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Abstract—The cost of a single zero-day network worm outbreak 

has been estimated at US$2.6 billion. Additionally zero-day  

worm outbreaks have been observed to spread at a significant 

pace across the global Internet, with an observed  infection 

proportion of more than 90 percent of vulnerable hosts within 10 

minutes. The threat posed by such fast-spreading malware is 

therefore significant, particularly given the fact that network 

operator / administrator intervention is not likely to take effect 

within the typical epidemiological timescale of such infections.  

An accepted tool that is used in researching the  threat 

presented by zero-day worms is the use of simulation systems. 

However when considering zero-day worm outbreaks on the 

Internet there are persistent issues of scale and fidelity. The 

Internet Worm Simulator (IWS) reported in this paper is designed 

to address these issues by presenting a novel simulation method 

that, on a single workstation, can simulate an entire IPv4 address 

space on a node-by-node basis. Being able to simulate such a 

large-scale network enables the further analysis of characteristics 

identified from worm analysis. As IWS does not rely on 

mathematical approximation, the epidemiological attributes 

identified from real-world data can be tested for zero-day worm 

outbreaks on the Internet.  

Experimentation indicates that IWS is able to accurately 

simulate and corroborate with reported characteristics of two 

previous zero-day worm outbreaks. It is intended that, in future, 

IWS may be used to aid both in the analysis of previous worm 

outbreaks and the testing of hypothetical zero-day worm 

outbreak scenarios.  

 

Keywords—cyber defence, malware, network worm, simulation, 

zero-day worm.  

I. INTRODUCTION 
A zero-day worm is a type of malware that exploits a 

vulnerability that has not been patched or acknowledged at the 

point of an outbreak, which owing to an automatic propagation 

method can spread pervasively throughout a network; which is 

exacerbated by either a lack of detection or speed of 

propagation [1]. In order to tackle such outbreaks an 

understanding of how they occur, their propagation method, 

and their epidemiological characteristics across a given 

network is essential [2]. Worms are often hard to prevent, 

counter, or contain, primarily owing to their potential speed of 

propagation; raging from fast random-scanning worms to 

slower ’stealthy’ worms that employ various techniques to 

propagate undetected. In order to aid the analysis of zero-day 
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worm epidemiology analytical models, such as [3], and 

simulation systems such as [4], have been adopted.  

Since the widespread worms that occurred in the first 

four years of the 21
st
 century, such as Code Red [3] and 

Slammer [5], there have been a series of zero-day worms such 

as Conficker [6] in 2007 and Duqu [7] in 2011. These can 

incur significant costs, with one estimate for the cost of the 

Code Red outbreak being US$2.6 billion. It is imperative that 

defences are employed in order to mitigate or prevent such 

worm outbreaks. Simulation systems provide a tool which can 

aid research into worm analysis [5], and network worm 

countermeasures [8,9]. 

Issues persist in being able to simulate a worm 

outbreak on the Internet, owing to issues of scale and fidelity. 

Previous work has focused on methods to reach this large-

scale by either using mathematical approximations about how 

a worm has spread [3], or by introducing a mixture of detailed 

packet-level simulation and mathematical approximations 

[10].  

The remainder of this paper is presented as follows: 

Section 2 sets out a definition of terms; Section 3 discusses the 

relevant previous work; Section 4 details the design of the 

Internet Worm Simulator (IWS); Section 5 presents the 

experimental methodology and results; and finally section 6 

concludes the paper with a discussion summarising the 

findings and identifying any limitations and future work.  

II. LEXICON 
A lexicon has been presented for the clarification of the 

following terms, owing to their specific use in this paper.  

Zero-Day Worm: In this paper this is defined as a type 

of malicious software that propagates automatically without 

human interaction, using a vulnerability that has not been 

patched or widely acknowledged at the point of an outbreak. 

This is a similar definition to the taxonomy described by 

Weaver et al. [2], and other published literature (see [3, 5, 

11]).  

Epidemiological Analysis: In this paper an 

epidemiological analysis is based on the rate at which 

susceptible nodes become infected. This paper focuses on the 

total number of infected nodes at any given point during an 

outbreak, and not the difference in the number of newly 

infected nodes at each period of time.  

Large-Scale Simulation: This paper defines large-scale 

simulation as being able to, or the attempt to, simulate an 

entire IPv4 address space of nodes for a given scenario; often 

with the intent of simulating a network the size of a 

contemporary Internet.  
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Datagram: In accordance with RFC1594 [12] this 

paper defines a datagram as a data entity that is to be 

transmitted across a network, specifically, this term is used to 

describe the number of data entities transmitted by a worm 

during an outbreak.  

State Variable Machine: A processing method in 

which data object interaction is derived from a set of discrete 

states. In this paper this is focused on using a set of discrete 

states in order to describe the interaction between network 

nodes for the purpose of zero-day worm analysis.  

III. RELEVANT PREVIOUS WORK 
Owing to brevity, this paper focuses on only the key areas of 

previous literature. The key areas of focus in this paper can be 

divided into two key domains: the use of simulation systems in 

worm analysis; and the methods employed in order to simulate 

large-scale networks.  

A. Simulation Systems in Worm Analysis  
A number of simulation systems have been used in order to 

undertake zero-day worm analysis, most notable of which is  

[3],that used simulation in order to analyse the epidemiology 

of the Code Red outbreak of 2001. This has been extended in 

other works, such as that by Moore et al. [5], who used a 

random-constant spread model to analyse the Slammer 

outbreak of 2003. These simulations rely on generalised 

mathematical models in order to  simulate the scale of the 

IPv4 Internet..  

B. Large-Scale Simulation  
In order to improve on generalise mathematical modelling 

techniques, packet-level simulators, such as GTNetS [4],  have 

been developed to increase the granularity of the simulation 

but at the cost of a substantial overhead. This means that 

although the issue of fidelity is tackled, this is at the cost of 

not being able to feasibly reach sufficient scale for simulating 

zero-day worm outbreaks on the IPv4 Internet. Two 

approaches have been proposed to address these competing 

limitations: hybrid simulation methods; and state variable 

machine methods.  

Hybrid simulation methods, [10] combine the 

granularity of packet-level simulators alongside the 

generalised mathematical methods in order to reach a larger 

network scale. Reported research in this area is limited 

however, with significant issues to be resolved. 

State variable machine methods, such as those 

employed by Ediger [1] and Wei et al. [13]  tackle issues of 

scale by reducing each node to a state variable machine. This 

means certain characteristics about each node can be tracked 

without the significant overhead from packet-level simulation. 

In both [1, 13] the approach taken means that a single node is 

represented by a software object in the order of kilobytes in 

size. This significant memory allocation means that neither 

can reach the scale of an entire IPv4 address space on a node-

by-node basis.  

By reducing the memory allocation required for each 

node, IWS is able to retain node-by-node granularity while still 

being able to simulate networks with a size as large as the 

IPv4 address space.  

C. Motivation  
As far as the authors are aware no previous worm  simulation 

tool has been reported which is able to simulate an entire IPv4 

network on a node-by-node basis. Of note is the simulator 

reported in [1] which attempts this however, it only reaches 

autonomous-system level granularity. It is intended that by 

being able to simulate on a node-by-node level of granularity 

the simulator will enable the accurate epidemiological analysis 

of large-scale zero-day worms. This will mean simulation is 

undertaken based on the observed, or hypothesised, 

characteristics of a worm without having to employ a 

generalised  mathematical approximation.  

The simulator reported in this paper meets these 

requirement, as well as the target of running on a single PC 

workstation. 

IV. DESIGN AND CAPABILITIES 
The Internet Worm Simulator (IWS) was developed with the 

intention of employing it in an investigation of the 

epidemiology of existing and hypothetical worms. The ability 

to retain node-by-node granularity and scalability were key 

design criteria. Similarly the ability to simulate a broad range 

of worm spreading algorithms was a key requirement. Based 

on the findings from a review  of existing simulator designs, 

along with preliminary work with the NWS simulator reported 

in [3], it was decided the simulator would be developed using 

the SVM method. This is owing to the fact that it would 

enable the simulation of the whole IPv4 Internet address 

space, whilst maintaining node-by-node granularity.  

IWS has been developed in the C programming 

language, using the GCC compiler under a 64 bit 3.4 Linux 

Kernel. IWS only requires one byte of memory per host; this 

means for an IPv4 sized network it has a memory footprint of 

4GB. This enables iws to meet the design requirements, owing 

to the use of a compiled language that offers good low level 

control of memory resources. These specifications mean that 

IWS can be ported to other 64 bit operating systems, such as 

Windows, and can also be run on a variety of different 

hardware configurations.  

In order to minimise the memory requirements of the 

simulator, node states are stored in a single byte of memory. 

Compared to NWS this is a significant reduction, where in 

experimentation carried out by the others NWS typically used 

1.6KB per node. The SVM states will vary dependent on the 

worm instance being simulated however, this allows a variety 

of variables such as tracking there infection status and 

available bandwidth. These states can be modified depending 

on whether or not it is appropriate for each simulation 

respectively.  

The IWS simulation method can be divided into three 

key areas: initialisation engine, infection engine, and reporting 

engine. As Fig. 1 illustrates these engines pass data between 
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them in order to produce the results. The engines can be 

modified to incorporate different parameters, node 

compositions, algorithms, or reporting format according to the 

required specification.  

 

 
Figure 1 IWS Design 

 

Having received the parameters that are to be used in a 

given simulation, the initialisation engine begins by setting up 

the states of each node. This step will define which nodes are 

susceptible to infection and which are initially infected. If 

other states are employed this would also be set by the 

initialisation engine, with the intent of preparing the 

parameters provided for simulation. The final step undertaken 

by the initialisation engine is to pass its details to the reporting 

engine having completed its other steps.  

The infection engine, having received the formatted 

data from the initialisation engine uses this in order to carry 

out the worm infection algorithm provided. This is an iterative 

process that uses a “clock tick” in order to determine the total 

number of infected hosts at a given point in time. For this 

paper a clock tick is representative of a single simulated 

second, and as such is passes on the current state of the worm 

outbreak to the reporting engine in a format that is 

representative of each simulated second. Upon a set point, for 

example either a particular amount of simulated time passing 

or the  number of infected nodes reaching a set threshold, the 

infection iterations cease and the final data is passed to the 

reporting engine.  

In order to log all the activity in a desirable output, the 

reporting engine takes  data from both the initialisation and 

infection engines . This means the number of nodes with a 

certain state can be logged, giving the opportunity for 

comparative and exploratory investigations and 

epidemiological analysis.  

IWS can be modified for a variety of different scenarios 

using a series of user-defined parameters that detail; the worm 

propagation method, the network composition, the worm 

packet size, its initial infected hosts at the point of an 

outbreak, and the total number of susceptible hosts..  

V. EXPERIMENTATION 
The selection of experimental results reported in this paper 

focus on the operational evaluation of the simulator. In order 

to do so simulation was undertaken in order to compare its 

results with empirical data of previous worm outbreaks. For 

this paper the Slammer worm of 2003 and the Witty Worm of 

2004 have been used for comparison, using the empirical data 

reported in [5,11].  

As both these worms performed random-scanning  as 

part of their infection algorithm, a range of simulation results 

have been presented. A set of five simulations, using different 

pseudo-random number seedshave been undertaken.  

A. Methodology  
In order to assess the capabilities of IWS it was validated 

against the empirical data presented in [5,11], for the Slammer 

and Witty worms respectively.  

Firstly, the average reported datagram transmission rate 

has been simulated in order to represent a preliminary 

comparison with the empirical data. Secondly, further worm 

characteristics are included in order to test the accuracy of the 

simulator. 

Finally, in order to assess the ability of iws to simulate a 

large-scale infection, a hypothetical scenario has been 

simulated wherein all versions of a popular operating system 

are vulnerable to a Slammer-like worm infection vector. 

B. Slammer  
The analysis undertaken by Moore et al. [5] reports a set of 

key characteristics about the Slammer worm outbreak of 2003, 

which have been used as the simulator parameters. Moore et 

al. report that approximately 18 hosts per million of the entire 

IPv4 address space were susceptible to infection. The 

maximum recorded datagram scanning rate was observed at 

26,000 datagrams per host per second, which is reasonable 

given a common upper bound of 100BaseT interfaces, and a 

total worm Ethernet frame size of 430 bytes.  

It is reported that Slammer exhibited a mean of 4,000 

datagrams generated per infected host per second throughout 

its outbreak period, meaning that the mean transfer speed per 

node was just over 13 megabits per second. Plotting this mean 

value against the data reported by Moore et al., as shown in 

Fig. 2, it can be seen that the simulator produces, on average, 

fewer datagrams generated per second. This is potentially due 

to the influence of the peak scanning rate, having a greater 

number of datagrams at this early stage could significantly 

impact the rate at which new hosts become infected.  

 
Figure 2 Preliminary IWS Slammer Worm Simulation 
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 r t = fr t  − 1 

 
Figure 3 IWS Slammer Worm Simulation 

 

Taking this into consideration, a ramp-down factor has 

been applied based on the reported findings by Moore et al. 

that an initial spike in the datagrams per second observed 

reduced to a lower average overall owing to an increase in 

congestion as more datagrams were generated. This higher 

datagram generation rate and datagram generation decrease 

has been applied so that each subsequent clock tick has a 

ramp-down factor (f) of 0.95, where the datagram generation 

rate, r, for a given clock tick, t, is determined according to 

(1). Fig. 3 illustrates that by applying this factor, the 

simulation matches the datagram generation rate more closely 

for the Slammer worm, whilst still operating on a node-by-

node basis.  

C. Witty  
Key characteristics have also been reported by Shannon et al. 

[11] regarding the Witty worm outbreak of 2004 that has been 

incorporated in the simulator. It was reported to have a much 

smaller susceptible population than Slammer, recorded as 

12,000 hosts, or between 2 and 3 hosts per million of the entire 

IPv4 address space. Unlike Slammer, Witty is also reported to 

have had a variable datagram size, with an Ethernet frame size 

of between 796 and 1307 bytes.  

With a frame size just over three times larger than 

Slammer, it is reported that Witty was able to maintain an 

average of 370 datagrams generated per infected host per 

second, with a main peak of 970. Of note here is that 38 nodes 

were reported to be transferring at 9,700 datagrams per second 

continuously for over an hour. Simulating the average values 

as 3 hosts per million susceptible, Fig. 4 shows that the 

reported metrics do fall between the two datagram size values, 

with a sharper rise at the start of the outbreak, potentially 

owing to the 38 hosts generating datagrams at ten times the 

main peak level.  

By including the set of 38 hosts as part of the infected 

hosts, I, for a given clock tick, t, where nodes h1 to h38 
generate at 9,700 datagrams per second and the other nodes h39 
to hnscan at 970 datagrams per second the faster increase in 

the number of infected hosts can be included, as shown by the 

matrix in (2). Fig. 5 on page 1 illustrates how by including this 

node differentiation  a closer match to the empirically reported 

Witty worm behaviour is achieved.  

 
Figure 4 Preliminary IWS Witty Worm Simulation 

 I t = [h1 … h38       h39 … hn] 

 
Figure 5 IWS Witty Worm Simulation 

D. Large-Scale Simulation  
In order to demonstrate the scalability of iws a worm outbreak 

scenario that is much larger than that previously reported has 

been simulated. This scenario uses the same average empirical 

metrics of the Slammer worm outbreak however, a simulation 

with a significantly larger susceptible populous has been 

undertaken. 

The scenario of an exploit that is common to all recent 

Windows operating systems has been considered. 

W3Counter[14] reports that 78.8% of internet-connected hosts 

use a recent version of the Windows operating system (7, 

Vista or XP) and so a susceptible populous of 80% has been 

simulated.  

Fig. 6 demonstrates that with such a large number of 

hosts susceptible a fast-scanning worm like Slammer may 

spread incredibly quickly; in this case only taking 1.5 seconds 

for 99% of the susceptible populous to become infected on the 

current IPv4 Internet.  

VI. DISCUSSION 
The cyber-epidemiological analysis of zero-dayworms on the 

Internet remains a significant challenge, and the use of 

simulation systems remain a viable tool for such research. This 

paper has presented a novel network worm simulator, the 
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Internet Worm Simulator (IWS), and has demonstrated its 

feasibility for the simulation of zero-day worm epidemiology 

in large-scale networks (currently up to 232 hosts). It has also 

confirmed the accuracy of the simulator, by comparing its 

output with available empirical data for real-world zero-day 

worm outbreaks.  

 

 
Figure 6 Hypothetical Slammer-style Worm with an 80% 

Susceptible Populous 

In comparison with other worm simulation techniques, 

such as packet-level simulation, statistically-based generalised 

mathematical modelling and a hybrid of the two, the state-

variable machine method employed in IWS can be used to 

simulate zero-day worm epidemiology on an Internet-scale 

network, whilst still retaining node-by-node granularity. This 

paper has demonstrated that the method can incorporate more 

complex epidemiological behaviour, as well as utilising the 

node-by-node granularity it offers in order to achieve more 

accurate simulation results.  

It is hoped that the IWS will form a useful tool for the 

further wide ranging epidemiological investigations of both 

real and hypothetical zero-day worms and countermeasure 

techniques,, providing security researchers and professionals 

with the capability to simulate large-scale outbreaks on non-

specialist, widely available computer systems whilst retaining 

significant accuracy.  

A. Limitations and Future Work 
In this paper the IWS relies on the existing worm analysis of 

previous worm outbreaks, which in turn relies on accurate data 

being gathered at the point of an outbreak. If there is an issue 

with the data gathering process, as shown in [5] as the 

Slammer worm outbreak matures, then the reliability of any 

worm analysis becomes an issue. Similarly, this does not 

account for hypothetical scenarios, or scenarios where only a 

limited set of information is available to provide the simulator 

with parameters, which may mitigate some issues regarding 

incomplete empirical data.  

This paper has reported work undertaken as part of a 

development programme for the IWS. Currently, the authors 

expect to extend the work in a number of areas, with a view to 

further enhancing the usability and capabilities of the 

simulator. Key areas in which further work is currently 

focused are as follows:  

 Decreasing the execution time of the simulator while 

retaining the single workstation design criteria.  

 Improvements in simulator accuracy and granularity, 

in particular by including a more granular model of 

the network topology and bandwidth constraints, 

whilst retaining, in so far as possible, the simple set 

up of the simulator.  
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