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Abstract

Offshore petroleum industry uses helicopters to transport the employees to and from
installations. Takeoff and landing represent a substantial part of the flight risks for passen-
gers. In this paper, we propose and analyze approaches to create a safe flight schedule to
perform pickup of employees by several independent flights. Two scenarios are considered.
Under the non-split scenario, exactly one visit is allowed to each installation. Under the
split scenario, the pickup demand of an installation can be split between several flights.
Interesting links between our problem and other problems of combinatorial optimization,
e.g., parallel machine scheduling and bin-packing are established. We provide worst-case
analysis of the performance of some of our algorithms and report the results of computa-
tional experiments conducted on randomly generated instances based on the real sets of
installations in the oil fields on the Norwegian continental shelf. This paper is the first
attempt to handle takeoff and landing risk in a flight schedule that consists of several
flights and lays ground for the study on more advanced and practically relevant models.
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1 Introduction

In offshore petroleum industry, employees are transported by helicopters to and from offshore
installations in the Norwegian Sea and the North Sea areas. Travel by a helicopter is more
comfortable and less harmful in terms of travel sickness and tiredness as compared to travel
by ship with a considerably longer duration. However, helicopter transportation is perceived
by many offshore employees to be a risky part of their work. They experience heaviness and
weightlessness during takeoff and landings, heavy noise, strong vibrations, and even sometimes
incidents or accidents. Vinnem et al.[1] claim that the hazards associated with helicopter
transportation of personnel are among the main risks experienced by offshore employees.

Helicopter accidents are reported fairly frequently. European offshore helicopter data
reveal that there have been 23 fatal and major injury accidents in the offshore oil industry
from 1968 to 2000 [2]. A recent summary report from the Helicopter Safety Study 3 (HSS-3),
undertaken by SINTEF Trondheim, indicates that among 28 OGP1 offshore accidents from
2000 to 2005, 22 occurred during the takeoff or landing phase. Since the first version of this
paper was written, three accidents have occurred in the North Sea, two in 2012 and one very
recently, in August 2013; the latter accident claimed four lives.

Helicopter planning to offshore installations may be done by a helicopter operating com-
pany (as for Statoil) or by the oil company itself (as in Petrobras). Safety is always considered
together with traditional measures while planning. But in all known publications on helicopter
planning to offshore installations the problem is defined as a vehicle routing problem (VRP)
with traditional cost or distance objectives. The vehicle routing problem is well-studied, and
numerous computational techniques are available for its solution, see for example [3], [4] and
[5] for the recent work.

Among the few published research papers on the helicopter routing to offshore installa-
tions, Moreno et al.[6] and Menezes et al.[7] seek to minimize the flight costs, the number of
flights, and the total number of offshore landings in order to improve helicopter flight safety.
Qian et al.[8] introduced a risk measure for passenger transportation by helicopter and de-
fined a safe passenger helicopter transportation problem as a vehicle routing problem with
pickups and deliveries with a risk objective in terms of the expected number of fatalities.
Two types of accidents, i.e. takeoff and landing accidents and cruise accidents, are consid-
ered as possible during a flight. The problem is formulated as an integer linear program,
which generates Hamiltonian solutions. The term ‘Hamiltonian’ refers to the fact that each
installation is visited exactly once for the combined pickup and delivery within a flight. Qian
et al.[9] extend the previous work and consider a general routing policy, under which each
installation is allowed to be visited twice if necessary, once for delivery and once for pickup.
A tabu search heuristic was implemented for real-life instances based on data taken from the
Norwegian Continental Shelf. A comprehensive study was conducted to gain insights into
passenger transportation safety by comparing the solutions obtained from optimizing risk or
cost objectives under different helicopter routing policies. In these two papers ([8], [9]), the
helicopter routing problem was defined as VRP, with risk objective which is partly distance
dependent (in cruise risk part) and partly sequence dependent (in takeoff and landing risk
part). One of the interesting findings of these two papers is that takeoff and landing risks are
the major part of the transportation risk for passengers.

In this study we, while fully appreciating the importance of the traditional measures of
the schedule quality, would like to focus an another important factor, the takeoff and landing
risk. The fact that we want to create a schedule that minimizes such a risk does not mean
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that we want to dismiss flight schedules that perform well against traditional cost functions.
The minimum risk flight schedules will complement those schedules that can be found by the
vehicle routing techniques. Even if the minimum risk flight schedules might not appear to
be the most cost-effective, we believe that having these schedules at hand will extend the
number of options for the decision-maker to choose from. Focusing on minimizing risk allows
us not to rely on the VRP techniques, but develop methods that are related to the problems
of machine scheduling and bin packing.

As one of first attempts to handle the minimum risk scheduling for several flights, in our
model we make several simplifying assumptions:

• the risk is measured as the total number of people exposed to takeoffs and landings in
all flights;

• we focus on minimization of passenger takeoff and landing risk in helicopter transporta-
tion, provided that only pickup demands are considered.

In reality, measuring the total risk should additionally include the assessment of the cruise
risk factors; however, the latter aspect again can be modeled by the VRP, and in this paper
we only address the takeoff and landing risk, as the most substantial risk component which
should be handled by a different approach.

Also in practice, a typical flight schedule performs both pickups and deliveries, e.g., chang-
ing the staff of a shift on a platform, totally or partly. The problem of minimizing the takeoff
and landing risk with simultaneous pickups and deliveries for a single flight has been suc-
cessfully handled by [9]. In the case of several flights, we are still not aware of a possible
approach to tackling simultaneous pickup and deliveries by several flights, even uncapaci-
tated. The model that allows pickup only (or, in the symmetric case, delivery only) is not
totally irrelevant and can be useful in the case of removing staff from installations in the case
of their conservation or emergency. Delivery only and pickup only take place in the case of
transporting teams of visitors (inspectors, journalists, researchers, etc.) to and then from the
installations.

We do not expect that our main model, currently being stripped off most difficulties that
arise in practice, will lead to an immediate practical implementation. Still, we believe that
it captures many features that distinguish this direction of research. We see this paper as
a necessary stage which is aimed at (i) initiating research on safe helicopter transportation
by several flights; (ii) establishing links between the safe helicopter transportation problems
and traditional problems of combinatorial optimization, including bin-packing and scheduling
problems on parallel machines; (iii) laying grounds for the study on more advanced, enhanced
and practically relevant models.

From the point of view of the theory of Operational Research, we think that the established
similarities and differences between our problems and the related problems of combinatorial
optimization are especially attractive; in particular one of our models leads to a scheduling
problem on parallel machines with the processing conditions that have not been studied before
in full form.

In our models of safe helicopter pickup, two scenarios of transportation are considered: (i)
the non-split scenario under which all people to be picked up from an offshore installation are
collected by a single flight, and (ii) the split scenario under which multiple visits to installa-
tions are allowed, each flight collecting a part of people to be picked up. For each scenario, we
present several algorithms accompanied by worst-case analysis of their performance and/or
computational experiments.
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The remainder of this paper is organized as follows. In Section 2, the connections between
the safe helicopter transportation problem and scheduling problems on parallel machines are
presented and the related work is reviewed. The non-split scenario is studied in Section 3.
The split scenario is considered in Section 4, followed by conclusions in Section 5.

2 Problem Formulation and Links with Machine Scheduling

and Bin-Packing

In all models considered in this paper, a flight is a route of a helicopter that starts at an
onshore heliport with no passengers on board, visits the selected offshore installations exactly
once in a certain order and ends at the same heliport. In principle, during a visit both pickup
and deliveries may take place, however in this paper we focus on the pickup operations only.
See Qian et al.[9] for a study of the pickup and delivery operations in a single flight.

Computational results in [9] show that for the considered instances the most essential
component of the risk associated with offshore transportation is the takeoff and landing risk.
Let

• fTL denote the probability of an accident during a combined takeoff/landing operation;

• z denote the probability of a fatal outcome for an individual involved in a takeoff/landing
accident;

• PTL denote the total number of people exposed to takeoffs and landings.

For example in [8] the frequency fTL of takeoff and landing accidents is 0.65 per one million
of takeoff and landing pairs, while the probability z is assumed to be equal to 1. Thus, the
takeoff and landing risk can be measured as the product PTL · fTL · z. The probabilities fTL

and z can be seen as constants that do not depend on the routing decisions. Thus, in order
to minimize the takeoff and landing risk, we need to minimize the variable component of the
risk function, i.e., the PTL. In turn, the problem of minimizing the PTL is closely associated
with certain scheduling and sequencing problems, as explained below.

Assume that a helicopter of capacity Q is available, i.e., no more than Q passengers can
be present on board in any stage of a flight. Let N = {1, 2, . . . , n} be a set of installations
to be visited, and an installation j ∈ N is associated with a pickup demand pj . Throughout
this paper for a non-empty subset N ′ ⊆ N of installations we denote

p(N ′) =
∑

j∈N ′

pj ,

i.e., p(N) denotes the total pick-up demand from all installations.
Define m = ⌈p(N)/Q⌉ ≥ 2, i.e., m is the smallest integer such that the inequality

p(N) ≤ mQ (1)

holds. Notice that (1) implies that at least m flights will be needed in order to pick up all
p(N) people.

The main object of our study is the following problem of Safe Helicopter Pickup (SHP):
Problem SHP: Given a set N = {1, 2, . . . , n} of installations, the pickup demands

pj , j ∈ N , and the helicopter capacity Q that satisfy (1), find a capacity-feasible flight schedule
S that satisfies total pickup demand and minimizes the total risk R(S) measured as PTL,
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the total number of people exposed to takeoffs and landings. The actual risk in terms of the
expected number of fatalities can be obtained by applying the formula R(S) · fTL · z.

In a flight schedule S, a flight is defined by the following decisions: (i) a subset of the
installations to be visited by the helicopter, and (ii) the order in which the helicopter should
visit the assigned installations. In what follows, we consider two possible pickup scenarios:

• Non-split scenario, under which no installation is visited more that once and the heli-
copter picks up all pj passengers from an installation j;

• Split scenario, under which an installation can be visited by several flights, and a flight
is allowed to pick up a part of the overall pickup demand pj .

Notice that for the non-split scenario, we additionally assume that pj ≤ Q for all j ∈ N .
On the other hand, for the split scenario, an additional third decision has to be made: how
many people to pickup from an installation during a given flight. As explained later, for the
split scenario a flight schedule with m flights always exists, while for the non-split scenario
that need not be the case and further discussion is required to define what should be seen as
an acceptable solution to the problem.

The models that arise in helicopter transportation to minimize total risk have interesting
links to various scheduling models on a single machine or on identical parallel machines to
minimize the sum of the completion times. This allows us to transfer various algorithmic ideas
known in machine scheduling to the safe transportation application under consideration.

To illustrate the mentioned link, let us start with a non-split scenario and a single flight
that has to perform pickup from h ≤ n installations, assuming that the total pickup demand
from the chosen installations does not exceed the helicopter’s capacity Q. Suppose that these
installations are visited in accordance with a permutation (π (1) , π (2) , . . . , π (h)), where π (j)
refers to the installation that is the j-th in the route. The flight starts from a heliport 0, then
visits installation π(1), followed by installation π (2), and so on, the last visited installation
is π (h), after which the helicopter returns to the heliport. The helicopter starts with no
passengers, lands at installation π(1), picks pπ(1) passengers, flies to installation π(2), lands
there with pπ(1) passengers on board, picks additional pπ(2) passengers, and so on. It can be
observed that the flight takes off from installation π(k), 1 ≤ k ≤ h − 1, and lands at the
next installation π(k + 1) with

∑k
j=1 pπ(j) passengers on board. Besides the flight takes off

from the last installation π(h) and lands at the heliport with
∑h

j=1 pπ(j) passengers on board.
Thus, the total risk associated with the flight and measured as the total number of passengers
exposed to takeoffs and landings is equal to

∑h
k=1

∑k
j=1 pπ(j) , which also can be written as

R1 (π) =
h
∑

j=1

pπ(j) (h− j + 1) =
h
∑

j=1

jpπ(h−j+1). (2)

As proved by [10], a permutation that minimizes (2) can be found by matching small
values of pj to large multipliers, or, alternatively, by matching large values of pj to small
multipliers. This implies that a permutation that satisfies

pπ(1) ≤ pπ(2) ≤ · · · ≤ pπ(h) (3)

minimizes R(S). Interpreting this well-known result in terms of helicopter transportation,
Qian et al.[9] demonstrate that an optimal sequence of installations to be visited by a single
helicopter in order to minimize the total risk can be found by visiting the installations in
non-decreasing order of the pickup demands.
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Notice that the problem of finding a permutation π that delivers the minimum to the
function

∑h
k=1

∑k
j=1 pπ(j) can be seen as a scheduling problem of processing h jobs on a

single machine to minimize the total completion time, provided that pj is the processing time
of job j. This scheduling problem in accordance with the three-field classification scheme
developed by Graham[11] is denoted by 1 ||∑Cj , where the first field is responsible for the
machine environment (“1” means that we have a single machine), the middle field is reserved
for specific processing conditions (not needed in this case) and the third field presents the
objective function to be minimized. Indeed, the completion time Cπ(k) of the job in position

π(k) is equal to the total processing time of all previously scheduled jobs, i.e., to
∑k

j=1 pπ(j).

Notice that in scheduling terms, the total pickup demand
∑h

j=1 pπ(j) for the flight defines the
maximum completion time, typically called the makespan and denoted by Cmax. As proved
by Smith [12], the permutation of jobs that solves problem 1 ||∑Cj can be found by the so-
called the Shortest Processing Time rule (SPT rule), i.e., by sorting the jobs in non-decreasing
order of their processing times, as given by (3).

Consider now the general Problem SHP in which the pickup operations should be per-
formed bym independent flights. We will denote the flights byM1, M2, · · · , Mm. Our purpose
is to find a way of performing the pickup by m flights so that the total risk is minimized. We
call the largest number of passengers on board a flight, i.e., the number of passengers brought
to the heliport, the load of that flight. Temporarily, we ignore the capacity of the helicopter
and assume that in principle each flight can have an arbitrary load.

As stated in the introduction, we consider neither the actual time-tabling of the flights,
nor the distance to travel, which are typical issues in vehicle routing, see for example [3], [4]
and [5].

Let Ni denote the set of installations visited by flight Mi, 1 ≤ i ≤ m. For
an individual flight that visits hi = |Ni| selected installations given by the sequence
(0, πi (1) , πi (2) , . . . , πi (hi) , 0), the total risk is still determined by a formula similar to (2). In
particular, the last installation visited by the flight will contribute its pickup demand pπi(hi),
the previous installation will contribute 2pπi(hi−1), and so on: the installation in the position
hi − k + 1, i.e., in the k−th position from behind, will contribute kpπi(hi−k+1). The overall
risk R of performing m flights can be written as

R =

m
∑

i=1

hi
∑

j=1

pπi(j) (hi − j + 1) =

m
∑

i=1

hi
∑

j=1

jpπi(h−j+1). (4)

Exactly the same expression defines the sum of the completion times of processing jobs of
set N on m parallel identical machines M1,M2, . . . ,Mm, provided that machine Mi processes
the jobs of set Ni in the sequence πi (1) , πi (2) , . . . , πi (hi), where hi = |Ni|. This implies
Problem SHP with m flights (ignoring the capacity of the helicopter) reduces to the well-
known scheduling problem of minimizing sum of the completion times on m parallel machines,
traditionally denoted by Pm ||

∑

Cj , where we write “Pm” in the first field to refer to m
parallel identical machines; see [11]. The latter scheduling problem is known to be solvable in
polynomial time. The solution algorithm belongs to the family of list scheduling algorithms
introduced by Graham [13]. A general List Scheduling (LS) algorithm applied to parallel
identical machines can be described as follows.

Algorithm LS

Step 1. Form an arbitrary list L of the jobs.

Step 2. While list L is not empty do:
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(a) At any time that a machine becomes available, take the first job in the list and
assign it to the machine. Remove the assigned job from the list.

Step 3. Stop.

As proved by Conway et al. [14], Algorithm LS solves problem Pm ||
∑

Cj , provided that
the list L in Step 1 is formed by the SPT rule, i.e., the jobs are renumbered so that

p1 ≤ p2 ≤ · · · ≤ pn. (5)

In terms of safe helicopter transportation, Algorithm SPT admits a natural interpretation:
scan the installations in the SPT order given by (5) and assign the next installation to a flight
that currently has the smallest load. Below we present a version of the algorithm that requires
O(n log n) time.

Algorithm SPT

Step 1. Renumber the installations in accordance with (5). Let n = qm + r, where q ≥ 1
and 0 ≤ r ≤ m− 1. Create m empty flights M1, M2,. . . ,Mm.

Step 2. For k from 1 to q do

(a) For i from 1 to m do

(a1) Assign installation (k − 1)m+ i to the k−th position in flight Mi.

Step 3. If r > 0 then for i from 1 to r do

(a) Assign installation qm+ i to the (q + 1)−th position in flight Mi.

Step 4. Call the resulting flight schedule SSPT (m) and stop.

Notice that only finding the SPT sequence of the installations requires O(n log n) time,
while the rest of Algorithm SPT takes only O(n) time. The algorithm determines the flight
schedule SSPT (m) which associates each flight Mi with a set Ni of installations and specifies
in which order those installations have to be visited, 1 ≤ i ≤ m.

Example 1. Consider Problem SHP of finding the minimum risk schedule of picking up
people from 8 installations by 3 flights M1, M2 and M3. The pickup demand values are given
in Table 1. Notice that n = 8, m = 3, q = 2 and r = 2.

j 1 2 3 4 5 6 7 8

pj 8 10 7 6 5 4 4 3

Table 1: Numerical example for Algorithm SPT for m = 3

The SPT sequence of installations is (8, 6, 7, 5, 4, 3, 1, 2). In Step 2 for k = 1 Algorithm SPT
will create the flights M1 = (8), M2 = (6) and M3 = (7). After running Step 2 for k = 2, we
obtain the flights M1 = (8, 5), M2 = (6, 4) and M3 = (7, 3). Finally, Step 3 forms the flights
in their final form: M1 = (8, 5, 1), M2 = (6, 4, 2) and M3 = (7, 3). Thus, the loads of the
flights M1, M2 and M3 are 3 + 5 + 8 = 16, 4 + 6 + 10 = 20 and 4 + 7 = 11, respectively. The
total risk is equal to (3× 3 + 2× 5 + 8) + (3× 4 + 2× 6 + 10) + (2× 4 + 7) = 76.
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Given an instance of Problem SHP, Algorithm SPT outputs a flight schedule SSPT (m).
However, Algorithm SPT ignores the capacityQ of a helicopter. If the flight schedule SSPT (m)
is capacity-feasible, i.e., if max {p(Ni)|1 ≤ i ≤ m} ≤ Q, then this schedule is optimal and the
original Problem SHP is solved.

From now on, we consider the capacitated version of Problem SHP, i.e., the load of each
flight cannot exceed Q. Assume that schedule SSPT (m) is not capacity-feasible.

A scheduling problem associated with Problem SHP with m flights is problem Pm|Cj ≤
Q|

∑

Cj , where in the middle field we write “Cj ≤ Q” to stress that all jobs have a common
deadline Q. In terms of helicopter transportation Cj is understood as the number of people on
board of the flight at the moment of the takeoff at installation j. A related interpretation of
the helicopter capacity in scheduling terms is that we only consider flight schedules S for which
Cmax(S) = max{Cj |j ∈ N} ≤ Q, i.e., the makespan of such a schedule is bounded by Q. The
later scheduling problem is unlikely to be solvable in polynomial time, since the problem of
checking the existence of a schedule for identical parallel machines with a bounded makespan
is NP-complete; in fact, for m = 2 such a problem is equivalent to the famous NP-complete
Partition problem.

The total risk and the helicopter capacity are related to the sum of the completion times
and the makespan of the corresponding schedule, respectively. We may put Problem SHP
into correspondence to a non-preemptive scheduling problem on parallel machines with two
criteria,

∑

Cj and Cmax. Stein and Wein [15] and Aslam et al. [16] prove that for a general
scheduling problem there exists an algorithm that delivers a schedule with the values of these
objectives a constant factor away from the optimal values. The problems on parallel machines
to minimize the makespan subject to the minimum total flow time have received a certain
attention. Gupta and Ho [17] consider the two-machine problem and Gupta and Ruiz-Torres
[18] address the problem with m machines. Eck and Pinedo [19] propose heuristics for both
two-machine and m-machine problems. These results, although relevant to Problem SHP
under the non-split scenario, are not directly applicable, since in our case we have got a hard
upper bound Q on the value of the makespan.

Thus, given an instance of Problem SHP to decide whether there exists a capacity-feasible
flight schedule with m flights under the non-split scenario is NP-complete. On the other hand,
if we increase the number of flights, we may easily find a feasible flight schedule. In fact, a
flight schedule with n flights is always available, in which each installation j is served by the
flight (0, j, 0) that visits no other installations. However, such a schedule, although the safest
possible, may be impractical due to a high cost and/or long time to implement.

The problem of finding the smallest number of capacity-feasible flights that can satisfy the
total pickup demand is essentially a bin-packing problem. In our notation, the latter problem
can be formulated as follows: given a set N of items with item j being of size pj , pack all
items in the smallest number of bins of size Q each. The bin-packing problem is NP-hard
and is one of the most studied problems in combinatorial optimization, especially from the
approximability point of view. We refer to the classical survey by Coffman et al. [20].

Strictly speaking, Problem SHP under the non-split scenario should be seen as a bicriteria
problem in which the number of flights and the total risk should be minimized simultaneously
and a solution is delivered in the form of Pareto-optimal flight schedules. However, this
problem is intractable, having the bin-packing as a part of it. On the other hand, in practice,
there is no need to know the full efficiency frontier of the bicriteria problem. For the decision-
maker it will be sufficient to be provided with several feasible flight schedules to choose from.
We pursue this approach in Section 3, where we present and analyze several algorithms for
finding feasible schedules with various numbers of flights. Our algorithms explore the links of
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Problem SHP with both parallel machine scheduling and bin-packing.
Now we pass to discussing Problem SHP under the split scenario. Recall that under that

scenario not all people from an installation are picked up by a single flight; instead, an instal-
lation can be visited by several flights, each taking a part of the initial pickup demand. The
first analogy, that one may think of, is to associate Problem SHP under the split scenario with
preemptive parallel machine scheduling. Recall that in parallel machine scheduling allowing
preemption means that the processing of a job on any machine can be interrupted at any
time and resumed later on, possibly on another machine. In the final schedule, all jobs must
be completed, and a job is not allowed to be processed on more than one machine at a time.
Leung and Pinedo [21] give polynomial algorithms for problem Pm|pmtn,Cj ≤ d̄j |

∑

Cj ; here
in the middle field we (i) write “pmtn” to stress that preemption is allowed, and (ii) indicate
that job j has a deadline d̄j by which it must be completed. Extensions of this result to
the machines that may have individual speeds are given by McCormick and Pinedo [22] and
Gonzalez et al. [23].

Since the helicopter capacity Q can be understood as a deadline, common to all jobs,
there is a certain analogy between Problem SHP under the split scenario and problem
Pm|pmtn,Cj ≤ d̄j = Q|

∑

Cj . Unfortunately, this analogy is not fully applicable. Consider
a flight schedule Sflight for Problem SHP in which the pickup demand from an installation j is
served by two flights: flight M ′ that takes p′j people and and flight M ′′ that takes p′′j people,
where pj = p′j + p′′j . Compare this with a schedule Spmtn on parallel machines in which job
j is processed with preemption for p′j time units on machine M ′ and for p′′j time units on
machine M ′′. There are two points of difference between these two schedules:

(i) in schedule Spmtn the two pieces of job j cannot be processed simultaneously, but there is
no such restriction in schedule Sflight; schedule Sflight allows splitting and allocating the
installation demand to different flights, but it does not mean that the multiple visits to
the installation by these flights will happen at the same point in time.

(ii) in schedule Spmtn only that piece of job j that completes last defines the completion time
of that job and therefore contributes to the objective function, but in schedule Sflight p

′

j

people contribute toward the risk of flight M ′ and p′′j people contribute toward the risk
of flight M ′′.

In the scheduling literature, there is another type of preemption, known as split, which
allows different pieces of the same job to be processed on several machines at a time. Serafini
[24] has studied a scheduling problem that arises in the production of different types of
fabric in a textile industry. Each job can be split arbitrarily and processed independently
on machines and the objective is to minimize the maximum tardiness and the maximum
weighted tardiness, provided that the jobs are assigned different weights. Xing and Zhang
[25] give a systematic study of split scheduling on parallel machines. In particular, they show
that for many objective functions, including

∑

Cj , there exists an optimal split schedule in
which all machines complete simultaneously, and such a schedule can be found in polynomial
time. Split scheduling on parallel machines still does not address the point of difference (ii)
mentioned above, and this approach cannot be used directly for solving Problem SHP.

Schedule SSPT (m) found by Algorithm SPT provides the smallest risk ifm flights are used,
but it is not necessarily feasible, so that the value R(SSPT (m)) can serve as a lower bound
on the total risk for a flight schedule under the split scenario. We present some algorithms
and their worst-case and computational analysis in Section 4.

We conclude this section with a summary of the links between parallel machine scheduling
and Problem SHP; see Table 2.
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Table 2: The links between Problem SHP and parallel machine scheduling
Problem SHP Parallel machine scheduling

flights identical parallel machines
installations jobs
pickup demands processing times
total risk sum of completion times
flight load makespan
helicopter capacity common deadline

or upper bound on makespan
non-split scenario nonpreemptive scheduling
split scenario preemptive or split scheduling

(close but not exact analogy)

3 Non-Split Scenario

In this section, we consider Problem SHP of minimizing the total risk under the non-split
scenario. No installation is visited twice, i.e., a helicopter that visits an installation j must
pick up all pj passengers, j = 1, 2, . . . , n. The capacity of the helicopter is denoted by Q, and
in order to be able to apply the non-split scenario we assume that pj ≤ Q for each installation
j. Each flight is defined by (i) a subset of the installations to be visited by each flight, and
(ii) the order in which the assigned installations are visited by a flight. The total pickup
demand and the helicopter capacity satisfy the inequality (1), in which m is the smallest
possible integer, m ≥ 2. We describe and analyze several techniques that create feasible flight
schedules. The decision-maker chooses a schedule from the provided list of several solutions
characterized by the number of flights and the total risk value.

Consider a flight schedule SSPT (m) in which all installations are assigned to m routes by
Algorithm SPT described in Section 2. In what follows, we assume that this schedule is not
capacity-feasible.

As mentioned in Section 2, to check whether there exists a feasible non-split flight schedule
with m flights is NP-hard. We start with establishing an upper bound on the number of flights
that would guarantee the existence of a capacity-feasible non-split flight schedule.

Lemma 1 For Problem SHP that satisfies (1) there exists a capacity-feasible non-split flight
schedule with at most 2m− 1 flights, and this bound is tight.

Proof: Suppose that m′ is the smallest number of flights for which a required feasible flight
schedule S(m′) exists, and m′ ≥ 2m. In schedule S(m′), the installations are split into groups
Ni, 1 ≤ i ≤ m′, each associated with the corresponding flight Mi. There exists a group N ′

for which p(N ′) ≤ 1
2Q; otherwise,

p(N) =
m′

∑

i=1

p(Ni) > (2m)
1

2
Q = mQ.

If there exists another group N ′′ with p(N ′′) ≤ 1
2Q, then p(N ′) + p(N ′′) ≤ Q, and groups

N ′ and N ′′ can be merged into one group, reducing the number of flights, which leads to a
contradiction. Below we show that such a group always exists, so that m′ ≥ 2m cannot be
the smallest number of flights.
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Let group N be an arbitrary group other than N ′. If p(N ′) + p(N) ≤ Q, then we can
take group N as group N ′′. Otherwise, the total pickup demands of the remaining 2m − 2
groups is less than p(N)−

(

p(N ′) + p(N)
)

≤ (m− 1)Q, and at least one of them must have
the total pickup demand of at most 1

2Q, and that group can be taken as group N ′′.
To see that in the worst case the value of 2m−1 cannot be reduced, take an instance of the

problem with 2m−1 installations, each of pickup demand m, so that p(N) = m (2m− 1) and
Q = 2m−1. There exists a feasible flight schedule S(2m−1) with 2m−1 flights, each visiting
one installation and having a load of at most m < Q passengers. In any flight schedule with
less than 2m− 1 flights at least two installations will be assigned to the same flight, but then
a load of such a flight is at least 2m > Q. This proves the lemma.

We know that a flight schedule found by Algorithm SPT provides the smallest total risk
for a given number of flights. Among the schedules that will be offered to the decision-maker
will be such that uses m′ flights, m < m′, and assigns installations to flights according to the
SPT rule, as described below.

Algorithm SPT-NonSplit

Step 1. Define m′ := m.

Step 2 Repeat

(a) Define m′ := m′ + 1.

(b) Run Algorithm SPT for m′ flights and find schedule SSPT (m
′).

until schedule SSPT (m
′) is capacity feasible.

Step 3. Output schedule SSPT (m
′) and stop.

Since the SPT sequence of jobs need to be created only once, the running time of Algo-
rithm SPT-NonSplit is at most O (mn). Since schedule SSPT (m

′) found by the algorithm is
an SPT flight schedule and m′ is the smallest number of flights for which such a schedule
exists, it follows that under the non-split scenario the total risk reaches its minimum for
schedule SSPT (m

′).
For Example 1 with Q = 19, we see that schedule SSPT (3) is infeasible, since flight M2

has a load of 20. Algorithm SPT-NonSplit will output schedule SSPT (4) in which flight Mi

visits installations i and i + 4 in this order, 1 ≤ i ≤ 4. The total risk of schedule SSPT (4) is
equal to 63.

Still, the number of flights m′ in schedule SSPT (m
′) can be too large for a practical

implementation. In fact, if there exists an installation with the pickup demand equal to Q,
then there is no feasible SPT schedule with less than n flights, i.e., an SPT schedule will
consists of m′ = n flights, exactly one to each installation. The same is true if the sum of
the smallest and the largest pickup demands exceeds Q. For schedule SSPT (m

′) to exist, the
number of flights m′ in terms of m and Q that satisfy (1) can be as large as Q (m− 1) + 1.
The latter value is achieved for an instance with n = Q (m− 1) + 1 installations, such that
p1 = p2 = · · · = pn−1 = 1 and pn = Q.

Below we provide several approaches that might find feasible non-split flight schedules
with a smaller number of flights.

For a flight schedule SSPT (m), at least one flight is capacity-feasible due to (1). Denote
the number of infeasible flights by u, where 1 ≤ u ≤ m − 1. Algorithm SPT assigns any
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Figure 1: Flight schedule created by Algorithm SPTu

new installation to the flight that currently has the smallest load, and is therefore feasible;
otherwise all partial flights are infeasible and (1) does not hold. This implies that the u
flights become infeasible because each of them visits one of the u installations n−u+1, . . . , n,
i.e., the last u installations in the SPT sequence (5). The corresponding pickup demands
pn−u+1, . . . , pn are the u largest in the whole set N. We can transform schedule SSPT (m) into
a capacity-feasible schedule S(m+u) with m+u flights by assigning each of the installations
n−u+1, . . . , n to a new individual flight. Formally, the algorithm for finding such a schedule
is described below.

Algorithm SPTu

Step 1. Run Algorithm SPT and find schedule SSPT (m). Identify the capacity-infeasible
flights and compute their number u.

Step 2. For i from 1 to u do

(a) Move installation n− u+ i to a new flight Mm+i.

Step 3. Call the resulting schedule S(m+ u) and stop.

The running time of Algorithm SPTu is O(n log n).
For Example 1 with Q = 19, Algorithm SPTu will transform schedule SSPT (3) into

schedule S(4) by moving installation 2 to a new flight M4. The total risk of schedule S(4)
is equal to 66; see Figure 1. The figure shows how the number of people on board changes
dynamically for each flight as the installations are visited in the specified order.

Below we compare the values of total risk in schedules SSPT (m) and S(m+ u).
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Theorem 1 For Problem SHP under the non-split scenario, let SSPT (m) and S(m + u) be
the flight schedules found by Algorithm SPT and Algorithm SPTu, respectively. Then

R(SSPT (m))

R (S(m+ u))
≤ 1 +

u

m
. (6)

Proof: If required, renumber the flights in schedule SSPT (m) in such a way that the first u
flights are infeasible, with installation n− u+ i being the last for flight Mi, 1 ≤ i ≤ u. Let S′

be a (partial) flight schedule obtained from schedule SSPT (m) by removing the installations
n− u+ 1, . . . , n. Let C(i) denote the total load of flight Mi in schedule S′. It follows that

C(1) ≤ C(2) ≤ · · · ≤ C(m) ≤ Q. (7)

Additionally let F (i) denote the total risk of flight Mi in schedule S′, so that R(S′) =
∑m

i=1 F
(i). The value R(S′) contributes into each R(SSPT (m)) and R(S (m+ u)), so that

R(SSPT (m)) =
m
∑

i=1

F (i) +
u
∑

i=1

(

C(i) + pn−u+i

)

; (8)

R(S (m+ u)) =
m
∑

i=1

F (i) +
u
∑

i=1

pn−u+i.

It follows that

R(SSPT (m))

R(S (m+ u))
=

∑m
i=1 F

(i) +
∑u

i=1

(

C(i) + pn−u+i

)

∑m
i=1 F

(i) +
∑u

i=1 pn−u+i

= 1 +

∑u
i=1C

(i)

R(S (m+ u))
. (9)

Recall that in schedule SSPT (m) each flight M1, . . . ,Mu is infeasible, i.e.,

u
∑

i=1

(

C(i) + pn−u+i

)

> uQ ≥ u

m
p(N)

where the last inequality is due to (1). Since

m
∑

i=1

C(i) +

u
∑

i=1

pn−u+i = p(N),

we deduce that
m
∑

i=u+1

C(i) ≤ m− u

m
p(N).

Due to (7), it is clear that C(u+1) is no larger than the average of C(u+1), . . . , C(m), i.e.,

C(u+1) ≤ 1

m− u

m
∑

i=u+1

C(i) ≤ p(N)

m
,

and we use C(1) ≤ C(2) ≤ · · · ≤ C(u) ≤ C(u+1) to obtain

u
∑

i=1

C(i) ≤ u

m
p(N).
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Notice that the value of p(N) can be understood as the total risk of a flight schedule in
which each installation is served by an individual flight. Since this is the least-risk option, for
any feasible flight schedule S the lower bound

R(S) ≥ p(N) (10)

holds. Coming back to (9), we derive

R(SSPT (m))

R(S (m+ u))
= 1 +

∑u
i=1C

(i)

R(S (m+ u))
≤ 1 +

u
m
p(N)

p(N)
= 1 +

u

m
,

which proves the required inequality (6).
Theorem 1 shows that a feasible schedule with m+u flights exists. It also gives the range

of values of the total risk for such a schedule: due to (6), we have that

R(S (m+ u)) ∈
[

m

m+ u
R(SSPT (m)), R(SSPT (m))

]

.

In the worst case, u = m − 1, and we need 2m − 1 routes, which complies well with
Lemma 1, and the bound (6) becomes

R(SSPT (m))

R(S (m+ u))
≤ 2− 1

m
.

It is possible to find a feasible schedule with less than u new flights, but with a larger
total risk than R(S (m+ u)). This can be done by employing bin-packing algorithms. The
decision-maker will be provided with a number of alternatives to choose from.

As pointed out in Section 2, the problem of finding the smallest number of capacity-feasible
flights is essentially a bin-packing problem. We associate an installation j with an item, pickup
demand pj with a size of item j, and the helicopter capacity Q with a bin capacity. Since
in our setting all items are available in advance and we are allowed to consider them in any
order, we are dealing with the off-line model of bin-packing. Let B∗ denote the smallest
number of bins into which the items can be packed. Then, in terms of Problem SHP this
implies that there exists a capacity-feasible schedule with B∗ flights.

Bin-packing is an NP-hard problem, and the main direction of research of this problem
since the 1970s has been the design and analysis of approximation algorithms; see the survey
by Coffman et al. [20]. Let H be a bin-packing heuristic which packs the items into BH bins.
Suppose the items are organized in a list L. The ratio ρH defined by

BH

B∗
≤ ρH

is called the absolute worst-case bound of an Algorithm H if the above inequality holds for all
lists L. Among most popular approximation algorithms for the off-line bin-packing are First
Fit Decreasing (FFD) and Best Fit Decreasing (BFD) heuristics. Both heuristics scan the
items in the order opposite to SPT, i.e., the larger an item is the earlier the packing decision
is taken; hence “decreasing” in their names. Both heuristics start with one empty bin and
try to place the next item into one of the existing bins; if that is impossible, a new bin is
opened and the item is placed there. The FFD method considers the bins in the order they
have been opened and places the item into the first found bin which can accommodate that
item; hence “First Fit”. The BFD method among all bins into which the item fits, selects the
one that has the smallest room. Both algorithms require O(n log n) time.
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Simchi-Levi [26] shows that for any polynomial-time bin-packing algorithm H the absolute
worst-case ratio ρH cannot be smaller than 3/2 unless P=NP, and proves that the FFD and
BFD algorithms are the best possible from an accuracy point view, since ρFFD = ρBFD = 3/2.
An algorithm by Zhang et al. [27] also delivers the absolute worst-case ratio of 3/2 but
requires O(n) time.

Notice that our Lemma 1 and Theorem 1 can be interpreted in terms of bin-packing for
the instances, in which the total size of items p(N) is bounded by m times the size Q of a
bin, and no packing into less than m bins is possible. It should be noted that in our analysis
we compare the found number of bins with m, not with the optimal number of bins as is
normally done in bin-packing analysis.

Another bin-packing method that we use is the Subset Sum (SS) heuristic due to Caprara
and Pferschy [28]. The SS heuristic packs one bin at a time, by finding a set of unpacked
items that fill as close as possible the bin capacity. Finding such a set is the classical subset
sum problem, which can be solved by a dynamic programming algorithm. In our case, the
running time of the SS heuristic is O(n2 max pj). This time, although pseudopolynomial,
is still computationally acceptable due to the range of pickup demand values we deal with
in Problem SHP. In the worst case the SS heuristic may perform worse than, e.g., the FFD
method, but it has a feature that the bins are filled close to their capacity.

We now describe a two-step procedure of finding a solution to Problem SHP based on
finding a suitable number of flights in the first step by bin-packing algorithm.

Algorithm BP

Step 1. Run Algorithm BPH, where BPH is one of the algorithms FFD, BFD, and SS. Let
BH be the found number of flights (bins), and let Ni be the set of installations assigned
to flight Mi, 1 ≤ i ≤ BH .

Step 2. Generate a flight schedule SH by sorting the installations of each set Ni in the SPT
order. Stop.

Let Algorithm BP with the bin-packing rules FFD and BFD be applied to Example 1
with Q = 19. Then both algorithms will output the same schedule SH with 3 flights, in which
M1 = (1, 2), M2 = (5, 4, 3) and M3 = (8, 6, 7) with the total risk equal to 81. If the SS rule
is used then schedule SH can be defined by the flights M1 = (6, 5, 2), M2 = (7, 3, 1) and
M3 = (8, 4) with the total risk equal to 78.

We have also designed Algorithm TS, which is a tabu search method that finds a safe
flight schedule with a suitable number of flights. Unlike the pure bin-packing heuristics FFD,
BFD and SS, Algorithm TS not only searches for the smallest number of flights, but also tries
to find the assignment of installations to flights which may be good from the point of view of
the total risk.

The tabu search method has been originated by Glover [29] and has been successfully
applied to a wide range of combinatorial optimization problems. We refrain from delivering a
detailed formal description of Algorithm TS. Instead, below we outline how the tabu search
can be adapted for our purposes. We assume that the reader is familiar with the general
scheme of tabu search and with the concepts of the tabu list, the aspiration criterion, etc.

The terminology of Problem SHP is used. We start with a description of a proce-
dure that generates an initial solution. Create m empty flights M1, M2, . . . ,Mm. Let j
be a randomly chosen installation. Scan the installations in accordance with the sequence
(j, j + 1, ..., n, 1, ..., j − 1) . Checking the existing flights in the order of their numbering start-
ing from M1, assign the next installation to the first flight which after this assignment remains
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capacity-feasible. If no such flight is found, assign the current installation to flight Mm any-
way. In the resulting flight schedule, flight Mm may be infeasible, while all other flights are
feasible.

Starting from an initial solution, the algorithm works with a penalized objective function
f(S) = R(S)+αq(S), where R(S) is the total risk for a flight schedule S and q(S) is the total
capacity violation across all flights in S. In each iteration a positive parameter α is updated
by either being divided by 1 + δ (if the current solution is feasible) or being multiplied by
1 + δ (if the current solution is infeasible). This mechanism of updating parameter α guides
the search to feasible solutions; see [30].

Each solution S is associated with an attribute set

B(S) = {(j,Mi)|installation j is visited by flight Mi}.

The neighborhood N(S) of solution S is defined by all solutions that can be reached
from S by removing installation j from route Mi and inserting it into another route Mi′ . A
transition from a solution S to a new solution S′ ∈ N(S) is called a move, which can also be
interpreted by the removal of the attribute (j,Mi) from the set B(S) and the inclusion of the
attribute (j,Mi′) into the set B(S′).

Continuous diversification is achieved by penalizing the attributes most frequently added
to the solution when evaluating a move. LetH(S) ⊆ N(S) be an admissible subset of neighbor
solutions which can be reached from S by a non-tabu move, or which are feasible and meet
the aspiration criterion. Let ρji′ be the frequency at which the attribute (j,Mi′) has been
present in the solution. Any solution S′ ∈ H(S) such that f(S′) ≥ f(S) is penalized by a term
ρ(S′) = γR(S)

√
nmρji′/λ, where γ is used to control the intensity of diversification and λ is

the iteration counter. The selection of the best solution S′ ∈ H(S) is based on the penalized
objective f(S′) + ρ(S′). The algorithm terminates when a fixed number η of iterations is
reached, where η is a user-controlled parameter.

The algorithm starts with m defined by (1), and if the tabu search procedure does not
yield a feasible solution after η iterations, the number is increased by 1.

The tabu search algorithm works with four user-controlled parameters, i.e., δ, γ, θ, η.
The two parameters δ and γ are selected from the uniform distribution over (0, 1). The
parameter θ is an integer selected from the uniform distribution over {1, 2, · · · , ⌈√mn⌉}. In
our experiments, Algorithm TS was executed five times with η = 105 for each instance, and
the best results out of the five runs were recorded.

We have conducted computational experiments with the described algorithms that find
feasible non-split flight schedules. Our test-bed contains four sets of instances with 9, 14, 34,
or 37 installations; these are actual numbers of installations in the oil fields on Norwegian
continental shelf. The small A-instances and B-instances have 9 and 14 installations, respec-
tively; see [8]. The large Flesland and Sola instances have 34 and 37 installations, respectively;
see [9]. Each set contains 10 instances with pickup demands uniformly distributed in [1, 18],
i.e., 40 instances in total. The helicopter capacity Q is set equal to 19, which corresponds to
a real aircraft.

Tables 3 and 4 summarize our computational results for A, B instances and Flesland, Sola
instances, respectively. For each instance, we include the m value, and for each found flight
schedule S we present its risk value R(S) and the number of flights (in brackets). Also, for
each set of instances we report their respective average values (line Avg.).

The SPT-NonSplit and SPTu solutions have lower takeoff and landing risk values, which
can be explained by the fact that the corresponding solution is either an SPT schedule or
obtained from an SPT schedule. The price for a lower risk is a fairly large number of flights,
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especially for schedules found by Algorithm SPT-NonSplit. For example, even for smaller
A-instances with 9 installations only, Algorithm SPT-NonSplit outputs schedules in which
each installation is visited by an individual flight (instances A2, A4-A6, and A8-A10). The
same phenomenon is observed for the B-instances (instances B1, B4, B5, B8 and B9) and
for the Flesland instances (instances F2, F4 and F5). Recall that a feasible SPT schedule
will have as many flights as installations if the sum of the smallest and the largest pickup
demand exceed Q. For the generated Sola instances with 39 installations the latter condition
does not hold, and always less than 39 flights are used. Observe that the number of flights in
schedules found by Algorithm SPT-NonSplit could be as large as 2m (see instances F5 and
S7). Algorithm SPTu typically delivers flight schedules with moderate numbers of flights,
only for one instance A2 the number of flights is equal to the number of installations. The
risk values are no less that those in schedules found by Algorithm SPT-NonSplit, but never
larger than those found by the remaining four algorithms, that are aimed at reducing the
number of flights.

Algorithms FFD, BFD and SS are pure bin-packing procedures that do not take into
account the risk issues while searching for the number of feasible flights. The TS algorithm
uses the risk component as part of its dynamically updated objective; therefore, it is not
surprising that the average risk value delivered by TS algorithm is better than those provided
by the bin-packing methods. Only on several occasions (e.g., instances B2, F2, F3, S4) the
TS algorithm produces a flight schedule with a larger risk than that found by one of the
bin-packing algorithms; but then the TS schedule consists of less flights.

For 16 out of the 20 A- and B-instances and on 9 occasions for larger instances, the
smallest possible number of flights matching the lower bound m is determined. The schedules
with m flights, if found by any algorithm, are always also found by the TS algorithm and
have either the same of smaller risk values; this is why we mark with ∗ the corresponding
positions in the TS column of our tables.

Algorithm SS on average creates more flights than Algorithms FFD and BFD, which
is especially noticeable for the large Flesland and Sola instances and is consistent with the
absolute worst-case ratios of these algorithms (larger than 3/2 for Algorithm SS).

Thus, a decision-maker who is looking for a non-split schedule with the smallest risk and
does not mind a fairly large number of flights, should make a choice between the solutions
provided by Algorithms SPT-NonSplit and SPTu. A decision-maker who is after a non-split
schedule with a small number of flights should rely on the TS algorithm which is superior to
the bin-packing algorithms in terms of both the number of flights and the minimal takeoff
and landing risk.

4 Split Scenario

In this section, we consider the split scenario for Problem SHP. Recall that under this scenario
we want to create a schedule with exactlym flights, wherem is the smallest value that satisfies
(1). We present two heuristic algorithms, both based on transformation of an infeasible
schedule SSPT (m) found by Algorithm SPT. Recall that Algorithm SPT minimizes the sum
of the completion times on identical parallel machines, and for the latter problem preemption
if allowed does not reduce the value of the function, as shown by Rothcopf [31].

For schedule SSPT (m), let a flight Mi visits the installations in accordance with the
sequence πi, 1 ≤ i ≤ m. Our first heuristic takes schedule SSPT (m) as an input and creates
a single sequence π of n installations as the merger of the sequences (π1, π2, . . . , πm). Our
heuristic scans the installations in the order π, and splits the sequence into m flights, closing
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Table 3: Computational results for A-instances and B-instances from Qian et al.[8]
SPT-NonSplit SPTu FFD BFD SS TS

Ins. m R(S) (flights) R(S) (flights) R(S) (flights) R(S) (flights) R(S) (flights) R(S) (flights)

A1 5 85 (8) 88 (7) 104 (5) 105 (5) 105 (5) 104 (5∗)
A2 6 113 (9) 113 (9) 129 (7) 129 (7) 129 (7) 129 (7)
A3 5 82 (8) 94 (6) 102 (5) 102 (5) 102 (5) 101 (5∗)
A4 5 91 (9) 93 (8) 110 (5) 110 (5) 110 (5) 110 (5∗)
A5 5 81 (9) 87 (7) 102 (5) 102 (5) 103 (5) 98 (5∗)
A6 5 92 (9) 102 (7) 110 (6) 110 (6) 110 (6) 110 (6)
A7 5 89 (7) 89 (7) 104 (5) 108 (5) 108 (5) 104 (5∗)
A8 5 94 (9) 101 (7) 112 (6) 112 (6) 112 (6) 109 (6)
A9 5 86 (9) 93 (7) 108 (5) 108 (5) 108 (5) 108 (5∗)
A10 6 100 (9) 104 (8) 118 (6) 118 (6) 118 (6) 118 (6∗)

Avg. 5.2 91.3 (8.6) 96.4 (7.3) 109.9 (5.5) 110.4 (5.5) 110.5 (5.5) 109.1 (5.5)

B1 8 136 (14) 146 (11) 172 (8) 172 (8) 172 (8) 170 (8∗)
B2 8 142 (13) 152 (11) 177 (8) 177 (8) 173 (9) 177 (8∗)
B3 7 123 (11) 133 (9) 146 (7) 152 (7) 149 (7) 145 (7∗)
B4 8 136 (14) 149 (11) 172 (8) 172 (8) 173 (8) 170 (8∗)
B5 7 125 (14) 135 (10) 160 (7) 163 (7) 163 (7) 160 (7∗)
B6 8 140 (13) 146 (11) 170 (8) 170 (8) 174 (8) 169 (8∗)
B7 6 126 (8) 126 (8) 145 (6) 145 (6) 148 (6) 143 (6∗)
B8 8 135 (14) 144 (11) 167 (8) 167 (8) 167 (8) 161 (8∗)
B9 7 132 (14) 143 (11) 167 (8) 167 (8) 169 (8) 159 (8)
B10 6 112 (10) 116 (9) 136 (6) 136 (6) 138 (6) 135 (6∗)

Avg. 7.3 130.7 (12.5) 139 (10.2) 161.2 (7.4) 162.1 (7.4) 162.6 (7.5) 158.9 (7.4)

Table 4: Computational results for Flesland and Sola instances from Qian et al.[9]
SPT-NonSplit SPTu FFD BFD SS TS

Ins. m R(S)(flights) R(S)(flights) R(S)(flights) R(S)(flights) R(S)(flights) R(S)(flights)

F1 21 398 (33) 402 (31) 456 (24) 456 (24) 456 (24) 456 (24)
F2 20 363 (34) 377 (30) 445 (21) 445 (21) 442 (22) 445 (21)
F3 16 300 (33) 341 (23) 401 (17) 401 (17) 403 (17) 405 (16∗)
F4 20 373 (34) 387 (29) 442 (21) 442 (21) 438 (22) 442 (21)
F5 17 307 (34) 342 (24) 412 (17) 412 (17) 405 (17) 396 (17∗)
F6 19 344 (33) 361 (27) 418 (19) 418 (19) 423 (19) 415 (19∗)
F7 18 336 (30) 350 (26) 400 (19) 400 (19) 404 (19) 396 (19)
F8 16 302 (31) 328 (23) 374 (16) 374 (16) 377 (17) 374 (16∗)
F9 17 323 (30) 336 (25) 384 (19) 384 (19) 386 (19) 382 (19)
F10 18 334 (33) 364 (25) 416 (18) 416 (18) 421 (18) 416 (18∗)

Avg. 18.2 338 (32.5) 358.8 (26.3) 414.8 (19.1) 414.8 (19.1) 415.5 (19.4) 412.7 (19)

S1 18 343 (35) 381 (27) 458 (19) 459 (19) 453 (20) 450 (19)
S2 20 368 (36) 394 (28) 446 (21) 446 (21) 448 (22) 442 (21)
S3 22 401 (36) 412 (33) 472 (24) 472 (24) 472 (24) 472 (24)
S4 19 356 (36) 389 (27) 448 (20) 448 (20) 446 (20) 452 (19∗)
S5 18 329 (36) 366 (25) 445 (18) 445 (18) 432 (19) 425 (18∗)
S6 17 326 (32) 359 (25) 419 (18) 419 (18) 423 (18) 413 (18)
S7 18 338 (36) 377 (26) 436 (19) 436 (19) 439 (19) 425 (19)
S8 19 345 (36) 379 (26) 438 (19) 440 (19) 444 (19) 433 (19∗)
S9 18 339 (32) 360 (25) 412 (19) 414 (19) 414 (19) 408 (19)
S10 18 334 (35) 358 (27) 425 (18) 427 (18) 427 (18) 423 (18∗)

Avg. 18.7 347.9 (35) 377.5 (26.9) 439.9 (19.5) 440.6 (19.5) 439.8 (19.8) 434.3 (19.4)
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the current flight each time when the capacity Q is reached. Its formal description is given
below.

Algorithm Split1

Step 1. Run Algorithm SPT and find schedule SSPT (m). Create the sequence π by merging
the sequences π1, π2, . . . , πm. Renumber the installations in the order they appear in
sequence π. Define u0 = v0 = 0.

Step 2. For i from 1 to m− 1 do

(a) Find an installation ui such that

vi−1 +

ui−1
∑

j=ui−1+1

pj < Q, vi−1 +

ui
∑

j=ui−1+1

pj ≥ Q.

Compute vi := vi−1 +
∑ui

j=ui−1+1 pj −Q.

(b) Form flight Mi that picks up vi−1 people from installation ui−1 (provided that
vi−1 > 0, otherwise the installation is not visited), pj people from each installation
j, ui−1 + 1 ≤ j ≤ ui, and pui

− vi people from installation ui.

Step 3 Form the last flight Mm that picks up vm−1 people from installation um−1 (provided
that vm−1 > 0, otherwise the installation is not visited) and pj people from all remaining
installations.

Step 4. If required, for each flight Mi, 1 ≤ i ≤ m, rearrange the assigned installations in
non-decreasing order of the numbers of passengers to be picked up.

Step 5. Call the resulting schedule SSplit1(m) and stop.

The running time of the algorithm is O(n log n+ nm). The way it performs the splitting
is very similar to the classical “wrap around” algorithm by McNaughton [32] that finds a
makespan-optimal preemptive schedule for the scheduling problem on m identical parallel
machines.

Algorithm Split1 applied to Example 1 with Q = 19 works as follows. The initial permu-
tation π is (8, 5, 1, 6, 4, 2, 7, 3). In the course of running the algorithm, the pickup demands of
installations 6 and 7 are split. In our description of the flights in schedule SSplit1(3) obtained
after the sorting in Step 4, all passengers are collected from an installation, unless stated
otherwise. Flight M1 visits installations 8, 6 (to pick up 3 passengers), then 5 and 1 with
the risk 3 + 6 + 11 + 19 = 39. Flight M2 takes 1 person from installation 6, then visits
installations 4 and 2, and then picks up 2 people from installation 7; the total risk of that
flight is 1+7+17+19 = 44. Finally, flight M3 picks up 2 people from installation 7 and then
visits installation 3; the total risk of that flight is 2 + 9 = 11. The risk of the schedule is 94.

Our second algorithm also explores the structure of schedule SSPT (m) and splits only
those demands that make the corresponding flights in that schedule infeasible. Assume that
there are u infeasible flights in schedule SSPT (m), where 1 ≤ u ≤ m − 1. Similarly to the
proof of Theorem 1, we renumber the flights in schedule SSPT (m) in such a way that the first
u flights are infeasible, with installation n − u + i being the last for flight Mi, 1 ≤ i ≤ u.
Removing the installations n−u+1, . . . , n from schedule SSPT (m) we obtain a (partial) flight
schedule S′ in which the values of total load C(i), 1 ≤ i ≤ m, satisfy (7).
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We show that there exists a split flight schedule with m flights with the total risk that is
less than

(

2− 1
m

)

R(SSPT (m)).
In schedule SSPT (m), for an infeasible flight Mi, 1 ≤ i ≤ u, denote

xi := C(i) + pn−u+i −Q

and call this value the excess of demand pn−u+i. Informally, xi is the number of passengers
that cannot be taken from installation n − u + i and has to be redistributed between other
flights. Let X =

∑u
i=1 xi be the total excess of u infeasible flights due to the pickup demands

pn−u+1, · · · , pn. To create a feasible solution with m flights, we redistribute the total excess
over the m− u flights that are feasible in schedule SSPT (m).

Starting from i = 1, reassign x1 passengers from installation n−u+1 to the first available
feasible flight Mu+1. If the flight remains feasible, i.e., its total load is still at most Q, move
x2 passengers from installation n− u+ 2 to the first available feasible flight, etc.; if not, find
by how much the load of flight M1 exceeds Q and assign the excess to the next available
flight. Repeating this process, the whole excess X will be eventually redistributed due to (1).
The formal description of the algorithm is given below.

Algorithm Split2

Step 1. Run Algorithm SPT. Compute the load Li of each flightMi, 1 ≤ i ≤ m. If required,
modify the found schedule appropriately as described above, so that the first u flights
are infeasible. Determine excess values xi, 1 ≤ i ≤ u. Initialize i := j := 1.

Step 2 While i ≤ u do

(a) Make flight Mi pick up xi passengers less from installation n−u+ i. Close flight Mi

by redefining its load Li := Q. Include installation n−u+i to the first feasible flight
Mu+j to be currently the last visited and make the flight pick up xi passengers of
from that installation. Increase the load of flight Mu+j by Lu+j := Lu+j + xi. If
Lu+j ≤ Q, then go to Step 2(c); otherwise go to Step 2(b).

(b) While Lu+j> Q do

(b1) Update the excess value xi := Lu+j − Q. Make flight Mu+j pick up xi
passengers less from installation n− u+ i. Close flight Mu+j by redefining its
load Lu+j := Q. Include installation n−u+i to the first feasible flight Mu+j+1

to be currently the last visited and make the flight pick up xi passengers of from
that installation. Increase the load of flight Mu+j+1 by Lu+j+1 := Lu+j+1+xi.
Set j := j + 1.

(b2) End while.

(c) Set: i = i+ 1.

(d) End while.

Step 3. Call the resulting schedule SSplit2(m) and stop.

If Algorithm Split2 is applied to Example 1 with Q = 19 and in the final schedule
the original numbering of the flights is restored, then flight M1 is exactly as in schedule
SSPT (3), and flight M2 is almost as in SSPT (3), except not 10 but 9 passengers are picked
up from installation 2. The remaining passenger is picked up from installation 2 by flight
M3. If the additional visit to installation 2 by flight M3 is sequenced to be the last in the
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Figure 2: Flight schedule created by Algorithm Split2

route (as described in Algorithm Split2), then the total risk of schedule SSplit2(3) is equal to
(3 + 8 + 16) + (4 + 10 + 19) + (4 + 11 + 12) = 87; see Figure 2. If for flight M3 the installa-
tions are visited in non-decreasing order of the numbers of passengers to be picked up, the
total risk can be reduced to become (3 + 8 + 16) + (4 + 10 + 19) + (1 + 5 + 12) = 78.

The following statement analyzes the worst-case performance of Algorithm Split2.

Theorem 2 Let SSPT (m) and SSplit2(m) be the flight schedules found by Algorithm SPT and
Algorithm Split2, respectively. Then the bound

R(SSplit2(m))

R(SSPT (m))
≤ 2− 1

m
(11)

holds and this bound is tight.

Proof: Suppose that Algorithm Split2 redistributes the excess xi of installation n− u+ i to
zi flights, 1 ≤ i ≤ u.

Since for this redistribution we may only use the flights Mu+1, . . . ,Mm, it follows that
z1 ≤ m− u. If z1 > 1 then z1 − 1 flights starting from Mu+1 are loaded to their full capacity
of Q. Then for installation n− u+ 2 we have z2 ≤ m− u− (z1 − 1).

Similarly, for 2 ≤ v ≤ u, to redistribute excess xv of installation n − u + v we have
m− u−

∑v−1
i=1 (zi − 1) available flights. This means that

zu ≤ m− u−
u−1
∑

q=1

(zi − 1) ,
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Figure 3: (a) Schedule SSPT (m); (b) Schedule SSplit2(m)

i.e.,
u
∑

i=1

zi ≤ m− u+ (u− 1) = m− 1.

In the worst case, in schedule SSplit2(m) up to m − 1 flights will have a load of Q and
one flight will have a load of p(N)− (m− 1)Q. In schedule SSplit2(m) compared to schedule
SSPT (m) there will be at most m− 1 additional visits to installations, and in the worst case
at most m− 2 of these visits will lead to a load of Q each and one visit will lead to a load of
p(N)− (m− 1)Q. This implies

R(SSplit2(m)) ≤ R(SSPT (m)) + (m− 2)Q+ p(N)− (m− 1)Q.

Due to (1) and the lower bound (10) we deduce that

R(SSplit2(m)) ≤ R(SSPT (m)) + p(N)−Q

≤ R(SSPT (m)) + p(N)− p(N)

m

= R(SSPT (m)) +
(m− 1) p(N)

m
≤

(

2− 1

m

)

R(SSPT (m)),

which proves the required bound (11).
To see that this bound is tight, take an instance of Problem SHP with m+1 installations

such that p1 = m, p2 = · · · = pm+1 = W 2, and Q = W 2 + 1, where W is a sufficiently large
number. We have that p(N) = m

(

W 2 + 1
)

, so that (1) holds as equality. It follows that
R(SSPT (m)) = m + (m− 1)W 2 +

(

W 2 +m
)

= m
(

W 2 + 2
)

; see Figure 3(a). In schedule
SSplit2(m) flight M1 picks up m people from installation 1 and W 2 − m + 1 people from
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installation m+ 1. Each flight Mi, 2 ≤ i ≤ m, visits installation i to pickup W 2 people and
installation m + 1 to pick up one passenger; see Figure 3(b). We have that R(SSplit2(m)) =
m+ (m− 1)W 2 +mQ = m+ (m− 1)W 2 +m

(

W 2 + 1
)

= 2m+W 2(2m− 1).
As W grows, the ratio

R(SSplit2(m))

R(SSPT (m))
=

W 2(2m− 1) + 2m

m (W 2 + 2)

goes to the ratio of the coefficients for W 2, i.e., to 2− 1
m
.

Since Algorithm Split2 creates at most m − 1 additional visits, its running time is
O (n log n+ nm). The algorithm delivers a split schedule with m flights with a total risk
that is less that factor 2 away from the lower bound R(SSPT (m)).

Provided that all pickup demand values do not exceed Q, in schedules found by Algo-
rithm Split1 at most m − 1 installations will be served by two flights, thereby creating at
most m− 1 additional visits (as in the case of Algorithm Split2). While the total number of
these additional visits is bounded by the same expression m − 1 for both algorithms, Algo-
rithm Split1 guarantees that no installation is visited more than twice. For Algorithm Split2
this is not the case, and for an installation its pickup demand can be split by several flights.
In practice, this is not a welcomed features, as this increases the total number of landings
and takeoffs at some installations which might be difficult to schedule.

We have conducted a series of computational experiments with Algorithms Split1 and Split
2. Please notice that in our implementation of Algorithm Split2 we additionally rearrange the
installations of each flight in non-decreasing order of the numbers of passengers to be picked
up. The same test-bed as in Section 3 is used. The m value and the risk values R(S) for the
schedules found by Algorithm Split1 and Algorithm Split2 are presented for each instance in
Table 5. Additionally, in order to validate the performance of Algorithm Split 2 in practice,
the table includes the lower bound on the total risk LB = R(SSPT (m)) and the ratio of R(S)
for the schedules found by Algorithm Split2 to that lower bound.

Algorithm Split2 outperforms Algorithm Split1 on average, and in fact for almost all
instances, except A2, A8 and F1. The risk values for the schedules generated by Algo-
rithm Split2 are less than 1.13 · LB on average for small instances and 1.15 · LB for large
instances, which is less than the theoretically proved bound 2− 1

m
. Recall that for 25 of the

considered instances a non-split schedule with m flights can be found; see Tables 3 and 4.
The risk values of the non-split schedules are less that those for split schedules; this is because
in a split schedule some of the installations will contribute several times to the overall risk
value.

The following practical recommendations can be deduced from this study. The decision-
maker should first try the non-split scenario, and only turn to the split scenario if the smallest
number of flights is imperative and non-split schedules with such number of flights cannot be
found. For finding split schedules, Algorithm Split2 should be given preference, and only if
the number of landings/takeoffs for some installation(s) is not acceptable, Algorithm Split1
should be employed as an alternative.

5 Conclusions and Future Research

This paper analyzes the passenger takeoff and landing risk for helicopter pickup in offshore
petroleum industry under two scenarios. Under the non-split scenario each installation is vis-
ited only once and all people from an installation are picked up. Under the split scenario, the
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Table 5: Computational results for the splitting algorithms
Ins. m Split1 Split2 LB Split2/LB Ins. m Split1 Split2 LB Split2/LB

A1 5 127 120 104 1.15 B1 8 220 192 170 1.13
A2 6 156 160 138 1.16 B2 8 207 198 177 1.12
A3 5 122 107 101 1.06 B3 7 171 152 145 1.05
A4 5 118 118 106 1.11 B4 8 204 191 170 1.12
A5 5 128 105 98 1.07 B5 7 189 183 158 1.16
A6 5 134 132 118 1.12 B6 8 211 192 169 1.14
A7 5 116 109 104 1.05 B7 6 183 163 143 1.14
A8 5 132 140 119 1.18 B8 8 196 177 161 1.10
A9 5 128 126 108 1.17 B9 7 218 193 166 1.16
A10 6 141 132 118 1.12 B10 6 179 156 135 1.16

Avg. 5.2 130.2 124.9 111.4 1.12 7.3 197.8 179.7 159.4 1.13

F1 21 553 564 485 1.16 S1 18 549 509 449 1.13
F2 20 552 527 455 1.16 S2 20 554 515 451 1.14
F3 16 465 454 391 1.16 S3 22 597 546 492 1.11
F4 20 547 516 452 1.14 S4 19 562 524 447 1.17
F5 17 459 442 387 1.14 S5 18 495 481 415 1.16
F6 19 490 476 415 1.15 S6 17 518 501 424 1.18
F7 18 483 466 405 1.15 S7 18 520 509 434 1.17
F8 16 479 425 372 1.14 S8 19 511 501 431 1.16
F9 17 474 473 401 1.18 S9 18 490 463 418 1.11
F10 18 484 458 414 1.11 S10 18 530 482 416 1.16

Avg. 18.2 498.6 480.1 417.7 1.15 18.7 532.6 503.1 437.7 1.15

pickup demand of an installation can be split between different flights. The risk is measured
as the total number of passengers exposed to takeoffs and landings.

We demonstrate the links between our safe transportation problem and problems of
scheduling and bin-packing. Under the non-split scenario, we offer several algorithms that
find flight schedules with various numbers of flights and risk values for the decision-maker to
choose the one to be implemented. In the case of the split scenario, we give two algorithms
to transform an infeasible low risk schedule into a feasible split schedule. Transformation
done by one of our algorithms increases the risk less than twice, compared to the global, not
attainable, lower bound.

Computational results are presented on randomly generated instances based on the real
numbers of installations in the oil fields on the Norwegian continental shelf.

The pickup only model studied in this paper is somewhat dual to that in which delivery
only is performed by several flights. In the latter case, a flight will start at the heliport with
all passengers to be delivered on board, visits the installations in some established order and
leaves the required number of passengers in each installation, and returns to the heliport
with no passengers on board. The delivery model also accepts two scenarios, non-split and
split. The problem is closely related to that of pickup only, and does not need to be studied
separately. To handle the delivery model, we can do the following:

1. For each installation, treat the delivery demands as pickup demands.

2. Applying the corresponding scenario, find flight schedules for the resulting artificial
pickup problem.

3. Convert found flight schedules into schedules for the original delivery problem by re-
versing the order in which the installations are visited by each flight.

Notice that the value of the total risk for a flight schedule created for the artificial pickup
problem is equal to that for the original delivery problem, since the same values need to be
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added for each flight, but in the opposite order. For example, if for Example 1 the values in
Table 1 are the delivery demands, then a possible flight schedule for the non-split scenario
can be converted from that found by Algorithm SPTu: flight M1 visits the installations in the
order (1, 5, 8), for flights M2 and M3 the sequences are (4, 6) and (3, 7), respectively, while
flight M4 visits installation 2 alone. To visualize such a schedule, reverse the order of the bars
for each flight in Figure 1.

Recall that Qian et al. [9] show how to perform simultaneous pickup and delivery by a
single flight of sufficient capacity. We are not aware how to extend their result for more than
one flight, even if the flight capacity is ignored. Counterexamples show that using a version
of Algorithm LS with a list of jobs organized by some simple priority rules does not solve the
problem optimally.

Among further research goals of studying the range of safe helicopter problems are the
following:

• perform a clear classification of various problems and determine their computational
complexity status, including those of simultaneous pickup and delivery;

• consider weighted versions of the problems, in which different risk values for landing
and takeoffs are taken into account;

• consider problems that allow penalties for excluding installations from a flight schedule;

• develop approximation algorithms and metaheuristics to handle enhanced safe helicopter
transportation problems.
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