
MACHINE SCHEDULING WITH
CHANGING PROCESSING TIMES AND

RATE-MODIFYING ACTIVITIES

Kabir Rustogi

A thesis submitted in partial fulfilment of the requirements of the

University of Greenwich for the degree of Doctor of Philosophy

March 2013

School of Computing and Mathematical Sciences,

University of Greenwich,

London, U.K.

Dedicated to my grandparents, Mr. B. Lal Rustogi and Mrs. Manmohini Rastogi

DECLARATION

I certify that this work has not been accepted in substance for any degree, and is not
concurrently being submitted for any degree other than that of Doctor of Philosophy
being studied at the University of Greenwich. I also declare that this work is the result
of my own investigations except where otherwise identified by references and that I
have not plagiarised the work of others.

Kabir Rustogi Prof. Vitaly Strusevich
(Student) (1st Supervisor)

ii

ACKNOWLEDGEMENTS

First, I would like to extend my sincerest gratitude to my supervisor, Prof. Vitaly
Strusevich, for his constant support and encouragement. Without his guidance, I
could have easily fit the description of those, whose misadventures with PhD research
are documented in comic strips.

I am grateful to the CMS staff, for their timely help and advice; especially Lauren
Quinton for her robotic effi ciency in handling the huge amount of paper work that is
required to get till this stage.

I would like thank my friends, especially LL, for making my life easier/harder during
these years. I would also like to thank the years, for its characteristic nature to simply,
pass, without much damage.

Finally, I am thankful to my family, for their patience and undying support.

iii

ABSTRACT

In classical scheduling models, it is normally assumed that the processing times of
jobs are fixed. However, in the recent years, there has been a growing interest in
models with variable processing times. Some of the common rationales provided for
considering such models, is as follows: the machine conditions may deteriorate as more
jobs are processed, resulting in higher than normal processing times, or conversely, the
machine’s operator may gain more experience as more jobs are processed, so he/she
can process the jobs faster. Another direction of improving the practical relevance of
models is by introducing certain rate-modifying activities, such as maintenance periods,
in the schedule.

In this thesis, we mainly focus on the study of integrated models which allow
changing processing times and rate-modifying activities. When this project was started,
it was felt that there was a major scope of improvement in the area, both in terms
of creating more general, practically relevant models and developing faster algorithms
that are capable of handling a wide variety of problems. In this thesis, we address both
these issues.

We introduce several enhanced, practically relevant models for scheduling problems
with changing times that allow various types of rate-modifying activities, various effects
or a combination of effects on the processing times. To handle these generalised models,
we develope a unified framework of algorithms that use similar general principles,
through which, the effects of rate-modifying activities can be systematically studied
for many different scenarios.

iv

CONTENTS

LIST OF TABLES ix

LIST OF FIGURES xi

1 Introduction 1

1.1 Aims and Objectives . 7

1.2 Structure of the Thesis . 10

I Literature Review 13

2 Classical Scheduling Models and Algorithms 14

2.1 Classical Scheduling Models . 14

2.1.1 Machine Environment . 15

2.1.2 Job Characteristics . 16

2.1.3 Optimality Criteria . 17

2.2 Classical Scheduling Algorithms . 18

2.2.1 Time Complexity of Algorithms 18

2.2.2 Approximation Algorithms . 20

2.2.3 Reduction to Boolean Programming Problems 21

2.2.4 Combinatorial Counting . 27

2.2.5 Polynomial-Time Algorithms for Classical Scheduling 27

3 Scheduling with Changing Processing Times 34

3.1 Brief Overview of Models . 34

3.2 Models without Rate-Modifying Activities 37

3.2.1 Positional Effects . 37

3.2.2 Time-Dependent Effects . 45

3.2.3 Cumulative Effects . 49

v

CONTENTS

3.3 Models with Rate Modifying Activities 50

3.3.1 Positional Effects . 51

3.3.2 Time-Dependent Effects . 53

3.4 Conclusion . 55

II Methodological Aspects 57

4 General Framework 58

4.1 Notation and Problem Description . 58

4.2 General Methodology . 63

4.2.1 Models without Rate-Modifying Activities 63

4.2.2 Models with Rate-Modifying Activities 64

5 Convex Sequences with Sums of Ceiling Functions 68

5.1 Brief Overview of Convex and V -shaped Sequences 68

5.2 A Convex Sequence is V -Shaped . 70

5.3 Convexity of a Sequence Involving Sums of Functions of Ceilings 71

III Single Machine Scheduling 77

6 Job-Independent Positional Effects 78

6.1 Brief Overview of Positional Effects . 78

6.2 Models without Rate Modifying Activities 81

6.3 Rate Modifying Activities . 84

6.4 Computing Positional Weights . 86

6.5 Solution Approach PosiJIGD . 88

6.6 Solution Approach PosiJIKdomi . 93

6.7 Solution Approach PosiJIGI . 100

6.8 Conclusion . 105

7 Job-Dependent Positional Effects 106

7.1 Overview of the Problems . 106

7.2 Computing Positional Weights . 108

7.3 Solution Approach PosiJDGD . 110

7.4 Solution Approach PosiJDKdomi . 113

vi

CONTENTS

7.5 Conclusion . 124

8 Time-Dependent Effects 127

8.1 Overview of the Problems . 127

8.2 Computing Positional Weights . 129

8.3 Solution Approach TimeJIGD . 131

8.4 Solution Approach TimeJIKdomi . 135

8.5 Solution Approach TimeJIGI . 138

8.6 Conclusion . 140

9 Combined Effects 142

9.1 Overview of the Problems . 142

9.2 Models with Rate Modifying Activities 144

9.3 Computing Positional Weights . 149

9.3.1 Minimising The Makespan . 155

9.3.2 Minimising The Total Flow Time 156

9.4 The Solution Approach . 159

9.5 Some Reduced Models . 164

9.5.1 Pure Positional Effects . 166

9.5.2 Pure Time-Dependent Effects 169

9.6 Conclusion . 171

10 Cumulative Effects 172

10.1 Overview of the Problem . 172

10.2 Preliminaries . 174

10.3 FPTAS by Subset-Sum . 177

10.4 FPTAS by Half-Product . 181

10.5 Conclusion . 185

IV Parallel Machine Scheduling 186

11 Impact of Adding Extra Machines 187

11.1 Brief Overview of Problem . 188

11.2 Estimating Machine Impact: Makespan 189

11.3 Estimating Machine Impact: Total Flow Time 195

vii

CONTENTS

11.3.1 Unit Processing Times . 195

11.3.2 Arbitrary Processing Times . 201

11.4 Cost-Effective Choice of The Number of Machines: Makespan 203

11.4.1 Preemption Allowed . 204

11.4.2 No Preemption Allowed . 207

11.5 Cost-Effective Choice of The Number of Machines: Total Flow Time . 217

11.6 Interpretations and Practical Implications 219

11.7 Conclusion . 220

12 Models with Changing Processing Times 221

12.1 Capacitated Parallel Machines . 221

12.2 Problems with Changing Processing Times 224

12.3 Conclusion . 227

13 Summary and Conclusion 229

13.1 Main Contributions . 229

13.1.1 Modelling Contributions . 229

13.1.2 Analytic Contributions . 230

13.1.3 Algorithmic Contributions . 231

13.2 Future Work . 232

REFERENCES 234

viii

LIST OF TABLES

6.1 Different versions of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax 88

6.2 Number of times to run Algorithm NSmall to solve different versions of
problem 1

∣∣pjg[x] (r) -det,MP
∣∣Cmax. 92

6.3 Run of Algorithm NSmall2 for Example 6.1 99

6.4 Computational complexities of different versions of problem
1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, assuming that the LPT order of the jobs is
known . 105

7.1 Different versions of problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax 110
7.2 Number of times an LAP of the from (7.5) is solved to solve different

versions of problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax. 112

7.3 Actual processing times for Example 7.1 123

7.4 Run of Algorithm BestLAP for Example 7.1 125

7.5 Computational complexities of different versions of problem
1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax. 126
8.1 Different versions of problem 1

∣∣pj + a[x]τ ,MP
∣∣Cmax 131

8.2 Number of times to run Algorithm NSmallRev to solve different versions
of problem 1

∣∣pj + a[x]τ ,MP
∣∣Cmax. 134

8.3 Computational complexities of different versions of problem
1
∣∣pj + a[x]τ ,MP

∣∣Cmax. 141
9.1 Parameters for Example 9.1 . 148

9.2 Values of B[x] (u, r) , 1 ≤ u ≤ r ≤ n[x], 1 ≤ x ≤ 3, for Example 9.2 162

9.3 Calculation of the optimal value of the makespan and the optimal value
of the total flow time for the problem outlined in Example 2 164

11.1 Results of computational experiment for Algorithm 3 216

ix

LIST OF TABLES

12.1 Computational complexities of different versions of problem
α |Combi, RMP |

∑
Cj. 227

x

LIST OF FIGURES

1.1 Logical flow of thesis . 12

11.1 The graphs of I(m,m+ 1) and its lower and upper bounds for problem
Pm |pj = 1|

∑
Cj with n = 50 . 201

11.2 An example of graphs of the functions Γ1(m), Γ2(m) and Φp(m) 206

xi

CHAPTER 1

Introduction

Scheduling problems, in general, consist in the allocation of scarce resources over time

in order to perform a set of tasks. Depending on the situation, resources and the tasks

to be performed can take on many different forms. Resources may be machines in an

assembly plant, CPU, memory and I/O devices in a computer system, runways at an

airport, mechanics in an automobile repair shop, etc. On the other hand, activities may

be various operations in manufacturing processes, execution of a computer program,

landings and take-offs at an airport, car repair in an automobile repair shop, and so

on.

Traditionally, scheduling problems are formulated in terms of jobs that need to

be allocated to some machines. Each job is associated with a processing time. Any

allocation that meets all requirements concerning the jobs and machines is called a

feasible schedule. The quality of a schedule is measured by a criterion function which

usually depends on the completion times of jobs. The objective of a scheduling problem

is to find, among all feasible schedules, a schedule that optimises the criterion function.

For instance, an objective may be to minimise the completion time of the last job

(makespan), while another objective may be to minimise the number of tardy jobs.

A solution to an arbitrary scheduling problem consists in giving a polynomial-time

algorithm that either generates an optimal schedule, or if the problem is proven to be

computationally intractable, generates a schedule that is close to optimal.

The first scheduling algorithms can be traced back to the 1950s and are attributed to

Johnson (1954), Jackson (1956) and Smith (1956). The main motivation behind most

of the early scheduling literature is related to effi cient management of various activities

occurring in a workshop. Good scheduling algorithms can lower the production cost

in a manufacturing process, enabling the company to stay competitive. Beginning in

the late 1960s computer scientists also started to encounter scheduling problems in the

1

CHAPTER 1. INTRODUCTION

development of operating systems. Computational resources such as CPU, memory

and I/O devices were found to be scarce and effi cient utilisation of these resources

was essential in order to lower the cost of executing computer programs. In the last

20 years scheduling has found another important application in grid/cloud computing,

where users from around the world send computational requests to a grid/cloud server

for processing. Such servers handle millions of requests every minute and scheduling

algorithms help in optimising the allocation of a request (job) to a server (machine) in

quick time.

As expected, over the years the problems faced in scheduling have become much

complicated. The classical scheduling problems are deterministic in nature and deal

with constant parameters. They typically deal with situations in which the number

of jobs and their processing times are known in advance. The number of machines to

be used and their speeds are also fixed. Although in the past, an astounding num-

ber of studies have been carried out on such models, their underlying assumptions,

however, do not always hold. This limits the applicability of these models to most

of the present day scheduling problems. To cater to the growing requirements of ad-

vanced scheduling models, scheduling research has branched out into several speciality

areas, e.g., stochastic scheduling, online scheduling, etc. The practical relevance of

deterministic scheduling models is often increased by the introduction and study of

enhanced models that combine scheduling and logistic decision-making. These include

models that address the issues of machine non-availability, transportation and delivery,

resource management, controlling the processing characteristics of jobs and machines,

and many others.

One of the current trends in deterministic scheduling research is to investigate

scheduling problems with variable processing times. Many different forms of variation

have been studied, including learning effects, deterioration effects, start-time dependent

processing times and resource dependent processing times. As early as in the 1930s,

Wright (1936) noticed that in the aircraft industry the working costs per unit decreased

with an increase in production output. He formulated the so-called 80% hypothesis,

stating that with every redoubling of output the processing time for each unit decreases

by 20%. This learning effect has a deep impact in many mass production systems. In

scheduling terms, the existence of a learning effect means that the actual processing

time of a job gets shorter, provided that the job is scheduled later. A common rationale

behind this phenomenon is that as more jobs are processed, the operator gains the

required experience to process the following jobs more effi ciently. An effect which is

antonymous to the learning effect is a deterioration effect, in which it is assumed that

the later a job starts, the longer it takes to process it. Such an effect can be attributed

2

CHAPTER 1. INTRODUCTION

to the ageing/deterioration of machine conditions. As more jobs are processed the

machine undergoes wear and tear and its processing effi ciency decreases. One of the

first papers that explored such an effect in scheduling theory is due to Browne and

Yechiali (1990). Another branch of scheduling that deals with variable processing times

is scheduling with resource allocation. In this it is assumed that the processing time of

a job is resource dependent, so that each job is allocated a certain amount of resource,

and jobs with more resources benefit from faster processing. We do not study this

class of problems in this thesis. For various aspects of models with resource-dependent

processing times, we refer to the recent reviews by Shabtay and Steiner (2007) and

Różycki and Węglarz (2012).

In the past two decades, scheduling problems with learning and deterioration effects

have received considerable attention. Although these effects are antonymous to each

other, and in practically all prior papers these two phenomena are discussed separately,

these effects can be modelled in similar ways. A variety of different models have been

created to incorporate these effects: in a position-dependent model, the processing

time of a job changes with respect to its position in the schedule, in a time-dependent

model the processing time of a job changes with respect to its start-time in a schedule,

in a cumulative model, the processing time of a job depends on the sum of normal

processing times of the jobs scheduled earlier, and so on. Active research in these areas

has lead to a vast body of knowledge on scheduling with changing processing times

with learning/deterioration effects. We refer to Cheng, Ding and Lin (2004), Biskup

(2008), and Gordon et al. (2008) for recent state-of-the-art reviews in these areas, as

well as for references to practical applications of these models. Also see a book by

Gawiejnowicz (2008), which discusses these effects specifically for a time-dependent

model.

There are several common drawbacks shared by most of the publications on schedul-

ing with learning/deterioration. First, in many papers, similar algorithmic ideas are

applied to problems with minor differences in formulation, while the common features

of these problems are overlooked. Most of the problems reduce to solving a linear

assignment problem or are solvable by simple priority rules. Yet, no effort has been

made to consolidate these vast number of results under a single umbrella. Second,

the practical impact of research on scheduling models with a learning/deterioration

effect alone is somewhat questionable. In practical situations it is often observed

that the machines/operators are subject to periodic maintenance activities or replace-

ments. These activities modify the rate of change of processing times, so that the

learning/deterioration process is disrupted. Indeed, for a large number of jobs, if the

processing conditions are not altered by some sort of a rate-modifying activity, the

3

CHAPTER 1. INTRODUCTION

processing times will either reduce to zero in the case of a learning effect or will grow

to unacceptably large values in the case of deterioration. Such a situation is unrealistic.

Thus, planning a schedule with rate-modifying activities such as machine main-

tenance is necessary, and its importance for production enterprises and service or-

ganisations is widely recognised by both practitioners and management scientists;

see for example, popular books on maintenance by Palmer (1999) and Nyman and

Levitt (2001), and various Internet emporiums such as www.plant-maintenance.com,

www.maintenanceworld.com, www.maintenanceresources.com. The following quota-

tion from the influential paper by Gopalakrishnan, Ahire and Miller (1997) is especially

close to the spirit of this issue:

“Industrial systems used in the production of goods are subject to de-

terioration and wear with usage and age. System deterioration results in

increased breakdowns leading to higher production costs and lower product

quality. A well-implemented, planned preventive maintenance (PM) pro-

gram can reduce costly breakdowns... Deciding what PM tasks to do, and

when, constitutes a critical resource allocation and scheduling problem.”

As seen from the quotation above, in the planning of rate-modifying activities in a

processing sequence, the decision-maker is faced with a trade-offbetween two processes:

(i) change of the processing conditions, and (ii) allocation of a rate-modifying period

in order to control the changing conditions. However, until very recently the processes

(i) and (ii) have not been fully integrated in the models studied in the scheduling

literature. There is a long list of papers on process (i) alone, in which scheduling

problems with changing processing times have been analysed. On the other hand,

several papers consider the problem of including certain fixed machine non-availability

periods, during which a machine is subject to compulsory maintenance. However, these

maintenance periods (MPs) are only included to satisfy certain requirements (e.g., the

number of MPs to be scheduled, or the deadline for an MP to start or to finish, or

periodicity of MPs), and do not affect the processing times of the jobs. Such problems

mainly concentrate on packing the jobs into gaps of a fixed duration which are created

between subsequent MPs. MPs of such a kind cannot be seen as rate-modifying periods

as the processing times of the jobs remain unaffected by maintenance. We refer to the

two recent surveys, Lee (2004); Ma, Chu and Zuo (2010), which review such a class

of problems. Other models of periodic maintenance focus on minimising functions

that include operational and maintenance costs; see Bar-Noy et al. (2002); Grigoriev,

van de Klundert and Spieksma (2006). Under another maintenance scenario initiated

by Kubzin and Strusevich (2005, 2006), the machines are subject to a compulsory

4

CHAPTER 1. INTRODUCTION

maintenance, and its duration depends on its start time. Still, in these papers, the

processing times of the jobs do not depend on their place in a schedule with respect to

an MP.

One of the first papers that study the effect of a rate-modifying activity on process-

ing conditions is that by Lee and Leon (2001). However, in this and in several follow-up

papers only one rate-modifying period is introduced and the issue of changing process-

ing times is not fully incorporated, which makes the impact of these results limited.

Studies that consider integrated scheduling models with changing processing times

and rate-modifying periods have started to appear only very recently. As an example

of such a model, we mention the problem studied by Kuo and Yang (2008a), who

solve the problem of minimising the makespan on a single machine which undergoes a

positional deterioration effect. The processing times of the jobs are known to increase

as a polynomial function of their positions in the schedule. Additionally, they allow the

inclusion of identical maintenance activities, so that after each MP the machine is fully

restored to its “as good as new”condition and the deterioration process starts afresh.

Such an MP can be seen as a rate-modifying period, as after its completion the machine

is able to process the jobs faster. For this problem, the authors provide a polynomial-

time algorithm which delivers the optimal number of MPs to include in the schedule,

the times at which these MPs should be performed and the optimal permutation of

jobs. Other papers also exist, which solve similar problems with minor differences in

formulation, see, e.g., Zhao and Tang (2010), Yang and Yang (2010a,b) and Lodree

and Geiger (2010). The last paper combines a single MP of a rate-modifying nature

with time-dependent deterioration.

Rate-modifying periods (RMPs) to be inserted into a schedule should not be limited

to maintenance periods only. It is possible that introducing an RMP in fact slows

down the processing, which happens, e.g., if the RMP is related to replacement of an

experienced operator by a trainee. Another possible effect of an RMP is introduced by

Ji and Cheng (2010), who consider problems with a learning effect and use RMPs to

further enhance the learning capabilities of the machines/operators. We review all of

these papers, among others, in more detail in Chapter 3.

Given the high practical relevance of such integrated models, one may expect that

research in this field may become one of the major directions in deterministic machine

scheduling in the near future. However, at present only a handful of results exist in

this area, and the problem scenarios considered are very specific and often unrealistic.

For example, the use of a specific function (polynomial, exponential, etc.) to model a

positional effect, severely limits the scope of such models. Moreover, an assumption

5

CHAPTER 1. INTRODUCTION

that an MP fully restores the machine to its default state every time it is performed,

is also unrealistic. Besides the inadequacies of the models being studied, the existing

solution algorithms for solving problems of this type are also very restrictive and do

not permit finding solutions to more general problems. Some authors have attempted

to solve somewhat general problems, e.g., Yang and Yang (2010a) consider a problem

in which a polynomial positional deterioration effect is combined with maintenance

activities, where unlike the model considered by Kuo and Yang (2008a), the duration

of the MPs is not given by a constant, but is dependent on their start-times. However,

the provided solution algorithm is cumbersome and although polynomial, requires a

relatively large running time. In fact, even the algorithm provided by Kuo and Yang

(2008a) for solving a very specific problem, is not the fastest possible.

Although being an active research topic of scheduling theory, the bulk of publica-

tions exhibit limitations, either at the modelling level or from the point of view of using

a rather restricted set of algorithmic ideas. As an anonymous associate editor of one

of our papers put it:

“...this topic attracts a huge number of publications, most of which are

minor modifications of each other”.

When this project was started, it was felt that there was a major scope of improve-

ment in the area, both in terms of creating more general, practically relevant models and

developing faster algorithms that are capable of handling a wide variety of problems.

In this thesis, we address both these issues. We have developed a unified framework

through which the effects of rate-modifying activities can be systematically studied for

many different scenarios. We have critically revised the prior results and found several

instances in which other authors have unnecessarily restricted the scope of their models

and have employed unsuitable algorithms to solve the resulting problems, leading to

inflated running times. In fact, we noticed that after making appropriate adjustments

to the models and the associated solution algorithms, we can solve a wider range of

problems in faster time. Some of our observations and improvements are summarised

in an invited survey Rustogi and Strusevich (2012b).

In particular, by introducing models with RMPs of a distinct nature, by introducing

group-dependent effects, by combining position-dependent and time-dependent effects,

and by combining learning and deterioration effects, we have ruined certain myths that

this area of research had created and had been taken for granted in prior studies. The

main reason most of our predecessors are not able to handle such general models, is

due to the fact that most prior studies on scheduling with changing processing times

6

CHAPTER 1. INTRODUCTION

have attempted to obtain a solution by applying standard algorithmic techniques which

are known for classical scheduling models, e.g., solution by simple priority rules (LPT,

SPT), use of a standard linear assignment problem, etc.

We hope that this project has seriously changed the area of scheduling with changing

processing times, from a collection of disjoint but similar results to a methodologically

sound study, with a wide range of enhanced models and clear understanding of the

conditions under which a particular algorithmic tool is applicable. We have a feeling

that both the introduced enhanced models and the range of applicability of certain

algorithms have almost been stretched to their limits. The immediate but not the

most important implication of our study is that it (quoting the same associate editor

again)

“...may limit the flow of similar publications on the topic.”

1.1 Aims and Objectives

The main goals of this thesis are:

• To introduce enhanced, practically relevant models for scheduling problems with
changing processing times that allow various types of rate-modifying activities,

various effects or a combination of effects on the processing times.

• Identify and develop algorithmic tools for solving scheduling problems for these
generalised models.

• Set up a common framework for developing the algorithms that use similar general
principles for handling various types of the generalised models.

Reaching the following objectives would form a pathway to achieving the listed

goals:

• Introduce and study models with generalised positional effects represented by
an arbitrary function, rather than particular functions (polynomial, exponential,

etc.) that were used in most of prior studies.

• Introduce and study models in which the rate-modifying activities do not neces-
sarily restore the machine to its default state. Such RMPs divide the schedule

into a finite number of non-identical groups, thereby making the processing times

of the jobs dependent on the group a job is scheduled in.

7

CHAPTER 1. INTRODUCTION

• Further generalise the model by dropping the assumption that the RMPs are
identical in nature. Each RMP can have a different duration and can have a

different effect on the machine conditions. The latter effect can be incorporated

by assuming group-dependent effects.

• Consider models in which the durations of the RMPs are dependent on their
start-times. Explore how this can be incorporated in the existing model, given

that the RMPs are distinct.

• For a single machine, verify whether existing techniques can be adapted to handle
problems with group-dependent positional effects. If necessary, design a new

set of algorithms which are capable of solving these enhanced problems, while

ensuring that the running times of these algorithms compare favourably with

those of earlier algorithms used for solving less general problems.

• If the RMPs inserted in a schedule create k groups, check under which conditions
the objective function of the problems with group-independent effects forms a

convex sequence with respect to k, so that an optimal number of RMPs can be

found by an effi cient binary search algorithm. This would enable us to solve

various problems faster than our predecessors.

• Identify different versions of problems with positional effects and RMPs, distin-
guishing them based on three criteria: (i) RMPs are identical or distinct, (ii)

RMPs result in a group-independent or group-dependent effect, and (iii) dura-

tion of the RMPs are constant or start-time dependent. For each version identify

the best solution approach, so that an optimal solution can be achieved in the

fastest time.

• Verify whether the tool-kit developed to handle problems with positional effects
and RMPs can be adapted to solve problems with time-dependent effects.

• Consider models that combine deterioration and learning effects, so that the
resulting effect is possibly non-monotone in behaviour.

• Consider models that combine positional and time-dependent effects. Explore
the effect of rate-modifying activities on such combined models. Formulate an

enhanced model with these combined effects and solve the resulting problems by

the developed methods or their modifications.

• Extend the obtained results for single machine problems to problems with parallel
machines.

8

CHAPTER 1. INTRODUCTION

• Introduce and study models with cumulative effects and rate-modifying activities
and study its approximability by linking it to problems of Boolean programming.

• Explore other scheduling problems, possibly without changing processing times
and/or RMPs, which can be solved effi ciently by means of the developed tool-kit.

In particular, perform a study of an impact that adding extra machines may have

on the performance of a scheduling system with parallel identical machines.

Most of the results related to the key objectives outlined above have been dissemi-

nated in the following journal publications and conferences:

Journals:

1. Rustogi, K., & Strusevich, V.A. (2011). Convex and V -shaped sequences of

sums of functions that depend on ceiling functions. Journal of Integer Sequences,

14, Article 11.1.5, http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Strusevich/

strusevich2.html.

2. Rustogi, K., & Strusevich, V. A. (2012). Single machine scheduling with general

positional deterioration and rate-modifying maintenance. Omega, 40, 791—804.

3. Rustogi, K., & Strusevich, V. A. (2012). Simple matching vs linear assignment

in scheduling models with positional effects: A critical review. European Journal

of Operational Research, 222, 393—407.

4. Kellerer, H., Rustogi, K., & Strusevich, V. A. (2012). Approximation schemes

for scheduling on a single machine subject to cumulative deterioration and main-

tenance. Journal of Scheduling, DOI:10.1007/s10951-012-0287-8.

5. Rustogi, K., & Strusevich, V. A. (2013). Parallel machine scheduling: Impact of

adding extra machines. Accepted for publication in Operations Research.

6. Rustogi, K., & Strusevich, V. A. (2013). Combining time and position dependent

effects on a single machine subject to rate-modifying activities. Accepted for

publication in Omega.

7. Rustogi, K., & Strusevich, V. A. (2013). Single machine scheduling with time-

dependent deterioration and rate-modifying maintenance. Submitted to Journal

of the Operational Research Society.

9

CHAPTER 1. INTRODUCTION

Conferences:

1. Rustogi, K., & Strusevich, V. A. (2010). Single machine scheduling with deteri-

orating jobs and rate-modifying maintenance activities, 23rd Conference of the

European Chapter on Combinatorial Optimisation (ECCO), Malaga, Spain.

2. Rustogi, K., & Strusevich, V. A. (2011). Using a rectangular assignment problem

for single machine scheduling with deterioration and maintenance, 24th Confer-

ence of the European Chapter on Combinatorial Optimisation (ECCO), Ams-

terdam, Netherlands.

3. Rustogi, K., & Strusevich, V. A. (2011). Enhanced models of single machine

scheduling with deterioration effect and maintenance activities, 10th Workshop

on Models and Algorithms for Planning and Scheduling Problems (MAPSP),

Nymburk, Czech Republic.

4. Kellerer, H., Rustogi, K., & Strusevich, V. A. (2012). Approximation Schemes for

Scheduling on a Single Machine Subject to Cumulative Deterioration and Main-

tenance, 25th European Conference on Operational Research (EURO), Vilnius,

Lithuania.

5. Rustogi, K., & Strusevich, V. A. (2012). Adding an Extra Machine to a Shop

Parallel Identical Machines, 25th European Conference on Operational Research

(EURO), Vilnius, Lithuania.

6. Rustogi, K., & Strusevich, V. A. (2012). Combining time and position depen-

dent effects with multiple maintenance periods on a single machine, International

Symposium on Combinatorial Optimisation (CO2012), Oxford, United Kingdom.

7. Kellerer, H., Rustogi, K., & Strusevich, V. A. (2012). Scheduling on a Single

Machine Subject to Cumulative Deterioration and a Single Maintenance, Inter-

national Symposium on Combinatorial Optimisation (CO2012), Oxford, United

Kingdom.

We use these results to systematically achieve the main goals of this thesis.

1.2 Structure of the Thesis

Due to the variety of aspects addressed in this thesis, its remainder is split into four

parts.

10

CHAPTER 1. INTRODUCTION

Part I provides a literature review of the classical scheduling models and results

used in this thesis. In Chapter 2, we provide a general background of the theory of

scheduling. We define terminology and notation that is used throughout the thesis and

introduce some basic scheduling models that are related to this study. Furthermore,

we briefly discuss some of the important solution procedures that are often used to

solve problems arising in combinatorial optimisation. In Chapter 3, we review some

prior scheduling models that deal with changing processing times. We discuss the main

rationales that have been proposed for such a phenomena and systematically classify

the past studies into different subject areas. Further, we explore the subject areas most

relevant to this thesis in greater detail and present some important prior results.

Part II describes the general principles consistently applied in this study to various

enhanced scheduling models with changing processing times. In Chapter 4, we provide

a general framework which is used to systematically study the effect of rate-modifying

activities throughout the thesis. We give a formal description of the main problem

that we address in this piece of research. In Chapter 5, we discuss discrete convexity

of particular sequences that are widely applied in the thesis to different models with

changing processing times, and which is applicable to other areas as well. The results

of this chapter are used in several different sections of this thesis.

Part III addresses single machine problems with changing processing times and rate-

modifying activities. In each of the chapters included in this part, we study a different

model for changing processing times and combine it with rate-modifying activities. In

Chapters 6 and 7, we study models with positional deterioration effects, the former

dealing with job-independent effects and the latter dealing with job-dependent effects.

In Chapter 8, we study models with a simple linear time-dependent deterioration effect.

In Chapter 9, we study a very general model, in which deterioration and learning

effects are combined and positional and time-dependent effects occur simultaneously.

In Chapter 10, we study models with cumulative deterioration effects.

Part IV is dedicated to parallel machine scheduling. In Chapter 11, we perform an

analytical study of the effect of adding extra machines to a system. In this chapter, we

do not study models with changing processing times, but many of the techniques that

we develop for solving problems considered earlier in the thesis, have been applied to

obtain positive results. In Chapter 12, we study enhanced models for parallel machine

scheduling, with changing processing times and rate-modifying activities.

Finally, in Chapter 13, we provide a brief summary of the results obtained in the

thesis and give some concluding remarks. The logical flow of the thesis is presented in

Figure 1.1.

11

CHAPTER 1. INTRODUCTION

Figure 1.1: Logical flow of thesis

12

Part I

Literature Review

13

CHAPTER 2

Classical Scheduling Models and
Algorithms

In this chapter, we provide a general background of the theory of scheduling. We define

terminology and notation that is used throughout the thesis and introduce some basic

scheduling models that are related to this study. Furthermore, we briefly discuss some

of the important solution procedures that are often used to solve problems arising in

scheduling. We refer to the reviews by Chen, Potts and Woeginger (1998) and Leung

(2004), and the monographs by Brucker (2007) and Gawiejnowicz (2008), for most of

the content presented in this chapter.

2.1 Classical Scheduling Models

The models that we study in this thesis are extensions of the following family of classical

scheduling problems. In the most general setting, the jobs of set N = {1, 2, . . . , n}
have to processed on m ≥ 1 machines M1,M2, . . . ,Mm, and the following information

is typically known for each job:

• Processing time (pij): If a job j ∈ N is assigned to machine Mi, 1 ≤ i ≤ m,

then the processing time of job j is equal to pij, where we assume that all pij
values are non-negative integers. The subscript i is omitted if the processing time

of a job j is independent of the machine assignment.

• Release date (rj): The release date rj specifies the time at which a job j ∈ N
becomes available for processing.

• Due date (dj): The due date dj specifies the date at which a job j ∈ N is

expected to complete. Completion of a job after its due date is allowed but a

14

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

cost is incurred.

• Deadline
(
dj
)
: The deadline dj specifies the time by which a job j ∈ N must

be completed. Unlike the due date a deadline is a hard constraint.

• Weight (wj): The weight wj of a job j ∈ N reflects the importance of the job.

A schedule specifies, for each machineMi and each job j, one or more time intervals

throughout which processing is performed on job j by machine Mi. A schedule is said

to be feasible if it ensures that at any given time, each machine processes no more than

one job and no job is assigned to more than one machine. Besides, a feasible schedule

must satisfy all the conditions laid out by the specific problem type. Typically, a

problem type is specified by three criteria: machine environment, job characteristics

and some optimality criterion. It is convenient to denote the resulting problem by the

representation scheme of Graham et al. (1979), in which a three-field descriptor α|β|γ
is used to define the problem: α represents the machine environment, β defines the job

characteristics, and γ is the optimality criterion.

2.1.1 Machine Environment

A machine environment is defined by the configuration in which the machines are

available. Machine configurations can be broadly divided in two classes: single-stage

systems and multi-stage systems. In a single-stage system each job requires exactly one

operation, whereas in a multi-stage system jobs require operations at different stages.

Single-stage systems involve either a single machine, or m machines operating in

parallel. In the case of parallel machines, each machine has the same function. The

possible machine environments in the α field for a single-stage system are as follows:

• Single machine (1): All jobs are processed on a single machine and the process-
ing time of a job j ∈ N is simply given by pj.

• Identical parallel machines (Pm): Jobs are simultaneously processed on m ≥
1 identical machines and the processing time of a job j ∈ N is given by pj,

irrespective of the machine assignment.

• Uniform parallel machines (Qm): Jobs are simultaneously processed on m ≥
1 identical machines, however, each of them operate at different speeds. The

speed of a machine Mi is given by si, so that the processing time of a job j ∈ N
assigned to machine Mi is given by pij = pj/si, 1 ≤ i ≤ m.

15

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

• Unrelated parallel machines (Rm):Jobs are simultaneously processed on m
distinct machines. The processing time of each job depends on the machine

assignment, so that the processing time of a job j ∈ N assigned to machine Mi

is given by pij.

For each case, it is assumed that all machines become available to process jobs at

time zero. In this thesis we only study single-stage systems. However, for completeness

we give a brief description of multi-stage systems as well.

There are three main types of multi-stage systems. All such systems comprise of s

stages, each having a different function. In a flow shop with s stages, the processing of

each job goes through the stages 1, . . . , s in that order. In an open shop, the processing

of each job also goes once through each stage, but the routing (that specifies the

sequence of stages through which a job must pass) can differ between jobs and forms

part of the decision process. In a job shop, each job has a prescribed routing through

the stages, and the routing may differ from job to job. There are also multiprocessor

variants of multi-stage systems, where each stage comprises several (usually identical)

parallel machines.

2.1.2 Job Characteristics

Each job j ∈ N, may be characterised by a set of properties/constraints. If the jobs
are associated with more than one property, then all properties can be denoted in the

three-field notation by defining β := β1, β2, . . . , βz, where β1, β2, . . . , βz denote the

properties 1, 2, . . . , z of the jobs. If no properties are defined for the jobs then define

β := ∅. Below we list out few of the common properties that are often associated with
jobs in classical scheduling theory.

• Processing Times (pj): The processing time of a job is usually given by a non-
negative integer that is proportional to the processing requirements of the job.

In normal circumstances a special mention of the processing times of the jobs

is not required in the three-field notation. However, if the processing times are

defined by some special rule, then such a rule must be denoted by appropriately

updating the β field, e.g., if a system has all jobs with unit processing times, then

we include pj = 1 in the β field.

• Preemptions (pmtn): Jobs with preemption allow the processing of any opera-
tion to be interrupted and resumed at a later time on the same or on a different

16

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

machine. If preemptions are allowed, we include pmtn in the β field, otherwise,

not.

• Release dates (rj): The release date rj defines the earliest time at which a job
j ∈ N can begin processing. If the symbol rj is not present in the β field, then a

job j can begin processing at any time.

• Deadline
(
dj
)
: If the symbol dj is present in the β field, a job j ∈ N must be

completed by time dj, otherwise, no such restrictions are imposed.

• Precedence constraints (prec): The precedence constraints specify the

scheduling constraints of the jobs, in the sense that certain jobs must be com-

pleted before some other jobs can begin processing, i.e., if job j has precedence

over job k, then k cannot start its processing until j is completed. Precedence

constraints are usually specified by a directed acyclic precedence graph G with

vertices 1, . . . , n. There is a directed path from vertex j to vertex k if and only

if job j has precedence over job k. If prec is not specified in the β field, the jobs

are not subject to any precedence constraints.

There are some other job characteristics commonly found in the scheduling litera-

ture, such as no-wait, restrictions on the number of jobs, etc., but we do not mention

them here as they are associated with multi-stage systems. Moreover in this thesis, we

do not consider problems with release dates, deadlines or precedence constraints. Our

main focus is on the study of changing processing times of jobs. In Chapter 11, we also

discuss some parallel machine problems with preemption.

2.1.3 Optimality Criteria

The optimality criterion of a scheduling problem or the objective function to be min-

imised is always a non-decreasing function of the completion time of the jobs. For a

given schedule π, let Cj (π) denote the completion time of a job j ∈ N. Some commonly
used objective functions in the γ field include:

• Makespan (Cmax): The makespan is the maximum completion time of a job in

the schedule, i.e., Cmax(π) = max {Cj(π)|j ∈ N} . For a single machine environ-
ment, the makespan is simply given by the completion time of the last job in the

schedule.

• Sum of completion times (
∑
Cj): This objective function denotes the sum

of the times each job has to wait before being fully processed by the system. It

17

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

follows that the quantity
(∑

j∈N Cj

)
/n represents the average time a job has to

wait before being completed. A more general form of this objective function is

the sum of weighted completion times, or
∑

j∈N wjCj, where wj is the weight of

job j.

• Total flow time (
∑
Fj): This objective function is relevant if the problem

specifies the release dates rj of each job j ∈ N. The flow time of a job j is defined
by the total time it has to wait before being completed, i.e., Fj = Cj − rj, j ∈ N.
The significance of the total flow time

∑
j∈N Fj is the same as that of the sum of

completion times. In fact, if it is known that all jobs are available for processing

at time zero, it is common to denote the sum of completion times, simply as total

flow time. Notice that in this thesis, we do not consider problems with release

dates, so we often use the term flow time in the context of
∑
Cj.

If for a job j ∈ N, the due date is given as dj, we define the lateness Lj(π) = Cj(π)−
dj; the earliness Ej(π) = max{dj − Cj(π), 0}; the tardiness Tj(π) = max{Cj(π) −
dj, 0}; and the unit penalty Uj(π) = 1, if Cj(π) > dj, and Uj(π) = 0, otherwise.

Some commonly found objective functions related to problems with due dates are:

the maximum lateness Lmax (π) = max {Lj(π)|j ∈ N}; the total (weighted) tardiness∑
j∈N(wj)Tj; the (weighted) number of late jobs

∑
j∈N(wj)Uj; the total (weighted)

earliness
∑

j∈N(wj)Ej. Also, some situations require more than one of these criteria

to be considered.

In this thesis, we mainly concentrate on problems without due dates or release

dates, so our prime focus is on the objectives Cmax and
∑
Cj. In Sections 3.2.1 and 6.2,

we study some specially structured problems with due dates and prove that they can

be solved using a similar methodology as rest of the problems considered in this thesis.

2.2 Classical Scheduling Algorithms

In this section, we outline the common methods and techniques that are used to analyse

and solve scheduling problems. We mainly focus on classical problems such as those

defined in Section 2.1, in which the input is deterministic and is known in advance.

2.2.1 Time Complexity of Algorithms

Most scheduling problems are written in terms of an optimisation problem, in which

we need to search for a solution that optimises a certain objective function. A typical

18

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

optimisation problem can be viewed as a function f that maps every instance or input

x to an output f(x). In complexity theory, however, we usually deal with a so-called

decision problem, in which the output f(x) can take only two values: “true” and

“false”. By means of binary search one can represent every optimisation problem as a

sequence of decision problems.

The input x to any problem is usually assumed to have a binary encoding, and

the size of the input is the number of binary digits needed to describe the instance.

For example, the number of binary digits needed to represent the positive integer k

is 1 + blog2 kc . Another encoding scheme is the unary encoding, which is mostly used
only for theoretical reasoning. In unary encoding an integer is represented as a string

of 1’s, e.g., the number 5 would be represented as 11111.

For a given input x, a step-by-step procedure that generates the correct output

f(x) after a finite number of steps, is known as an algorithm. Each step, in turn,

can be decomposed into a finite number of elementary operations, such as additions,

multiplications and comparisons. The time complexity or running time of an algorithm

is expressed as the total number of elementary operations, that are required by the

algorithm to solve the given problem. This is normally based on a worst-case instance

and expressed asymptotically as a function (say, T (n)) of the size of the input (say,

n). Often, the function T (n) can be quite cumbersome and in practice, is usually

represented in the Big-O notation as O (g (n)) . Formally, we write T (n) = O (g (n)) ,

if there exists a constant c such that T (n) ≤ cg (n) . For example, for a function

T (n) = 5n4 + 100n3 + n log n we can write T (n) = O (n4) .

If the function g (n) is polynomial in the input size n, the algorithm is said to be a

polynomial-time algorithm. On the other hand, if the function g (n) is exponential in

n, the algorithm is said to be an exponential-time algorithm. In complexity theory, an

algorithm is considered to be “good”if it is polynomial-time; otherwise, it is considered

to be “bad”. If a problem is known to be solvable by a polynomial-time algorithm,

then it is considered easy and is said to be polynomially solvable. The class of all

polynomially solvable problems (no matter optimisation or decision) is called class P .

Next, the class of all decision problems for which a given solution (“true”or “false”)

can be verified as being correct or incorrect by a deterministic polynomial-time algo-

rithm, is called class NP. Alternatively, the class NP is a class of all decision problems

for which an optimal solution (“true”or “false”) can be found and verified by a non-

deterministic polynomial-time (NP) algorithm. Obviously, a solution to the decision

problems belonging to class P can be verified in polynomial time by a deterministic

algorithm, thus, P ⊆ NP . It is conjectured that P 6= NP, although no proof is known.

19

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

The most diffi cult problems in class NP are the NP -complete problems. Unless

P = NP , which is considered unlikely, an NP -complete problem does not possess a

polynomial-time algorithm. Informally, a problem X in NP is NP -complete if any

other problem in NP can be solved in polynomial time by an algorithm that makes

a polynomial number of calls to a subroutine that solves problem X. Note that this

implies that, if an NP -complete problem allows a polynomial algorithm, then all prob-

lems in NP would allow polynomial algorithms. Researchers on complexity theory

have identified a huge body of NP -complete problems.

A popular NP -complete problem, which is also relevant to the content of this thesis

(see, e.g., Chapter 10) is the Subset-sum problem, which is defined as follows:

Subset-sum Problem: Given a positive integer Z, a set R = {1, 2. . . . , r} , and
a positive integer uj, for each j ∈ R, does there exist a subset R′ ⊆ R such that∑

j∈R′ uj = Z?

Note that the concepts of polynomial solvability and NP -completeness crucially

depend on the encoding scheme used. If one changes the encoding scheme from binary

to unary, the problem may become easier, as the input becomes longer and hence

the restrictions on the running time of a polynomial algorithm are less stringent. A

problem that can be solved in polynomial time under the unary encoding scheme is

said to be pseudo-polynomially solvable. If a problem is NP -complete even under the

unary encoding scheme it is known as strongly NP -complete or NP -complete in the

strong sense, otherwise, it is simply referred to as NP -complete or NP -complete in the

ordinary sense. The Subset-sum problem defined above is known to be NP -complete

in the ordinary sense (see Karp (1972)).

An optimisation problem is known as (strongly) NP -hard if its decision version is

(strongly) NP -complete. NP -hard problems can be informally defined as problems

which are at least as hard as the hardest problems in NP. Typically, there are two

ways of solving NP -hard optimisation problems. First, we can try to find an optimal

solution using an exponential-time algorithm, which obviously is not a very acceptable

approach. Second, we can use some sort of an approximation scheme which searches

for a feasible solution, close enough to the optimum, in reasonably quick time. We

review some basic concepts regarding approximation algorithms in the next section.

2.2.2 Approximation Algorithms

The NP -hardness of an optimisation problem suggests that it is not always possible

to find an optimal solution quickly. However, instead of searching for an optimal

20

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

solution with enormous effort, we may instead use an approximation algorithm to

generate approximate solutions that are close to the optimum with considerably less

computational effort.

Consider a scheduling problem in which the objective is to minimise a cost function

F (S) ≥ 0, where S denotes any feasible schedule for the given problem. Let S∗ denote

an optimal schedule so that for any feasible schedule S, the inequality F (S∗) ≤ F (S)

holds. Further, assume that there exists an approximation algorithm H that generates

a schedule SH . The algorithm H is called a ρ-approximation algorithm if F (SH) ≤
ρF (S∗), where ρ ≥ 1. We refer to ρ as a ratio guarantee for the algorithm H since it

provides a bound on the performance under any circumstances. If the ratio ρ is the

smallest possible, then it is called the worst-case ratio bound of algorithm H. Often,

an approximation algorithm is also known as a heuristic.

A family of ρ-approximation algorithms is called a polynomial-time approximation

scheme (PTAS) if ρ = 1 + ε for any ε > 0, and the running time of every algorithm

Hε in such a family is polynomial with respect to the length of the problem input.

Furthermore, if the running time of every algorithm Hε is bounded by a polynomial in

the input size and 1/ε, then the family is called a fully polynomial-time approximation

scheme (FPTAS). If a scheduling problem is strongly NP -hard, then it neither allows

an FPTAS nor a pseudo-polynomial algorithm unless P = NP .

There are other criteria for evaluating the performance of an approximation algo-

rithm, which include empirical analysis and probabilistic analysis. Empirical analysis

of an algorithm involves running the algorithm on a large number of test problem in-

stances, preferably with known or estimated optimal solutions, and then evaluating

the performance of the algorithm statistically. Probabilistic analysis of an algorithm

can be regarded as the analytical counterpart of empirical analysis. The main goal of

the analysis is to provide a probabilistic characterisation for the average-case perfor-

mance of the heuristics, under some assumptions on the probability distribution of the

problem parameters.

2.2.3 Reduction to Boolean Programming Problems

Very often it is observed that scheduling problems can be reduced to Boolean pro-

gramming problems. In this section, we review some of the most popular Boolean

programming problems which are relevant to this thesis.

21

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

Linear Assignment Problem

A meaningful interpretation of the Linear Assignment Problem (LAP) is as follows.

Suppose that n jobs need to be assigned to m ≥ n candidates, exactly one job per

candidate. It is known that cji is the cost of assigning job j to candidate i. Our

objective is to find an assignment so that the total cost is minimised.

It is convenient to arrange all costs as an n × m cost matrix C = (cji) , where

the j-th, j ∈ {1, . . . , n} , row contains the elements cj1, cj2, . . . , cjm, and the i-th, i ∈
{1, . . . ,m} , column contains the elements c1i, c2i, . . . , cmi. It is required to select n
elements, exactly one from each row and exactly one from each column, so that their

sum is minimised. The n×m LAP is also known as a rectangular assignment problem

and can be formulated as a Boolean programming problem in the following way:

min
n∑
j=1

m∑
i=1

cjixji

subject to
m∑
i=1

xji = 1, j ∈ {1, . . . , n} ;

n∑
j=1

xji = 1, i ∈ {1, . . . ,m} ;

xji ∈ {0, 1} , j ∈ {1, . . . , n} , i ∈ {1, . . . ,m} .

(2.1)

The algorithm to solve a rectangular assignment problem of the form (2.1) has

been outlined by Bourgeois and Lassale (1971). The running time of this algorithm is

O(n2m), m ≥ n. Below we reproduce the main steps of this algorithm. Later on in

the thesis in Chapter 7, we shall perform an in-depth analysis of this algorithm and

modify some of its steps to suit our requirements.

Let either a row or a column of the matrix C be called a line. The algorithm given

by Bourgeois and Lassale (1971) manipulates with the cost matrix, reduces the original

(positive) elements on a line-by-line basis, so that some of them become zeros. Two

zeros that do not belong to the same line are called independent. There are two types

of labels applied to a zero: it can be starred to become 0∗ or primed to become 0′.

During the run of the algorithm, some lines are said to be covered. In all iterations

of the algorithm, the starred zeros are independent, and their number is equal to the

number of the covered lines, with each covered line containing exactly one 0∗. The

algorithm stops having found n starred zeros in the current matrix. The primed zeros

in a current partial solution are seen as potential candidates to become starred zeros.

22

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

Algorithm BourLas (see Bourgeois and Lassale (1971))

Step 0. Consider a row of the matrix C, subtract the smallest element from each

element in the row. Do the same for all other rows.

Step 1. Search for a zero, Z, in the matrix. If there is no starred zero in its row or
column, star Z. Repeat for each zero in the matrix. Go to Step 2.

Step 2. Cover every column containing a 0∗. If n columns are covered, the starred

zeros form the desired independent set. Otherwise, go to Step 3.

Step 3. Choose a non-covered zero and prime it; then consider the row containing the
primed zero. If there is no starred zero in this row, go to Step 4. If there is a

starred zero Z in this row, cover this row and uncover the column of Z. Repeat

until all zeros are covered. Go to Step 5.

Step 4. There is a sequence of alternating starred and primed zeros constructed as
follows: let Z0 denote the uncovered 0′. Let Z1 denote the 0∗ in Z0’s column

(if any). Let Z2 denote the 0′ in Z1’s row. Continue in a similar way until the

sequence stops at a 0′, Z2a, which has no 0∗ in its column. Unstar each starred

zero of the sequence, and star each primed zero of the sequence. Erase all primes

and uncover every line. Return to Step 2.

Step 5. Let h denote the smallest non-covered element of the current matrix. Add
h to each covered row, then subtract h from each uncovered column. Return to

Step 3 without altering any asterisks, primes, or covered lines.

An iteration of Algorithm BourLas is considered complete when all zeros are covered

by the end of Step 3. After this, a transition is made to Step 5, where we search for

the minimal elements in the uncovered part of the matrix and convert them to zero.

At the end of an iteration, one of the two outcomes is possible: either new 0∗’s are

added to the matrix, or not. If the total number of 0∗’s in the matrix is less than n,

the existing 0∗’s represent a partial solution to the assignment problem. If the total

number of 0∗’s in the matrix is equal to n, then the solution is considered complete

and the optimal assignment is given by the positions occupied by the 0∗’s.

A special case of the n × m LAP is the n × n LAP with a square cost matrix.

One of the most studied problems of integer programming, the n×n LAP is known to
be solvable in O(n3) time by the so-called Hungarian algorithm due to Kuhn (1955).

23

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

Below we give its formulation in terms of Boolean programming:

min

n∑
j=1

n∑
i=1

cjixji

subject to
n∑
i=1

xji = 1, j ∈ {1, . . . , n} ;

n∑
j=1

xji = 1, i ∈ {1, . . . , n}

xji ∈ {0, 1} , j ∈ {1, . . . , n} , i ∈ {1, . . . , n} .

(2.2)

A special case of the LAP of the form (2.2) can be solved faster if cji = αiβj, so

that the input of the problem is determined by two arrays α = (α1, α2, . . . , αn) and

β = (β1, β2, . . . , βn). Such a problem is known as the linear assignment problem with

a product matrix. It is also sometimes referred to as the problem of minimising a linear

form
∑n

j=1 απ(j)βj over a set of all permutations. Provided that β1 ≤ β2 ≤ · · · ≤ βn, the

problem reduces to finding a permutation ϕ = (ϕ(1), ϕ(2), . . . , ϕ(n)) of the components

of array α, such that for any permutation π = (π(1), π(2), . . . , π(n)), the inequality

n∑
j=1

αϕ(j)βj ≤
n∑
j=1

απ(j)βj (2.3)

holds. In terms of the original Boolean decision variables in (2.2), we have that xj,ϕ(j) =

1, j ∈ {1, . . . , n}, while all other xji are zero. The classical result by Hardy, Littlewood
and Polya (1934) leads to the following algorithm that finds the required permutation

ϕ.

Algorithm Match

input: Two arrays α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn)

output: A permutation ϕ = (ϕ(1), ϕ(2), . . . , ϕ(n)) that satisfies (2.3)

Step 1. Renumber the components of the array β so that

β1 ≤ β2 ≤ · · · ≤ βn.

Step 2. Output a permutation ϕ such that

αϕ(1) ≥ αϕ(2) ≥ · · · ≥ αϕ(n).

As follows from Hardy, Littlewood and Polya (1934), the following statement holds.

24

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

Lemma 2.1. A permutation ϕ found by Algorithm Match satisfies (2.3) for an arbi-

trary permutation π.

Finding permutation ϕ requires the sorting of two arrays of n numbers and can be

done in O(n log n) time. Informally, this permutation matches the larger components

of one of the two given arrays with smaller components of the other array. Another

way of arriving at Lemma 2.1 is as follows.

Assume that the arrays α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) are ordered

such that α1 ≥ α2 ≥ · · · ≥ αn and β1 ≤ β2 ≤ · · · ≤ βn hold. It is easy to verify that

the resulting cost matrix C =
(
cji = αiβj

)
satisfies the following property

cij + crs ≤ cis + crj, for all 1 ≤ i < r ≤ n, 1 ≤ j < s ≤ n.

The above property is known as the Monge property and any matrix C obeying

the Monge property is called a Monge matrix. Monge matrices are known to permit

a solution to the assignment problem of the form (2.2) very easily. If C = (cji) is a

Monge matrix of dimension n×n, then an optimal solution to the assignment problem
is given by

xji =

{
1, if i = j

0, otherwise.

See Burkard, Klinz and Rudolf (1996) for a proof of the above property and more

applications of Monge matrices in combinatorial optimisation. Notice, that the above

property is equivalent to Lemma 2.1.

In this thesis, we use different versions of the linear assignment problem on several

occasions. We refer the reader to the recent monograph by Burkard, Dell’Amico and

Martello (2009) for an excellent exposition of all aspects of the assignment problem.

Subset-Sum Problem

The decision version of the Subset-Sum problem was defined in Section 2.2.1. The

optimisation version of the Subset-sum problem can be defined as

max
∑
j∈R

ujxj

subject to
∑
j∈R

ujxj ≤ Z

xj ∈ {0, 1} , j ∈ R,

(2.4)

25

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

where Z and uj, j ∈ R, are all positive integers. Since the decision version of the

above problem is an NP -complete problem, the Subset-sum problem of the form (2.4)

is known to be NP -hard in the ordinary sense. This problem admits an FPTAS which,

for a given positive ε, either finds an optimal solution x∗j ∈ {0, 1} , j ∈ N , such that∑
j∈R

ujx
∗
j < (1− ε)Z,

or finds an approximate solution xεj ∈ {0, 1} , j ∈ R, such that

(1− ε)Z ≤
∑
j∈R

ujx
ε
j ≤ Z.

The fastest of known FPTASs requires no more than O
(
min

{
n/ε, n+ 1

ε2
log
(
1
ε

)})
time; see Kellerer et al. (2003) and Lemma 4.6.1 in Kellerer, Pferschy and Pisinger

(2004).

Half-Product Problem

Let x = (x1, x2, . . . , xn) denote a vector with n 0-1 components. Introduce the function

H (x) =
n∑

1≤i<j≤n
aibjxixj −

n∑
j=1

hjxj, (2.5)

where for each j, 1 ≤ j ≤ n, the coeffi cients aj and bj are non-negative integers, while

hj is an integer that can be either negative or positive. Problems of quadratic Boolean

programming similar to (2.5) were introduced in 1990s as mathematical models for

various scheduling problems by Kubiak (1995) and Jurisch, Kubiak and Józefowska

(1997). The function H (x) is called a Half-product since its quadratic part consists of

roughly half of the terms of the product
(∑n

j=1 ajxj

)(∑n
j=1 bjxj

)
. This function and

the term “Half-product”were introduced by Badics and Boros (1998), who considered

the problem of minimising the function H with respect to Boolean decision variables

with no additional constraints. Notice that we are only interested in the instances of

the problem for which the optimal value of the function is strictly negative; otherwise,

setting all decision variables to zero solves the problem. The problem of minimising

function H (x) of the form (2.5) is called the Half-product problem, which is known to

be NP -hard in the ordinary sense. The first FPTAS for the Half-product problem that

requires strongly polynomial time is due to Erel and Ghosh (2008), and the published

running time is O(n2/ε). We refer the reader to a recent state-of-the-art review by

26

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

Kellerer and Strusevich (2012), for other aspects of the Half-product problem and for

its scheduling applications.

2.2.4 Combinatorial Counting

Many scheduling problems reduce to enumeration of several feasible solutions and we

are required to choose the best among them as an optimal solution. For completeness,

we provide a brief review of some basic principles of combinatorics, which are often

used in this thesis. We follow the terminology and notation of Flajolet and Sedgewick

(2009).

• Combinations: A k-combination of a set S is a subset of k distinct elements of

S. If the set has n elements the number of k-combinations is equal to
(
n
k

)
.

• Arrangements: A k-arrangement of a set S is an ordered subset of k distinct

elements of S. If the set has n elements the number of k-arrangements is equal

to
(
n
k

)
k!.

• Partitions: A partition of a positive integer n into exactly k positive summands
is a sequence (z1, z2, ..., zk) of integers such that n = z1 + z2 + · · · + zk and

z1 ≥ z2 ≥ · · · ≥ zk ≥ 1. The total number of partitions of n into at most

k positive summands is denoted by P (≤k)n and can be approximated by nk−1

k!(k−1)! .

The total number of partitions of n into exactly k positive summands is P (k)n =

P
(≤k)
n − P (≤k−1)n .

• Compositions: A composition of an integer nmade of k summands is a sequence
(z1, z2, ..., zk) of positive integers such that n = z1 + z2 + · · · + zk. The total

number of compositions C(k)n in exactly k summands is given by
(
n−1
k−1
)
, which

can be approximated as nk−1

(k−1)! . The number of compositions C
(≤k)
n into at most k

positive summands is
(
n+k−1
k−1

)
, which can be approximated by (n+k)k−1

(k−1)! .

2.2.5 Polynomial-Time Algorithms for Classical Scheduling

In this section, we review some of the most well known polynomial-time scheduling

algorithms. We shall only concentrate on the problems relevant to this thesis, i.e.,

single-stage problems without release dates, due dates, deadlines or precedence con-

straints. Our main focus will be on the makespan and the total flow time objectives.

27

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

Minimising Makespan

We focus on the problems 1 ||Cmax, Pm ||Cmax and Pm |pmtn|Cmax.

Problem 1 ||Cmax is trivial as the makespan of a schedule π is simply given as
the sum of processing times of all jobs, i.e., Cmax (π) =

∑
j∈N pj. Thus, any feasible

permutation of jobs is optimal.

Problem Pm ||Cmax is diffi cult to solve to optimality. Let us first consider an

easier problem with two machines, which is denoted by P2 ||Cmax. Intuitively, the
smallest makespan for this problem is achieved if both machines have an equal load,

i.e., the sum of the processing times of all jobs scheduled on each machine should

be equal. This means that the lower bound on the makespan for problem P2 ||Cmax
is equal to

(∑
j∈N pj

)
/2. As a result, the problem of minimising the makespan on

two parallel machines can be seen as a Subset-Sum problem of the form (2.4) with

Z =
(∑

j∈N pj

)
/2, which is anNP -hard problem. Indeed, the problems P2 ||Cmax and

Pm ||Cmax are known to be NP -hard and NP -hard in the strong sense, respectively;
see Garey and Johnson (1978, 1979). Thus, unless P = NP, there is no polynomial

time algorithm to solve the problem of minimising the makespan on parallel machines

without preemption. However, there exist several effi cient approximation algorithms

that solve such problems with good worst-case bounds. Here, we only give a description

of the list scheduling algorithm which was introduced by Graham (1966, 1967) for

solving problem Pm ||Cmax.

List Scheduling: The List Scheduling algorithm (later referred to in the thesis as

Algorithm LS) delivers a heuristic schedule SLS(m) for the problem Pm ||Cmax, rea-
sonably close to the optimum. In the most general setting of Algorithm LS, the jobs

are arranged in an arbitrary sequence (a list) and every time that a machine becomes

available, the next job from the list is assigned to it. If the optimal schedule to prob-

lem Pm ||Cmax is known to be S∗ (m) , the worst-case analysis result by Graham (1966,

1967) states that
Cmax (SLS(m))

Cmax (S∗(m))
≤ 2− 1

m
, (2.6)

and this bound is tight. The running time of Algorithm LS for solving problem

Pm ||Cmax is O (nm).

Largest Processing Time first (LPT) rule: According to the LPT rule, the jobs
are arranged in a non-increasing order of their processing times and are renumbered

in a way such that

p1 ≥ p2 ≥ · · · ≥ pn, (2.7)

28

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

holds. The LPT rule is a very common strategy for solving several scheduling problems.

For solving problem Pm ||Cmax, Graham (1966, 1967) further proposed that instead
of taking the jobs from an arbitrary list, if the jobs are taken from an ordered list in

which they are arranged in an LPT rule, then the worst-case bound of Algorithm LS

can be improved and is given by

Cmax (SLPT (m))

Cmax (S∗(m))
≤ 4

3
− 1

3m
, (2.8)

where SLPT (m) is heuristic schedule following the LPT rule. To sort a list of size

n, the running time needed is O (n log n) . Thus, the LPT list scheduling method can

deliver an approximate solution to problem Pm ||Cmax in O (n log n+ nm) time, with

a worst-case ratio bound ρ = 4/3− 1/3m.

We now consider preemptive scheduling. Unlike Pm ||Cmax, problem

Pm |pmtn|Cmax can be solved optimally in linear time by the famous wrap-around
rule by McNaughton (1959).

McNaughtons’s Wrap-Around Rule: In any feasible schedule S (m) onm identical

machines, a job should not be assigned to more than one machine at a time. It follows

that the makespan of a schedule S (m) cannot be less than the largest processing time,

i.e.,

Cmax(S (m)) ≥ pmax = max {pj|j ∈ N} . (2.9)

Further, the makespan cannot be less than the average machine load, i.e.,

Cmax(S (m)) ≥
∑

j∈N pj

m
. (2.10)

Based on these observations the value of the optimal makespan is given as

Cmax(S
∗ (m)) = D = max

{
pmax,

∑
j∈N pj

m

}
.

To find an optimal schedule S∗ (m), assign the jobs in any order from time 0 to

time D on machineM1. If a job’s processing extends beyond time D, preempt the jobs

at time D, and continue its processing on machine M2, starting at time 0. Repeat this

process until all jobs are assigned. The running time of this algorithm is O (n) as it

requires O (n) time to sum up all elements of a vector of length n and requires O (n)

comparisons to find the largest processing time.

If we denote the value of the optimal makespan for problems Pm |pmtn|Cmax and

29

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

Pm ||Cmax as Cmax(S∗np(m)) and Cmax(S∗np(m)) respectively, then Braun and Schmidt

(2003) and Lee and Strusevich (2005) have proved that the following inequality holds

Cmax(S
∗
np(m))

Cmax(S∗p(m))
≤ 2− 2

m+ 1
. (2.11)

The ratio Cmax(S∗np(m))/Cmax(S
∗
p(m)) is known as the power of preemption. In

particular, Braun and Schmidt (2003) show that the bound (2.11) holds if an optimal

non-preemptive schedule S∗np(m) is replaced by a schedule Cmax (SLPT (m)) found by

an LPT list scheduling algorithm. Lee and Strusevich (2005) describe a large class of

non-preemptive schedules for which the bound (2.11) holds.

Minimising Total Flow Time

We focus on the problems 1 ||
∑
Cj, 1 ||

∑
wjCj, Pm ||

∑
Cj, Qm ||

∑
Cj and

Rm ||
∑
Cj. Recall that since we do not consider problems with release dates, the

objective of minimising the sum of completion times is equivalent to the objective of

minimising the total flow time.

Let us begin with problem 1 ||
∑
Cj. Given a permutation π =

(π (1) , π (2) , . . . , π (n)) of jobs, the completion time of a job j = π (r) sched-

uled in position r, 1 ≤ r ≤ n, can be given as Cπ(r) =
∑r

k=1 pπ(k). Thus, the sum of

completion times of all jobs can be written as

n∑
r=1

Cπ(r) =
n∑
r=1

r∑
k=1

pπ(k) =
n∑
r=1

(n− r + 1) pπ(r). (2.12)

Notice that the sequence n− r+ 1, 1 ≤ r ≤ n, decreases with r. Thus, according to

Lemma 2.1, the sum of completion times of all jobs can be minimised if the jobs are

scheduled in a non-decreasing order of their processing times.

Shortest Processing Time first (SPT) rule: According to the SPT rule, the jobs
are arranged in a non-decreasing order of their processing times and are renumbered

in a way such that

p1 ≤ p2 ≤ · · · ≤ pn. (2.13)

holds. Similar to the LPT rule, the SPT rule is also a very common strategy for solving

several scheduling problems. It follows that an optimal solution to problem 1 ||
∑
Cj

is obtained if the jobs are scheduled by the SPT rule.

An optimal solution to problem 1 ||
∑
wjCj is obtained by applying Smith’s ratio

30

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

rule.

Smith’s Ratio rule: Schedule the jobs in a non-decreasing order of their ratios pj/wj.
The optimality of this ratio rule is given by means of an interchange argument, which

is a very useful technique in proving the optimality of several scheduling problems.

Let us now consider problem Pm ||
∑
Cj. Suppose that in a feasible schedule

S(m) with m identical machines, there are h[i] jobs assigned to machine Mi, so

that
∑m

i=1 h
[i] = n, and these jobs are processed in accordance with a permutation

π[i] =
(
π[i](1), π[i](2) . . . , π[i](h[i])

)
, where 1 ≤ i ≤ m. Then it follows from (2.12) that

the sum of completion times of all jobs can be written as

n∑
j=1

Cj (S(m)) =

m∑
i=1

h[i]∑
r=1

r∑
k=1

pπ[i](k) =

m∑
i=1

h[i]∑
r=1

(
h[i] − r + 1

)
pπ[i](r). (2.14)

Conway, Maxwell and Miller (1967) present an algorithm for solving problem

Pm ||
∑
Cj which is essentially a version of Algorithm LS outlined earlier in this sec-

tion. According to them, an optimal solution is obtained if the jobs are scanned in the

SPT order, i.e., in non-decreasing order of their processing times, and are assigned to

the first available machine. The running time required to obtain an optimal schedule

S∗(m) is O (n log n) , which is equal to the time needed to sort the jobs in an SPT

order. It is easy to verify that if n = km+ r, where k ≥ 0 and 0 ≤ r ≤ m− 1, then in

the resulting optimal schedule S∗(m), there will be k + 1 jobs assigned to r machines

and k jobs assigned to the remaining machines.

Further, Brucker (2007) proves in Chapter 2 of his book that the optimal value of

the objective function for problem Pm ||
∑
Cj can be given by a closed form formula

n∑
j=1

Cj(S
∗(m)) =

n∑
j=1

pj

⌈
j

m

⌉
, (2.15)

provided that the jobs are numbered in an LPT (2.7) order. To see that (2.15) holds,

it is convenient to view the optimal schedule S∗(m) in the following way. Assume that

the jobs are scanned in an LPT order (2.7). Then, in schedule S∗(m) each of the first

m jobs takes the last position on one of the machines, each of the next m jobs takes the

second from last position on one of the machines, etc. This implies in light of formula

(2.14), that job j contributes its processing time into the objective function exactly⌈
j
m

⌉
times. As a result, the objective function can be written as (2.15).

Notice that McNaughton (1959) has proved, that if preemption is allowed, the value

of the objective function of the resulting problem Pm |pmtn|
∑
Cj is no smaller than

31

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

that of problem Pm ||
∑
Cj.

Let us now consider problem Qm ||
∑
Cj, with machine speeds given as

s1, s2, . . . , sm. This problem is more complicated than problem Pm ||
∑
Cj, as an op-

timal schedule need not use all machines, leaving the slower machines empty. For a

feasible schedule S(m) with m uniform machines, it follows from (2.14), that the sum

of completion times of all jobs can be written as

n∑
j=1

Cj (S(m)) =

m∑
i=1

h[i]∑
r=1

r∑
k=1

pπ[i](k) =
m∑
i=1

h[i]∑
r=1

(
h[i] − r + 1

)
pπ[i](r)

si
. (2.16)

Problem Qm ||
∑
Cj can be solved by an algorithm given by Conway, Maxwell and

Miller (1967). This algorithm works similarly to the LPT version of the algorithm

described above for solving problem Pm ||
∑
Cj. We fill the processing sequence on

each machine from the last position forwards, starting from the jobs with the largest

processing times. The next job is assigned in front of the current processing sequence.

This approach does not require any advance knowledge of the number of jobs to be

assigned to a machine. Below we outline the main steps of this algorithm as it appears

in Chapter 5 of the book by Brucker (2007).

Algorithm QmSum

input: An instance of problem Qm ||
∑
Cj

output: An optimal schedule defined by the processing sequences π[i], 1 ≤ i ≤ m

Step 1. If required, renumber the jobs in the LPT order. For each machine Mi, 1 ≤
i ≤ m, define an empty processing sequence π[i] := (∅) and the weight W [i] =

1/si.

Step 2. For each job j from 1 to n do

(a) Find the largest index v with W [v] = min
{
W [i]|1 ≤ i ≤ m

}
.

(b) Assign job j to machine Mv and place it in front of the current permutation

π[v], i.e., define π[v] := (j, π[v]). Define W [v] := W [v] + 1
sv
.

The running time of the Algorithm QmSum is O(n log n). The main idea behind

this algorithm is derived from Lemma 2.1. The algorithm scans the jobs in the LPT

order and matches the current job with the smallest available weight W [v] (as found

in Step 2a). The current values of weights W [i] depend on both, the machine and the

current available position on that machine, and so for each job there are at most m

weights to choose from.

32

CHAPTER 2. CLASSICAL SCHEDULING MODELS AND ALGORITHMS

Let us now consider problem Rm ||
∑
Cj with m unrelated parallel machines. This

problem is solvable in O(n3m) time by reducing it to a rectangular assignment problem

of size n × nm; see Horn (1973) and Bruno, Coffman and Sethi (1974). The j-th row
of the cost matrix consists of the costs associated with all possible assignments of job

j ∈ N. It is possible for a job j to be assigned to any of the n available positions on
any of the m available machines, thus, leading to total of nm possibilities. Let yj,(i,r)
be a binary decision variable that is equal to 1 if and only if job j is assigned to the

r-th last position on machine Mi. The corresponding rectangular LAP can be written

as

min
n∑
j=1

m∑
i=1

n∑
r=1

rpijyj,(i,r)

subject to
m∑
i=1

n∑
r=1

yj,(i,r) = 1, j ∈ {1, . . . , n} ;

n∑
j=1

yj,(i,r) ≤ 1, i ∈ {1, . . . ,m} , r ∈ {1, . . . , n} ;

yj,(i,r) ∈ {0, 1} , j ∈ {1, . . . , n} , i ∈ {1, . . . ,m} ,
r ∈ {1, . . . , n} .

(2.17)

The above rectangular assignment problem is of the form (2.1) and can be solved

by Algorithm BourLas outlined in Section 2.2.3.

33

CHAPTER 3

Scheduling with Changing Processing
Times

In the last chapter, we discussed several classical scheduling problems and reviewed

the algorithms that are used to solve them. In this chapter, we review the same class

of problems, but for models that allow changing processing times. In the recent past,

several papers have appeared that study such effects. We discuss the main rationales

that have been proposed for such a phenomenon and systematically classify the prior

studies into different subject areas. Further, we explore the subject areas most relevant

to this thesis in greater detail and present some important results.

3.1 Brief Overview of Models

In the classical scheduling theory, it is assumed that the processing time of a job j is

fixed and has a constant value pj (or pij). In many real-life situations, however, the

processing conditions may vary and the actual time taken by the machine to complete

a given job, may be different from pj.

In the context of models with changing processing times, the integer pj is called

the normal processing time of a job j. A meaningful interpretation of pj is that it

defines the processing duration of job j, provided that the machine is in its default

condition. The actual processing time of job j, however, is not necessarily equal to pj
and may vary according to some rule. The phenomenon of changing processing times

is traditionally attributed to one of the following causes: (i) deterioration, (ii) learning,

(iii) rate modifying activities and (iv) resource allocation.

Informally, in scheduling with deterioration, we assume that the later a job starts,

the longer it takes to process. The most common rationale for deterioration, probably

34

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

first stated by Gawiejnowicz (1996), is as follows: a machine is served by a human

operator who gets tired or the machine loses the processing quality of its tools as

more jobs are processed. On the other hand, in scheduling with learning, the actual

processing time of a job gets shorter, provided that the job is scheduled later. A

common rationale behind this is that as an operator processes more jobs or spends

more time in the processing conditions, he becomes more aware of how the jobs must be

processed, and as a result, the time required to complete later jobs shortens. Scheduling

problems with these two effects have received considerable attention in the recent past;

we refer to Cheng, Ding and Lin (2004), Biskup (2008), Gawiejnowicz (2008) and

Gordon et al. (2008) for recent state-of-the-art reviews in these areas, as well as for

references to more practical applications of these models. We give detailed accounts of

these effects and how they are incorporated in scheduling models, in the later sections

of this chapter.

The effects of learning and deterioration are essentially antonymous to each other,

and in practically all prior papers these two phenomena are discussed separately. For

both learning and deterioration, the corresponding effects most commonly found in the

literature belong to one of the following three types:

• Positional: the actual processing time of job j depends on pj and on the position
of the job in the sequence;

• Time-Dependent: the actual processing time of job j depends on the start time
of the job;

• Cumulative: the actual processing time of job j depends on pj and on the sum
of normal processing times of all jobs sequenced earlier.

Recently, there have been publications that consider enhanced models, that combine

two of the above listed three effects. This gives rise to an additional wide range of

problems, e.g., to models with time-dependent deterioration and positional learning

(see Wang (2006)), or with positional deterioration and time-dependent learning (see

Yang (2010)), or with cumulative deterioration and positional learning (see Wu and

Lee (2008)), among other, often somewhat exotic models. A recent review by Janiak,

Krysiak and Trela (2011) focuses on the variety of the models in the area, including

those with combined effects.

Another way in which the processing times of jobs may change is due to the presence

of certain rate-modifying activities in the schedule. A rate modifying activity can be

defined as an activity scheduled in between sequences of jobs, which is responsible for

35

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

changing the processing conditions of the system. One of the first papers that study

an effect of a rate-modifying activity on processing conditions is that by Lee and Leon

(2001). They look at the problem of scheduling a single rate-modifying period (RMP)

and assume that the processing time of a job j that is sequenced before the RMP

is pj, while if it is sequenced after the MP the processing time becomes λjpj, where

0 < λj < 1. Following this model, several other authors have developed polynomial-

time algorithms for various scheduling problems, including due date assignment and

due window assignment; see, e.g., Mosheiov and Oron (2006); Gordon and Tarasevich

(2009); Mosheiov and Sarig (2009). A generalised model in which the duration of an

RMP depends on its start time is studied by Mosheiov and Sidney (2010).

If it is known that the machine is undergoing a deterioration effect, the RMPs

are essentially aimed at improving the processing conditions of the system (such as

maintaining or repairing the machine or its parts, giving a rest to a human operator,

etc.), so that the actual processing times of the jobs scheduled after such an RMP

typically get smaller. Such RMPs can be referred to as maintenance periods (MPs),

see, e.g., Kuo and Yang (2008a), Zhao and Tang (2010) and Yang and Yang (2010a),

for models with positional deterioration and machine maintenance, and see, Lodree and

Geiger (2010) for a model with time dependent deterioration and machine maintenance.

On the other hand, if the machine is undergoing a learning effect, the RMPs can

be associated with replacing a machine/operator, so that all learning advantages of

the previous employee are lost, and the overall productivity of the system decreases.

Alternatively, an RMP can be associated with an activity which further enhances the

learning rate of the machine; see, e.g., Ji and Cheng (2010), who study this model for

a job-dependent case.

Lastly, scheduling with resource allocation allows the processing time of a job to

be resource dependent, so that each job is allocated a certain amount of resource, and

jobs with more allotted resources benefit from faster processing. We do not review

this class of problems in this thesis, as our research mainly focusses on the first three

effects. However, for various aspects of models with resource dependent processing

times, we refer to the recent reviews by Shabtay and Steiner (2007), Błażewicz et al.

(2010), Hartmann and Briskorn (2010), Leyvand, Shabtay and Steiner (2010), Węglarz

et al. (2011) and Różycki and Węglarz (2012).

The rest of this chapter is divided into two sections, in which we describe previously

studied models with changing processing times. In Section 3.2, we formally introduce

positional, time-dependent and cumulative effects, as they have been known in the

past. We review some of the popular polynomially solvable results that exist for these

36

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

models. In Section 3.3, we discuss the effects of rate-modifying activities and review

some of the prior studies that consider integrated models with rate-modifying activities

and changing processing times. In all models, it is assumed that the jobs of set N =

{1, 2, . . . , n} have to be processed either on a single machine or on parallel machines.
The jobs are available for processing at time zero and are independent, i.e., there are

no precedence constraints and any processing sequence is feasible. At time zero, each

machine is assumed to be in perfect processing state, and its processing conditions

change according to one of the three effects described above.

3.2 Models without Rate-Modifying Activities

In this section, we formally describe the three most popular models which are known for

changing processing times. Problems with changing processing times can be denoted

in the three-field notation, by using the middle field β to describe the particular model

being applied.

3.2.1 Positional Effects

In the simplest case, if a job j ∈ N, is scheduled in position r of a schedule, then its
actual processing time is given by

pj (r) = pjg(r), 1 ≤ r ≤ n, (3.1)

where pj is the normal processing time of a job j and the values of g(1), g(2), . . . , g(n)

are positional factors. The function g is given in the form of an ordered array of

numbers such that in the case of deterioration, we have

1 = g(1) ≤ g(2) ≤ · · · ≤ g(n), (3.2)

and in the case of learning, we have

1 = g(1) ≥ g(2) ≥ · · · ≥ g(n). (3.3)

Each value g(1), g(2), . . . , g(n) is assumed to be computable in constant time. No-

tice that in the prior studies, apart from some recent papers, see, e.g., Gordon and

Strusevich (2009), the positional factors have not been considered as given by a gen-

eral function g; instead only specific functions have been analysed. Often in scheduling

37

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

literature, the factors g(r) are defined as the value of a known function, e.g., polyno-

mial in r (see, e.g., Biskup (1999), Mosheiov (2001a, 2005)) or exponential in r (see,

e.g., Gordon et al. (2008)), i.e., g(r) = ra and g(r) = γr, respectively.

In another form of positional effect, if a job j ∈ N, is scheduled in position r of a
schedule, then its actual processing time is given by

pj (r) = pjgj(r), 1 ≤ r ≤ n, (3.4)

where the values gj(1), gj(2), . . . , gj(n), j ∈ N, are job-dependent positional factors.

Such a model represents a scenario in which each job changes the machine conditions

in a different way, hence each job j ∈ N is associated with a unique set of positional

factors, gj(r), 1 ≤ r ≤ n. Similar to job-independent positional factors of the form

g (r) , for each job j ∈ N, the job-dependent factors are also given in the form of a

collection of ordered arrays of numbers, such that in the case of deterioration, we have

1 = gj(1) ≤ gj(2) ≤ · · · ≤ gj(n), (3.5)

and in the case of learning, we have

1 = gj(1) ≥ gj(2) ≥ · · · ≥ gj(n). (3.6)

Again, in scheduling literature, the factors gj(r) are often defined as the value of a

known function, e.g., Mosheiov and Sidney (2003) consider a polynomial function given

by gj(r) = raj . On the other hand, many authors also consider a general job-dependent

positional effect, in which the actual processing time of a job scheduled in position r of

a schedule is simply given by pj (r) , without any mention of the associated positional

factors, see, e.g., Mosheiov (2008).

Some authors study scheduling problems in which the processing time of job a

j ∈ N scheduled in position r is given as a linear function of r. Bachman and Janiak

(2004) consider one such model in which the processing time of job is given by

pj (r) = Aj + bjr, 1 ≤ r ≤ n, (3.7)

where Aj is the normal processing time of a job j ∈ N and bj is a job-dependent rate,

which is strictly positive for the deterioration environment and strictly negative for the

learning environment.

Problems with positional effects are typically represented in the three-field notation

38

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

by providing the formula of the actual processing time pj (r) , in the middle field β of

the three-field descriptor. For example, the problem of minimising the makespan on

a single machine that is subject to positional deterioration of the form (3.7), can be

denoted by 1 |Aj + bjr, bj > 0|Cmax.

We now discuss the algorithmic aspects of solving different problems that have been

studied previously.

Minimising Makespan

Recall that the problem of minimising the makespan on parallel machines, is an NP -

hard problem even without the presence of positional effects. Thus, we only discuss

single machine problems in this section. Let us first discuss problems in which a job-

independent positional effect is considered, so that the actual processing time of a job

is defined by (3.1).

Assume that the jobs are processed on a single machine in accordance with some

permutation π = (π(1), . . . , π(n)) , and a job j = π (r) sequenced in position r is

associated with a job-independent positional factor g(r). Then the makespan is written

as

Cmax(π) =
n∑
r=1

g(r)pπ(r). (3.8)

Notice that the problem of minimising the makespan can be seen as a linear as-

signment problem with a product matrix (2.3), with arrays (g (1) , g (2) , . . . , g (n)) and(
pπ(1), pπ(2), . . . , pπ(n)

)
.

Mosheiov (2005) solves problem 1 |pjra, a > 0|Cmax, in which a polynomial deteri-
oration effect is considered, so that the positional factors g (r) are defined as

g(r) = ra, a > 0, 1 ≤ r ≤ n. (3.9)

For this problem an optimal solution is obtained if the jobs are scheduled by the

LPT rule (2.7), i.e., the job with the largest normal processing time is scheduled in the

earliest available position.

Gordon et al. (2008) solves problem 1 |pjγr−1, γ > 1|Cmax, in which an exponential
deterioration effect is considered, so that the positional factors g (r) are defined as

g(r) = γr−1, γ > 1, 1 ≤ r ≤ n. (3.10)

39

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

Again, an optimal solution is obtained if the jobs are scheduled by the LPT rule

(2.7).

Problems with positional learning have also received attention. Mosheiov (2001a)

solves problem 1 |pjra, a < 0|Cmax, in which a polynomial learning effect is considered,
so that the positional factors g (r) are defined as

g(r) = ra, a < 0, 1 ≤ r ≤ n. (3.11)

For this problem an optimal solution is obtained if the jobs are scheduled by the

SPT rule (2.13), i.e., the job with the smallest normal processing time is scheduled in

the earliest available position.

Gordon et al. (2008) solves problem 1 |pjγr−1, 0 < γ < 1|Cmax, in which an expo-
nential learning effect is considered, so that the positional factors g (r) are defined

as

g(r) = γr−1, 0 < γ < 1, 1 ≤ r ≤ n. (3.12)

Again, an optimal solution is obtained if the jobs are scheduled by the SPT rule

(2.13).

Bachman and Janiak (2004) solve problem 1 |Aj + bjr, bj < 0|Cmax, in which the
positional effect is given as a linear function of the form (3.7). They consider a learning

effect, i.e., bj < 0, j ∈ N, and prove that an optimal schedule is found in O (n log n)

time by sequencing the jobs in a non-increasing order of the values bj.

Notice that, each of the problems considered above are solved by using a simple

priority rule. The running time required to solve these problems is O (n log n) , as

this is the time needed to sort the jobs in the desired order. The optimality of these

solutions follows from Lemma 2.1, as all of the problems reduce to an assignment

problem with a product matrix (2.3). However, the authors often fail to notice this

connection and prove the optimality of their results using a pairwise job interchange

argument. Although a powerful technique in its own right, the pairwise job interchange

argument does not permit a solution if the positional factors g (1) , g (2) , . . . , g (n) are

non-monotonically sorted.

Next, let us discuss problems in which a job-dependent positional effect is consid-

ered, so that the actual processing time of a job is defined by (3.4).

Mosheiov and Sidney (2003) solve problem 1 |pjraj , aj < 0|Cmax, in which a poly-

40

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

nomial learning effect is considered and the positional factors are given by

gj(r) = raj , aj < 0, j ∈ N, 1 ≤ r ≤ n. (3.13)

They reduce the problem to an LAP of the form (2.2) with the cost function

cji = pji
aj , and obtain an optimal solution by the Hungarian method in O(n3) time.

The same approach can be extended to solve a problem with a general job-dependent

positional effect of the form pj (r), in which case the cost function becomes cji = pj (i) ;

see Bachman and Janiak (2004).

Notice that in the case of a job-dependent positional effect, it is not possible to

obtain an optimal schedule by means of a simple priority rule. The use of a full form

LAP is essential, as the resulting cost function cji = pjgj (r) , cannot be seen as a

product of the elements of two independent arrays. However, under certain special

conditions, see, e.g., Koulamas (2010), the problem can still be solved in O(n log n)

time by simple priority rules.

Minimising Total Flow Time

Unlike the makespan objective, the problem of minimising the total flow time, can be

solved optimally for both single and parallel machine environments.

Single Machine Scheduling: Assume that the jobs are processed on a single ma-
chine in accordance with some permutation π = (π(1), . . . , π(n)) , and a job j = π (r)

sequenced in position r is associated with a job-independent positional factor g(r).

Then the total flow time is written as

∑
Cj(π) =

n∑
r=1

g(r)(n− r + 1)pπ(r). (3.14)

Notice that the problem of minimising the total flow time can be seen

as a linear assignment problem with a product matrix (2.3), with arrays

(ng (1) , (n− 1) g (2) , . . . , g (n)) and
(
pπ(1), pπ(2), . . . , pπ(n)

)
. However, similar to the

problem of minimising the makespan, many authors fail to notice this connection.

For problems in which a positional learning effect is considered, an optimal so-

lution is achieved by scheduling the jobs in the SPT order. Optimality of the SPT

rule for problem 1 |pjra, a < 0|
∑
Cj with a polynomial learning effect (3.11) has

been proved by Biskup (1999), whereas the optimality of the SPT rule for problem

1 |pjγr−1, 0 < γ < 1|
∑
Cj with an exponential learning effect (3.12) has been proved

41

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

by Gordon et al. (2008).

Surprisingly, the status of the problem with a positional deterioration effect, i.e.,

with the factors that satisfy (3.2), has not been properly resolved prior to this study.

Notice that the sequence g(r)(n− r + 1), 1 ≤ r ≤ n, is non-monotone as the sequence

g (r) , 1 ≤ r ≤ n, is non-decreasing, where as the sequence (n− r + 1) , 1 ≤ r ≤ n,

is decreasing. Thus, a simple priority rule obtained by a pairwise job interchange

argument cannot deliver an optimal solution.

Indeed, Mosheiov (2005) demonstrates that for a problem with a polynomial dete-

rioration effect (3.9), an optimal permutation cannot be obtained by a simple priority

rule. Gordon et al. (2008) show that for the problem with an exponential deterioration

effect (3.10) the LPT rule is optimal for γ ≥ 2, but an optimal permutation cannot

be obtained by a simple priority rule for 1 < γ < 2. In Chapter 6 of this thesis, we

show that an approach based on Algorithm Match can solve this problem in O (n log n)

time. In fact, the approach works even if the positional factors g (r) , 1 ≤ r ≤ n, are

non-monotone.

Let us now consider single machine problems with job-dependent positional effects.

Mosheiov and Sidney (2003) solve problem 1 |pjraj , aj < 0|
∑
Cj, in which a polyno-

mial learning effect (3.13) is considered. They reduce the problem to an LAP of the

form (2.2), with the cost function cji = pji
aj (n− i+ 1) , and obtain an optimal so-

lution in O(n3) time. The same approach can be extended to solve a problem with

a general job-dependent positional effect of the form pj (r), in which case the cost

function becomes cji = pj (i) (n− i+ 1) ; see Bachman and Janiak (2004). The latter

formulation can also be used to solve the problem of minimising the total flow time for

the model in which the positional effect is given as a linear function of the form (3.7).

Parallel Machine Scheduling: Suppose that in a feasible schedule S(m)

with m identical machines, there are h[i] jobs assigned to machine Mi, so that∑m
i=1 h

[i] = n, and these jobs are processed in accordance with a permutation

π[i] =
(
π[i](1), π[i](2) . . . , π[i](h[i])

)
, where 1 ≤ i ≤ m. A job j = π[i] (r) sequenced

in position r of machineMi is associated with a job-independent positional factor g(r).

Then it follows from (2.14) that the sum of completion times of all jobs can be written

as

n∑
j=1

Cj (S(m)) =

m∑
i=1

h[i]∑
r=1

r∑
k=1

g (r) pπ[i](k) =

m∑
i=1

h[i]∑
r=1

g (r)
(
h[i] − r + 1

)
pπ[i](r).

Notice that for known values of h[i], 1 ≤ i ≤ m, the problem of minimising the total

42

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

flow time can be seen as a linear assignment problem with a product matrix (2.3),

with arrays
(
G[1], G[2], . . . , G[m]

)
and

(
pπ(1), pπ(2), . . . , pπ(n)

)
, where G[i] represents a

sub-array
(
h[i]g (1) ,

(
h[i] − 1

)
g (2) , . . . , g

(
h[i]
))
, for each, i, 1 ≤ i ≤ m. Similar to

earlier instances, many authors fail to notice this connection.

Mosheiov (2001b) solves the problem Pm |pjra, a < 0|
∑
Cj, in which a polynomial

learning effect of the form (3.11) is considered on m identical machines. For given

values of h[i], 1 ≤ i ≤ m, he reduces this problem to a full form LAP of the form (2.2),

with the cost function cjr = pjr
a
(
h[i] − r + 1

)
, 1 ≤ r ≤ h[i], 1 ≤ i ≤ m. All possible

options for the values h[i], 1 ≤ i ≤ m, are generated by computing the compositions

of an integer n into exactly m summands. For each instance the resulting n× n LAP
is solved by the Hungarian algorithm and the total running time for solving problem

Pm |pjra, a < 0|
∑
Cj is estimated to be O (nm+3). Mosheiov and Sidney (2003) ex-

tend the same approach for solving a more general problem Qm |pjraj , a < 0|
∑
Cj, in

which a job-dependent polynomial learning effect of the form (3.13) is considered on m

uniform machines. For known values of h[i], 1 ≤ i ≤ m, the cost function of the LAP is

given as cjr = pjr
aj
(
h[i] − r + 1

)
/si, 1 ≤ r ≤ h[i], 1 ≤ i ≤ m, and the overall running

time for solving problem Qm |pjraj , a < 0|
∑
Cj is estimated as O (nm+3). Notice the

same approach can be further extended to solve an even more general problem with m

unrelated parallel machines.

We feel that for problem Pm |pjra, a < 0|
∑
Cj the running time proposed by

Mosheiov (2001b), is overestimated by at least two orders of n. This is due to the

fact that (i) the number of generated instances of the problem is miscalculated as

O(nm), instead of O(nm−1) (see Section 2.2.4), and (ii) each generated instance is

solved in O(n3) time by a full form LAP, instead of using a special form of the LAP

which permits an optimal solution in O (n log n) time by Lemma 2.1. See Rustogi and

Strusevich (2012b) for details.

Other Objective Functions

In this section, we review some more problems with positional effects which have been

solved for somewhat exotic objective functions.

Minimising deviation from a common unrestricted due date: Biskup (1999)
considers a single machine problem with a polynomial learning effect given by (3.11)

in which the jobs are given a common unrestricted due date d. The due date is called

unrestricted because in principle it is possible to schedule all jobs by that due date. If

a job j completes before d, then its earliness Ej = d − Cj is penalised; otherwise its

43

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

tardiness Tj = Cj − d is penalised. The objective is to sequence the jobs in order to
minimise the function

∑
j∈N(wCj+w

′Ej+w
′′Tj), where w,w′ and w′′ are given positive

constants. This is an extension of the model by Panwalkar, Smith and Seidmann (1982),

who assume constant processing times. The authors obtain an optimal solution to this

problem in O (n3) time by reducing it to a full form LAP of the form (2.2) with the

cost function given by

cji = pji
a min{(i− 1)w′ + (n− i+ 1)w, (n− i+ 1)(w′′ + w)}, 1 ≤ i ≤ n, j ∈ N.

Common due date assignment: Mosheiov (2001a) considers a single machine prob-
lem in which the jobs have to be assigned a common due date d, so that the function∑

j∈N(wd+w′Ej +w′′Tj) is minimised. The jobs are subject to a polynomial learning

effect. This is an extension of the model by Panwalkar, Smith and Seidmann (1982),

who assume constant processing times. Again, the authors obtain an optimal solution

to this problem in O (n3) time by reducing it to a full form LAP of the form (2.2) with

the cost function given by

cji =

{
pji

a (nw + (i− 1)w′) , 1 ≤ i ≤ u

pji
a (n+ 1− i)w′′, u+ 1 ≤ i ≤ n,

, j ∈ N,

where

u =

⌈
w′′ − w
w′ + w′′

⌉
.

Minimising the weighted sum of total completion time and variation of
completion times: Mosheiov (2001a) considers a single machine problem with

a polynomial learning effect to minimise the sum of the functions w
∑
Cj and

(1− w)
∑n

i=1

∑n
j=1 |Ci − Cj| for a given w, 0 ≤ w ≤ 1. This is an extension of the

model by Bagchi (1989), who assumes constant processing times. Again, the authors

obtain an optimal solution to this problem in O (n3) time by reducing it to a full form

LAP of the form (2.2) with the cost function given by

cji = pji
a
[
(2w − 1) (n+ 1) + i (2− 3w + n(1− w))− i2(1− w)

]
, 1 ≤ i ≤ n, j ∈ N.

Notice that the published running times for each of the problems considered above

have been overestimated by the authors. The cost functions cji for each of the problems

can be seen as a product of the elements of two independent arrays. In such cases, the

44

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

resulting LAP is said to have a product matrix so that an optimal solution is found in

O (n log n) time by Lemma 2.1.

If the positional factors are job-dependent, i.e., of the form gj(r), the corresponding

problems are indeed, solvable in O(n3) time by reduction to a full form LAP; see, e.g.,

Mosheiov and Sidney (2003) and Mosheiov (2008) for details on the job-dependent

analogue of the above mentioned problems.

Notice that for all the problems discussed so far, the found optimal solution has

either been a simple priority rule (LPT/SPT), or has been computed using a full form

LAP. Actually, if the positional factors are job-dependent, the latter approach remains

the only available. However, in the case of job-independent positional factors, we show

in Chapter 6 of this thesis that the search for an optimal strategy should not be limited

to simple priority rules, and also that the use of a full form LAP is not required. In fact,

our method based on Lemma 2.1, not only solves these problems for simple monotone

effects like deterioration or learning, but works for arbitrary, possibly non-monotone,

positional effects and finds an optimal solution in O(n log n) time.

3.2.2 Time-Dependent Effects

Typical time-dependent models are often of the form pj(τ) = pj + f(τ) or pj(τ) =

pjf(τ), where pj(τ) is the actual processing time of a job j ∈ N scheduled at time

τ ≥ 0, and pj is its normal processing time. The function f(τ) is common for all jobs

and takes only non-negative values. For a more general time-dependent effect, each

job j can be associated with an individual function fj(τ), so that the effect becomes

job-dependent. Below we list out some of the most popular time-dependent models, in

which the functions f(τ) and fj(τ) are linear:

• pj(τ) = pj + aτ ; a linear function of the start-time, where a is a job-independent

constant, which is strictly positive for the deterioration environment and strictly

negative for the learning environment.

• pj(τ) = pj + ajτ ; a linear function of the start-time, where aj is a job-dependent

constant, which is strictly positive for the deterioration environment and strictly

negative for the learning environment.

• pj(τ) = ajτ ; one of the simplest start-time dependent models, introduced by

Mosheiov (1994) for a deterioration effect, where aj is the deterioration rate of a

job j.

45

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

• pj(τ) = pj (b+ aτ) ; a generalisation of the above model, where a is a job-

independent constant, which is strictly positive for the deterioration environment

and strictly negative for the learning environment.

Apart from the models listed above, several other models have been introduced in

the recent past, in which a time-dependent model is combined with a positional effect,

so that the actual processing time of a job j sequenced in position r and starting at

time τ ≥ 0 is given by

pj(τ , r) = pj (τ) g(r),

where pj (τ) is defined in one of the ways listed above and g(r) is a general positional

factor as defined in Section 3.2.1. One of the most general models that combines a

time-dependent effect and a positional effect is studied by Yin and Xu (2011). The

authors define the actual processing time of a job j sequenced in position r and starting

at time τ ≥ 0 as pj(τ , r) = pjf(τ)g(r), where g(r) is a positional learning factor, while

a start-time deterioration is given by f(Sj), the function f being non-decreasing with

a non-decreasing first derivative.

In this thesis, we only study start-time dependent models of the form

pj(τ) = pj + aτ , (3.15)

and its combined version given by

pj(τ , r) = (pj + aτ) g(r). (3.16)

We refer to models (3.15) and (3.16) as job-independent models for linear time-

dependent effects. Recall that the job-independent constant a is strictly positive for a

deterioration effect and strictly negative for a learning effect. For details and results

related to other time-dependent models, job-dependent or non-linear, we refer the

reader to the review by Cheng, Ding and Lin (2004), and a recent monograph by

Gawiejnowicz (2008), which provides a state-of-the-art exposition of time-dependent

scheduling models.

The combined model of the form (3.16) was first introduced by Wang (2006), for

a time-dependent deterioration effect and a polynomial learning effect (3.11), so that

g(r) = rb, b < 0, and a > 0. An example of a situation in which this model may

appear relevant is as follows: a human operator processes jobs on a certain equipment

and during the process the equipment might be subject to wear and tear, i.e., it might

deteriorate with time, however, the operator will gain additional skills by learning from

46

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

experience. Yang and Kuo (2009) also study this model with g(r) = rb, b < 0, and

a > 0, and solve the problems of minimising the makespan and the total flow time.

Another variation of the model (3.16) is considered by Yang (2010), who study the

case of time-dependent learning effect and a polynomial deterioration effect (3.9), so

that g(r) = rb, b > 0, and a < 0.

Problems with time-dependent effects can be represented in the three-field notation

by providing the formula of the actual processing time pj (τ) , in the middle field β of

the three-field descriptor. For example, the problem of minimising the makespan on a

single machine that is subject to time-dependent deterioration of the form (3.15), can

be denoted by 1 |pj + aτ , a > 0|Cmax.

We now discuss the algorithmic aspects of solving different problems related to

models (3.15) and (3.16), that have been studied previously.

Minimising Makespan

We only consider single machine problems, as the problem of minimising the makespan

in a parallel machine environment is known to be NP -hard.

Let the jobs be processed on a single machine in accordance with some permutation

π = (π(1), . . . , π(n)) . If the machine is subject to a time-dependent effect of the form

(3.15), then following the argument given by Browne and Yechiali (1990), the makespan

can be written as

Cmax(π) =
n∑
r=1

pπ(r) (1 + a)n−r .

Notice that the problem of minimising the makespan can be seen as a linear as-

signment problem with a product matrix (2.3), with arrays (W (1) ,W (2) , . . . ,W (n))

and
(
pπ(1), pπ(2), . . . , pπ(n)

)
, where W (r) = (1 + a)n−r , 1 ≤ r ≤ n. Similar to earlier

instances, many authors fail to notice this connection.

Using a pairwise job-interchange argument, Browne and Yechiali (1990) prove that

irrespective of the sign of a, an optimal solution is obtained in O (n log n) time by

scheduling the jobs in non-decreasing order of the values pj/a. This implies that prob-

lem 1 |pj + aτ , a > 0|Cmax can be solved by scheduling the jobs in an SPT order, while
problem 1 |pj + aτ , a < 0|Cmax can be solved by scheduling the jobs in an LPT order.

Let us now consider the combined model given by (3.16). If the jobs are processed

on a single machine in accordance with some permutation π = (π(1), . . . , π(n)) , then

following the argument given by Wang (2006), Yang and Kuo (2009) and Yang (2010),

47

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

the makespan can be written as

Cmax(π) =

n∑
r=1

pπ(r)

(
g (r)

n∏
i=r+1

(1 + ag (i))

)
, 1 ≤ r ≤ n.

Notice that the problem of minimising the makespan can be seen as a linear assign-

ment problem with a product matrix (2.3), with arrays (W (1) ,W (2) , . . . ,W (n)) and(
pπ(1), pπ(2), . . . , pπ(n)

)
, where W (r) = g (r)

n∏
i=r+1

(1 + ag (i)) , 1 ≤ r ≤ n.

Indeed, Wang (2006) and Yang and Kuo (2009) notice this connection and use

Lemma 2.1 to solve problem 1
∣∣(pj + aτ) rb, a > 0, b < 0

∣∣Cmax, with a time-dependent
deterioration effect and a polynomial learning effect (3.11). They prove that an optimal

solution is obtained if the jobs are scheduled in an SPT order. Yang (2010) also use

the same technique to solve problem 1
∣∣(pj + aτ) rb, a < 0, b > 0

∣∣Cmax, with a time-
dependent learning effect and a polynomial deterioration effect (3.9). They prove that

an optimal solution is obtained if the jobs are scheduled in an LPT order.

Minimising Total Flow Time

Unlike the makespan objective, the problem of minimising the total flow time, can be

solved optimally for both single and parallel machine environments.

Single Machine Scheduling: Assume that the jobs are processed on a single machine
in accordance with some permutation π = (π(1), . . . , π(n)) . If the machine is subject

to a time-dependent effect of the form (3.15), then following the argument given by Ng

et al. (2002), the total flow time can be written as

∑
Cj(π) =

n∑
r=1

pπ(r)

(
n−r∑
k=0

(1 + a)k
)
.

Notice that the problem of minimising the total flow time can be seen as a linear as-

signment problem with a product matrix (2.3), with arrays (W (1) ,W (2) , . . . ,W (n))

and
(
pπ(1), pπ(2), . . . , pπ(n)

)
, whereW (r) =

∑n−r
k=0 (1 + a)k , 1 ≤ r ≤ n. Similar to earlier

instances, many authors fail to notice this connection.

Using a pairwise job-interchange argument, Ng et al. (2002) prove that an optimal

solution to problem 1 |pj + aτ , a < 0|
∑
Cj can be obtained by scheduling the jobs in

an SPT order. It can be easily verified (see, e.g., Kuo and Yang (2008b)) that the same

ordering of jobs is also optimal for problem 1 |pj + aτ , a > 0|
∑
Cj.

48

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

Let us now consider the combined model given by (3.16). If the jobs are processed

on a single machine in accordance with some permutation π = (π(1), . . . , π(n)) , then

following the argument given by Wang (2006), Yang and Kuo (2009) and Yang (2010),

the total flow time can be written as

∑
Cj(π) =

n∑
r=1

pπ(r)

(
g(r)

[
n∑
u=r

u∏
i=r+1

(1 + ag (i))

])
, 1 ≤ r ≤ n.

Notice that the problem of minimising the makespan can be seen as a linear assign-

ment problem with a product matrix (2.3), with arrays (W (1) ,W (2) , . . . ,W (n)) and(
pπ(1), pπ(2), . . . , pπ(n)

)
, where W (r) = g(r)

[
n∑
u=r

u∏
i=r+1

(1 + ag (i))

]
, 1 ≤ r ≤ n.

Indeed, Wang (2006) and Yang and Kuo (2009) notice this connec-

tion and use Lemma 2.1 to prove that an optimal solution to problem

1
∣∣(pj + aτ) rb, a > 0, b < 0

∣∣∑Cj can be obtained by the SPT rule. Yang (2010) also

use the same technique to solve problem 1
∣∣(pj + aτ) rb, a < 0, b > 0

∣∣∑Cj, and prove

that an optimal solution is obtained by the SPT rule.

For the same special case of (3.16), i.e., with g(r) = rb, problems involving other

objective functions, including various generalisations of the functions considered in

Section 3.2.1, are handled by Qian and Steiner (2012) (for a > 0 and b < 0) and by

Yang (2010) (for a < 0 and b > 0). The authors reduce these enhanced problems to

solving a linear assignment problem with a product matrix (2.3) an obtain an optimal

solution in O(n log n) time.

Parallel Machine Scheduling: Kuo and Yang (2008b) solve the problem

Pm |(pj + aτ)|
∑
Cj, in which a time-dependent effect of the form (3.15) is consid-

ered on m identical machines. They prove using Lemma 2.1, that irrespective of the

sign of a, an optimal schedule can be found in O (n log n) time by applying the SPT

list scheduling algorithm.

3.2.3 Cumulative Effects

This is a fairly recent model for changing processing times, first introduced by Kuo and

Yang (2006a, 2006b) for a learning environment. Assume that the jobs are processed

on a single machine in accordance with some permutation π = (π(1), . . . , π(n)) . In the

model introduced by Kuo and Yang (2006a, 2006b), the actual processing time of a job

49

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

j = π (r) that is sequenced in position r of a permutation π is given by

pj(r) = pj

(
1 +

r−1∑
k=1

pπ(k)

)Z

, (3.17)

where Z is a given constant which is strictly negative for a learning environment and

strictly positive for a deterioration environment. The deterioration case with Z > 0 is

initiated by Gordon et al. (2008).

Notice that a cumulative effect can be seen as version of time-dependent effects.

The only difference being that the processing time of a job j is not dependent on the

actual time elapsed, but is dependent on the sum of the normal processing times of

the jobs scheduled earlier. For this reason, several authors including Kuo and Yang

(2006a, 2006b), often refer to this effect simply as a time-based effect.

Kuo and Yang (2006a, 2006b) prove that the problem of minimising the makespan

and the problem of minimising the total flow time on a single machine which is subject

to a cumulative effect of the form (3.17), with Z ≤ 0, can be solved optimally by

scheduling the jobs in an SPT (2.13) order. They prove the optimality of this result

by establishing the following preliminary statements.

Lemma 3.1. The following relation holds

1− (1 + t)Z + Zt (1 + t)Z−1 ≥ 0, if Z ≤ 0 and t ≥ 0.

Lemma 3.2. The following relation holds

λ
(

1− (1 + t)Z
)
− (1− (1 + λt))Z ≥ 0 if λ ≥ 1, t ≥ 0 and Z ≤ 0.

Further, a pairwise job interchange argument is provided which proves the optimal-

ity of the SPT rule.

In the recent years, several variations of this model have appeared, see, e.g., Wu,

Yin and Cheng (2011), who list about a dozen of models with cumulative learning, in

which pj(r) is expressed in different ways in terms of
∑r−1

k=1 pπ(k). In general, all models

with cumulative effects can be written in the form

pj(r) = pjf

(
r−1∑
k=1

pπ(k)

)
,

where f is non-increasing function for a learning environment and a non-decreasing

function for a deterioration environment. For all the models described, the SPT rule

50

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

has been proved to be the optimal policy for the problem of minimising the makespan

and for the problem of minimising the total flow time. Typically, authors use a version

of Lemmas 3.1 and 3.2, along with a pairwise job interchange argument to prove the

optimality of SPT for different models.

Among the most general models, is the following in which a cumulative deterioration

effect is combined with a general positional learning effect by

pj(r) = pjf

(
r−1∑
i=1

pπ(i)

)
g(r),

as used by Yin et al. (2009). Again, the authors prove that the SPT rule can be used

to solve the problem of minimising the makespan or the total flow time.

Models with precedence constraints and cumulative deterioration effects as given

by (3.17), for Z = 1 and Z = 2, are studied by Gordon et al. (2008).

3.3 Models with Rate Modifying Activities

In this section, we review some of the prior studies that integrate changing processing

times and rate-modifying activities. This line of research has only started in the last 4-5

years, with Kuo and Yang (2008a) publishing one of the first papers of its kind. Almost

all of the papers that consider such models deal study a deterioration effect and use

rate-modifying (maintenance) activities to negate these effects. In all existing models,

it is assumed that each of the RMPs are identical and they are able to fully restore

the machine conditions. Typically, a decision-maker would need to known an optimal

permutation of jobs and the optimal number of RMPs to include in the schedule, so

that a given objective function can be minimised. The latter is an important question,

because the RMPs are of a finite duration. Including many of them in a schedule,

may reduce the processing time of the jobs on one hand, but on the other hand, may

increase the overall duration of the schedule. The durations of the RMPs are either

known to be constant or are given as a linear function of its start time, i.e.,

DRMP = ατ + β, (3.18)

where τ is the start-time of the RMP, measured from the time the previous RMP was

completed, and α and β are positive parameters that define the RMP. The formula

(3.18) implies that the duration of the RMP becomes larger if it is performed later in a

schedule. Such a model for RMP durations was introduced by Kubzin and Strusevich

51

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

(2005, 2006).

In the next two sub-sections, we review prior models in which rate-modifying ac-

tivities are studied with positional and time-dependent effects. Note that there is no

prior history of problems with cumulative effects and rate-modifying activities.

In this review, to denote the presence of an RMP in the schedule, we include the

term “RMP”in the middle field of the standard three-field notation. By default, it is

assumed that the durations of the RMPs are start-time dependent (3.18). If they are

known to be of constant duration, we denote them by “RMP [0]”. Additionally, if the

number of RMPs is known in advance and is not a decision variable, we use the term

“RMP (K)”instead, to denote that K RMPs are included in a schedule. Notice that

in a schedule with K RMPs, the jobs are divided into a total of K + 1 groups, one

placed before the first RMP and one after each of the K RMPs.

Unlike the earlier parts of this review, we do not give a full mathematical formu-

lation of the problems presented here, as most of them will be revisited in the main

body of this thesis. We only talk about the algorithmic principles behind solving these

problems and their resulting time complexity.

3.3.1 Positional Effects

Minimising Makespan

Kuo and Yang (2008a) study problem 1 |pjra, a > 0, RMP [0]|Cmax, with a polynomial
deterioration effect (3.9) and identical RMPs, whose duration is assumed to be con-

stant. In order to solve this problem, Kuo and Yang (2008a) turn to solving a series

of sub-problems 1 |pjra,a > 0, RMP [0] (k − 1)|Cmax, with k − 1 number of RMPs. To

solve each problem 1 |pjra,a > 0, RMP [0] (k − 1)|Cmax they prove the so-called group
balance principle, according to which, in an optimal schedule with k groups, the differ-

ence between the number of jobs in any two groups is at most one. They further prove

using Lemma 2.1 that in each group the jobs are sequenced in the LPT order. As a

result, an algorithm for solving problem 1 |pjra,a > 0, RMP [0] (k − 1)|Cmax scans the
jobs in the LPT order and assigns them one by one to the smallest available position

across all k groups. Such an algorithm requires O(n) time to output an optimal sched-

ule and the optimal value of the makespan, provided that the LPT sequence of jobs

is known. Trying all possible values of k, 1 ≤ k ≤ n, they obtain a solution to the

original problem 1 |pjra, a > 0, RMP [0]|Cmax as the best of all found schedules. The
resulting running time is O (n2) . It should be noted that Kuo and Yang (2008a) make

52

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

a mistake when they claim that their algorithm requires O(n log n) time: they do not

take into account the linear time that is needed to compute the value of the makespan

for each k, 1 ≤ k ≤ n. In Section 6.7, we prove that the running time of problem

1 |pjra, a > 0, RMP |Cmax can be reduced to O(n log n).

Zhao and Tang (2010) study a problem similar to Kuo and Yang (2008a),

but with a job-dependent polynomial effect. The resulting problem is denoted as

1 |pjraj , aj > 0, RMP [0]|Cmax. In order to solve this problem, Zhao and Tang (2010)
also turn to solving a series of sub-problems 1 |pjraj ,aj > 0, RMP [0] (k − 1)|Cmax, and
prove the group balance principle. This principle allows them to guess the number of

jobs to schedule in each of the k groups. With knowledge of the n candidate positions

across all groups, they reduce problem 1 |pjraj ,aj > 0, RMP [0] (k − 1)|Cmax to a linear
assignment problem. The cost of scheduling a job j at position i in some group is given

by cji = pji
aj . As a result, problem 1 |pjraj ,aj > 0, RMP [0] (k − 1)|Cmax is solved in

O (n3) time. Trying all possible values of k, 1 ≤ k ≤ n, they obtain a solution to the

original problem 1 |pjraj , aj > 0, RMP [0]|Cmax as the best of all found schedules. The
resulting running time is O (n4) .

Yang and Yang (2010a) study a problem similar to Zhao and Tang (2010), but

the durations of the RMPs are given as a linear function of their start time (3.18).

The resulting problem can be denoted as 1 |pjraj , aj > 0, RMP |Cmax. In order to solve
this problem, Yang and Yang (2010a) also turn to solving a series of sub-problems

1 |pjraj ,aj > 0, RMP (k − 1)|Cmax. For problem 1 |pjraj ,aj > 0, RMP (k − 1)|Cmax,
they prove the group-balance principle for the first k − 1 groups, which allows them

to guess the number of jobs in those groups. However, for the last group, they are not

able to guess the number of jobs, so they resort to enumerating all possible options

for the number of jobs in that group. As a result, the running time needed to solve

this problem is n times greater than that required by Zhao and Tang (2010), thereby

making problem 1 |pjraj , aj > 0, RMP |Cmax solvable in O (n5) time. In Section 7.4, we

prove that a full enumeration of the number of jobs in the last group is not required,

and problem 1 |pjraj , aj > 0, RMP |Cmax can be solved in O (n4) time.

Minimising Total Flow Time

Yang and Yang (2010b) study problem 1 |pjra, a > 0, RMP (K)|
∑
Cj, with a polyno-

mial deterioration effect (3.9) and a known number, K, of RMPs. They prove that

if the number of jobs in each group is known, problem 1 |pjra, a > 0, RMP (K)|
∑
Cj

reduces to a linear assignment problem with a product matrix (2.3), so that an optimal

permutation of jobs can be found in O (n log n) time. To find the optimal number of

53

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

jobs in each group, they enumerate all possible options in which n jobs can be divided

into K + 1 groups. Recall from Section 2.2.4, that this can be done in nK/K! ways.

Thus, problem 1 |pjra, a > 0, RMP (K)|
∑
Cj can be solved in O

(
nK+1 log n

)
time.

Ji and Cheng (2010) study problem 1 |pjraj , aj < 0, RMP [0] (K)|
∑
Cj, with a

job-dependent polynomial learning effect (3.13) and a known number, K, of RMPs.

This is the first paper of its kind, which combines a learning effect with a rate-

modifying activity. The RMPs are aimed at further enhancing the learning rate

of the operator. This is achieved by multiplying the positional factors raj with a

constant λ, 0 ≤ λ ≤ 1. They prove that if the number of jobs in each group is

known, problem 1 |pjraj , aj < 0, RMP [0] (K)|
∑
Cj reduces to a full form linear as-

signment problem (2.2), so that an optimal permutation of jobs can be found in O (n3)

time. To find the optimal number of jobs in each group, they enumerate all possi-

ble options in which n jobs can be divided into K + 1 groups. As a result, problem

1 |pjraj , aj < 0, RMP [0] (K)|
∑
Cj can be solved in O

(
nK+3

)
time. They further ex-

tend this model to a parallel machine environment, and show that an optimal solution

can be found in O
(
nm+K+2

)
time.

Notice that both problems reviewed in this section require a full enumeration for

the number of jobs in each group, thereby resulting in polynomial running times of

a greater order. Although we are not able to improve upon this running time for

the problem of minimising the total flow time, we show in Chapter 9 of this thesis,

that the same (or marginally higher, in some cases) running time is achieved for a

much more general problem, one with combined positional and time-dependent effects,

simultaneous learning and deterioration effects, and distinct rate-modifying activities.

3.3.2 Time-Dependent Effects

For time-dependent models, very few results exist which study the effect of rate-

modifying activities.

Lodree and Geiger (2010) study problem 1 |ajτ , RMP [0] (1)|Cmax, with a time-
dependent effect of the form pj (τ) = ajτ , aj ≥ 1, and a single RMP in the schedule.

They provide an optimal policy to determine the number of jobs to be included in each

of the two created groups. According to this policy, if n is even, both groups should

contain
(
n
2

+ 1
)
jobs, whereas if n is odd, one group should contain

(
n+1
2

)
jobs and the

other should contain
(
n+3
2

)
jobs.

Yang and Yang (2010b) study problem 1 |pj + aτ , a > 0, RMP (K)|
∑
Cj, with a

linear time-dependent deterioration effect of the form (3.15) and a known number,

54

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

K, of RMPs. Similar to the solution of problem 1 |pjra, a > 0, RMP (K)|
∑
Cj, they

prove that if the number of jobs in each group is known, the problem reduces to a linear

assignment problem with a product matrix (2.3), so that an optimal permutation of

jobs can be found in O (n log n) time. Further, they enumerate all possible options in

which n jobs can be divided into K + 1 groups, and provide an optimal solution to

problem 1 |pj + aτ , a > 0, RMP (K)|
∑
Cj in O

(
nK+1 log n

)
time.

The same method is extended by Yang (2010) and Yang (2012), to study different

versions of problem 1
∣∣(pj + aτ) rb, RMP (K)

∣∣F, F ∈ {Cmax,∑Cj} , with a combined
effect of the form (3.16) and a known number, K, of RMPs. Yang (2010) considers

the case in which a single RMP (K = 1) is to be scheduled on a machine which

is subject to time-dependent learning (a < 0) and polynomial deterioration (b > 0)

effects. Yang (2012) considers the case in which multiple RMPs are to be scheduled

on a machine which is subject to time-dependent deterioration (a > 0) and polynomial

learning (b < 0) effects. For their respective models, both the papers claim to solve

the problem of minimising the makespan and the problem of minimising the total flow

time in O
(
nK+1 log n

)
time each. We notice however, that both papers underestimate

the running time needed to solve the problem of minimising the total flow time. This

is because, the authors ignore the running time needed to compute the values of the

positional weights (costs) that must be input in the reduced LAP. It can be easily

verified that this running time is O (n2) , for the problem of minimising the total flow

time. Thus, for both cases, problem 1
∣∣(pj + aτ) rb, RMP (K)

∣∣∑Cj cannot be solved

in less than O
(
nK+2

)
time.

Notice that apart from problem 1 |ajτ , RMP [0] (1)|Cmax studied by Lodree and
Geiger (2010), all other problems reviewed in this section require a full enumeration

for the number of jobs in each group. To the best of our knowledge, there are no

other existing results which solve the problems related to time-dependent effects and

rate-modifying activities in a different way. In Chapter 8 of this thesis, we consider a

model with a pure time-dependent effect of the form (3.15) and show that even in the

presence of distinct rate-modifying activities, the problem of minimising the makespan

can be solved by an effi cient polynomial algorithm, which does not depend on full

enumeration.

3.4 Conclusion

In this chapter, we review several prior studies related to scheduling with changing

processing times. Below we list out some of the common features that we notice in the

55

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

existing results:

• In models with positional effects, the positional factors are always given as the
values of a specific function, e.g., polynomial, exponential, etc. However, none

of the authors actually use any of the mathematical properties associated with

these functions. Thus, by using a specific function to model positional effects,

the authors unnecessarily limit the scope of their models.

• In problems without rate-modifying activities, many authors solve the problem at
hand by using a simple priority rule, and they prove its optimality by a pairwise

job interchange argument. Such rules may work in some simple cases, but are not

applicable in general. We notice that in most cases these priority rules are in fact

special cases of the matching algorithm, so that they work because the matching

algorithm works, and if they do not work, the matching algorithm still will. Both

these approaches, permit a running time of O (n log n) . By restricting themselves

to simple priority rules, the authors severely restrict the range of problems they

can solve.

• We notice on multiple occasions that the authors have wrongly used a full form
of the linear assignment problem as a subroutine of their solution procedure

(requires O(n3) time for a problem with n jobs). In such cases, the authors

fail to notice that LAP is in fact, of a special structure which permits the use

of faster matching algorithm. The latter approach reduces the running time of

the resulting algorithms by up to two orders, and carries over to a wider range

of models, with more general positional effects. See our survey Rustogi and

Strusevich (2012b), in which we systematically review a wide variety of problems

which can be solved faster by use of Algorithm Match.

• In all problems with rate-modifying activities, it is noticed that an important
decision to make is to determine the optimal number of jobs to schedule in each

group. Once this is found, the problem easily reduces to a linear assignment

problem, either in its full form or in the reduced form. In all the papers re-

viewed, establishing a group-balance principle is a preferred technique to guess

the number of jobs in a group. In cases when a group-balance principle does

not work, the authors resort to full enumeration of the possible ways in which

n jobs can be divided in to a given number of groups. We feel that the group

balance principle is not a very robust tool, when it comes to determining the

optimal number of jobs in a group. Similar to the priority rules, such rules may

work in some simple cases, but are not applicable in general. For example, in

56

CHAPTER 3. SCHEDULING WITH CHANGING PROCESSING TIMES

the problem considered by Yang and Yang (2010a), the group balance principle

is only applicable to some of the group in the schedule. Solely relying on this

approach often restricts the authors in the range of models they can handle.

Taking into account all of these points, in the next chapter, we present a generic

framework which allows us to systematically study scheduling problems with non-

constant processing times and the effect of rate-modifying activities, for a very wide

range of models.

57

Part II

Methodological Aspects

58

CHAPTER 4

General Framework for Solving Problems
with Rate-Modifying Activities

The main focus of this thesis is to study the effect of incorporating rate-modifying ac-

tivities in scheduling models with changing processing times. We consider three models

for changing processing times, namely, positional, time-dependent, and cumulative. In

Chapter 3 we introduce each of these three models and provide a brief overview of prior

research that is related to them. It can be noticed that only a handful of papers exist

which address the issue of combining rate-modifying activities with these models. Our

work in this area has enabled us to further generalise and improve known results so

that they can be applied to many more practical situations. In this chapter, we provide

a general framework which is used to systematically study the effect of rate-modifying

activities throughout this thesis.

4.1 Notation and Problem Description

In all the problems considered in this thesis, the jobs of set N = {1, 2, . . . , n} have to
be processed on some machines. The jobs are available for processing at time zero and

are independent, i.e., there are no precedence constraints and any processing sequence

is feasible. At time zero, the machines are assumed to be in perfect processing state,

and as more jobs are processed their processing conditions change according to one (or

more) of the three models listed above.

All problems studied in this thesis can be denoted in the three-field nota-

tion by α |ϕ,Ψ|F, where the first field points out the machine environment α ∈
{1, Pm,Qm,Rm} , and the third field points out our objective function. The first
item in the middle field is used to describe how the processing times change, and the

59

CHAPTER 4. GENERAL FRAMEWORK

second term in the middle field is used to describe the type of rate-modifying period

(RMP) included in the schedule.

If Ψ = ∅, we consider a problem with no RMPs at all, so that the jobs scheduled

on a machine are organised as one group.

If Ψ = RMP, we consider a general situation, in which the decision-maker is pre-

sented with a total of K ≥ 0 possible rate-modifying activities, which can be either

distinct or alike. Each RMP can have a different effect on the machine conditions, so

that they do not necessarily restore the machine to its default “as good as new”state.

If the selected RMPs are different in nature, e.g., one RMP replaces the cutting tool

of the machine, whereas the other refills gas in the system, then occurrence of such a

situation is natural. However, such a situation can also arise if the RMPs are identical,

but their effi ciency in performing the desired task keeps changing depending on their

position in the schedule. For instance, consider a scenario in which the RMP is aimed

at improving the machine conditions by running maintenance. In real life it is often

observed that even after a maintenance activity, some wear and tear might still remain

in the machine and if the same RMPs are performed every time, this deviation might

get accumulated.

If, out of the availableK RMPs, k−1 of them are selected and included in a schedule

on some machine, then the jobs on that machine will be divided into k, 1 ≤ k ≤ K + 1

groups, one to be scheduled before the first RMP and one after each of the k−1 RMPs.

Since the RMPs are known to effect the machine conditions differently, it follows that

each of the k groups might treat the jobs scheduled in them in a different way. As a

result, the actual processing time of a job will be dependent on the group it is scheduled

in. We refer to such an effect as a group-dependent effect. This is the first study, in

which such effects are studied. Recall from Section 3.3, that in the earlier papers

which studied changing processing times with rate-modifying activities, it is assumed

that all RMPs are identical and they restore the machine to the same state. As a

result, the created groups are indistinguishable and it does not matter which group a

job is scheduled in. We refer to such an effect as a group-independent effect.

Below we give an illustration of a possible application of group-dependent effects.

Example 4.1. A human operator uses a tool to process n jobs. During the processing
of the jobs, the tool undergoes deterioration whereas the operator undergoes both

deterioration and learning effects. It is known that two RMPs will be included in the

schedule. The first RMP is a maintenance period which restores the machine to its

original condition. However, the deterioration rate of the machine becomes greater

after the maintenance period, since original spare parts are not used. This RMP also

60

CHAPTER 4. GENERAL FRAMEWORK

provides the operator with suffi cient rest, so that after the first RMP the operator is

as fresh as he/she was at the beginning of the schedule. Additionally, the operator

gets a technical briefing from his supervisor so his learning curve changes. The second

RMP does not repair the machine at all, instead, a new operator is brought in. Below,

we give details about how these effects are modelled mathematically, and compute the

resulting positional factors. We distinguish between the positional factors associated

with the machine and the operator by using the subscript “m” for the machine and

“w”for the operator (worker), respectively.

In a feasible schedule the jobs will be split into k = 3 groups. The machine suffers

a positional exponential deterioration effect (3.10) with a rate A1 > 0 before the first

RMP and A2 > A1, after the second RMP. As a result, the positional factors associated

with the machine for the three groups are given as g[1]m (r) = (A1)
r−1 , g

[2]
m (r) = (A2)

r−1

and g[3]m (r) = (A2)
n[2]+r−1 respectively, where n[2] represents the number of jobs sched-

uled in the second group. The two operators are subject to a positional polynomial

deterioration effect (3.9), with rates B1 > 0 and B2 > 0, respectively. They are also

subject to positional polynomial learning effects (3.11). The rate with which Opera-

tor 1 learns before the first RMP is C1 < 0, while the rate with which he learns after

the RMP is C2 < C1 < 0. The learning rate of Operator 2 is given by C3 < 0. As

a result, the positional factors associated with the operators for the three groups are

given as g[1]w (r) = rB1+C1 , g
[2]
w (r) = rB1

(
n[1] + r

)C2 and g[3]w (r) = rB2+C3 , respectively,

where n[1] represents the number of jobs scheduled in the first group.

Thus, the positional factors for the entire processing system can be given as

g[1] (r) = g[1]m (r) g[1]w (r) = (A1)
r−1 rB1+C1 ;

g[2] (r) = g[2]m (r) g[2]w (r) = (A2)
r−1 rB1

(
n[1] + r

)C2
;

g[3] (r) = g[3]m (r) g[3]w (r) = (A2)
n[2]+r−1 rB2+C3 ,

where the super-script [x], 1 ≤ x ≤ 3, is used to distinguish between the positional

factors for different groups. Notice that this model allows us to assume (unlike, e.g.,

Yang (2010)), that during an RMP, if the operator is not replaced, he/she does not lose

his/her skills which were improved due to learning in the earlier groups of the schedule.

Similarly, if during an RMP a machine is not fully repaired, our model is capable of

handling the resulting situation in which the deterioration effect from the group before

the RMP must be carried forward to the next group. These instances are captured

by adjusting the relative position of a job in the relevant group. For example, the

learning factor involved in the computation of g[2] (r) is given by
(
n[1] + r

)C2 (implying
that Operator 1 has completed n[1] jobs before starting group 2), and the deterioration

61

CHAPTER 4. GENERAL FRAMEWORK

factor involved in the computation of g[3] (r) is given by (A2)
n[2]+r−1 (implying that

since its last maintenance, the machine has completed n[2] jobs before starting group

3).

Notice that during each RMP no job processing takes place. In a very general

setting, each of the K available RMPs, are associated with its own set of duration

parameters, α[y] and β[y], 1 ≤ y ≤ K. This allows us to further generalise the linear

model for start-time dependent durations (3.18), so that the duration DRMP of an

RMP can be given as

DRMP = α[y]τ + β[y], (4.1)

where τ is the start-time of the RMP, measured from the time the previous RMP was

completed, and α[y] and β[y] are parameters that define the RMP. The value of β[y] is

always positive; this parameter represents a fixed amount of time that must be spent

if an RMP with an index y, 1 ≤ y ≤ K, is performed. It can be seen as the duration of

some standardised procedures that must be completed during an RMP. The value of

α[y] can be negative or positive, depending on the nature of the RMP. If α[y] is positive,

the RMP can be considered to be a maintenance period (MP) and the formula (4.1)

implies that the duration of the MP becomes larger if it is performed later in a schedule.

Such an extended formulation as (4.1) was first introduced in our paper Rustogi and

Strusevich (2012a). If α[y] is negative, the formula (4.1) implies that the duration of the

RMP becomes smaller if it is performed later in a schedule. The value of α[y] should be

chosen such that the overall duration of the RMP always remains positive. A special

case of (4.1) is the case in which the duration of the RMP is given by a constant, so

that α[y] = 0, 1 ≤ y ≤ K; see, e.g., Kuo and Yang (2008a) and Zhao and Tang (2010),

who consider such a case with β[y] = β, 1 ≤ y ≤ K.

Notice that if it is known that the RMP is, in fact an MP, we will use Ψ = MP

instead of Ψ = RMP in the three-field notation. In such a case, it is implied that

the value of α[y] is non-negative. Moreover, if it is known that duration of an RMP is

constant, we will use Ψ = RMP [0] , signifying that the value α[y] = 0, 1 ≤ y ≤ K. For

a general situation with rate-modifying activities, we stick to the notation Ψ = RMP.

If a single machine environment is considered, the problems can be denoted by

1 |ϕ,Ψ|F.

To obtain an optimal solution to problem 1 |ϕ|F, with no RMPs, the only decision
a decision-maker must make is regarding the optimal permutation of jobs in a single

group. Prior problems of such a kind are reviewed in Section 3.2. However, to obtain an

optimal solution to problem 1 |ϕ,RMP |F a decision-maker must make the following

decisions:

62

CHAPTER 4. GENERAL FRAMEWORK

Decision 1. The number of RMPs: If k − 1 RMPs are included in the schedule, the

jobs are divided into k groups. Determine the optimal value of k, 1 ≤ k ≤ K+ 1.

Decision 2. The choice of RMPs: From a given list of K RMPs, choose k − 1,

1 ≤ k ≤ K + 1, RMPs that are included in the schedule.

Decision 3. The sequence of RMPs: Determine the optimal order in which the se-
lected k − 1 RMPs are scheduled on a machine.

Decision 4. An optimal permutation of jobs: For each job j ∈ N , determine the

group and the position within that group, that it must be scheduled in.

In this thesis we consider many versions of problem 1 |ϕ,Ψ|F, which can be differ-
entiated by changing the values of ϕ, Ψ and F in the problem formulation.

• ϕ is assigned based on whether the problem under consideration follows a po-

sitional, time-dependent or cumulative model. Problems are further classified

depending on whether the machine is undergoing a deterioration, learning or

an arbitrary effect. An arbitrary effect could arise in problems that combine a

deterioration and learning effect.

• Ψ is assigned based on what kind of rate-modifying activities, if any, are included

in the schedule. Different problems can be classified as follows:

(i). Ψ = ∅, or otherwise;

(ii). The RMPs are distinct or identical;

(iii). The RMPs result in a group-dependent or group-independent effect;

(iv.) The duration of the RMPs are constant or start-time dependent of the form
(4.1).

• F is assigned based on which objective function is being optimised. We mainly

concentrate on two objectives, minimising the makespan, i.e., F = Cmax, and

minimising the total flow time, i.e., F =
∑
Cj.

If a parallel machine environment is considered, the problems can be denoted in

the three-field notation by α |ϕ,Ψ|F, where α ∈ {Pm,Qm,Rm} . The problem of

minimising the makespan on parallel machines is NP -hard, thus, we concentrate on

the problems of minimising the total flow time. We consider several versions of problem

α |ϕ,Ψ|
∑
Cj, differentiating between them based on the values α, ϕ and Ψ. Rest of

the notation and problem formulation is similar to the single machine case and will be

discussed in more detail in Chapter 12.

63

CHAPTER 4. GENERAL FRAMEWORK

4.2 General Methodology

In this section, we outline some general principles that we often use in the thesis for

solving different versions of problem 1 |ϕ,Ψ|F. Let us begin with problems in which
Ψ = ∅, i.e., no rate-modifying activities are included in the schedule.

4.2.1 Models without Rate-Modifying Activities

Assume that in all versions of problem 1 |ϕ|F , jobs from the set N are processed on a

single machine in accordance with some permutation π = (π(1), . . . , π(n)) .

Recall from Section 3.2, that many versions of problem 1 |ϕ|F can be solved by

reducing them to either a full form LAP (2.2), or to a special form of the LAP with a

product matrix (2.3). Typically, such a reduction is possible if the value of an objective

function can written in the form

F =
n∑
r=1

Wj(r)pπ(r) + Γ, (4.2)

where Γ is a constant and Wj(r) is a positional weight associated with a job j = π (r)

sequenced in a position r, 1 ≤ r ≤ n. A positional weight can be defined as a quantity

which when multiplied by the normal processing time of a job j, gives the overall

contribution of job j to the objective function F .

The function F of the form (4.2) can be minimised by reducing the problem to an

LAP of the form (2.2), with the cost function cji = Wj(i)pj, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

It follows from Section 2.2.3 that an optimal sequence of jobs can be found in O (n3)

time by running the Hungarian Algorithm.

If however, it is observed that the value of an objective function can written in the

form

F =

n∑
r=1

W (r)pπ(r) + Γ, (4.3)

so that the resulting cost function of the LAP is given by cji = W (i)pj, 1 ≤ i ≤ n,

1 ≤ j ≤ n, then such an LAP is said to have a product matrix and can be solved

by Algorithm Match; see Section 2.2.3. Below we provide a formal description of an

algorithm based on Algorithm Match, that minimises the objective function F of the

form (4.3).

64

CHAPTER 4. GENERAL FRAMEWORK

Algorithm Match1

input: An instance of problem 1 |ϕ|F whose objective function can written in the

form (4.3).

output: An optimal sequence of jobs π∗

Step 1. If required, renumber the jobs in LPT order, i.e., in non-increasing order of
the values pj.

Step 2. Compute the constant term Γ and the positional weights W (r), 1 ≤ r ≤ n,

for the given problem.

Step 3. Sort the computed positional weights in non-decreasing order of their values,
and store them in a list L := (γ1, γ2, . . . , γn) , where γj, 1 ≤ j ≤ n, denotes the

j-th largest element in the list L.

Step 4. Match job j to the j-th element in list L, so that the optimal value of the
function F is given by

∑n
j=1 γjpj + Γ.

As follows from Lemma 2.1, Algorithm Match1 will minimise the function F of

the form (4.3) by assigning jobs with small processing times to positions with large

positional weights. Since the computed positional weights can be non-monotone, we

require O (n log n) time to create the sorted list L. The following statement holds.

Lemma 4.1. If the LPT order of the jobs is known in advance, Algorithm Match1

minimises an objective function F of the form (4.3), in O (T (W) +O (n log n)) time,

where T (W) is the time taken to compute the positional weights W (r), 1 ≤ r ≤ n.

4.2.2 Models with Rate-Modifying Activities

To solve all versions of problem 1 |ϕ,RMP |F, we first assume that Decisions 1-3 are
taken in advance, so that we know that a total of k − 1 MPs have been included in

the schedule. As a result the jobs are split into k, 1 ≤ k ≤ K + 1, groups. Denote the

resulting problem as 1 |ϕ,RMP (k − 1)|F.

To solve problem 1 |ϕ,RMP (k − 1)|F consider a schedule S (k) with a permutation

of jobs π =
(
π[1], π[2], . . . , π[k]

)
. Assume that each group contains a total of n[x] jobs,

so that π[x] =
(
π[x] (1) , π[x] (2) , . . . , π[x]

(
n[x]
))
, 1 ≤ x ≤ k, where

∑k
x=1 n

[x] = n.

Recall from Section 3.3, that many versions of problem 1 |ϕ,RMP (k − 1)|F with a

known number of groups, can be solved by reduction to the linear assignment problem,

65

CHAPTER 4. GENERAL FRAMEWORK

provided that the number of jobs in each group is known in advance. Typically, such

a reduction is possible if the value of an objective function can written in the form

F (k) =
k∑
x=1

n[x]∑
r=1

W
[x]
j (r)pπ[x](r) + Γ(k), (4.4)

where Γ (k) is a sequence-independent constant that depends on k and W [x]
j (r) is a

group-dependent positional weight associated with a job j = π[x] (r) , sequenced in a

position r, 1 ≤ r ≤ n[x], of a group x, 1 ≤ x ≤ k.

The function F of the form (4.4) can be minimised by reducing the problem to an n×
n LAP of the form (2.2). Each of the n rows of the associated cost matrix, corresponds

to a job j ∈ N, and each of the n columns corresponds to a position in the schedule.
For our purposes, it is convenient to number the columns by a string of the form

(x, r), where x refers to a group, 1 ≤ x ≤ k, and r, 1 ≤ r ≤ n[x], indicates a position

within the group. Thus, the first n[1] columns (1, 1) , (1, 2), · · · , (1, n[1]) of the matrix are
associated with the positions in group 1, the next n[2] columns (2, 1) , (2, 2), · · · , (2, n[2])
are associated with the positions in group 2, and so on. It follows that the cost function

cji of the LAP can be written as cj,(x,r), with its value defined by

cj,(x,r) = pjW
[x]
j (r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k. (4.5)

If the number of jobs in each group n[x], 1 ≤ x ≤ k, is known so that
∑k

x=1 n
[x] = n,

an optimal solution to the resulting LAP can be obtained in O (n3) by the famous

Hungarian algorithm. An optimal solution to the LAP assigns each job j ∈ N to

exactly one position from the available positions (x, r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, so

that the function (4.4) is minimised.

If however, it is observed that the value of an objective function can written in the

form

F (k) =
k∑
x=1

n[x]∑
r=1

W [x](r)pπ[x](r) + Γ(k), (4.6)

so that the resulting cost function of the LAP is given by cj,(x,r) = pjW
[x](r), 1 ≤ r ≤

n[x], 1 ≤ x ≤ k, then such an LAP is said to have a product matrix and can be solved

by Algorithm Match; see Section 2.2.3. Below we provide a formal description of an

algorithm based on Algorithm Match, that minimises the objective function F (k) of

the form (4.6), if the number of jobs in each group n[x], 1 ≤ x ≤ k, is known in advance.

66

CHAPTER 4. GENERAL FRAMEWORK

Algorithm Match2

input: An instance of problem 1 |ϕ,RMP (k − 1)|F whose objective function can

written in the form (4.6)

output: An optimal schedule S∗ (k)

Step 1. If required, renumber the jobs in LPT order, i.e., in non-increasing order of
the values pj.

Step 2. Compute the constant term Γ (k) and the positional weightsW [x](r), 1 ≤ r ≤
n[x], 1 ≤ x ≤ k, for the given problem.

Step 3. Sort the computed positional weights W [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, in

non-decreasing order of their values, and store them in a list L := (γ1, γ2, . . . , γn) ,

where γj, 1 ≤ j ≤ n, denotes the j-th largest element in the list L.

Step 4. Match job j to the j-th element in list L, so that the optimal value of the
function F (k) is given by

∑n
j=1 γjpj + Γ(k).

As follows from Lemma 2.1, Algorithm Match2 will solve the problem of minimising

the function F (k) of the form (4.6) by assigning jobs with small processing times to

positions with large positional weights. If the LPT order of the jobs is known in

advance, the running time of Algorithm Match2 is equal to the time T (W) it takes to

compute the positional weightsW [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, and the time required

to create the sorted list L.

Notice that both the solution approaches presented in this section, assume that

the number of jobs, n[x], in each group x, 1 ≤ x ≤ k, is known in advance. Thus, to

provide a complete solution to problem 1 |ϕ,RMP (k − 1)|F , we must find the optimal
number of jobs in each group. Additionally, to obtain a solution to the original problem

1 |ϕ,RMP |F, we need to find the optimal choices for Decisions 1-3. An obvious way
to find these unknown quantities is to enumerate all possible options associated with

them and choose the best instance. Alternatively, we can design specific algorithms

that find these values in a more effi cient way.

Notice however, that there are several versions of problem 1 |ϕ,RMP |F, for which
no effi cient algorithms can be developed to determine the optimal number of jobs in

each group. For such cases, the only available tool is to perform a full enumeration of

all possible options. Some of the cases for which this restriction holds, are:

• Problem of minimising the total flow time, see, e.g., problems reviewed in Sec-

tion 3.3.

67

CHAPTER 4. GENERAL FRAMEWORK

• Models in which the processing time of the current job depends on the number of
jobs processed in the previous groups, e.g., problem considered in Example 4.1.

• Models in which a non-monotone effect is considered.

We consider all of these problems in Chapter 9.

The problems, which do allow us to design an effi cient algorithm for determining

the optimal number of jobs in each group, are studied in Chapters 6, 7, and 8.

Moreover, there are some versions of problem 1 |ϕ,RMP (k − 1)|F, which do not
reduce to minimising a function of the form (4.4) or (4.6) at all, see, e.g., problems

with cumulative deterioration effects and rate-modifying activities in Chapter 10. In

such cases, we develop a solution approach from scratch.

68

CHAPTER 5

Convex Sequences with Sums of Ceiling
Functions

In this chapter, we establish certain properties that are used on several occasions in

this thesis. The main results that we present here primarily revolve around the convex

and V -shaped finite sequences and the inequalities that govern them. We prove an

inequality that involves an arbitrary non-decreasing function that depends on ceiling

functions, thereby establishing the convexity and V -shapeness of the corresponding

sequence. This sequence often appears in scheduling problems, especially when a given

set of jobs are to be divided into a known number of groups. The V -shapeness of this

sequence enables us to speed up the running times of several problems that we consider

in this study, see, e.g., Chapters 6, 8 and 11.

The most important results of this chapter are presented in our recent paper Rustogi

and Strusevich (2011), published in the Journal of Integer Sequences. In addition to

the main results, the paper also provides several examples and applications of the

established properties. Other results presented in this chapter can be found in the

papers Rustogi and Strusevich (2012a); Rustogi and Strusevich (2013a).

5.1 Brief Overview of Convex and V -shaped Se-

quences

A sequence A(k), 1 ≤ k ≤ n, is called convex if

A(k) ≤ 1

2
(A(k − 1) + A(k + 1)) , 2 ≤ k ≤ n− 1, (5.1)

69

CHAPTER 5. CONVEX SEQUENCES WITH SUMS OF CEILING FUNCTIONS

i.e., any element is no larger than the arithmetic mean of its neighbours. For a convex

sequence, the rate ∇(k) = A(k+ 1)−A(k) does not decrease as k grows. A concept of

a convex sequence is closely related to the notion of a log-convex sequence, for which

A(k) ≤
√
A(k − 1)A(k + 1), 2 ≤ k ≤ n− 1,

i.e., any element is no larger than the geometric mean of its neighbours. Convex

sequences play an important role in the derivation of various inequalities. Wu and

Debnath (2007) give a necessary and suffi cient condition for a sequence to be convex in

terms of majorisation, and this gives access to a powerful tool-kit that is systematically

exposed by Marshall and Olkin (1979). Various applications of convex sequences to the

problems of combinatorics, algebra and calculus are studied by Mercer (2005), Toader

(1996) and Wu and Debnath (2007). Any log-convex sequence is also convex due to

the inequality between the arithmetic and geometric means. An additional important

link between convex and log-convex sequences is pointed out by Došlíc (2009). In

Operational Research, an application of convex sequences to a special form of the

assignment problem and their relations to the famous Monge property is discussed in

Chapter 5.2 of the recent monograph by Burkard, Dell’Amico and Martello (2009).

A sequence C(k) is called V -shaped if there exists a k0, 1 ≤ k0 ≤ n, such that

C(1) ≥ · · · ≥ C(k0 − 1) ≥ C(k0) ≤ C(k0 + 1) ≤ · · · ≤ C(n).

If a finite sequence that contains n terms is V -shaped then its minimum value and

the position k0 of that minimum in the sequence can be found by binary search in at

most dlog2 ne comparisons.

The V -shaped sequences often arise in optimisation over a set of permutations, in

particular in machine scheduling. For a number of scheduling problems it is possible

to establish that an optimal sequence of jobs possesses the V -shaped property, e.g.,

the elements of the input sequence of the processing times can be interchanged so

that the resulting sequence is V -shaped. This property has been explored in numerous

papers. Here, we refer to only five, mostly with the words “V -shaped”in the title; see

Alidaee and Rosa (1995), Alturki, Mittenthal and Raghavachari (1996), Federgruen

and Mosheiov (1997), Mittenhal, Raghavachari and Rana (1995) and Mosheiov (1991).

There is also a somewhat dual concept of the Λ-shaped sequence, also known as

unimodal sequence or pyramidal sequence, in which the elements are placed in non-

decreasing order and then in non-increasing order. These sequences are the main

object of study in identifying effi ciently solvable combinatorial optimisation problems,

70

CHAPTER 5. CONVEX SEQUENCES WITH SUMS OF CEILING FUNCTIONS

in particular the traveling salesman problem. Here we only refer to two most recent

surveys by Burkard et al. (1998) and Kabadi (2007).

Despite the fact that the two types of sequences, convex and V -shaped, are well-

known in the corresponding area of study, to the best of our knowledge, so far there

has been no attempt to link these two concepts. In the following section we give an

elementary proof that a convex sequence is in fact V -shaped.

5.2 A Convex Sequence is V -Shaped

The statement below links the convex and V -shaped sequences.

Lemma 5.1. A convex sequence C(k), 1 ≤ k ≤ n, is V -shaped.

Proof: Suppose that a convex sequence C(k), 1 ≤ k ≤ n, is not V -shaped, i.e., there

exists a k1, 1 < k1 < n, such that

C(k1 − 1) ≤ C(k1) > C(k1 + 1).

Combining the inequalities

C(k1 − 1) ≤ C(k1),

C(k1) > C(k1 + 1),

we obtain

C(k1) >
1

2
(C(k1 − 1) + C(k1 + 1)) .

The latter inequality contradicts (5.1).

The statement opposite to Lemma 5.1 is not true: indeed, any monotone sequence

is V -shaped, but need not be convex.

It can be immediately verified that the sum of two convex sequences is convex, and

therefore is V -shaped. On the other hand, the sum of two V -shaped sequences is not

necessarily V -shaped, which, e.g., is demonstrated by the following counterexample.

For an integer n, 0 ≤ n ≤ 9, both sequences
√
|n− 1| and

√
|n− 9| are V -shaped, but

their sum is not, since the sum has two equal maxima at n = 0 and n = 5 as well as

two equal minima at n = 1 and n = 9.

71

CHAPTER 5. CONVEX SEQUENCES WITH SUMS OF CEILING FUNCTIONS

5.3 Convexity of a Sequence Involving Sums of

Functions of Ceilings

In this chapter, we study a specially structured sequence of the form

P (k) =

n∑
j=1

pjg

(⌈
j

k

⌉)
, 1 ≤ k ≤ n, (5.2)

where pj is the normal processing time of a job j ∈ {1, 2, . . . , n} and g is an arbitrary
non-negative non-decreasing function. Recall that dxe is the ceiling function and is
equal to the smallest integer that is not less than x.

The sequence (5.2), or some version of it, is commonly found in the scheduling

literature, especially in problems in which a given set of jobs needs to be divided into

a known number of groups. For example, recall from Section 2.2.5, that the optimal

value of the objective function for problem Pm ||
∑
Cj, is given by a closed form formula

(2.15), which is equivalent to (5.2) for g ≡ 1. In Chapters 6 and 8, we encounter such

sequences while studying the problem of scheduling jobs with rate-modifying activities.

In this section, we prove that the sequence (5.2) is convex, provided that the values

pj, j ∈ {1, 2, . . . , n} are numbered in the LPT order (2.7). We start our consideration
with a simpler sequence

G(k) =
n∑
j=1

g

(⌈
j

k

⌉)
, 1 ≤ k ≤ n. (5.3)

Below we give an elementary proof of the convexity of the sequence (5.3). It should

be noticed that although the ceiling function and its counterpart, the floor function

bxc = max {n ∈ Z|n ≤ x}, arise and find applications in many areas, publications
that study the relations that involve these functions are quite scarce; we mention only

Chapter 3 of Graham, Knuth and Patashnik (1989) and Nyblom (2002).

Theorem 5.1. The sequence G(k), 1 ≤ k ≤ n, of the form (5.3) is convex.

Proof: In accordance with (5.1), we need to prove that

2G(k)−G(k − 1)−G(k + 1) ≤ 0, 2 ≤ k ≤ n− 1, (5.4)

Given a value of k, 2 ≤ k ≤ n− 1, for a j, 1 ≤ j ≤ n, we can express j as ak + b,

72

CHAPTER 5. CONVEX SEQUENCES WITH SUMS OF CEILING FUNCTIONS

where a is in integer in
{

0, 1, . . . ,
⌊
j
k

⌋}
and b ≤ k. We can write

G(k) =

bnkc−1∑
a=0

k∑
b=1

g

(⌈
ak + b

k

⌉)
+

n−kbnkc∑
b=1

g

(⌈⌊
n
k

⌋
k + b

k

⌉)

=

bnkc−1∑
a=0

k∑
b=1

g

(
a+

⌈
b

k

⌉)
+

n−kbnkc∑
b=1

g

(⌊n
k

⌋
+

⌈
b

k

⌉)
.

Since b ≤ k, it follows that
⌈
b
k

⌉
= 1, so that

G(k) =

bnkc−1∑
a=0

k∑
b=1

g (a+ 1) +

n−kbnkc∑
b=1

g
(⌊n
k

⌋
+ 1
)

= k

bnkc∑
r=1

g (r) +
(
n− k

⌊n
k

⌋)
g
(⌊n
k

⌋
+ 1
)
,

where r = a+ 1 is a new summation index. Similarly, we deduce

G(k + 1) = (k + 1)

b n
k+1c∑
r=1

g (r) +

(
n− (k + 1)

⌊
n

k + 1

⌋)
g

(⌊
n

k + 1

⌋
+ 1

)
;

G(k − 1) = (k − 1)

b n
k−1c∑
r=1

g (r) +

(
n− (k − 1)

⌊
n

k − 1

⌋)
g

(⌊
n

k − 1

⌋
+ 1

)
.

To prove (5.4), we rewrite the difference 2G(k)−G(k + 1)−G(k − 1) ask bnkc∑
r=1

g (r)− (k + 1)

b n
k+1c∑
r=1

g (r)

+

k bnkc∑
r=1

g (r)− (k − 1)

b n
k−1c∑
r=1

g (r)

+2
(
n− k

⌊n
k

⌋)
g
(⌊n
k

⌋
+ 1
)
−
(
n− (k + 1)

⌊
n

k + 1

⌋)
g

(⌊
n

k + 1

⌋
+ 1

)
−
(
n− (k − 1)

⌊
n

k − 1

⌋)
g

(⌊
n

k − 1

⌋
+ 1

)
and show that it is non-positive.

Notice that the expression

k

bnkc∑
r=1

g (r)− (k + 1)

b n
k+1c∑
r=1

g (r)

73

CHAPTER 5. CONVEX SEQUENCES WITH SUMS OF CEILING FUNCTIONS

can be simplified by cancelling the values of the function g computed for the same

values of r. Since
⌊
n
k

⌋
≥
⌊

n
k+1

⌋
, we obtain

k

bnkc∑
r=1

g (r)− (k + 1)

b n
k+1c∑
r=1

g (r) = k

bnkc∑
r=b n

k+1c+1
g (r)−

b n
k+1c∑
r=1

g (r) .

Similarly, since
⌊

n
k−1
⌋
≥
⌊
n
k

⌋
, we obtain

k

bnkc∑
r=1

g (r)− (k − 1)

b n
k−1c∑
r=1

g (r) =

b n
k−1c∑
r=1

g (r)− k
b n
k−1c∑

r=bnkc+1
g (r) .

Combining the two above equalities, we obtaink bnkc∑
r=1

g (r)− (k + 1)

b n
k+1c∑
r=1

g (r)

+

k bnkc∑
r=1

g (r)− (k − 1)

b n
k−1c∑
r=1

g (r)

= k

 bnkc∑
r=b n

k+1c+1
g (r)−

b n
k−1c∑

r=bnkc+1
g (r)

+

b n
k−1c∑

r=b n
k+1c+1

g (r) ,

which reduces tok bnkc∑
r=1

g (r)− (k + 1)

b n
k+1c∑
r=1

g (r)

+

k bnkc∑
r=1

g (r)− (k − 1)

b n
k−1c∑
r=1

g (r)

= (k + 1)

bnkc∑
r=b n

k+1c+1
g (r)− (k − 1)

b n
k−1c∑

r=bnkc+1
g (r) .

Coming back to the initial difference in (5.4), we have that

2G(k)−G(k + 1)−G(k − 1) = (k + 1)

bnkc∑
r=b n

k+1c+1
g (r)− (k − 1)

b n
k−1c∑

r=bnkc+1
g (r)

+2
(
n− k

⌊n
k

⌋)
g
(⌊n
k

⌋
+ 1
)

−
(
n− (k + 1)

⌊
n

k + 1

⌋)
g

(⌊
n

k + 1

⌋
+ 1

)

74

CHAPTER 5. CONVEX SEQUENCES WITH SUMS OF CEILING FUNCTIONS

Recombine

(k + 1)

bnkc∑
r=b n

k+1c+2
g (r) +

(
(k + 1)−

(
n− (k + 1)

⌊
n

k + 1

⌋))
g

(⌊
n

k + 1

⌋
+ 1

)

−(k − 1)

b n
k−1c∑

r=bnkc+2
g (r) +

(
2n− 2k

⌊n
k

⌋
− (k − 1)

)
g
(⌊n
k

⌋
+ 1
)

−
(
n− (k − 1)

⌊
n

k − 1

⌋)
g

(⌊
n

k − 1

⌋
+ 1

)
.

To prove (5.4), we collect together the terms that make a positive contribution X

and a negative contribution Y so that 2G(k)−G(k+1)−G(k−1) = X−Y , and show
that X ≤ Y . It follows that

X =

(
(k + 1)

(⌊
n

k + 1

⌋
+ 1

)
− n

)
g

(⌊
n

k + 1

⌋
+ 1

)
+ (k + 1)

bnkc∑
r=b n

k+1c+2
g (r) +

+ (2n+ 1) g
(⌊n
k

⌋
+ 1
)

;

Y =
(

2k
⌊n
k

⌋
+ k
)
g
(⌊n
k

⌋
+ 1
)

+ (k − 1)

b n
k−1c∑

r=bnkc+2
g (r) +

+

(
n− (k − 1)

⌊
n

k − 1

⌋)
g

(⌊
n

k − 1

⌋
+ 1

)
.

In the expression for X, the arguments of the function g are from
⌊

n
k+1

⌋
+ 1 to⌊

n
k

⌋
+1, while in the expression for Y , the arguments of the function g are from

⌊
n
k

⌋
+1

to
⌊

n
k−1
⌋

+ 1, so that we can write

X =

bnkc+1∑
r=b n

k+1c+1
xrg(r), Y =

b n
k−1c+1∑

r=bnkc+1
yrg(r),

where all coeffi cients xr and yr are non-negative.

75

CHAPTER 5. CONVEX SEQUENCES WITH SUMS OF CEILING FUNCTIONS

Computing

bnkc+1∑
r=b n

k+1c+1
xr = (k + 1)

(⌊
n

k + 1

⌋
+ 1

)
− n+ (k + 1)

(⌊n
k

⌋
−
⌊

n

k + 1

⌋
− 1

)
+ (2n+ 1) ,

b n
k−1c+1∑

r=bnkc+1
yr =

(
2k
⌊n
k

⌋
+ k
)

+ (k − 1)

(⌊
n

k − 1

⌋
−
⌊n
k

⌋
− 1

)
+

(
n− (k − 1)

⌊
n

k − 1

⌋)
,

we deduce that both sums above are equal to (k+ 1)
⌊
n
k

⌋
+n+ 1. Thus, each X and Y

can be seen as the sum of (k+ 1)
⌊
n
k

⌋
+n+ 1 values of the function g; however, for any

i, 1 ≤ i ≤ (k+ 1)
⌊
n
k

⌋
+n+ 1, the i-th smallest value of g(r) involved in the expression

for X is no larger than the i-th smallest value of g(r) involved in the expression for Y .

This proves that X ≤ Y , i.e., 2G(k)−G(k + 1)−G(k − 1) ≤ 0, so that the sequence

G(k), 1 ≤ k ≤ n, is convex.

Theorem 5.2. The sequence P (k), 1 ≤ k ≤ n, of the form (5.2) is convex, if p1 ≥
p2 ≥ · · · ≥ pn.

Proof: For a given j ∈ {1, 2, ..., n}, define

Aj(k) =

[
2g

(⌈
j

k

⌉)
− g

(⌈
j

k + 1

⌉)
− g

(⌈
j

k − 1

⌉)]
, 2 ≤ k ≤ n− 1.

By Theorem 5.1, due to the convexity of the sequence B(k), 1 ≤ k ≤ n, we deduce

that
q∑
i=1

Ai(k) ≤ 0 (5.5)

for each k, 2 ≤ k ≤ n− 1, and all q, 1 ≤ q ≤ n.

In order to prove the theorem, we need to demonstrate that the inequality

n∑
j=1

pjAj(k) ≤ 0 (5.6)

holds for each k, 2 ≤ k ≤ n− 1.

76

CHAPTER 5. CONVEX SEQUENCES WITH SUMS OF CEILING FUNCTIONS

Fix a k, 2 ≤ k ≤ n− 1, and transform

n∑
j=1

pjAj(k) = pn

(
n∑
i=1

Ai(k)−
n−1∑
i=1

Ai(k)

)
+ pn−1

(
n−1∑
i=1

Ai(k)−
n−2∑
i=1

Ai(k)

)
+ · · ·

+p1A1(k)

= pn

n∑
i=1

Ai(k) + (pn−1 − pn)

n−1∑
i=1

Ai(k) + (pn−2 − pn−1)
n−2∑
i=1

Ai(k) + · · ·

+p1A1(k)

=

n∑
j=2

[
(pj−1 − pj)

j−1∑
i=1

Ai(k)

]
+ pn

n∑
i=1

Ai(k).

The last right-hand expression is non-positive due to (5.5) and the LPT numbering

of pj (2.7), so that the desired inequality (5.6) holds and the sequence P (k), 1 ≤ k ≤ n,

is convex.

The convexity of the sequence P (k), 1 ≤ k ≤ n, as established in Theorem 5.2,

allows us to use an effi cient binary search algorithm to solve several problems considered

in this thesis, see, e.g., Sections 6.7, 8.5 and 11.5. For other applications of the results

of this chapter, refer to our paper Rustogi and Strusevich (2011).

77

Part III

Single Machine Scheduling

78

CHAPTER 6

Job-Independent Positional Effects and
Rate-Modifying Activities

In this chapter, we discuss single machine scheduling problems with job-independent

positional effects. We start with making some general improvements of the existing re-

sults in scheduling with positional effects without any rate-modifying activities. Then,

we study models in which positional effects are combined with rate modifying activi-

ties. Our main focus in this chapter is to explore general models with job-independent

positional deterioration and maintenance activities. We provide a variety of solution

approaches that effi ciently solve different versions of such problems.

The most important results of this chapter are published in our recent papers Rus-

togi and Strusevich (2012a,b). In these papers, we only provide a simplified version of

the problem, so that the main ideology behind the developed algorithms can be clearly

understood. In this chapter, however, we provide a full account of the entire range of

problems that can be solved using the developed solution approaches.

6.1 Brief Overview of Positional Effects

As described in Section 3.2.1, under a job-independent positional effect the actual

processing time of job j scheduled in position r of a schedule is given by

pj(r) = pjg(r), 1 ≤ r ≤ n,

where g (r) is a job-independent positional factor. If the values g(r), 1 ≤ r ≤ n,

form a non-decreasing sequence (3.2), we deal with a positional deterioration effect; if

the sequence is non-increasing (3.3), a learning effect is observed. A positional effect

can also be job-dependent, in which the actual processing time of job j scheduled in

79

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

position r of a schedule is given by

pj(r) = pjgj(r), 1 ≤ r ≤ n.

We shall discuss problems of the latter category in Chapter 7.

To demonstrate that a deterioration effect can be positional, consider the following

example. Imagine that in a manufacturing shop there are several parts that need a hole

of the same diameter to be punched through by a pneumatic punching unit. Ideally,

the time that is required for such an operation depends on the thickness of the metal to

be punched through; and this will determine the normal processing times for all parts.

In reality however, there occurs an unavoidable gas leakage after each punch, due to

which the punching unit loses pressure, so that the later a part is subject to punching

the longer it takes to perform it, as compared to the duration under perfect conditions.

Clearly, a positional deterioration effect is observed.

A learning effect can occur when what we call machines are in fact human operators

that gain experience and improve their performance rate with each processed job. Being

part of the academia, it is easy to notice that positional learning takes place when a

teacher marks a number of coursework scripts based on the same question paper. It

takes a reasonably long time to mark the first two or three scripts, then the teacher

realises the key factors to be checked, typical strong or weak points to be looked for,

and the marking process goes faster and faster with each marked script.

In the literature on scheduling with positional effects, learning and deterioration are

often studied separately, although similar methods can be employed in either case and

some algorithmic ideas are either directly transferable from one effect to the other or

at least can be adapted. In this study, we argue that in most cases there is no need to

separate the studies on learning from those on deterioration. In fact, we demonstrate

that we may look at an arbitrary positional effect, given by a non-monotone sequence

of the positional factors.

These arbitrary non-monotone positional effects can be found in practice as well.

Extending the coursework marking example above, after marking a certain number of

scripts, the teacher might get tired or bored, her attention becomes less focused and

each new script may even take longer to mark than the one before. In this case we

can say that a deterioration and learning effect is taking place simultaneously. If the

deterioration in the conditions of the teacher is modelled by the positional factors given

by an array gd (1) ≤ gd (2) ≤ · · · ≤ gd (n) and the positional learning effect is given by

an array gl (1) ≥ gl (2) ≥ · · · ≥ gl (n) , then the time it takes for the teacher to mark the

80

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

r-th coursework can be given by pj (r) = pjg (r) , where g (r) := gd (r) gl (r) , 1 ≤ r ≤ n.

Clearly, the positional factors g (r) , 1 ≤ r ≤ n, are non-monotone. This is the first

study in which such effects have been considered.

In earlier papers, the focus has been on particular functions that define the posi-

tional factors g(r), e.g., polynomial of the form (3.9)-(3.11) or exponential (3.10)-(3.12).

In this study however, we show that in order to obtain a polynomial-time algorithm

for a problem with job-independent positional effects, there is no need to look at a

particular function. Instead, a general function g (r) can be used to model the effects

and all results can be derived with as much ease.

Further in this chapter, we consider situations in which a positional effect is com-

bined with rate modifying activities. If a machine undergoes a deterioration effect,

performing a maintenance activity in the schedule might stop the deterioration process

and prevent the processing times of jobs to grow to unacceptable values. For instance,

in the manufacturing shop example given above, after a considerable drop of pressure,

the punching unit can be subjected to maintenance, so that the cylinder is refilled and

the unit is as good as new, or close to that state. On the other hand, in the course-

work example, if the teacher feels very tired, she can take a coffee break and refresh

herself. This can be seen as an RMP and will certainly improve the productivity of the

teacher. Another option she has is to give all the remaining courseworks to her Ph.D.

student. This event can also be seen as rate-modifying activity in the entire sequence

of marking n courseworks. Notice that while the Ph.D. student is fresh, he does not

have the experience of marking the earlier courseworks, and thus, to mark the first

few courseworks, he might take even longer than the tired professor. Thus, unlike the

previous case, this RMP does not necessarily bring the machine/operator to a better

state. This is the first study in which different types of RMPs are simultaneously con-

sidered in the schedule. The models that combine a general possibly non-monotone

positional effect and rate modifying activities of different kinds are among the most

general models addressed in this study.

The rest of this chapter is organised as follows. In Section 6.2 we focus on problems

with positional effects and no rate-modifying activities. As a result all jobs are sched-

uled in a single group and we show that even if an arbitrary, possibly non-monotone

positional effect is considered, several objective functions can be solved in O (n log n)

time. Previously many of such problems were known to be solvable in O (n3) time,

even if a specific monotone positional effect was considered. In Section 6.3 we intro-

duce rate-modifying activities and show how we can mathematically model the effect

they have on machine conditions. In Section 6.4 we provide preliminary calculations

81

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

required to solve the problem of minimising the makespan for a model with positional

effects and rate modifying activities. In Sections 6.5, 6.6 and 6.7 we provide differ-

ent solution approaches for solving different versions of the problem of minimising the

makespan. In the last section, we give some concluding remarks and provide a table

with all the problems considered and the running times needed to solve them.

6.2 Models without Rate Modifying Activities

In this section, we focus on the simplest type of scheduling problems, in which the jobs

are processed on a single machine and are organised as a single group. Unlike most of

the previously published papers relevant to the material of this section, here we assume

that an arbitrary positional effect is involved, so that the positional factors are given

by a general sequence of numbers g (r) , 1 ≤ r ≤ n, and are not necessarily monotone.

In the case of either positional deterioration or learning the corresponding factors may

satisfy either (3.2) or (3.3), respectively.

Formally, all the problems considered in the section can be denoted in conven-

tional scheduling nomenclature by 1 |pjg (r)|F, where the second field explicitly points
out that the actual processing time of job j sequenced in the r-th position is equal

to pjg(r). Let us assume that in all versions of problem 1 |pjg (r)|F , jobs from
the set N are processed on a single machine in accordance with some permutation

π = (π(1), . . . , π(n)) and a job j = π (r) sequenced in position r is associated with a

job-independent positional factor g(r).

Below we revisit each of the problems considered in Section 3.2.1 and prove that

they can be expressed in the form (4.3), and can be solved optimally by running

Algorithm Match1, which was presented in Chapter 4.

Minimising the Makespan

It is easy to verify that for problem 1 |pjg(r)|Cmax, the makespan can be written as
(3.8), even if the positional factors g (r) , 1 ≤ r ≤ n, are not monotone. Notice that (3.8)

satisfies (4.3) withW (r) = g(r), 1 ≤ r ≤ n, and Γ = 0, so that an optimal solution can

found by Algorithm Match1. Since the positional weightsW (r), 1 ≤ r ≤ n, are already

known, an optimal schedule can be found in O(n log n) time, due to Lemma 4.1.

Next, consider the problem 1 |Aj + bjr|Cmax with a linear positional effect (3.7).
For this problem, even in a more general situation, e.g., when the actual time of job

j = π (r) scheduled in position r is defined by Aπ(r) + bπ(r)g(r), and arbitrary values of

82

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

bj, the makespan can be written as

Cmax (π) =
n∑
r=1

Aπ(r) +
n∑
r=1

bπ(r)g(r),

which satisfies (4.3) with W (r) = g(r), 1 ≤ r ≤ n, pj = bj, j ∈ N and Γ =
∑n

j=1Aj,

so that an optimal solution can found by Algorithm Match1 in O(n log n) time.

Minimising the Total Flow time

It is easy to verify that for problem 1 |pjg(r)|
∑
Cj, the total flow time can be written

as (3.14), even if the positional factors g (r) , 1 ≤ r ≤ n, are not monotone. Notice

that (3.14) satisfies (4.3) with W (r) = (n− r + 1) g(r), 1 ≤ r ≤ n, and Γ = 0, so that

an optimal schedule can be found by Algorithm Match1. It requires T (W) = O (n)

time to compute all the positional weights W (r), 1 ≤ r ≤ n, thus, an optimal schedule

can be found in O(n log n) time, due to Lemma 4.1.

Recall from Section 3.2.1, that prior to this study no positive results have been

known for the deterioration version of problem 1 |pjg(r)|
∑
Cj. Our approach shows

that for a deterioration effect the search for an optimal strategy should not be limited to

simple priority rules. In fact, AlgorithmMatch1 not only solves problem 1 |pjg(r)|
∑
Cj

in the case of deterioration, but works for arbitrary, possibly non-monotone positional

factors.

If we consider the problem of minimising the total flow time with the effect pj(r) =

Aj + bjr, introduced by Bachman and Janiak (2004), it can be easily verified that the

problem does not reduce to minimising (4.3) and it is essential to use a full form LAP;

see Yang and Yang (2010b).

Other Objective Functions

In line with Section 3.2.1, in which we review other somewhat exotic objective functions,

we now revisit those problems for a general positional effect. Notice that all problems

considered in Section 3.2.1 share the following common features:

• the problems have been previously studied for a particular model of positional
learning, normally with a polynomial learning effect;

• the problems have been previously formulated as LAPs;

83

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

• the authors fail to notice that those assignment problems are of a special struc-
ture;

• in the original papers and in the reviews by Bachman and Janiak (2004) and
Biskup (2008) each of these problems is mentioned as solvable in O(n3) time.

Below we show that each of the problems considered in Section 3.2.1 can in fact

be reduced to the form (4.3), even if the positional factors are given by a general non-

monotone function g (r) . As a result, using appropriate values of W (r) and Γ, each of

the problems can be solved by Algorithm Match1.

Minimising deviation from a common unrestricted due date: In the case of an
arbitrary positional effect, we can denote the problem by 1 |pjg(r), dj = d|

∑
(wCj +

w′Ej +w′′Tj). Extending the argument by Panwalkar, Smith and Seidmann (1982) and

Biskup (1999), we can reduce the problem to minimising the function (4.3) with Γ = 0

and

W (r) = g(r) min{(r − 1)w′ + (n− r + 1)w, (n− r + 1)(w′′ + w)}, 1 ≤ r ≤ n,

so that an optimal solution can be found in O(n log n) time. Notice that this is possible

because the cost function

cij = pji
a min{(i− 1)w′ + (n− i+ 1)w, (n− i+ 1)(w′′ + w)}, 1 ≤ i ≤ n, j ∈ N,

derived by the authors for use in the full form LAP is of the form cij = αiβj, so

that the input of the problem is determined by two arrays α = (α1, α2, . . . , αn) and

β = (β1, β2, . . . , βn) . The same logic holds for the other two objective functions.

Common due date assignment: In the case of an arbitrary positional effect, we can
denote the problem by 1 |pjg(r), dj = d|

∑
(wd+w′Ej+w

′′Tj). Extending the argument

by Panwalkar, Smith and Seidmann (1982) and Mosheiov (2001a), we can reduce the

problem to minimising the function (4.3) with Γ = 0 and

W (r) =

{
g(r) (nw + (r − 1)w′) , 1 ≤ r ≤ u

g(r) (n+ 1− r)w′′, u+ 1 ≤ r ≤ n,

where

u =

⌈
w′′ − w
w′ + w′′

⌉
.

Thus, an optimal permutation can be found in O (n log n) time. Notice that a

similar observation is also made by Kuo and Yang (2007) for a polynomial learning

84

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

effect.

Minimising the weighted sum of total completion time and variation of
completion times: In the case of an arbitrary positional effect, we can denote the
problem by 1 |pjg(r), dj = d|w

∑
Cj+(1− w)

∑∑
|Ci − Cj|. Extending the argument

by Bagchi (1989) and Mosheiov (2001a), we can reduce the problem to minimising the

function (4.3) with Γ = 0 and

W (r) = g(r)
[
(2w − 1) (n+ 1) + r (2− 3w + n(1− w))− r2(1− w)

]
, 1 ≤ r ≤ n,

so that an optimal solution can be found in O(n log n) time.

The results of this section have been published in our recent paper, see Rustogi and

Strusevich (2012b). In the next chapter we discuss how the general positional effects

described in this section, can be combined with rate-modifying activities to give rise

to enhanced scheduling models.

6.3 Rate Modifying Activities

In this section, we combine rate-modifying activities with positional effects. As outlined

in Chapter 4, consider a general situation, in which the decision-maker is presented

with a total of K ≥ 0 possible rate-modifying activities, which can be either distinct

or alike. For each RMP, it is exactly known how it affects the processing conditions of

the machine, should the decision-maker decide to include it into a schedule.

If k − 1 RMPs are chosen from the available K options, then the jobs are divided

into k, 1 ≤ k ≤ K + 1 groups. Depending on which RMPs are chosen and the order

in which they are performed, the actual processing time of a job j ∈ N, scheduled in
position r of the x-th group can be given by

p
[x]
j (r) = pjg

[x] (r) , 1 ≤ r ≤ n, 1 ≤ x ≤ k, (6.1)

where g[x] (r) is a group-dependent positional factor . The presence of group-dependent

positional factors implies that the actual processing time of a job is dependent on the

position of the job in a group and also on the group that job is scheduled in.

Recall from Section 3.3.1, that in the earlier problems which studied positional

effects with rate-modifying activities, it is assumed that all RMPs are identical and

they restore the machine to the same state. As a result, the resulting groups are

indistinguishable and each group can be associated with the same set of positional

85

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

factors, which are of the form g (r) , 1 ≤ r ≤ n. We refer to such positional factors as

group-independent positional factors.

The problem of minimising a certain objective function F, under the general settings

defined by (6.1) and (4.1) can be denoted by 1
∣∣pjg[x] (r) , RMP

∣∣F , where the first item
in the middle field indicates how the actual processing time of a job j scheduled in

position r of the x-th group of a schedule is calculated; later on we will use appropriate

simplified notation for various special cases of the model.

If a pure deterioration model is considered, then the positional factors within a

group x are in non-decreasing order

1 ≤ g[x](1) ≤ g[x](2) ≤ · · · ≤ g[x](n), 1 ≤ x ≤ k, (6.2)

whereas if a pure learning model is considered, then the positional factors within a

group x are in non-increasing order

1 ≥ g[x](1) ≥ g[x](2) ≥ · · · ≥ g[x](n), 1 ≤ x ≤ k. (6.3)

In the former case, the RMPs are essentially maintenance periods (MPs), which

must be included in the schedule in order to negate the deteriorating machine condi-

tions; see, e.g., Kuo and Yang (2008a) and Yang and Yang (2010b). In the latter case,

the RMPs can either be associated with replacing a machine/operator or be associated

with an activity which further enhances the learning rate of the machine; see, e.g., Ji

and Cheng (2010). If a pure learning model is considered and the RMPs are related to

replacing the machine, then the problem is trivial as it is optimal to simply schedule

all jobs in one group. On the other hand, if a pure learning model is considered and

the RMPs are related to further enhancing the machine conditions, then it is essential

to pass on the learning effects of previous groups to the current group. This can be

done if the positional factors of the current group are dependent on the number of

jobs scheduled in previous groups. This situation is similar to Example 4.1. For such

cases, it is not possible to determine the optimal number of jobs in a group without

full enumeration. Thus, in this chapter, we skip both scenarios related to learning with

rate-modifying activities. We revisit these problems in Chapter 9, where we consider

a much more general scenario in which an arbitrary, possibly non-monotone positional

effect is considered.

In this chapter, we only concentrate on problems in which the objective function

is to minimise the makespan and the positional factors are non-decreasing within a

group (6.2), so that a pure deterioration effect is considered. In some places, we may

86

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

refer to such positional factors as deterioration factors. Recall that in the case of a

pure deterioration effect, the RMPs are essentially maintenance periods (MPs). The

resulting class of problems can be denoted as 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax. An optimal
solution to problem 1

∣∣pjg[x] (r) -det,MP
∣∣Cmax is found by determining the outcomes

of Decisions 1-4, as defined in Chapter 4.

6.4 Computing Positional Weights

To solve problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, we first assume that Decisions 1-3 are
taken in advance, so that we know that a total of k− 1 MPs have been included in the

schedule. As a result the jobs are split into k, 1 ≤ k ≤ K + 1, groups. Renumber the

indices of duration parameters of the MPs, in order of their occurrence in the schedule,

so that the duration of the MP scheduled after the x-th group is given by

Tx = α[x]Fx + β[x], 1 ≤ x ≤ k − 1, (6.4)

where Fx is the total processing time of all jobs scheduled in the x-th group. Denote

the resulting problem as 1
∣∣pjg[x] (r) -det,MP (k − 1)

∣∣Cmax.
To solve problem 1

∣∣pjg[x] (r) -det,MP (k − 1)
∣∣Cmax consider a schedule S (k) with

a permutation of jobs π =
(
π[1], π[2], . . . , π[k]

)
. Assume that each group contains a

total of n[x] jobs, so that π[x] =
(
π[x] (1) , π[x] (2) , . . . , π[x]

(
n[x]
))
, 1 ≤ x ≤ k, where∑k

x=1 n
[x] = n. The actual processing time of a job j = π[x] (r) , scheduled in position

r, 1 ≤ r ≤ n[x], of the x-th group, 1 ≤ x ≤ k, is given by (6.1). It follows that the total

processing time of the jobs assigned to group x can be given by

Fx =
n[x]∑
r=1

g[x] (r) pπ[x](r), 1 ≤ x ≤ k. (6.5)

Thus, the completion time Cπ[x](r) of a job j = π[x] (r) , scheduled in position r,

1 ≤ r ≤ n[x], of the x-th group, 1 ≤ x ≤ k, can be written as

Cπ[x](r) = F1 + T1 + F2 + T2 + · · ·+ Fx−1 + Tx−1 +
r∑

u=1

g[x] (u) pπ[x](u),

where T1, T2, . . . , Tx−1 are the durations of the first x− 1 MPs and are given by (6.4).

87

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

It follows that

Cπ[x](r) =

x−1∑
v=1

(1 + α[v])Fv +

r∑
u=1

g[x] (u) pπ[x](u) +

x−1∑
v=1

β[v]. (6.6)

The makespan of a schedule S (k) is defined as the completion time of the last job

in the sequence and is denoted by Cmax (S (k)) . It follows from (6.6) that

Cmax (S (k)) =
k−1∑
x=1

(1 + α[x])Fx + Fk +

k−1∑
x=1

β[x].

Substituting the value of Fx from (6.5) in the above equation we get

Cmax (S (k)) =
k−1∑
x=1

n[x]∑
r=1

(1 + α[x])g[x] (r) pπ[x](r) +
n[k]∑
r=1

g[k] (r) pπ[k](r) +

k−1∑
x=1

β[x]. (6.7)

The above objective function can be written as generic function given by (4.6) with

the positional weights

W [x](r) =

{
(1 + α[x])g[x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

g[x](r) 1 ≤ r ≤ n[x], x = k,
(6.8)

and the constant term

Γ(k) =
k−1∑
x=1

β[x]. (6.9)

As shown in Section 4.2.2, if the number of jobs in each group, n[x], 1 ≤ x ≤
k, is known in advance, the problem of minimising the generic objective function

(4.6), can be solved by running Algorithm Match2. To find an optimal solution

to problem 1
∣∣pjg[x] (r) -det,MP (k − 1)

∣∣Cmax, however, we must find a way of de-
termining the optimal number of jobs n[x], that are scheduled in each group x,

1 ≤ x ≤ k, before we can apply Algorithm Match2. To obtain a solution to the

original problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, we solve all possible instances of prob-
lem 1

∣∣pjg[x] (r) -det,MP (k − 1)
∣∣Cmax by modifying the outcomes of Decisions 1-3 and

choose the instance with the smallest value of the objective function as our optimal

solution.

For different versions of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax the resulting sub-
problem 1

∣∣pjg[x] (r) -det,MP (k − 1)
∣∣Cmax might generate positional weights that are

different from those found in (6.8). Recall that in the calculation of (6.8) we consider

88

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

a very general scheduling model, in which the actual processing times of jobs are given

by (6.1) and the MP durations are given by (4.1). In total, we consider 23 = 8 versions

of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, differentiating them based on three criteria: (i)

deterioration factors are group-dependent or group-independent, (ii) MPs are identical

or distinct, and (iii) duration of the MPs are constant or start-time dependent. For

each version, the computed positional weights are found by making an appropriate

substitution in (6.8).

Depending on the found positional weights, it might be possible to solve problem

1
∣∣pjg[x] (r) -det,MP (k − 1)

∣∣Cmax by running a revised version of Algorithm Match2,

in which the optimal values of n[x], 1 ≤ x ≤ k, can be found on the fly. Moreover, for

some versions of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, it is even possible to make the
optimal choices for Decisions 1-3 on the fly, while for others, all possible options for

these decisions must be enumerated. Based on such differences in different versions of

problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, we classify them into three separate sections.

In each of the following three sections, we describe which versions of problem

1
∣∣pjg[x] (r) -det,MP

∣∣Cmax are being considered and provide a solution approach to
obtain optimal values for Decisions 1-4 for those problems. The eight versions of prob-

lem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax are listed out in Table 6.1 along with a reference to the
section that deals with it. Each of the three solution approaches have different running

times, but they all use Algorithm Match2 as a sub-routine, either as it is or as a revised

version.

Constant Duration MPs Start-time dependent MPs
Identical Distinct Identical Distinct

Group-indep Section 6.7 Section 6.7 Section 6.6 Section 6.5
Group-dep Section 6.6 Section 6.5 Section 6.5 Section 6.5

Table 6.1: Different versions of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax

6.5 Solution Approach PosiJIGD

In this section, we describe a solution approach, which can solve all versions of prob-

lem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax without prior knowledge of the number of jobs n[x] in
each group. The only pre-requisite condition is that the computed positional weights

W [x](r), 1 ≤ r ≤ n[x], should be non-decreasing in every group x, 1 ≤ x ≤ k.

Let us begin our consideration with the most general version of prob-

89

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

lem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, such as the one discussed in Section 6.4, with

group-dependent deterioration factors and distinct MPs with start-time depen-

dent durations. In order to solve problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, assume
that Decisions 1-3 are taken in advance and denote the resulting problem as

1
∣∣pjg[x] (r) -det,MP (k − 1)

∣∣Cmax. This problem can be solved by minimising the

generic objective function (4.6) with positional weights given by (6.8) and the con-

stant term given by (6.9). It is easy to notice that the computed positional weights

W [x](r), 1 ≤ r ≤ n[x], are non-decreasing within each group x, 1 ≤ x ≤ k, due to the

fact that the positional factors g[x](r), 1 ≤ r ≤ n[x], are also non-decreasing within

a group. Below we outline a solution approach that solves an instance of problem

1
∣∣pjg[x] (r) -det,MP (k − 1)

∣∣Cmax. Let us begin with the following theorem.
Theorem 6.1. For a given k, 1 ≤ k ≤ K + 1, if it is possible to compute a set of

all possible values of W [x] (r) , without prior knowledge of the number of jobs in each

group, then from such a set choose the n smallest elements. If the positions associated

with the chosen positional weights are consecutive in each group, then assigning the

largest jobs to the positions corresponding to the smallest positional weights will ensure

that the objective function (4.6) is minimised.

The proof of Theorem 6.1 is straightforward. Notice that a particular group can

have no more than n used positions. If we consider a schedule with k groups, we

therefore have a choice of at most nk positions in which n jobs are to be scheduled.

Each of these positions have a certain positional weight associated with them. Recall

that the contribution of a job j = π[x] (r) to the objective function F (k) is given by

W [x] (r) pj. Thus, in order to ensure the smallest value of the objective function we

must choose n positions that generate the smallest positional weights. Having access

to a set of all possible values of W [x] (r) enables us identify these positions. If the

found positions are consecutively ordered within a group, they may be used to create a

feasible schedule. The number of such positions in a group enables us to determine the

values n[x], 1 ≤ x ≤ k. Finally, an optimal sequence of jobs in these positions can be

found by running Algorithm Match2. We now apply Theorem 6.1 to find an optimal

solution to problem 1
∣∣pjg[x] (r) -det,MP (k − 1)

∣∣Cmax.
First, set the value n[x] = n, 1 ≤ x ≤ k, and compute all positional weights

W [x] (r) , 1 ≤ r ≤ n, 1 ≤ x ≤ k, by (6.8). Notice that these positional weights

represent a set of all possible values of W [x] (r) and can be computed in O (nk) time.

As mentioned in Theorem 6.1, an optimal schedule can be found by choosing the n

smallest of these values and assigning the largest jobs to the positions corresponding to

the smallest positional weights. The following algorithm, which is essentially a version

90

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

of Algorithm Match2, formally describes the solution approach.

Algorithm NSmall

input: An instance of problem 1
∣∣pjg[x] (r) -det,MP (k − 1)

∣∣Cmax with positional
weights W [x](r), 1 ≤ r ≤ n[x], non-decreasing within each group x, 1 ≤ x ≤ k

output: An optimal schedule S∗ (k) defined by the processing sequences π[x], 1 ≤
x ≤ k

Step 1. If required, renumber the jobs in the LPT order. For each group x, 1 ≤ x ≤ k,

define an empty processing sequence π[i] := (∅) and the weight W [x] := W [x](1)

computed as in (6.8).

Step 2. For each job j from 1 to n do

(a) Find the smallest index v, 1 ≤ v ≤ k, with W [v] = min
{
W [i]|1 ≤ i ≤ k

}
.

(b) Assign job j to group v and place it after the current permutation π[v], i.e.,
define π[v] := (π[v], j). Use (6.8) to define W [v] := W [v](r), where r is the

next available position in group v.

Step 3. With the found permutation π∗ =
(
π[1], π[2], . . . , π[k]

)
, compute the optimal

value of the objective function Cmax (S∗ (k)) by substituting appropriate values

in (4.6).

Step 2a of Algorithm NSmall requires O (k) comparisons, while Step 2b is completed

in constant time. Thus, in all Step 2, requires O (nk) time and Step 3 requires O (n)

time. The following statement holds.

Theorem 6.2. Algorithm NSmall solves an instance of problem

1
∣∣pjg[x] (r) -det,MP (k − 1)

∣∣Cmax in O (nk) time, provided that the LPT order

of the jobs is known.

In principle, the same solution approach remains valid even for a problem with non-

monotone positional factors, since setting n[x] = n, 1 ≤ x ≤ k, does indeed generate

a set of all possible positional weights W [x] (r). However, if the n smallest of these

values are chosen in order to obtain an optimal solution, it cannot be guaranteed that

consecutive positions (starting from the first position) are filled in each group, thereby

resulting in an infeasible solution. To ensure feasibility of the obtained solution it is

essential that the obtained positional weights be monotonically ordered within a group.

91

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

Let us consider another example for which Algorithm NSmall fails: problem

1
∣∣pjg[x] (r) -det,MP

∣∣∑Cj with a group-independent polynomial deterioration effect,

i.e., g[x](r) = ra, a > 0, and K identical maintenance periods that have start-time

dependent durations, i.e., α[x] = α and β[x] = β, 1 ≤ x ≤ K. Yang and Yang (2010b)

study this problem, and for a known k, calculate the positional weights as

W [x](r) =

{ [(
n−

∑x
v=1 n

[v]
)

(1 + α) +
(
n[x] − r + 1

)]
ra, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,(

n[x] − r + 1
)
ra 1 ≤ r ≤ n[x], x = k,

.

Notice that for the positional weights defined above, it is not possible to gen-

erate a set of all possible values of W [x] (r) without prior knowledge of the num-

ber of jobs, n[x], in each group. Thus, Theorem 6.1 does not hold and as a re-

sult, Algorithm NSmall cannot be used to obtain an optimal solution to problem

1
∣∣pjg[x] (r) -det,MP (k − 1)

∣∣∑Cj. This problem is solvable in O
(
nk log n

)
time by

full enumeration of all possible values of n[x], 1 ≤ x ≤ k. We revisit both of these

problems in Chapter 9 and solve them for a very general model.

In an optimal solution for an instance of problem 1
∣∣pjg[x](r)-det,MP (k − 1)

∣∣Cmax
it is possible that out of the k groups, certain groups are not assigned any jobs at

all, i.e., n[x] = 0. Such a situation can occur if an MP is not effi cient in restoring the

machine to a better state, and as a result the group that follows generates positional

weights with big values. Such an instance can never result in an optimal schedule for

the general problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, as we are unnecessarily spending time
to perform an ineffi cient MP. This instance, if any, will be automatically eliminated

from consideration if we try different combinations of Decision 1-3 to define problem

1
∣∣pjg[x](r)-det,MP (k − 1)

∣∣Cmax.
To determine the optimal solution for the general problem

1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, all options associated with Decisions 1-3 must be enumer-
ated and the solutions of the resulting sub-problems 1

∣∣pjg[x] (r) -det,MP (k − 1)
∣∣Cmax

be compared. The best of these solutions is chosen as the optimal solution for problem

1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax. For a known k, 1 ≤ k ≤ K + 1, the number of ways to

select k − 1 MPs from K available MPs (Decision 2) is equal to
(
K
k−1
)
. Notice that

the positional weights given by (6.8) that are associated with the first k − 1 groups,

do not depend on the order of the MPs. However, the last group x = k, is differently

structured from the others, so it matters which MP is to be scheduled last, i.e., at

the (k − 1)-th position. Thus, the number of choices for Decision 3 is equal to k − 1.

Trying all possible values of (Decision 1) k, 1 ≤ k ≤ K+1, the total number of options

can be approximated by
∑K+1

k=1

(
K
k−1
)

(k − 1). Since Algorithm NSmall requires O (nk)

92

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

time to run for a given k, 1 ≤ k ≤ K + 1, the total running time required to solve

the most general version of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax can be estimated as
O
(∑K+1

k=1 nk
(
K
k−1
)

(k − 1)
)

= O(nK22K), which is linear in n for a constant K.

Now let us consider other less general versions of problem

1
∣∣pjg[x] (r) -det,MP

∣∣Cmax. In all we consider a total of four different cases as outlined
in Table 6.2. For each case compute the positional weights W [x](r), 1 ≤ r ≤ n[x],

1 ≤ x ≤ k, by making appropriate substitutions to the general formula given by (6.8).

It is easy to verify that as long as the positional factors are non-decreasing within a

group, the generated positional weights also remain non-decreasing within each group,

even for less general models. It follows that Algorithm NSmall must be used to solve

the resulting sub-problems of the form 1
∣∣pjg[x] (r) -det,MP (k − 1)

∣∣Cmax. Table 6.2
states the number of times Algorithm NSmall must be run in order to solve different

versions of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax.
Constant Duration MPs Start-time dependent MPs
Identical Distinct Identical Distinct

Group-indep Section 6.7 Section 6.7 Section 6.6
∑K+1

k=1

(
K
k−1
)

Group-dep Section 6.6
∑K+1

k=1

(
K
k−1
) ∑K+1

k=1 1
∑K+1

k=1

(
K
k−1
)

(k − 1)

Table 6.2: Number of times to run Algorithm NSmall to solve different versions of
problem 1

∣∣pjg[x] (r) -det,MP
∣∣Cmax.

Notice that although Algorithm NSmall is able to solve all eight versions of problem

1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, for some cases it is possible to make Decisions 1-3 on the
fly by using another solution approach, which allows the optimal solution to be found

in faster time. For such cases, a reference to the relevant section has been made in

Table 6.2.

First, consider a version of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, with group-

independent deterioration factors, i.e., g[x] (r) = g (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k,

and distinct MPs with start-time dependent durations. This problem corresponds to

a scenario in which distinct MPs are performed in the schedule, but they all restore

the machine to the same state. Making relevant substitutions in (6.8) the computed

positional weights can be written as

W [x](r) =

{
(1 + α[x])g(r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

g(r) 1 ≤ r ≤ n[x], x = k,

whereas the constant term Γ (k) remains as before. Since each MP restores the machine

to the same state, Decision 2 is made only on the basis of the durations of the MPs.

93

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

There are two parameters that define the MP durations, therefore, there is no easy way

by which the best k−1MPs can selected out of the availableK MPs. Thus, all possible

selections need to be tried and this can be done in
(
K
k−1
)
ways. Moreover, the found

positional weights appear to be independent of the order of the MPs. Thus, any choice

of Decision 3 can be considered optimal. Trying all possible values of (Decision 1) k,

1 ≤ k ≤ K+1, the total number of options can be estimated by
∑K+1

k=1

(
K
k−1
)
. Thus, the

total running time required to solve this version of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax
can be estimated asO

(∑K+1
k=1 nk

(
K
k−1
))

= O
(
nK2K

)
, which is linear in n for a constant

K.

For the problem with group-dependent deterioration factors and distinct MPs with

constant durations, i.e., α[x] = 0, 1 ≤ x ≤ k − 1, the computed positional weights can

be written as

W [x](r) = g[x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k.

Clearly, these positional weights are dependent on the type of the MP, but not on

their order. Thus, as before the total number of options can be given by
∑K+1

k=1

(
K
k−1
)
and

total running time required to solve this version of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax
can be estimated as O

(
nK2K

)
.

Lastly, consider the problem with group-dependent deterioration factors and iden-

tical MPs with start-time dependent durations, i.e., α[x] = α, β[x] = β, 1 ≤ x ≤ k − 1.

This problem corresponds to a scenario in which identical start time dependent MPs

are performed in the schedule, but they all restore the machine to a different state. As

described earlier, such a situation is possible when the MPs fail to completely repair

the machine. Since the MPs are identical, clearly Decision 2 and 3 do not have an

effect on the optimal solution. Thus, only Decision 1 needs to be taken. Trying all

possible values of k, 1 ≤ k ≤ K + 1, an optimal solution to this version of problem

1
∣∣pjg[x] (r) -det,MP

∣∣Cmax can be found in O (∑K+1
k=1 nk

)
= O (nK2) time.

In our paper Rustogi and Strusevich (2012a), we use Algorithm NSmall to solve

problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax with group-dependent deterioration factors and dis-
tinct MPs with start-time dependent durations. However, no emphasis has been made

on Decisions 2 and 3. The decision-maker only needs to decide how many MPs from a

given list of n− 1 available MPs to include into the schedule. The published running

time to solve this problem is O (n3) , which is consistent with the results of this section

for K = n− 1.

94

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

6.6 Solution Approach PosiJIKdomi

In this section, we consider versions of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax in which
Decisions 1-4 can be made on the fly, without having to enumerate all possible options.

We list out two versions for which this is possible:

Problem 1: Problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax with group-dependent deterioration
factors and distinct MPs with constant durations, subject to the condition that if

a certain MP with duration β[y] is included in the schedule, then the group that

follows will contain the positional factors g[y+1] (r) , 1 ≤ r ≤ n, such that they

can be ordered in a way that

g[1](r) ≤ g[2](r) ≤ · · · ≤ g[K+1](r), 1 ≤ r ≤ n, (6.10)

and

β[1] ≤ β[2] ≤ · · · ≤ β[K], (6.11)

hold simultaneously, where the positional factors g[1](r), 1 ≤ r ≤ n, are associated

with the group that is created before the first MP. This version is a generalisation

of one of the cases found in Table 6.2, in which group-dependent deterioration

factors are considered along with identical MPs of constant duration, i.e., α[x] = 0,

β[x] = β, 1 ≤ x ≤ K. For the latter problem, it is safe to assume that (6.10) will

hold based on the following argument. If identical MPs of equal duration are

performed on the machine then after an MP the condition of the machine can

be no better than its condition after the previous MP. In such a case every

position (including the first position) will have a worse deterioration factor than

its counterpart in an earlier group.

Problem 2: Problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax with group-independent deteriora-
tion factors and distinct MPs with start-time dependent durations, subject to

the condition that the duration parameters of the MPs can be ordered such that

α[1] ≤ α[2] ≤ · · · ≤ α[K], (6.12)

and (6.11) hold simultaneously. This version is a generalisation of one of the cases

found in Table 6.2, in which group-independent positional factors are considered

along with identical MPs of start-time dependent duration. The latter problem

corresponds to a scenario in which identical MPs are performed in the schedule

and they all restore the machine to the same state.

95

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

In order to solve both versions of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax described
above, the optimal choice for Decisions 2 and 3 can be made easily. If Decision 1

is assumed to be taken, so that k−1, 1 ≤ k ≤ K+1,MPs are included in the schedule,

then for both problems, the MPs with the indices 1, 2, . . . , k− 1 are chosen and sched-

uled in the same order. This is the optimal choice for Problem 1 as the MPs with the

indices 1, 2, . . . , k − 1 have the smallest durations and create groups that contain the

smallest deterioration factors, owing to (6.10) and (6.11) holding simultaneously. This

is the optimal choice for Problem 2 as all MPs create identical groups and the ones

with a smaller index have smaller values of the duration parameters, owing to (6.12)

and (6.11) holding simultaneously. Notice that the order of the MPs is inconsequential

in both cases.

With Decisions 1-3 having been made (with an assumed value of k), denote the

resulting problem as 1
∣∣pjg[x] (r) -det,MP (k − 1)

∣∣Cmax. This problem can be solved by
minimising the generic objective function of the form (4.6). For Problem 1, obtain the

required positional weightsW [x](r) by substituting α[x] = 0, 1 ≤ x ≤ k, in (6.8) so that

we have

W [x](r) = g[x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, (6.13)

and for Problem 2, substitute g[x] (r) = g (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, so that we have

W [x](r) =

{
(1 + α[x])g(r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

g(r) 1 ≤ r ≤ n[x], x = k.
(6.14)

Set the value n[x] = n, 1 ≤ x ≤ k, and k = K+1, and compute all positional weights

W [x] (r) , 1 ≤ r ≤ n, 1 ≤ x ≤ K + 1, for both problems by using the formulae above.

Notice that the computed positional weights represent a set of all possible values of

W [x] (r) across all possible groups. Further, notice that because of (6.10), the positional

weights associated with Problem 1 are ordered such that for each k, 1 ≤ k ≤ K + 1,

we have

W [1](r) ≤ W [2](r) ≤ · · · ≤ W [k](r), 1 ≤ r ≤ n,

and because of (6.12), the positional weights for Problem 2 are ordered such that for

each k, 1 ≤ k ≤ K + 1, we have

W [k](r) ≤ W [1](r) ≤ W [2](r) ≤ · · · ≤ W [k−1](r), 1 ≤ r ≤ n.

Definition 6.1. If for each position the positional weight in group x is smaller than
the positional weight in the same position in another group y, we say that group x

dominates group y. If all available groups can be linearly ordered with the respect to

96

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

the introduced dominance relation, we refer to such a condition as ‘K-domi’.

Notice that both Problems 1 and 2 satisfy the K-domi condition. For instances of

problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax that satisfy (6.11) and the K-domi condition, it
is possible to compute the optimal values of n[x], 1 ≤ x ≤ k, and Decisions 1-4 on

the fly. Recall that for a fixed value of Decision 1, the optimal values for Decisions 2

and 3 are already known. Thus, to solve problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax we only
need to worry about finding the optimal values for Decisions 1 and 4. We base our

methodology on Theorem 6.1.

Let G(k) denote a list of n smallest positional weights that are available across all

positions from k, 1 ≤ k ≤ K+1, groups. The list is sorted in non-decreasing order. Let

γi(k) denote the i-th element in the list G(k), so that G(k) = (γ1(k), γ2(k), . . . , γn(k)).

This implies that

Cmax (S∗ (k)) = P (S∗ (k)) + Γ(k) =
n∑
j=1

pjγj(k) +
k−1∑
x=1

β[x]. (6.15)

where P (S∗ (k)) denotes the sum of actual durations of the jobs in an optimal schedule

with k groups, and Γ(k) is a constant term as defined in (6.9).

Create another list H(v), 1 ≤ v ≤ K+1, which is defined differently for Problems 1

and 2. For Problem 1, H (v) contains the positional weightsW [v] (r) , 1 ≤ r ≤ n−v+1,

for n[x] = n, so that by (6.13) we have H (v) :=
(
g[v] (1) , g[v] (2) , . . . , g[v] (n− v + 1)

)
,

1 ≤ v ≤ K + 1. For Problem 2, notice that the values of the positional weights

given by (6.14) change dynamically as the value of k is changed. Thus, we define

H (v) so that this effect is incorporated; define H(1) := (g(1) , g(2), . . . , g(n)) and

H(v) :=
((

1 + α[v−1]
)
g(1),

(
1 + α[v−1]

)
g(2), . . . ,

(
1 + α[v−1]

)
g(n− v + 1

)
, 2 ≤ v ≤

K + 1. Notice that for both problems, list H (v) has at most n− v+ 1, 1 ≤ v ≤ K + 1,

elements sorted in a non-decreasing order. It suffi ces to consider only n−v+1 positions

in a list H (v) , as due to condition ‘K-domi’it can be ensured that each of the v − 1

earlier groups will have at least 1 job scheduled in them.

The following algorithm solves an instance of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax
and returns the optimal number of MPs, k∗ − 1, to be included in the schedule (Deci-

sion 1) along with the optimal schedule S∗ (k∗) with k∗ groups (Decision 4).

97

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

Algorithm NSmall2

input: An instance of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax that satisfies ‘K-domi’and
(6.11)

output: An optimal schedule S∗ (k∗) defined by the processing sequences π[x], 1 ≤
x ≤ k∗

Step 1. If required, renumber the jobs in the LPT order. For k = 1, define a sorted

list

G(1) := H (1) .

Compute Cmax (S (1)) by formula (6.15). Define k′ := K + 1.

Step 2. For k from 2 to k′ do

(a) Create the list G(k) = (γ1(k), γ2(k), . . . , γn(k)) that contains n smallest elements

in the merger of the lists G(k − 1) and H(k).

(b) Compute Cmax (S∗ (k)) by formula (6.15). If P (S∗(k)) = P (S∗(k−1)) then define

k′ := k− 1 and break the loop by moving to Step 3; otherwise, continue the loop

with the next value of k.

Step 3. Find the value k∗, 1 ≤ k∗ ≤ k′, such that

Cmax (S∗(k∗)) = min {Cmax (S∗ (k)) |1 ≤ k ≤ k′} .

Step 4. Run Algorithm NSmall for the found value of k∗ to obtain the optimal process-
ing sequence π∗ =

(
π[1], π[2], . . . , π[k

∗]
)
.

Notice that similar to Algorithm NSmall, Step 2 of the above algorithm also fol-

lows Theorem 6.1 and searches for the n smallest positional weights for a given k,

1 ≤ k ≤ K + 1, and assigns the largest jobs to the positions corresponding to the

smallest positional weights. The main difference between the two algorithms lies in

the way the list of n smallest positional weights is found. For each k, 1 ≤ k ≤ K + 1,

Algorithm NSmall searches for the n smallest positional weights by comparing the el-

ements of the set of nk positional weights across all groups. Algorithm NSmall2 on

the other hand, searches for the n smallest positional weights only by comparing the

values of the two lists G (k − 1) and H (k). Recall that list G (k − 1) contains all the

positional weights corresponding to the positions used in schedule S∗ (k − 1) , while the

list H (k) contains the positional weights that will be introduced if the k-th group is

opened. This method is justified, because list G (k − 1) already contains the n smallest

98

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

positional weights coming from the first k−1 groups. Thus, to search for the n smallest

weights needed for schedule S (k) , there is no need to scan the first k−1 groups again.

In other words, we utilise the fact, that if a certain position in the first k− 1 groups is

not used in schedule S∗ (k − 1) , it will not be used in schedule S∗ (k) as well.

Since both lists G (k − 1) and H (k) , have at most n elements sorted in a non-

decreasing order, Step 2a can be completed in O (n) time. Step 2b also requires O (n)

time. Steps 2a and 2b are repeated for several values of k, 1 ≤ k ≤ K+1. The iteration

on k is stopped if in Step 2b the condition P (S∗(k)) = P (S∗(k − 1)) is obtained. The

condition P (S∗(k)) = P (S∗(k − 1)) implies that the addition of the k-th group does

not provide any positional weights smaller than those in the listG(k−1). If this happens

for the k-th group, all groups that will be opened after this will provide even worse

positional weights because the list H (k + 1) is dominated by the list H (k), 1 ≤ k ≤ K.

Thus, the makespan cannot be reduced by running more MPs after the k′-th group is

opened. This implies that no further values of k should be examined and the best

schedule should be found from the set {S∗ (k) |1 ≤ k ≤ k′}. If the loop is not broken
throughout the run of Algorithm NSmall, the default value of k′ is set to K + 1. Thus,

at most Steps 2a and 2b are repeated K + 1 times and the following statement holds.

Theorem 6.3. Algorithm NSmall2 solves an instance of problem

1
∣∣pjg[x] (r) -det,MP

∣∣Cmax defined by Problems 1 and 2 in O (nK) time, provided that

the LPT order of the jobs is known.

Algorithm NSmall2 can also be applied to solve problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax
with group-independent deterioration factors and constant duration MPs (both iden-

tical and distinct). This is possible since both conditions ‘K-domi’and (6.11) can be

satisfied simultaneously. The required running time is again O (nK) . We do not dis-

cuss the solution of this problem here, as it is possible to solve it faster using another

solution approach, discussed in Section 6.7.

Now consider a version of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax in which the condi-
tions ‘K-domi’and (6.11) do not hold simultaneously. In principle, Algorithm NSmall

can still be used to obtain a solution for Decisions 1 and 4, but to make Decisions 2

and 3, a full enumeration of options might be required. As a result, the overall running

time to solve problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax turns out to be no smaller than that
obtained by using Solution Approach PosiJIJD presented in Section 6.5. In our paper

Rustogi and Strusevich (2012a), we have used Algorithm NSmall2 to solve a version

of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, in which ‘K-domi’holds, but (6.11) does not.
Additionally, we have assumed that for each k, 1 ≤ k ≤ K + 1, Decisions 2 and 3 are

fixed. As a result, an optimal solution is obtained in O (nK) time, where K = n− 1.

99

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

Below we provide a numerical example that illustrates the working of Algorithm NS-

mall2.

Example 6.1. Consider a version of problem1
∣∣pjg[x] (r) -det,MP

∣∣Cmax as defined in
Problem 2. Six jobs are to be scheduled which have the following normal processing

times listed in an LPT order

p1 = 10, p2 = 9, p3 = 6, p4 = 3, p5 = 3, p6 = 2.

The decision-maker has a choice of K = 5 MPs, with the following parameters

α[1] = 1, β[1] = 1;

α[2] = 1, β[2] = 2;

α[3] = 2, β[3] = 3;

α[4] = 2, β[4] = 4;

α[5] = 3, β[5] = 4.

Each of the MPs restore the machine to its original state. The positional factors

associated with the machine are as follows

g (1) = 1, g (2) = 2, g (3) = 2, g (4) = 3, g (5) = 3, g (6) = 4.

j pj G (1) pjγj H (2) G (2) pjγj H (3) G (3) pjγj H (4) G (4) pjγj
1 10 1 10 2 1 10 2 1 10 3 1 10
2 9 2 18 4 2 18 4 2 18 6 2 18
3 6 2 12 4 2 12 4 2 12 6 2 12
4 3 3 9 6 2 6 6 2 6 2 6
5 3 3 9 6 3 9 2 6 2 6
6 2 4 8 3 6 3 6 3 6

P (S∗ (1)) 66 P (S∗ (2)) 61 P (S∗ (3)) 58 P (S∗ (4)) 58
Γ (1) 0 Γ (2) 1 Γ (3) 3 Γ (4) 6

Cmax (S∗ (1)) 66 Cmax (S∗ (2)) 62 Cmax (S∗ (3)) 61 Cmax (S∗ (4)) 64

Table 6.3: Run of Algorithm NSmall2 for Example 6.1

Table 6.3 shows the details of the run of Algorithm 2 for the above instance. Since

P (S∗(3)) = P (S∗(4)), the algorithm stops after the iteration k = 4, so that k′ = 3. The

algorithm outputs the minimum value of the makespan from the set {Cmax(S∗(k))|1 ≤
k ≤ 3}, which is Cmax(S∗(3)). In an optimal schedule for k∗ = 3, the sequence of

100

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

jobs π[1] = (1, 2, 3, 6) is processed in the first group, the sequence of jobs π[2] = (4) is

processed in the second group and the sequence of jobs π[3] = (5) is processed in the

third group. The makespan of the resulting schedule is 61.

We take the productive idea behind Algorithm NSmall2 further, to the models with

job-dependent deterioration effects; see Chapter 7.

6.7 Solution Approach PosiJIGI

In this section, we deal with problems in which the computed positional weights are

group-independent, i.e., of the formW [x](r) = W (r) , 1 ≤ x ≤ k, and additionally, they

are ordered in a way such that W (1) ≤ W (2) ≤ · · · ≤ W (n) . Such a situation arises

for versions of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, in which the deterioration factors
are group-independent, i.e., g[x] (r) = g (r) , 1 ≤ r ≤ n, 1 ≤ x ≤ K+ 1. The MPs are of

constant duration and can be either distinct or identical. The problem with identical

MPs is a special case of the problem with distinct MPs and does not result in better

running times. Thus, we only consider the latter problem.

Formally, we denote the described problem as 1 |pjg (r) -det,MP [0]|Cmax. The first
term in the middle field is used to notify that the deterioration factors are group-

independent. The second term MP [0] in the middle field is used to notify that the

MPs are of constant duration, i.e., in (4.1) we have α[y] = 0.

Notice that for problem 1 |pjg (r) -det,MP [0]|Cmax, the optimal choice for Deci-
sions 2 and 3 can be made easily. Assume that an optimal solution to problem

1 |pjg (r) -det,MP [0]|Cmax includes k − 1 MPs in the schedule, so that the jobs are

divided into k, 1 ≤ k ≤ K + 1, groups. Since it is known that the MPs create identical

groups, it follows that the order in which they are performed is not important. Further,

it is obvious that in order to choose k − 1 MPs out of the available K, the ones with

smaller durations are given priority. To ensure that the smallest k− 1 MPs are chosen

in an optimal schedule, we renumber the K available MPs in a way that (6.11) holds

and select the ones with indices 1, 2, . . . , k − 1. Lastly, we fix their order as per their

index numbers.

With Decisions 1-3 having been made (with an assumed value of k), the resulting

problem 1 |pjg (r) -det,MP [0] (k − 1)|Cmax can be solved by minimising the generic
objective function (4.6). Obtain the required positional weights W [x](r) by substi-

tuting g[x] (r) = g (r) , 1 ≤ r ≤ n, and α[x] = 0, 1 ≤ x ≤ k, in (6.8) so that

we have W [x](r) = g(r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k. Below we outline a solution

101

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

approach which is again based on Theorem 6.1, and solves an instance of problem

1 |pjg (r) -det,MP [0] (k − 1)|Cmax.

Notice that for a given position r, 1 ≤ r ≤ n, the positional weights are the same

for every group and within each group they are sorted in a non-decreasing order. This

implies that unlike the problems dealt with previously, the n smallest positional weights

for this problem are already known. The smallest k positional weights are due to the

first positions of each of the k groups. The next smallest k positional weights are due

to the second positions of each of the k groups, and so on. As a result, the optimal

number of jobs in each group can be given by

n[x] =

{ ⌈
n
k

⌉
, 1 ≤ x ≤ mod (n, k) ,⌊

n
k

⌋
, mod (n, k) + 1 ≤ x ≤ k.

(6.16)

where mod (n, k) is the remainder of the division of n by k.

With known values of W [x](r), 1 ≤ r ≤ n[x], and n[x], 1 ≤ x ≤ k, an optimal

schedule S∗ (k) for problem 1 |pjg (r) -det,MP [0] (k − 1)|Cmax can be found by running
Algorithm Match2. For solving problem 1 |pjg (r) -det,MP [0] (k − 1)|Cmax, Step 2 of
Algorithm Match2 can be completed in constant time as the list of sorted positional

weights is already known and is given by

L =

k times g (1) ,

k times g (2) ,

· · ·
k times g

(⌊
n
k

⌋)
,

mod (n, k) times g
(⌈

n
k

⌉)

 .

Step 3 requires O (n) time for computing the value of the objective function

Cmax (S∗ (k)) . Thus, the following statement holds.

Theorem 6.4. Algorithm Match2 solves an instance of problem

1 |pjg (r) -det,MP [0] (k − 1)|Cmax in O (n) time, provided that the LPT order of

the jobs is known.

To determine the optimal solution for problem 1 |pjg (r) -det,MP [0]|Cmax, we
only need to worry about the optimal value of the number of MPs, as Decisions 2

and 3 have already been chosen optimally. We can do this by solving problem

1 |pjg (r) -det,MP [0] (k − 1)|Cmax for all values of k, 1 ≤ k ≤ K + 1, and choosing

the best instance as an optimal solution. Thus, problem 1 |pjg (r) -det,MP [0]|Cmax
can be solved in O (nK) time.

102

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

Recall from Section 3.3.1, that Kuo and Yang (2008a) study a special case of

problem 1 |pjg (r) -det,MP [0]|Cmax with a polynomial deterioration function given
by g(r) = ra, a > 0, and identical MPs. In order to solve this problem,

Kuo and Yang (2008a) solve a total of K + 1 = n sub-problems denoted by

1 |pjra-det,MP [0] (k − 1)|Cmax, and prove what they call the group balance principle.
Notice that so far in this section, our solution approach is very similar to that provided

by Kuo and Yang (2008a). Indeed, the number of jobs in each group given by (6.16)

conforms with the group balance principle. Even our running time of O (nK) needed

to solve problem 1 |pjg (r) -det,MP [0]|Cmax, is consistent with that of Kuo and Yang
(2008a), who solve problem 1 |pjra-det,MP [0]|Cmax in O (n2) time, for K = n− 1.

Further in their paper, Kuo and Yang (2008a) have made a conjecture that in

the case of a polynomial deterioration function, the sequence of values Cmax(S∗ (k)),

1 ≤ k ≤ K + 1, might be V -shaped with respect to k. Recall from Chapter 5 that a

sequence A(k) is called V -shaped if there exists a k0, 1 ≤ k0 ≤ K + 1, such that

A(1) ≥ · · · ≥ A(k0 − 1) ≥ A(k0) ≤ A(k0 + 1) ≤ · · · ≤ A(K + 1).

If this were true for Cmax(S∗ (k)), 1 ≤ k ≤ K + 1, then instead of K + 1,

at most dlog2 (K + 1)e values of k should be tried to solve the original problem
1 |pjra-det,MP [0]|Cmax. Below we show that even for a general deterioration func-
tion g (r) , the sequence Cmax(S∗ (k)), 1 ≤ k ≤ K + 1 ≤ n, is in fact V -shaped. Notice

that in a schedule with n jobs, it is not possible to have more than n groups, i.e.,

1 ≤ k ≤ n. Thus, K is bounded by n− 1. We start with the following statement.

Lemma 6.1. For problem 1 |pjg(r),MP [0] (k − 1)|Cmax, if the jobs be numbered in
the LPT order (2.7), then the makespan of the optimal schedule can be written as

Cmax(S
∗ (k)) = P (S∗ (k)) + Γ(k) =

n∑
j=1

pjg

(⌈
j

k

⌉)
+

k−1∑
x=1

β[x]. (6.17)

Proof: The value Cmax(S (k)) can be seen as P (S (k)) + Γ(k), where P (S (k)) denotes

the sum of the actual durations of the jobs in a schedule S (k), and Γ(k) is the total

duration of all k−1 MPs. If the jobs are numbered in the LPT order, then to minimise

the value P (S(k)), we need to assign the jobs one by one to the smallest available

position. This can be done by distributing the first k jobs to the first positions in each

of the k groups, then the next k jobs going to the second positions in each of the k

groups, and so on, until all jobs have been sequenced.

If j = ak then the predecessors of j are placed into the first a positions of groups

103

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

1, 2, . . . , k−1 and take a−1 positions of group k, so that job j gets position a =
⌈
j
k

⌉
. If

j = ak+ b for 1 ≤ b ≤ k− 1, then the predecessors of j will take the first a positions in

each group and additionally the (a+ 1)-th position in each of the groups 1, 2, . . . , b−1,

so that job j gets position a+ 1 =
⌈
j
k

⌉
in group b.

It follows that the actual processing time of a job j ∈ N in an optimal schedule

S∗ (k) is equal to pjg
(⌈

j
k

⌉)
, and the total processing time for all jobs is equal to

P (S∗ (k)) =

n∑
j=1

pjg

(⌈
j

k

⌉)
. (6.18)

For problem 1 |pjg(r)-det,MP [0]|Cmax, we need to determine the optimal number
of groups k∗ to be opened such that the makespan Cmax(S∗(k)), 1 ≤ k ≤ K + 1 ≤ n, is

minimised. As k increases, P (S∗ (k)) becomes smaller since new groups are added and a

greater number of smaller positions become available. At the same time, Γ(k) becomes

larger, with more maintenance activities being performed. The sequence Cmax(S∗ (k))

captures the trade-off between its two components, P (S∗ (k)) and Γ(k).

Theorem 6.5. For problem 1 |pjg(r)-det,MP [0]|Cmax, the sequence Cmax (S∗(k)) =

P (S∗ (k)) + Γ(k), 1 ≤ k ≤ K + 1 ≤ n, given by (6.17), is V -shaped.

Proof: Recall Theorem 5.2, in which it is stated that a sequence

P (k) =
n∑
j=1

pjg

(⌈
j

k

⌉)
, 1 ≤ k ≤ n,

is convex, if p1 ≥ p2 ≥ · · · ≥ pn. Thus, the sequence P (S∗ (k)) , 1 ≤ k ≤ n, given by

(6.18) is convex. The sequence Γ(k) =
∑k−1

x=1 β
[x], 1 ≤ k ≤ n, can also be proved to be

convex. Recall from Chapter 5 that a sequence Γ(k), 1 ≤ k ≤ n, is called convex if

Γ(k) ≤ 1

2
(Γ(k − 1) + Γ(k + 1)) , 2 ≤ k ≤ n− 1.

Substituting Γ(k) =
∑k−1

x=1 β
[x] in the above inequality, we obtain the following

104

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

inequalities:

k−1∑
x=1

β[x] ≤ 1

2

(
k−2∑
x=1

β[x] +
k∑
x=1

β[x]

)
, 2 ≤ k ≤ n− 1,

β[k−1] ≤ 1

2
β[k−1] +

1

2
β[k], 2 ≤ k ≤ n− 1,

β[k−1] ≤ β[k], 2 ≤ k ≤ n− 1.

The last inequality is true as (6.11) holds. The equality holds for the case in which

the MPs have identical durations, see, e.g., the problem considered by Kuo and Yang

(2008a). Thus, the sequence Γ(k) is convex. Since the sum of two convex sequences

is convex, the sequence Cmax (S∗(k)) = P (S∗ (k)) + Γ(k), 1 ≤ k ≤ K + 1 ≤ n, is also

convex and by Lemma 5.1 is V -shaped.

Theorem 6.5 allows us to find the optimal number of groups k∗, 1 ≤ k ≤ K + 1, to

be created by the following binary search algorithm.

Algorithm BinarySearch

input: An instance of problem 1 |pjg(r)-det,MP [0]|Cmax

output: The optimal number of MPs to include in the schedule

Step 0. If required renumber the jobs in an LPT order and renumber the MPs in a
non-decreasing order of their durations so that β[1] ≤ β[2] ≤ · · · ≤ β[K].

Step 1. Define k := 1, k := K + 1 and k̃ := d(K + 1) /2e . Compute Cmax(S∗ (k)) by

formula (6.17) for k ∈
{
k, k̃, k

}
.

Step 2. If Cmax (S∗(k)) ≤ Cmax

(
S∗(k̃)

)
then go to Step 3; otherwise, go to Step 4

Step 3. Redefine k := k̃, Cmax
(
S∗(k)

)
:= Cmax

(
S∗(k̃)

)
and go to Step 5.

Step 4. Redefine k := k̃, Cmax (S∗(k)) := Cmax

(
S∗(k̃)

)
and go to Step 5.

Step 5. Redefine k̃ :=
⌈(
k + k

)
/2
⌉
. If k = k̃ = k, then output k∗ = k, and stop;

otherwise, compute Cmax
(
S∗(k̃)

)
and go to Step 2.

It is clear that due to the V -shapeness of the sequence Cmax(S∗ (k)), 1 ≤ k ≤ n, the

inequality Cmax (S∗(k)) ≤ Cmax

(
S∗(k̃)

)
implies that the subsequence Cmax (S∗(k)),

k̃ ≤ k ≤ n, is monotone non-decreasing, so that the minimum should be sought

between the values k and k̃. Similarly, the inequality Cmax (S∗(k)) > Cmax

(
S∗(k̃)

)
105

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

implies that the minimum should be sought between the values k̃ and k. All together,

Algorithm BinarySearch explores at most dlog2 (K + 1)e values of k and the following
statement holds.

Theorem 6.6. Algorithm BinarySearch solves an instance of problem

1 |pjg (r) -det,MP [0]|Cmax in O (n logK) time, provided that the LPT order of

the jobs is known.

The results of this section are published in our recent paper Rustogi and Strusevich

(2012a), where we consider the situation in which K = n− 1, so that the running time

obtained is O(n log n).

6.8 Conclusion

In this chapter, we solve several problems with positional deterioration and mainte-

nance activities. Before this study, only a handful of results existed which combined a

study of positional deterioration with maintenance activities. The only paper we are

aware of, which address this problem with job-independent positional effects is due to

Kuo and Yang (2008a), who studied a special case of problem 1 |pjg(r)-det,MP [0]|Cmax
and propose an O (nK) time algorithm to solve it. Our study has further expanded

and generalised this area. Our main contributions can be summarised as follows:

• Use of a general function g (r) to model a positional effect.

• Use of arbitrary possibly non-monotone positional factors in scheduling problems
with no maintenance activities.

• Simultaneous use of distinct maintenance activities in a schedule.

• Introduction of group-dependent positional effects.

Each of the problems considered, reduces to a linear assignment problem with

a product matrix, so that a solution is possible by applying Lemma 2.1. We

propose three novel solution approaches that solve different versions of problem

1
∣∣pjg[x] (r) -det,MP

∣∣Cmax.The developed algorithms rely on Theorem 6.1, which in

turn is based on Lemma 2.1. Table 6.4 summarises all the problems considered in this

chapter along with the running times needed to solve them.

106

CHAPTER 6. JOB-INDEPENDENT POSITIONAL EFFECTS

Constant Duration MPs Start-time dependent MPs
Identical Distinct Identical Distinct

Group-indep O (n logK) O (n logK) O (nK) O
(
nK2K

)
Group-dep O (nK) O

(
nK2K

)
O (nK2) O

(
nK22K

)
Table 6.4: Computational complexities of different versions of problem
1
∣∣pjg[x] (r) -det,MP

∣∣Cmax, assuming that the LPT order of the jobs is known

107

CHAPTER 7

Job-Dependent Positional Effects and
Rate-Modifying Activities

In this chapter, we discuss single machine scheduling problems with job-dependent po-

sitional effects and rate-modifying activities. This chapter can be seen as an extension

of the previous chapter as the underlying effect is still positional, only a more general

model is being considered. Similar to the last chapter, our main focus will be to explore

models with deterioration effects and maintenance activities. In the following sections,

we give a brief overview of the problem under consideration and provide a variety of

solution approaches that effi ciently solve different versions of this problem.

The results of this chapter are published in our recent paper Rustogi and Strusevich

(2012a). In this paper, we only provide a simplified version of the problem, so that

the main ideology behind the developed algorithms can be clearly understood. In this

chapter, however, we provide a full account of the entire range of problems that can

be solved using the developed solution approaches.

7.1 Overview of the Problems

As described in Section 3.2.1, under a job-dependent positional effect the actual

processing time of job j scheduled in position r of a schedule is given by

pj(r) = pjgj(r), 1 ≤ r ≤ n,

where gj(r), j ∈ N, is a job-dependent positional factor. Recall from Section 3.2.1, that
if the values gj(r), 1 ≤ r ≤ n, form a non-decreasing sequence (3.5) for each j ∈ N ,
we deal with a positional deterioration effect. Such a model represents a scenario in

which each job wears out the machine in a different way, hence each job j ∈ N is

108

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

associated with a unique set of positional factors. On the other hand, if the sequence

is non-increasing (3.6) for each j ∈ N , a learning effect is observed. Unlike the case
with job-independent positional effects, it is common in the scheduling literature on

job-dependent effects, to study models in which an arbitrary, possibly non-monotone

positional effect is considered, see, e.g., Mosheiov (2008) and Bachman and Janiak

(2004).

As outlined in Chapter 4, consider a general situation, in which the decision-maker

is presented with a total of K ≥ 0 possible rate-modifying activities, which can be

either distinct or alike. For each MP, it is exactly known how it affects the process-

ing conditions of the machine, should the decision-maker decide to include it into a

schedule.

If k−1 MPs are chosen from the available K options, then the jobs are divided into

k, 1 ≤ k ≤ K + 1 groups. Depending on which MPs are chosen and the order in which

they are performed, the actual processing time of a job j ∈ N, scheduled in position r
of the x-th group can be given by

p
[x]
j (r) = pjg

[x]
j (r) , 1 ≤ r ≤ n, 1 ≤ x ≤ k, (7.1)

where g[x]j (r) is a job-dependent group-dependent positional factor. This is the most

general positional factor known, as it allows a three way dependency, namely on job,

group and position. Recall from Chapter 6, that a group-dependent positional factor

enables us to handle situations in which each MP can have a different effect on the

machine conditions.

If a pure deterioration model is considered, then the positional factors within a

group x are in non-decreasing order

1 ≤ g
[x]
j (1) ≤ g

[x]
j (2) ≤ · · · ≤ g

[x]
j (n), 1 ≤ x ≤ k, j ∈ N, (7.2)

whereas if a pure learning model is considered, then the positional factors within a

group x are in non-increasing order

1 ≥ g
[x]
j (1) ≥ g

[x]
j (2) ≥ · · · ≥ g

[x]
j (n), 1 ≤ x ≤ k, j ∈ N. (7.3)

In the former case, the RMPs are essentially maintenance periods (MPs), which

must be included in the schedule in order to negate the deteriorating machine condi-

tions; see, e.g., Yang and Yang (2010a). Recall from Chapter 4, that if an RMP is a

maintenance period, then the value of α[y] is non-negative. In the case with learning

109

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

effects, the RMPs can either be associated with replacing a machine/operator or be

associated with an activity which further enhances the learning rate of the machine,

see, e.g., Ji and Cheng (2010). As discussed earlier, it is also possible to have an arbi-

trary non-monotone positional effect, which could possibly arise due to a combination

of deterioration and learning effects. In such a case, no restrictions are imposed on the

type of the RMPs to include in a schedule.

The problem of minimising a certain objective function F, under the general settings

defined by (7.1) and (4.1) can be denoted by 1
∣∣∣pjg[x]j (r) , RMP

∣∣∣F . In this chapter,
we only consider the problem of minimising the makespan, i.e., F = Cmax, for the

case of job-dependent positional deterioration. We denote the resulting problem as

1
∣∣∣pjg[x]j (r)-det,MP

∣∣∣Cmax, where the first term in the middle field represents the pres-

ence of job-dependent positional factors which follow (7.2), and the second term points

out that the RMPs are essentially maintenance periods (MPs).

An optimal solution to problem 1
∣∣∣pjg[x]j (r)-det,MP

∣∣∣Cmax must deliver optimal
choices for each of the Decisions 1-4 defined in Chapter 4. In what follows, we con-

sider various versions of problem 1
∣∣∣pjg[x]j (r)-det,MP

∣∣∣Cmax and provide polynomial
time algorithms to solve them. Similar to Chapter 6, we differentiate between differ-

ent versions based on three criteria: (i) deterioration factors are group-dependent or

group-independent, (ii) MPs are identical or distinct, and (iii) duration of the MPs are

constant or start-time dependent. All versions of problem 1
∣∣∣pjg[x]j (r)-det,MP

∣∣∣Cmax
reduce to a linear assignment problem in its full form.

Notice that if the objective function is to minimise the total flow time, i.e., F =∑
Cj, it is found that irrespective of the ordering of the positional factors within

a group, no version of problem 1
∣∣∣pjg[x]j (r) , RMP

∣∣∣∑Cj can be solved in less than

O
(
nK+3 log n

)
time. A similar observation is made for the problem of minimising

the makespan, under conditions in which the positional factors are non-monotonically

ordered within a group. A solution to both of these problems is obtained by solving

O
(
nK
)
instances of a full form LAP given by (2.2). We re-visit both these problems

in Chapter 9.

7.2 Computing Positional Weights

To solve problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax, we first assume that Decisions 1-3 are
taken in advance, so that we know that a total of k− 1 MPs have been included in the

schedule. As a result the jobs are split into k, 1 ≤ k ≤ K + 1, groups. Renumber the

110

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

indices of duration parameters of the MPs, in order of their occurrence in the schedule,

so that the duration of the MP scheduled after the x-th group is given by (6.4). Denote

the resulting problem as 1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax.
To solve problem 1

∣∣∣pjg[x]j (r) -det,MP (k − 1)
∣∣∣Cmax consider a schedule S (k) with

a permutation of jobs π =
(
π[1], π[2], . . . , π[k]

)
. Assume that each group contains a

total of n[x] jobs, so that π[x] =
(
π[x] (1) , π[x] (2) , . . . , π[x]

(
n[x]
))
, 1 ≤ x ≤ k, where∑k

x=1 n
[x] = n. The actual processing time of a job j = π[x] (r) , scheduled in position

r, 1 ≤ r ≤ n[x], of the x-th group, 1 ≤ x ≤ k, is given by (7.1). Similar to the

computation of the makespan for problem 1
∣∣pjg[x] (r) -det,MP (k − 1)

∣∣Cmax as given
in (6.7), the makespan for problem 1

∣∣∣pjg[x]j (r) -det,MP (k − 1)
∣∣∣Cmax can be given as

Cmax (S (k)) =
k−1∑
x=1

n[x]∑
r=1

(1 + α[x])g
[x]
j (r) pπ[x](r) +

n[k]∑
r=1

g
[k]
j (r) pπ[k](r) +

k−1∑
x=1

β[x].

The above objective function can be written as generic function given by (4.4), with

the job-dependent positional weights

W
[x]
j (r) =

{
(1 + α[x])g

[x]
j (r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

g
[x]
j (r) 1 ≤ r ≤ n[x], x = k,

(7.4)

and the constant term still given by (6.9).

As shown in Section 4.2.2, if the number of jobs in each group, n[x], 1 ≤ x ≤ k,

is known in advance, the problem of minimising the generic objective function (4.4),

can be solved by reduction to a linear assignment problem (LAP) of the form (2.2),

with its cost function cj,(x,r) given as (4.5). To find an optimal solution to prob-

lem 1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax, however, we must find a way of determining
the optimal number of jobs n[x], that are scheduled in each group x, 1 ≤ x ≤ k,

before we go on to solve the LAP. Further, to obtain a solution to the origi-

nal problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax, we solve all possible instances of problem
1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax by modifying the outcomes of Decisions 1-3 and
choose the instance with the smallest value of the objective function as our optimal

solution.

Similar to Chapter 6, we shall consider eight different versions of problem

1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax. For each version, the computed positional weights are found
by making an appropriate substitution in (7.4). Recall that (7.4) is computed for the

111

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

most general version, in which the deterioration factors are group-dependent, MPs are

distinct and their duration depends on the start-time. Depending on the found posi-

tional weights, it might be possible to solve problem 1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax
by reducing it to a revised version of the LAP, one in which the optimal values of

n[x], 1 ≤ x ≤ k, can be found on the fly. Moreover, for some versions of problem

1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax, it is even possible to compute the optimal outcomes of De-
cisions 1-3 on the fly. Based on such differences, we classify different versions of problem

1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax into two separate sections and present two new solution ap-
proaches that handle them. Table 7.1 lists out all the versions under consideration and

mentions the section that deals with them.

Constant Duration MPs Start-time dependent MPs
Identical Distinct Identical Distinct

Group-indep Section 7.4 Section 7.4 Section 7.4 Section 7.3
Group-dep Section 7.4 Section 7.3 Section 7.3 Section 7.3

Table 7.1: Different versions of problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax

7.3 Solution Approach PosiJDGD

In this section, we describe a solution approach, which can solve all versions of prob-

lem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax without prior knowledge of the number of jobs n[x] in
each group. The only pre-requisite condition is that the computed positional weights

W
[x]
j (r), 1 ≤ r ≤ n[x], should be non-decreasing in every group x, 1 ≤ x ≤ k, for each

j ∈ N.

Let us begin our consideration with the most general version of problem

1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax, such as the one discussed in Section 7.2. Assume

that Decisions 1-3 are taken in advance and denote the resulting problem as

1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax. This problem can be solved by minimising the

generic objective function (4.4) with positional weights given by (7.4) and the constant

term given by (6.9). It is easy to notice that because the positional factors g[x]j (r)

follow (7.2), the computed positional weights W [x]
j (r), 1 ≤ r ≤ n[x], are non-decreasing

within each group x, 1 ≤ x ≤ k, for all values of j ∈ N . Below we outline a solution
approach that solves an instance of problem 1

∣∣pjg[x] (r) -det,MP (k − 1)
∣∣Cmax.

Define a rectangular assignment problem with n rows, each corresponding to a

job j ∈ N, and m = nk columns. As done for the n× n LAP, number the columns by

112

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

a string of the form (x, r), where x refers to a group, 1 ≤ x ≤ k, and r, 1 ≤ r ≤ n[x],

indicates a position within the group. Create an n ×m cost matrix C =
(
cj,(x,r)

)
by

setting n[x] = n, 1 ≤ x ≤ k, and computing all values of the cost function cj,(x,r),

1 ≤ r ≤ n, 1 ≤ x ≤ k, j ∈ N, by using the formulae (4.5) and (7.4). More precisely,
the value of element cj,(x,r) at the intersection of the j-th row and v-th the column

of matrix C for v, 1 ≤ v ≤ m, such that v = n (x− 1) + r, where 1 ≤ x ≤ k and

1 ≤ r ≤ n, is defined by cj,(x,r) = pjW
[x]
j (r). Notice that the matrix C represents a set

of all possible values of cj,(x,r) and can be computed in O (n2k) time.

As a result, problem of minimising the generic objective function (4.4) reduces to

a rectangular assignment problem written out below

Min
∑
j∈N

k∑
x=1

l[x]∑
r=1

cj,(x,r)zj,(x,r)

subject to
∑
j∈N

zj,(x,r) ≤ 1, 1 ≤ x ≤ k, 1 ≤ r ≤ l[x]

k∑
x=1

l[x]∑
r=1

zj,(x,r) = 1, j ∈ N

zj,(x,r) ∈ {0, 1} , j ∈ N, 1 ≤ x ≤ k, 1 ≤ r ≤ l[x],

(7.5)

where in the case under consideration l[x] = n for 1 ≤ x ≤ k.

The algorithm to solve a rectangular assignment problem of the form (7.5) has

been outlined by Bourgeois and Lassale (1971). The running time of this algorithm is

O(n2m), m ≥ n, for an n×m cost matrix. Thus, an optimal solution for problem (7.5)

can be found in O(n3k) time.

Suppose that for some k, 1 ≤ k ≤ K + 1, the solution of the assignment problem

(7.5) related to problem 1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax is found. Then zj,(x,r) = 1

implies that job j is assigned to the r-th position of group x. The conditions of (7.5)

mean that each job will be assigned to a position and no position will be used more than

once. The condition (7.2) guarantees that the found assignment admits a meaningful

scheduling interpretation, because for each of the k groups either several consecutive

positions starting from the first are filled or the group is not used at all. In principle, the

same solution approach remains valid even for the case with non-monotone positional

factors, since setting n[x] = n, 1 ≤ x ≤ k, does indeed generate a set of all possible

cost functions cj,(x,r) for the latter case as well. However, since the condition (7.2) does

not hold for the case with arbitrary positional effects, it cannot be guaranteed that

consecutive positions (starting from the first position) are filled in each group, thereby

resulting in an infeasible solution. To ensure feasibility of the obtained solution it is

113

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

essential that the obtained positional weights be monotonically ordered within a group.

Notice that in philosophy, this solution approach is similar to Solution Ap-

proach PosiJIJD provided in Section 6.5: n best positions need to be chosen from

a set of nk positions. Algorithm NSmall however, permits a faster running time as the

problem under consideration is job-independent and reduces to a special case of the

LAP, so that Lemma 2.1 holds. The following statement holds.

Theorem 7.1. Problem 1
∣∣∣pjg[x]j (r)-det,MP (k − 1)

∣∣∣Cmax can be solved in O(n3k) time

by reduction to a linear rectangular assignment problem of the form (7.5).

In an optimal solution for an instance of problem 1
∣∣∣pjg[x]j (r)-det,MP (k − 1)

∣∣∣Cmax
it is possible that out of the k groups, certain groups are not assigned any jobs at

all, i.e., n[x] = 0. Such a situation can occur if an MP is not effi cient in restoring the

machine to a better state, and as a result the group that follows generates positional

weights with big values. Such an instance can never result in an optimal schedule for

the general problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax, as we are unnecessarily spending time
to perform an ineffi cient MP. This instance, if any, will be automatically eliminated

from consideration if we try different combinations of Decision 1-3 to define problem

1
∣∣∣pjg[x]j (r)-det,MP (k − 1)

∣∣∣Cmax.
To determine the optimal solution for the general problem

1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax, all options associated with Decisions 1-3 must be enumer-
ated and the solutions of the resulting sub-problems 1

∣∣∣pjg[x]j (r) -det,MP (k − 1)
∣∣∣Cmax

be compared. The best of these solutions is chosen as the optimal solution for problem

1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax. The same procedure holds for all other less general versions
of problem 1

∣∣∣pjg[x]j (r) -det,MP
∣∣∣Cmax as well. Table 7.2 states the number of times an

LAP of the form (7.5) must be solved in order to solve different versions of problem

1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax.
Constant Duration MPs Start-time dependent MPs
Identical Distinct Identical Distinct

Group-indep Section 7.4 Section 7.4 Section 7.4
∑K+1

k=1

(
K
k−1
)

Group-dep Section 7.4
∑K+1

k=1

(
K
k−1
) ∑K+1

k=1 1
∑K+1

k=1

(
K
k−1
)

(k − 1)

Table 7.2: Number of times an LAP of the from (7.5) is solved to solve different versions

of problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax.
Notice that although the above described solution approach of reducing the prob-

lem to an LAP of the form (7.5) is able to solve all eight versions of problem

114

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax, for some cases it is possible to make Decisions 1-3 on
the fly by using another solution approach, which enables the optimal solution to

be found in faster time. For such cases, a reference to the relevant section has

been made in Table 7.2. For all other cases, the number of instances of problem

1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax can be computed similarly to the computation of the
values of Table 6.2, which was done for case of job-independent positional deterioration

in Chapter 6.

Since an LAP of the form (7.5) requires a running time of O (n3k) for a given

k, 1 ≤ k ≤ K + 1, the respective running times that are needed to solve dif-

ferent versions of problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax can be computed as follows.
For problem 1

∣∣∣pjg[x]j (r) -det,MP
∣∣∣Cmax with group-dependent deterioration factors

and distinct MPs with start-time dependent durations, an optimal solution can be

found in O
(
n3
∑K+1

k=1

(
K
k−1
)

(k − 1) k
)

= O
(
n3K22K

)
time. For the problem with

group-independent deterioration factors and distinct MPs with constant durations,

an optimal solution can be found in O
(
n3
∑K+1

k=1

(
K
k−1
)
k
)

= O
(
n3K2K

)
time. The

same running time is needed for the problem with group-dependent deterioration

rates and identical MPs with start-time dependent durations. Lastly, for prob-

lem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax with group-dependent deterioration rates and identical
MPs with constant durations an optimal solution can be found in O

(
n3
∑K+1

k=1 k
)

=

O (n3K2) time.

In our paper Rustogi and Strusevich (2012a), we use the above described solution

approach to solve problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax with group-dependent deterio-
ration factors and distinct MPs with start-time dependent durations. However, no

emphasis has been made on Decisions 2 and 3. The decision-maker only needs to de-

cide how many MPs to include into the schedule from a given list of n − 1 available

MPs. The published running time to solve this problem is O (n5) , which is consistent

with the results of this section for K = n− 1.

7.4 Solution Approach PosiJDKdomi

In this section, we consider versions of problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax in which
Decisions 1-4 can be made on the fly, without having to enumerate all possible options.

We list out two versions for which this is possible:

Problem 1: Problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax with group-dependent deterioration
factors and distinct MPs with constant durations, subject to the condition that if

115

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

a certain MP with duration β[y] is included in the schedule, then the group that

follows will contain the positional factors g[y+1]j (r) , 1 ≤ r ≤ n, such that they

can be ordered in a way that

g
[1]
j (r) ≤ g

[2]
j (r) ≤ · · · ≤ g

[K+1]
j (r), 1 ≤ r ≤ n, j ∈ N, (7.6)

and (6.11) hold simultaneously, where the positional factors g[1]j (r), 1 ≤ r ≤ n,

are associated with the group that is created before the first MP. This ver-

sion is a generalisation of three of the cases found in Table 7.2; (i)-(ii) problem

1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax in which group-independent deterioration factors are
considered along with identical or distinct MPs of constant duration, i.e., α[x] = 0,

and (iii) problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax in which group-dependent deterio-
ration factors are considered along with identical MPs of constant duration, i.e.,

α[x] = 0, β[x] = β, 1 ≤ x ≤ K. For the latter problem, we assume that (7.6)

holds, based on the argument provided in Section 6.6.

Problem 2: Problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax with group-independent deteriora-
tion factors and distinct MPs with start-time dependent durations, subject to

the condition that the duration parameters of the MPs can be ordered such that

(6.12) and (6.11) hold simultaneously. This version is a generalisation of one of

the cases found in Table 6.2, in which group-independent positional factors are

considered along with identical MPs of start-time dependent duration.

In order to solve both versions of problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax described
above, the optimal choice for Decisions 2 and 3 can be made easily. If Decision 1

is assumed to be taken, so that k−1, 1 ≤ k ≤ K+1,MPs are included in the schedule,

then for both problems, the MPs with the indices 1, 2, . . . , k− 1 are chosen and sched-

uled in the same order. This is the optimal choice for Problem 1 as the MPs with the

indices 1, 2, . . . , k − 1 have the smallest durations and create groups that contain the

smallest deterioration factors, owing to (7.6) and (6.11) holding simultaneously. This

is the optimal choice for Problem 2 as all MPs create identical groups and the ones

with a smaller index have smaller values of the duration parameters, owing to (6.12)

and (6.11) holding simultaneously. Notice that the order of the MPs is inconsequential

in both cases.

With Decisions 1-3 having been made (with an assumed value of k), denote the

resulting problem as 1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax. This problem can be solved by
minimising the generic objective function of the form (4.4). For Problem 1, obtain the

required positional weightsW [x]
j (r) by substituting α[x] = 0, 1 ≤ x ≤ k, in (7.4) so that

116

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

for each j ∈ N we have

W
[x]
j (r) = g

[x]
j (r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, (7.7)

and for Problem 2, substitute g[x]j (r) = gj (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, so that for

each j ∈ N we have

W
[x]
j (r) =

{
(1 + α[x])gj(r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

gj(r) 1 ≤ r ≤ n[x], x = k.
(7.8)

Set the value n[x] = n, 1 ≤ x ≤ k, and k = K + 1, and compute all positional

weights W [x]
j (r) , 1 ≤ r ≤ n, 1 ≤ x ≤ K + 1, j ∈ N, for both problems by using

the formulae above. Notice that the computed positional weights represent a set of

all possible values of W [x]
j (r) , j ∈ N, across all possible groups. Further, notice that

because of (7.6), the positional weights associated with Problem 1 are ordered such for

each k, 1 ≤ k ≤ K + 1, that we have

W
[1]
j (r) ≤ W

[2]
j (r) ≤ · · · ≤ W

[k]
j (r), 1 ≤ r ≤ n, j ∈ N,

and because of (6.12), the positional weights for Problem 2 are ordered such that for

each k, 1 ≤ k ≤ K + 1, we have

W
[k]
j (r) ≤ W

[1]
j (r) ≤ W

[2]
j (r) ≤ · · · ≤ W

[k−1]
j (r), 1 ≤ r ≤ n, j ∈ N.

Notice that both Problems 1 and 2 satisfy the conditions of ‘K-domi’as laid out

in Definition 6.1, for each j ∈ N . For instances of problem 1
∣∣pjg[x] (r) -det,MP

∣∣Cmax
that satisfy (6.11) and ‘K-domi’, it is possible to compute the optimal values of n[x],

1 ≤ x ≤ k, and Decisions 1-4 on the fly. Recall that for a fixed value of Decision 1,

the optimal values for Decisions 2 and 3 are already known. Thus, to solve problem

1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax we only need to worry about finding the optimal values for
Decisions 1 and 4.

Recall from Section 6.6 that under such conditions for a job-independent model, the

relevant problem is solvable by Algorithm NSmall2, which finds an optimal schedule by

computing the optimal values of n[x], 1 ≤ x ≤ k, and Decisions 1 and 4 on the fly. This

is achieved by seeking the n smallest deterioration factors that are needed to create an

optimal schedule S(k+1), only in positions that were used in the optimal schedule S(k)

and positions that become available with the introduction of the (k + 1)-th group. This

idea reduces the running time needed to compute the n smallest deterioration factors

117

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

as we only need to search a maximum of 2n candidate positions. We shall use the

same philosophy to speed up the running times for Problems 1 and 2 in this chapter,

however its validity for the job-dependent case is not as obvious.

Below we establish several properties of the algorithm that solves the rectangular

assignment problem (7.5). These properties will help us to prove that for a given k,

we can indeed limit the number of candidate positions to 2n, even in the case of job-

dependent positional effects. We start our consideration with Problem 1, and later

adapt the developed solution approach for Problem 2.

For Problem 1, due to (7.2) and (7.6) holding simultaneously, the matrix C has a

special structure that is characterised by:

• non-decreasing order of the elements of the same row that are placed in the

columns associated with positions of the same group, and

• non-decreasing order of the elements placed in the same row and in those columns
associated with a given position r, 1 ≤ r ≤ n, of each group, from group 1 to

group k.

Below we present a revised version of Algorithm BourLas (see Section 2.2.3) so that

it reflects the special structure of our cost matrix C. Alterations are primarily made

to Steps 1-3 of Algorithm BourLas and these alterations affect neither the optimality

nor the running time of the algorithm.

Algorithm RecLAP (see Bourgeois and Lassale (1971))

Step 0. Consider a row of the matrix C, subtract the smallest element from each

element in the row. Do the same for all other rows.

Step 1. Considering the rows in an arbitrary order, search for a zero, Z, in the current
row that is located in the left-most column with no starred zeros. If Z is found,

star Z. Repeat for each row of the matrix. Go to Step 2.

Step 2. Cover every column containing a 0∗. If n columns are covered, the starred

zeros form the desired independent set. Otherwise, go to Step 3.

Step 3. Choose a non-covered zero and prime it; in the case of several available zeros
prime the one in the left-most column. Consider the row containing the primed

zero. If there is no starred zero in this row, go to Step 4. If there is a starred

zero Z in this row, cover this row and uncover the column of Z. Repeat until all

zeros are covered. Go to Step 5.

118

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

Step 4. There is a sequence of alternating starred and primed zeros constructed as
follows: let Z0 denote the uncovered 0′. Let Z1 denote the 0∗ in Z0’s column

(if any). Let Z2 denote the 0′ in Z1’s row. Continue in a similar way until the

sequence stops at a 0′, Z2a, which has no 0∗ in its column. Unstar each starred

zero of the sequence, and star each primed zero of the sequence. Erase all primes

and uncover every line. Return to Step 2.

Step 5. Let h denote the smallest non-covered element of the current matrix. Add
h to each covered row, then subtract h from each uncovered column. Return to

Step 3 without altering any asterisks, primes, or covered lines.

Below we analyse the outcome of an iteration of this algorithm.

Lemma 7.1. Suppose that after some iteration of Algorithm RecLAP, for each x,

1 ≤ x ≤ k, the column
(
x, l[x]

)
is such that it contains a 0∗, while none of the columns

(x, r) for r > l[x] contain a 0∗. If no column (x, r) for 1 ≤ r ≤ n contains a 0∗, then

define l[x] = 0. Then, for each x, 1 ≤ x ≤ k, such that l[x] ≥ 1, it follows that for each

r, 1 ≤ r ≤ l[x], column (x, r) contains a 0∗.

Proof: Suppose that the lemma does not hold, i.e., for some x there exists a column
(x, r′) that does not contain a 0∗, where r′ < l[x]. Assume that a 0∗ appears in position(
j,
(
x, l[x]

))
. Since each covered line contains a 0∗, it follows that the column (x, r′) is

uncovered.

Observe that the only way for a zero to lose its “star”label is Step 4 of the algorithm,

but in this case a 0′ from the same column becomes a 0∗. In short, once a column gets

a 0∗, then it will contain a 0∗ (possibly, in a different row) in all subsequent iterations.

On the other hand, if a column does not have a 0∗, then it has not contained a 0∗ in

all preceding iterations. Thus, column (x, r′) has not contained a 0∗ in all previous

iterations, and this column has always been uncovered.

Suppose that in some iteration i, the element in position
(
j,
(
x, l[x]

))
is reduced to

zero as the current minimal element (see Step 5). At the time the element is uncovered,

i.e., in all previous iterations column
(
x, l[x]

)
has not contained a 0∗ and has not been

covered, exactly as column (x, r′). Thus, up to the i-th iteration both columns (x, r′)

and
(
x, l[x]

)
have been subject to the same transformations in Step 5. In particular,

the elements in positions (j, (x, r′)) and
(
j,
(
x, l[x]

))
either have been left the same in

all previous iterations with row j covered or have been reduced by the value of the

current minimal element in each previous iteration when row j was not covered. Since

originally pjg
[x]
j (r′) ≤ pjg

[x]
j (l[x]), we deduce that in the beginning of iteration i the

119

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

element in position (j, (x, r′)) is less or equal to the element in position
(
j,
(
x, l[x]

))
.

At the end of iteration i, we know that position
(
j,
(
x, l[x]

))
becomes zero. Now since

the element in position (j, (x, r′)) cannot be negative, we can deduce that it must

be zero at the end of iteration i. Therefore, all elements in the consecutive positions

(j, (x, r′)), (j, (x, r′ + 1)), · · · , (j,
(
x, l[x]

)
) of row j are equal to zero. We know that

Step 3 of Algorithm RecLAP processes the zero in position (j, (x, r′)) earlier than all

other uncovered zeros in this row. Thus, the zero in position (j, (x, r′)) will be primed.

If there is no 0∗ in row j, Step 4 of the algorithm will star the primed zero in

position (j, (x, r)), as we know that column (x, r) does not contain any 0∗ either.

If there is a 0∗ in row j, then the corresponding column, say, column v, is covered.

The algorithm in Step 3 will uncover column v and cover row j. If this uncovers a 0 in

column v, say, in row u 6= j, then Step 4 of the algorithm will find a path that traverses

through the three positions (u, v) , (j, v) and (j, (x, r′))), and redistribute the stars. As

a result, a 0∗ would appear in position (j, (x, r′))) .

Now we consider the situation when there are no uncovered zeros in column v, row j

is covered, the zero in position (j, v) is starred, the zero in position (j, (x, r′)) is primed

and the zeros in positions (j, (x, r′ + 1)), · · · , (j,
(
x, l[x]

)
) have no labels. By the lemma

conditions, we know that eventually the zero in position (j,
(
x, l[x]

)
) becomes starred.

In the iterations that follow iteration i, the only way to get a 0∗ in row j in a position

other than (j, v) is to start with some 0′ in the uncovered part of the current matrix,

and to find a path (as described in Step 4) that starts with the chosen 0′ and finishes

with the two positions (j, v) and (j, (x, r′))), that contain a 0∗ and a 0′, respectively.

However, as a result of the corresponding redistributions of stars, a 0∗ will appear in

position (j, (x, r′))) .

We have proved that once column (x, r′) gets a 0∗, it will always contain a 0∗ in all

subsequent iterations. Hence, our assumption that for some x, there exists a column

(x, r′) that does not contain a 0∗, where r′ < l[x], is false; thereby proving Lemma

7.1.

Lemma 7.2. Under the conditions of Lemma 7.1, while processing all uncovered zeros,
the values l[x] for each x, 1 ≤ x ≤ k, either remain the same or exactly one of them

increases by 1 for every zero considered.

Proof: Among all uncovered zeros, in Step 3 choose zero Z that appears in the earliest
column, and prime it. If the row containing the primed zero contains a 0∗, then we

cover that row and uncover the column, so that Z does not become a 0∗ yet. Notice

that as a result of this transformation, all zeros contained in the same row with Z

120

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

are covered, including those found in Step 5, and they will not be considered in this

iteration of the algorithm. Thus, the values l[x] for each x, 1 ≤ x ≤ k, remain the same

for all remaining zeros in this row.

If Z does not have any 0∗ in its row (see Step 4), a path is formed which is an

alternating sequence of the primed and starred zeros that starts with the primed zero

Z ends with another 0
′
. In such a situation, all 0∗’s in the path are unstarred and each

0
′
is converted to a 0∗. Since the number of primed zeros in the path is always one

greater than the number of starred zeros, it follows that once the swap is performed

we have exactly one extra 0∗ that will replace the last 0′ in the path. This includes

a situation which happens when for zero Z neither its row, nor its column contains a

0∗, so that the path simply consists of Z alone and Z itself becomes a 0∗. Thus, a new

0∗ will appear in the column that has not had a starred zero earlier, while all other

columns will maintain the number of contained 0∗’s. Suppose that the new 0∗ appears

in position (x, r) for some group x, 1 ≤ x ≤ k, and r ≥ 1. If r = 1, then the old value

l[x] = 0 grows by 1. Otherwise, we know from Lemma 7.1 that in a particular group

x, all 0∗’s appear in consecutive columns (x, 1), . . . ,
(
x, l[x]

)
. Since column (x, r) is the

next to the column
(
x, l[x]

)
, the value l[x] for group x grows by 1.

Whenever a new 0∗ is added to the matrix, the columns containing the 0∗’s are

covered and the remaining uncovered zeros are processed one by one in the same

manner.

Now consider the sub-problem 1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax of Problem 1, in

which jobs from the set N are scheduled with k − 1, 1 ≤ k ≤ K + 1, MPs. Due to

condition ‘K-domi’, without loss of generality it can be said that each of the k groups

in an optimal schedule S∗(k) is not empty. Let l[x] denote the number of positions used

in a group x, 1 ≤ x ≤ k, so that
∑x=k

x=1 l
[x] = n.

Next, find a schedule S̃(k) that is optimal for an instance of problem

1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax with a set of jobs Ñ ⊂ N . Let in schedule S̃(k)

the number of filled positions in a group x, 1 ≤ x ≤ k, be denoted by l̃[x]. Lemmas 7.1

and 7.2 immediately imply that l̃[x] ≤ l[x] for each x, 1 ≤ x ≤ k.

For a set of jobs N , consider problem 1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax with k

groups and another problem 1
∣∣∣pjg[x]j (r) -det,MP (k)

∣∣∣Cmax with k + 1 groups. Let

S∗(k) and S∗(k + 1) be the corresponding optimal schedules. Suppose that Ñ ⊂ N is

the subset of jobs that are assigned to the first k groups in schedule S∗(k + 1). Then,

as observed above, none of these groups uses more positions in S∗(k + 1) than it does

in S∗(k). Given the fact,
∑x=k

x=1 l
[x] = n, this implies the following statement.

121

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

Theorem 7.2. Let S∗(k) be an optimal schedule for problem

1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax. In order to find schedule S∗(k + 1) that is

optimal for problem 1
∣∣∣pjg[x]j (r) -det,MP (k)

∣∣∣Cmax, it is suffi cient to use the n posi-
tions used in schedule S∗(k) together with n − (k + 1) + 1 new positions that appear

when the (k + 1)-th group is introduced.

Notice that it suffi ces to consider only n − (k + 1) + 1 positions in the (k + 1)-th

group, as due to condition ‘K-domi’it can be ensured that each of the k earlier groups

will have at least 1 job scheduled in them. The algorithm below starts with finding

the best schedule with one group, and having found the best schedule with k groups

finds the best schedule with k+ 1 groups by solving an assignment problem with O(n)

columns and n rows. The columns to be used while solving the problem with k + 1

groups are the n columns for which an assignment was found in the previous iteration

and n− (k + 1) + 1 = n− k new columns corresponding to the new group k + 1.

Algorithm BestLAP

Step 1. Find an optimal schedule S(1) with no maintenance periods, in which all jobs

are placed in group 1. This is done by solving the n× n assignment problem of

the form (2.2) with

cjr = pjW
[1]
j (r) = pjg

[1]
j (r), j ∈ N, 1 ≤ r ≤ n.

Compute P (S∗(1)) as the optimal value of the objective function in this assign-

ment problem. Determine schedule S∗(1) in which job j is processed in the r-th

position of group 1 if and only if zjr = 1. Define Cmax (S∗ (1)) = P (S∗(1)). Define

Γ(1) := 0, l[1] =: n, k := 1 and k′ := K + 1.

Step 2. With the current value of k do

(a) Update Γ(k + 1) = Γ(k) + β[k]. Define l[k+1] := n − k. Com-

pute all values of the matrix C by (4.5) and (7.7) for columns

(1, 1) , · · ·
(
1, l[1]

)
, · · · , (k, 1) , · · ·

(
k, l[k]

)
and (k + 1, 1) , · · · ,

(
k + 1, l[k+1]

)
.

Run Algorithm RecLAP to solve the resulting n × (2n− k) rectangu-

lar assignment problem of the form (7.5) with the current values of l[x],

1 ≤ x ≤ k + 1.

(b) Compute P (S∗(k+ 1)) as the optimal value of the objective function in that

assignment problem and Cmax (S∗ (k + 1)) = P ∗(S(k + 1)) + Γ(k + 1). If

P (S∗(k + 1)) = P (S∗(k)) then define k′ := k and break the loop by moving

122

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

to Step 3; otherwise, determine schedule S∗(k+1) in which job j is processed

in the r-th position of group x, 1 ≤ x ≤ k+ 1, if and only if zj,(x,r) = 1. For

each group x, 1 ≤ x ≤ k + 1, determine the last filled position l[x].

(c) Update k := k + 1. If k < K + 1, repeat Step 2; otherwise go to Step 3.

Step 3. Find the value k∗, 1 ≤ k∗ ≤ k′, such that

Cmax(S(k∗)) = min {Cmax (S (k)) |1 ≤ k ≤ k′} .

The condition P (S∗(k + 1)) = P (S∗(k)) is similar to the loop breaking condition

applied in Algorithm NSmall2 in Section 6.6. This implies that the addition of the

(k + 1)-th group does not provide any positions better than those in schedule S∗ (k) .

Thus, the makespan cannot be reduced by running more MPs after the k′-th group

is opened. This implies that no further values of k should be examined and the best

schedule should be found from the set {S (k) |1 ≤ k ≤ k′}. If the loop is not broken
throughout the run of Algorithm BestLAP, the default value of k′ is set to K+1. Thus,

at most K+ 1 iterations on the value of k is needed and the following statement holds.

Theorem 7.3. Algorithm BestLAP solves an instance of problem

1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax defined by Problems 1 and 2 in O(n3K) time.

Proof: The correctness of Algorithm BestLAP is justified by Theorem 7.2. To esti-

mate the running time, notice that in Step 1 an n × n assignment problem is solved

in O(n3) time. For each value of k in Step 2, we solve a rectangular assignment prob-

lem which has n rows and 2n − k = O (n) columns, of which n columns, namely

(1, 1) , · · · ,
(
1, l[1]

)
, · · · , (k, 1) , · · · ,

(
k, l[k]

)
are brought forward from the previous it-

eration and the remaining n − k columns correspond to the new group k + 1. Algo-

rithm RecLAP will require O (n3) time for each k, 1 ≤ k ≤ K, so that the overall

running time of Algorithm BestLAP is O(n3K).

Notice that when Algorithm BestLAP is applied to solve a version of Problem 1 with

group-independent positional factors, i.e., g[x]j (r) = gj (r) , then Algorithm BestLAP

essentially behaves as the algorithm provided by Zhao and Tang (2010), who use the

group balancing principle to solve the special case 1 |pjraj -det,MP [0]|Cmax and provide
an O(n3K) algorithm, where K = n− 1; see Section 3.3.1 for details.

Let us now consider Problem 2 and see how Algorithm BestLAP can be adapted

to solve it. Recall that the computed positional weights for the sub-problem

1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax are given by (7.8). Suppose that for some value

123

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

of k, 1 ≤ k ≤ K + 1, we have found an optimal schedule S∗(k) for prob-

lem 1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax, so that in each group x, 1 ≤ x ≤ k,

the number of consecutively used positions is l[x], where
∑k

x=1 l
[x] = n. While

making a transition to solving the assignment problem associated with problem

1
∣∣∣pjg[x]j (r) -det,MP (k)

∣∣∣Cmax with k + 1 groups, notice that the deterioration factors

used in problem 1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax for groups from 1 up to k−1 remain

the same, while the factors previously used in group k will now be used in group k+ 1.

Additionally, for group k the previously used factors will be multiplied by
(
1 + α[k]

)
.

By Theorem 7.2, this means that in an optimal schedule S∗(k+1) at most l[x] positions

will be used in each group x, 1 ≤ x ≤ k − 1, and at most l[k] positions will be used in

group k+1; i.e., at most n positions in total can be used in these groups. Additionally,

up to n − k positions can be used in group k. This implies that we can adapt Algo-
rithm BestLAP for solving Problem 2, so that the problem can be solved in O(n3K)

time.

A special case of Problem 2 has been considered by Yang and Yang (2010a), with

a polynomial group-independent deterioration effect given by gj(r) = raj , aj > 0,

1 ≤ r ≤ n, j ∈ N , and identical start time dependent MPs, i.e., α[x] = α, β[x] = β,

1 ≤ x ≤ K + 1. They reduce the problem to a series of square assignment problems

and propose an algorithm that requires O(n5) time for K = n−1. For a schedule S (k)

with k, 1 ≤ k ≤ K + 1, groups, recall that the positional weights are given by (7.8).

For a case in which α[x] = α, β[x] = β, 1 ≤ x ≤ K+ 1, notice that the first k−1 groups

have identical positional factors for each job j ∈ N. Due to the indistinguishability of
the first k − 1 groups, the authors prove a group-balance principle which allows them

to predict the number of jobs in each of the first k− 1 groups, for an optimal schedule.

For the k-th group, which is differently structured, they try all possible values of the

number of jobs in that group. This leads to a trial of at most n instances. For each

instance, the values n[x], 1 ≤ x ≤ k, are known so that
∑k

x=1 n
[x] = n. As a result, for

a known k, 1 ≤ k ≤ n, the problem reduces to solving up to n assignment problems

with an n×n cost matrix. This leads to an overall running time of O(n5) for the entire

problem. Our solution approach based on Algorithm BestLAP on the other hand,

solves a more general problem in O (n3K) time, where K = n− 1.

Now consider a version of problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax in which the condi-
tions ‘K-domi’and (6.11) do not hold simultaneously. In principle, Algorithm BestLAP

can still be used to obtain a solution for Decisions 1 and 4, but to make Decisions 2

and 3, a full enumeration of options might be required. As a result, the overall running

time to solve problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax turns out to be no smaller than that
124

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

obtained by using Solution Approach PosiJDGD presented in Section 7.3. In our paper

Rustogi and Strusevich (2012a), we have used Algorithm BestLAP to solve a version

of problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax, in which ‘K-domi’holds, but (6.11) doesn’t.
Additionally, we have assumed that for each k, 1 ≤ k ≤ K + 1, Decisions 2 and 3 are

fixed. As a result, an optimal solution is obtained in O (n3K) time, where K = n− 1.

Below we provide a numerical example that illustrates the working of Algo-

rithm BestLAP for Problem 1.

Example 7.1. Consider a version of problem1
∣∣pjg[x] (r) -det,MP

∣∣Cmax as defined in
Problem 1, with five jobs. The decision-maker has a choice of K = 4 MPs, whose

durations are given as

β[1] = 3, β[2] = 3, β[3] = 3.5, β[4] = 4.

As a result, the jobs can be split in up to five groups. Table 7.3 presents the actual

processing times of jobs from the set N = {1, 2, 3, 4, 5} , with each row containing the
values p[x]j (r) = pjg

[x]
j (r) for a job j when placed in position r of group x. Notice that

for each job the values of p[x]j (r) do not decrease within each group, and do not decrease

for each position r as the number x of a group grows. This is consistent with (7.2) and

(7.6). Besides, a group x, 1 ≤ x ≤ K + 1, has only n− x+ 1 positions associated with

it, as it is known that each of the x−1 earlier groups will have at least 1 job scheduled

in them.

Group 1 Group 2
j p

[1]
j (1) p

[1]
j (2) p

[1]
j (3) p

[1]
j (4) p

[1]
j (5) p

[2]
j (1) p

[2]
j (2) p

[2]
j (3) p

[2]
j (4)

1 5 6 7 8 9 6 6 8 9
2 10 12 13 15 16 11 12 14 15
3 1 1 2 2 3 1 2 3 4
4 3 5 7 8 9 4 5 7 9
5 7 7 7 8 8 7 7 8 8

Group 3 Group 4 Group 5
j p

[3]
j (1) p

[3]
j (2) p

[3]
j (3) p

[4]
j (1) p

[4]
j (2) p

[5]
j (1)

1 6 7 8 7 8 7
2 12 13 14 12 14 13
3 2 2 3 3 4 4
4 4 6 8 5 7 5
5 7 7 8 8 8 8

Table 7.3: Actual processing times for Example 7.1

125

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

Table 7.4 shows the details of the run of Algorithm BestLAP for the above instance.

The run starts with k = 1, i.e., we solve the 5×5 assignment problem. The optimal

solution determines a schedule S∗(1) with no MPs, in which the jobs are assigned to the

positions marked by the boxes. Since all positions of Group 1 are used in this schedule,

the list of possible positions in the next iteration k = 2 includes all five positions of

Group 1 and all four positions of Group 2. We solve the corresponding rectangular

assignment problem, and the numbers marked with boxes determine a schedule S∗(2)

in which the jobs 2, 3 and 5 occupy the first three positions of Group 1, respectively,

while the jobs 4 and 1 are respectively assigned to the first two positions of Group 2,

after the MP of duration 3. The positions that are not used are crossed out; they will

never be used in subsequent iterations. In the next iteration k = 3 we use the positions

associated with schedule S∗(2) and three positions of the new Group 3. The method

stops here, since none of the positions of Group 3 is filled, i.e., P (S∗(3)) = P (S∗(2))

as in the loop-breaking rule. Schedules S∗(1) and S∗(2) are the two candidates for a

global optimal solution, and we choose S∗(2) with the smaller makespan.

7.5 Conclusion

In this chapter, we solve several problems with job-dependent positional deterioration

and maintenance activities. Before this study, only a handful of results existed which

combined a study of positional deterioration with maintenance activities. The only

two papers we are aware of, which address this problem with job-dependent positional

effects are due to Zhao and Tang (2010) and Yang and Yang (2010a). We further ex-

tend the models considered by them by introducing group-dependent effects along with

distinct MPs, and provide two novel solution approaches that solve the problem of min-

imising the makespan. The developed algorithms are based on solving a series of rectan-

gular assignment problems and either match or improve upon the running times of exist-

ing algorithms, used for solving less general problems. By nature, the two solution ap-

proaches that solve different versions of problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax are similar
to the ones that solve the corresponding versions of problem 1

∣∣pjg[x] (r) -det,MP
∣∣Cmax,

discussed in Chapter 6.

Notice that unlike the problem |pjg (r) -det,MP [0]|Cmax, with job-independent
group-independent positional effects considered in Section 6.7, we are not able to estab-

lish any sort of a convexity that allows us to explore only dlog2 (K + 1)e values of k, for
problem 1 |pjgj (r) -det,MP [0]|Cmax with job-dependent group-independent positional
effects. Repeated numerical experiments suggest that it is possible that the sequence

126

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

k = 1 (1,1) (1,2) (1,3) (1,4) (1,5)
1 5 6 7 8 9
2 10 12 13 15 16
3 1 1 2 2 3
4 3 5 7 8 9
5 7 7 7 8 8

P (S∗(1)) = 7 + 10 + 2 + 5 + 8 = 32
Cmax(S

∗(1)) = P (S∗(1)) = 32

k = 2 (1,1) (1,2) (1,3) (1,4) (1,5) (2,1) (2,2) (2,3) (2,4)
1 5 6 7 8 9 6 6 8 9
2 10 12 13 15 16 11 12 14 15
3 1 1 2 2 3 1 2 3 4
4 3 5 7 8 9 4 5 7 9
5 7 7 7 8 8 7 7 8 8

P (S∗(2)) = 6 + 10 + 1 + 4 + 7 = 28

Cmax(S
∗(2)) = P (S∗(2)) + β[1] = 28 + 3 = 31

k = 3 (1,1) (1,2) (1,3) (2,1) (2,2) (3,1) (3,2) (3,3)
1 5 6 7 6 6 6 7 8
2 10 12 13 11 12 12 13 14
3 1 1 2 1 2 2 2 3
4 3 5 7 4 5 4 6 8
5 7 7 7 7 7 7 7 8

P (S∗(3)) = 6 + 10 + 1 + 4 + 7 = 28

Cmax(S
∗(3)) = P (S∗(3)) + β[1] + β[2] = 28 + 3 + 3 = 34

Table 7.4: Run of Algorithm BestLAP for Example 7.1

127

CHAPTER 7. JOB-DEPENDENT POSITIONAL EFFECTS

Cmax (S∗ (k)) , 1 ≤ k ≤ K + 1, is indeed convex for the latter problem. However, at

present we are not able to provide a mathematical proof of this fact. If the sequence

Cmax (S∗ (k)) , 1 ≤ k ≤ K+1, is proved to be convex, we will be able to solve the prob-

lem |pjgj (r) -det,MP [0]|Cmax in O (n3 logK) time, instead of the current running time

of O (n3K) by Algorithm BestLAP.

Table 7.5 summarises all the problems considered in this chapter along with the

running times needed to solve them.

Constant Duration MPs Start-time dependent MPs
Identical Distinct Identical Distinct

Group-indep O (n3K) O (n3K) O (n3K) O
(
n3K2K

)
Group-dep O (n3K) O

(
n3K2K

)
O (n3K2) O

(
n3K22K

)
Table 7.5: Computational complexities of different versions of problem
1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax.

128

CHAPTER 8

Single Machine Scheduling under
Time-Dependent Effects and
Rate-Modifying Activities

In this chapter, we discuss single machine scheduling problems with time-dependent

effects and rate-modifying activities. Similar to previous chapters, our main focus

will be to explore models with deterioration effects and maintenance activities. We

adapt the solution approaches provided in Chapter 6 to solve different versions of this

problem.

The results of this chapter are published in our recent paper Rustogi and Strusevich

(2013c). The presentation of content in the paper is very similar to the content provided

in this chapter.

8.1 Overview of the Problems

As described in Section 3.2.2, there are many models that have been studied in the

past, which describe a time-dependent effect. Among them, a popular time-dependent

model of the form (3.15), is a linear function of the start-time of a job, so that the

actual processing time of a job j ∈ N starting at a time τ ≥ 0 is given by

pj(τ) = pj + aτ ,

where a is a job-independent constant, which is strictly positive for the deterioration

environment and strictly negative for the learning environment. Cheng, Ding and

Lin (2004) mention in their influential survey that the above model is a very realistic

setting, particularly in the case of scheduling problems with deteriorating machine,

129

CHAPTER 8. TIME-DEPENDENT EFFECTS

when all processing times are increased by a common factor caused by the machine.

In this chapter, we mainly concentrate on time-dependent models of the above form

and use it to study deterioration effects, so that a > 0. Similar to previous chapters, our

prime focus will be to combine such deterioration effects with maintenance activities,

so that the processing times can be prevented from becoming unacceptably large.

In the past, although many papers have considered the problem of time-dependent

deterioration with a maintenance period, most of them however, only see the MP

as a fixed non-availability period, which does not necessarily improve the machine

conditions. Only a handful of studies have considered problems in which an MP is

actually used to restore the machine to its original state, so that the effects of time-

dependent deterioration are negated. These include the papers by Lodree and Geiger

(2010) and Yang (2012). Lodree and Geiger (2010) consider a problem with time-

dependent deterioration, in which the actual processing time of a job j ∈ N starting

at a time τ > 0 is given by pj(τ) = ajτ . They solve the problem of minimising the

makespan, provided that a single MP is included in the schedule. Yang (2012) considers

the problem in which a time-dependent effect given by (3.15), is combined with a

positional polynomial learning effect, so that the actual processing time of a job j ∈ N
starting at a time τ ≥ 0 and scheduled in position r is given by pj(τ , r) = (pj + aτ) ra,

a < 0, 1 ≤ r ≤ n. The author solves the problems of minimising the makespan

and the total flow time with up to K MPs in the schedule. The required running

time for each problem is O
(
nK+1 log n

)
. This fairly high running time is attributed

to the consideration of combined effects of time-dependent deterioration and position-

dependent learning. No comment has been made on what happens if a pure time-

dependent deterioration model is considered with maintenance activities.

In this chapter, we solve the problem of minimising the makespan for a pure time-

dependent deterioration effect given by (3.15), and explore the effect of including differ-

ent kinds of maintenance activities in the schedule. As outlined in Chapter 4, consider

a general situation, in which the decision-maker is presented with a total of K ≥ 0

possible rate-modifying activities, which can be either distinct or alike. We further

generalise the model (3.15) by allowing each MP to restore the machine to a different

state, so that the deterioration rate in every group is different. Let us assume that

an MP with an index y creates a group which has a deterioration rate of a[y+1] > 0,

1 ≤ y ≤ K. Thus, in a schedule S (k) with k groups, depending on which k − 1,

1 ≤ k ≤ K + 1, MPs are chosen and the order in which they are performed, the actual

processing time of a job j ∈ N, starting at time τ of the x-th group is be given by

p
[x]
j (τ) = pj + a[x]τ , τ ≥ 0, 1 ≤ x ≤ k, (8.1)

130

CHAPTER 8. TIME-DEPENDENT EFFECTS

where it is assumed that the timer is reset after every MP. The deterioration rate a[1]

corresponds to the group which is created before the first MP, and the other dete-

rioration rates are renumbered in order of their occurrence in the schedule. Notice

that these ‘group-dependent’deterioration rates are analogous to the group-dependent

positional factors of Chapter 6.

The problem of minimising the makespan under the general settings defined by

(8.1) and (4.1) can be denoted by 1
∣∣pj + a[x]τ ,MP

∣∣Cmax. An optimal solution to
problem 1

∣∣pj + a[x]τ ,MP
∣∣Cmax must deliver optimal choices for each of the Decisions

1-4 defined in Chapter 4. In what follows, we consider various versions of problem

1
∣∣pj + a[x]τ ,MP

∣∣Cmax and provide polynomial time algorithms to solve them. Similar
to Chapter 6, we differentiate between different versions based on three criteria: (i)

deterioration rates are group-dependent or group-independent, (ii) MPs are identical

or distinct, and (iii) duration of the MPs are constant or start-time dependent. All

versions of problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax reduce to a special case of the linear as-
signment problem with a product matrix and can be solved using the idea presented

in Lemma 2.1.

8.2 Computing Positional Weights

To solve problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax, we first assume that Decisions 1-3 are taken
in advance, so that we know that a total of k − 1 MPs have been included in the

schedule. As a result the jobs are split into k, 1 ≤ k ≤ K + 1, groups. Renumber the

indices of duration parameters of the MPs, in order of their occurrence in the schedule,

so that the duration of the MP scheduled after the x-th group is given by (6.4). Denote

the resulting problem as 1
∣∣pj + a[x]τ ,MP (k − 1)

∣∣Cmax.
To solve problem 1

∣∣pj + a[x]τ ,MP (k − 1)
∣∣Cmax consider a schedule S (k) with a

permutation of jobs π =
(
π[1], π[2], . . . , π[k]

)
. Assume that each group contains a total of

n[x] jobs, so that π[x] =
(
π[x] (1) , π[x] (2) , . . . , π[x]

(
n[x]
))
, 1 ≤ x ≤ k, where

∑k
x=1 n

[x] =

n. We now derive an expression for the total time it takes to process all jobs in a group

x, 1 ≤ x ≤ k.

Let us denote the total duration of the first r jobs in a group x by F(x,r). It follows

131

CHAPTER 8. TIME-DEPENDENT EFFECTS

from (8.1) that

F(x,1) = pπ[x](1)

F(x,2) = F(x,1) +
(
pπ[x](2) + a[x]F(x,1)

)
=
(
a[x] + 1

)
pπ[x](1) + pπ[x](2)

F(x,3) = F(x,1) +
(
pπ[x](3) + a[x]F(x,2)

)
=
(
a[x] + 1

) ((
a[x] + 1

)
pπ[x](1) + pπ[x](2)

)
+ pπ[x](3)

=
(
a[x] + 1

)2
pπ[x](1) +

(
a[x] + 1

)
pπ[x](2) + pπ[x](3)

...

F(x,r) =
r∑

u=1

(
a[x] + 1

)r−u
pπ[x](u), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k.

Thus, the total time it takes to process all jobs in a group x can be given by

Fx = F(x,n[x])

n[x]∑
r=1

(
a[x] + 1

)n[x]−r
pπ[x](r), 1 ≤ x ≤ k. (8.2)

The makespan of a schedule S (k) is given by

Cmax (S (k)) = F1 + T1 + F2 + T2 + · · ·+ Fk−1 + Tk−1 + Tk,

where Tx is the duration of the MP scheduled after the x-th group. Substituting the

value of Tx from (6.4) in the above equation we get

Cmax (S (k)) =
k−1∑
x=1

(1 + α[x])Fx + Fk +
k−1∑
x=1

β[x].

Now, substituting the value of Fx from (8.2) we get

Cmax (S (k)) =

k−1∑
x=1

n[x]∑
r=1

(1+α[x])
(
a[x] + 1

)n[x]−r
pπ[x](r)+

n[k]∑
r=1

(
a[k] + 1

)n[k]−r
pπ[k](r)+

k−1∑
x=1

β[x].

(8.3)

Notice that the above objective function can be written as the generic function (4.6)

introduced in Chapter 6, with the positional weights

W [x](r) =

{
(1 + α[x])

(
a[x] + 1

)n[x]−r
, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,(

a[k] + 1
)n[k]−r

1 ≤ r ≤ n[x], x = k,
(8.4)

and the constant term still given by (6.9).

Thus, problem 1
∣∣pj + a[x]τ ,MP (k − 1)

∣∣Cmax reduces to minimising a linear form
132

CHAPTER 8. TIME-DEPENDENT EFFECTS

∑k
x=1

∑n[x]

r=1W
[x](r)pπ[x](r) over a set of all permutations. If the number of jobs in each

group n[x], 1 ≤ x ≤ k, is known, an optimal solution can be obtained by running Al-

gorithm Match2. To obtain a solution to the original problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax,
we solve all possible instances of problem 1

∣∣pj + a[x]τ ,MP (k − 1)
∣∣Cmax by modifying

the outcomes of Decisions 1-3 and choose the instance with the smallest value of the

objective function as our optimal solution.

Similar to Chapter 6, we shall consider eight different versions of problem

1
∣∣pj + a[x]τ ,MP

∣∣Cmax. For each version, the computed positional weights are found
by making an appropriate substitution in (8.4). Recall that (8.4) is computed for the

most general version, in which the deterioration rates are group-dependent, MPs are

distinct and their duration depends on the start-time. Notice that unlike the posi-

tional weights (6.8) found in Chapter 6, the ones defined by (8.4) are non-increasing

within each group. Additionally, their value is dependent on the number of jobs n[x]

in a group. Owing to these differences the solution approaches provided in Chapter 6

cannot be used to obtain a solution for problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax.
In the following three sections, we present three new solution approaches, which

handle different versions of problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax. Each of these solution ap-
proaches are similar in philosophy to the corresponding solution approaches in Chap-

ter 6. They only differ in the execution of the idea. Table 8.1 lists out all the versions

under consideration and mentions the section that deals with them.

Constant Duration MPs Start-time dependent MPs
Identical Distinct Identical Distinct

Group-indep Section 8.5 Section 8.5 Section 8.4 Section 8.3
Group-dep Section 8.4 Section 8.3 Section 8.3 Section 8.3

Table 8.1: Different versions of problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax

8.3 Solution Approach TimeJIGD

In this section, we describe a solution approach, which can solve all versions of prob-

lem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax without prior knowledge of the number of jobs n[x] in
each group. The only pre-requisite condition is that the computed positional weights

W [x](r), 1 ≤ r ≤ n[x], should be non-increasing in every group x, 1 ≤ x ≤ k.

Let us begin our consideration with the most general version of problem

1
∣∣pj + a[x]τ ,MP

∣∣Cmax, such as the one discussed in Section 8.2. Assume

133

CHAPTER 8. TIME-DEPENDENT EFFECTS

that Decisions 1-3 are taken in advance and denote the resulting problem as

1
∣∣pj + a[x]τ ,MP (k − 1)

∣∣Cmax. This problem can be solved by minimising the generic

objective function (4.6) with positional weights given by (8.4) and the constant term

given by (6.9). Below we outline a solution approach based on Theorem 6.1 that

minimises (4.6).

First, set the value n[x] = n, 1 ≤ x ≤ k, and compute all positional weightsW [x] (r) ,

1 ≤ r ≤ n, 1 ≤ x ≤ k, by (8.4). Notice that these positional weights represent a set of

all possible values of W [x] (r) and are given by

U [1]
(
1 + a[1]

)n−1
U [2]

(
1 + a[2]

)n−1 · · · U [k]
(
1 + a[k]

)n−1
U [1]

(
1 + a[1]

)n−2
U [2]

(
1 + a[2]

)n−2 · · · U [k]
(
1 + a[k]

)n−2
...

... · · · ...

U [1]
(
1 + a[1]

)2
U [2]

(
1 + a[2]

)2 · · · U [k]
(
1 + a[k]

)2
U [1]

(
1 + a[1]

)
U [2]

(
1 + a[2]

)
· · · U [k]

(
1 + a[k]

)
U [1] U [2] · · · U [k]

, (8.5)

where for convenience we denote U [x] :=
(
1 + α[x]

)
, 1 ≤ x ≤ k − 1, and U [k] := 1.

Each column in the above matrix represents all possible positional weights that can

be associated with a particular group, the first element of column x representing a

weight associated with the first position of group x, while the last element of column

x, representing a weight associated with the last, i.e., the n- th position of group x,

1 ≤ x ≤ k. The running time required to compute the matrix can be estimated as

O (nk) .

According to Theorem 6.1, an optimal schedule can be found by choosing the n

smallest of these values and assigning the largest jobs to the positions corresponding

to the smallest positional weights. Notice that this approach is similar to Solution

Approach PosiJIGD presented in Chapter 6. The main difference lies in the fact that

because of the non-increasing order of the positional weights in each group, the n

smallest values are found in consecutive positions at the bottom of the matrix (8.5).

The smallest positional weight of a group is associated with the last position of that

group, irrespective of the number of jobs in that group. Also notice that starting from

the last element of a group and moving upwards, the value of the positional weights

remain the same if even if n[x] 6= n.

The problem of finding the corresponding schedule is structurally similar to that of

scheduling jobs on parallel machines to minimise the total flow time and can be solved

by a method similar to that described by Conway, Maxwell and Miller (1967), and its

implementation given by Brucker (2007). According to the method, the groups are

134

CHAPTER 8. TIME-DEPENDENT EFFECTS

filled in the reversed order, from the last position to the first one. Scan the jobs in the

LPT order. To assign the first job, compare the k multipliers U [x], 1 ≤ x ≤ k, and

assign the job in the last position of the group associated with the smallest multiplier.

The process continues, and for the current job the smallest of the k available multipliers

determines the group and the position within the group where the job is assigned. This

approach does not require any advance knowledge of the number of jobs n[x] in a group,

even though the value of the positional weights are dependent on them.

A formal description of the algorithm is given below. Notice that the algorithm

is very similar to Algorithm NSmall in Chapter 6, but uses the opposite direction of

filling the groups.

Algorithm NSmallRev

input: An instance of problem 1
∣∣pj + a[x]τ ,MP (k − 1)

∣∣Cmax with positional weights
W [x](r), 1 ≤ r ≤ n[x], defined by (8.4)

output: An optimal schedule S∗ (k) defined by the processing sequences π[x], 1 ≤
x ≤ k

Step 1. If required, renumber the jobs in the LPT order. For each group x, 1 ≤ x ≤ k,

define an empty processing sequence π[i] := (∅) and the weight W [x] = U [x].

Step 2. For each job j from 1 to n do

(a) Find the smallest index v with W [v] = min
{
W [i]|1 ≤ i ≤ k

}
.

(b) Assign job j to group v and place it in front of the current permutation π[v],
i.e., define π[v] := (j, π[v]). Define W [v] := W [v]

(
1 + a[v]

)
.

Step 3. With the found permutation π∗ =
(
π[1], π[2], . . . , π[k]

)
, compute the optimal

value of the objective function Cmax (S∗ (k)) by substituting appropriate values

in (4.6).

Step 2a of Algorithm NSmallRev requires O (k) comparisons, while Step 2b is com-

pleted in constant time. Thus, in all Step 2, requires O (nk) time and Step 3 requires

O (n) time. The following statement holds.

Theorem 8.1. Algorithm NSmallRev solves an instance of problem

1
∣∣pj + a[x]τ ,MP (k − 1)

∣∣Cmax in O (nk) time, provided that the LPT order of

the jobs is known.

135

CHAPTER 8. TIME-DEPENDENT EFFECTS

Notice that in an optimal solution for an instance of problem

1
∣∣pj + a[x]τ ,MP (k − 1)

∣∣Cmax it is possible that out of the k groups, certain

groups are not assigned any jobs at all, i.e., n[x] = 0. Such a situation can occur if

an MP is not effi cient in restoring the machine to a better state, and as a result the

group that follows generates positional weights with big values. Such an instance can

never result in an optimal schedule for the general problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax, as
we are unnecessarily spending time to perform an ineffi cient MP. This instance, if any,

will be automatically eliminated from consideration if we try different combinations of

Decision 1-3 to define problem 1
∣∣pj + a[x]τ ,MP (k − 1)

∣∣Cmax.
To determine the optimal solution for the general problem 1

∣∣pj + a[x]τ ,MP
∣∣Cmax,

all options associated with Decisions 1-3 must be enumerated and the so-

lutions of the resulting sub-problems 1
∣∣∣pjg[x]j (r) -det,MP (k − 1)

∣∣∣Cmax be com-

pared. The best of these solutions is chosen as the optimal solution for prob-

lem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax. The same procedure holds for all other less general ver-
sions of problem 1

∣∣pj + a[x]τ ,MP
∣∣Cmax. Table 8.2 states the number of times Al-

gorithm NSmallRev must be run in order to solve different versions of problem

1
∣∣pj + a[x]τ ,MP

∣∣Cmax.
Constant Duration MPs Start-time dependent MPs
Identical Distinct Identical Distinct

Group-indep Section 8.5 Section 8.5 Section 8.4
∑K+1

k=1

(
K
k−1
)

Group-dep Section 8.4
∑K+1

k=1

(
K
k−1
) ∑K+1

k=1 1
∑K+1

k=1

(
K
k−1
)

(k − 1)

Table 8.2: Number of times to run Algorithm NSmallRev to solve different versions of
problem 1

∣∣pj + a[x]τ ,MP
∣∣Cmax.

Notice that although Algorithm NSmallRev is able to solve all eight versions of

problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax, for some cases it is possible to make Decisions 1-3
on the fly by using another solution approach, which enables the optimal solution

to be found in faster time. For such cases, a reference to the relevant section has

been made in Table 8.2. For all other cases, the number of instances of problem

1
∣∣pj + a[x]τ ,MP (k − 1)

∣∣Cmax can be computed similarly to the computation of the
values of Table 6.2, which was done for case of positional deterioration in Chapter 6.

Since Algorithm NSmallRev requires O (nk) time to run for a given k, 1 ≤ k ≤
K + 1, the respective running times that are needed to solve different versions of prob-

lem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax can again be computed similarly to Section 6.5. For prob-
lem 1

∣∣pj + a[x]τ ,MP
∣∣Cmax with group-dependent deterioration rates and distinct MPs

with start-time dependent durations, an optimal solution can be found in O
(
nK22K

)
136

CHAPTER 8. TIME-DEPENDENT EFFECTS

time. For the problem with group-independent deterioration rates and distinct MPs

with constant durations, i.e., a[x] = a, α[x] = 0, 1 ≤ x ≤ K + 1, an optimal so-

lution can be found in O
(
nK2K

)
time. The same running time is needed for the

problem with group-dependent deterioration rates and identical MPs with start-time

dependent durations, i.e., α[x] = α, β[x] = β, 1 ≤ x ≤ K + 1. Lastly, for problem

1
∣∣pj + a[x]τ ,MP

∣∣Cmax with group-dependent deterioration rates and identical MPs
with constant durations, i.e., α[x] = 0, β[x] = β, 1 ≤ x ≤ K + 1, an optimal solution

can be found in O (nK2) time.

8.4 Solution Approach TimeJIKdomi

In this section, we consider versions of problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax in which De-
cisions 1-4 can be made on the fly, without having to enumerate all possible options.

We list out two versions for which this is possible:

Problem 1: Problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax with group-dependent deterioration

rates and distinct MPs with constant durations, i.e., α[x] = 0, 1 ≤ x ≤ K + 1,

subject to the condition that the deterioration rates can be ordered such that

a[1] ≤ a[2] ≤ · · · ≤ a[K+1], (8.6)

and (6.11) hold simultaneously. This version is a generalisation of one of the cases

found in Table 8.2, in which group-dependent deterioration rates are considered

along with identical MPs of constant duration, i.e., α[x] = 0, β[x] = β, 1 ≤ x ≤
K+1. To see why (8.6) holds for the latter problem, follow the argument presented

in Section 6.6, i.e., if identical MPs are performed in a schedule, the deterioration

rate of the machine cannot become lower as more groups are created.

Problem 2 Problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax with group-independent deterioration

rates, i.e., a[x] = a, 1 ≤ x ≤ K + 1, and distinct MPs with start-time dependent

durations, subject to the condition that the duration parameters of the MPs can

be ordered such that (6.12) and (6.11) hold simultaneously. This version is a

generalisation of one of the cases found in Table 8.2, in which group-independent

positional rates are considered along with identical MPs of start-time dependent

duration, i.e., α[x] = α, β[x] = β, 1 ≤ x ≤ K + 1.

In order to solve both versions of problem 1
∣∣∣pjg[x]j (r) -det,MP

∣∣∣Cmax described
above, the optimal choice for Decisions 2 and 3 can be made easily. If Decision 1

137

CHAPTER 8. TIME-DEPENDENT EFFECTS

is assumed to be taken, so that k−1, 1 ≤ k ≤ K+1,MPs are included in the schedule,

then for both problems, the MPs with the indices 1, 2, . . . , k− 1 are chosen and sched-

uled in the same order. This is the optimal choice for Problem 1 as the MPs with the

indices 1, 2, . . . , k − 1 have the smallest durations and create groups that contain the

smallest deterioration rates, owing to (8.6) and (6.11) holding simultaneously. This is

the optimal choice for Problem 2 as all MPs create identical groups and the ones with

a smaller index have smaller values of the duration parameters, owing to (6.12) and

(6.11) holding simultaneously. Notice that the order of the MPs is inconsequential in

both cases.

With Decisions 1-3 having been made (with an assumed value of k), denote the

resulting problem as 1
∣∣pj + a[x]τ ,MP (k − 1)

∣∣Cmax. This problem can be solved by

minimising the generic objective function of the form (4.6). For Problem 1, obtain the

required positional weightsW [x](r) by substituting α[x] = 0, 1 ≤ x ≤ k, in (8.4) so that

W [x](r) =
(
1 + a[x]

)n[x]−r
, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, (8.7)

and for Problem 2, substitute a[x] = a, 1 ≤ x ≤ k, so that

W [x](r) =

{
(1 + α[x]) (1 + a)n

[x]−r , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

(1 + a)n
[x]−r

1 ≤ r ≤ n[x], x = k.
(8.8)

Set the value n[x] = n, 1 ≤ x ≤ k, and k = K+1, and compute all positional weights

W [x] (r) , 1 ≤ r ≤ n, 1 ≤ x ≤ K + 1, for both problems by using the formulae above.

Notice that the computed positional weights represent a set of all possible values of

W [x] (r) across all possible groups. Further, notice that because of (8.6), the positional

weights associated with Problem 1 are ordered such that for each k, 1 ≤ k ≤ K + 1,

we have

W [1](r) ≤ W [2](r) ≤ · · · ≤ W [k](r), 1 ≤ r ≤ n,

and because of (6.12), the positional weights for Problem 2 are ordered such that for

each k, 1 ≤ k ≤ K + 1, we have

W [k](r) ≤ W [1](r) ≤ W [2](r) ≤ · · · ≤ W [k−1](r), 1 ≤ r ≤ n.

Notice that both Problems 1 and 2 satisfy the conditions of ‘K-domi’as laid out

in Definition 6.1. For instances of problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax that satisfy (6.11)
and ‘K-domi’, it is possible to compute the optimal values of n[x], 1 ≤ x ≤ k, and

Decisions 1-4 on the fly. Recall that for a fixed value of Decision 1, the optimal values

138

CHAPTER 8. TIME-DEPENDENT EFFECTS

for Decisions 2 and 3 are already known. Thus, to solve problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax
we only need to worry about finding the optimal values for Decisions 1 and 4.

Recall from Section 6.6 that under such conditions the relevant problem is solvable

by Algorithm NSmall2, which finds an optimal schedule by computing the optimal

values of n[x], 1 ≤ x ≤ k, and Decisions 1 and 4 on the fly. Indeed, we can use a

version of Algorithm NSmall2 to obtain an optimal solution for Problems 1 and 2 of

this section as well.

Similar to the Solution Approach PosiJIKdomi provided in Section 6.6, create a list

H(v), 1 ≤ v ≤ K+1, which is defined differently for Problems 1 and 2. For Problem 1,

H (v) contains the positional weights W [v] (r) , v ≤ r ≤ n, for n[x] = n, so that by (8.7)

we have

H (v) :=

(
1 + a[v]

)n−v(
1 + a[v]

)n−(v+1)
...(

1 + a[v]
)2(

1 + a[v]
)

1

, 1 ≤ v ≤ K + 1.

For Problem 2, notice that the values of the positional weights given by (8.8) change

dynamically as the value of k is changed. Thus, we define H (v) so that this effect is

incorporated; define

H (1) :=

(1 + a)n−1

(1 + a)n−2

...

(1 + a)2

(1 + a)

1

, H (v) :=

U [v−1] (1 + av)n−v

U [v−1] (1 + a)n−(v+1)

...

U [v−1] (1 + a)2

U [v−1] (1 + a)

U [v−1]

, 2 ≤ v ≤ K + 1,

where U [v−1] =
(
1 + α[v−1]

)
, 2 ≤ v ≤ K + 1. Notice that for both problems, list H (v)

has at most n−v+1, 1 ≤ v ≤ K+1, elements sorted in a non-increasing order. Similar

to the argument in Section 6.6, it suffi ces to consider only n− v + 1 positions in a list

H (v) , as due to condition ‘K-domi’it can be ensured that each of the v − 1 earlier

groups will have at least 1 job scheduled in them.

With the found lists H (v) , 1 ≤ v ≤ K + 1, run Algorithm NSmall2 with a minor

alteration made in Step 4. In Step 4 of Algorithm NSmall2, instead of using Algo-

rithm NSmall to obtain an optimal processing sequence π∗ =
(
π[1], π[2], . . . , π[k

∗]
)
, use

139

CHAPTER 8. TIME-DEPENDENT EFFECTS

Algorithm NSmallRev. This is necessary, as the computed positional weights for Prob-

lems 1 and 2 are non-increasing, and hence, it must be ensured that the groups are filled

in a reversed order. Notice that Steps 1-3 of Algorithm NSmall2 are unaffected by the

ordering of the positional weights in their respective groups. The following statement

holds. It follows from Theorem 6.3 that an instance of problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax
defined by Problems 1 and 2 can be solved in O (nK) time, provided that the LPT

order of the jobs is known.

8.5 Solution Approach TimeJIGI

In this section, we deal with problems in which the computed positional weights are

group-independent, i.e., of the form W [x](r) = W (r) , 1 ≤ x ≤ k, and additionally,

they are ordered in a way such that W (1) ≥ W (2) ≥ · · · ≥ W (n) . Such a situation

arises for versions of problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax, in which the deterioration rates
are group-independent, i.e., a[x] = a, 1 ≤ x ≤ K+1. The MPs are of constant duration

and can be either distinct or identical. The problem with identical MPs is a special

case of the problem with distinct MPs and does not result in better running times.

Thus, we only consider the latter problem. Formally, we denote the described problem

by 1 |pj + aτ ,MP [0]|Cmax.

Notice that for problem 1 |pj + aτ ,MP [0]|Cmax, the optimal choice for Deci-
sions 2 and 3 can be made easily. Assume that an optimal solution to problem

1 |pj + aτ ,MP [0]|Cmax includes k−1 MPs in the schedule, so that the jobs are divided

into k, 1 ≤ k ≤ K + 1, groups. Since it is known that the MPs create identical groups,

it follows that the order in which they are performed is not important. Further, it is

obvious that in order to choose k−1 MPs out of the available K, the ones with smaller

durations are given priority. To ensure that the smallest k − 1 MPs are chosen in an

optimal schedule, we renumber the K available MPs in a way that (6.11) holds and

select the ones with indices 1, 2, . . . , k− 1. Lastly, we fix their order as per their index

numbers.

With Decisions 1-3 having been made (with an assumed value of k), the resulting

problem 1
∣∣pj + a[x]τ ,MP [0] (k − 1)

∣∣Cmax can be solved by minimising the generic ob-
jective function (4.6). Obtain the required positional weights W [x](r) by substituting

a[x] = a, α[x] = 0, 1 ≤ x ≤ k, in (8.4) so that we have

W [x](r) = (1 + a)n
[x]−r , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k.

140

CHAPTER 8. TIME-DEPENDENT EFFECTS

To solve an instance of problem 1
∣∣pj + a[x]τ ,MP [0] (k − 1)

∣∣Cmax, below we outline
a solution approach which is again based on Theorem 6.1 and is similar to the one given

in Section 6.7.

First, set the value n[x] = n, 1 ≤ x ≤ k, and from the resulting set of positional

weights

(1 + a)n−1 (1 + a)n−1 · · · (1 + a)n−1

(1 + a)n−2 (1 + a)n−2 · · · (1 + a)n−2

...
... · · · ...

(1 + a)2 (1 + a)2 · · · (1 + a)2

(1 + a) (1 + a) · · · (1 + a)

1 1 · · · 1

,

choose the n smallest of them. Obviously, the n smallest weights are found in consec-

utive positions at the bottom of the matrix. The smallest k positional weights are due

to the last positions of each of the k groups. The next smallest k positional weights are

due to the second last positions of each of the k groups, and so on. Next, scan the jobs

in LPT order and assign the first k jobs to the first positions in each of the k groups,

then the next k jobs going to the second positions in each of the k groups, and so on,

until all jobs have been sequenced.

This is similar to the treatment of problem 1 |pjg (r) -det,MP [0] (k − 1)|Cmax
considered in Section 6.7, the only difference being that for problem

1
∣∣pj + a[x]τ ,MP [0] (k − 1)

∣∣Cmax, the groups need to be filled in a reversed or-

der, as the smallest positional weights are found at the end of a group. Still, the

optimal values for the number of jobs in each group can be given by (6.16). With

known values of W [x](r), 1 ≤ r ≤ n[x], and n[x], 1 ≤ x ≤ k, an optimal makespan

Cmax (S∗ (k)) for problem 1
∣∣pj + a[x]τ ,MP [0] (k − 1)

∣∣Cmax can be found in O (n) time

by running Algorithm Match2.

To determine the optimal solution for problem 1
∣∣pj + a[x]τ ,MP [0]

∣∣Cmax, all op-
tions associated with Decisions 1-3 must be enumerated. Decisions 2 and 3 have already

been chosen optimally, thus, we only need to determine the optimal value of the number

of MPs. We can do this by solving problem 1
∣∣pj + a[x]τ ,MP [0] (k − 1)

∣∣Cmax for all
values of k, 1 ≤ k ≤ K + 1, and choosing the instance that delivers the smallest value

of Cmax(S∗ (k)). Thus, problem 1 |pjg (r) -det,MP [0]|Cmax can be solved in O (nK)

time. However, we prove that the sequence Cmax(S∗(k)), 1 ≤ k ≤ K + 1, is in fact

V -shaped and thus, in order to search for the smallest value of Cmax(S∗(k)), we only

need to evaluate dlog2 (K + 1)e options of k, 1 ≤ k ≤ K + 1.

Lemma 8.1. For problem 1
∣∣pj + a[x]τ ,MP [0] (k − 1)

∣∣Cmax, if the jobs be numbered
141

CHAPTER 8. TIME-DEPENDENT EFFECTS

in the LPT order (2.7), then the makespan of the optimal schedule can be written as

Cmax(S
∗ (k)) = P (S∗ (k)) + Γ(k) =

n∑
j=1

pjh

(⌈
j

k

⌉)
+

k−1∑
x=1

β[x]. (8.9)

where we denote h (r) := (1 + a)r−1 , 1 ≤ r ≤ n.

The proof of Lemma 8.1 is similar to that of Lemma 6.1.

Theorem 8.2. For problem 1
∣∣pj + a[x]τ ,MP [0]

∣∣Cmax, the sequence Cmax (S∗(k)) =

P (S∗ (k)) + Γ(k), 1 ≤ k ≤ K + 1 ≤ n, given by (8.9), is V -shaped.

Proof: The proof of Theorem 8.2 is similar to that of Theorem 6.5. Since h (r) =

(1 + a)r−1 , 1 ≤ r ≤ n, is a non-decreasing function, it follows from Theorem 5.2 that

the sequence P (S∗ (k)), 1 ≤ k ≤ n, is convex. The convexity of the sequence Γ(k),

1 ≤ k ≤ n, is proved in Section 6.7 provided that (6.11) holds. Thus, the sequence

Cmax (S∗(k)) = P (S∗ (k)) + Γ(k), 1 ≤ k ≤ K + 1 ≤ n, is convex as the sum of two

convex sequences, and is also V -shaped as Lemma 5.1 holds.

Theorem 6.5 allows us to find the optimal number of groups k∗, 1 ≤ k ≤ K + 1,

by binary search; see Algorithm BinarySearch presented in Section 6.7. All together,

Algorithm BinarySearch explores at most dlog2 (K + 1)e values of k, so that the optimal
solution for problem 1 |pjg (r) -det,MP [0]|Cmax can be found in O(n logK) time.

8.6 Conclusion

In this chapter, we solve several problems with time-dependent deterioration effects and

maintenance activities. We are not aware of any other papers that study the problem

of minimising the makespan, for a model in which a time-dependent effect of the form

(3.15) is combined with multiple MPs. Moreover, in line with the rest of the thesis, we

even consider enhanced models in which the deterioration rates can be group-dependent

and the MPs can have different durations. We propose three solution approaches that

solve different versions of problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax. These solution approaches
directly follow from the corresponding solution approaches presented in Chapter 6,

which were used for solving different versions of problem 1
∣∣pjg[x] (r) ,MP

∣∣Cmax. No-
tice that even though the underlying effect in both problems is very different, similar

algorithmic ideas can be used to solve them. In the next chapter, we explore models

that combine both of these effects and see if the same methodology can be extended

to solve a very general problem with changing processing times.

142

CHAPTER 8. TIME-DEPENDENT EFFECTS

Table 8.3 summarises all the problems considered in this chapter along with the

running times needed to solve them.

Constant Duration MPs Start-time dependent MPs
Identical Distinct Identical Distinct

Group-indep O (n logK) O (n logK) O (nK) O
(
nK2K

)
Group-dep O (nK) O

(
nK2K

)
O (nK2) O

(
nK22K

)
Table 8.3: Computational complexities of different versions of problem
1
∣∣pj + a[x]τ ,MP

∣∣Cmax.

143

CHAPTER 9

Combined Effects and Rate-Modifying
Activities

In this chapter, we study models which combine many of the effects that we have

discussed so far, namely:

• Positional and time-dependent effects;

• Learning and deterioration effects;

• Rate-modifying activities.

We develop a very general model and solve the problems of minimising the makespan

and the total flow time by reducing them to a linear assignment problem with a product

matrix. The results of this chapter are published in our recent paper Rustogi and

Strusevich (2013b). The presentation of content in the paper is very similar to the

content provided in this chapter.

9.1 Overview of the Problems

Recall that in Section 3.2.2, we have reviewed models in which a time-dependent effect

of the form (3.15) is combined with a positional effect, so that the actual processing

time of a job j ∈ N sequenced in position r and starting at time τ ≥ 0 of a schedule

is given by

pj(τ , r) = (pj + aτ) g(r). (9.1)

Notice that most of the earlier papers on such combined models have emphasised

on a clear distinction between the models with learning and deterioration. For exam-

ple, Wang (2006) and Yang and Kuo (2009), consider a model with time-dependent

144

CHAPTER 9. COMBINED EFFECTS

deterioration (a > 0) and positional learning (g(r) = rb, b < 0), while Yang (2010)

considers a model with time-dependent learning (a < 0) and positional deterioration

(g(r) = rb, b > 0).

In Chapter 6, we discuss that in the case of a positional effect, it is possible to

study a model with both deterioration and learning effects, if we redefine our positional

factors as g (r) := gd (r) gl (r) , 1 ≤ r ≤ n, where gd (r) represents a deterioration factor

so that gd (1) ≤ gd (2) ≤ · · · ≤ gd (n) holds, and gl (r) represents a learning factor

so that gl (1) ≥ gl (2) ≥ · · · ≥ gl (n) holds. As a result, the positional factors g (r) ,

1 ≤ r ≤ n, are non-monotone with respect to r. Example 4.1 illustrates such an effect.

Similarly, in the case of a time-dependent effect of the form 3.15, we can combine

learning and deterioration effects by simply redefining the rate a := d+ l, where d > 0

is a deterioration rate and l < 0 is a learning rate. As a result, the resulting rate a can

be of an arbitrary sign.

In this chapter, we mainly concentrate on a combined model of the form (9.1),

in which there are no assumptions made on the monotone behaviour of the positional

factors and on the sign of the rate a that defines a time-dependent effect. Such a model

covers all known models with job-independent effects and allows handling simultaneous

learning and deterioration effects of both types (time-dependent and positional). In

all the problems that we consider, we assume that the jobs of set N = {1, 2, . . . , n}
have to be processed on a single machine. The jobs are available for processing at time

zero and are independent, i.e., there are no precedence constraints and any processing

sequence is feasible. At time zero, the machine is assumed to be in a perfect processing

state, and its conditions change with the course of processing, both with respect to

time and position.

Below we demonstrate that if no rate-modifying activities are included in a schedule

then under the conditions defined above, the problems of minimising the makespan and

the total flow time can be solved by Algorithm Match1 described in Chapter 4. Sup-

pose that the jobs are processed according to a sequence π = (π (1) , π (2) , . . . , π (n)).

Extending the arguments by Wang (2006) and Yang and Kuo (2009), it is easy to prove

that the problems of minimising the makespan and the total flow time can be reduced

to minimising (4.3), with Γ = 0 and positional weights

W (r) = g(r)

n∏
i=r+1

(1 + ag(i)) , 1 ≤ r ≤ n,

145

CHAPTER 9. COMBINED EFFECTS

and

W (r) = g(r)

[
n∑
u=r

u∏
i=r+1

(1 + ag (i))

]
, 1 ≤ r ≤ n,

respectively. Thus, both problems reduce to minimising a linear form
∑n

r=1W (r)pπ(r)

over a set of all permutations and are solvable in O(n log n) time each. This reduction

holds, irrespective of the sign of a and the shape of the function g(r), i.e. the sequence

g(r), 1 ≤ r ≤ n, can be made up of arbitrary positional factors, even non-monotone.

In the case of a net learning effect, where a < 0, care should be taken to guarantee

that the actual processing times do not become negative.

In the following sections, we further extend this general model by combining it with

rate-modifying activities.

9.2 Models with Rate Modifying Activities

Similar to earlier chapters, consider a general situation in which the decision-maker

is presented with a total of K ≥ 0 possible rate-modifying activities, which can be

either distinct or alike. For each RMP, it is exactly known how it affects the processing

conditions of the machine, should the decision-maker decide to include it into a sched-

ule. Recall that an RMP can either be seen as maintenance period, which is aimed at

restoring the machine conditions to a better state so that the processing times become

smaller, or on the other hand, it can be seen as an activity in which a machine/operator

is replaced, so that all learning advantages are lost and the actual processing times of

jobs become larger. Another form of RMP which is studied by Ji and Cheng (2010),

can be of the form in which the learning rate of the machine is further enhanced after

the RMP.

So far in this thesis, we have made a clear distinction between different kinds of

RMPs and have only considered problems in which an RMP is treated as a maintenance

period and is used in models with a deterioration effect only. In this chapter, however,

we do not impose any restrictions on the RMPs. They can have any arbitrary effect on

the machine conditions. An illustration of a schedule with different types of RMPs is

provided in Example 4.1, in which we combine learning and deterioration effects for a

pure positional model. In the same example, we also consider a situation in which the

positional factors g[x] (r) are found to be dependent on the number of jobs in previous

groups. In this chapter, we extend such a model by combining it with a time-dependent

effect. As a result in our main model, the actual processing time of a job is seen as

affected by the following factors:

146

CHAPTER 9. COMBINED EFFECTS

• the group a job is assigned to;

• the position of the job within its group;

• the number of jobs scheduled in each of the previous groups;

• the time elapsed before processing the job within its group;

• the time elapsed in each of the previous groups.

Additionally, the duration DRMP of an RMP with an index y, 1 ≤ y ≤ K, is given

by

DRMP =
(
α[y]τ + ψ[y]

)
f [y] (η) , (9.2)

where

• τ is the time since the last RMP was performed;

• α[y] and ψ[y] > 0 are given constants known for each RMP, 1 ≤ y ≤ K;

• the factor f [y] (η) represents a positional factor which makes the duration of the

RMP dependent on the number of jobs η scheduled since the last RMP was

performed.

The conceived model allows us to handle a wide range of practical problems, which

have not been studied in the scheduling literature so far. Notice that the above defined

model to determine the duration of an RMP is a further generalisation of the definition

ofDRMP given in (4.1), as it additionally allows a positional factor, so that the duration

is dependent on the start-time of the RMP and also on the position of the RMP in the

processing sequence. The latter is in line with positionally dependent setup times for

models that arise in group technology scheduling; see Lee and Wu (2009). As a result,

according to the revised model the later an RMP is scheduled, both with respect to

time and position, the longer/shorter it takes to complete it, depending on the sign of

α[y] and the nature of the function f [y].

Formally, consider a schedule S (k) with k − 1, 1 ≤ k ≤ K + 1, RMPs and a

permutation of jobs given by π =
(
π[1], π[2], . . . , π[k]

)
. Assume that each group contains

a total of n[x] jobs, so that π[x] =
(
π[x] (1) , π[x] (2) , . . . , π[x]

(
n[x]
))
, 1 ≤ x ≤ k, where∑k

x=1 n
[x] = n. Depending on which RMPs are chosen and the order in which they

are performed, the actual processing time of a job j = π[x] (r) , scheduled in position r,

147

CHAPTER 9. COMBINED EFFECTS

1 ≤ r ≤ n[x], of the x-th group, 1 ≤ x ≤ k, is given by

p
[x]
j (r) =

(
pπ[x](r) + a

[x]
1 F1 + a

[x]
2 F2 + ...+ a

[x]
x−1Fx−1 + a

[x]
x F(x,r−1)

)
g[x] (r) ,

1 ≤ r ≤ n[x], 1 ≤ x ≤ k,
(9.3)

where Fv denotes the total processing time of all jobs scheduled in a group v, while

F(x,r) represents the total duration of the first r jobs in a group x, and for completeness

we have the condition F0 = F(x,0) = 0. The terms g[x] (r) represent positive group-

dependent job-independent positional factors, which do not have to be monotone within

a particular group. The terms a[x]1 , a
[x]
2 , . . . , a

[x]
x are real numbers and represent the

group-dependent rates associated with time-dependent effects. Notice that some of the

rates a[x]1 , a
[x]
2 , . . . , a

[x]
x may be negative, which corresponds to a learning effect. Without

going into technical details, in what follows we assume that the rates a[x]1 , a
[x]
2 , . . . , a

[x]
x

are such that the processing times remain positive. See, e.g., Yang (2010) where the

required conditions are explicitly written out for a less general combined effect.

For a job scheduled in position r of group x, the rates a[x]1 , a
[x]
2 , . . . , a

[x]
x−1, determine

how the length of previous groups affects the job’s processing time, whereas a[x]x deter-

mines how the processing time of the job is affected by the time elapsed between the

opening of the x-th group and the start time of the job in position r, 1 ≤ r ≤ n[x]. The

superscript [x] associated with these rates stresses that the rates are group-dependent,

and can assume different values and signs depending on the group x, 1 ≤ x ≤ k, a job is

scheduled in. For example, to determine the actual processing time of a job scheduled

in the third group, the required rates are a[3]1 , a
[3]
2 and a[3]3 , whereas if a job is placed in

the fourth group, the required rates are a[4]1 , a
[4]
2 , a

[4]
3 and a[4]4 .

Notice that it is always assumed that during an RMP the system undergoes neither

learning nor deterioration. Thus, the actual processing times of the jobs given by (9.3)

is independent of the duration of the RMPs.

Further, since the number of jobs, n[x], in each group and the total duration of each

group, Fx, is known, it follows from (9.2) that the duration of an RMP after the x-th,

1 ≤ x ≤ k − 1, group can be given by

Tx = α
[x]
1 F1 + α

[x]
2 F2 + · · ·+ α[x]x Fx + β[x], 1 ≤ x ≤ k − 1, (9.4)

where the values α[x]1 , α
[x]
2 , . . . , α

[x]
x , determine how the length of previous groups affect

the duration of the RMP scheduled after the x-th group, and β[x] > 0 is a constant,

1 ≤ x ≤ k−1. The values α[x]1 , α
[x]
2 , . . . , α

[x]
x , can be seen as being analogous to the rates

a
[x]
1 , a

[x]
2 , . . . , a

[x]
x−1, defined in (9.3). They allow us to incorporate RMPs of a different

148

CHAPTER 9. COMBINED EFFECTS

nature in a schedule. Consider an instance in which a machine undergoes deterioration

and learning simultaneously. Two RMPs are to be included in the processing sequence,

the first being used as a training period for the operator, while the second being an

MP which repairs the machine. As a result three groups are created, with the number

of jobs in each being known as n[1], n[2], and n[3], and the duration of each group being

known as F1, F2, and F3. Thus, according to (9.2) the duration of the first RMP will be

given by DRMP (1) =
[
α[1]F1 + ψ[1]

]
f [1]
(
n[1]
)
, while the duration of the second RMP

will be given by DRMP (2) =
[
α[2] (F1 + F2) + ψ[2]

]
f [2]
(
n[1] + n[2]

)
. The latter relation

holds as the machine is undergoing continuous deterioration during the first two groups,

and thus, the time till the first MP is performed is equal to F1 + F1. As a result, in

terms of the formula (9.4), for the first RMP we have α[1]1 = α[1]f [1]
(
n[1]
)
, and β[1] =

ψ[1]f [1]
(
n[1]
)
, while for the second RMP we have α[2]1 = α

[2]
2 = α[2]f [2]

(
n[1] + n[2]

)
, and

β[2] = ψ[2]f [2]
(
n[1] + n[2]

)
. Notice that the values α[x]1 , α

[x]
2 , . . . , α

[x]
x , can assume any

sign as long as it is ensured that the duration of the RMPs is positive.

Extending the standard three-field notation, we denote the problems of minimising

the makespan and the total flow time for scheduling models that satisfy the above

conditions by 1 |Combi, RMP |Cmax and 1 |Combi, RMP |
∑
Cj, respectively. Here, in

the middle field we write “Combi”to stress that the processing times are subject to a

combined effect (9.3), and we write “RMP”to indicate that rate modifying activities

are being applied in accordance with (9.4). This is the first study in which combined

models of such a general kind are being studied. An optimal solution to problem

1 |Combi, RMP |F must deliver optimal choices for each of the Decisions 1-4 defined

in Chapter 4, for F ∈ {Cmax,
∑
Cj}.

Complicated as it looks, the model essentially incorporates and generalises almost

every job-independent effect known in scheduling with changing processing times. It

is flexible enough to serve as a model of many plausible scenarios that may be found

in practice, e.g., in the area manufacturing or shop floor production planning. Below

we give an illustration of a possible application.

Example 9.1. A human operator uses a tool to process n jobs. During the processing
of the jobs, two RMPs will be included in the schedule. It is known that the first RMP

is actually a maintenance period which restores the machine to its original condition.

However, the deterioration rate of the machine becomes greater after the maintenance

period, since the original spare parts are not used. This RMP also provides the operator

with suffi cient rest, so that after the first RMP the operator is as fresh as he/she was at

the beginning of the schedule. The duration of this RMP is dependent on its start-time,

i.e., it follows (9.4) for x = 1, with α[1]1 = α′ and β[1] = β′. The second RMP takes a

149

CHAPTER 9. COMBINED EFFECTS

Group Parameter Value
1 a

[1]
1 d′m + d′w + l′w
g[1] (r) (d′m + 1)r−1 rd

′
w+l

′
w , 1 ≤ r ≤ n[1]

2 a
[2]
1 l′w
a
[2]
2 d′′m + d′w + l′w
g[2] (r) (d′′m + 1)r−1

(
n[1] + r

)l′w rd′w , 1 ≤ r ≤ n[2]

3 a
[3]
1 l′′′w
a
[3]
2 d′′m + l′′′w
a
[3]
3 d′′m + d′′w + l′′w
g[3] (r) (d′′m + 1)n

[2]+r−1 rd
′′
w+l

′′
w , 1 ≤ r ≤ n[3]

Table 9.1: Parameters for Example 9.1

constant time β′′, i.e., α[2]1 = α
[2]
2 = 0 and β[2] = β′′, but does not repair the machine at

all. Instead, a new operator is brought in. Below, we distinguish between the learning

and deterioration parameters for the machine and those for the operator by using the

subscript “m”for the machine and “w”for the operator (worker), respectively.

In a feasible schedule the jobs will be split into k = 3 groups. The machine suffers

from a linear time-dependent deterioration effect, the deterioration rate being equal to

d′m > 0 before the first RMP (the first group), and equal to d′′m > d′m > 0 after the first

RMP (for the second and the third groups). Additionally, the machine is also affected

by a positional exponential deterioration effect of the form (d′m + 1)r−1 before the first

RMP and of the form (d′′m + 1)r−1 after that RMP. The operators are also subject to

time-dependent effects; the deterioration and learning rates for Operator 1 are d′w > 0

and l′w < 0, respectively, and those for Operator 2 are d′′w > 0 and l′′w < 0, respectively.

It is known that in addition to the skills gained while processing the jobs, Operator 2

also passively learns with a rate l′′′w < 0, while he observes Operator 1 process the

jobs in groups 1 and 2. Lastly, the performance of the workers is also affected by a

polynomial positional effect and is quantified by rδ, where the appropriate value of δ

is one of d′w, l
′
w, d

′′
w and l

′′
w, depending on the scenario. There is no positional effect

associated with the passive learning effect of Operator 2.

For the described example, the parameters of our model (9.3) can be set as shown

in Table 9.1.

Notice that our model allows us to assume (unlike, e.g., Yang (2010)), that during

an RMP, if the operator is not replaced, he/she does not lose his/her skills which were

improved due to learning in the earlier groups of the schedule. Similarly, if during an

RMP a machine is not fully repaired, our model is capable of handling the resulting

150

CHAPTER 9. COMBINED EFFECTS

situation in which the deterioration effect from the group before the RMP must be

carried forward to the next group. The same phenomenon is also observed in the

passive learning effect of Operator 2, in which the skills gained during groups 1 and

2 must be carried forward to group 3. These time-dependent effects can be captured

by the group-dependent parameters a[x]v , 1 ≤ v ≤ x − 1, 1 ≤ x ≤ k. Thus, to model

the situation in the given example, we define a[2]1 := l′w (implying that Operator 1 has

gained an experience of F1 time units before starting group 2), a
[3]
1 := l′′′w (implying that

Operator 2 has gained a passive learning experience of F1 time units before starting

group 3) and a[3]2 := d′′m + l′′′w (implying that the machine has deteriorated for F2 time

units and Operator 2 has gained a passive learning experience of F2 time units before

starting group 3). These positional effects are simply captured by adjusting the relative

position of a job in the relevant group, as illustrated in Example 4.1.

As demonstrated in the above example, with appropriate use of the parameters,

a
[x]
v , α

[x]
v , 1 ≤ v ≤ x, g[x] (r) , 1 ≤ r ≤ n[x], and β[x], for each x, 1 ≤ x ≤ k, our

model as defined in (9.3), together with (9.4), can be used to represent a wide variety

of practical situations.

9.3 Computing Positional Weights

To solve problem 1 |Combi, RMP |F, we first assume that Decisions 1-3 are taken in
advance, so that we know that a total of k−1 MPs have been included in the schedule.

As a result the jobs are split into k, 1 ≤ k ≤ K + 1, groups. Define the parameters

a
[x]
1 , a

[x]
2 , . . . , a

[x]
x , 1 ≤ x ≤ k, and α[x]1 , α

[x]
2 , . . . , α

[x]
x , β

[x], 1 ≤ x ≤ k − 1, and denote the

resulting problem as 1 |Combi,RMP (k − 1)|F.

To solve problem 1 |Combi,RMP (k − 1)|F consider a schedule S (k) with a permu-

tation of jobs π =
(
π[1], π[2], . . . , π[k]

)
. Assume that each group contains a total of n[x]

jobs, so that π[x] =
(
π[x] (1) , π[x] (2) , . . . , π[x]

(
n[x]
))
, 1 ≤ x ≤ k, where

∑k
x=1 n

[x] = n.

We now derive an expression for the total time it takes to process all jobs in a group

x, 1 ≤ x ≤ k.

Notice that throughout this chapter we assume that an empty product is equal to

one, while an empty sum is equal to zero, i.e.,
∏r

i=j
(·) = 1 and

∑r
i=j (·) = 0, for j > r.

Lemma 9.1. Given a group x, 1 ≤ x ≤ k, and job j = π[x] (r) sequenced in the r-th

position, 1 ≤ r ≤ n[x], of the group, the completion time F(x,r) of the job with respect

151

CHAPTER 9. COMBINED EFFECTS

to the start time of the group is given by

F(x,r) =

r∑
u=1

(
A[x] + pπ[x](u)

)
B[x] (u, r) , (9.5)

where A[x] :=
∑x−1

v=1 a
[x]
v Fv, and

B[x] (u, r) := g[x] (u)
r∏

i=u+1

(
1 + a[x]x g

[x] (i)
)
, 1 ≤ u ≤ r. (9.6)

Proof: We prove this lemma by induction. For job j = π[x] (r), the value F(x,r) for

r = 1 is given in accordance with (9.3) by

p
[x]
j (1) =

(
pπ[x](1) + a

[x]
1 F1 + a

[x]
2 F2 + ...+ a

[x]
x−1Fx−1

)
g[x] (1)

=
(
pπ[x](1) + A[x]

)
g[x] (1) =

(
pπ[x](1) + A[x]

)
B[x] (1, 1) ,

which corresponds to the right-hand side of (9.5).

Assume that for r, 1 < r ≤ n[x], the equality

F(x,r−1) =
r−1∑
u=1

(
A[x] + pπ[x](u)

)
B[x] (u, r − 1) , (9.7)

holds. We know that

F(x,r) = F(x,r−1) + p
[x]
j (r) .

Substituting (9.3) we get

F(x,r) = F(x,r−1) +
(
pπ[x](r) + A[x] + a[x]x F(x,r−1)

)
g[x] (r)

=
(
1 + a[x]x g

[x] (r)
)
F(x,r−1) +

(
pπ[x](r) + A[x]

)
g[x] (r) .

Substituting the value of F(x,r−1) from (9.7), we obtain

F(x,r) =
(
1 + a[x]x g

[x] (r)
) r−1∑
u=1

(
A[x] + pπ[x](u)

)
B[x] (u, r − 1) +

(
A[x] + pπ[x](r)

)
g[x] (r) .

It can be easily verified that
(

1 + a
[x]
x g[x] (r)

)
B[x] (u, r − 1) = B[x] (u, r) and

152

CHAPTER 9. COMBINED EFFECTS

g[x] (r) = B[x] (r, r), so that we obtain

F(x,r) =

r−1∑
u=1

(
A[x] + pπ[x](u)

)
B[x] (u, r) +

(
A[x] + pπ[x](r)

)
B[x] (r, r)

=

r∑
u=1

(
A[x] + pπ[x](u)

)
B[x] (u, r) ,

which proves the lemma.

Due to Lemma 9.1, the total processing time of a group x, 1 ≤ x ≤ k, can be

written as

Fx = F(x,n[x]) =
n[x]∑
r=1

(
A[x] + pπ[x](r)

)
B[x]

(
r, n[x]

)
=

n[x]∑
r=1

(
x−1∑
v=1

a[x]v Fv

)
B[x]

(
r, n[x]

)
+

n[x]∑
r=1

pπ[x](r)B
[x]
(
r, n[x]

)
=

x−1∑
v=1

a[x]v n[x]∑
r=1

B[x]
(
r, n[x]

)Fv +
n[x]∑
r=1

pπ[x](r)B
[x]
(
r, n[x]

)
.

For convenience, denote

D[x] :=
n[x]∑
r=1

pπ[x](r)B
[x]
(
r, n[x]

)
, 1 ≤ x ≤ k, (9.8)

and

b[x]v := a[x]v

n[x]∑
r=1

B[x]
(
r, n[x]

)
, 1 ≤ v ≤ x− 1, 1 ≤ x ≤ k. (9.9)

Then Fx can be rewritten as

Fx = b
[x]
1 F1 + b

[x]
2 F2 + · · ·+ b

[x]
x−1Fx−1 +D[x]. (9.10)

Lemma 9.2. The total processing time of a group x, 1 ≤ x ≤ k, is given by

Fx =

x∑
v=1

E[v,x]D[v], (9.11)

153

CHAPTER 9. COMBINED EFFECTS

where E[x,x] := 1 and for v ≤ x− 1

E[v,x] :=
x−v∑
w=1

∑
v=v0<v1<···<vw=x

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw]vw−1 , (9.12)

where in (9.12) for each w, 1 ≤ w ≤ x − v, the second summation is taken over all
increasing sequences of w + 1 distinct integers (v0, v1, . . . , vw) with v0 = v and vw = x.

Proof: Please notice the zigzag pattern of the subscripts and superscripts in the

right-hand side of (9.12), as outlined below.

[v1] [v2] . . . [vw−1] [vw]

↗ ↘ ↗ ↘ ↗ . . . ↗ ↘ ↗
v0 v1 v2 . . . vw−1

The proof of the lemma is by induction. For x = 1, it follows from (9.10) that

F1 = D[1]. On the other hand, for x = 1, (9.11) reduces to F1 = E[1,1]D[1], and since

E[1,1] = 1 by definition, we also obtain F1 = D[1].

Assume now that the lemma holds for all groups 1, 2, . . . , x− 1, and prove that it

holds for group x ≤ k. Starting with (9.10), we write

Fx =
x−1∑
v=1

b[x]v Fv +D[x],

and use the induction assumption to substitute (9.11) into the above expression to

obtain

Fx =
x−1∑
v=1

b[x]v

v∑
y=1

E[y,v]D[y] +D[x]

=
x−1∑
v=1

x−1∑
y=v

b[x]y E
[v,y]D[v] +D[x]

=
x−1∑
v=1

(
b[x]v E

[v,v] +
x−1∑
y=v+1

b[x]y E
[v,y]

)
D[v] +D[x].

Further, using the induction assumption, replace E[v,v] by 1 and substitute

154

CHAPTER 9. COMBINED EFFECTS

E[v,y], v < y, in accordance with (9.12). We deduce

Fx =
x−1∑
v=1

(
b[x]v +

x−1∑
y=v+1

b[x]y

(
y−v∑
w=1

∑
v=v0<v1<···<vw=y

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw]vw−1

))
D[v] +D[x]

=

x−1∑
v=1

(
b[x]v +

x−1∑
y=v+1

y−v∑
w=1

∑
v=v0<v1<···<vw=y

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw]vw−1b

[x]
y

)
D[v] +D[x]

=
x−1∑
v=1

(
b[x]v +

x−1∑
y=v+1

y−v∑
w=1

∑
v=v0<v1<···<vw=y

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw]vw−1b

[x]
vw

)
D[v] +D[x].

Observe that for a fixed w the equality

x−1∑
y=v+1

∑
v=v0<v1<···<vw=y

b[v1]v0
b[v2]v1

b[v3]v2
···b[vw]vw−1b

[x]
vw =

∑
v=v0<v1<···<vw≤x−1

b[v1]v0
b[v2]v1

b[v3]v2
···b[vw]vw−1b

[x]
vw

holds, where the summation in the right-hand side is taken over all increasing sequences

of w + 1 distinct integers (v0, v1, . . . , vw) with v0 = v and vw ≤ x− 1.

Notice that for y = v+ 1 and for y = x− 1 we have that w = 1 and w = x− v− 1,

respectively, i.e., 1 ≤ w ≤ x− v − 1. This means that

Fx =
x−1∑
v=1

(
b[x]v +

x−v−1∑
w=1

∑
v=v0<v1<···<vw≤x−1

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw]vw−1b

[x]
vw

)
D[v] +D[x].

Replacing w with w − 1, rewrite

Fx =

x−1∑
v=1

b[x]v +
x−v∑
w=2

∑
v=v0<v1<···<vw−1≤x−1

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw−1]vw−2 b

[x]
vw−1

D[v] +D[x].

It can be easily verified that

b[x]v =

1∑
w=1

∑
v=v0<v1<···<vw−1<vw=x

b[v1]v0
b[v2]v1
· · · b[vw−1]vw−2 b

[vw]
vw−1 , 1 ≤ v ≤ x− 1,

so that Fx, 1 ≤ x ≤ k, can be rewritten as

Fx =
x−1∑
v=1

(
x−v∑
w=1

∑
v=v0<v1<···<vw−1<vw=x

b[v1]v0
b[v2]v1

b[v3]v2
· · · b[vw−1]vw−2 b

[vw]
vw−1

)
D[v] +D[x]

=

x−1∑
v=1

E[v,x]D[v] + E[x,x]D[x] =

x∑
v=1

E[v,x]D[v],

155

CHAPTER 9. COMBINED EFFECTS

which proves the lemma.

The expressions in Lemma 9.2 look heavy; below we illustrate them for small values

of x, e.g., x ≤ 4. Recall that for x = 1, we have F1 = D[1]. For x = 2, the formula

(9.10) gives F2 = b
[2]
1 F1 + D[2] = b

[2]
1 D

[1] + D[2], which complies with (9.11) for x = 2,

since E[1,2] = b
[2]
1 and E[2,2] = 1. Similarly, for x = 3, the formula (9.10) reduces to

F3 = b
[3]
1 F1 + b

[3]
2 F2 +D[3] = b

[3]
1 D

[1] + b
[3]
2

(
b
[2]
1 D

[1] +D[2]
)

+D[3]

=
(
b
[3]
1 + b

[2]
1 b

[3]
2

)
D[1] + b

[3]
2 D

[2] +D[3].

It can be easily verified that this complies with (9.11) for x = 3. For x = 4, using

(9.10) we obtain

F4 = b
[4]
1 F1 + b

[4]
2 F2 + b

[4]
3 F3 +D[4]

= b
[4]
1 D

[1] + b
[4]
2

(
b
[2]
1 D

[1] +D[2]
)

+ b
[4]
3

((
b
[3]
1 + b

[2]
1 b

[3]
2

)
D[1] + b

[3]
2 D

[2] +D[3]
)

+D[4]

=
(
b
[4]
1 + b

[2]
1 b

[4]
2 + b

[3]
1 b

[4]
3 + b

[2]
1 b

[3]
2 b

[4]
3

)
D[1] +

(
b
[4]
2 + b

[3]
2 b

[4]
3

)
D[2] + b

[4]
3 D

[3] +D[4].

On the other hand, using (9.11) we obtain

F4 = E[1,4]D[1] + E[2,4]D[2] + E[3,4]D[3] + E[4,4]D[4]

=

(
3∑

w=1

∑
1=v0<v1<···<vw=4

b[v1]v0
b[v2]v1
· · · b[vw]vw−1

)
D[1]

+

(
2∑

w=1

∑
2=v0<v1<···<vw=4

b[v1]v0
b[v2]v1
· · · b[vw]vw−1

)
D[2]

+

(
1∑

w=1

∑
3=v0<v1<···<vw=4

b[v1]v0
b[v2]v1
· · · b[vw]vw−1

)
D[3] +D[4]

=

(∑
1=v0<v1=4

b[v1]v0
+

∑
1=v0<v1<v2=4

b[v1]v0
b[v2]v1

+
∑

1=v0<v1<v2<v3=4

b[v1]v0
b[v2]v1

b[v3]v2

)
D[1] +(∑

2=v0<v1=4

b[v1]v0
+

∑
2=v0<v1<v2=4

b[v1]v0
b[v2]v1

)
D[2] +

(∑
3=v0<v1=4

b[v1]v0

)
D[3] +D[4]

=
(
b
[4]
1 + b

[2]
1 b

[4]
2 + b

[3]
1 b

[4]
3 + b

[2]
1 b

[3]
2 b

[4]
3

)
D[1] +

(
b
[4]
2 + b

[3]
2 b

[4]
3

)
D[2] + b

[4]
3 D

[3] +D[4].

Notice that the number of terms contained in the expression∑
v=v0<v1<···<vw=x b

[v1]
v0 b

[v2]
v1 b

[v3]
v2 · · · b

[vw]
vw−1 , involved in the right-hand side of (9.12)

is
(
x−v−1
w−1

)
. Thus, to determine all values of E[v,x], 1 ≤ v ≤ x− 1, 2 ≤ x ≤ k, the total

number of products to be computed is
∑k

x=2

∑x−1
v=1

∑x−v
w=1

(
x−v−1
w−1

)
= 2k − k − 1.

156

CHAPTER 9. COMBINED EFFECTS

Recall that the durations of the RMPs are given by (9.4). Including the time spent

on rate-modifying activities, the completion time Cπ[x](r) of a job scheduled in position

r, 1 ≤ r ≤ n[x], of the x-th group, 1 ≤ x ≤ k, can be written as

Cπ[x](r) = F1 + T1 + F2 + T2 + · · ·+ Fx−1 + Tx−1 + F(x,r)

=

x−1∑
v=1

[
1 +

x−1∑
w=v

α[w]v

]
Fv + F(x,r) +

x−1∑
v=1

β[v].

For convenience, denote

ξ[v,x−1] := 1 +
x−1∑
w=v

α[w]v , 1 ≤ v ≤ x− 1, 1 ≤ x ≤ k, (9.13)

and rewrite

Cπ[x](r) =
x−1∑
v=1

ξ[v,x−1]Fv + F(x,r) +
x−1∑
v=1

β[v] (9.14)

Applying the results of Lemmas 9.1 and 9.2, the completion time can be written in

terms of the original problem parameters.

9.3.1 Minimising The Makespan

Let us now specifically consider problem 1 |Combi, RMP (k − 1)|Cmax. For a schedule
S (k) with k groups denote the makespan by Cmax (S (k)). If schedule S (k) is associated

with a permutation π =
(
π[1], π[2], . . . , π[k]

)
, then Cmax (S (k)) is equal to Cπ[k](n[k]), the

completion time of the last job in the last k-th group. From (9.14) we have

Cmax (S (k)) = Cπ[k](n[k]) =
k−1∑
x=1

ξ[x,k−1]Fx + Fk + Γ (k) ,

where Γ (k) =
∑k−1

x=1 β
[x]. Substituting (9.11) in the above expression we obtain

Cmax (S (k)) =

k−1∑
x=1

ξ[x,k−1]

(
x∑
v=1

E[v,x]D[v]

)
+

k∑
v=1

E[v,k]D[v] + Γ (k) .

Rearranging the terms we get

Cmax (S (k)) =
k∑
x=1

(
k−1∑
v=x

ξ[v,k−1]E[x,v] + E[x,k]

)
D[x] + Γ (k) .

157

CHAPTER 9. COMBINED EFFECTS

Substituting the value of D[x] from (9.8) we further derive

Cmax (S (k)) =
k∑
x=1

(
k−1∑
v=x

ξ[v,k−1]E[x,v] + E[x,k]

)
n[x]∑
r=1

pπ[x](r)B
[x]
(
r, n[x]

)
+ Γ (k)

=

k∑
x=1

n[x]∑
r=1

pπ[x](r)B
[x]
(
r, n[x]

)(k−1∑
v=x

ξ[v,k−1]E[x,v] + E[x,k]

)
+ Γ (k) .

Notice, that the expression for the makespan Cmax (S (k)) has reduced to the generic

objective function (4.6) defined in Chapter 6. The constant term Γ (k) is still given by

(6.9) and the positional weights are defined by

W [x] (r) = B[x]
(
r, n[x]

)(k−1∑
v=x

(
1 +

k−1∑
w=v

α[w]v

)
E[x,v] + E[x,k]

)
, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k.

(9.15)

The expression for the positional weights, (9.15) can be written in terms of the

original parameters by use of (9.6), (9.9) and (9.12). Finding all values of B[x]
(
r, n[x]

)
,

1 ≤ r ≤ n[x], 1 ≤ x ≤ k, by (9.6) requires O
(∑k

x=1 n
[x]
)

= O(n) time. After that,

all values of b[x]v , 1 ≤ v ≤ x − 1, 1 ≤ x ≤ k, can be found by (9.9) in O (k2) time.

As follows from Section 9.3, computing all values E[v,x], 1 ≤ v ≤ x − 1, 1 ≤ x ≤ k,

requires O
(
2k
)
time. Finally, all n positional weightsW [x] (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k,

will be computed in O (n) time, provided that all other quantities have been found.

Thus, the overall running time needed to compute the positional weights for problem

1 |Combi, RMP (k − 1)|Cmax is T (W) = O
(
2n+ k2 + 2k

)
= O (n), provided that k is

a given constant.

9.3.2 Minimising The Total Flow Time

Now we address problem 1 |Combi, RMP (k − 1)|
∑
Cj. For a schedule S (k) with k

groups associated with a permutation π =
(
π[1], π[2], . . . , π[k]

)
, the total flow time can

be written as ∑
Cj =

k∑
x=1

n[x]∑
r=1

Cπ[x](r).

158

CHAPTER 9. COMBINED EFFECTS

Substituting (9.5) into (9.14), we rewrite the expression for Cπ[x](r) as

Cπ[x](r) =
x−1∑
v=1

ξ[v,x−1]Fv +
r∑

u=1

(
A[x] + pπ[x](u)

)
B[x] (u, r) +

x−1∑
v=1

β[v]

=

x−1∑
v=1

ξ[v,x−1]Fv + A[x]
r∑

u=1

B[x] (u, r) +

r∑
u=1

pπ[x](u)B
[x] (u, r) +

x−1∑
v=1

β[v].

Substituting A[x] =
∑x−1

v=1 a
[x]
v Fv, into the above equation, we obtain

Cπ[x](r) =
x−1∑
v=1

(
ξ[v,x−1] + a[x]v

r∑
u=1

B[x] (u, r)

)
Fv +

r∑
u=1

pπ[x](u)B
[x] (u, r) +

x−1∑
v=1

β[v].

Thus, the total flow time of schedule S(k) can be written as

∑
Cj =

k∑
x=1

n[x]∑
r=1

[
x−1∑
v=1

(
ξ[v,x−1] + a[x]v

r∑
u=1

B[x] (u, r)

)
Fv +

r∑
u=1

pπ[x](u)B
[x] (u, r)

]
+ Γ (k)

=
k∑
x=1

x−1∑
v=1

n[x]ξ[v,x−1] + a[x]v

n[x]∑
r=1

r∑
u=1

B[x] (u, r)

Fv +
n[x]∑
r=1

r∑
u=1

pπ[x](u)B
[x] (u, r)

+Γ (k) ,

where Γ (k) =
∑k

x=1

∑n[x]

r=1

∑x−1
v=1 β

[v]. It can be easily verified that the term∑n[x]

r=1

∑r
u=1 pπ[x](u)B

[x] (u, r) can be rewritten as
∑n[x]

r=1 pπ[x](r)
∑n[x]

u=r B
[x] (r, u) , 1 ≤ x ≤

k, so that we have

∑
Cj =

k∑
x=1

x−1∑
v=1

n[x]ξ[v,x−1] + a[x]v

n[x]∑
r=1

n[x]∑
u=r

B[x] (r, u)

Fv +
n[x]∑
r=1

pπ[x](r)

n[x]∑
u=r

B[x] (r, u)

+Γ (k) .

For convenience, substitute the value ξ[v,x−1] from (9.13) and denote

G[v,x] := n[x]

(
1 +

x−1∑
w=v

α[w]v

)
+a[x]v

n[x]∑
r=1

n[x]∑
u=r

B[x] (r, u) , 1 ≤ v ≤ x−1, 1 ≤ x ≤ k, (9.16)

so that we have

∑
Cj =

k∑
x=1

x−1∑
v=1

G[v,x]Fv +

n[x]∑
r=1

pπ[x](r)

n[x]∑
u=r

B[x] (r, u)

+ Γ (k) .

159

CHAPTER 9. COMBINED EFFECTS

Substituting the value of Fv from (9.11) into the above equation, we deduce

∑
Cj =

k∑
x=1

x−1∑
v=1

G[v,x]
v∑

w=1

E[w,v]D[w] +
n[x]∑
r=1

pπ[x](r)

n[x]∑
u=r

B[x] (r, u)

+ Γ (k)

=

k∑
x=1

x−1∑
v=1

(
x−1∑
w=v

G[w,x]E[v,w]

)
D[v] +

n[x]∑
r=1

pπ[x](r)

n[x]∑
u=r

B[x] (r, u)

+ Γ (k)

=
k∑
x=1

k∑
v=x+1

(
v−1∑
w=x

G[w,v]E[x,w]

)
D[x] +

k∑
x=1

n[x]∑
r=1

pπ[x](r)

n[x]∑
u=r

B[x] (r, u) + Γ (k)

=
k∑
x=1

D[x]

k∑
v=x+1

v−1∑
w=x

G[w,v]E[x,w] +

k∑
x=1

n[x]∑
r=1

pπ[x](r)

n[x]∑
u=r

B[x] (r, u) + Γ (k) .

Further, substituting the value of D[x] from (9.8) and rearranging terms, we obtain

∑
Cj =

k∑
x=1

 n[x]∑
r=1

pπ[x](r)B
[x]
(
r, n[x]

) k∑
v=x+1

v−1∑
w=x

G[w,v]E[x,w]

+
n[x]∑
r=1

pπ[x](r)

n[x]∑
u=r

B[x] (r, u)

+ Γ (k)

=
k∑
x=1

n[x]∑
r=1

pπ[x](r)

B[x]
(
r, n[x]

) k∑
v=x+1

v−1∑
w=x

G[w,v]E[x,w] +
n[x]∑
u=r

B[x] (r, u)

+ Γ (k) .

Thus, the total flow time can be represented as a function of the form (4.6) with

the positional weights defined by

W [x] (r) = B[x]
(
r, n[x]

) k∑
v=x+1

v−1∑
w=x

G[w,v]E[x,w] +
n[x]∑
u=r

B[x] (r, u) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k

(9.17)

and the constant term

Γ (k) =
k∑
x=1

n[x]∑
r=1

x−1∑
v=1

β[v]. (9.18)

The expression for the positional weights, (9.17) can be written in terms of the

original parameters by use of (9.6), (9.16), (9.12) and (9.9). All values B[x] (u, r), 1 ≤

u ≤ r ≤ n[x], 1 ≤ x ≤ k, can be computed by (9.6) in O
(∑k

x=1

n[x](n[x]+1)
2

)
= O(n2)

time. After that, all values of G[v,x], 1 ≤ v ≤ x− 1, 1 ≤ x ≤ k, can be found by (9.16)

in O (k2) time. As discussed in Section 9.3.1, computing all values E[v,x], 1 ≤ v ≤ x−1,

160

CHAPTER 9. COMBINED EFFECTS

1 ≤ x ≤ k, requires O
(
2k
)
time. Finally, all n positional weights W [x] (r) , 1 ≤ r ≤

n[x], 1 ≤ x ≤ k, will be computed in O (n) time, provided that all other quantities have

been found. Thus, the overall running time needed to compute the positional weights

for problem 1 |Combi,RMP (k − 1)|Cmax is T (W) = O
(
n+ n2 + k2 + 2k

)
= O (n2),

provided that k is a given constant.

9.4 The Solution Approach

The purpose of this section, is to consider problem 1 |Combi, RMP |F where F ∈
{Cmax,

∑
Cj} and design a solution approach for it. In order to solve problem

1 |Combi, RMP |F , we must find the optimal values for Decisions 1-4. First, let us
concentrate on the relevant sub-problem 1 |Combi,RMP (k − 1)|F in which it is as-

sumed that Decisions 1-3 are taken in advance.

In the last section we demonstrate that even without making additional assumptions

regarding the sign of a[x]v , 1 ≤ v ≤ x, 1 ≤ x ≤ k, or the shape of g[x](r), 1 ≤
r ≤ n[x], 1 ≤ x ≤ k, both problems of the form 1 |Combi, RMP (k − 1)|F reduce

to minimising a linear form
∑k

x=1

∑n[x]

r=1W
[x](r)pπ[x](r) over a set of all permutations.

However, notice that the computed positional weights W [x](r), 1 ≤ r ≤ n[x], given

by (9.15) and (9.17), are found to be non-monotonically ordered within each group x,

1 ≤ x ≤ k. Additionally, the term n[x] appears in the formulae (9.15) and (9.17), and

thus, it is not possible to generate a set of all possible values of W [x] (r) , 1 ≤ r ≤ n,

1 ≤ x ≤ k, without prior knowledge of the number of jobs, n[x], in each group. As a

result, Theorem 6.1 does not hold and none of the solution approaches presented in

the previous chapters can be applied.

Below we describe an algorithm which solves an instance of problem

1 |Combi,RMP (k − 1)|F by guessing the values n[x], 1 ≤ x ≤ k, in advance.

Algorithm Generate

input: An instance of problem 1 |Combi, RMP (k − 1)|F

output: An optimal schedule S∗ (k)

Step 1. If required, renumber the jobs in LPT order, i.e., in non-increasing order of
the values pj.

Step 2. Generate all possible instances in which n jobs are split into k non-empty
groups, so that we have the values n[x], 1 ≤ x ≤ k, such that

∑k
x=1 n

[x] = n.

161

CHAPTER 9. COMBINED EFFECTS

Step 3. For each instance, compute the positional weights W [x] (r) , 1 ≤ r ≤ n[x], 1 ≤
x ≤ k, by (9.15) or (9.17).

Step 4. With the found values of W [x] (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, run Algo-

rithm Match2 and select the instance that returns the smallest value of the func-

tion F (k) as an optimal solution to problem 1 |Combi, RMP (k − 1)|F.

Notice that in order to compute the optimal values of n[x], 1 ≤ x ≤ k, Algo-

rithm Generate simply enumerates all possible options in which n jobs can be split

into k non-empty groups. It follows from Section 2.2.4, that the number of ways of

doing this is equal to nk−1

(k−1)! . For each composition, Step 3 requires a running time of

T (W), which is already known for both problems. Step 4 requires O (n log n) time; see

Chapter 6. Thus, the following statement holds.

Theorem 9.1. Algorithm Generate solves an instance of problem

1 |Combi, RMP (k − 1)|F in O
(

(T (W) + n log n) nk−1

(k−1)!

)
time, where T (W) de-

notes the time needed to compute all positional weights W [x](r), 1 ≤ r ≤ n[x],

1 ≤ x ≤ k, for a given composition of n.

To determine the optimal solution for the general problem 1 |Combi, RMP |F , all
options associated with Decisions 1-3 must be enumerated. For a known k, 1 ≤ k ≤
K + 1, the number of ways to select k − 1 RMPs and fix their order is equal to the

number of (k − 1)-arrangements of K elements, i.e., the number of permutations of

k−1 elements selected from K possibilities, which is equal to
(
K
k−1
)

(k − 1)!. Trying all

possible values of k, 1 ≤ k ≤ K+1, the total number of options can be approximated by∑K+1
k=1

(
K
k−1
)

(k − 1)!. Since Algorithm Generate requires O
(

(T (W) + n log n) nk−1

(k−1)!

)
time for a given k, 1 ≤ k ≤ K + 1, the total running time required to solve problem

1 |Combi, RMP |F can be approximated by

K+1∑
k=1

(
K

k − 1

)
nk−1 (T (W) + n log n) ≤

(
K+1∑
k=1

(
K

k − 1

))(K+1∑
k=1

nk−1

)
(T (W) + n log n)

=

(
K∑
k=0

(
K

k

))(K∑
k=0

nk

)
(T (W) + n log n)

= 2K
(
nK+1 − 1

n− 1

)
(T (W) + n log n)

= O
(
nK (T (W) + n log n)

)
.

Recall from Sections 9.3.1 and 9.3.2 that for the problems of minimising the

makespan and the total flow time, the required positional weightsW [x] (r) , 1 ≤ r ≤ n[x],

162

CHAPTER 9. COMBINED EFFECTS

1 ≤ x ≤ k, can be computed in T (W) = O (n) and T (W) = O (n2) time, respectively.

It follows that an optimal solution to problem 1 |Combi, RMP |Cmax can be found
in O

(
nK (n+ n log n)

)
= O

(
nK+1 log n

)
time, and an optimal solution to problem

1 |Combi, RMP |
∑
Cj can be found in O

(
nK (n2 + n log n)

)
= O

(
nK+2

)
time.

Below we provide a numerical example, in which we solve the problems of minimis-

ing the makespan and the total flow time for the situation discussed in Example 1. We

present the solution for known outcomes of Decisions 1-3 and a given composition of

n.

Example 9.2: Eight jobs must be processed on a single machine. The normal process-
ing times of the jobs, after renumbering them in LPT order are:

p1 = 8, p2 = 7, p3 = 6, p4 = 6, p5 = 4, p6 = 2, p7 = 1, p8 = 1.

The number of jobs in each of the three groups is known in advance as

n[1] = 3, n[2] = 2, n[3] = 3.

The values of the parameters for the machine and the operators as defined in Ex-

ample 9.1 are also known and given by

d′m = 0.1, d′′m = 0.15, d′w = 0.2, l′w = −0.15, d′′w = 0.15, l′′w = −0.1, l′′′w = −0.02,

α′ = 2, β′ = 5, β′′ = 6.

Using the formulae provided in Table 9.1, the functions for the positional factors

reduce to

g[1] (r) = (d′m + 1)
r−1

rd
′
w+l

′
w = (1.1)r−1 r0.05, 1 ≤ r ≤ 3;

g[2] (r) = (d′′m + 1)
r−1 (

n[1] + r
)l′w rd′w = (1.15)r−1

r0.2

(r + 3)0.15
, 1 ≤ r ≤ 2;

g[3] (r) = (d′′m + 1)
n[2]+r−1

rd
′′
w+l

′′
w = (1.15)r+1 r0.05, 1 ≤ r ≤ 3,

and all required input parameters are computed as

g[1] (1) = 1.00, g[1] (2) = 1.14, g[1] (3) = 1.28; a
[1]
1 = 0.15;

g[2] (1) = 0.81, g[2] (2) = 1.04; a
[2]
1 = −0.15, a

[2]
2 = 0.20;

g[3] (1) = 1.32, g[3] (2) = 1.57, g[3] (3) = 1.85; a
[3]
1 = −0.02, a

[3]
2 = 0.13, a

[3]
3 = 0.20.

163

CHAPTER 9. COMBINED EFFECTS

Group 1 B[1] (1, 1) = 1.00;
B[1] (1, 2) = 1.17, B[1] (2, 2) = 1.14;
B[1] (1, 3) = 1.40, B[1] (2, 3) = 1.36, B[1] (3, 3) = 1.28;

Group 2 B[2] (1, 1) = 0.81;
B[2] (1, 2) = 0.98, B[2] (2, 2) = 1.04;

Group 3 B[3] (1, 1) = 1.32;
B[3] (1, 2) = 1.74, B[3] (2, 2) = 1.57;
B[3] (1, 3) = 2.38, B[3] (2, 3) = 2.16, B[3] (3, 3) = 1.85.

Table 9.2: Values of B[x] (u, r) , 1 ≤ u ≤ r ≤ n[x], 1 ≤ x ≤ 3, for Example 9.2

and

α
[1]
1 = 2, β[1] = 5, α

[2]
1 = α

[2]
2 = 0, β[2] = 6.

Notice that while solving this example, we have computed all values with high

precision, but here and below for the ease of presentation we report them rounded

to two decimal places. Applying (9.6), all values of B[x] (u, r) , 1 ≤ u ≤ r ≤ n[x],

1 ≤ x ≤ 3, are computed and are presented in Table 9.2. For the problem of minimising

the makespan, we will only need to use the values given in the last row of each block

in Table 9.2, whereas for the problem of minimising the total flow time we will require

all of them.

Applying (9.9), all values of b[x]v , 1 ≤ v ≤ x− 1, 1 ≤ x ≤ 3, are computed as

b
[2]
1 = (−0.15) (0.98 + 1.04) = −0.30;

b
[3]
1 = (−0.02) (2.38 + 2.16 + 1.85) = −0.13,

b
[3]
2 = (0.13) (2.38 + 2.16 + 1.85) = 0.83.

Applying (9.12), all values of E[v,x], 1 ≤ v ≤ x, 1 ≤ x ≤ 3, are computed as

E[1,1] = 1.00;

E[1,2] = b
[2]
1 = −0.30, E[2,2] = 1.00;

E[1,3] = b
[3]
1 + b

[2]
1 b

[3]
2 = −0.38, E[2,3] = b

[3]
2 = 0.83, E[3,3] = 1.00.

Finally, applying (9.15), the positional weights W [x] (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ 3,

164

CHAPTER 9. COMBINED EFFECTS

for the problem of minimising the makespan can be rewritten as

W [1] (r) = B[1] (r, 3)
((

1 + α
[1]
1 + α

[2]
1

)
E[1,1] +

(
1 + α

[2]
2

)
E[1,2] + E[1,3]

)
, 1 ≤ r ≤ 3;

W [2] (r) = B[2] (r, 2)
((

1 + α
[2]
2

)
E[2,2] + E[2,3]

)
, 1 ≤ r ≤ 2;

W [3] (r) = B[3] (r, 3)
(
E[3,3]

)
, 1 ≤ r ≤ 3,

and their values computed as

W [1] (1) = 3.23, W [1] (2) = 3.15, W [1] (3) = 2.96;

W [2] (1) = 1.80, W [2] (2) = 1.90;

W [3] (1) = 2.38, W [3] (2) = 2.16, W [3] (3) = 1.85.

To solve problem 1 |Combi, RMP (k − 1)|Cmax, the computed positional weights
are sorted in non-decreasing order and stored in list L′ := (γ′1, γ

′
2, . . . , γ

′
8) . The con-

stant term Γ (3) , can be computed as Γ (3) = β[1]+β[2] = 11.00. The resulting optimal

schedule S ′ (3) is associated with a permutation µ∗ =
(
µ[1], µ[2], µ[3]

)
; all relevant com-

putation is presented in Table 9.3.

Next, for the problem of minimising the total flow time, we also must additionally

compute the values of G[v,x], 1 ≤ v ≤ x − 1, 1 ≤ x ≤ 3. Using (9.16) and the values

obtained in Table 9.2, we compute

G[1,2] = 5.58, G[1,3] = 8.78, G[2,3] = 4.43.

Applying (9.17), the positional weights W [x] (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ 3, for the

problem of minimising the total flow time can be rewritten as

W [1] (r) = B[1] (r, 3)
(
G[1,2]E[1,1] +G[1,3]E[1,1] +G[2,3]E[1,2]

)
+

3∑
u=r

B[1] (r, u) , 1 ≤ r ≤ 3;

W [2] (r) = B[2] (r, 2)
(
G[2,3]E[2,2]

)
+

2∑
u=r

B[2] (r, u) , 1 ≤ r ≤ 2;

W [3] (r) =

3∑
u=r

B[3] (r, u) , 1 ≤ r ≤ 3,

165

CHAPTER 9. COMBINED EFFECTS

j pj γ′j µ∗ γ′jpj γ′′j ϕ∗ γ′′jpj
Makespan Flow time

1 8 1.80 µ[2] (1) 14.36 1.85 ϕ[3] (3) 14.78
2 7 1.85 µ[3] (3) 12.93 3.73 ϕ[3] (2) 26.12
3 6 1.90 µ[2] (2) 11.39 5.44 ϕ[3] (1) 32.66
4 6 2.16 µ[3] (2) 12.94 5.64 ϕ[2] (2) 33.82
5 4 2.38 µ[3] (1) 9.53 6.14 ϕ[2] (1) 24.56
6 2 2.96 µ[1] (3) 5.93 17.91 ϕ[1] (3) 35.83
7 1 3.15 µ[1] (2) 3.15 20.16 ϕ[1] (2) 20.16
8 1 3.23 µ[1] (1) 3.23 21.72 ϕ[1] (1) 21.72

Total 73.46 Total 209.65
Cmax (S ′ (3)) = 73.46 + 11.00 = 84.46;∑
Cj (S ′′ (3)) = 209.65 + 43.00 = 252.65;

µ∗ = (8, 7, 6, 1, 3, 5, 4, 2) ; ϕ∗ = (8, 7, 6, 5, 4, 3, 2, 1)

Table 9.3: Calculation of the optimal value of the makespan and the optimal value of
the total flow time for the problem outlined in Example 2

and their values computed as

W [1] (1) = 21.72, W [1] (2) = 20.16, W [1] (3) = 17.91;

W [2] (1) = 6.14, W [2] (2) = 5.64;

W [3] (1) = 5.44, W [3] (2) = 3.73, W [3] (3) = 1.85.

To solve problem 1 |Combi,RMP (k − 1)|
∑
Cj, the computed positional weights

are sorted in non-decreasing order and stored in list L′′ := (γ′′1, γ
′′
2, . . . , γ

′′
n) . The con-

stant term Γ (3) , can be computed as Γ (3) = β[1]n[2] +
(
β[1] + β[2]

)
n[3] = 43.00. The

resulting optimal schedule S ′′ (3) is associated with a permutation ϕ∗ =
(
ϕ[1], ϕ[2], ϕ[3]

)
;

all relevant computation is presented in Table 9.3.

9.5 Some Reduced Models

In this section, we explore single machine models which can be expressed as special

cases of the general problems 1 |Combi, RMP |Cmax and 1 |Combi, RMP |
∑
Cj. We

look at their simplified versions with effects less general than that given by (9.3) and

(9.4), and possibly with additional simplifications. The main purpose of this section,

is to verify whether the running time of the solution approach given in Section 9.4 for

the general problems 1 |Combi, RMP |Cmax and 1 |Combi, RMP |
∑
Cj can be reduced

for their simplified counterparts.

166

CHAPTER 9. COMBINED EFFECTS

Let us begin our consideration with the problems studied by Yang (2010) and Yang

(2012). Recall from Section 3.3.2 that both of these papers study a simple combined

effect of the form (9.1). The former paper considers a problem in which the system

undergoes time-dependent learning, positional polynomial deterioration and a single

start-time dependent maintenance period, while the latter considers a problem in which

the system undergoes time-dependent deterioration, positional polynomial learning and

K identical start-time dependent maintenance periods, all of which must be run. Both

these models assume that the effects are group-independent and after an RMP, the

learning advantages are lost and both the operator and the machine are brought to

the original conditions; these assumptions can hardly be justified. Notice that for

both problems, Decisions 1-3 need not be taken as the RMPs are identical and their

number to be included in a schedule is already known in advance. As a result, both

these problems can be written as special cases of problem 1 |Combi, RMP (k − 1)|F
with the parameters g[x] (r) = rb, and a

[x]
1 = a

[x]
2 = ... = a

[x]
x−1 = 0, a

[x]
x = a, for

all x, 1 ≤ x ≤ K + 1, and α[x]1 = α
[x]
2 = ... = α

[x]
x−1 = 0, α

[x]
x = α, and β[x] = β,

for all x, 1 ≤ x ≤ K. For the former case studied by Yang (2010), we have the

additional conditions K = 1, b > 0, and a < 0, while for the latter we have b < 0 and

a > 0. For both models, the required running time for the problem of minimising the

makespan and the problem of minimising the total flow time is given as O
(
nK+1 log n

)
and O

(
nK+2

)
respectively; see Section 3.3.2. Notice that these running times coincide

with the ones we obtain for solving the general problems 1 |Combi, RMP |Cmax and
1 |Combi, RMP |

∑
Cj, respectively.

We notice, however, that a small reduction in the running time can be achieved if

a and b are of the same sign. In this case, for the problem of minimising the makespan

the resulting positional weights

W [x](r) =

rb

n[x]∏
i=r+1

(
1 + aib

)
(1 + α) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ K;

rb
n[x]∏
i=r+1

(
1 + aib

)
1 ≤ r ≤ n[x], x = K + 1,

are monotonically ordered in each group, and thus, sorting all positional weights in a

non-decreasing order requires O (nmin {K, log n}) time. As a result, Step 4 of Algo-
rithm Generate requires O (nmin {K, log n}) time instead of O (n log n) time and the

overall running time of the problem can be given as O
(

(n+ nmin {K, log n}) nK

(K)!

)
=

O
(
nK+1 min {K, log n}

)
. The same observation also holds for the problem of minimis-

ing the total flow time, for a special case in which a and b are of the same sign. However,

167

CHAPTER 9. COMBINED EFFECTS

a smaller running time is not possible in the latter case, as Step 3 of Algorithm Generate

still requires O (n2) time.

Hence, it can be seen that as long as a model incorporates a combined time-

dependent and a positional effect, even the simplest versions of the general problems

1 |Combi, RMP |Cmax and 1 |Combi, RMP |
∑
Cj require O

(
nK+1 log n

)
and O

(
nK+2

)
time, respectively. However, if a pure positional effect, or a pure time-dependent effect

is considered, faster solutions are possible.

9.5.1 Pure Positional Effects

In this section, we discuss problems with a pure positional effect, so that for known

outcomes of Decisions 1-3, the actual processing time of a job j scheduled in position

r of a group x, 1 ≤ x ≤ k, is given by (6.1). We consider such a model in Chapter 6

for a deterioration environment, in which the positional factors g[x] (r) are in a non-

decreasing order (6.2) and the RMPs are strictly maintenance periods. Moreover, we

do not allow the positional factors to be dependent on the number of jobs scheduled in

previous groups. In this section, we study positional effects without these restrictions,

so that the positional factors can be non-monotone within a group and the RMPs can be

of an arbitrary nature with their durations given by (9.4). In other words, we consider

position-dependent models that combine deterioration and learning effects with rate-

modifying activities. An illustration of such a scenario is presented in Example 4.1.

Let us denote problems of this type by 1 |Posi, RMP |F, where F ∈ {Cmax,
∑
Cj} .

Problem 1 |Posi, RMP |F can be seen as a special case of problem

1 |Combi,RMP |F. Assuming that Decisions 1-3 are taken in advance, the re-

sulting problem 1 |Posi, RMP (k − 1)|F can be written in the form of problem

1 |Combi,RMP (k − 1)|F with a[x]1 = a
[x]
2 = ... = a

[x]
x−1 = a

[x]
x = 0, for all x, 1 ≤ x ≤ k.

To solve problem 1 |Posi, RMP (k − 1)|Cmax, the required positional weights can be
obtained by making relevant substitutions in (9.15), so that we have

W [x](r) =

{ (
1 +

∑k−1
w=x α

[w]
x

)
g[x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

g[x](r) 1 ≤ r ≤ n[x], x = k.
(9.19)

Notice that all positional weights W [x] (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k,

can be computed by (9.19) in T (W) = O (n) time. Similarly, to solve problem

1 |Posi, RMP (k − 1)|
∑
Cj, the required positional weights can be obtained by making

168

CHAPTER 9. COMBINED EFFECTS

relevant substitutions in (9.17), so that we have

W [x](r) =

[∑k
v=x+1 n

[v]
(

1 +
∑v−1

w=x α
[w]
x

)
+
(
n[x] − r + 1

)]
g[x] (r) , 1 ≤ r ≤ n[x],

1 ≤ x ≤ k − 1,(
n[x] − r + 1

)
g[x] (r) , 1 ≤ r ≤ n[x],

x = k.

(9.20)

Again, all positional weightsW [x] (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, can be computed by

(9.17) in T (W) = O (n) time. Notice that the computed positional weights for both

problems are non-monotonically ordered within each group and do not allow a set to be

found in advance. Thus, Algorithm Generate must be used so that an optimal solution

to each of the problems 1 |Posi, RMP (k − 1)|Cmax and 1 |Posi, RMP (k − 1)|
∑
Cj

can be found in O
(
nk logn
(k−1)!

)
time; see Theorem 9.1. Trying all possible options for

Decisions 1-3, an optimal solution to each of the problems 1 |Posi, RMP |Cmax and
1 |Posi, RMP |

∑
Cj can be found in O

(
nK+1 log n

)
time.

It can be noted that although there is no change in status for the problem of

minimising the makespan, the problem of minimising the total flow time is solved

faster for a model with a pure positional effect. This speed up is possible because the

time taken to compute the positional weights W [x] (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, for

problem 1 |Posi, RMP (k − 1)|
∑
Cj is T (W) = O (n) , as opposed to T (W) = O (n2)

required for problem 1 |Combi, RMP (k − 1)|
∑
Cj.

Recall from Section 3.3.1 that Yang and Yang (2010b) achieve the same running

time of O
(
nK+1 log n

)
for the problem of minimising the total flow time for a much

simpler model. In fact, their problem can be written as a special case of our problem

1 |Posi, RMP |
∑
Cj, with a group-independent polynomial deterioration effect, i.e.,

g[x](r) = ra, a > 0, andK identical maintenance periods that have start-time dependent

durations, i.e., α[x]1 = α
[x]
2 = ... = α

[x]
x−1 = 0, α

[x]
x = α, β[x] = β, for all x, 1 ≤ x ≤ K.

Let us now extend our consideration to problems in which a pure job-dependent

positional effect (7.1) is observed. Recall that we consider such a model in Chap-

ter 7 for a deterioration environment, in which the positional factors g[x]j (r) are in a

non-decreasing order (7.2) and the RMPs are strictly maintenance periods. In this sec-

tion, we study positional effects without these restrictions and denote the problem by

1 |Posi-JD, RMP |F, where F ∈ {Cmax,
∑
Cj} . It can be easily verified by analogy to

the job-independent case studied above, that if Decisions 1-3 are assumed to be taken,

the resulting problem 1 |Posi-JD, RMP (k − 1)|F reduces to minimising a generic ob-
jective function of the form (4.4). For problem 1 |Posi-JD, RMP (k − 1)|Cmax the con-

169

CHAPTER 9. COMBINED EFFECTS

stant term is given by (6.9) and for each j ∈ N, the job-dependent positional weights
are given by

W
[x]
j (r) =

{ (
1 +

∑k−1
w=x α

[w]
x

)
g
[x]
j (r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k − 1,

g
[x]
j (r) 1 ≤ r ≤ n[x], x = k.

For problem 1 |Posi-JD, RMP (k − 1)|
∑
Cj the constant term is given by (9.18)

and for each j ∈ N, the job-dependent positional weights are given by

W
[x]
j (r) =

[∑k
v=x+1 n

[v]
(

1 +
∑v−1

w=x α
[w]
x

)
+
(
n[x] − r + 1

)]
g
[x]
j (r) , 1 ≤ r ≤ n[x],

1 ≤ x ≤ k − 1,(
n[x] − r + 1

)
g
[x]
j (r) , 1 ≤ r ≤ n[x],

x = k.

Since the computed positional weights for both problems are non-monotone within

each group, none of the solution approaches presented in Chapter 7 can be applied.

Recall from Section 7.2, however, that if the number of jobs in each group is known

in advance, a function of the form (4.4) can be minimised by reducing it to an n × n
linear assignment problem of the form (2.2) with the cost function given by (4.5). Thus,

to solve problem 1 |Posi-JD, RMP (k − 1)|F, where F ∈ {Cmax,
∑
Cj} , generate all

possible compositions of n into k summands, and for each instance compute the cost

function cj,(x,r) = pjW
[x]
j (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, j ∈ N, by substituting the

relevant values of the positional weights. Notice that for both problems all values

of the cost function cj,(x,r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, j ∈ N, can be computed in

T (W) = O (n2) time each. The resulting LAP can be solved in O (n3) time by the

Hungarian Algorithm.

Since there are a total of nk−1

(k−1)! compositions of n, an optimal solution to each of

the problems 1 |Posi-JD, RMP (k − 1)|Cmax and 1 |Posi-JD, RMP (k − 1)|
∑
Cj can

be found in O
(
nk+2

(k−1)!

)
time. Trying all possible options for Decisions 1-3, an optimal

solution to each of the problems 1 |Posi-JD, RMP |Cmax and 1 |Posi-JD, RMP |
∑
Cj

can be found in O
(
nK+3

)
time.

Recall from Section 3.3.1, that Yang and Yang (2010b) and Ji and Cheng (2010)

achieve the same running time of O
(
nK+3

)
for the problem of minimising the total

flow time for much simpler models. Yang and Yang (2010b) consider a model with a

group-independent polynomial deterioration effect, i.e., g[x]j (r) = raj , a > 0, j ∈ N,

and K identical maintenance periods that have start-time dependent durations, i.e.,

α
[x]
1 = α

[x]
2 = ... = α

[x]
x−1 = 0, α

[x]
x = α, β[x] = β, for all x, 1 ≤ x ≤ K. Ji and Cheng

170

CHAPTER 9. COMBINED EFFECTS

(2010) consider a slightly more complicated model with a group-dependent polynomial

learning effect, so that we have g[x]j (r) = λ
[x]
j

(∑x−1
y=1 n

[y] + r
)aj

, aj < 0, j ∈ N, where
λ
[x]
j , 0 < λ

[x]
j ≤ 1, 1 ≤ x ≤ k, j ∈ N, represents a job-dependent group-dependent

learning factor with λ[1]j = 1, j ∈ N. Notice that the positional factors in this model
are dependent on the number of jobs scheduled in previous groups. This indicates a

continuous learning process across groups. The RMPs are included to further enhance

the learning capabilities of the operator. Further, the duration of each RMP is a

constant so that we have α[x]1 = α
[x]
2 = ... = α

[x]
x−1 = 0, α

[x]
x = α, for all x, 1 ≤ x ≤ K.

9.5.2 Pure Time-Dependent Effects

In this section, we discuss problems with a pure time-dependent effect, so that for

known outcomes of Decisions 1-3,the actual processing time of a job j scheduled in

position r of a group x, 1 ≤ x ≤ k, is given by

p
[x]
j (r) = pπ[x](r) + a

[x]
1 F1 + a

[x]
2 F2 + ...+ a

[x]
x−1Fx−1 + a[x]x F(x,r−1), 1 ≤ r ≤ n, 1 ≤ x ≤ k.

(9.21)

We consider a reduced form of the above time-dependent model in Chapter 8, in

which we do not allow the duration of previous groups to affect the actual processing

time of the current job, so that a[x]1 = a
[x]
2 = ... = a

[x]
x−1 = 0, for all x, 1 ≤ x ≤ k.

Moreover, we only study a deterioration environment, so that a[x]x > 0, 1 ≤ x ≤ k,

and the RMPs are strictly maintenance periods. In this section, we do not impose

these restrictions, so that the rates a[x]1 , a
[x]
2 , ..., a

[x]
x , 1 ≤ x ≤ k, can be of an arbitrary

sign and the RMPs can be of an arbitrary nature with their durations given by (9.4).

Denote such a problem by 1 |Time,RMP |F, where F ∈ {Cmax,
∑
Cj} .

Problem 1 |Time,RMP |F can be seen as a special case of problem

1 |Combi,RMP |F. Assuming that Decisions 1-3 are taken in advance, the re-

sulting problem 1 |Time,RMP (k − 1)|F can be written in the form of problem

1 |Combi,RMP (k − 1)|F with g[x] (r) = 1, 1 ≤ r ≤ n, 1 ≤ x ≤ k. To solve prob-

lem 1 |Time,RMP (k − 1)|Cmax, the required positional weights can be obtained by
making relevant substitutions in (9.15), so that we have

W [x] (r) =
(
1 + a[x]x

)n[x]−r(k−1∑
v=x

(
1 + α[v]

)
E[x,v] + E[x,k]

)
, 1 ≤ r ≤ n[x], 1 ≤ x ≤ k,

(9.22)

where the quantities E[v,x], 1 ≤ v ≤ x− 1, 1 ≤ x ≤ k, are given by (9.12), and by (9.9)

171

CHAPTER 9. COMBINED EFFECTS

the quantities b[x]v reduce to

b[x]v =
a
[x]
v

a
[x]
x

((
1 + a[x]x

)n[x] − 1

)
, 1 ≤ v ≤ x− 1, 1 ≤ x ≤ k.

Notice that all positional weights W [x] (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k,

can be computed by (9.22) in T (W) = O (n) time. Similarly, to solve problem

1 |Time,RMP (k − 1)|
∑
Cj, the required positional weights can be obtained by mak-

ing relevant substitutions in (9.17), so that we have

W [x] (r) =
(
1 + a[x]x

)n[x]−r k∑
v=x+1

v−1∑
w=x

G[w,v]E[x,w]+

n[x]∑
u=r

B[x] (r, u) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k,

(9.23)

where the quantities G[v,x], 1 ≤ v ≤ x− 1, 1 ≤ x ≤ k, are given by (9.16), and by (9.6)

the quantities B[x] (r, u) reduce to

B[x] (u, r) =
(
1 + a[x]x

)r−u
, 1 ≤ u ≤ r ≤ n[x], 1 ≤ x ≤ k.

For a fixed x, 1 ≤ x ≤ k, the difference r − u takes at most n[x] − 1 values, so that

at most n[x] − 1 distinct values of B[x] (u, r) need to be computed. Summing up for

all x, we deduce that the number of all distinct values B[x] (u, r) to be found in order

to compute the positional weights W [x](r) is O(n). As a result, all positional weights

W [x](r), 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, can be computed by (9.23) in T (W) = O (n) time.

Notice that the computed positional weights for both problems are non-

monotonically ordered within each group and do not allow a set to be found in advance.

Thus, Algorithm Generate must be used so that an optimal solution to each of the

problems 1 |Time,RMP (k − 1)|Cmax and 1 |Time,RMP (k − 1)|
∑
Cj can be found

in O
(
nk logn
(k−1)!

)
time. Trying all possible options for Decisions 1-3, an optimal solution

to each of the problems 1 |Time,RMP |Cmax and 1 |Time,RMP |
∑
Cj can be found

in O
(
nK+1 log n

)
time.

It can be noted that although there is no change in status for the problem of

minimising the makespan, the problem of minimising the total flow time is solved

faster for a model with a pure time-dependent effect. This speed up is possible because

the time taken to compute the positional weights W [x] (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k, for

problem 1 |Time,RMP (k − 1)|
∑
Cj is T (W) = O (n) , as opposed to T (W) = O (n2)

required for problem 1 |Combi, RMP (k − 1)|
∑
Cj.

Recall from Section 3.3.2 that Yang and Yang (2010b) achieve the same running

172

CHAPTER 9. COMBINED EFFECTS

time of O
(
nK+1 log n

)
for the problem of minimising the total flow time for a much

simpler model. In fact, their problem can be written as a special case of our problem

1 |Time,RMP |
∑
Cj, with group-independent deterioration rates, i.e., a

[x]
1 = a

[x]
2 =

... = a
[x]
x−1 = a

[x]
x = 0, and a[x]x = a, a > 0, for all x, 1 ≤ x ≤ K + 1, and K identical

maintenance periods that have start-time dependent durations, i.e., α[x]1 = α
[x]
2 = ... =

α
[x]
x−1 = 0, α

[x]
x = α, β[x] = β, for all x, 1 ≤ x ≤ K.

9.6 Conclusion

The chapter addresses single machine scheduling problems to minimise the makespan

and the total flow time. A very general model for changing processing times is intro-

duced, in which the actual processing times of the jobs depend on both the position

and the start-time of a job in the schedule. Unlike most other papers in which chang-

ing processing times are considered, we do not insist on monotone effects. Our main

motivation behind this chapter was to create a model which is most general and stills

allows a polynomial (O
(
nK+1 log n

)
or O

(
nK+2

)
) running time. Previous studies on

combined effects also resulted in the same running times, but were only able to handle

very specific cases. The model introduced in this chapter covers all previously known

models, provided that the introduced effects are job-independent.

We reduce these generalised problems to linear assignment problems with product

matrices, solvable by a matching algorithm, and present close form relations for com-

puting the necessary input parameters, such as positional weights. We observe that if

a pure positional or time-dependent effect is considered, the problem of minimising the

total flow time can be solved in O
(
nK+1 log n

)
time, instead of O

(
nK+2

)
time. For

a pure positional model, we also solve a job-dependent version of the problem, which

utilises reduction to a full form assignment problem.

It should be noted that many results discussed in this chapter can be transferred to

other objective functions with no major technical diffi culties, since we have provided

the formula for the completion time of an arbitrary job in the schedule. A further

extension of the main model of this chapter would involve problems with changing

processing times subject to job-dependent combined effects. For these models, the

main algorithmic tool is expected to be a full form assignment problem.

173

CHAPTER 10

Cumulative Effects and Rate-Modifying
Activities

In this chapter, we discuss single machine scheduling problems with cumulative effects

and rate-modifying activities. We consider a very basic model, in which a machine is

subject to cumulative deterioration and the decision-maker decides when to schedule a

single maintenance period that completely restores the processing conditions. The only

objective function considered is the makespan. We link the problem to the Subset-sum

problem (if the duration of maintenance is constant) and to the Half-product problem

(if the duration of maintenance depends on its start time). For both versions of the

problem, we adapt the existing fully polynomial-time approximation schemes to our

problems by handling the additive constants. The duration of the MP is either a

constant or is start-time dependent.

The results of this chapter have been published in our paper Kellerer, Rustogi and

Strusevich (2012c). The presentation of content in the paper is very similar to the

content provided in this chapter.

10.1 Overview of the Problem

Notice that makespan minimisation problems with multiple RMPs and positional

or/and time-dependent effects are polynomially solvable even in the most general set-

tings, see Chapters 5-8. However, in the case of a cumulative deterioration effect of

a fairly simple structure with only a single MP, the problem under consideration is

NP -hard. In this chapter, we concentrate on the design of approximation schemes for

the given problem.

The approach that we pursue in this study is based on linking the corresponding

174

CHAPTER 10. CUMULATIVE EFFECTS

scheduling problem to problems of Boolean programming; see Section 2.2.3. In par-

ticular, for the problem with a constant MP, we show that the variable part of the

objective function is related to the Subset-sum problem, see Kellerer, Pferschy and

Pisinger (2004). On the other hand, if the duration of the MP depends linearly on its

start time (4.1), we establish its link to a problem of quadratic Boolean programming,

known as the Half-product problem, see Badics and Boros (1998) and Kellerer and

Strusevich (2012). Although each of the mentioned Boolean programming problems

admits an FPTAS, a challenge remains to adapt such an FPTAS to handling the orig-

inal objective function. The latter task is not straightforward due to the presence of

an additive constant of the sign that is opposite to the sign of the variable part of the

function.

To illustrate this, consider a function of the form

F (x) = G(x) +K > 0,

where G(x) represents a variable part of the overall function F (x) to be minimised,

and K is a constant. If x∗ minimises the function G(x), it will obviously minimise

the function F (x) as well. Suppose that for minimising function G(x) an FPTAS is

available that delivers a solution xH , such that G(xH)−G(x∗) ≤ ε |G(x∗)| .

Recall from Section 2.2.2, that for xH to be accepted as an ε-approximate solution

for minimising the function F (x), we must establish the inequality

F (xH) ≤ (1 + ε)F (x∗). (10.1)

For a solution xH found by an FPTAS for minimising G(x), we will have

F (xH) = G(xH) +K ≤ G(x∗) + ε |G(x∗)|+K = F (x∗) + ε |G(x∗)| .

This leads to two cases.

Case 1: For G(x∗) ≥ 0, we have F (xH) ≤ F (x∗) + εG(x∗) = (1 + ε)F (x∗) − εK.

If K ≥ 0, the inequality (10.1) holds; however, if K < 0, there is no evidence

that (10.1) will hold, and further analysis must be performed. We face the latter

situation when studying the problem with a constant time MP in Section 10.3.

Case 2: For G(x∗) < 0, we have F (xH) ≤ F (x∗)−εG(x∗) = (1− ε)F (x∗)+εK. Here

K > 0. There is no evidence that (10.1) will hold, and further analysis must be

performed. We face this situation when studying the problem with a start-time

175

CHAPTER 10. CUMULATIVE EFFECTS

dependent MP in Section 10.4.

The remainder of this chapter is organised as follows. Section 10.2 formally describes

the problems under consideration; we also provide some preliminary calculations which

enable us to show that the problem with a constant MP is NP -hard. In Section 10.3,

we show how an FPTAS by Kellerer et al. (2003) developed for the Subset-sum problem

can be adapted to the scheduling problem with a constant MP. In Section 10.4, we show

how an FPTAS by Erel and Ghosh (2008) developed for the Half-product problem can

be adapted to the scheduling problem with a MP of a variable duration.

10.2 Preliminaries

In this section, we give formal statements of the problems under consideration and

establish their computational complexity. The jobs of set N = {1, 2, . . . , n} have to
be processed on a single machine, which is subject to a deterioration effect. The

deterioration model we consider in this chapter is related to a cumulative effect as

described in Section 3.2.3. Recall that all the problems reviewed in Section 3.2.3

were solvable by an SPT rule. In fact, as a rule, for the problems with cumulative

deterioration and no machine maintenance, polynomial-time algorithms are derived.

Throughout this chapter, for a non-empty subset N ′ define p(N ′) :=
∑

j∈N ′ pj;

additionally define p(∅) := 0. In a similar sense, we write e(N ′), q(N ′), etc.

In this chapter, we focus on the models with a specific cumulative deterioration ef-

fect which is a version of (3.17). Assume that the jobs are processed on a single machine

in accordance with some permutation π = (π(1), . . . , π(n)) . The actual processing time

of a job j = π (r) that is sequenced in position r, 1 ≤ r ≤ n, is given by

pj(r) = pj

(
Aj +B

r−1∑
k=1

pπ(k)

)
, (10.2)

where Aj, j ∈ N , and B are positive constants. Comparing the above model with

(3.17), we assume that Z = 1, while on the other hand, we extend the model (3.17) by

introducing the additional coeffi cients Aj and B. These coeffi cients allow us to handle

other variations of the problem, without the need to alter our methodology in any way.

In a special case of our model, with Aj = 1, j ∈ N , and B = p (N)−1, the effect (10.2)

becomes equivalent to the model introduced by Koulamas and Kyparisis (2007).

Additionally, we allow a maintenance period to be run exactly once during the

planning period and it is known that it will restore the machine conditions completely,

176

CHAPTER 10. CUMULATIVE EFFECTS

i.e., after the MP the machine is as good as new. Using the notation defined in

Chapter 4, for all the problems considered in this thesis, we denote the problem of

minimising the makespan under these conditions by 1 |Cumu,MP |Cmax.

Notice that since we only perform a single MP in the schedule, which completely

restores the machine conditions, there is no question of having any group-dependent

effects. As a result, unlike Chapters 5-7, we only need to consider two different versions

of problem 1 |Cumu,MP |Cmax, namely:

(i) Constant maintenance: the duration of the MP is β time units, where β > 0.

(ii) Start-time dependent maintenance: the duration of the MP is ατ + β time units,

provided that the MP starts at time τ ; here α > 0 and β ≥ 0.

The former problem is denoted by 1 |Cumu,MP [0]|Cmax, while the latter is
denoted by 1 |Cumu,MP [α]|Cmax.

An instance of problem 1 |Cumu,MP [α]|Cmax is defined by the sequences pj and
Aj, j ∈ N , and numbers B and β, which are arbitrary positive integers. However, for

α > 0, we assume that α is bounded from above by a constant. This assumption is

well justified by the fact that the duration of an MP is at least α times longer than the

preceding period during which the machine was used. Without the made assumption,

maintaining the machine would take considerably longer than the total processing time

before the maintenance, which is hardly realistic.

In a schedule with a single MP the jobs are split into two groups: group 1 consists

of the jobs scheduled before the maintenance and group 2 contains all other jobs. To

solve problem 1 |Cumu,MP [α]|Cmax, consider a schedule S with a permutation of jobs
(π, σ). Assume that each group contains a total of n[x], x ∈ {1, 2} jobs which belong to
a set Nx, so that the permutations π =

(
π(1), . . . , π(n[1])

)
and σ =

(
σ(1), . . . , σ(n[2])

)
,

where n[1] + n[2] = n. In accordance with (10.2), the makespan of schedule S is given

by

Cmax(S) = pπ(1)Aπ(1) +

n1∑
r=2

pπ(r)

(
Aπ(r) +B

r−1∑
k=1

pπ(k)

)

+α

(
pπ(1)Aπ(1) +

n1∑
r=2

pπ(r)

(
Aπ(r) +B

r−1∑
k=1

pπ(k)

))
+ β

+pσ(1)Aσ(1) +

n2∑
r=2

pσ(r)

(
Aσ(r) +B

r−1∑
k=1

pσ(k)

)
.

177

CHAPTER 10. CUMULATIVE EFFECTS

The total processing time of the jobs in the first group can be computed as

pπ(1)Aπ(1) +

n1∑
r=2

pπ(r)

(
Aπ(r) +B

r−1∑
k=1

pπ(k)

)
=

n1∑
r=1

pπ(r)Aπ(r) +B
∑

1≤k<r≤n1

pπ(k)pπ(r)

=

n1∑
r=1

pπ(r)Aπ(r) +
B

2

(
p(N1)

2 −
n1∑
r=1

p2π(r)

)
.

Similarly, the total processing time of the jobs in the second group can be computed

as

pσ(1)Aσ(1) +

n2∑
r=2

pσ(r)

(
Aσ(r) +B

r−1∑
k=1

pσ(k)

)
=

n2∑
r=1

pσ(r)Aσ(r) +
B

2

(
p(N2)

2 −
n2∑
r=1

p2σ(r)

)
.

Define

qj = pjAj, j = 1, 2, . . . , n,

so that

q(N1) :=

n1∑
r=1

pπ(r)Aπ(r), q(N2) :=

n2∑
r=1

pσ(r)Aσ(r), q(N) := q(N1) + q(N2).

Thus, the makespan can be written as

Cmax(S) = q(N1) +
B

2

(
p(N1)

2 −
n1∑
r=1

p2π(r)

)
+ α

(
q(N1) +

B

2

(
p(N1)

2 −
n1∑
r=1

p2π(r)

))

+q(N2) +
B

2

(
p(N2)

2 −
n2∑
r=1

p2σ(r)

)
+ β,

which implies

Cmax(S) = q(N) +
B

2

(
p(N1)

2 + p(N2)
2 −

∑
j∈N

p2j

)
+ (10.3)

α

(
q(N1) +

B

2

(
p(N1)

2 −
∑
j∈N1

p2j

))
+ β

for problem 1 |Cumu,MP [α]|Cmax and

Cmax(S) = q(N) +
B

2

(
p(N1)

2 + p(N2)
2
)
− B

2

∑
j∈N

p2j + β (10.4)

178

CHAPTER 10. CUMULATIVE EFFECTS

for problem 1 |Cumu,MP [0]|Cmax.

Notice that (10.3) and (10.4) demonstrate that for problems 1 |Cumu,MP [α]|Cmax
and 1 |Cumu,MP [0]|Cmax respectively, the order of jobs in each group does not af-
fect the makespan. This complies with Gordon et al. (2008), where the makespan

has been shown to be sequence independent for the single machine problem with

the deterioration effect (3.17), with Z = 1, and no maintenance period. Thus, the

main issue in solving problem 1 |Cumu,MP [α]|Cmax, including its simpler version
1 |Cumu,MP [0]|Cmax, is to find an appropriate partition of the jobs into two groups.

Proposition 10.1. Problem 1 |Cumu,MP [0]|Cmax is NP -hard in the ordinary sense.

The correctness of the above statement can be verified as follows. Let xj = 1

if job j is assigned to set N1; otherwise, define xj = 0. It follows from (10.4),

that problem 1 |Cumu,MP [0]|Cmax, reduces to minimising p(N1)
2 + p(N2)

2 =(∑
j∈N pjxj

)2
+
(∑

j∈N pj(1− xj)
)2

= p(N) − 2
(∑

j∈N pjxj

)(∑
j∈N pj(1− xj)

)
,

i.e., to maximising
(∑

j∈N pjxj

)(∑
j∈N pj(1− xj)

)
. Jurisch, Kubiak and Józefowska

(1997) show that the problem P2 ||Cmax of minimising the makespan on two parallel
identical machines with no preemption allowed, reduces to maximising the product(∑

j∈N pjxj

)(∑
j∈N pj(1− xj)

)
for xj ∈ {0, 1} , j ∈ N . From this we immediately

derive that problems 1 |Cumu,MP [0]|Cmax and P2 ||Cmax are essentially equivalent
and it is well known that problem P2 ||Cmax is NP -hard in the ordinary sense; see
Garey and Johnson (1978, 1979).

It is clear that problem 1 |Cumu,MP [α]|Cmax is no easier than problem

1 |Cumu,MP [0]|Cmax. Thus, the best possible approximation result that can be de-
rived for either problem is an FPTAS. In the subsequent sections we develop such

approximation schemes.

10.3 FPTAS by Subset-Sum

In this section, we consider problem 1 |Cumu,MP [0]|Cmax. In Proposition 10.1 we
state that this problem isNP -hard and show that it is essentially equivalent to problem

P2 ||Cmax. The latter problem can be formulated as a Subset-sum problem of the form

179

CHAPTER 10. CUMULATIVE EFFECTS

(2.4), which is rewritten for problem 1 |Cumu,MP [0]|Cmax as

max
∑
j∈N

pjxj

subject to
∑
j∈N

pjxj ≤ ∆

xj ∈ {0, 1} , j ∈ N,

(10.5)

where ∆ := p(N)/2. The following statements hold.

Proposition 10.2. Suppose that x∗j ∈ {0, 1} , j ∈ N , are the optimal values of the

decision variables for the problem (10.5). Define N∗1 :=
{
j ∈ N |x∗j = 1

}
and N∗2 =

N\N∗1 . Then for problem 1 |Cumu,MP [0]|Cmax there exists an optimal schedule S∗

in which the jobs of set N∗1 are scheduled in one group and the jobs of set N
∗
2 are

scheduled in the other group.

Corollary 10.1. For a schedule S∗ that is optimal for problem 1 |Cumu,MP [0]|Cmax
the following lower bound

Cmax(S
∗) ≥ q(N) +B∆2 − B

2

∑
j∈N

p2j + β (10.6)

holds.

To see this, observe that for any partition of set N into subsets N1 and N2 the

inequality p(N1)2 + p(N2)
2 ≥ 2∆2 holds. Indeed, if for some non-negative δ we have

that p(N1) = ∆− δ and p(N2) = ∆ + δ, then p(N1)2 + p(N2)
2 = 2∆2 + 2δ2 ≥ 2∆2.

Our further consideration is based on the following statement; see Kellerer et al.

(2003) and Lemma 4.6.1 in Kellerer, Pferschy and Pisinger (2004).

Theorem 10.1. A Subset-sum problem of the form (10.5) admits an FPTAS that for

a given positive ε, either finds an optimal solution x∗j ∈ {0, 1} , j ∈ N , such that∑
j∈N

pjx
∗
j < (1− ε)∆

or finds an approximate solution xεj ∈ {0, 1} , j ∈ N , such that

(1− ε)c ≤
∑
j∈N

pjx
ε
j ≤ ∆.

Such an FPTAS requires no more than O
(
min

{
n/ε, n+ 1

ε2
log
(
1
ε

)})
time.

180

CHAPTER 10. CUMULATIVE EFFECTS

The algorithm below assigns the jobs to groups in accordance with the above men-

tioned FPTAS, applied to problem (10.5) with ∆ = p(N)/2.

Algorithm Eps1

Input: An instance of problem 1 |Cumu,MP [0]|Cmax and an ε > 0

Output: A schedule Sε such that Cmax(Sε) ≤ (1 + ε)Cmax(S
∗)

Step 1. For a given ε > 0 define ε0 := ε
ε+1
.

Step 2. With the defined ε0, run an FPTAS for problem (10.5) to find the values

xεj ∈ {0, 1} , j ∈ N . Define N ε
1 :=

{
j ∈ N |xεj = 1

}
and N ε

2 := N\N ε
1 .

Step 3. Output schedule Sε for the original problem 1 |Cumu,MP [0]|Cmax, in which
the jobs of setN ε

1 are assigned to one group and sequenced before the maintenance

and the jobs of set N ε
2 are assigned to the other group to be scheduled after the

maintenance. Stop.

Recall that the makespan as given in (10.4), consists of a variable part and a con-

stant. Due to Proposition 10.2 and Theorem 10.1, the variable part can be minimised

by means of an FPTAS. However, as discussed in Section 1, a direct application of that

FPTAS does not necessarily result into an FPTAS for the original problem, since (10.4)

contains a constant q(N) + β − B
2

∑
j∈N p

2
j , which can be negative. Below we prove

that Algorithm Eps1 gives an appropriate treatment to the negative constant, and

therefore allows us to adapt the existing FPTAS to deliver an ε-approximate solution

for minimising the overall original objective function.

Theorem 10.2. Algorithm Eps1 is an FPTAS for problem 1 |Cumu,MP [0]|Cmax that
runs in O

(
min

{
n/ε, n+

(
1 + 1

ε

)2
log
(
1 + 1

ε

)})
time.

Proof: Using an FPTAS by Kellerer et al. (2003) from Theorem 10.1 with ε0 := ε
ε+1
,

we observe that O(n/ε0) = O
(
n ε+1

ε

)
= O(n/ε) and 1

ε20
log
(
1
ε0

)
=
(
1 + 1

ε

)2
log
(
1 + 1

ε

)
,

so that the required running time is achieved. To complete the proof, we need to prove

that Cmax(Sε) ≤ (1 + ε)Cmax(S
∗).

Due to Theorem 10.1, we only need to consider the case that the FPTAS in Step 2

does not find an optimal solution to problem (10.5); otherwise schedule Sε is optimal.

Below we only look at the instances of problem 1 |Cumu,MP [0]|Cmax for which pj ≤
∆, j ∈ N , since otherwise an optimal solution can be obtained by scheduling the largest
job in one group and the remaining jobs in the other.

181

CHAPTER 10. CUMULATIVE EFFECTS

We assume that there exists a δ, δ ≤ ε0, such that (1−ε0)∆ ≤ p(N ε
1) = ∆ (1− δ) <

∆ and p(N ε
2) = (1 + δ) ∆. Applying (10.4) and (10.6), we have that

Cmax(S
ε) = q(N) +

B

2

(
p(N ε

1)2 + p(N ε
2)2
)

+ β − B

2

∑
j∈N

p2j

= q(N) +B
(
∆2 + δ2∆2

)
+ β − B

2

∑
j∈N

p2j ≤ Cmax(S
∗) +Bδ2∆2.

Below we demonstrate that Bδ(1−δ)∆2 is a lower bound on the optimal makespan

Cmax(S
∗). Consider the problem

max
∑
j∈N

p2j

subject to ∑
j∈Nε

1

pj = (1− δ) ∆

∑
j∈Nε

2

pj = (1 + δ) ∆

0 ≤ pj ≤ ∆, j ∈ N.

(10.7)

This problem is related to one of the basic problems of submodular optimisation,

a so-called resource allocation problem with a convex separable objective function; see

Hochbaum and Hong (1995) and Katoh and Ibaraki (1998). The problem is known to

be solvable by the greedy algorithm, which in the case under consideration, scans the

values pj in any order and gives each of them the largest possible value. In our case,

the greedy algorithm will find an optimal solution to (10.7) in which one of the pj’s is

equal to ∆, one to (1− δ) ∆ and one to δ∆, while all others are equal to zero. Thus,∑
j∈N

p2j ≤ (1− δ)2 ∆2 + ∆2 + (δ∆)2 = 2∆2(1 + δ2 − δ)

provides an upper bound on the sum of squares of the processing times for all instances

of the problem for which Step 2 of Algorithm Eps1 delivers p(N ε
1) = ∆ (1− δ) and

p(N ε
2) = (1 + δ) ∆, including the instance under consideration.

Substituting this into (10.6) we derive a lower bound

Cmax(S
∗) ≥ q(N) +B

(
δ − δ2

)
∆2 + β ≥ Bδ (1− δ) ∆2.

182

CHAPTER 10. CUMULATIVE EFFECTS

This lower bound implies that

Cmax(S
ε) ≤ Cmax(S

∗) +Bδ2∆2 ≤
(

1 +
δ

1− δ

)
Cmax(S

∗).

Since δ
1−δ increases, we have that

Cmax(S
ε) ≤

(
1 +

ε0
1− ε0

)
Cmax(S

∗).

Thus, to obtain an FPTAS for our problem with the accuracy ε, we need to use the

FPTAS for problem (10.5) with ε0 = ε
ε+1
.

10.4 FPTAS by Half-Product

In this section, we show that problem 1 |Cumu,MP [α]|Cmax can be formulated in
terms of quadratic Boolean programming. We discuss an opportunity that this refor-

mulation offers regarding the design of an FPTAS for the problem under consideration.

Given problem 1 |Cumu,MP [α]|Cmax, introduce a Boolean variable xj in such a
way that

xj =

{
1, if job j is scheduled in the first group

0, otherwise

for each job j, 1 ≤ j ≤ n. Taking the jobs in any order, i.e., in the order of their

numbering, if job j is scheduled in the first group then it completes at time

Cj = pjxj

(
Aj +B

j−1∑
i=1

pixi

)
,

so that the MP starts at time
∑n

j=1 pjxj

(
Aj +B

∑j−1
i=1 pixi

)
. If job j is scheduled in

the second group, then

Cj =
n∑
j=1

pjxj

(
Aj +B

j−1∑
i=1

pixi

)
+ α

(
n∑
j=1

pjxj

(
Aj +B

j−1∑
i=1

pixi

))
+ β

+

n∑
j=1

pj(1− xj)
(
Aj +B

j−1∑
i=1

pi(1− xi)
)
.

This implies that in order to solve problem 1 |Cumu,MP [α]|Cmax, we need to

183

CHAPTER 10. CUMULATIVE EFFECTS

minimise the function

Fα (x) = (α + 1)

(
n∑
j=1

pjxj

(
Aj +B

j−1∑
i=1

pixi

))

+

n∑
j=1

pj(1− xj)
(
Aj +B

j−1∑
i=1

pi(1− xi)
)

+ β,

which can be rewritten as

Fα (x) = (α + 1)

(
B

∑
1≤i<j≤n

pipjxixj +

n∑
j=1

pjAjxj

)
(10.8)

+B
∑

1≤i<j≤n
pipj(1− xi)(1− xj) +

n∑
j=1

pjAj(1− xj) + β.

Function (10.8) is similar to the objective function for the Symmetric Quadratic

Knapsack problem studied by Kellerer and Strusevich (2010a, 2010b). The lemma

below links the function Fα (x) to the Half-product problem of the form (2.5).

Lemma 10.1. Function Fα (x) can be represented as Fα (x) = H (x)+K, where H(x)

is the half-product function of the form (2.5), with ai := (α + 2)Bpi, bj := pj and

hj := B
(
pjp(N)− p2j

)
+ αpjAj, j ∈ N , and the constant K is defined as

K := β + q(N) +B
∑

1≤i<j≤n
pipj,

where q(N) =
∑n

j=1 pjAj.

Proof: It follows that∑
1≤i<j≤n

pipj(1− xi)(1− xj) =
∑

1≤i<j≤n
pipjxixj +

∑
1≤i<j≤n

pipj

−
n∑
j=1

pjxj

(
j−1∑
i=1

pi

)
−

n∑
j=1

pj

(
j−1∑
i=1

pixi

)
.

Notice that
n∑
j=1

pj

(
j−1∑
i=1

pixi

)
=

n∑
j=1

pjxj

(
n∑

i=j+1

pi

)

184

CHAPTER 10. CUMULATIVE EFFECTS

so that

∑
1≤i<j≤n

pipj(1− xi)(1− xj) =
∑

1≤i<j≤n
pipjxixj +

∑
1≤i<j≤n

pipj −
n∑
j=1

(
pjp(N)− p2j

)
xj.

Thus, (10.8) becomes

Fα (x) = (α + 2)B
∑

1≤i<j≤n
pipjxixj −

n∑
j=1

(
Bpjp(N)−Bp2j + αpjAj

)
xj

+

(
β +

n∑
j=1

pjAj +B
∑

1≤i<j≤n
pipj

)
,

which proves the lemma.

Consider the problem of minimising the function F (x) = H(x) + K, where H(x)

is a Half-product function of the form (2.5), and K is a constant. It is known that an

FPTAS for minimising the function H(x) does not necessarily behave as an FPTAS

for minimising the function F (x). This is due to the fact the optimal value of H(x) is

negative; see Erel and Ghosh (2008) and Kellerer and Strusevich (2012) for discussion

and examples. Suppose that a lower bound LB and an upper bound UB on the

optimal value of the function F (x) are available, i.e., LB ≤ F (x∗) ≤ UB. Erel and

Ghosh (2008) adopt their FPTAS for minimising the function H(x) to minimising

the function F (x). They develop an algorithm that delivers a solution x0 such that

F (x0)− LB ≤ εLB in O(γn2/ε) time, where γ ≥ UB/LB. We refer to this version of

the scheme as γ-FPTAS.

The makespan Cmax(S) associated with a partition of the jobs N = N1∪N2 into two
groups will be denoted by Fα(N1, N2) and defined by (10.3); for α = 0 the makespan

will be denoted by F0(N1, N2) and defined by (10.4).

Below we describe how to adapt the γ-FPTAS for solving problem

1 |Cumu,MP [α]|Cmax.

Algorithm Eps2

Input: An instance of problem 1 |Cumu,MP [α]|Cmax with α bounded by a constant
and an ε > 0

Output: A schedule Sε such that Cmax(Sε) ≤ (1 + ε)Cmax(S
∗)

Step 1. Given an instance for problem 1 |Cumu,MP [α]|Cmax, take an arbitrary pos-

185

CHAPTER 10. CUMULATIVE EFFECTS

itive ε′ and run Algorithm Eps1 with ε = ε′, applied to the counterpart of the

original problem with constant maintenance (α = 0). Let N ε′
1 and N ε′

2 be the

groups found by Algorithm Eps1. Compute F0(N ε′
1 , N

ε′
2) by (10.4) with N1 = N ε′

1

and N2 = N ε′
2 .

Step 2. Define UB :=
(
1 + α

2

)
F0(N

ε′
1 , N

ε′
2), γ :=

(
1 + α

2

)
(1 + ε′) . Take a small posi-

tive ε and run the γ-FPTAS by Erel and Ghosh (2008). With the found values

xεj ∈ {0, 1} , j ∈ N , define N ε
1 :=

{
j ∈ N |xεj = 1

}
and N ε

2 = N\N ε
1 . If

q(N ε
1) +

B

2
p(N ε

1)2 − B

2

∑
j∈Nε

1

p2j > q(N ε
2) +

B

2
p(N ε

2)2 − B

2

∑
j∈Nε

2

p2j ,

swap N ε
1 and N

ε
2 .

Step 3. Output schedule Sε for the original problem 1 |Cumu,MP [α]|Cmax, in which
the jobs of setN ε

1 are assigned to one group and sequenced before the maintenance

and the jobs of set N ε
2 are assigned to the other group to be scheduled after the

maintenance. Stop.

Theorem 10.3. Algorithm Eps2 is an FPTAS for problem 1 |Cumu,MP [α]|Cmax that
runs in O(n2/ε) time.

Proof: It follows from (10.3) and (10.4) that

Fα(N1, N2) = F0(N1, N2) + α

(
q(N1) +

B

2
p(N1)

2 − B

2

∑
j∈N1

p2j

)
.

Besides, for the purpose of finding the best schedule for problem

1 |Cumu,MP [α]|Cmax defined by a partition N = N1 ∪ N2 we may assume

that

q(N1) +
B

2
p(N1)

2 − B

2

∑
j∈N1

p2j ≤ q(N2) +
B

2
p(N2)

2 − B

2

∑
j∈N2

p2j ,

otherwise, we will swap the groups scheduled before and after the maintenance. This

implies that

q(N1) +
B

2
p(N1)

2 − B

2

∑
j∈N1

p2j ≤
1

2
F0(N1, N2),

and therefore

Fα(N1, N2) ≤
(

1 +
α

2

)
F0(N1, N2). (10.9)

Let S∗α denote a schedule that is optimal for problem 1 |Cumu,MP [α]|Cmax. That
schedule is defined by a partition of the set N of jobs into two subsets, which we denote

186

CHAPTER 10. CUMULATIVE EFFECTS

by N∗1 (α) and N∗1 (α). In particular, N∗1 (0) and N∗1 (0) define an optimal schedule for

problem 1 |Cumu,MP [α]|Cmax. Let also N ε′
1 and N ε′

2 be the sets that are found in

Step 1 of Algorithm Eps2. Due to (10.9) we have

Fα(N∗1 (α), N∗2 (α)) ≤ Fα(N ε′

1 , N
ε′

2) ≤
(

1 +
α

2

)
F0(N

ε′

1 , N
ε′

2).

On the other hand,

Fα(N∗1 (α), N∗2 (α)) ≥ F0(N
∗
1 (0), N∗2 (0)) ≥ F0(N

ε′
1 , N

ε′
2)

(1 + ε′)
.

Thus, for the optimal makespan in problem 1 |Cumu,MP [α]|Cmax, we deduce
that F0(Nε′

1 ,N
ε′
2)

(1+ε′) is a lower bound, while
(
1 + α

2

)
F0(N

ε′
1 , N

ε′
2) is an upper bound, and

therefore the values of UB and γ in Step 2 are correct. The overall running time

of Algorithm Eps2 is determined by the time complexity of Step 2. According to

Erel and Ghosh (2008), the γ-FPTAS requires O(γn2/ε), which in our case becomes

O(n2/ε), since γ only depends on a given α bounded by a constant and on a cho-

sen constant ε′. Algorithm Eps2 will deliver a solution of the required accuracy, i.e.,

Cmax(S
ε)/Cmax(S

∗) ≤ 1 + ε.

10.5 Conclusion

In this chapter, we solve two problems with cumulative deterioration effects and a single

maintenance activity. This is the first study, in which a cumulative effect is combined

with a rate-modifying activity. Mathematically, the considered problems are linked to

linear and quadratic problems of Boolean programming that admit an FPTAS. Our

main technical task has been to adapt the known FPTASs to our problems, which is

not straightforward due to the opposite signs of the variable and constant parts of the

objective function.

The next step in studying the models with cumulative deterioration could be a

search for approximation algorithms or schemes that would allow us to handle multiple

MPs. Also, the problem of minimising the total flow time under these conditions

remains an open problem.

187

Part IV

Parallel Machine Scheduling

188

CHAPTER 11

Impact of Adding Extra Machines

In this chapter, we consider the classical scheduling problems of processing jobs on

identical parallel machines to minimise (i) the makespan or (ii) the total flow time. The

processing times of the jobs are assumed to be fixed, so that unlike the previous chapters

in this thesis, they do not change with respect to their location in the schedule. The

focus of this chapter, is to perform an analytical study on the impact that additional

machines may have, if added to the system. We measure such a machine impact by

the ratio of the value of the objective function computed with the original number

of machines to the one computed with extra machines. We give tight bounds on the

machine impact for the problem of minimising the makespan, for both the preemptive

and non-preemptive versions, as well as for the problem of minimising the total flow

time. We also present polynomial-time exact and approximation algorithms to make

a cost-effective choice of the number of machines, provided that each machine incurs

a cost and the objective function captures the trade-off between the cost of the used

machines and a scheduling objective.

This study formally does not belong to scheduling with changing time, but it shares

the same ideological point of combining scheduling and logistics decisions with a pur-

pose of improving the overall performance of the processing system. Besides, the use

of the convex sequences has appeared to be useful for that study, especially for the

model with a total flow time objective.

The results of this chapter are published in our paper Rustogi and Strusevich

(2013a). The presentation of content in the paper is very similar to the content pro-

vided in this chapter.

189

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

11.1 Brief Overview of Problem

In the problems under consideration, we are given a set of jobs, each of which can

be processed by any of the available machines. The machines are identical, i.e., the

processing time of a job does not depend on the machine assignment decisions. If no

preemption is allowed, each job is assigned to exactly one machine and is processed

on that machine without interruption. In a preemptive schedule, the processing of a

job on a machine can be interrupted at any time and then resumed later on any other

machine, provided that a job is not processed on two or more machines at a time and

the total duration of its processing is equal to the given processing time.

The main aspect of this study is to investigate the influence that additional machines

may have on the objective function. We measure this influence by a machine impact,

which is defined as a ratio of the objective function value computed without using extra

machines over the function value computed with additional machines.

In this chapter, we give tight bounds on the machine impact for the problem of

minimising the makespan, for both the preemptive and non-preemptive versions, as

well as for the problem of minimising the total flow time. For the latter problem only

the non-preemptive version is considered, since, as shown by McNaughton (1959), for

this objective function there is no advantage in allowing preemption.

We believe that the machine impact is an important characteristic of the processing

system. In manufacturing, the decisions on adding machine-tools to the existing park

of similar equipment are often considered. In computing, parallel processors can be

added to a computer system to boost its performance. We present several meaningful

interpretations of the results of this chapter in Section 11.6.

Computing a machine impact is closely related to scheduling with resource augmen-

tation. This direction of research has been initiated by Kalyanasundaram and Pruhs

(2000) who have demonstrated that good competitive ratios of online algorithms can

be achieved, provided that extra resources are used by the scheduler, compared to the

original settings. Resource augmentation allows the use of machines with faster speeds,

as in Kalyanasundaram and Pruhs (2000), or additional parallel machines, as in Azar,

Epstein and van Stee (2000) and Brehob, Torng and Uthaisombut (2000), or both, as

in Chekuri et al. (2004). In particular, the results presented by Azar, Epstein and van

Stee (2000) and Brehob, Torng and Uthaisombut (2000) can be interpreted in terms

of computing a machine impact with respect to the makespan of a non-preemptive

schedule; see Section 11.2 for details.

Clearly, additional machines may improve the scheduling performance, but in real-

190

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

ity, however, adding a machine cannot be seen free. Introducing more machines reduces

a scheduling objective function but may be unacceptable due to a high cost of machine

usage. In this chapter, we also study the problem of the cost-effective choice of the

number of the machines. The total cost function captures the trade-off between the

gain in reducing the value of a scheduling performance measure and a loss associated

with increasing the number of machines. The study of online versions of the problems

of the cost-optimal selection of the machines has been initiated by Imreh and Noga

(1999), who study the non-preemptive problem with an objective that is the sum of

the makespan and the cost of the machines used. In their model, the decision-maker

has no machines in the beginning and when a job is revealed, he/she may buy as many

machines as needed. The jobs are either released according to a list (The List Model)

or arrive over time (The Time Model). The focus is on deriving lower and upper

bounds on the competitive ratios of the online algorithms. The best known bounds for

the online non-preemptive problem are due to Dósa and Tan (2010). The preemptive

version of the List Model is studied by Jiang and He (2005). For the List Model, the

semi-online scenarios are considered by He and Cai (2002) (no preemption allowed)

and by Jiang and He (2006) (both preemptive and non-preemptive versions). In the

semi-online scenarios, the decision-maker is either aware of the longest processing time

of arriving jobs or of the total processing time, and this leads to better bounds on the

competitive ratios. A more general cost function for using the machines is analysed by

Imreh (2009).

The remainder of this chapter is organised as follows. In Section 11.2, we give tight

estimates of the machine impact for the problem of minimising the makespan, for both

the preemptive and non-preemptive versions. Section 11.3 handles the machine impact

for the problem of minimising the total flow time. Here we start with the problem

with unit processing times, derive both upper and lower bounds on the impact of

adding only one extra machine, and then extend the obtained upper bound to the

general case. The cost-effective choice of the number of machines for the makespan

is addressed in Section 11.4. We present a linear time algorithm for the preemptive

version and an approximation algorithm accompanied by its worst-case analysis and

computational experiments for the non-preemptive version. A similar problem with

the total flow time as a scheduling measure is studied in Section 11.5. We establish a

form of discrete convexity of the total cost function and this results into a fast exact

algorithm. Section 11.6 gives examples of practical implications of the obtained results.

191

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

11.2 Estimating Machine Impact: Makespan

Formally, in all problems in this chapter, we are given the jobs of set N = {1, 2, . . . , n}
and m identical parallel machines M1, M2, . . . ,Mm, where m ≥ 2 and n ≥ m. No

matter to which machine a job j ∈ N is assigned, its processing time is equal to pj. We

denote the sum of all processing times by P =
∑

j∈N pj/m and the largest processing

time by pmax.

Definition 11.1. Let S∗(m) denote a schedule that minimises an objective function F

on m identical parallel machines. For m̂ > m, we define the machine impact as the

ratio

I(m, m̂) =
F (S∗(m))

F (S∗(m̂))
. (11.1)

Clearly, I(m, m̂) ≥ 1 for any regular objective function F . Using standard schedul-

ing notation, the scheduling problem of finding a non-preemptive schedule S∗np(m)

that minimises an objective function F on m identical parallel machines is denoted by

Pm ||F . The problems of finding an optimal preemptive schedule S∗p(m) is denoted by

Pm |pmtn|F .

In this section, we focus on minimising the makespan. For a schedule S, the

makespan is denoted by Cmax(S). Thus, F = Cmax, and the problems under con-

sideration are Pm ||Cmax and Pm |pmtn|Cmax. Refer to Section 2.2.5 for individual
results on these two problems. Also see a recent focused survey on parallel machine

scheduling with makespan as the objective function, by Chen (2004).

Recall from Section 2.2.5 that problem Pm ||Cmax is NP -hard for each m ≥ 2,

while problem Pm |pmtn|Cmax is polynomially solvable by a ‘wrap-around’algorithm
due to McNaughton (1959). It is clear that for any schedule S (m) on m machines,

preemptive or not, the bounds (2.9) and (2.10) hold for the makespan Cmax (S(m)).

For the non-preemptive case, these bounds need not be tight.

If Cmax (S∗(m)) = pmax ≥ P
m
> P

m̂
, for m̂ > m, then Cmax (S∗(m̂)) = pmax and

I(m, m̂) = 1, irrespective of whether preemption is allowed or not. Thus, in general

there is no non-trivial lower bound on the machine impact for the problem of minimising

the makespan and we focus our attention on finding an upper bound on the machine

impact.

For problem Pm |pmtn|Cmax, McNaughton’s algorithm (see Section 2.2.5) requires
O(n) time and finds an optimal schedule S∗p(m) with Cmax

(
S∗p(m)

)
= max

{
pmax,

P
m

}
.

192

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

For this case, it is very easy to compute the machine impact I(m, m̂), i.e., the ratio

I(m, m̂) =
Cmax

(
S∗p(m)

)
Cmax

(
S∗p(m̂)

) .
We know that Cmax

(
S∗p(m)

)
= pmax implies I(m, m̂) = 1. On the other hand,

if Cmax
(
S∗p(m)

)
= P

m
, then due to Cmax

(
S∗p(m̂)

)
≥ P

m̂
, we obtain that for problem

Pm |pmtn|Cmax, the machine impact

I(m, m̂) ≤ m̂

m
. (11.2)

This bound is tight, which can be seen by considering an instance of the prob-

lem with mm̂ jobs of unit duration each. In this case, Cmax
(
S∗p(m)

)
= m̂ and

Cmax
(
S∗p(m̂)

)
= m.

Notice that the bound (11.2) will appear again in Section 11.3, as an upper bound

on the machine impact for the problem of minimising the total flow time.

Now we pass to considering the machine impact for problem Pm ||Cmax. Here the
situation is different because the optimal values of makespan are non-available. Still,

a tight upper bound on the machine impact

I(m, m̂) =
Cmax

(
S∗np(m)

)
Cmax

(
S∗np(m̂)

)
can be derived.

Theorem 11.1. For problem Pm ||Cmax and m̂ = um+ v, where u and v are integers

such that u ≥ 1, 0 ≤ v ≤ m− 1, the following bound

I(m, m̂) =
Cmax

(
S∗np(m)

)
Cmax

(
S∗np(m̂)

) ≤ ⌈m̂
m

⌉
= u+ 1 (11.3)

holds and this bound is tight.

Proof: Take a schedule S∗np(m̂) that minimises the makespan on m̂ machines. We

show that this schedule can be transformed into a non-preemptive schedule Snp(m) on

m machines such that

Cmax
(
S∗np(m)

)
Cmax

(
S∗np(m̂)

) ≤ Cmax (Snp(m))

Cmax
(
S∗np(m̂)

) ≤ u+ 1. (11.4)

In schedule S∗np(m̂), split the m̂ machines into v groups of u + 1 machines and

193

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

m − v groups of u machines, and number these groups arbitrarily by the integers

1, 2, . . . ,m. Create a schedule Snp(m) by assigning the jobs processed in schedule

S∗np(m̂) on the machines of the i-th group to machine Mi, 1 ≤ i ≤ m. In the resulting

schedule, there are v machines with a total load of at most (u+ 1)Cmax
(
S∗np(m̂)

)
each and m − v machines with a total load of at most uCmax

(
S∗np(m̂)

)
each. Thus,

Cmax (Snp(m)) ≤ (u+ 1)Cmax
(
S∗np(m̂)

)
, as required.

To see that (11.3) is a tight bound consider an instance with m̂ = um+v jobs, each

of duration m. In this case, in any optimal schedule S∗np(m) on m machines there are

v machines processing u + 1 jobs each and m− v machines processing u jobs each, so
that Cmax

(
S∗np(m)

)
= (u+ 1)m. On the other hand, in schedule S∗np(m̂) each machine

processes exactly one job, i.e., Cmax
(
S∗np(m̂)

)
= m.

Thus, the bound of u+ 1 on the machine impact remains the same even if all jobs

are identical.

Notice that Theorem 11.1 is essentially an existence result; in particular it does not

provide an algorithm for finding a schedule Snp(m) that satisfies (11.4) without prior

knowledge of schedule S∗np(m̂).

Recall from Section 2.2.5, that to solve problem Pm ||Cmax, Graham (1966) intro-

duces Algorithm LS (List Scheduling) which delivers a heuristic schedule SLS(m) with

a tight worst-case bound (2.6). Also recall, that if an LPT list scheduling algorithm is

used, the resulting schedule SLPT (m), delivers a better bound (2.8).

In the following statement we further generalise this result on the performance of

the list scheduling algorithm.

Theorem 11.2. For problem Pm ||Cmax, let SLS(m) be a schedule found by Algo-

rithm LS. Then for any number m̂ ≥ 1 of machines the bound

Cmax (SLS(m))

Cmax
(
S∗np(m̂)

) ≤ 1 +
m̂− 1

m
(11.5)

holds and this bound is tight.

Notice that for m̂ = m, Theorem 11.2 is equivalent to the classical list scheduling

result by Graham (1966). For any m̂ ≥ 1, Theorem 11.2 can be deduced from the

statements established by Azar, Epstein and van Stee (2000) and Brehob, Torng and

Uthaisombut (2000), who in fact have proved that

Cmax (SLS(m̂))

Cmax
(
S∗np(m)

) ≤ 1 +
m− 1

m̂
(11.6)

194

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

for m̂ ≥ m. It can be verified that (11.6) holds for m̂ < m as well, so that interchanging

the roles of m and m̂ in (11.6) we obtain (11.5).

Since
Cmax

(
S∗np(m)

)
Cmax

(
S∗np(m̂)

) ≤ Cmax (SLS(m))

Cmax
(
S∗np(m̂)

) ,
it follows that Theorem 11.2 provides an estimate of the upper bound of the machine

impact I (m, m̂). This bound, however, is not tight in general, since for m̂ = um + v,

v > 1, the right-hand side of (11.5) becomes u+ 1 + (v − 1) /m, which is greater than

the bound of u+ 1 established in Theorem 11.1. On the other hand, for v = 1, we see

that the inequality (11.4) holds. In particular, for u = 1, v = 1, we obtain that

I(m,m+ 1) ≤ Cmax (SLS(m))

Cmax
(
S∗np(m+ 1)

) ≤ 2.

Computing I(m,m + 1) is a problem that is of interest in its own right, since it

measures the influence of adding one extra machine.

Notice that Brehob, Torng and Uthaisombut (2000) demonstrate that the upper

bound in (11.6) can be improved, provided that not an arbitrary list schedule SLS(m̂) on

m̂ ≥ m machines is used, but a schedule SLPT (m̂) is used. The latter schedule is found

by a version of the list scheduling algorithm that works with a list of jobs renumbered

in accordance with the LPT rule. Brehob, Torng and Uthaisombut (2000) provide

upper bounds on the ratio Cmax (SLPT (m̂)) /Cmax
(
S∗np(m)

)
for m̂ ≥ m. However, for

our purposes, we need an upper bound on Cmax (SLPT (m)) /Cmax
(
S∗np(m̂)

)
without

prior knowledge of schedule S∗np(m̂). Unlike the case of the general list scheduling

algorithm described above, the results of Brehob, Torng and Uthaisombut (2000) are

not transferable to estimating the latter ratio.

Even if a non-preemptive schedule on m machines is found by the LPT rule, the

established bound (11.4) on the machine impact cannot be guaranteed. Let SLPT (m)

be a schedule onm machines found by the LPT list scheduling algorithm, while S∗np(m̂)

be an optimal schedule on m̂ = um+ v machines, where u and v are integers such that

u ≥ 1, 1 ≤ v ≤ m. Below we demonstrate that there are instances of the problem for

which
Cmax (SLPT (m))

Cmax
(
S∗np(m̂)

) = u+ 1 +
1

3m
. (11.7)

Assume that v > 2m+1
3

and consider an instance with (u+ 1)m+ 3v− 1 jobs which

consists of:

• (u− 1)m jobs of duration 3m each;

195

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

• m pairs of jobs of durations 2m, 2m− 1, . . . ,m+ 1;

• 3v − 1 jobs of duration m.

There exists a schedule S∗ (m̂) with Cmax(S∗(m̂)) = 3m. In this schedule, each of

(u− 1)m machines processes a job of duration 3m, and each of the v − 1 machines

processes three jobs of duration m each. The remaining jobs are in fact m+ 1 pairs of

jobs of duration 2m, 2m− 1, . . . ,m+ 1,m and they are distributed over the remaining

m + 1 machines in such a way that each of these machines processes exactly two jobs

with the total processing time of 3m. If m is even, the respective pairs of jobs are given

by

(2m,m) , (2m,m) , (2m− 1,m+ 1) , (2m− 1,m+ 1) , · · · ,(
3

2
m+ 1,

3

2
m− 1

)
,

(
3

2
m+ 1,

3

2
m− 1

)
,

(
3

2
m,

3

2
m

)
,

while if m is odd, the following pairs are used:

(2m,m) , (2m,m) , (2m− 1,m+ 1) , (2m− 1,m+ 1) , · · · ,(
3m+ 1

2
,
3m− 1

2

)
,

(
3m+ 1

2
,
3m− 1

2

)
.

In schedule SLPT (m) the jobs are taken in the LPT order and are assigned to m

machines. Thus, in SLPT (m), on each of the m machines, there will be (u− 1) jobs of

duration 3m each, such that each of them machines have a slot of duration 3m (u− 1).

The next slot is of total duration 3m+ 1; here each of the machines processes exactly

two jobs with the total processing time of 3m+ 1. If m is even, the following pairs are

assigned to the m machines

(2m,m+ 1) , (2m,m+ 1) , (2m− 1,m+ 2) , (2m− 1,m+ 2) , · · · ,(
3

2
m+ 1,

3

2
m

)
,

(
3

2
m+ 1,

3

2
m

)
,

while if m is odd, the following assignment is used:

(2m,m+ 1) , (2m,m+ 1) , (2m− 1,m+ 2) , (2m− 1,m+ 2) , · · · ,
(

3m+ 1

2
,
3m+ 1

2

)
.

Since 3v − 1 > 2m, the remaining 3v − 1 jobs each of duration m are processed

in three time slots of length m each. Thus, we have that Cmax (S∗ (m̂)) = 3m and

Cmax (SLPT (m)) = 3m (u− 1) + (3m+ 1) + 3m = 3m (u+ 1) + 1, so that for the

196

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

described instance, (11.7) holds.

11.3 Estimating Machine Impact: Total Flow Time

In this section, we consider problem Pm ||F with F =
∑
Cj, i.e., the problem of

minimising the total flow time on m identical parallel machines M1, M2, . . . ,Mm. We

derive bounds on the impact that adding extra machines may have on this objective

function.

There are two points of differences between problem Pm ||
∑
Cj and problem

Pm ||Cmax from Section 11.2:

• as proved by McNaughton (1959), for problem Pm ||
∑
Cj preemption, if allowed,

does not reduce the value of the function, so that we may consider only non-

preemptive schedules;

• as proved by Conway, Maxwell and Miller (1967), problem Pm ||
∑
Cj is solvable

in polynomial time.

For problem Pm ||
∑
Cj, let S∗(m) be an optimal schedule and let G(S∗(m)) denote

the optimal value of the total flow time. It follows from (2.15) that

G(S∗(m)) =
n∑
j=1

Cj(S
∗(m)) =

n∑
j=1

pj

⌈
j

m

⌉
, (11.8)

provided that the jobs are numbered in accordance with the LPT rule (2.7).

Thus, the machine impact I(m, m̂) for problem Pm ||
∑
Cj can be written as

I(m, m̂) =
G(S∗(m))

G(S∗(m̂))
=

∑n
j=1 pj

⌈
j
m

⌉∑n
j=1 pj

⌈
j
m̂

⌉ .
To derive bounds on I(m, m̂) for problem Pm ||

∑
Cj, let us first start with finding

the bounds on I(m,m+ 1), for problem Pm |pj = 1|
∑
Cj with unit processing times.

Later, we shall extend the obtained results to the general case.

197

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

11.3.1 Unit Processing Times

In this subsection, we derive both upper and lower bounds on the machine impact

I (m,m+ 1), provided that pj = 1 for each job j ∈ N .

In our working, we use a closed form formula for computing the total flow time

G(S∗(m)) for an optimal schedule on m machines.

Lemma 11.1. For problem Pm |pj = 1|
∑
Cj the objective function can be computed

by

G(S∗(m)) =

n∑
j=1

⌈
j

m

⌉
=
(⌊ n
m

⌋
+ 1
)(

n− m

2

⌊ n
m

⌋)
. (11.9)

Proof: The proof is similar to that of Theorem 5.1 in Chapter 5. Recall that

G(S∗(m)) =
n∑
j=1

⌈
j

m

⌉

due to (11.8). Assume that j = km + r, where k ∈
{

0, 1, . . . ,
⌊
n
m

⌋
− 1
}
, 1 ≤ r ≤ m,

and rewrite

G(S∗(m)) =

b nmc−1∑
k=0

m∑
r=1

⌈
km+ r

m

⌉
+

n−mb nmc∑
r=1

⌈⌊
n
m

⌋
m+ r

m

⌉

=

b nmc−1∑
k=0

m∑
r=1

(
k +

⌈ r
m

⌉)
+

n−mb nmc∑
r=1

(⌊ n
m

⌋
+
⌈ r
m

⌉)
.

Since
⌈
r
m

⌉
= 1, we deduce

G(S∗(m)) =

b nmc−1∑
k=0

m∑
r=1

(k + 1) +

n−mb nmc∑
r=1

(⌊ n
m

⌋
+ 1
)

= m

b nmc−1∑
k=0

(k + 1) +
(
n−m

⌊ n
m

⌋)(⌊ n
m

⌋
+ 1
)
,

and the required formula (11.9) follows immediately.

Upper bound

The purpose of this subsection is to prove the following statement.

198

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

Theorem 11.3. For problem Pm |pj = 1|
∑
Cj the bound on the machine impact

I (m,m+ 1) =

∑n
j=1

⌈
j
m

⌉∑n
j=1

⌈
j

m+1

⌉ ≤ m+ 1

m
. (11.10)

Define the sequence

A(j) = m

⌈
j

m

⌉
− (m+ 1)

⌈
j

m+ 1

⌉
, j ∈ N . (11.11)

To prove (11.10), we show that

n∑
j=1

A(j) ≤ 0. (11.12)

We start with the statement that shows that the sequence A(j), j ∈ N , is periodic.

Lemma 11.2. The sequence A(j), 1 ≤ j ≤ n, defined by (11.11) is periodic with a

period of m(m+ 1), so that for each j ≤ n−m (m+ 1) the equality A(j+m(m+ 1)) =

A(j) holds.

Proof : Take an arbitrary j, 1 ≤ j ≤ n−m (m+ 1). The following argument

A(j +m(m+ 1)) = m

⌈
j +m(m+ 1)

m

⌉
− (m+ 1)

⌈
j +m(m+ 1)

m+ 1

⌉
= m

⌈
j

m

⌉
+m (m+ 1)− (m+ 1)

⌈
j

m+ 1

⌉
−m (m+ 1)

= m

⌈
j

m

⌉
− (m+ 1)

⌈
j

m+ 1

⌉
= A(j)

proves the lemma.

Consider the first m (m+ 1) elements of sequence A(j), 1 ≤ j ≤ n, and call it a

block. It follows from Lemma 11.2 that the sequence A(j), 1 ≤ j ≤ n, is a collection of

several blocks each containing m (m+ 1) elements, possibly followed by an incomplete

block with less than m (m+ 1) elements. It appears that each full block can be further

subdivided intom sequences ofm+1 elements each, which we call patterns. For a block

A(j), 1 ≤ j ≤ m (m+ 1), its q-th pattern is given by the elements {(q − 1) (m+ 1) +

1, (q − 1) (m+ 1) + 2, . . . , q (m+ 1)}, where 1 ≤ q ≤ m.

The following statement proves that the sum of the elements in each pattern is

negative.

199

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

Lemma 11.3. For each pattern q, 1 ≤ q ≤ m, of the first block of elements A(j),

1 ≤ j ≤ m (m+ 1), of sequence (11.11), the relation

q(m+1)∑
j=(q−1)(m+1)+1

A(j) = −q < 0

holds.

Proof: It is easy to see that for each j ∈ {(q − 1) (m+ 1) + 1, . . . , q(m+ 1)} within
the pattern, the value of

⌈
j

m+1

⌉
is equal to q. However, the value of the expression

⌈
j
m

⌉
does not remain constant for the entire range of j within the pattern and is given by⌈

j

m

⌉
=

{
q, j ∈ {(q − 1) (m+ 1) + 1, . . . , qm}
q + 1, j ∈ {qm+ 1, . . . , q(m+ 1)}

.

We rewrite

q(m+1)∑
j=(q−1)(m+1)+1

A(j) =

qm∑
j=(q−1)(m+1)+1

(
m

⌈
j

m

⌉
− (m+ 1)

⌈
j

m+ 1

⌉)

+

q(m+1)∑
j=qm+1

(
m

⌈
j

m

⌉
− (m+ 1)

⌈
j

m+ 1

⌉)

=

qm∑
j=(q−1)(m+1)+1

(mq − (m+ 1) q) +

q(m+1)∑
j=qm+1

(m (q + 1)− (m+ 1) q) .

In the right-hand side of the last expression, the first term reduces to (−q) taken
m− q + 1 times, and the second term reduces to m− q taken q times, so that

(q+1)m∑
j=(q−1)(m+1)+1

A(j) = − (m− q + 1) q + q (m− q) = −q < 0,

which proves the lemma.

In sequence (11.11), the sum of the elements of each complete block is equal to the

sum of the elements of all its patterns and is, therefore, negative due to Lemma 11.3.

Besides, in sequence (11.11) the last block may be incomplete, i.e., may contain less

than m (m+ 1) elements, or, equivalently, less than m complete patterns of m + 1

elements each and one incomplete pattern, of less than m + 1 elements. Due to

Lemma 11.3, each complete pattern will make a negative contribution to the sum

of the elements of sequence (11.11). As seen from the proof of Lemma 11.3, each in-

200

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

complete pattern will have less positive elements than a complete pattern. Thus, the

sum of the elements of an incomplete pattern is less than what it would have been,

if that pattern were complete. We conclude that an incomplete pattern also makes a

negative contribution to the overall sum of the elements of sequence (11.11). Thus,

(11.12) holds, and the required upper bound (11.10) is proved.

Lower bound

We now derive a lower bound on the value of the machine impact I(m,m + 1) for

problem Pm |pj = 1|
∑
Cj; recall that we only need to consider the instance with

n > m; otherwise the problem is trivial. Notice that Pm |pj = 1|
∑
Cj is the only

problem from the range under consideration for which a non-trivial lower bound on

I(m, m̂) exists; for the rest of the problems the lower bound is 1 and is tight; see

Section 11.2 for a discussion of a lower bound on the machine impact in the case of

minimising the makespan.

Below we prove the following statement.

Theorem 11.4. For problem Pm |pj = 1|
∑
Cj the bound on the machine impact

I (m,m+ 1) ≥
{

1 + 1
3m−1 , if n is even

1 + 1
3m−3 , if n is odd

(11.13)

holds.

We only prove the top inequality in (11.13) and demonstrate tightness of both

bounds. Define the sequence

B(j) = (3m− 1)

⌈
j

m

⌉
− 3m

⌈
j

m+ 1

⌉
, j ∈ N . (11.14)

To prove the top inequality in (11.13), we show that

n∑
j=1

B(j) ≥ 0. (11.15)

Similar to Lemma 11.2, we can prove that the sequence (11.14) is ‘quasiperiodic’.

Lemma 11.4. For each j ≤ n−m (m+ 1) the equality B(j+m(m+1)) = B(j)+2m−1

holds.

201

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

The sequence of B(j), 1 ≤ j ≤ n, can be split into blocks ofm(m+1) elements each

(plus, possibly, an incomplete last block) defined exactly as the blocks of the sequence

A(j), 1 ≤ j ≤ n, in Section 11.3.1. Furthermore, each complete block can be split

into m patterns of m + 1 elements each, similar to the patterns of the sequence A(j),

1 ≤ j ≤ n, in Section 11.3.1.

Suppose that all patterns in the first block with the elements 1, 2, . . . ,m (m+ 1)

are complete. The proof of Lemma 11.3 can be modified to show that the sum of a

pattern q, 1 ≤ q ≤ m, in the first block is equal to 2q (m− 1), and the sum of the

elements of the first block is equal to
∑m

q=1 2 (m− 1) q = m3 −m. Besides, it can be
easily verified in light of Lemma 11.4, that each element of a block other than the first

is strictly positive.

We only need to address a situation that the first block contains an incomplete

pattern. As in Section 11.3.1, for the first block the q-th pattern starts with at most

m− q+ 1 negative entries, each equal to −q, where q, 1 ≤ q ≤ m. The first pattern in

the first block must be complete, since otherwise n < m+ 1. If the first block contains

an incomplete pattern q = v, 2 ≤ v ≤ m, then the negative contribution from the

v-th pattern is compensated by the positive contribution from the preceding complete

patterns, since
∑v−1

q=1 2q (m− 1) ≥ (m− v + 1) v, where the equality holds for v = 2.

Thus, the inequality (11.15) holds and the required lower bound is proved. To

establish the tightness, notice that the reasoning above implies that the sum of the

elements B(j), 1 ≤ j ≤ n, is the smallest if its last element n is the (m− 1)-th element

of the second pattern of the first block, i.e., n = (m+ 1) + (m− 1) = 2m. If n is even,

then
n∑
j=1

B(j) = 0,

and the impact factor I(m,m+ 1) is equal to 1 + 1
3m−1 . The behaviour of the machine

impact and its bounds is illustrated by Figure 11.1.

If n is odd, we can apply a similar reasoning to demonstrate that I(m,m + 1) is

bounded from below by 1 + 1
3m−3 , the equality holds for n = 2m − 1. Indeed, for this

instance we have
⌊
n
m

⌋
=
⌊

n
m+1

⌋
= 1 and by (11.9) we deduce that

G(S∗(m)) = 2
(

(2m− 1)− m

2

)
= 3m− 2;

G(S∗(m+ 1)) = 2

(
(2m− 1)− m+ 1

2

)
= 3m− 3,

as required.

202

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

Figure 11.1: The graphs of I(m,m + 1) and its lower and upper bounds for problem
Pm |pj = 1|

∑
Cj with n = 50

Furthermore, we can use (11.9) to explain the behaviour of function I(m,m + 1).

Indeed, for the values of m larger than n/2, we derive that G(S∗(m)) = 2n −m and

G(S∗(m + 1)) = 2n − m − 1, so that I(m,m + 1) is monotone increasing. However,

for m smaller than n/2 the function I(m,m + 1) is not monotone, which is due to

‘jumps’in the values
⌊
n
m

⌋
and

⌊
n

m+1

⌋
, which contribute to G(S∗(m)) and G(S∗(m +

1)), respectively. More precisely, it can be proved that when for some m = m′ the

inequalities I(m′ − 1,m′) > I(m′,m′ + 1) and I(m′,m′ + 1) < I(m′ + 1,m′ + 2) hold,

i.e., when I(m′,m′ + 1) is a local minimum, then m′ = dn/re for some integer r, with
the global minimum achieved for r = 2.

11.3.2 Arbitrary Processing Times

We first prove that m+1
m

remains an upper bound on the machine impact I(m,m + 1)

for problem Pm ||
∑
Cj with arbitrary processing times, and then extend this result

for the general impact I(m, m̂).

Recall that the jobs are numbered in the LPT order, in accordance with (2.7).

203

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

What we need to prove in order to estimate I(m,m+ 1) is the inequality

n∑
j=1

pjAj ≤ 0,

where A(j), 1 ≤ j ≤ n, is the sequence defined by (11.11). Also recall that the latter

sequence is periodic by Lemma 11.2 and can be split into blocks, each of which is in

turn split into patterns; see Section 11.3.1 for details.

We start with looking at a complete pattern of the first block.

Lemma 11.5. Let {(q − 1) (m+ 1) + 1, . . . , q (m+ 1)} be the q-th pattern of the first
block of sequence (11.11), and that pattern is complete. Then

q(m+1)∑
j=(q−1)(m+1)+1

pjAj ≤ −qpqm < 0.

Proof: As follows from the proof of Lemma 11.3, each of the firstm−q+1 elements

of the pattern of sequence (11.11) under consideration is equal to −q, while each of the
remaining q elements is equal to m− q. Thus,

q(m+1)∑
j=(q−1)(m+1)+1

pjAj = −q
qm∑

j=(q−1)(m+1)+1

pj + (m− q)
q(m+1)∑
j=qm+1

pj.

Due to the LPT numbering of the jobs, we deduce

q(m+1)∑
j=(q−1)(m+1)+1

pjAj ≤ −q (m− q + 1) min {pj| (q − 1) (m+ 1) + 1 ≤ j ≤ qm}+

+ (m− q) qmax {pj|qm+ 1 ≤ j ≤ q (m+ 1)}
= −q (m− q + 1) pqm + (m− q) qpqm+1
≤ −q (m− q + 1) pqm + (m− q) qpqm = −qpqm < 0,

as required.

Now we are ready to present the main result of this section.

Theorem 11.5. For problem Pm ||
∑
Cj, the following bound holds

I(m, m̂) =

∑
Cj (S∗(m))∑
Cj (S∗(m̂))

≤ m̂

m
(11.16)

and this bound is asymptotically tight.

204

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

Proof: For m̂ = m + 1 the theorem follows immediately from Lemma 11.5. Due

to the periodic nature of the sequence (11.11) guaranteed by Lemma 11.2, we can

extend Lemma 11.5 to any complete pattern of any block. If there is an incomplete

pattern that finishes the sequence (11.11), then the sum of products pjAj for j that

belong to that pattern can easily be proved negative. As proved in Section 11.3.1, such

a pattern of the sequence (11.11) either contains only negative values or all negative

values and less positive values than it would if it were complete. This implies that

I(m,m+ 1) ≤ (m+ 1) /m.

Multiple application of the latter inequality gives us

G(S∗(m)) ≤ m+ 1

m
G(S∗(m+ 1)) ≤ m+ 1

m

m+ 2

m+ 1
G(S∗(m+ 2))

≤ (m+ 1) (m+ 2) · · · m̂
m (m+ 1) · · · (m̂− 1)

G(S∗(m̂)),

so that (11.16) holds.

To see that this bound is asymptotically tight, consider an instance of problem

Pm ||
∑
Cj with n = Wm(m+ y) jobs of unit duration each, where y ≥ 1 and W is a

large positive number. We compare G(S∗(m)) and G(S∗(m̂)) for m̂ = m+ y. For this

instance, we use (11.9) to compute

G(S∗(m)) =
mW (m+ y)(Wm+Wy + 1)

2
;

G(S∗(m+ y)) =
(m+ y)Wm(Wm+ 1)

2
.

Thus, as W →∞ the ratio

I(m, m̂) =
(Wm+Wy + 1)

(Wm+ 1)

approaches m+y
m

= m̂
m
.

It is easy to verify that for problem Pm ||
∑
Cj, a tight lower bound on I(m, m̂) is

1, which is achieved for instances with a very long job.

205

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

11.4 Cost-Effective Choice of The Number of Ma-

chines: Makespan

In the previous sections, we have derived bounds on the machine impact that show

how a scheduling performance measure F (either the makespan or the total flow time)

is affected by the arrival of extra machines. In reality, adding a machine cannot be

seen free. From now on, we address the problem of making a cost-effective choice of

the number of machines to minimise a function that captures the trade-off between the

value of F and the cost of using the machines.

Formally, assume that using a machine incurs a cost K, and we are interested in

minimising the total cost function

Φ(m) = w1F (S∗ (m)) + w2Km,

where S∗(m) denotes an optimal schedule with m parallel machines to minimise an

objective F ∈ {Cmax,
∑
Cj}, while w1 and w2 represent positive weights associated

with the contribution of the scheduling objective and the machine cost, respectively.

The above objective function can be normalised and be rewritten as

Φ(m) = F (S∗ (m)) + κm, (11.17)

where the normalised cost of using each machine is denoted as κ := w2K
w1

.

In this section, we handle the problem with F = Cmax, for both the preemptive

and non-preemptive cases. For the preemptive case, we present a linear time algorithm

for finding the number of machines that minimises function (11.17). For the non-

preemptive case, we analyse a worst-case behaviour of an approximation algorithm

that accepts the number of machines that is optimal for the preemptive counterpart.

11.4.1 Preemption Allowed

We start with the preemptive version of the problem of minimising the total cost. We

denote the total cost function by Φp(m), provided that the scheduling objective is the

makespan; the subscript “p”is used to indicate preemption. Thus,

Φp(m) = Cmax(S
∗
p (m)) + κm,

206

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

where S∗p (m) is an optimal preemptive schedule on m machines. Let m∗p denote the

optimal number of machines, i.e., Φp(m
∗
p) ≤ Φp(m) for all values of m ≥ 1. Recall that

for the optimal makespan for problem Pm |pmtn|Cmax, the lower bounds (2.9) and
(2.10) hold.

Define m1 as the smallest number of machines for which the duration of the longest

job is either larger than or equal to the average machine load, i.e.,

m1 =

⌈
P

pmax

⌉
. (11.18)

Thus, we can consider function Φp(m) as

Φp(m) =

{
Γ1(m), for m ≥ m1

Γ2(m), for 1 ≤ m < m1,

where

Γ1 (m) : = pmax + κm;

Γ2 (m) : =
P

m
+ κm. (11.19)

Obviously, m1 minimises Γ1(m), since adding another machine incurs extra cost

without changing the makespan pmax. Let m2 be such that

Γ2 (m2) = min {Γ2 (m) |1 ≤ m < m1} .

If we have Γ1 (m1) ≤ Γ2 (m2) , then m∗p = m1, otherwise, m∗p = m2.

Notice that function Γ2 (m) is exactly of the same shape as the total cost function

of the EOQ model of inventory control, this topic being a part of any standard OR

curriculum; see, e.g., Winston (1994). Function Γ2(m) is convex and its global mini-

mum is achieved for m = µ, found by the formula, similar to the famous “square root”

EOQ formula:

µ =

√
P

κ
. (11.20)

In what follows, we assume that the coeffi cient κ is such that µ < n; otherwise

function Γ2(m) reaches its minimum for m = n. Notice that P
µ

= κµ, so that the

smallest value of Γ2(m) is equal to 2κµ. Notice that for κ = 1, the value of 2κµ

becomes 2
√
P , which complies with a lower bound on the total cost used by Imreh and

Noga (1999) as well as in other online studies cited in the introduction.

207

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

Figure 11.2: An example of graphs of the functions Γ1(m), Γ2(m) and Φp(m)

Due to the convexity of Γ2(m), we observe that

P

m
< κm, m < µ; (11.21)

P

m
> κm, m > µ.

If µ ≥ m1, then function Γ2(m) decreases for m ∈ {1, 2, . . . ,m1 − 1}, so that
Γ2(m1− 1) might be smaller than Γ1 (m1). For µ < m1, if µ happens to be integer, we

take m2 = µ. Otherwise, due to the convexity of function Γ2(m), its integer minimum

is delivered either by m′ = bµc or m′′ = dµe, depending on which of these two values
returns a lower value of function Γ2 (m).

Figure 11.2 illustrates how function Φp(m) is formed. In the taken instance, κ = 2.8,

P = 108 and pmax = 25. In this case the graphs of Γ1(m) and Γ2(m) intersect at

m = 4.32, while µ = 6.21059. In this case, m2 < m1 < m′ < m′′. For other instances

other relative orders of these four values are possible. Algorithm 1 below describes how

to find the one that delivers the minimum of function Φp(m).

Algorithm 1

input: Jobs of set N = {1, 2, . . . , n}; normalised cost κ of using each machine.

208

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

output: The cost-optimal number of machines m∗p.

Step 1. Determine the values of P and pmax. Compute m1 by (11.18) and define

m∗p := m1.

Step 2. Compute µ by (11.20). If dµe < m1, go to Step 3; otherwise define m2 =

m1 − 1, if Γ2 (m2) < Γ1(m1) redefine m∗p := m2. Go to Step 4.

Step 3. Compute m′ := bµc and m′′ := dµe . Define m∗p := m′ and, if Γ2 (m′′) <

Γ2 (m′) , redefine m∗p := m′′.

Step 4. Output m∗p and Φp(m
∗
p). Stop.

The running time of the Algorithm 1 is O(n), provided the square root operation

takes constant time. The algorithm outputs the optimal number of machines m∗p and

the optimal total cost Φp(m
∗
p). The corresponding optimal schedule S

∗
p

(
m∗p
)
can be

found by McNaughton’s algorithm in O(n) time. For the instance illustrated in Fig-

ure 11.2 Algorithm 1 outputs m∗p = m2 = 4 found in Step 2.

Thus, the following statement holds.

Theorem 11.6. Algorithm 1 finds the optimal number of machines m∗p, the optimal

cost Φp(m
∗
p) and the corresponding preemptive optimal schedule S

∗
p

(
m∗p
)
in O(n) time.

11.4.2 No Preemption Allowed

Now we pass to the non-preemptive version of the problem. We only may look for an

approximation algorithm, since problem Pm ||Cmax is NP -hard. We denote the total
cost function by Φnp(m); the subscript “np”is used to indicate that no preemption is

allowed. Thus,

Φnp(m) = Cmax(S
∗
np (m)) + κm,

where S∗np (m) is an optimal non-preemptive schedule on m machines. Let m∗np denote

the optimal number of machines, i.e., Φnp(m
∗
np) ≤ Φnp(m) for all values of m ≥ 1.

As a part of our algorithm we need to be able to describe a procedure for finding

a non-preemptive schedule with a given number of machines and compare the found

makespan with the makespan of the optimal preemptive schedule with the same number

of machines. This brings us to a discussion of the power of preemption in the context

of scheduling on identical parallel machines.

Recall from Section 2.2.5, that for problem Pm ||Cmax the power of preemption, i.e.,
the maximum ratio Cmax(S∗np(m))/Cmax(S

∗
p(m)) across all instances of the problem at

209

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

hand is given by (2.11). In particular, Braun and Schmidt (2003) show that the bound

(2.11) holds if an optimal non-preemptive schedule S∗np(m) is replaced by a heuristic

schedule SLPT (m), which is found by an LPT list scheduling algorithm. Note that it

requires O (n log n+ nm) time to compute a heuristic schedule SLPT (m).

Below we present an algorithm that inO(nm) time outputs a non-preemptive sched-

ule that allows us to give better estimates of the power of preemption.

Algorithm 2

input: Jobs of set N = {1, 2, . . . , n}; m identical parallel machines.

output: A heuristic schedule Snp(m).

Step 1. Compute P , and find pm, the m-th largest value among pj, j ∈ N . Identify
m− 1 values of the processing times for which pj ≥ pm and renumber the jobs in

such a way that

p1 ≥ p2 ≥ · · · ≥ pm,

while the remaining jobs are taken in an arbitrary order. Determine the index g,

0 ≤ g ≤ m− 1, as the smallest index such that

pg+1 <
P −

∑g
j=1 pj

m− g

Step 2. For 1 ≤ j ≤ g, taking the jobs in the order of the obtained numbering, assign

job j to machine Mj. Complete the obtained partial schedule by assigning the

remaining jobs to machines Mg+1, . . . ,Mm by Algorithm LS. Call the resulting

schedule Snp(m) and stop.

Finding pm in Step 1 requires O(n) time by the median technique. Renumbering the

jobs needsO(m logm+n) time, determining g takesO(m) time and Step 2 needsO(nm)

time. Thus, the overall running time of the algorithm is O (m (n+ logm)) = O(nm),

due to n ≥ m.

Theorem 11.7. For the problem of scheduling n jobs on m identical parallel machines

Algorithm 2 finds a non-preemptive schedule Snp(m) for which either Cmax(Snp(m)) =

p1 or

Cmax(Snp(m)) ≤
(

2− 2

m− g + 1

)
P −

∑g
j=1 pj

m− g , (11.22)

the latter bound being tight.

210

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

Proof: The makespan of the obtained schedule Snp(m) is either equal to the largest

load of machines M1, . . . ,Mg or to the largest load of machines Mg+1,. . . , Mm. In the

former case, Cmax(Snp(m)) = p1, i.e., this schedule is optimal. Otherwise, let k be a

job that terminates schedule Snp(m). Assume that job k starts at time τ , so that

Cmax (Snp(m)) = τ + pk.

Recall that the greedy nature of Algorithm LS implies that all m− g machines are
permanently busy in the time interval [0, τ], so that

τ ≤
P −

∑g
j=1 pj − pk
m− g .

Thus, we deduce

Cmax (Snp(m)) ≤
P −

∑g
j=1 pj

m− g +
m− g − 1

m− g pk.

Furthermore, pk ≤ pm ≤ · · · ≤ pg+1, i.e.,

pk ≤
∑m

j=g+1 pj + pk

m− g + 1
≤
P −

∑g
j=1 pj

m− g + 1
.

Finally, we derive

Cmax (Snp(m)) ≤
P −

∑g
j=1 pj

m− g +

(
m− g − 1

m− g

)
P −

∑g
j=1 pj

m− g + 1

=

(
1 +

m− g − 1

m− g + 1

)
P −

∑g
j=1 pj

m− g =

(
2− 2

m− g + 1

)
P −

∑g
j=1 pj

m− g ,

which proves (11.22).

To see that the bound (11.22) is tight, take a positive integer m and a non-negative

integer g less than m. Consider an instance with m machines and m + 1 jobs, that

contains jobs 1, · · · , g with the processing time m − g + 1 each, and jobs g + 1, · · · ,
m+1 with the processing time m−g each, where m is a positive integer and g is a non-

negative integer less than m. We have that P = g (m− g + 1)+(m− g + 1) (m− g) =

m (m− g + 1) and pmax = m− g + 1, so that Cmax(S∗p(m)) = m− g + 1.

In an optimal non-preemptive schedule S∗np(m) each job j, 1 ≤ j ≤ g, is assigned

to an individual machine; without loss of generality, this can be machine Mj. The

remaining m− g + 1 jobs are processed on machines Mg+1, · · · ,Mm and each of these

211

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

machines will process exactly one job, except one machine that will process two jobs.

Notice that this schedule is exactly schedule Snp(m) found by Algorithm 2. It can be

checked that

Cmax (Snp(m))
P−

∑g
j=1 pj

m−g

=
Cmax(S

∗
np(m))

Cmax(S∗p(m))
=

(
2− 2

m− g + 1

)
.

Indeed, Cmax(S∗np(m)) = Cmax(Snp(m)) = 2m− 2g and

P −
∑g

j=1 pj

m− g = m− g + 1 = Cmax(S
∗
p(m)),

so that (
2− 2

m− g + 1

)
P −

∑g
j=1 pj

m− g = 2m− 2g = Cmax(Snp(m)).

For our purposes, we need the following statement that follows from Theorem 11.7.

Corollary 11.1. For the problem of scheduling n jobs on m identical parallel machines

Algorithm 2 finds a non-preemptive schedule Snp(m) such that either

Cmax(Snp(m)) ≤
(

2− 2

m+ 1

)
P

m
, (11.23)

if pmax = p1 ≤ P
m
and g = 0, or

Cmax(Snp(m)) ≤
(

2− 2

m− g + 1

)
pg, (11.24)

if pmax = p1 >
P
m
and g ≥ 1.

Proof: The bound (11.23) emerges if Theorem 11.7 is applied with g = 0. On the

other hand, from Theorem 11.7 for g ≥ 1, we get

Cmax(Snp(m)) ≤
(

2− 2

m− g + 1

)
P −

∑g
j=1 pj

m− g .

Since by definition of g the inequality

pg >
P −

∑g−1
j=1 pj

m− g + 1
,

212

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

holds, we deduce that

pg (m− g) > P −
g∑
j=1

pj,

which leads to (11.24).

Since P/m and pg are lower bounds on the value of Cmax(Sp(m)), the inequalities

(11.23) and (11.24) give refined tight upper bounds on the power of preemption for

identical machines.

Now we come back to designing an approximation algorithm for minimising the

total cost function Φnp (m). Our algorithm will take the candidate number of machines

found by Algorithm 1 and then use Algorithm 2 to find a non-preemptive schedule with

the chosen number of machines.

Algorithm 3

input: Jobs of set N = {1, 2, . . . , n}; normalised cost κ of using each machine.

output: A cost-optimal heuristic solution for the problem of minimising the makespan

of the non-preemptive case.

Step 1. Run Algorithm 1 to find the number of machines m∗p that is optimal for the

preemptive version of our problem. Define mH := m∗p.

Step 2. Run Algorithm 2 to find a non-preemptive schedule Snp
(
mH
)
. Output mH ,

Cmax
(
Snp

(
mH
))
and Φnp

(
mH
)
.

Step 1 of Algorithm 3 requires O(n) time, and then Step 2 applied with the found

mH additionally takes O(n) time. It appears that the worst-case performance of Algo-

rithm 3 depends in which step of Algorithm 1 the value m∗p is found; in other words,

that depends on the sign of the difference m1 − dµe. This is why our analysis of

Algorithm 3 is done in two separate statements.

Theorem 11.8. For mH = m∗p ∈ {m1,m2} found in Step 2 of Algorithm 1 the bound

Φnp(m
H)

Φnp

(
m∗np

) ≤ 2− 2

m1

(11.25)

holds, and this bound is tight.

Proof: Since the makespan of the best non-preemptive schedule with m machines is

no smaller than the makespan for the best preemptive schedule with the same number

of machines, it follows that Φnp

(
m∗np

)
≥ Φp

(
m∗np

)
≥ Φp

(
m∗p
)
.

213

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

If m∗p = m2 = m1 − 1 (see Figure 11.2 for an illustration), then Cmax
(
S∗p(m2)

)
=

P/m2 > pmax and we deduce

Φnp

(
mH
)

Φnp

(
m∗np

) ≤ Φnp (m2)

Φp (m2)
=

Φnp (m2)

Γ2 (m2)
=
Cmax

(
S∗np(m2)

)
+ κm2

P
m2

+ κm2

.

Algorithm 2 applied to m = m2 will find g = 0, so that (11.23) holds for schedule

Snp(m2). Thus,

Φnp

(
mH
)

Φnp

(
m∗np

) ≤ Cmax (Snp(m2)) + κm2

P
m2

+ κm2

≤

(
2− 2

m2+1

)
P
m2

+ κm2

P
m2

+ κm2

.

The last fraction decreases in κm2, so that we can replace it by zero to achieve

Φnp

(
mH
)

Φnp

(
m∗np

) ≤
(

2− 2
m2+1

)
P
m2

P
m2

= 2− 2

m2 + 1
= 2− 2

m1

,

as required.

If m∗p = m1 then Cmax
(
S∗p(m1)

)
= pmax ≥ P/m1 and we deduce

Φnp

(
mH
)

Φnp

(
m∗np

) ≤ Φnp (m1)

Φp (m1)
=

Φnp (m1)

Γ1 (m1)
=
Cmax

(
S∗np(m1)

)
+ κm1

pmax + κm1

.

Algorithm 2 applied to m = m1 will find that g ≥ 1, so that (11.24) holds for

schedule Snp(m1). Therefore,

Φnp

(
mH
)

Φnp

(
m∗np

) ≤ pg

(
2− 2

m1−g+1

)
+ κm1

pmax + κm1

.

In the worst case, g = 1 and pg = pmax. Replacing κm2 by zero as above, we obtain

Φnp

(
mH
)

Φnp

(
m∗np

) ≤ pmax

(
2− 2

m1

)
pmax

= 2− 2

m1

.

To see that the bound (11.25) is asymptotically tight, consider an instance with

m + 1 jobs, that contains one job with the processing time m and m jobs with the

processing time m− 1 each, where m is a positive integer. The value of the constant κ

is less than 1. It follows that m1 = m and µ =
√
m2/κ > m, so that m2 = m1 − 1 =

214

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

m − 1. Since Γ1(m1) = m + κm and Γ2(m2) = m2

m−1 + κ (m− 1), we deduce that

m∗p = m1 = m due to a small value of κ. Taking m as mH we find the best non-

preemptive schedule on m machines in which each machine processes one job, except

one machine that processes two jobs of durationm−1 each, i.e., Cmax(S∗np(m)) = 2m−2

and Φnp(m) = 2m − 2 + κm. On the other hand, the total cost function reaches its

minimum for m∗np = m + 1, so that in schedule S∗np(m + 1) each machine processes

exactly one job. Thus, Cmax
(
S∗np(m+ 1)

)
= m and Φnp(m + 1) = m + κ (m+ 1).

Thus,
Φnp(m

H)

Φnp(m∗np)
=

Φnp (m)

Φnp (m+ 1)
=

2m− 2 + κm

m+ κ(m+ 1)
.

As κ approaches zero, the ratio goes to 2− 2
m
. This proves the theorem.

The next statement establishes an improved performance of Algorithm 3, because

for m1 > dµe the machine cost κm makes a larger contribution to the total cost

function.

Theorem 11.9. For mH = m∗p ∈ {m′,m′′} found in Step 3 by Algorithm 1 the bound

Φnp(m
H)

Φnp

(
m∗np

) ≤ 3

2
−O

(
1

m∗p

)
(11.26)

holds, and this bound is tight.

Proof: We know that Φnp(m
∗
np) ≥ Φp(m

∗
np) ≥ Φp(m

∗
p), where either m

∗
p = m′′ or

m∗p = m′.

If m∗p = m′′, i.e., if Φp(m
∗
p) = Γ2 (m′′) we deduce from (11.23) with m = m′′ that

Φnp

(
mH
)

Φnp

(
m∗np

) ≤ Φnp (m′′)

Γ2 (m′′)
=
Cmax

(
S∗np(m

′′)
)

+ κm′′

P
m′′ + κm′′

≤
Cmax

(
S∗p(m

′′)
) (

2− 2
m′′+1

)
+ κm′′

P
m′′ + κm′′

.

Notice that due to the choice of m′′ the equality Cmax
(
S∗p(m

′′)
)

= P
m′′ holds, so that

Φnp

(
mH
)

Φnp

(
m∗np

) ≤ P
m′′

(
2− 2

m′′+1

)
+ κm′′

P
m′′ + κm′′

.

The last derived expression is decreasing in κm′′. Since m′′ ≥ µ, it follows from

215

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

(11.21) with m = m′′ that

Φnp

(
mH
)

Φnp

(
m∗np

) ≤ P
m′′

(
2− 2

m′′+1

)
+ P

m′′

2 P
m′′

=
3− 2

m′′+1

2
=

3

2
− 1

m′′ + 1
=

3

2
−O

(
1

m∗p

)
.

Now, assume that m∗p = m′, i.e., that Φp(m
∗
p) = Γ2 (m′). We deduce

Φnp

(
mH
)

Φnp

(
m∗np

) ≤ Φnp (m′)

Γ2 (m′)
=

(
2− 2

m′+1

)
P
m′ + κm′

P
m′ + κm′

=

(
2− 2

m′+1

)
P
m′ + κm′

P
m′ + κm′

.

Applying (11.21) with m = m′′ = m′ + 1, we get

P

m′ + 1
< κ (m′ + 1) ,

which implies
m′P

(m′ + 1)2
< κm′.

Using this lower bound on the cost component, we obtain

Φnp

(
mH
)

Φnp

(
m∗np

) ≤ (
2− 2

m′+1

)
P
m′ + m′P

(m′+1)2

P
m′ + m′P

(m′+1)2

=
3

2
−

m′ + 3
2

2 (m′)2 + 2m′ + 1
=

3

2
−O

(
1

m∗p

)
.

To see that the bound (11.26) is tight, consider an instance with m + 1 jobs, each

with the processing time m, where m is a positive integer. In the objective function,

set κ = m+1
m
. It follows that m1 = m + 1 and m2 = µ = m′ = m′′ = m. Since

Γ1(m1) = m + (m+1)2

m
= 2m + 2 + 1

m
and Γ2(m2) = 2 (m+ 1), we deduce that m∗p =

m2 = m. Taking m as mH we find the best non-preemptive schedule on m machines in

which each machine processes one job, except one machine that processes two jobs, i.e.,

Cmax(S
∗
np(m)) = 2m and Φnp(m) = 2m + (m+ 1) = 3m + 1. On the other hand, the

total cost function reaches its minimum for m∗np = m+ 1, so that Cmax
(
S∗np(m+ 1

)
) =

m and Φnp(m+ 1) = m+ (m+1)2

m
. Thus,

216

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

Φnp(m
H)

Φnp(m∗np)
=

Φnp (m)

Φnp (m+ 1)
=

3m+ 1

m+ (m+1)2

m

=
3m2 +m

2m2 + 2m+ 1
=

3

2
−

m+ 3
2

2m2 + 2m+ 1
=

3

2
−O

(
1

m

)
.

This proves the theorem.

We have conducted a series of computational experiments to evaluate the perfor-

mance of Algorithm 3. For that purpose, we have generated 100 instances of the

problem with κ ∈ {1, 5, 10} and n ∈ {50, 100, 500}. For each combination of κ and n,
we used six probability distributions to draw the processing times from:

Uni1, Uni2: uniform distribution over [1, 40] and over [1, 100], respectively;

Norm1, Norm2: normal distribution with a mean of 20 and a standard deviation of

5, a mean of 50 and a standard deviation of 10, respectively;

Exp1, Exp2: exponential distribution with a mean of 20 and with a mean of 50,

respectively.

The use of different distributions is justified by the fact that theoretically the per-

formance of the algorithm is affected by the optimal number of machines for the pre-

emptive counterpart of the problem found in Step 1 of Algorithm 3, and that in turn

depends on the presence of a long job in the instance.

Algorithm 3 has been programmed inMATLAB 7.12.0 on an Intel Core i7-2670QM

CPU at 2.20 GHz and 6GB of memory. The CPU time required to run the whole set

of experiments, i.e., a total of 5400 problems, is less than 12 sec.

For each combination of a probability distribution and the values of κ and n, the

corresponding cell of Table 11.1 reports three pieces of information. In the top line,

the string of the form x1/x2/y1/y2 shows that out of 100 instances, the case m∗p = m1

or m∗p = m2 has been observed x1 and x2 times, respectively, while the case m∗p = m′ or

m∗p = m′′ has been observed y1 and y2 times, respectively. In the bottom line, the string

of the form z1/z2 shows the average value (z1) and the maximum value (z2) of the ratio

Φnp(m
H)/Φp(m

∗
p). Notice that in our computation we use Φp(m

∗
p) as a lower bound

on Φnp(m
∗
np). For example, in the top left corner cell, we see that among 100 instances

with 50 jobs and κ = 1 with the processing times drawn from distribution Uni1, m∗p is

never equal to m′ or m′′, while for 37 instances m∗p = m1 and for 63 instances m∗p = m2.

Besides, the average value of Φnp(m
H)/Φp(m

∗
p) is 1.1692, with a maximum of 1.2516.

217

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

Problem Effect Running Time

[Attach separate table here]

Table 11.1: Results of computational experiment for Algorithm 3

218

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

We think it is important to be aware how often a particular m∗p has been observed.

Recall that for m∗p ∈ {m′,m′′} Algorithm 3 has a better theoretically proved worst-

case performance than for m∗p ∈ {m1,m2}; see Theorems 11.9 and 11.8, respectively.
Apart from the exponential distributions, a clear separation is observed, i.e., either

m∗p /∈ {m1,m2} or m∗p /∈ {m′,m′′} , with one exception in each column Norm1 and
Norm2 for κ = 1.

For m∗p /∈ {m′,m′′}, the worst performance has been observed for Norm2 distrib-
ution with κ = 1 and n = 50; the average and maximum values of Φnp(m

H)/Φp(m
∗
p)

are 1.2216 and 1.2885. Notice that these values are also the worst across all generated

instances. Form∗p /∈ {m1,m2} the worst performance has been observed for Uni1 distri-
bution with κ = 1 and n = 100; the average and maximum values of Φnp(m

H)/Φp(m
∗
p)

are 1.1385 and 1.1772. Thus, Algorithm 3 that calls Algorithm 2 with m∗p ∈ {m′,m′′}
performs more accurately in practice, which complies with the theoretical estimates in

Theorems 11.8 and 11.9.

If no separation occurs, i.e., form∗p each of the valuesm1,m2, m′ andm′′ is possible,

the worst performance has been observed for Norm2 distribution with κ = 1 and

n = 100; the average and maximum values of Φnp(m
H)/Φp(m

∗
p) are 1.1648 and 1.2026.

Notice that in this case Algorithm 3 calls Algorithm 2 with m∗p ∈ {m1,m2} for 91 out
of 100 instances.

We have used a design of experiments on software VisualDOC 6.0 to determine

that for all studied probability distributions for both performance measures (average

and maximum ratio) κ is the most influential parameter. Both measures decrease

as either κ or n increase; this complies well with the fact the higher values of both

performance measures are observed in the top row of Table 11.1 (κ = 1, n = 50).

Finally notice that, for each combination of the design parameters, Algorithm 3 in

practice delivers ratios less than theoretically established worst-case ratios.

11.5 Cost-Effective Choice of The Number of Ma-

chines: Total Flow Time

In this section, we consider the problem of finding the optimal number of machines

that minimises the total cost function (11.17), provided that the scheduling objective

F =
∑
Cj.

Recall that for problem Pm ||
∑
Cj, the optimal total flow time is defined by formula

(2.15), provided that the jobs are numbered in accordance with the LPT rule (2.7).

219

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

Define two sequences:

G(m) =

n∑
j=1

pj

⌈
j

m

⌉
, m = 1, 2, · · · , n

T (m) = κm, m = 1, 2, · · · , n

where G(m) is the total flow time of processing the jobs on m machines and T (m)

defines the normalised total cost of using m machines. Thus, for the problem under

consideration, the objective function can be written as

Φ(m) = G(m) + T (m).

Finding the value of m∗ that minimises function Φ(m) can easily be done by direct

enumeration: try all values of m from 1 to n, compute the components of the function

and select the best value of m. Such an approach requires O(n log n) time for finding

an LPT numbering of the jobs, and then O(n) time for computing function Φ for each

trial value of m, 1 ≤ m ≤ n. Thus, such a brute-force algorithm takes O(n2) time.

Below we present an O(n log n) algorithm for findingm∗ that uses only dlog2 ne trial
values of m, due to our observation that the sequence Φ(m), 1 ≤ m ≤ n, is actually

V -shaped with respect to m, 1 ≤ m ≤ n. Recall from Chapter 5, that a sequence A(m)

is called V -shaped if there exists an m0, 1 ≤ m0 ≤ n, such that

A(1) ≥ · · · ≥ A(m0 − 1) ≥ A(m0) ≤ A(m0 + 1) ≤ · · · ≤ A(n).

First, we show that sequence G(m), m = 1, 2, · · · , n, is convex. Recall that a
sequence A(m), 1 ≤ m ≤ n, is called convex if

A(m) ≤ 1

2
(A(m− 1) + A(m+ 1)) , 2 ≤ m ≤ n− 1.

Our reasoning is based on Theorem 5.2 proved in Chapter 5, which states that a

sequence P (k) =
∑n

j=1 pjg
(⌈

j
k

⌉)
, 1 ≤ k ≤ n, is convex if p1 ≥ p2 ≥ · · · ≥ pn. For

our purposes we need Theorem 5.2 in a weaker form, with g ≡ 1. Thus, the following

statement holds.

Lemma 11.6. Let S∗(m) be a schedule that minimises the total flow time on m iden-

tical parallel machines, so that G(m) =
∑

j∈N Cj (S∗(m)). Then the sequence of values

G(m), 1 ≤ m ≤ n, is convex.

Obviously, the sequence T (m) is also convex since T (m) = 1
2

(T (m− 1) + T (m +

220

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

1)) = κm for each m, 2 ≤ m ≤ n− 1.

It is easy to verify that the sum of two convex sequences is convex and any convex

sequence is V -shaped. Thus, Lemma 11.6 immediately implies

Theorem 11.10. For the problem of minimising the total cost, the sequence Φ(m), 1 ≤
m ≤ n, of values of the objective function is convex and V -shaped.

Theorem 11.10 allows us to find an optimal schedule with an optimal number of

machines m∗ by performing binary search with respect to m. As a result at most

dlog2 ne values ofm need to be tested, so that the running time of this method becomes

O(n log n).

11.6 Interpretations and Practical Implications

We conclude this chapter with a brief discussion of the issues related to the machine

impact that may be of interest to managerial decision making.

The upper/lower bound on the machine impact is important for two reasons: (i) it

gives the managers an estimate of what they can expect to gain in the best/worst case if

extra machines are added, and (ii) what they can expect to lose in the worst/best case

if a machine is not included. Below we give illustrations of how the machine impact

can be used by managers in real life.

A lower bound on the machine impact guarantees an improvement of the perfor-

mance of the schedule by a certain factor, if a known number of extra machines are

used. Our analysis, however, shows that the only situation which results in a non-

trivial lower bound is the problem Pm|pj = 1|
∑
Cj; see Theorem 11.4. For the other

studied problems, a lower bound of 1 is returned. On the other hand, an upper bound

provides non-trivial results and can be used more widely.

Consider a computing system that consists of two identical parallel units that daily

performs more or less the same package of tasks with no preemption. The manager

is interested in determining the number of parallel units to be additionally installed

as part of the system to reduce the time of processing the daily package by 60%, i.e.,

to achieve Cmax(S∗(m̂)) ≤ 0.4Cmax(S
∗(2)) or Cmax(S∗(2))/Cmax(S

∗(m̂)) ≥ 2.5. Then it

follows from Theorem 11.1 that to achieve dm̂/2e ≥ 2.5 we need m̂ ≥ 5, i.e., at least

three extra units should be used.

An illustrative example of a similar nature can be given regarding a manufacturing

shop that uses a park of identical machine-tools for performing a particular techno-

221

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

logical operation, e.g., drilling. Suppose that originally three drilling machines are

used to process an established collection of orders on a regular basis. The shop floor

management wants to extend the park of machines with a purpose of reducing the

average time for handling an order by 30%, i.e., to achieve G(S∗(m̂)) ≤ 0.7G(S∗(3))

or G(S∗(3))/G(S∗(m̂)) ≥ 10/7. Then it follows from Theorem 11.5 that to achieve

m̂/3 ≥ 10/7 we need m̂ ≥ 5, i.e., at least two extra machines should be installed.

Given the cost of the new machines, the management may decide whether they want

this change to be implemented. If the cost is their priority, the method of Section 11.5

can be used to find the most cost-effective decision.

Below we present an interpretation of the results obtained for the problem of min-

imising total flow time in terms of the problem of safe pickup of employees from off-

shore installations. The latter problem arises in the oil and gas sector, and its study

has been initiated by Qian et al. (2011). In the most general settings, the problem can

be formulated as follows. Given a set N = {1, 2, . . . , n} of installations, the pickup
demands pj, j ∈ N , i.e., the number of people to be taken from installation j, and

the helicopter capacity Q, find a capacity-feasible flight schedule S that satisfies total

pickup demand and minimises the total risk, measured as the total number of people

exposed to take-offs and landings.

For the purpose of this illustration, we ignore the capacity constraints, and assume

that the helicopter is large enough to take all people on board. This problem is closely

linked with problem Pm ||
∑
Cj, in which the jobs are interpreted as installations, the

processing times as pickup demands, the machines as flights of the helicopter, and

minimising the total flow time is equivalent to minimising the total risk. Additionally,

the non-split pickup scenario is assumed, under which no installation is visited more

than once and the helicopter picks up all pj passengers from an installation j.

Thus, G(S∗(m)) defined by (11.8) measures the total risk of an optimal flight sched-

ule S∗(m) that is comprised of m flights. Clearly, if the number of flights is decreased,

the risk increases, i.e., G(S∗(m+ 1)) > G(S∗(m)). Thus, Theorem 11.5 implies that if

the number of flights decreases from m + 1 to m, then the total risk G(S∗(m)) of the

resulting flight schedule can be up to m+1
m
times larger than that for the best schedule

with m+ 1 flights. This is especially sensitive if m is small, which is typical in reality.

Indeed, reducing the number of flights from 3 to 2 may increase the total risk up to

150%.

Theorem 11.10 leads to an O(n log n)-time algorithm that determines the optimal

number of flights that minimises the cost function Φ(m) = G(m) + κm, where κ

represents the normalised cost of one flight.

222

CHAPTER 11. IMPACT OF ADDING EXTRA MACHINES

11.7 Conclusion

In this chapter, we study the influence of adding extra machines for the classical

scheduling problems on identical parallel machines, to minimise the makespan and

to minimise the total flow time. We present tight bounds on the machine impact and

give algorithms for making a cost-effective choice of the number of the machines. These

results may have applications to various areas, including computing and manufacturing.

223

CHAPTER 12

Enhanced Models with Changing
Processing Times

In this chapter, we extend our study on single machine scheduling with changing

processing times to a parallel machine environment. We consider several parallel ma-

chine models that have not been studied previously. We start with a classical model in

which the parallel machines are subject to capacity constraints with fixed processing

times. We then extend this model, and study parallel machines which are subject to

the combined effects as introduced in Chapter 9. We provide polynomial-time algo-

rithms for the problem of minimising the total flow time for all the models considered.

Most of the algorithmic ideas used to solve the problems are directly transferred from

their single machine counterparts, studied in previous chapters.

The results of this chapter are published in our recent papers Rustogi and Strusevich

(2012b) and Rustogi and Strusevich (2013b). Unlike the content provided in these

papers, in this chapter, we provide a detailed account of scheduling problems with

parallel machines and changing processing times.

12.1 Capacitated Parallel Machines

The jobs of a set N = {1, 2, . . . , n} have to be processed on m parallel machines

M1,M2, . . . ,Mm, where m ≤ n. To start with, we consider the case of uniform ma-

chines. We assume that the machines are renumbered and their speeds si, 1 ≤ i ≤ m,

are rescaled in such a way that s1 ≥ s2 ≥ · · · ≥ sm = 1. The objective is to minimise

the sum of the completion times
∑
Cj. There are restrictions regarding the number of

jobs to be assigned to a machine, so that in any feasible schedule machineMi processes

no more than q[i] jobs, where
∑m

i=1 q
[i] > n. The processing times of jobs are assumed

224

CHAPTER 12. MODELS WITH CHANGING PROCESSING TIMES

to fixed at all times, i.e., effects such as deterioration or learning, are not involved. We

denote the problem under consideration by Qm
∣∣∑m

i=1 q
[i] > n

∣∣∑Cj. The case that∑m
i=1 q

[i] = n is considered separately, in Section 12.2, since under that equality a more

general problem can be solved, in which the jobs are subject to positional effects and

rate-modifying activities.

Notice that if no capacity constraints are imposed, problem Qm ||
∑
Cj is solvable

in O(n log n) time due to Algorithm QmSum as outlined in Section 2.2.5. However, the

status of problem Qm
∣∣∑m

i=1 q
[i] > n

∣∣∑Cj to our best knowledge has remained open,

even if m = 2 and the machines are identical. The closest problem studied earlier

is Pm
∣∣∑m

i=1 q
[i] ≥ n

∣∣∑wjCj to minimise the sum of weighted completion times on

capacitated identical machines. For this NP -hard problem, Woeginger (2005) gives a

fully polynomial-time approximation scheme and a pseudo-polynomial dynamic pro-

gramming algorithm for its solution. It should be noted that even for m = 2 and equal

weights, the algorithm by Woeginger (2005) still requires pseudo-polynomial time.

Given a feasible schedule for problem Qm
∣∣∑m

i=1 q
[i] > n

∣∣∑Cj, the number of jobs

assigned to machineMi is denoted by h[i], where h[i] ≤ q[i],1 ≤ i ≤ m, and
∑m

i=1 h
[i] = n.

On machine Mi the assigned jobs are processed in an order π[i](1), . . . , π[i](h[i]). The

contribution of machine Mi towards the objective function is equal to

pπ[i](1)
si

+

(
pπ[i](1)
si

+
pπ[i](2)
si

)
+ · · ·+

(
pπ[i](1)
si

+
pπ[i](2)
si

+ · · ·+
pπ[i](h[i])
si

)
=

h[i]∑
r=1

(
h[i] − r + 1

)
pπ[i](r)

si
,

and the overall objective function, the sum of completion times is written as (2.16).

Notice that the expression (2.16) is in the form of our generic objective function

(4.6) as defined in Chapter 4. Here, the groups are machines, so that k = m, and

we use i, rather than x, as an index variable, and h[i] rather than n[x] to denote the

number of jobs in a group. The constant term Γ(m) is zero, and the group-dependent

weights are defined by W [i](r) =
(
h[i] − r + 1

)
/si, 1 ≤ i ≤ m, where the values of h[i]

are to be found out along with the optimal sequence of jobs.

To solve problem Qm
∣∣∑m

i=1 q
[i] > n

∣∣∑Cj, assume h[i] = q[i], 1 ≤ i ≤ m, and

compute a set of all possible positional weights W [i](r), 1 ≤ r ≤ q[i], 1 ≤ i ≤ m, which

225

CHAPTER 12. MODELS WITH CHANGING PROCESSING TIMES

can be organised as a matrix
q[1]/s1 q[2]/s2 · · · q[m]/sm
...

... · · · ...

2/s1 2/s2
... 2/sm

1/s1 1/s2 · · · 1/sm

 . (12.1)

Each column in the above matrix represents all possible positional weights that can

be associated with a particular machine, the first element of column i representing a

weight associated with the first position of machine i, while the last element of column

i, representing a weight associated with the last, i.e., the q[i]- th position of machine i,

1 ≤ i ≤ m. Notice that for each machine the smallest weights are associated with the

last position on that machine.

The structure of the above matrix (12.1) is similar to the matrix (8.5) created for

solving problem 1
∣∣pj + a[x]τ ,MP

∣∣Cmax in Section 8.3. The only significant difference
is that each column of matrix (12.1) is truncated at the top because of the capacity

constraint. It is possible to represent matrix (12.1) exactly as matrix (8.5) by assigning

the value ∞, for the positional weights associated with the infeasible positions. For
example, for problem Q3

∣∣∑m
i=1 q

[i] > n
∣∣∑Cj with q[1] = 3, q[2] = 2 and q[3] = 4, the

resulting matrix will be as follows
∞ ∞ 4/s3

3/s1 ∞ 3/s3

2/s1 2/s2 2/s3

1/s1 1/s2 1/s3

 .

For the purpose of minimising
∑
Cj we need to select the n smallest weights from

the resulting matrix, taking consecutive weights from each column, and matching these

weights to the jobs with the largest processing times. Theorem 6.1 proves the opti-

mality of this approach. This can be done in O (n log n) time, exactly as described in

Algorithm NSmallRev or Algorithm QSum, with the positional weights defined appro-

priately in Steps 1 and 2b.

Next, we consider the problem of minimising the total flow time on capacitated

unrelated parallel machine. Recall that for unrelated parallel machines, the normal

processing time of a job j if scheduled on a machine Mi is given by pij. If no ma-

chine capacity constraints are imposed, the resulting problem Rm ||
∑
Cj is solvable

in O(n3m) time by reducing it to a rectangular assignment problem. In Section 2.2.5,

226

CHAPTER 12. MODELS WITH CHANGING PROCESSING TIMES

we provide details of such a rectangular assignment problem and show that it can be

formulated as (2.17). If machineMi cannot process more than q[i] jobs, the correspond-

ing problem Rm
∣∣∑m

i=1 q
[i] > n

∣∣∑Cj can still be represented as a rectangular LAP, by

simply deleting those columns in (2.17) that correspond to infeasible positions.

The resulting LAP will have n rows and
∑m

i=1 q
[i] columns and can be solved by

using Algorithm BourLas (see Section 2.2.3) in O
(
n2
∑m

i=1 q
[i]
)
time, which is at most

O (n3m). In an optimal solution for each machine Mi the equality yj′,(i,u′) = 1 implies

that yj′′,(i,u′′) = 1 for all u′′, 1 ≤ u′′ < u′, while the equality yj′,(i,u′) = 0 implies that

yj′′,(i,u′′) = 0 for all u′′, u′ < u′′ ≤ q[i]. In other words, if we view the sequence of the

y-values associated with machineMi going from the last position towards the first, then

such a sequence starts with a subsequence of consecutive ones (except a situation in

which a machine is not assigned any jobs at all) that might be followed by a subsequence

of several consecutive zeros.

Thus, for all types of parallel machines, solving the capacitated version of the

problem of minimising the total flow time requires the same time as needed for solving

its uncapacitated counterpart. For the unrelated machines, we need a full form of the

assignment problem, while for identical and uniform machines the matching procedure

is applicable.

12.2 Problems with Changing Processing Times

In this section, we extend our results from Chapter 9 to parallel machines which are

subject to changing processing times and rate-modifying activities.

Formally, the problem considered in this section is denoted by

α |Combi, RMP |
∑
Cj, where α ∈ {Pm,Qm.Rm} . The jobs of a set N = {1, 2, . . . , n}

have to be processed on m parallel machines M1,M2, . . . ,Mm, where m ≤ n. Each

of the machines are subject to combined effect of the form (9.3). Additionally, the

decision-maker is presented with a total of K ≥ 0 possible rate-modifying activities,

which can be either distinct or alike. For each RMP, it is exactly known how it affects

the processing conditions of the machine, should the decision-maker decide to include

it into a schedule. Further, the duration of each RMP is given by the general formula

(9.4). In order to obtain an optimal solution to problem α |Combi, RMP |
∑
Cj, a

decision-maker must make the following decisions:

Decision 1. The number, choice and sequence of RMPs on each machine.

Decision 2. The number of jobs to include in each of the created groups across all

227

CHAPTER 12. MODELS WITH CHANGING PROCESSING TIMES

machines.

Decision 3. For each job j ∈ N , determine the group and the position within that

group, that it must be scheduled in.

Let us first concentrate on Decisions 1-2. We make these decisions by enumerating

all options associated with them. Assume that a total of k − 1 RMPs are chosen from

the available K, so that
∑m

i=1 (ki − 1) = k − 1. This means that the total number of

groups created across all machines is equal to m+k−1. For a known k, 1 ≤ k ≤ K+1,

selecting k− 1 of K available RMPs and taking all permutations over k− 1 RMPs can

be done in
(
K
k−1
)

(k − 1)! ways. Distributing m+ k− 1 groups over m machines can be

done by generating all compositions ofm+k−1 into exactlym positive summands; the

number of these options is
(
m+k−2
m−1

)
= (m+k−2)!

(m−1)!(k−1)! . Thus, for a given k, the total number

of options for Decision 1 is equal to
(
K
k−1
)
(m+k−2)!
(m−1)! . Next, generating all possible values

for the number of jobs to include in each of the created groups, requires enumeration

of integer compositions of n with m + k − 1 parts; the number of these options is(
n−1

m+k−2
)
which can be approximated by nm+k−2

(m+k−2)! . Thus, for a given k, the total number

of options are equal to
(
K
k−1
) (k+m−2)!

(m−1)!
nm+k−2

(m+k−2)! =
(
K
k−1
)
nm+k−2

(m−1)! . Trying all possible values

of k, 1 ≤ k ≤ K + 1, the total number of options to be enumerated for Decisions 1-2

can be estimated as
∑K+1

k=1

(
K
k−1
)
nm+k−2

(m−1)! = O
(
nm+K−1

)
.

If Decisions 1-2 are taken in advance, denote the resulting problem as

α |Combi, RMP (k − 1)|
∑
Cj.

Let us now consider an instance of such a problem. For each machineMi, 1 ≤ i ≤ m,

assume the following. A total of q[i] jobs are assigned to machineMi, so that
∑m

i=1 q
[i] =

n. Out of the availableK RMPs, ki−1 of them are chosen and scheduled on machineMi

in a given order, so that q[i] jobs are divided into ki groups. Each group contains a total

of n[i,x] jobs, where
∑ki

x=1 n
[i,x] = q[i]. The permutation of jobs on machine Mi is given

by π[i] =
(
π[i,1], π[i,2], . . . , π[i,ki]

)
, where π[i,x] =

(
π[i,x] (1) , π[i,x] (2) , . . . , π[i,x]

(
n[i,x]

))
,

1 ≤ x ≤ ki. The normal processing time of a job j = π[i,x] (r), is given by pi,π[i,x](r). The

actual processing time of a job j = π[i,x] (r) , scheduled in position r, 1 ≤ r ≤ n[i,x], of

the x-th group, 1 ≤ x ≤ ki, of machine Mi is given by the combined effect (9.3). The

duration of the RMP scheduled after the x-th group of machine Mi is given by (9.4).

Notice that a group x, 1 ≤ x ≤ ki, on a machine Mi is denoted by the index [i, x] .

Using such a double index notation allows us to distinguish between groups on different

machines. It also allows us to consider machine-dependent effects, so that each machine

is allowed to behave (time taken to process jobs, deterioration/learning rates, response

to RMPs, etc.) in a unique way.

228

CHAPTER 12. MODELS WITH CHANGING PROCESSING TIMES

Under the conditions defined above, the total flow time on machine Mi can be

computed similarly to the total flow time obtained for an instance of the single machine

problem 1 |Combi, RMP (k − 1)|
∑
Cj, considered in Section 9.3.2. It follows that the

total flow time for machine Mi is given by

∑
Cj (Mi) =

ki∑
x=1

n[i,x]∑
r=1

W [i,x] (r) pi,π[i,x](r) + Γ (ki) ,

where for a fixed i, 1 ≤ i ≤ m, the positional factors W [i,x] (r) , 1 ≤ r ≤ n[i,x],

1 ≤ x ≤ ki, are written similarly to (9.17) and the constant term Γ (ki) is similarly to

(9.18). Thus, the total flow time for m machines can be written as

∑
Cj =

m∑
i=1

ki∑
x=1

n[i,x]∑
r=1

W [i,x] (r) pi,π[i,x](r) +
m∑
i=1

Γ (ki) . (12.2)

For problem Qm |Combi, RMP (k − 1)|
∑
Cj, the objective function (12.2) can be

seen as a linear assignment problem with a product matrix (2.3), with one array con-

sisting of the valuesW [i,x] (r) /si, and another array consisting of the values pπ[i,x](r), for

all 1 ≤ r ≤ n[i,x], 1 ≤ x ≤ ki, 1 ≤ i ≤ m. The latter problem can be solved in O (n log n)

time by Algorithm Match; see Section 2.2.3. Recall from Section 9.3.2, that the run-

ning time needed to compute all positional weights W [x] (r) , 1 ≤ r ≤ n[x], 1 ≤ x ≤ k,

for an instance of problem 1 |Combi, RMP (k − 1)|
∑
Cj is equal to T (W) = O (n2) .

The same running time will be required to compute all values W [i,x] (r) /si. Thus, all

together, problem Qm |Combi, RMP (k − 1)|
∑
Cj can be solved in O (n2) time, and

problem Qm |Combi, RMP |
∑
Cj can be solved in O

(
nm+K+1

)
time.

Notice that some reduced versions of problem Qm |Combi, RMP (k − 1)|
∑
Cj

can be solved faster. Recall from Section 9.5, that for an instance of problems

1 |Posi, RMP (k − 1)|
∑
Cj and 1 |Time,RMP (k − 1)|

∑
Cj, all positional weights

can be computed in T (W) = O (n) time each. It follows that the problem

Qm |Posi, RMP (k − 1)|
∑
Cj, with a pure positional effect of the form (6.1), and

problem Qm |Time,RMP (k − 1)|
∑
Cj, with a pure time-dependent effect of the form

(9.21) can be solved in O (n log n) time each. Their full versions can be solved in

O
(
nm+K log n

)
time each.

Next, for problem Rm |Combi, RMP (k − 1)|
∑
Cj, the objective function (12.2)

can be seen as a linear assignment problem in the full form (2.2), with the cost function

given as cj,(i,x,r) = pijW
[i,x] (r) , for all 1 ≤ r ≤ n[i,x], 1 ≤ x ≤ ki, 1 ≤ i ≤ m. Here

the rows of the cost matrix are associated with the jobs, while the columns with the

229

CHAPTER 12. MODELS WITH CHANGING PROCESSING TIMES

triples (i, x, r), i.e., (machine, group on the machine, position in the group). The latter

problem can be solved in O (n3) time by the Hungarian Algorithm; see Section 2.2.3.

Thus, all together, problem Rm |Combi, RMP (k − 1)|
∑
Cj can be solved in O (n3)

time and problem Rm |Combi,RMP |
∑
Cj can be solved in O

(
nm+K+2

)
time. Notice

that problem Rm |Posi-JD, RMP |
∑
Cj, with a pure job-dependent positional effect

(7.1) can also be solved inO
(
nm+K+2

)
time by means of a full form LAP; see Section 9.5

for the single machine version of this problem.

The main results of this section are summarised in Table 12.1.

Problem Effect Running Time
Qm |Combi, RMP |

∑
Cj (9.3)-(9.4) O

(
nm+K+1

)
Qm |Posi, RMP |

∑
Cj (6.1)-(9.4) O

(
nm+K log n

)
Qm |Time,RMP |

∑
Cj (9.21)-(9.4) O

(
nm+K log n

)
Rm |Combi, RMP |

∑
Cj (9.3)-(9.4) O

(
nm+K+2

)
Rm |Posi-JD, RMP |

∑
Cj (7.1)-(9.4) O

(
nm+K+2

)
Rm |Time,RMP |

∑
Cj (9.21)-(9.4) O

(
nm+K+2

)
Table 12.1: Computational complexities of different versions of problem
α |Combi, RMP |

∑
Cj.

Notice that together with all the different versions of this problem that we con-

sider in section, this study encompasses almost all existing results on parallel machine

scheduling with changing processing times. For example, a special case of problem

Rm |Posi-JD, RMP |
∑
Cj is considered in the recent paper by Wang, Wang and Liu

(2011). They consider models without deterioration, or group dependence and per-

form only one RMP per machine. Setting K = m, in our model leads us to their

results. However, similar to a flaw noticed in earlier papers (see, e.g., Mosheiov

(2001b)), they have overestimated the number of LAPs to be solved and hence report

a running time of O(n2m+3), as against O(n2m+2) that we obtain. Even the problems

Pm |pjra, a < 0|
∑
Cj and Qm |pjraj , a < 0|

∑
Cj considered by Mosheiov (2001b) and

Mosheiov and Sidney (2003), respectively, can be seen as special cases of our problems

Qm |Posi, RMP |
∑
Cj and Rm |Posi-JD, RMP |

∑
Cj, for K = 0. Another special

case of problem Rm |Posi-JD, RMP |
∑
Cj is considered by Ji and Cheng (2010), who

obtain the same running time as us for a much less general model; see Section 9.5 for

a review of their model for a single machine environment.

230

CHAPTER 12. MODELS WITH CHANGING PROCESSING TIMES

12.3 Conclusion

We broadly consider two different problems in this chapter. The first, related to

scheduling on parallel machines with capacity constraints, fills an existing gap in

scheduling research on parallel machines. We show that the problem of minimising

the total flow time, on capacitated uniform and unrelated machines can be solved by

modifying classical scheduling algorithms.

The next problem, related to scheduling on parallel machines with changing process-

ing times and rate-modifying activities, further generalises the class of problems in-

cluded in this thesis. Appropriate values of m ≥ 1 and K ≥ 0 can be used to obtain

single machine models or models with or without rate-modifying activities.

231

CHAPTER 13

Summary and Conclusion

The prime focus of this research is to study the effect of rate-modifying activities on

scheduling models with changing processing times. The main idea has been to extend

and generalise this area, from both the modelling and the algorithmic prospective, to

identify the suitable algorithmic tools for solving the relevant problems, and to enhance

the existing models so that they would still remain solvable by the available tool-kit.

Below we summarise the most significant outcomes of this thesis and propose some

possibilities for future work.

13.1 Main Contributions

13.1.1 Modelling Contributions

Rate-Modifying Activities

• We introduce the idea that we can include rate-modifying activities of a different
nature into a schedule. These activities can have different effects on the ma-

chine conditions and can have different duration parameters as well. We give the

decision-maker an option to choose to which RMPs they want to include and in

which order.

• To handle such RMPs, we introduce the concept of group-dependent processing
conditions, in which each group of a schedule can have a different effect on the

jobs.

• These developments give birth to a very wide range of practically relevant models
for scheduling problems with changing processing times.

232

CHAPTER 13. SUMMARY AND CONCLUSION

Positional and Time-Dependent Effects

• To model positional effects, we systematically use a general function g (r) , in-

stead of using specific functions like polynomial or exponential. We show that

the resulting problems are no harder to solve than the problems with specific

functions.

• For position-dependent scheduling models without rate-modifying activities, we
show that there is no need to assume a monotone order in the sequence g (r) , 1 ≤
r ≤ n. The resulting problem is no harder to solve than its monotone counterpart.

This allows us to consider models in which a deterioration effect is combined

with a learning effect, or even models in which an arbitrary positional effect is

considered.

• For position-dependent scheduling models with rate-modifying activities, we in-
troduce group-dependent positional factors of the form g[x] (r) or g[x]j (r) .

• For time-dependent scheduling models with rate-modifying activities, we intro-
duce a group-dependent model, which allows the duration of previous groups to

affect the processing time of the current job.

• We study models in which group-dependent positional effects are combined with
group-dependent time-dependent effects. This allows us to come up a very pow-

erful model which is capable of handling almost every known job-independent

effect. Problems of minimising the makespan and the total flow time under such

a model can be solved in polynomial time.

Cumulative Effects

• We study the effect of a single rate-modifying activity in a model with cumula-
tive deterioration effects. This is the first model of its kind for scheduling with

cumulative effects. The resulting problem is found to be NP -hard.

13.1.2 Analytic Contributions

• We prove that the sequence P (k) =
∑n

j=1 pjg (dj/ke) , 1 ≤ k ≤ n, is convex

provided that p1 ≥ p2 ≥ · · · ≥ pn; see Chapter 5. This result enables us to solve

various problems by exploring only logarithmic number of options that would be

linear in the non-convex. The result has potential applications to other areas of

Operational Research, including inventory control and queueing.

233

CHAPTER 13. SUMMARY AND CONCLUSION

• Our study of the extra machine impact factor for identical parallel machines
formally does not belong to scheduling with changing time, but it shares the same

ideological point of combining scheduling and logistics decisions with a purpose

of improving the overall performance of the processing system. Besides, the use

of the convex sequences has appeared to be useful for that study, especially for

the model with a total flow time objective.

13.1.3 Algorithmic Contributions

• Taking a general modelling framework as a basis, we have developed a common
framework for designing the algorithms that use similar general principles for

handling various types of the generalised models.

• In the prior research, there has been a general understanding of the role of the
linear assignment problem as the main tool for solving problems with positional

effects, especially if these effects are job-dependent. For job-independent effect,

the search for an appropriate solution approach has been limited to simple priority

rules (SPT, LPT and their versions). In this work, we show that for problems

with a job-independent effect, the main tool is the simplified linear assignment

problem with a product matrix. For some cases, solving the resulting problems

is equivalent to a sorting the jobs by a priority rules. However, we have found

that on multiple occasions, missed by our predecessors, the problems, even for

the enhanced models, can be still solved in O(n log n) by a matching algorithm.

• For scheduling with rate-modifying activities, one of the important decisions to
be made is to determine the optimal number of jobs to schedule in each group.

Our predecessors used a somewhat weak, group balance principle to answer this

question. This method is limited in its application and only works for very simple

models. In this thesis, we develop Algorithm NSmall, which searches for the n

smallest values from a set of all possible positional weights, and assigns the jobs

in the corresponding positions. This approach is fairly robust and allows us to

study enhanced models with group-dependent effects and start-time dependent

MP durations.

• We develop Algorithm NSmall2, to solve problems that satisfy certain specific

conditions, defined by K-domi. We prove that under these conditions, it is pos-

sible to search for the n smallest positional weights by comparing only 2n other

values. This enables us to achieve a faster running time than Algorithm NSmall.

234

CHAPTER 13. SUMMARY AND CONCLUSION

• We develop Algorithm BestLAP, to solve job-dependent problems that satisfy K-
domi. We borrow the principle idea behind the speed up of Algorithm NSmall2

and modify the classical algorithm by Bourgeois and Lassale (1971), so that it

can permit faster running times for our problem. We prove that the number of

columns to use in a rectangular assignment problem can be significantly reduced,

if the problem under consideration satisfies K-domi. This is non-trivial result,

and potentially has application in other areas as well.

• To solve problems 1 |Cumu,MP [0]|Cmax and 1 |Cumu,MP [α]|Cmax we use ex-
isting FPTASs available for the Subset-sum problem and the Half-product prob-

lem, respectively. However, due to the presence of additive constants in our

objective functions, a straightforward application is not permitted. We derive es-

sential conditions for which these algorithms deliver an ε- approximate solution

for our objective functions.

13.2 Future Work

We feel that we have nearly exhausted the possibilities for much future work on

problems with job-independent effects and rate-modifying activities, that permit

polynomial-time algorithms. The models and algorithms we develop for such effects

have been stretched to their limits. On the other hand, there are other closely related

problems, which are still open and invite further research. Below we list out few of the

possible directions for future research:

• To study the problem of minimising the makespan on parallel machine models

with changing processing times and rate-modifying activities. This problem is

NP -hard and it will be interesting to see if an FPTAS can be developed.

• To extend the results of Chapters 8 and 9 for job-dependent effects. We feel that
a solution might be possible by a full form LAP.

• To prove the V - shapeness of the sequence Cmax (S∗ (k)) , 1 ≤ k ≤ K + 1,

for problem 1 |pjgj (r) -det,MP [0]|Cmax. If the sequence Cmax (S∗ (k)) , 1 ≤
k ≤ K + 1, is proved to be convex, we will be able to solve the problem

1 |pjgj (r) -det,MP [0]|Cmax in O (n3 logK) time, instead of the current running

time of O (n3K) .

• To study the problems 1 |Cumu,MP [0]|Cmax and 1 |Cumu,MP [α]|Cmax in the
presence of multiple rate-modifying activities. Our preliminary work in this di-

235

CHAPTER 13. SUMMARY AND CONCLUSION

rection has suggested that in the case of multiple RMPs, it become extremely

hard to control the behaviour of the additive constants in the objective functions.

236

REFERENCES

Alidaee, B., & Rosa, D. (1995). A note on the V -shaped property in one-machine

scheduling. Journal of the Operational Research Society, 46, 128—132.

Alturki, U.M., Mittenthal, J., & Raghavachari, M. (1996). A dominant subset of V -

shaped sequences for a class of single machine sequencing problems. European Jour-

nal of Operational Research, 88, 345—347.

Azar, Y., Epstein, L., & van Stee, R. (2000). Resource augmentation in load balancing.

In: M. M. Halldorsson (Ed.), Proceedings of SWAT ’00, Lecture Notes in Computer

Science, 1851, 375—382.

Bachman, A., & Janiak, A. (2004). Scheduling jobs with position-dependent processing

times. Journal of the Operational Research Society, 55 , 257—264.

Badics, T., & Boros, E. (1998). Minimisation of half-products. Mathematics of Oper-

ations Research, 33, 649—660.

Bagchi, U.B. (1989). Simultaneous minimisation of mean and variation of flow-time

and waiting time in single machine systems. Operations Research, 37 , 118—125.

Bar-Noy, A., Bhatia, R., Naor, J.S., & Schiber, B. (2002). Minimising service and

operation costs of periodic scheduling. Mathematics of Operations Research, 27,

518—544.

Biskup, D. (1999). Single-machine scheduling with learning considerations. European

Journal of Operational Research, 115, 173—178.

Biskup, D. (2008). A state-of-the-art review on scheduling with learning effects. Euro-

pean Journal of Operational Research, 188, 315—329.

Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., & Węglarz, J. (2010). Scheduling

Computer and Manufacturing Processes. Berlin: Springer.

237

REFERENCES

Bourgeois, F., & Lassale, J.C. (1971). An extension of the Munkres algorithm for

the assignment problem to rectangular matrices. Communications of the ACM, 14,

802—804.

Braun, O., & Schmidt, G. (2003). Parallel processor scheduling with limited number

of preemptions. SIAM Journal on Computing, 32 , 671—680.

Brehob, M., Torng, E., & Uthaisombut, P. (2000). Applying extra-resource analysis to

load balancing. Journal of Scheduling, 3, 273—288.

Browne, S., & Yechiali, U. (1990). Scheduling deteriorating jobs on a single processor.

Operations Research, 38, 495—498.

Brucker, P. (2007). Scheduling Algorithms. Guildford, Surrey: Springer.

Bruno, L.J., Coffman, E.G., & Sethi, R. (1974). Scheduling independent tasks to reduce

mean finishing time. Communications of the ACM, 17, 382—387.

Burkard, R.E., Klinz, B., & Rudolf, R. (1996). Perspectives of Monge properties in

optimization. Discrete Applied Mathematics, 70, 95—161.

Burkard, R.E., Deineko, V.G., van Dal, R., van der Veen, J.A.A., & Woeginger, G.J.

(1998). Well-solvable special cases of the traveling salesman problem: a survey. SIAM

Review, 40, 496—546.

Burkard, R., Dell’Amico, M., & Martello, S. (2009). Assignment Problems. Philadel-

phia: SIAM.

Chekuri, C., Goel, A., Khanna, S., & Kumar, A. (2004). Multi-processor scheduling

to minimise flow time with ε-resource augmentation. In: Proceedings of STOC’04,

363—372, http://doi.acm.org/10.1145/1007352.1007411.

Chen, B. (2004). Parallel machine scheduling for early completion. In: Leung, J.Y.T.

(ed). Handbook of Scheduling: Algorithms, Models and Performance Analysis. Lon-

don: Chapman & Hall/CRC, pp 9-175—9-184.

Chen, B. (2012). The power of additional machines under LPT. Unpublished manu-

script, University of Warwick, U.K.

Chen, B., Potts, C.N., & Woeginger, G.J. (1998). A review of machine scheduling:

Complexity, algorithms and approximability. Handbook of Combinatorial Optimisa-

tion, 3, 21—169.

238

REFERENCES

Chen, J.-S. (2008). Optimisation models for the tool change scheduling problem.

Omega, 36, 888—894.

Chen, W.-J. (2009). Minimising number of tardy jobs on a single machine subject to

periodic maintenance. Omega, 37, 591—599.

Cheng, T.C.E., Ding, Q., & Lin, B.M.T. (2004). A concise survey of scheduling with

time-dependent processing times. European Journal of Operational Research, 152,

1—13.

Conway, R.W., Maxwell, W.L., & Miller, L.W. (1967). Theory of Scheduling. Reading

(MA): Addison Wesley.

Dósa, G., & Tan, Z. (2010). New upper and lower bounds for online scheduling with

machine cost. Discrete Optimisation, 7 , 125—135.

Došlíc, T. (2009). Log-convexity of combinatorial sequences from their convexity, Jour-

nal of Mathematical Inequalities, 3 , 437—442.

Erel, E., & Ghosh, J.B. (2008). FPTAS for half-products minimisation with scheduling

applications. Discrete Applied Mathematics, 156, 3046—3056.

Federgruen, A., & Mosheiov, G. (1997). Single machine scheduling problems with gen-

eral breakdowns, earliness and tardiness costs. Operations Research, 45, 66—71.

Flajolet, P., & Sedgewick, R. (2009). Analytic Combinatorics. Cambridge: Cambridge

University Press, pp 39—46.

Gawiejnowicz, S. (1996). A note on scheduling on a single processor with speed depen-

dent on a number of executed jobs. Information Processing Letters, 57, 297—300.

Gawiejnowicz, S. (2008). Time-Dependent Scheduling. Berlin: Springer.

Garey, M.R., Johnson, D.S. (1978). Strong NP-completness results: motivation, exam-

ples and implications, Journal of the ACM, 25, 499—508.

Garey, M.R., Johnson, D.S. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness. San Francisco: Freeman.

Gopalakrishnan, M., Ahire, S.L., & Miller, D.M. (1997). Maximising the effectiveness

of a preventive maintenance system: an adaptive modeling approach. Management

Science, 43, 827—840.

239

REFERENCES

Gordon, V.S., Potts, C.N., Strusevich, V.A., &Whitehead, J.D. (2008). Single machine

scheduling models with deterioration and learning: Handling precedence constraints

via priority generation. Journal of Scheduling, 11, 357—370.

Gordon, V.S., Proth, J.M., & Strusevich, V.A. (2004). Scheduling with due date as-

signment. In: Leung, J.Y.T. (ed). Handbook of Scheduling: Algorithms, Models and

Performance Analysis. London: Chapman & Hall/CRC, pp 21-1—21-22.

Gordon, V.S., & Strusevich, V.A. (2009). Single machine scheduling and due date

assignment with positionally dependent processing time. European Journal of Op-

erational Research, 198, 57—62.

Gordon, V.S., & Tarasevich, A.A. (2009). A note: Common due date assignment

for a single machine scheduling with the rate-modifying activity. Computers and

Operations Research, 36, 325—328.

Graham, R.L. (1966). Bounds for certain multiprocessing anomalies. Bell System Tech-

nical Journal, 45 , 1563—1581.

Graham, R.L. (1967). Bounds on multiprocessing timing anomalies. SIAM Journal of

Applied Mathematics, 17 , 263—269.

Graham, R.L., Knuth, D.E., & Patashnik, O. (1989). Concrete Mathematics. New

York: Addison-Wesley.

Graham, R.L., Lawler, E.L., Lenstra, J.K., & Rinnooy Kan, A.H.G. (1979). Opti-

misation and approximation in deterministic sequencing and scheduling: A survey.

Annals of Discrete Mathematics, 5, 287—326.

Grigoriev, A., van de Klundert, J., & Spieksma, F.C.R. (2006). Modelling and solving

periodic maintenance problem. European Journal of Operational Research, 172, 783—

797.

Hardy, G.H., Littlewood, J.E., & Polya, G. (1934). Inequalities. London: Cambridge

University Press.

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the

resource-constrained project scheduling problem. European Journal of Operational

Research, 207, 1—14.

He, Y., & Cai., S. (2002). Semi-online scheduling with machine cost. Journal of Com-

puter Science and Technology, 17, 781—787.

240

REFERENCES

Hochbaum, D.S., & Hong, S.-P. (1995). About strongly polynomial time algorithms for

quadratic optimisation over submodular constraints. Mathematical Programming,

69, 269—309.

Horn, W.A. (1973). Minimising average flow time with parallel machines. Operations

Research, 21, 846—847.

Imreh, C. (2009). Online scheduling with general machine cost functions. Discrete

Applied Mathematics, 157 , 2070—2077.

Imreh, C., & Noga, J. (1999). Scheduling with machine cost. Lecture Notes in Computer

Science, 1671 , 168—176.

Jackson, J.R. (1956). An extension of Johnson’s results on job lot sceduling. Naval

Research Logistics Quarterly, 3, 201—203.

Janiak, A., Krysiak, T., & Trela, R. (2011). Scheduling problems with learning and

ageing effects: A Survey. Decision Making in Manufacturing Services, 5, 19—36.

Ji, M., & Cheng, T.C.E. (2010). Scheduling with job-dependent learning effects and

multiple rate-modifying activities. Information Processing Letters, 110, 460—463.

Ji, M., He, Y., & Cheng, T.C.E. (2007). Single-machine scheduling with periodic main-

tenance to minimise makespan, Computers and Operations Research, 34, 1764—1770.

Jiang, Y.-W., & He., Y. (2005). Preemptive online algorithms for scheduling with

machine cost. Acta Informatica, 41 , 315—340.

Jiang, Y.-W., & He., Y. (2006). Semi-online algorithms for scheduling with machine

costs. Journal of Computer Science and Technology, 21 , 984—988.

Johnson, S.M. (1954). Optimal two- and three-stage productions schedules with setup

times included. Naval Research Logistics Quarterly, 1, 61—68.

Jurisch, B., Kubiak, W., & Józefowska, J. (1997). Algorithms for minclique scheduling

problems. Discrete Applied Mathematics, 72, 115—139.

Kabadi, S.N. (2007). Polynomially solvable cases of the TSP. In: Gutin, G., & Punnen,

A.P. (eds). The Traveling Salesman Problem and Its Variations. Berlin: Springer,

pp 489—583.

Kalyanasundaram, B., & Pruhs, K. (2000). Speed is as powerful as clairvoyance. Jour-

nal of the ACM, 47, 617—643.

241

REFERENCES

Karp, R.M. (1972). Reducibility among combinatorial problems. In: Miller, R.E., &

Thatcher. J.W. (eds.). Complexity of Computer Computations. New York: Plenum

Press, pp 85—103.

Katoh, N., & Ibaraki, T. (1998). Resource allocation problems. In: Du, D.-Z., & Parda-

los, P.M. (eds).Handbook of Combinatorial Optimisation. Dordrecht: Kluwer, Vol. 2,

pp 159—260.

Kellerer, H., Mansini, R., Pferschy, U., & Speranza, M.G. (2003). An effi cient fully

polynomial approximation scheme for the Subset-Sum Problem. Journal of Com-

puter and System Sciences, 66, 349—370.

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack Problems. Berlin: Springer.

Kellerer, H., Rustogi, K., & Strusevich, V. A. (2012c). Approximation schemes for

scheduling on a single machine subject to cumulative deterioration and maintenance.

Journal of Scheduling, DOI:10.1007/s10951-012-0287-8.

Kellerer, H., & Strusevich, V.A. (2010a). Fully polynomial approximation schemes for

a symmetric quadratic knapsack problem and its scheduling applications. Algorith-

mica, 57, 769—795.

Kellerer, H., & Strusevich, V.A. (2010b). Minimising total weighted earliness-tardiness

on a single machine around a small common due date: An FPTAS using quadratic

knapsack. International Journal of Foundations of Computer Science, 21, 357—383.

Kellerer, H., & Strusevich, V.A. (2012). The symmetric quadratic knapsack problem:

approximation and scheduling applications. 4OR, 10, 111—161.

Koulamas, C. (2010). A note on single-machine scheduling with job-dependent learning

effects. European Journal of Operational Research, 207, 1142—1143.

Koulamas, C., & Kyparisis, G.J. (2007). Single-machine and two-machine flowshop

scheduling with general learning functions. European Journal of Operational Re-

search, 178, 402—407.

Kovalyov, M.Y., & Kubiak, W. (1998). A fully polynomial approximation scheme for

minimising makespan of deteriorating jobs. Journal of Heuristics, 3, 287—297.

Kubiak, W. (1995). New results on the completion time variance minimisation. Discrete

Applied Mathematics, 58, 157—168.

242

REFERENCES

Kubzin, M.A., & Strusevich, V.A. (2005). Two-machine flow shop no-wait scheduling

with machine maintenance. 4OR, 3, 303—313.

Kubzin, M.A., & Strusevich, V.A. (2006). Planning machine maintenance in two-

machine shop scheduling. Operations Research, 54, 789—800.

Kuhn, H.W. (1955). The Hungarian method for the assignment problem. Naval Re-

search Logistics Quarterly, 2, 83—97.

Kuo, W.-H., & Yang, D.-L. (2006a). Minimising the makespan in a single machine

scheduling problem with a time-based learning effect. Information Processing Let-

ters, 97, 64—67.

Kuo, W.-H., & Yang, D.-L. (2006b). Minimising the total completion time in a single-

machine scheduling problem with a time-dependent learning effect. European Journal

of Operational Research, 174, 1184-1190.

Kuo, W.-H., & Yang, D.-L. (2007). Single machine scheduling with past-sequence-

dependent setup times and learning effects. Information Processing Letters, 102,

22—26.

Kuo, W.-H., & Yang, D.-L. (2008a). Minimising the makespan in a single-machine

scheduling problem with the cyclic process of an aging effect. Journal of the Oper-

ational Research Society, 59, 416—420.

Kuo, W.-H., & Yang, D.-L. (2008b). Parallel-machine scheduling with time dependent

processing times. Theoretical Computer Science, 393, 204—210.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., & Shmoys, D.B. (1993). Sequencing

and scheduling: algorithms and complexity. In: Graves, S., Rinnooy Kan, A.H.G.,

& Zipkin, P. (eds). Handbooks in Operations Research and Management Science:

Logistics of Production and Inventory. North Holland: Elsevier, Vol. 4, pp 445—522.

Lee, C.-Y. (2004). Machine scheduling with availability constraints. In: Leung, J.Y.T.

(ed). Handbook of Scheduling: Algorithms, Models and Performance Analysis. Lon-

don: Chapman & Hall/CRC, pp 22-1—22-13.

Lee, C.-Y., & Leon, V.J. (2001). Machine scheduling with a rate-modifying activity.

European Journal of Operational Research, 128, 119—128.

Lee, C.-Y., & Strusevich, V.A. (2005). Two-machine shop scheduling with an uncapac-

itated interstage transporter. IIE Transactions, 37 , 725—736.

243

REFERENCES

Lee, W.-C., & Wu, C.-C. (2009). A note on single-machine group scheduling problems

with position-based learning effect. Applied Mathematical Modelling, 33, 2159—2163.

Leung, J.Y.T. (2004). Handbook of Scheduling: Algorithms, Models and Performance

Analysis, Chapters 1—3. London: Chapman & Hall/CRC, pp 1-1—3-18.

Leyvand, Y., Shabtay, D., & Steiner, G. (2010). A unified approach for scheduling with

convex resource consumption functions using positional penalties. European Journal

of Operational Research, 206, 301—312.

Liao, C.-J., & Chen, W.-J. (2003). Single-machine scheduling with periodic mainte-

nance and nonresumable jobs. Computers and Operations Research, 30, 1335—1347.

Lodree Jr., E.J., & Geiger, C.D. (2010). A note on the optimal sequence position

for a rate-modifying activity under simple linear deterioration. European Journal of

Operational Research, 201, 644—648.

Ma, Y., Chu, C., & Zuo, C. (2010). A survey of scheduling with deterministic machine

availability constraints. Computers and Industrial Engineering, 58, 199—211.

Marshall, A.W., & Olkin, I. (1979). Inequalities: The Theory of Majorisation and Its

Applications. New York: Academic Press.

McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management

Science, 6 , 1—12.

Mercer, A.M. (2005). Polynomials and convex sequence inequalities. Journal of In-

equalities in Pure and Applied Mathematics, 6, 1—4.

Mittenhal, J., Raghavachari, M., & Rana, A.I. (1995). V -shapes and Lambda-spared

properties for optimal single-machine schedules for a class of nonseparable penalty-

functions. European Journal of Operational Research, 86, 262—269.

Mosheiov, G. (1991). V -shaped policies for scheduling deteriorating jobs. Operations

Research, 39 , 979—991.

Mosheiov, G. (1994). Scheduling jobs under simple linear deterioration. Computers and

Operations Research, 21, 653—659.

Mosheiov, G. (2001a). Scheduling problems with a learning effect. European Journal

of Operational Research, 132, 687—693.

Mosheiov, G. (2001b). Parallel machine scheduling with a learning effect. Journal of

the Operational Research Society,52, 1165—1169.

244

REFERENCES

Mosheiov, G. (2005). A note on scheduling deteriorating jobs. Mathematical and Com-

puter Modelling, 41, 883—886.

Mosheiov, G. (2008). Minimising total absolute deviation of job completion times:

extensions to position-dependent processing times and parallel identical machines.

Journal of the Operational Research Society, 59, 1422—1424.

Mosheiov, G., & Oron, D. (2006). Due-date assignment and maintenance activity

scheduling problem. Mathematical and Computer Modelling, 44, 1053—1057.

Mosheiov, G., & Sarig, A. (2009). Scheduling a maintenance activity and due-window

assignment on a single machine. Computers and Operations Research, 36, 2541—2545.

Mosheiov, G., & Sidney, J.B. (2003). Scheduling with general job-dependent learning

curves. European Journal of Operational Research, 147, 665—670.

Mosheiov, G., & Sidney, J.B. (2010). Scheduling a deteriorating maintenance activity

on a single machine. Journal of the Operational Research Society, 61, 882—887.

Ng, C.T., Cheng, T.C.E., Bachman, A., & Janiak. A. (2002). Three scheduling prob-

lems with deteriorating jobs to minimize the total completion time. Information

Processing Letter, 81, 327—333.

Nyblom, M.A. (2002). Some curious sequences involving floor and ceiling functions.

American Mathematical Monthly, 109 , 559—564.

Nyman, D., & Levitt, J. (2001). Maintenance Planning, Scheduling and Coordination.

New York: Industrial Press.

Okołowski, D., & Gawiejnowicz, S. (2010). Exact and heuristic algorithms for parallel-

machine scheduling with DeJong’s learning effect. Computers and Industrial Engi-

neering, 59, 272—279.

Palmer, D. (1999). Maintenance Planning and Scheduling Handbook. New York: Mc-

Graw Hill.

Panwalkar, S.S., Smith, M.L., & Seidmann, A. (1982). Common due date assignment to

minimise total penalty for the one machine scheduling problem. Operations Research,

30, 391—399.

Qi, X., Chen, T., & Tu, F. (1999). Scheduling the maintenance on a single machine.

Journal of the Operational Research Society, 50, 1071—1078.

245

REFERENCES

Qian, F., Strusevich, V.A., Gribkovskaia, I., Halskau, Ø. (2011). Minimisation of pas-

senger takeoff and landing risk in offshore helicopter transportation: Models, ap-

proaches and analysis. Report SORG-07-2011, University of Greenwich, London,

UK.

Qian, J., & Steiner, G. (2012). Fast algorithms for scheduling with learning effects and

time-dependent processing times on a single machine. European Journal of Opera-

tional Research, 225, 547—551.

Różycki, R., & Węglarz, J. (2012). Power-aware scheduling of preemptable jobs on

identical parallel processors to meet deadlines. European Journal of Operational

Research, 218, 68—75.

Rustogi, K., & Strusevich, V.A. (2011). Convex and V -

shaped sequences of sums of functions that depend on ceil-

ing functions. Journal of Integer Sequences, 14, Article 11.1.5,

http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Strusevich/strusevich2.html.

Rustogi, K., & Strusevich, V. A. (2012a). Single machine scheduling with general

positional deterioration and rate-modifying maintenance. Omega, 40, 791—804.

Rustogi, K., & Strusevich, V. A. (2012b). Simple matching vs linear assignment in

scheduling models with positional effects: A critical review. European Journal of

Operational Research, 222, 393—407.

Rustogi, K., & Strusevich, V. A. (2013a). Parallel machine scheduling: Impact of

adding extra machines. Accepted for publication in Operations Research.

Rustogi, K., & Strusevich, V. A. (2013b). Combining time and position dependent

effects on a single machine subject to rate-modifying activities. Accepted for publi-

cation in Omega.

Rustogi, K., & Strusevich, V. A. (2013c). Single machine scheduling with time-

dependent deterioration and rate-modifying maintenance. Submitted to Journal of

the Operational Research Society.

Shabtay, D., & Steiner, G. (2007). A survey of scheduling with controllable processing

times. Discrete Applied Mathematics, 155, 1643—1666.

Smith, W.E. (1956). Various optimisers for single state production. Naval Research

Logistics Quarterly, 3, 66—69.

246

REFERENCES

Toader, G. (1996). On Chebychev’s inequality for sequences. Discrete Mathematics,

161 , 317—322.

Wang, J.-B. (2006). A note on scheduling problems with learning effects and deterio-

rating jobs, International Journal of Systems Science, 37, 827—832.

Wang, J.-J., Wang, J.-B., & Liu, F. (2011). Parallel machines scheduling with a de-

teriorating maintenance activity. Journal of the Operational Research Society, 62,

1898—1902.

Węglarz, J., Józefowska, J., Mika, M., & Waligóra, G. (2011). Project scheduling with

finite or infinite number of activity processing modes - A survey. European Journal

of Operational Research, 208, 177—205.

Winston, W.L. (2003). Operations Research: Applications and Algorithms. Duxbury

Press.

Woeginger, G.J. (2005). A comment on scheduling two parallel machines with capacity

constraint. Discrete Optimisation, 2, 269—272.

Wright, T.P. (1936). Factors affecting the cost of airplanes. Journal of Aeronautical

Sciences, 3, 122—128.

Wu, S., & Debnath, L. (2007). Inequalities for convex sequences and their application.

Computers and Mathematics with Applications, 54, 525—534.

Wu, C.-C., & Lee, W.-C. (2008). Single-machine scheduling problems with a learning

effect. Applied Mathematical Modeling, 32, 1191—1197.

Wu, C.-C., Yin, Y., & Cheng, S.-R. (2011). Some single-machine scheduling problems

with a truncation learning effect. Computers and Industrial Engineering, 60, 790—

795.

Yang, S.-J. (2010). Single-machine scheduling problems with both start-time depen-

dent learning and position dependent aging effects under deteriorating maintenance

consideration. Applied Mathematics and Computation, 217, 3321—3329.

Yang, S.-J. (2012). Single-machine scheduling problems simultaneously with deteriora-

tion and learning effects under deteriorating multi-maintenance activities considera-

tion. Computers and Industrial Engineering, 62, 271—275.

Yang, D.-L., & Kuo, W.-H. (2009). Single-machine scheduling with both deterioration

and learning effects. Annals of Operational Research, 172, 315—327.

247

REFERENCES

Yang, S.-J., & Yang, D.-L. (2010a). Minimising the makespan single-machine schedul-

ing with aging effects and variable maintenance activities. Omega, 38, 528—533.

Yang, S.-J. & Yang, D.-L. (2010b). Minimising the total completion time in single-

machine scheduling with ageing/deteriorating effects and deteriorating maintenance

activities. Computers and Mathematics with Applications, 60, 2161—2169.

Yin, Y., Xu, D., Sun, K., & Li, H. (2009). Some scheduling problems with general

position-dependent and time-dependent learning effects. Information Sciences, 179,

2416—2425.

Yin, Y., & Xu, D. (2011). Some single-machine scheduling problems with general effects

of learning and deterioration. Computers and Mathematics with Applications, 61,

100—108.

Zhao, C.-L., & Tang, H.-Y. (2010). Single machine scheduling with general job-

dependent aging effect and maintenance activities to minimise makespan. Applied

Mathematical Modelling, 34, 837—841.

248

Uni1 Uni2 Norm1 Norm2 Exp1 Exp2
[1, 40] [1, 100] µ = 20, σ = 5 µ = 40, σ = 10 µ = 20 µ = 40

κ = 1, 37/63/0/0 72/28/0/0 8/50/15/27 56/44/0/0 85/15/0/0 92/8/0/0
n = 50 1.1692 / 1.2516 1.2024 / 1.2891 1.1403 / 1.1846 1.2216 / 1.2885 1.0909 / 1.2099 1.1080 / 1.2717
κ = 1, 0/0/51/49 46/54/0/0 0/0/48/52 12/79/3/6 81/19/0/0 95/5/0/0
n = 100 1.1385 / 1.1772 1.1905 / 1.2460 1.1376 / 1.1693 1.1648 / 1.2026 1.1171 / 1.1935 1.1162 / 1.2190
κ = 1, 0/0/53/47 0/0/52/48 0/0/48/52 0/0/54/46 47/53/0/0 81/19/0/0
n = 500 1.0949 / 1.1094 1.1336 / 1.1529 1.0645 / 1.0744 1.1077 / 1.1210 1.1049 / 1.1393 1.1345 / 1.1775

κ = 5, 0/0/48/52 0/0/49/51 0/0/65/35 0/0/49/51 32/50/9/9 64/36/0/0
n = 50 1.0930 / 1.1441 1.1243 / 1.1793 1.0764 / 1.1060 1.1366 / 1.1692 1.0807 / 1.1536 1.0864 / 1.1770
κ = 5, 0/0/55/45 0/0/51/49 0/0/65/35 0/0/31/69 13/31/28/28 63/37/0/0
n = 100 1.0779 / 1.1139 1.1178 / 1.1598 1.0554 / 1.0781 1.0952 / 1.1390 1.0785 / 1.1263 1.1033 / 1.1828
κ = 5, 0/0/51/49 0/0/55/45 0/0/67/33 0/0/45/55 0/0/42/58 4/33/34/29
n = 500 1.0439 / 1.0556 1.0695 / 1.0815 1.0300 / 1.0395 1.0434 / 1.0568 1.0601 / 1.0763 1.0817 / 1.1015

κ = 10, 0/0/54/46 0/0/57/43 0/0/79/21 0/0/36/64 7/30/38/25 38/56/3/3
n = 50 1.0672 / 1.1063 1.1043 / 1.1563 1.0504 / 1.0782 1.0878 / 1.1307 1.0642 / 1.1171 1.0835 / 1.1609
κ = 10, 0/0/49/51 0/0/49/51 0/0/75/25 0/0/52/48 4/7/47/42 23/57/9/11
n = 100 1.0561 / 1.0900 1.0872 / 1.1353 1.0404 / 1.0598 1.0644 / 1.0888 1.0612 / 1.1059 1.0835 / 1.1240
κ = 10, 0/0/53/47 0/0/57/43 0/0/56/44 0/0/70/30 0/0/60/40 1/1/43/55
n = 500 1.0307 / 1.0388 1.0494 / 1.0628 1.0210 / 1.0289 1.0309 / 1.0387 1.0457 / 1.0679 1.0650 / 1.0902

Table 11.1: Results of computational experiment for Algorithm 3

	ThesisKabirRustogi
	TableMain1

