
69

A Large-Scale Zero-Day Worm Simulator for

Cyber-Epidemiological Analysis

Luc Tidy, Steve Woodhead and Jodie Wetherall

Abstract—The cost of a single zero-day network worm outbreak

has been estimated at US$2.6 billion. Additionally zero-day

worm outbreaks have been observed to spread at a significant

pace across the global Internet, with an observed infection

proportion of more than 90 percent of vulnerable hosts within 10

minutes. The threat posed by such fast-spreading malware is

therefore significant, particularly given the fact that network

operator / administrator intervention is not likely to take effect

within the typical epidemiological timescale of such infections.

An accepted tool that is used in researching the threat

presented by zero-day worms is the use of simulation systems.

However when considering zero-day worm outbreaks on the

Internet there are persistent issues of scale and fidelity. The

Internet Worm Simulator (IWS) reported in this paper is designed

to address these issues by presenting a novel simulation method

that, on a single workstation, can simulate an entire IPv4 address

space on a node-by-node basis. Being able to simulate such a

large-scale network enables the further analysis of characteristics

identified from worm analysis. As IWS does not rely on

mathematical approximation, the epidemiological attributes

identified from real-world data can be tested for zero-day worm

outbreaks on the Internet.

Experimentation indicates that IWS is able to accurately

simulate and corroborate with reported characteristics of two

previous zero-day worm outbreaks. It is intended that, in future,

IWS may be used to aid both in the analysis of previous worm

outbreaks and the testing of hypothetical zero-day worm

outbreak scenarios.

Keywords—cyber defence, malware, network worm, simulation,

zero-day worm.

I. INTRODUCTION
A zero-day worm is a type of malware that exploits a

vulnerability that has not been patched or acknowledged at the

point of an outbreak, which owing to an automatic propagation

method can spread pervasively throughout a network; which is

exacerbated by either a lack of detection or speed of

propagation [1]. In order to tackle such outbreaks an

understanding of how they occur, their propagation method,

and their epidemiological characteristics across a given

network is essential [2]. Worms are often hard to prevent,

counter, or contain, primarily owing to their potential speed of

propagation; raging from fast random-scanning worms to

slower ’stealthy’ worms that employ various techniques to

propagate undetected. In order to aid the analysis of zero-day

Luc Tidy, Steve Woddhead and Jodie Wetherall

Internet Security Research Laboratory.

University of Greenwich,

United Kingdom
{L.J. Tidy, S.R.Woodhead, J.C.Wetherall}@greenwich.ac.uk

worm epidemiology analytical models, such as [3], and

simulation systems such as [4], have been adopted.

Since the widespread worms that occurred in the first

four years of the 21
st
 century, such as Code Red [3] and

Slammer [5], there have been a series of zero-day worms such

as Conficker [6] in 2007 and Duqu [7] in 2011. These can

incur significant costs, with one estimate for the cost of the

Code Red outbreak being US$2.6 billion. It is imperative that

defences are employed in order to mitigate or prevent such

worm outbreaks. Simulation systems provide a tool which can

aid research into worm analysis [5], and network worm

countermeasures [8,9].

Issues persist in being able to simulate a worm

outbreak on the Internet, owing to issues of scale and fidelity.

Previous work has focused on methods to reach this large-

scale by either using mathematical approximations about how

a worm has spread [3], or by introducing a mixture of detailed

packet-level simulation and mathematical approximations

[10].

The remainder of this paper is presented as follows:

Section 2 sets out a definition of terms; Section 3 discusses the

relevant previous work; Section 4 details the design of the

Internet Worm Simulator (IWS); Section 5 presents the

experimental methodology and results; and finally section 6

concludes the paper with a discussion summarising the

findings and identifying any limitations and future work.

II. LEXICON
A lexicon has been presented for the clarification of the

following terms, owing to their specific use in this paper.

Zero-Day Worm: In this paper this is defined as a type

of malicious software that propagates automatically without

human interaction, using a vulnerability that has not been

patched or widely acknowledged at the point of an outbreak.

This is a similar definition to the taxonomy described by

Weaver et al. [2], and other published literature (see [3, 5,

11]).

Epidemiological Analysis: In this paper an

epidemiological analysis is based on the rate at which

susceptible nodes become infected. This paper focuses on the

total number of infected nodes at any given point during an

outbreak, and not the difference in the number of newly

infected nodes at each period of time.

Large-Scale Simulation: This paper defines large-scale

simulation as being able to, or the attempt to, simulate an

entire IPv4 address space of nodes for a given scenario; often

with the intent of simulating a network the size of a

contemporary Internet.

UACEE International Journal of Advances in Computer Networks and its Security - Volume 3: Issue 1 [ISSN 2250 - 3757]

70

Datagram: In accordance with RFC1594 [12] this

paper defines a datagram as a data entity that is to be

transmitted across a network, specifically, this term is used to

describe the number of data entities transmitted by a worm

during an outbreak.

State Variable Machine: A processing method in

which data object interaction is derived from a set of discrete

states. In this paper this is focused on using a set of discrete

states in order to describe the interaction between network

nodes for the purpose of zero-day worm analysis.

III. RELEVANT PREVIOUS WORK
Owing to brevity, this paper focuses on only the key areas of

previous literature. The key areas of focus in this paper can be

divided into two key domains: the use of simulation systems in

worm analysis; and the methods employed in order to simulate

large-scale networks.

A. Simulation Systems in Worm Analysis
A number of simulation systems have been used in order to

undertake zero-day worm analysis, most notable of which is

[3],that used simulation in order to analyse the epidemiology

of the Code Red outbreak of 2001. This has been extended in

other works, such as that by Moore et al. [5], who used a

random-constant spread model to analyse the Slammer

outbreak of 2003. These simulations rely on generalised

mathematical models in order to simulate the scale of the

IPv4 Internet..

B. Large-Scale Simulation
In order to improve on generalise mathematical modelling

techniques, packet-level simulators, such as GTNetS [4], have

been developed to increase the granularity of the simulation

but at the cost of a substantial overhead. This means that

although the issue of fidelity is tackled, this is at the cost of

not being able to feasibly reach sufficient scale for simulating

zero-day worm outbreaks on the IPv4 Internet. Two

approaches have been proposed to address these competing

limitations: hybrid simulation methods; and state variable

machine methods.

Hybrid simulation methods, [10] combine the

granularity of packet-level simulators alongside the

generalised mathematical methods in order to reach a larger

network scale. Reported research in this area is limited

however, with significant issues to be resolved.

State variable machine methods, such as those

employed by Ediger [1] and Wei et al. [13] tackle issues of

scale by reducing each node to a state variable machine. This

means certain characteristics about each node can be tracked

without the significant overhead from packet-level simulation.

In both [1, 13] the approach taken means that a single node is

represented by a software object in the order of kilobytes in

size. This significant memory allocation means that neither

can reach the scale of an entire IPv4 address space on a node-

by-node basis.

By reducing the memory allocation required for each

node, IWS is able to retain node-by-node granularity while still

being able to simulate networks with a size as large as the

IPv4 address space.

C. Motivation
As far as the authors are aware no previous worm simulation

tool has been reported which is able to simulate an entire IPv4

network on a node-by-node basis. Of note is the simulator

reported in [1] which attempts this however, it only reaches

autonomous-system level granularity. It is intended that by

being able to simulate on a node-by-node level of granularity

the simulator will enable the accurate epidemiological analysis

of large-scale zero-day worms. This will mean simulation is

undertaken based on the observed, or hypothesised,

characteristics of a worm without having to employ a

generalised mathematical approximation.

The simulator reported in this paper meets these

requirement, as well as the target of running on a single PC

workstation.

IV. DESIGN AND CAPABILITIES
The Internet Worm Simulator (IWS) was developed with the

intention of employing it in an investigation of the

epidemiology of existing and hypothetical worms. The ability

to retain node-by-node granularity and scalability were key

design criteria. Similarly the ability to simulate a broad range

of worm spreading algorithms was a key requirement. Based

on the findings from a review of existing simulator designs,

along with preliminary work with the NWS simulator reported

in [3], it was decided the simulator would be developed using

the SVM method. This is owing to the fact that it would

enable the simulation of the whole IPv4 Internet address

space, whilst maintaining node-by-node granularity.

IWS has been developed in the C programming

language, using the GCC compiler under a 64 bit 3.4 Linux

Kernel. IWS only requires one byte of memory per host; this

means for an IPv4 sized network it has a memory footprint of

4GB. This enables iws to meet the design requirements, owing

to the use of a compiled language that offers good low level

control of memory resources. These specifications mean that

IWS can be ported to other 64 bit operating systems, such as

Windows, and can also be run on a variety of different

hardware configurations.

In order to minimise the memory requirements of the

simulator, node states are stored in a single byte of memory.

Compared to NWS this is a significant reduction, where in

experimentation carried out by the others NWS typically used

1.6KB per node. The SVM states will vary dependent on the

worm instance being simulated however, this allows a variety

of variables such as tracking there infection status and

available bandwidth. These states can be modified depending

on whether or not it is appropriate for each simulation

respectively.

The IWS simulation method can be divided into three

key areas: initialisation engine, infection engine, and reporting

engine. As Fig. 1 illustrates these engines pass data between

UACEE International Journal of Advances in Computer Networks and its Security - Volume 3: Issue 1 [ISSN 2250 - 3757]

71

them in order to produce the results. The engines can be

modified to incorporate different parameters, node

compositions, algorithms, or reporting format according to the

required specification.

Figure 1 IWS Design

Having received the parameters that are to be used in a

given simulation, the initialisation engine begins by setting up

the states of each node. This step will define which nodes are

susceptible to infection and which are initially infected. If

other states are employed this would also be set by the

initialisation engine, with the intent of preparing the

parameters provided for simulation. The final step undertaken

by the initialisation engine is to pass its details to the reporting

engine having completed its other steps.

The infection engine, having received the formatted

data from the initialisation engine uses this in order to carry

out the worm infection algorithm provided. This is an iterative

process that uses a “clock tick” in order to determine the total

number of infected hosts at a given point in time. For this

paper a clock tick is representative of a single simulated

second, and as such is passes on the current state of the worm

outbreak to the reporting engine in a format that is

representative of each simulated second. Upon a set point, for

example either a particular amount of simulated time passing

or the number of infected nodes reaching a set threshold, the

infection iterations cease and the final data is passed to the

reporting engine.

In order to log all the activity in a desirable output, the

reporting engine takes data from both the initialisation and

infection engines . This means the number of nodes with a

certain state can be logged, giving the opportunity for

comparative and exploratory investigations and

epidemiological analysis.

IWS can be modified for a variety of different scenarios

using a series of user-defined parameters that detail; the worm

propagation method, the network composition, the worm

packet size, its initial infected hosts at the point of an

outbreak, and the total number of susceptible hosts..

V. EXPERIMENTATION
The selection of experimental results reported in this paper

focus on the operational evaluation of the simulator. In order

to do so simulation was undertaken in order to compare its

results with empirical data of previous worm outbreaks. For

this paper the Slammer worm of 2003 and the Witty Worm of

2004 have been used for comparison, using the empirical data

reported in [5,11].

As both these worms performed random-scanning as

part of their infection algorithm, a range of simulation results

have been presented. A set of five simulations, using different

pseudo-random number seedshave been undertaken.

A. Methodology
In order to assess the capabilities of IWS it was validated

against the empirical data presented in [5,11], for the Slammer

and Witty worms respectively.

Firstly, the average reported datagram transmission rate

has been simulated in order to represent a preliminary

comparison with the empirical data. Secondly, further worm

characteristics are included in order to test the accuracy of the

simulator.

Finally, in order to assess the ability of iws to simulate a

large-scale infection, a hypothetical scenario has been

simulated wherein all versions of a popular operating system

are vulnerable to a Slammer-like worm infection vector.

B. Slammer
The analysis undertaken by Moore et al. [5] reports a set of

key characteristics about the Slammer worm outbreak of 2003,

which have been used as the simulator parameters. Moore et

al. report that approximately 18 hosts per million of the entire

IPv4 address space were susceptible to infection. The

maximum recorded datagram scanning rate was observed at

26,000 datagrams per host per second, which is reasonable

given a common upper bound of 100BaseT interfaces, and a

total worm Ethernet frame size of 430 bytes.

It is reported that Slammer exhibited a mean of 4,000

datagrams generated per infected host per second throughout

its outbreak period, meaning that the mean transfer speed per

node was just over 13 megabits per second. Plotting this mean

value against the data reported by Moore et al., as shown in

Fig. 2, it can be seen that the simulator produces, on average,

fewer datagrams generated per second. This is potentially due

to the influence of the peak scanning rate, having a greater

number of datagrams at this early stage could significantly

impact the rate at which new hosts become infected.

Figure 2 Preliminary IWS Slammer Worm Simulation

UACEE International Journal of Advances in Computer Networks and its Security - Volume 3: Issue 1 [ISSN 2250 - 3757]

72

 r t = fr t − 1 

Figure 3 IWS Slammer Worm Simulation

Taking this into consideration, a ramp-down factor has

been applied based on the reported findings by Moore et al.

that an initial spike in the datagrams per second observed

reduced to a lower average overall owing to an increase in

congestion as more datagrams were generated. This higher

datagram generation rate and datagram generation decrease

has been applied so that each subsequent clock tick has a

ramp-down factor (f) of 0.95, where the datagram generation

rate, r, for a given clock tick, t, is determined according to

(1). Fig. 3 illustrates that by applying this factor, the

simulation matches the datagram generation rate more closely

for the Slammer worm, whilst still operating on a node-by-

node basis.

C. Witty
Key characteristics have also been reported by Shannon et al.

[11] regarding the Witty worm outbreak of 2004 that has been

incorporated in the simulator. It was reported to have a much

smaller susceptible population than Slammer, recorded as

12,000 hosts, or between 2 and 3 hosts per million of the entire

IPv4 address space. Unlike Slammer, Witty is also reported to

have had a variable datagram size, with an Ethernet frame size

of between 796 and 1307 bytes.

With a frame size just over three times larger than

Slammer, it is reported that Witty was able to maintain an

average of 370 datagrams generated per infected host per

second, with a main peak of 970. Of note here is that 38 nodes

were reported to be transferring at 9,700 datagrams per second

continuously for over an hour. Simulating the average values

as 3 hosts per million susceptible, Fig. 4 shows that the

reported metrics do fall between the two datagram size values,

with a sharper rise at the start of the outbreak, potentially

owing to the 38 hosts generating datagrams at ten times the

main peak level.

By including the set of 38 hosts as part of the infected

hosts, I, for a given clock tick, t, where nodes h1 to h38
generate at 9,700 datagrams per second and the other nodes h39
to hnscan at 970 datagrams per second the faster increase in

the number of infected hosts can be included, as shown by the

matrix in (2). Fig. 5 on page 1 illustrates how by including this

node differentiation a closer match to the empirically reported

Witty worm behaviour is achieved.

Figure 4 Preliminary IWS Witty Worm Simulation

 I t = [h1 … h38 h39 … hn] 

Figure 5 IWS Witty Worm Simulation

D. Large-Scale Simulation
In order to demonstrate the scalability of iws a worm outbreak

scenario that is much larger than that previously reported has

been simulated. This scenario uses the same average empirical

metrics of the Slammer worm outbreak however, a simulation

with a significantly larger susceptible populous has been

undertaken.

The scenario of an exploit that is common to all recent

Windows operating systems has been considered.

W3Counter[14] reports that 78.8% of internet-connected hosts

use a recent version of the Windows operating system (7,

Vista or XP) and so a susceptible populous of 80% has been

simulated.

Fig. 6 demonstrates that with such a large number of

hosts susceptible a fast-scanning worm like Slammer may

spread incredibly quickly; in this case only taking 1.5 seconds

for 99% of the susceptible populous to become infected on the

current IPv4 Internet.

VI. DISCUSSION
The cyber-epidemiological analysis of zero-dayworms on the

Internet remains a significant challenge, and the use of

simulation systems remain a viable tool for such research. This

paper has presented a novel network worm simulator, the

UACEE International Journal of Advances in Computer Networks and its Security - Volume 3: Issue 1 [ISSN 2250 - 3757]

73

Internet Worm Simulator (IWS), and has demonstrated its

feasibility for the simulation of zero-day worm epidemiology

in large-scale networks (currently up to 232 hosts). It has also

confirmed the accuracy of the simulator, by comparing its

output with available empirical data for real-world zero-day

worm outbreaks.

Figure 6 Hypothetical Slammer-style Worm with an 80%

Susceptible Populous

In comparison with other worm simulation techniques,

such as packet-level simulation, statistically-based generalised

mathematical modelling and a hybrid of the two, the state-

variable machine method employed in IWS can be used to

simulate zero-day worm epidemiology on an Internet-scale

network, whilst still retaining node-by-node granularity. This

paper has demonstrated that the method can incorporate more

complex epidemiological behaviour, as well as utilising the

node-by-node granularity it offers in order to achieve more

accurate simulation results.

It is hoped that the IWS will form a useful tool for the

further wide ranging epidemiological investigations of both

real and hypothetical zero-day worms and countermeasure

techniques,, providing security researchers and professionals

with the capability to simulate large-scale outbreaks on non-

specialist, widely available computer systems whilst retaining

significant accuracy.

A. Limitations and Future Work
In this paper the IWS relies on the existing worm analysis of

previous worm outbreaks, which in turn relies on accurate data

being gathered at the point of an outbreak. If there is an issue

with the data gathering process, as shown in [5] as the

Slammer worm outbreak matures, then the reliability of any

worm analysis becomes an issue. Similarly, this does not

account for hypothetical scenarios, or scenarios where only a

limited set of information is available to provide the simulator

with parameters, which may mitigate some issues regarding

incomplete empirical data.

This paper has reported work undertaken as part of a

development programme for the IWS. Currently, the authors

expect to extend the work in a number of areas, with a view to

further enhancing the usability and capabilities of the

simulator. Key areas in which further work is currently

focused are as follows:

 Decreasing the execution time of the simulator while

retaining the single workstation design criteria.

 Improvements in simulator accuracy and granularity,

in particular by including a more granular model of

the network topology and bandwidth constraints,

whilst retaining, in so far as possible, the simple set

up of the simulator.

Acknowledgment
Additional Witty Worm Data provided by: The CAIDA UCSD

Dataset on the Witty Worm - March 19-24, 2004,

http://www.caida.org/data/passive/witty_worm_dataset.xml.

References
[1] Ediger B: Simulating Network Worms - NWS Network Worm Simulator.

http://www.stratigery.com/nws/, 2003. Accessed 6th May 2011.
[2] Weaver N, Paxson V, Staniford S, Cunningham R: “A Taxonomy of

Computer Worms”, , pp. 11-18, 2003.

[3] Zou CC, Gong W, Towsley D: “Code Red Worm Propagation Modeling
and Analysis”, , pp. 138-147, 2002. Accessed 6th May 2011.

[4] Riley G: “The Georgia Tech Network Simulator”, , pp. 5-12, 2003.

[5] Moore D, Paxson V, Savage S, Shannon C, Staniford S, Weaver N: “The
Spread of the Sapphire/Slammer Worm”, IEEE Security and Privacy, pp. 33-

39, 2003. Accessed 6th May 2011.

[6] Shin S, Gu G: “Conficker and beyond: a large-scale empirical study”, , pp.
151—160, 2010.

[7] Faisal M, Ibrahim M: “Stuxnet, Duqu and Beyond”, International Journal

of Science and Engineering Investigations, pp. 75-78, 2012.
[8]Whyte D, Kranakis E, van Oorschot PC: “DNS-Based Detection of

Scanning Worms in an Enterprise Network”, , 2005.

[9] Wong C, Bielski S, Studer A, Wang C: “Empirical Analysis of Rate
Limiting Mechanisms”, , pp. 22-42, 2006. Accessed 7th May 2011.

[10] Liljenstam M, Yuan Y, Premore BJ, Nicol D: “A Mixed Abstraction

Level Simulation Model of Large-Scale Internet Worm Infestations”, , 2002.
[11] Shannon C, Moore D: “The Spread of the Witty Worm”, IEEE Security

and Privacy, pp. 46-50, 2004
[12] Marine A, Reynolds J, Malkin G: RFC1594. 1994. URL

https://tools.ietf.org/html/rfc1594.Accessed 15th November 2012.

[13] Wei S, Mirkovic J, Swany M: “Distributed Worm Simulation with a
Realistic Internet Model”, , pp. 71-79, 2007. Accessed 7th May 2011.

[14] Awio Web Services LLC: W3Counter - Global Web Stats. 2012. URL

http://www.w3counter.com/globalstats.php. Accessed November 2012.

About Author (s):

Luc Tidy obtained his BEng Honours degree in

Computer Systems and Software Engineering in

2010. He is currently a Research Assistant and

Doctoral Candidate in the Internet Security Research
Laboratory, University of Greenwich. His research is

centred on the development of cyber-epidemiological

analytical systems for large-scale, zero-day worm

outbreaks

Steve Woodhead obtained his BSc Honours degree in

1987 and his PhD in 1992, both in Electronic
Engineering. He currently holds the position of

Reader in Computer Systems and Networks in the

Department of Computer and Communications
Engineering, University of Greenwich..

Dr Woodhead has published over 50 research papers

in refereed journals and conferences

Jodie Wetherall obtained his BEng Honours degree
in Internet Technologies in 2001, and his PhD in

Computer Engineering in 2010. He currently holds

the position of Programme Leader for Games and
Entertainment Systems Software Engineering in the

Department of Computer and Communications

Engineering, University of Greenwich.

UACEE International Journal of Advances in Computer Networks and its Security - Volume 3: Issue 1 [ISSN 2250 - 3757]

