commonly found in the British Isles).

Meter Count Percentage Cumulative

 4/4 51,493 30.72% 30.72%

 6/8 34,840 20.78% 51.50%

 2/4 22,378 13.35% 64.85%

 2/2 19,764 11.79% 76.64%

 3/4 19,614 11.70% 88.34%

 free 6,006 3.58% 91.92%

 9/8 3,679 2.19% 94.12%

 3/8 2,166 1.29% 95.41%

 6/4 1,868 1.11% 96.53%

 12/8 1,425 0.85% 97.38%

 3/2 1,411 0.84% 98.22%

 4/2 409 0.24% 98.46%

 7/8 371 0.22% 98.68%

 8/8 317 0.19% 98.87%

 9/4 302 0.18% 99.05%

 10/8 293 0.17% 99.23%

 5/4 122 0.07% 99.30%

 5/8 113 0.07% 99.37%

 [other meters] 1,061 0.63% 100.00%

Table 3. A breakdown of the corpus by meter.

3.3 Rhythm
Table 4 shows the corpus segmented by rhythm (tune
type).
Unlike key signature and meter this is not a compulsory
or assumed field (i.e. if no meter is specified, common
time is assumed) and as result not all transcriptions have
a rhythm indicated; nonetheless, 104,792 (62.5%) of
them do.
Of interest in this table are the rhythms that indicate a
specific origin. Reels, jigs and hornpipes are found wide-
ly in music from the British Isles and North America and
the waltz, polka and schottische even more widely in
Western European music. However, the strathspey indi-
cates a Scottish origin – anecdotally there may be so
many because of the large number of 19th Century tune-
books being transcribed into abc.
The polska and slängpolska indicate a Nordic origin,
mostly likely Swedish, but found in other countries too
and many come from a thriving wiki-based website,
www.folkmusic.se.

Rhythm Count Percentage Cumulative

no rhythm
specified

62,840 37.49% 37.49%

 reel 27,881 16.63% 54.12%

 jig 20,353 12.14% 66.26%

 hornpipe 6,943 4.14% 70.40%

 waltz 4,636 2.77% 73.17%

 strathspey 4,227 2.52% 75.69%

 air 3,923 2.34% 78.03%

 polka 3,863 2.30% 80.33%

 march 2,343 1.40% 81.73%

 slip jig 2,085 1.24% 82.98%

 song 1,878 1.12% 84.10%

 polska 1,663 0.99% 85.09%

 barndance 1,181 0.70% 85.79%

 country dance 1,126 0.67% 86.46%

 slide 1,110 0.66% 87.13%

 slängpolska 787 0.47% 87.60%

 double jig 772 0.46% 88.06%

 mazurka 581 0.35% 88.40%

 dance 498 0.30% 88.70%

 schottische 433 0.26% 88.96%

 bourrée 386 0.23% 89.19%

 triple hornpipe 379 0.23% 89.41%

 quadrille 359 0.21% 89.63%

 xiraldilla 247 0.15% 89.78%

 minuet 221 0.13% 89.91%

 miscellaneous 200 0.12% 90.03%

 schottis 170 0.10% 90.13%

 zwiefacher 135 0.08% 90.21%

 single jig 123 0.07% 90.28%

 other 108 0.06% 90.35%

 set dance 106 0.06% 90.41%

 [other
rhythms]

16,075 9.59% 100.00%

Table 4. A breakdown of the corpus by rhythm.

4. CONCLUSION

This paper has presented a straightforward statistical
analysis of the abc music notation corpus. The corpus
contains around 435,000 transcriptions of which just over
400,000 are folk and traditional music.
There is significant duplication within the corpus and so a
large part of the paper has discussed methods to assess
the level of duplication. This has indicated a headline fig-
ure of over 165,000 distinct folk and traditional melodies.

Much of the corpus seems to come from Western Euro-
pean and North American traditions, but there is a wide
diversity included.
The paper has also described TuneGraph, an online inter-
active user interface for exploring tune variants, based on
building a proximity graph of the underlying melodies.
Although currently only in prototype form the intention is
to deploy it on two sites with which the author is in-
volved, abcnotation.com and the Full English Digital Ar-
chive at the Vaughan Williams Memorial Library
(EDFSS, 2013).

4.1 Future work
The main focus for future work is to enhance the capa-
bilities of TuneGraph. In particular it is intended to ex-
plore some of the wide range of similarity measures that
are available as a means to build the proximity graph. As
was indicated in section 2.2.2 there may be other, more
advanced similarity measures, or combinations of simi-
larity measures, that would work better than the 2-norm
of the difference between pitch vectors.

5. REFERENCES

Bostock, M. 2012. Data-Driven Documents (d3.js), a
visualization framework for internet browsers
running JavaScript. http://d3js.org/

EDFSS. 2013. The Full English Digital Archive. The
Vaughan Williams Memorial Library.
http://www.efdss.org/efdss-the-full-english

Kelly, M. B. 2012. Evaluation of Melody Similarity
Measures. Queen’s University, Kingston, Ontario.

Langer, T. 2010. Music Information Retrieval &
Visualization. In Trends in Information
Visualization, pp. 15–22.

Orio, N., & Roda, A. 2009. A Measure of Melodic
Similarity based on a Graph Representation of the
Music Structure. ISMIR, pp 543–548.

Stober, S. 2011. Adaptive Distance Measures for
Exploration and Structuring of Music Collections,
Section 2, 1–10.

Typke, R., Wiering, F., & Veltkamp, R. C. 2005. A
survey of music information retrieval systems. In
Proc. ISMIR, pp. 153–160.

Walshaw, C. 1993. ABC2MTEX: An easy way of
transcribing folk and traditional music, Version
1.0. University of Greenwich, London.

Walshaw, C. 1994. The ABC Indexing Guide Version 1.2.
University of Greenwich, London.

Walshaw, C. 2003. A Multilevel Algorithm for Force-
Directed Graph-Drawing. Journal of Graph
Algorithms and Applications, 73, 253–285.

Walshaw, C. 2014. TuneGraph: an online visual tool for
exploring melodic similarity. In Proc. Digital
Research in the Humanities and Arts (submitted).
London.

