

Applying Case Based Reasoning and Structural

Similarity for Effective Retrieval of Expert

Knowledge from Software Designs

Markus Adrian Wolf

A thesis submitted in partial fulfilment of the requirements of

the University of Greenwich for the degree of Doctor of

Philosophy

September 2012

School of Computing and Mathematical Sciences

University of Greenwich

30 Park Row, Greenwich, SE10 9LS

London, England

Dedication

iii

Dedication

In loving memory of my father, Gunnar Morgenstern-Wolf, and my grandfather,

Dr Erhard Wolf, both of whom would have been very proud of this achievement.

Abstract

iv

Abstract

Due to the proliferation of object-oriented software development, UML software

designs are ubiquitous. The creation of software designs already enjoys wide software

support through CASE (Computer-Aided Software Engineering) tools. However, there

has been limited application of computer reasoning to software designs in other areas.

Yet there is expert knowledge embedded in software design artefacts which could be

useful if it were successfully retrieved. Thus, there is a need for automated support for

expert knowledge retrieval from software design artefacts.

A software design is an abstract representation of a software product and, in the case of

a class diagram, contains information about its structure. It is therefore possible to

extract knowledge about a software application from its design. For a human expert an

important aspect of a class diagram are the semantic tags associated with each

composing element, as these provide a link to the concept each element represents. For

implemented code, however, the semantic tags have no bearing. The focus of this

research has been on the question of whether is it possible to retrieve knowledge from

class diagrams in the absence of semantic information.

This thesis formulates an approach which combines case-based reasoning with graph

matching to retrieve knowledge from class diagrams using only structural information.

The practical applicability of this research has been demonstrated in the areas of cost

estimation and plagiarism detection. It was shown that by applying case-based

reasoning and graph matching to measure similarity between class diagrams it is

possible to identify properties of an implementation not encoded within the actual

diagram, such as the domain, programming language, quality and implementation cost.

Abstract

v

An approach for increasing users’ confidence in automatic class diagram matching by

providing explanation is also presented.

The findings show that the technique applied here can contribute to industry and

academia alike in obtaining solutions from class diagrams where semantic information

is lacking.

The approach presented here, as well as its evaluation, were automated through the

development of the UMLSimilator software tool.

Acknowledgements

vi

Acknowledgements

The work presented here would not be in its current shape without the help and support

I received from various people.

Firstly, I would like to thank my supervisor Prof Miltos Petridis for all of his support,

trust, unceasing motivation, encouragement and for never losing his positive attitude.

Without him, I would not have embarked on this research.

I would like to thank Prof Brian Knight for his support and advice throughout this

journey and for making this research possible in the first place.

Further, I would like to express my gratitude to Prof Liz Bacon for her interest and

encouragement and my second supervisor Dr Jixin Ma for his support.

A very big thank you to Irena for the many fruitful discussions and brainstorming

sessions which helped me resolve problems encountered along the way and whose

expert input has been very valuable.

Finally, I want to thank all my family and friends for their support and sincere interest

in a foreign subject. A special thank you to my grandmother Helein, Geli, Christoph,

Stephan, Jan, Marta and Jassie (for keeping my lap warm on occasion while working on

this research).

Contents

vii

Contents

1 Introduction ... 1

1.1 Motivation .. 2

1.2 Research Question .. 7

1.3 Research Methodology ... 8

1.4 Thesis Outline ... 9

1.5 Publications .. 10

1.6 Conclusion .. 11

2 Literature Review and Background .. 12

2.1 Software Engineering ... 13

2.1.1 Unified Modelling Language and Meta-Object Facility 14

2.1.2 CASE Tools and Reverse Engineering ... 17

2.2 Case-Based Reasoning ... 19

2.2.1 Case Representation and Case-Base ... 20

2.2.2 Indexing and Retrieval .. 21

2.2.3 Clustering .. 22

2.3 Structural Similarity ... 23

2.3.1 Intra-Class Similarity and Hierarchical Structure 24

2.3.2 Feature Weighting and Genetic Algorithms .. 26

2.4 Graph Similarity ... 29

2.4.1 Graph Matching Algorithms ... 31

2.4.2 Maximum Common Subgraph in Software Designs 33

2.5 Retrieval of Knowledge from Software Designs .. 34

2.5.1 Structural vs. Semantic Similarity ... 36

2.6 Cost Estimation ... 39

2.6.1 Automating Software Cost Estimation .. 40

2.7 Explanation ... 41

2.7.1 Explanation in Case-Based Reasoning .. 41

2.7.2 Case Provenance ... 43

2.8 Conclusion .. 44

3 Using CBR for Retrieval of Knowledge from Software Designs 45

3.1 Case-Based Approach for Measuring Similarity of UML Class Diagrams 46

3.2 Structural vs. Semantic Information ... 48

3.3 Complex Structural Similarity .. 51

3.4 Weight Optimisation & Genetic Algorithms .. 60

Contents

viii

3.5 Graph Matching .. 65

3.6 Clustering .. 69

3.7 Cost Estimation ... 71

3.8 Explanation ... 75

3.9 Conclusion .. 75

4 UMLSimilator .. 77

4.1 Case Study .. 77

4.2 System Architecture ... 79

4.3 Reflector Module .. 81

4.4 Class Similarity Module ... 84

4.5 Graph Matching Module .. 88

4.6 Weight Optimiser Module .. 93

4.7 Clustering Module .. 96

4.8 Visualisation Module .. 97

4.9 Conclusion .. 100

5 Experiments and Evaluation .. 102

5.1 Experiments .. 103

5.2 Methodology ... 104

5.3 Structural Similarity ... 107

5.3.1 Structural Similarity and Provenance .. 112

5.4 Graph Similarity ... 116

5.4.1 Computation Times ... 116

5.4.2 Graph Similarity Results ... 121

5.5 Weight Optimisation ... 126

5.5.1 Automated Weight Optimisation .. 129

5.5.2 Disabling Features ... 134

5.6 Clustering .. 137

5.7 Plagiarism ... 141

5.8 Cost Estimation ... 142

5.9 Explanation ... 147

5.10 Conclusion .. 150

6 Conclusion .. 154

6.1 Review of Research Objectives .. 154

6.2 Conclusions from the Experiments ... 157

6.2.1 Structural Similarity .. 158

6.2.2 Graph Similarity .. 158

6.2.3 Weight Optimisation ... 160

Contents

ix

6.2.4 Clustering .. 161

6.2.5 Plagiarism .. 162

6.2.6 Cost Estimation ... 163

6.2.7 Explanation .. 164

6.3 Contribution to Knowledge .. 165

6.4 Further Work .. 166

6.4.1 Structural and Semantic Similarity ... 166

6.4.2 Stereotyping .. 167

6.4.3 Design Pattern Library .. 167

6.4.4 Behavioural UML Diagrams ... 168

6.4.5 Case-Base Maintenance .. 169

6.4.6 Performance Improvements .. 169

7 References .. 171

8 Appendices ... 184

8.1 Appendix 1 – UMLSimilator System Diagrams .. 184

8.2 Appendix 2 – Comparison of Nearest Neighbours ... 190

8.3 Appendix 3 – Minimum Class Match Threshold Settings 194

8.4 Appendix 4 – Expert Class Similarity Matches .. 197

8.5 Appendix 5 – Weight Settings Obtained from Genetic Algorithm 199

8.6 Appendix 6 – Results From Domain Weight Settings 206

8.7 Appendix 7 – Publication from ECAI .. 209

List of Figures

x

List of Figures

Figure 1 - MOF Layers ... 16

Figure 2 - CBR Cycle - adapted from [Aamodt and Plaza, 1994] 19

Figure 3 – A UML Class Diagram ... 24

Figure 4 - Hierarchical Structure of Composing Elements of a Class 25

Figure 5 - Example of a maximum common subgraph .. 32

Figure 6 – UML Class Diagram for a Retail Application .. 49

Figure 7 - Obfuscated UML Class Diagram for a Retail Application 50

Figure 8 - Hierarchical structure of composing elements of a class (names omitted) ... 52

Figure 9 - Weight Optimisation Algorithm using Class Scores 61

Figure 10 - Weight Optimisation Algorithm using Diagram Matching 62

Figure 11 - Genetic Algorithm ... 63

Figure 12 - Maximum Common Subgraph Example ... 67

Figure 13 - Maximum Common Subgraph Matching Algorithm 68

Figure 14 – Agglomerative Hierarchical Clustering Algorithm 70

Figure 15 - UMLSimilator Architecture .. 80

Figure 16 - Case Extraction Process ... 83

Figure 17 - Greedy Algorithm for Comparing Elements ... 86

Figure 18 – Algorithm for Finding Maximum Common Subgraph 88

Figure 19 – Algorithm for Finding Potential Class Matches ... 89

Figure 20 – Algorithm for Calculating the Maximum Common Subgraph for a

Combination of Classes ... 90

Figure 21 – Recursive Graph Matching Algorithm .. 91

Figure 22 - Visualising the Maximum Common Subgraph ... 98

Figure 23 - Example Similarity Breakdown between Two Class Diagrams 99

Figure 24 - Percentage of Nearest Neighbours Matching Target Domain 108

Figure 25 - Percentage of Nearest Neighbours Matching Target Programming

Language ... 108

Figure 26 - Standard Deviation of Grades for Nearest Neighbours 109

Figure 27 - Standard Deviation of Lines of Code for Nearest Neighbours 110

Figure 28 - Standard Deviation of Number of Characters for Nearest Neighbours 111

Figure 29 - Comparison of Nearest Neighbours Matching Target Programming

Language With and Without Provenance .. 113

Figure 30 - Comparison of Standard Deviation of Grades With and Without

Provenance .. 114

Figure 31 - Comparison of Standard Deviation of Lines of Code With and Without

Provenance .. 115

Figure 32 - Class Diagrams for 3435 and 3418 .. 118

Figure 33 - Maximum Common Subgraph of 3435 and 3418 119

Figure 34 - Execution Times for Measuring Graph Similarity for All Diagrams 120

Figure 35 - Computation Times for Individual Graph Matches 121

Figure 36 - Comparison of Structural and Graph Similarity for Measuring Matching

Domain .. 122

List of Figures

xi

Figure 37 - Comparison of Structural and Graph Similarity for Measuring Matching

Programming Language .. 123

Figure 38 - Comparison of Structural and Graph Similarity for Measuring Standard

Deviation of Grades .. 123

Figure 39 - Comparison of Structural and Graph Similarity for Measuring Standard

Deviation of Lines of Code ... 124

Figure 40 - Comparisons of the Effect of Provenance ... 125

Figure 41 – Comparison of Graph Similarity Results Using Default and Expert Weight

Settings .. 128

Figure 42 – Comparison of Structural Similarity Results Using Default and Expert

Weight Settings ... 129

Figure 43 – Comparison of Graph Similarity Results Using Default and Generated

Weight Settings ... 132

Figure 44 – Comparison of Results for Graph Similarity Using All and a Subset of

Expert Weights .. 136

Figure 45 – Comparison of Clusters for Graph Similarity Using All and a Subset of

Default and Expert Weights .. 140

Figure 46 - Comparison of Actual Lines of Code and COCOMO Estimates 144

Figure 47 - Comparison of Actual Lines of Code, COCOMO and Structural Similarity

Estimates ... 145

Figure 48 - Comparison of Actual Lines of Code, COCOMO and Graph Similarity

Estimate ... 145

Figure 49 - Comparison of Actual Lines of Code, COCOMO and Graph Similarity

Estimate using Provenance .. 146

Figure 50 - Entity Relationship Diagram Depicting the Structure of the Case-Base ... 184

Figure 51 - Class Diagram showing Core Domain Classes ... 185

Figure 52 - Java Reflector Class Diagram .. 186

Figure 53 - Class Diagram for Similarity Calculator ... 187

Figure 54 - Class Diagram for Graph Matcher ... 187

Figure 55 - Class Diagram for Weight Optimiser .. 188

Figure 56 - Class Diagram for Clustering .. 188

Figure 57 - Class Diagram for Visualiser ... 189

Figure 58 - Percentage of Cases Matching the Target Domain using One Nearest

Neighbour .. 190

Figure 59 - Percentage of Cases Matching the Target Domain using Three Nearest

Neighbours .. 190

Figure 60 - Percentage of Cases Matching the Target Domain using Five Nearest

Neighbours .. 190

Figure 61 - Percentage of Cases Matching the Target Programming Language using

One Nearest Neighbour ... 191

Figure 62 - Percentage of Cases Matching the Target Programming Language using

Three Nearest Neighbours ... 191

Figure 63 - Percentage of Cases Matching the Target Programming Language using

Five Nearest Neighbours ... 191

file://stuiis/webareas/wm75/Research/Thesis/Thesis.docx%23_Toc335603278
file://stuiis/webareas/wm75/Research/Thesis/Thesis.docx%23_Toc335603279
file://stuiis/webareas/wm75/Research/Thesis/Thesis.docx%23_Toc335603280

List of Figures

xii

Figure 64 - Standard Deviation of Grades using One Nearest Neighbour 192

Figure 65 - Standard Deviation of Grades using Three Nearest Neighbours 192

Figure 66 - Standard Deviation of Grades using Five Nearest Neighbour 192

Figure 67 - Standard Deviation of Lines of Code using One Nearest Neighbour 193

Figure 68 - Standard Deviation of Lines of Code using Three Nearest Neighbours ... 193

Figure 69 - Standard Deviation of Lines of Code using Five Nearest Neighbour 193

Figure 70 - Comparison of Different Threshold Settings for Matching Target Domain

 ... 194

Figure 71 - Comparison of Different Threshold Settings for Matching Target

Programming Language .. 194

Figure 72 - Comparison of Different Threshold Settings for Measuring Standard

Deviation of Grades .. 195

Figure 73 - Comparison of Different Threshold Settings for Measuring Standard

Deviation of Lines of Code ... 195

Figure 74 – Software Cataloguing Class Diagram and Expert’s Best Choice 201

Figure 75 – Project Management Class Diagram and Expert’s Best Choice 202

Figure 76 – Car Repair Shop Class Diagram and Expert’s Best Choice 203

Figure 77 – Stock Management Class Diagram and Expert’s Best Choice 204

Figure 78 – Project Bidding Class Diagram and Expert’s Best Choice 205

Figure 79 – Graph Similarity Results Using Default and Software Cataloguing Weights

and Provenance ... 206

Figure 80 – Graph Similarity Results Using Default and Project Management Weights

and Provenance ... 206

Figure 81 – Graph Similarity Results Using Default and Car Repair Shop Weights and

Provenance .. 207

Figure 82 – Graph Similarity Results Using Default and Stock Management Weights

and Provenance ... 207

Figure 83 – Graph Similarity Results Using Default and Project Bidding Weights and

Provenance .. 208

List of Tables

xiii

List of Tables

Table 1 - Programming Paradigms according to TIOBE Index 14

Table 2 – Similarity of Visibility Modifiers ... 57

Table 3 – Similarity of Data Types and Return Types ... 58

Table 4 – Mapping of Function Point to Lines of Code ... 74

Table 5 – Teaching Assignments in the Case-Base .. 78

Table 6 – Example match between class Bid and class bid_tbl 87

Table 7 – Default Settings for Genetic Algorithm ... 95

Table 8 – Test Computer System Specification ... 103

Table 9 – Average Results for One, Three and Five Nearest Neighbours 111

Table 10 – Average Results by Domain ... 112

Table 11 – Number of Classes and Relationships for Diagrams Taking Longest to

Compute .. 117

Table 12 – Average Results for Graph Similarity Using Different Minimum Class

Similarity Thresholds .. 121

Table 13 - Standard Deviation of Lines of Code and Grades by Domain 126

Table 14 – Default and Expert Weights ... 127

Table 15 – Comparison of Class Diagram Graph Similarities between Default and

Generated Weights .. 131

Table 16 – Comparison of Class Diagram Graph Similarities between Default and

Generated Weights using Provenance ... 133

Table 17 – Comparison of Results for Graph Similarity Using All and a Subset of

Default Weights ... 135

Table 18 – Number of Items per Cluster for Structural and Graph Similarity 138

Table 19 – Comparison of Plagiarised Class Diagrams ... 141

Table 20 – Lines of Code Calculation using COCOMO .. 143

Table 21 – Expert Similarity Guesses and Similarity Measured by the System 149

Table 22 – Comparison of Structural and Graph Similarity Results 159

Table 23 – Comparison of the Overall Difference between Actual and Estimated

Implementation Cost ... 163

Table 24 – Expert Value Settings for Project Management Class Diagrams 3427 and

3434 ... 197

Table 25 – Expert Value Settings for Software Cataloguing Class Diagrams 3401 and

3407 ... 197

Table 26 – Expert Value Settings for Car Repair Shop Class Diagrams 3450 and 3453

 ... 198

Table 27 – Expert Value Settings for Stock Management Class Diagrams 3488 and

3489 ... 198

Table 28 – Expert Value Settings for Project Bidding Class Diagrams 3500 and 3504

 ... 198

Table 29 – Comparison of Default Weights and Weights Obtained using the Genetic

Algorithm .. 200

List of Equations

xiv

List of Equations

(1) Class Similarity Metric .. 47

(2) Class Similarity Metric (high and low level) ... 53

(3) High-Level Class Similarity .. 54

(4) Low-Level Class Similarity ... 55

(5) Attribute Similarity .. 55

(6) Operation Similarity .. 56

(7) Constructor Similarity ... 56

(8) Parameter Similarity .. 56

(9) Similarity of Numerical Values ... 58

(10) Fitness Proportionate Selection of Chromosome .. 64

(11) Class Diagram Similarity Metric ... 65

(12) Association Similarity ... 66

(13) Graph Similarity .. 66

(14) COCOMO Function Points ... 72

(15) COCOMO Adjusted Function Points .. 73

(16) Binomial Coefficient ... 85

(17) Relationship Combinations .. 92

(18) Number of Clusters .. 96

(19) Graph Similarity .. 116

Chapter 1 Introduction

1

Chapter 1

1 Introduction

The entire object-oriented paradigm revolves around reuse [Lewis et al., 1990]. Classes

are created, which define blueprints for generating any number of objects. Reuse

happens at an intra-class level, where one can factor code into methods which can be

reused within the class. Inheritance enables us to reuse existing classes through

extension and specialisation. Classes can be packaged as components, which can be

reused. However, these are all examples of code reuse.

Design plays an important role in the creation of software artefacts, as it enables

visualising the structure and distribution of responsibility, within a planned application

and it is at the design stage that ideas start taking shape. Reuse in object-oriented

development is not limited to the reuse of code, although this is the kind of reuse which

has been applied at a practical level for a long time. Traditionally, less importance has

been given to the reuse of software design, but this has changed, especially with the

emergence of design patterns [Gamma et al., 1995].

The way a software artefact is structured is important for a developer. A sound design

enables the creation of reusable modules and more manageable code that can be more

easily understood by fellow programmers, which is maintainable, flexible and easily

extendible [Victor et al., 1996]. However, a question posed in this research is whether

the design is only important to a developer who is writing code or whether there are

other circumstances in which the design of a software artefact is of importance. The

functionality of a software application is determined by the choice of code constructs

and how the code is laid out (its design). As there are numerous ways of structuring

Chapter 1 Introduction

2

code to achieve the same functionality, it is not possible to determine the exact

functionality of an application just by its design. It is possible, however, to compare

designs within a particular context. This research focuses on the use of knowledge that

can be retrieved from software designs.

Another consideration is the impact of a software artefact’s design on its performance at

runtime, a topic which is not addressed in this research, but considered in research into

areas such as refactoring [Demeyer, 2005], binary refactoring [Tilevich and

Smaragdakis, 2005] and compiler optimisation [Su and Lipasti, 2006]. According to

Abreu and Melo [Abreu and Melo, 1996], quality of software can be influenced by

object-oriented design mechanisms, such as inheritance and polymorphism.

This research addresses whether it is possible to effectively automate the retrieval of

knowledge from software engineering structures.

1.1 Motivation

There is no exact science dictating how functional and non-functional requirements of a

software application are translated into a software design. Software design is an

experience-driven process and the structure of a software artefact stems from a

developer’s or systems architect’s experience, personal preference, understanding of the

business requirements, target technologies or may even be reused in part from existing

designs. Giving the same non-trivial requirements to a number of developers or

architects, would result, without doubt, in different software designs. This is obvious

when setting software design assignments to a class of students.

Chapter 1 Introduction

3

For a person comparing software designs depicting applications with similar

functionality, a prime indicator for identifying similarity would be the semantic

relationship between the different elements. The problem with automating this

comparison is that the names chosen for elements composing a software design could be

in different languages, abbreviations, words joined together or be meaningful only to

the designer. It is partly due to this limitation that this research ignores the semantic

aspect of software artefacts and focuses entirely on their structure.

As has been established above, it is not possible to determine the functionality of an

application or system strictly based on its design structure. If each composing element is

stripped of its semantic description, it can represent anything and is therefore stripped of

much of its meaning. However, there is meaning in how composing elements are related

to one another and how they are structured internally. Comparing software designs

merely from a structural perspective, within a context, can provide valuable

information.

There are contexts within which the structural similarity of software designs is more

relevant than the information provided by semantic comparison. One such example is

cost estimation of software development. In software engineering, cost or effort

estimation is the process of predicting the effort required in order to develop a piece of

software. Cost estimation of software is considered more difficult than in other

industries, as it generally involves creating new products [Briand and Wieczorek, 2002].

As outlined in [Jones, 2007], different approaches exist to software cost estimation;

some are based on formal models, such as parametric or size-based models, while others

rely on expert estimation. A major motivation of this research is to determine whether

cost estimation can be automated effectively by comparing software designs. Given a

collection of software designs and corresponding cost it took to implement each design,

Chapter 1 Introduction

4

e.g. in lines of code, it may be possible to predict the effort necessary to implement a

new target design, provided that the implementation shares some common context, such

as, complexity of the functionality, similar programming languages and technologies,

etc.

There have been a number of attempts to automate software cost estimation using

approaches as varied as fuzzy decision trees, neural networks, rule induction and case-

based reasoning. A comparison of various automated software effort estimation

techniques has been undertaken by Finney et al. [Finnie, et al., 1997] whose findings

were that while regression models performed poorly, neural networks and case-based

reasoning both have value for software development cost estimation models. In the case

of case-based reasoning, it seems particularly appealing due to similarity to expert

judgment approaches and as an expert assistant in support of human judgement.

Using case-based reasoning for cost estimation means that when a new project is

provided for estimation, the most similar projects from the case-base are selected in

order to predict the cost of the new project. Much of the research for software cost

estimation using case-based reasoning is based on the Desharnais data set [Desharnais,

1989] with cases containing, among other, data such as project details, project length,

team experience, programming language and entities [Huang, 2009; Li, et al., 2009].

Other research involving case-based reasoning relates to web development [Mendes, et

al., 2002; Mendes, et al., 2003]. None of this research, however, takes into consideration

the software design artefacts. Given that a software design artefact depicts the intended

structure of the software product, it can contain information useful to the estimation of

its development.

Chapter 1 Introduction

5

Another context within which the structural similarity of software designs is more

relevant than the information provided by semantic comparison is plagiarism detection.

Within software development, a person committing plagiarism may intentionally

change the semantic values of elements in order to avoid detection. By measuring

similarity between software designs purely on a structural level, copying someone’s

code and changing the names or order of classes, operations and attributes, would still

be detected.

Much of the research into plagiarism detection focuses on free text and source code

[Mozgovoy, 2006; Lukashenko, et al., 2007; Jadalla and Elnagar, 2008]. Nevertheless,

one may not always be in possession of the source code when comparing two software

structures. As the subjects of comparison are software designs, there may not be any

source code if the comparison occurs prior to implementation.

A software design is defined by its composing elements, which in the case of a UML

(Unified Modelling Language) class diagram are its classes and interfaces. A

class/interface is further defined by its internal members, which could be operations,

constructors and/or attributes. Beyond the composing elements, an essential aspect of

defining a software design is the relationships between the elements.

By reducing structurally complex data, as present in a software design, to a graph-based

notation, it is possible to compare two software designs taking into account not just the

sum of its composing elements, but also their relationships.

Representing software architectures as graphs has been discussed by Le Métayer [Le

Métayer, 1996] and Fahmy [Fahmy, et al., 1997] where hierarchical systems are

represented in graph-notation. While the research was not specifically applied to UML

in these cases, the software architecture or architectural designs included components,

Chapter 1 Introduction

6

such as files or procedures which could be expressed diagrammatically. As long as a

diagrammatic representation of a software system has a hierarchical structure it may be

represented as a graph, where nodes represent components and arcs represent

relationships between the components.

Much of the research on UML and graphs appears to be related to the problem of how

to visually present diagrams, such as, visualising designs [Gutwenger, 2003;

Eichelberger, 2003] and aesthetics for domain-specific layout [Purchase, et al., 2001].

Once a software design is reduced to graph-based notation it is possible to apply graph

matching algorithms. In this research, the similarity is measured based on the maximum

common subgraph, which is defined by Chartrand [Chartrand, 1989] as follows: “A

graph G without isolated vertices is a greatest common subgraph of a set S of graphs, all

having the same size, if G is a graph of maximum size that is isomorphic to a subgraph

of every graph in S”.

Graph matching and case-based reasoning has been successfully combined by [Petridis,

et al., 2007a; Petridis, et al., 2007b; Mileman, et al., 2000; Mileman, et al., 2002], with

the purpose of aiding the design of metal castings.

In this research, case-based reasoning and graph matching are combined in order to

measure similarity between software designs so that this information can be applied to

automated cost estimation, plagiarism detection and identification of properties, such as

implementation quality, programming language and functionality.

Chapter 1 Introduction

7

1.2 Research Question

Software designs are an essential element of current software development. Yet it is

difficult to automate the retrieval of knowledge from software designs. Software design

is a process driven by personal experience and preferences, and a software engineer

encodes semantic and structural information in the design artefacts. The semantic

information is essential to convey how the design reflects the application or system it

represents, but structural information is just as important. It provides the internal

structure of elements, as well as the relationships between elements which will dictate

the overall structure of the application/system.

Very broadly defined, the aim of this research can be summarised in the following

question:

 Is it possible to effectively retrieve expert knowledge from structural software

engineering artefacts?

The above aim is very general, so more specific aims are:

 In the absence of semantic information, is it possible to extract meaningful

knowledge merely from the structural information, and can this retrieval process

be automated?

 Can case-based reasoning be applied to software designs to identify software

systems from the same domain based on their structure?

 Can structural similarity and case-based reasoning be combined to estimate

software development cost?

 A user’s trust in an automated system is reinforced if the system provides

explanation of the results it provides. A system which applies case-based

reasoning, measures similarities of cases to reach a result, which makes it even

Chapter 1 Introduction

8

more important to provide explanation. Thus a further aim of the research is for

the developed system to explain why it reached a particular result.

1.3 Research Methodology

To validate the research findings and to warrant that the research question has been

answered appropriately, the following measures are taken:

 Development of a software application to automate the algorithms and

procedures outlined in the research

 Use of a case base with a considerable amount of diverse cases. There are over

one hundred cases in the case base. The cases are based on results from a

number of different teaching assignments, which ensures that there is a varied

mix of cases. Having cases based on a set of teaching assignments also ensures

that a number of cases represent software solutions with identical requirements

(same assignment), making it possible to assess the identification of cases from

the same domain and measure quality.

 Controlled and planned experiments to test various aspects of algorithms and

methods implemented in the software application. Extensive tests are carried out

comparing only elements (without graphs), graphs using maximum common

subgraph and graphs with optimised weighting.

 Application of cross-validation to reinforce trust in the algorithms and their

results.

 Use of the software’s ability to explain results, tracing how a particular result

was obtained, to evaluate the outcomes against human expert opinion.

Chapter 1 Introduction

9

1.4 Thesis Outline

This thesis comprises six chapters.

Chapter I: Introduction. This chapter gives an introduction to the thesis by providing

the motivation for the research, stating the research question, outlining the research

methodology applied in the research and finally presenting the structure of this thesis.

Chapter II: Literature Review and Background. This chapter provides a literature

survey of the state of research in the various areas which are relevant to this work,

namely, case-based reasoning and graph similarity, retrieval of software knowledge,

software engineering, cost estimation and explanation. The amount of publications in

these subject areas is vast, thus the review is concentrated on the research contributions

which are most closely related to this research or from which it follows. Surveying

related research publications places this research into context, demonstrating that the

research question is of value to the research community.

Chapter III: Using Case-Based Reasoning for Retrieval of Knowledge from

Software Design Artefacts. This chapter presents the methodologies and techniques

that were applied, as well as providing justification for their application. The importance

of structural similarity within software engineering artefacts is highlighted, in

comparison to semantic similarity. The chapter also discusses the reasoning for

applying graph modelling.

Chapter IV: UMLSimilator. This chapter presents UMLSimilator, which is the

software tool developed to evaluate the research. It explains how the algorithms are

implemented and provides examples to illustrate.

Chapter 1 Introduction

10

Chapter V: Experiments and Evaluation. This chapter describes the experiments

performed in order to assess the performance of the applied algorithms and techniques.

It delineates the results and provides an analysis of the results compared to alternative

approaches. The contribution to knowledge of each experiment is demonstrated.

Chapter VI: Conclusion. This chapter concludes the thesis by outlining the main

contribution of this research and discusses new directions in which this work could

evolve.

1.5 Publications

The following publications were completed for this research, all of which were co-

authored with Prof Miltos Petridis:

 Wolf, M. Petridis, M. (2003) Similarity Metrics for Reuse of Software Design

using CBR, in Proceedings of the 8th UK Workshop on Case Based Reasoning,

Cambridge

 Wolf, M. Petridis, M. (2004) Applying CBR to Measure Similarity of Software

Design Structures, Expert Update (regular journal of the Specialist Group on

Artificial Intelligence - SGAI)

 Wolf, M. Petridis, M. (2008) Measuring Similarity of Software Designs using

Graph Matching for CBR, in Proceedings of the Artificial Intelligence

Techniques in Software Engineering Workshop, 18
th

 European Conference on

Artificial Intelligence

Chapter 1 Introduction

11

1.6 Conclusion

Software designs are an essential element of current software development, but the

automated retrieval of knowledge from the designs poses a problem. Software design

artefacts can be reduced to a hierarchical structure, made up of their composing

elements and the relationships between these elements. Thus, a software design can be

represented as a graph. Reducing a design to a graph of a hierarchical structure makes it

possible to automate the comparison of designs using defined similarity metrics.

Knowledge retrieved in this way can be effectively applied in a number of fields,

including cost estimation and plagiarism detection.

In the next chapter, a review of the current state of the field in subject areas relevant to

this research is presented.

Chapter 2 Literature Review and Background

12

Chapter 2

2 Literature Review and Background

The previous chapter set the context of this research and defined the research question

that the work addresses.

The goal of this chapter is to present the current state of the research in the main subject

areas that relate to this work. The chapter starts by describing core areas of software

engineering and Case-Based Reasoning (CBR), given that these are central to the

research. Software engineering as the discipline dedicated to the design and

implementation of software, resulting in software design artefacts, and Case-Based

Reasoning as a methodology for extracting and using knowledge. Here, software

designs are the case representations in the case-base of the CBR system. A key aspect of

CBR is determining similarity of cases. Thus, analogical reasoning is discussed, leading

to the discussion of structural similarity, as well as, the concepts of graph representation

and graph similarity. This chapter then continues to explore the retrieval of software

knowledge, looking at work which influenced this research, as well as considering

alternative approaches. Given that the research is applied to cost estimation, this area is

also discussed. The final section of this chapter covers the area of explanation.

Chapter 2 Literature Review and Background

13

2.1 Software Engineering

The term software engineering stems from the 1968 NATO Software Engineering

Conference [Naur and Randell, 2004] where it was applied with the intention of

adopting theoretical foundations and practical disciplines in place for established

branches of engineering design, to the creation of software. Software engineering is

defined by the IEEE as “the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software” [Abran and

Moore, 2004] and as such, it relates to the entire process of designing, implementing

and maintaining software.

The application of a systematic approach to software development has led to the

emergence of multiple software engineering methodologies, such as structured analysis

and design [Yourdon, 1979] (SSADM – Structured Systems Analysis and Design

Methodology [Eva, 1994]), object-oriented development [Booch, 2007], agile software

development [Beck, et al., 2001], etc. In all of these methodologies, design features

prominently.

According to Tong and Sriram [Tong and Sriram, 1992], design is the process of

generating a structural description that complies with a set of functional specifications

and constraints. The process of designing requires knowledge of the functional and

behavioural requirements which are analysed, synthesised and represented in a

structural description. The creation of a visual design model aids the development of

software by considering the entire set or a significant subset of the requirements and

conceptualising them into an architectural blueprint for a software system. This

provides an overview which aids understanding of the system to be implemented by

visualising its structure. Further, it facilitates sharing a common perception of a system

among multiple people.

Chapter 2 Literature Review and Background

14

In recent years, object-oriented programming languages have consistently dominated

the top positions of the TIOBE programming community index [TIOBE, 2012], with

the most recent rating at 57.1% (July 2012 – see Table 1). This clearly shows the market

dominance of object-oriented software development.

Category Ratings July 2012 Delta July 2011

Object-Oriented Languages 57.1% +1.5%

Procedural Languages 37.4% -0.5%

Functional Languages 3.6% -1.3%

Logical Languages 1.9% +0.3%

Table 1 - Programming Paradigms according to TIOBE Index

2.1.1 Unified Modelling Language and Meta-Object Facility

The most common modelling approach for object-oriented software development is the

Unified Modelling Language (UML) [Jacobson, et al., 1998], which is standardised and

managed by the Object Management Group (OMG). UML was created in 1997 by

unifying modelling approaches by the Three Amigos (James Rumbaugh, Grady Booch

and Ivar Jacobson).

UML has fourteen sets of diagrams divided into two types, namely structural and

behavioural views of a system model [OMG, 2009]. The structural diagrams are used to

depict the architecture of a software system, while the behavioural diagrams emphasise

the functionality of a system and how different composing elements interact. The most

commonly used diagram by programmers is the class diagram, which describes the

structure of a system including its classes, their attributes and the relationships between

the classes.

Chapter 2 Literature Review and Background

15

UML diagrams are visual representations and to automate the extraction of knowledge

from them requires representing them in a data format that can easily be manipulated by

a software application. It is essential to the research presented here that the visual

representation is converted to a format that can be stored persistently, used to effectively

extract information from and compare design models. Fortunately, UML is in fact a

metamodel, defined by the Meta-Object Facility (MOF). MOF is a meta-modelling

architecture, which in the case of UML uses four layers [OMG, 2006] (see Figure 1).

The top layer, called M3 provides a meta-metamodel which defines the language used

to build metamodels in the layer below (M2) and actually uses the modelling framework

and notation of UML. Layer M2 is a metamodel which describes UML itself, defining

what concepts exist in UML and how they relate to one another – e.g. a class has

attributes and attributes have a type, a name, a set of valid modifiers, etc. Models in

layer M1 are described by layer M2 and represent concrete models, such as a particular

class diagram. Finally, layer M0 embodies real-world objects, which in the case of a

class modelled in a UML class diagram would be an object of this class’s type. In short,

an object is modelled by a UML model, which is an instance of the UML metamodel,

which is described by the MOF meta-metamodel, which uses a subset of UML object

modelling constructs to define itself (e.g. types, containers).

A software design model is situated on layer M1, but in order to correctly represent the

model in a system, be able to persist it and manipulate it, one needs to be aware of the

structure of the model as defined by its metamodel on layer M2.

An OMG standard which enables persisting and exchanging metadata information via

XML (Extensible Markup Language) is XMI (XML Metadata Interchange) [OMG,

2007]. XMI documents are XML documents which contain metadata of a model

expressed in MOF, which includes UML models. This is made possible by a mapping,

Chapter 2 Literature Review and Background

16

which expresses how MOF elements should be mapped to XMI-compliant XML. While

XMI documents can be used to encode the composing elements in a UML model, they

don’t include diagram information (e.g. the graphical layout of a particular diagram). It

was in order to overcome this limitation of XMI, that XMI[DI] (XMI Diagram

Interchange) was created by OMG [OMG, 2006b]. Diagram Interchange uses the

underlying concept of modelling the contents of UML diagrams as graphs, where every

element is represented as a node or an edge.

M3 – MOF 2.0

M2 – UML

Class

ClassAttribute

M1 – User Defined Model

M0 – Real World Objects

-title : string

Book

«instance»

«instance» «instance»

«instance»«instance»

Figure 1 - MOF Layers

Treating UML models as graphs and manipulating the graphs using XMI has been

applied in order to create model transformations using graph rewriting systems

[Gelhausen, 2008].

Chapter 2 Literature Review and Background

17

Lack of consistent support for the XMI and XMI[DI] standards means that there are

interoperability problems when exchanging UML models between different CASE

(Computer Aided Software Engineering) tools. However, an understanding of the MOF

metamodel architecture makes it possible to dissect a UML model into a hierarchical

structure, which is essential to enable comparisons of UML models as it exposes, not

only the composing elements of a UML model, but also the kinds of relationships that

exist between these elements.

2.1.2 CASE Tools and Reverse Engineering

CASE tools were used in the 1980s and 1990s with the aim of reducing software

process costs by automating some process activities and providing information about

software during the development life cycle and, according to Huff [Huff, 1992], this has

resulted in improvements in the order of 40%.

CASE (Computer Aided Software Engineering) tools are commonly used to depict and

manipulate UML software designs. While the UMLSimilator developed to evaluate this

research is not a fully-fledged CASE tool, it does visually present class diagrams and

applies a feature supported by many CASE tools, which is reverse engineering.

Chikofsky and Cross [Chikofsky and Cross, 1990] define reverse engineering as being

“the process of analyzing a subject system to identify the system’s components and their

interrelationships and create representations of the system in another form or at a higher

level of abstraction”. Using reverse engineering it is thus possible to take compiled

existing software and abstract it into the higher-level design from which it originated.

Existing tools for reverse engineering code have been discussed by Gorton and Zhu

[Gorton and Zhu, 2005].

Chapter 2 Literature Review and Background

18

A major driver for reverse engineering is the understanding and maintenance of legacy

code, especially where appropriate design documentation is lacking. Even if original

designs are available, systems change over time as transformations are applied in

response to new requirements or identified bugs, and the transformations may not have

been captured in design documentation. Once designs have been recovered, it is

possible to apply new transformations to the existing code [Baxter and Mehlich, 1997].

The process of understanding and changing legacy systems is referred to as re-

engineering. The functionality of the software is not normally changed during the re-

engineering process and even the system architecture generally stays the same

[Sommerville, 2004]. A key advantage of re-engineering is the reduction of cost in

comparison to developing a new system. Ulrich [Ulrich, 1990] presents an example of a

system whose estimate for re-implementation was $50 million and which was

successfully re-engineered for $12 million.

However, reverse engineering is not only relevant to maintaining legacy code. It can

also be used to obtain knowledge about compiled code, e.g. understanding web site

content and structure [Tilley and Huang, 2001], creating UML sequence diagrams

[Merdes and Dorsch, 2006], obtaining graphical user interface layouts [Ramon, et al.,

2010] or verification of forward engineering to automatically determine whether an

implementation is consistent with the original design [Cooper, et al., 2004].

When a software artefact has been reverse engineered into a hierarchical design

structure, it is then possible to extract knowledge from this design. One way in which

this can be achieved is through the use of CBR.

Chapter 2 Literature Review and Background

19

2.2 Case-Based Reasoning

Case-Based reasoning (CBR) [Kolodner, 1993] is at the centre of the work presented

here. In essence, CBR is the process of solving new problems which are based on the

solution of similar problems while learning from the new cases, if possible.

The use of CBR in the area of Artificial Intelligence (AI) is founded on work by Roger

Schank in 1982 [Schank, 1982], who developed a theory of learning and reminding

based on preserving experience in a dynamic and evolving memory structure.

The CBR process typically involves four steps as outlined by Aamodt and Plaza

[Aamodt and Plaza, 1994] (see Figure 2):

1. Retrieval of most similar cases

2. Reuse / adaptation of retrieved cases to attempt to solve the problem

3. Revision of proposed solution, if necessary

4. Retention of the new case in the case base

Target

Problem

Retrieved

Cases

Retrieve

Case-BaseCase-Base
Case-Base
Case-Base
Case-Base
Case-Base

Proposed

Solution

Retrieved

Cases

Confirmed

Solution

Reuse

Revise

Retain

Figure 2 - CBR Cycle - adapted from [Aamodt and Plaza, 1994]

Due to the nature of this research, its emphasis is on the retrieval and reuse steps, as no

new cases are added to the case-base as part of the evaluation.

Chapter 2 Literature Review and Background

20

2.2.1 Case Representation and Case-Base

In CBR a case represents specific knowledge tied to a context. The representation of a

case has to be in a format that can be used by the CBR system, but it can take many

different forms. Different types of case representation are discussed by Bergmann,

Kolodner and Plaza [Bergmann, et al., 2005], who describe traditional approaches,

feature vector representation, structured representation and textual representation, as

well as sophisticated approaches using hierarchical representations and generalised

cases.

In practice a case can store many types of data, ranging from attribute/value pairs,

textual representations or even multimedia representations. When dealing with object-

oriented design models, case representations which are of particular interest include

object-oriented case representation and graph representation [Bergmann, 2002].

Key to any CBR system is the case-base or case library. This is the repository which

stores the cases. The case-base structure should reflect the conceptual view of the case.

There are two main academic case-memory models which address the knowledge

representation problem in CBR, namely, the dynamic memory model [Riesbeck and

Schank, 1989] and the category exemplar model [Bareiss, 1988]. These models are

intended to simplify the access and retrieval of relevant cases. In practice, however,

many case-bases are stored using flat file structures or relational databases. The case-

base in this research was stored using a relational database as the cases are complex

hierarchical structures which can be easily represented using a relational structure

representing the meta-data that makes up a software design.

Chapter 2 Literature Review and Background

21

2.2.2 Indexing and Retrieval

When case-bases contain large amounts of cases, indexing becomes essential in order to

speed up the retrieval of cases. An index is a data tag which is associated with a case

and could consist of one or more features of the case or an abstraction inferred from the

case. A lot of research has been carried out aiming at automating and improving case

indexing methods, including query sphere algorithm [Stéphane, et al., 2010], semantic

indexing [Recio-Garcia and Wiratunga, 2010], explanation-based indexing [Barletta and

Mark, 1988] and many more.

The retrieval phase within the CBR cycle involves identifying the most suitable cases

from the case-base and ranking them. The initial retrieval of relevant cases can be

achieved using indices. The ranking of the retrieved set is usually achieved by using a

similarity metric which determines the distance between the target case and each

retrieved case. In some cases a CBR system may not have the identification of relevant

cases and ranking as two distinct tasks, but apply the ranking on all cases in the case-

base. This evidently removes the need for indexing and only works with a relatively

small case-base. The results in this case would be more accurate as the ranking is done

on the entire case-base rather than applying it just to the set identified by the indices.

However, this is computationally more demanding and could be very time consuming.

In this research, the size of the case-base was sufficiently small to allow ranking across

the entire case-base. Indexing was therefore not necessary. Should the case-base

increase in the future, applying some form of indexing would become necessary.

The two most common techniques for retrieval are nearest-neighbour retrieval and

inductive retrieval. Nearest neighbour is a simple technique which applies the K-Nearest

Neighbour (KNN) algorithm [Dudani, 1976] which applies a similarity metric to

measure the distance between the target and source case. In most cases, inductive

Chapter 2 Literature Review and Background

22

retrieval uses the ID3 induction algorithm [Quinlan, 1986], which constructs decision

trees from past data. Nearest neighbour retrieval is less sensitive to missing data, but its

main drawback is that it is computationally intensive. The two techniques can be

combined by using inductive indexing to retrieve a set of matching cases and apply

nearest neighbour to rank them.

2.2.3 Clustering

A positive aspect of the CBR cycle is the fact that it can easily be complemented with

other techniques in order to improve performance or accuracy at different stages of the

cycle. Clustering is an area of data mining which has been combined with CBR in a

number of ways. It refers to the assignment of objects into groups (clusters) such that

objects in the same cluster are more similar. Given that case retrieval in CBR is all

about measuring similarity, it invites the use of clustering. Clustering can be applied at

different stages of the retrieval process. For instance, when dealing with large scale

case-bases, clustering of features can make retrieval more efficient by enabling indexing

of representative attributes from the clusters [Hong and Liou, 2008]. It can also be

applied to group cases from the case-base [Tsatsoulis and Amthauer, 2003]. This

research uses the latter approach to generate clusters of the cases post retrieval. This

approach is used as part of the experiments in order to validate the results. Clustering of

features to enable indexing, as applied by [Hong and Liou, 2008] could be applied to

this research in future with the introduction of indexing.

An advantage of CBR is that it works well with complex domains, where there are

many different ways in which to generalise a case. As the target case is already

provided, it is not necessary to perform an exact calculation and obtain the one true

result, but to identify the case that is closest to the target – the case that is the most

similar. CBR is also very useful when there is no algorithmic method available for

Chapter 2 Literature Review and Background

23

evaluating a solution, making it possible to work with unknowns, as the target case is

evaluated in the context of other cases in the case-base. This makes CBR well suited for

working with software design artefacts as it is not possible to easily calculate their

similarity using other methods.

In order to effectively retrieve knowledge associated with software designs it is essential

to be able to compare designs and measure similarity of designs. The comparison of

software designs requires establishing what composing elements of the design are being

used to determine similarity. A key objective of this research is to determine whether

structural similarity can be used effectively to retrieve knowledge from software design

artefacts.

2.3 Structural Similarity

The creation of software using the object-oriented paradigm requires the

“decomposition of a domain into noteworthy concepts or objects” [Larman, 2005]. As

discussed in the section on Software Engineering, UML class diagrams are used to

depict the structure of object-oriented software by illustrating its classes, interfaces and

the associations between these (see Figure 3 for an example). Class diagrams are used

for static object modelling; they capture the static structure of the object-oriented

software application. This is opposed to other types of UML diagrams which relate to

behavioural aspects (state transition, sequence/collaboration diagrams) or functional

description (use-case diagrams) of a software application.

Chapter 2 Literature Review and Background

24

Figure 3 – A UML Class Diagram

2.3.1 Intra-Class Similarity and Hierarchical Structure

For each composing class/interface, a class diagram also captures class-specific

attributes
1
 and operations, which capture the state and behaviour of the class. In the

object-oriented paradigm, attributes and operations are referred to as members. The

classes/interfaces and their members collectively make up the structure of the software

design. Attributes are also associated with a data type, while operations have a return

type and possibly one or more parameters/arguments. All members, as well as the actual

classes/interfaces can be associated with one or more modifiers. Modifiers qualify the

element they are associated with, which in an object-oriented programming language

provides instructions to the compiler on how to treat that element.

1
 Interfaces don’t normally contain attributes, however some object-oriented programming languages do

allow the use of public static attributes

Chapter 2 Literature Review and Background

25

The fact that a software design can be broken down into its composing elements, makes

it possible to view its structure as a hierarchy of elements. The hierarchical structure of

class diagrams can be utilised as is evident from the work by Egyed [Egyed, 2002] who

automates the abstraction of class diagrams by creating tree structures.

If one creates a tree-like representation of a class diagram, classes and interfaces, as the

main composing elements, would be placed at the top of the hierarchy. Members and

modifiers would create the lower levels of the hierarchy.

The hierarchical structure outlined in Figure 4, shows how a class can be broken down

into its composing elements. Different levels of the hierarchy are shown in different

colours and elements shown in italics are defined by their composing elements.

Class / Interface

Operations

Final

Attributes

Stereotype

Visibility

Constructors

Abstract

Type

Static

Visibility

Final

Parameters

Visibility

Type

Return Type

Final

Visibility

Static

Synchronised

Abstract

Parameters

Type

Name

Name

Name

Name

Name

Name

Figure 4 - Hierarchical Structure of Composing Elements of a Class

The one element which is common to classes, attributes, constructors, operations and

parameters alike, is the name. What distinguishes the name from all the other elements

Chapter 2 Literature Review and Background

26

is the fact that it is just an identifier, but doesn’t have any other operational value or

implication. That is not to say that the name is irrelevant. In an object-oriented design,

classes represent concepts from the domain which is being modelled and the names

would identify which concept is represented by a particular class or interface. Likewise,

the name of an attribute would identify what piece of information it stores. So for a

person who looks at a software design, the names would be some of the most important

features.

As is evident from the hierarchical structure presented above, software designs are

complex structures, and there is no preset benchmark for comparing or defining

similarity between software designs or elements of software designs. This makes

calculating the similarity between software design models a somewhat difficult and

complex process to automate. It is possible for a human expert to identify similarities

between given designs using a heuristic approach, thus the key lies in classifying the

characteristics that would make a human expert identify the similarity.

As with any complex structure, partitioning into substructures or composing elements is

required in order to be able to compare software models. In order to define the overall

similarity of the entire structure, these elements are compared against each other.

2.3.2 Feature Weighting and Genetic Algorithms

By dividing a software design into its composing elements, a hierarchy of elements is

created. Every element in the hierarchy of a software design can then be compared to

the corresponding elements from another design, contributing to the overall similarity of

the two designs. As each element contributes to the overall similarity in uneven shares,

a weighting scheme is used to assign the weights proportionally. This way the weights

can be adapted individually to reflect the reasoning process of the human expert.

Chapter 2 Literature Review and Background

27

Feature weighting is employed heavily when using the k-nearest neighbour algorithm in

CBR and several weighting methods have been reviewed and evaluated by

Wettschereck, Aha and Mohri [Wettschereck, et al., 1997].

Different approaches can be taken when determining the weights that should be applied

to each feature. Weight settings could be obtained from an expert human, who knows

the importance of each feature and to what extent it should contribute to the overall

similarity. It is also possible to obtain weights empirically by running experiments with

different weight settings and identifying those which work best and to automate the

process, as is evident from the research of Kelly and Davis [Kelly and Davis, 1991],

who compared results obtained using a hybrid genetic algorithm to unweighted k-NN.

They used the genetic algorithm and a training data set to learn real-valued weights

associated with individual attributes in the data set and used the obtained weights in the

k-NN algorithm. Their findings were that using weights yielded better results.

Genetic algorithms are optimisation and machine learning techniques in the area of AI,

which are loosely based on the process of natural evolution. Genetic algorithms have

been made very popular through the work of John Holland [Holland, 1975]. Being

based on natural evolution, genetic algorithms have adopted terms used in this field,

such as population, chromosome, mutation and crossover. Genetic algorithms were

employed in this research in an attempt to optimise the weight settings applied across all

features in the hierarchical structure.

A chromosome represents a candidate solution to a problem and each chromosome has

a fitness, which is related to the success of the chromosome at solving that problem. A

population is the initial set of all chromosomes and genetic algorithms solve an

optimisation problem by manipulating the population of chromosomes. The genetic

Chapter 2 Literature Review and Background

28

algorithm repeatedly selects chromosomes from the population which act as parents and

who are replaced in the current population with new, potentially modified, copies. The

selection of parents is not random, but is biased in function of its fitness, which means

that better chromosomes have a higher probability of being selected – this is referred to

as fitness proportionate selection. The reproduction phase during which the new

chromosomes are formed can employ mutation and crossover operators.

The crossover operator generates children which combine chromosomal matter from

both parents and different crossover techniques exist for use with different data

structures. The mutation operator introduces localised change, thus creating differences

between the child chromosome and its parents. The mutation type will depend on the

chromosome. The process of reproduction and replacement is continued until a

termination criterion is met. This could be a predetermined length of time, number of

replacements or when a solution is found which satisfies a threshold criterion.

Genetic algorithms have been applied successfully to generate attribute weights as is

shown in Özşen and Güneş [Özşen and Güneş, 2009] or the research by Beddoe and

Petrovic [Beddoe and Petrovic, 2006], which used the generated weights in a CBR

system.

Within the set of features that are compared within a class, some can only be measured

in direct matches. For example when measuring the similarity of the static modifiers of

two attributes, it will either be a 100% match or a 0% match. However, many of the

features’ similarity can be matched in part by establishing distances between individual

values within the domain of possible values for a particular feature. The integer and

float data types, for instance, both share the characteristic of being numerical. While it

Chapter 2 Literature Review and Background

29

is not an exact match, it is conceptually closer than a numerical data type and a string

data type.

The idea of measuring structural similarity between object-oriented models using data

types has also been used by Meditskos and Bassiliades [Meditskos and Bassiliades,

2007] for semantic web service matchmaking.

While all of this makes it possible to measure the intra-class similarity of individual

classes or even a set of classes, it ignores the relationships between classes, which are

also captured in UML class diagrams. To include the relationships in the similarity

metric, one can employ graph matching.

2.4 Graph Similarity

As discussed earlier, UML class diagrams contain the classes/interfaces, as well as the

relationships between these. There are three main types of relationships: association,

generalisation and interface realisation (implementation). Generalisation establishes an

is-a relationship between a parent (base) and a child (sub) class. This type of

relationship is very strong as all of the visible members of the parent are inherited by

the child. Interface realisation is also an is-a relationship, but is specific to an interface

and a class. As interfaces have no implemented members, there is no inheritance, but

the interface specifies members which have to be implemented by the class.

Associations establish a has-a relationship, which represents a conceptual relationship

between two classes. An association merely means that a class knows of another and

communicates with it at runtime. This is by far the most common relationship in object-

oriented designs. In Figure 3, associations connect the Register, Sale, SalesLineItem,

Product and Payment classes as these merely communicate with each other in order to

Chapter 2 Literature Review and Background

30

operate, while inheritance is used to show that the CreditCard and Cash classes are

types of Payment and therefore inherit common payment-related members from the

abstract Payment class.

In their research, Sanders, et al. [Sanders, et al., 1997] discuss benefits of graph-

structured case representations and the potential difficulty of encoding cases as graphs

in a CBR system. A UML class diagram already records different relationships between

classes or interfaces and it is therefore a straight-forward process to treat a software

design as a graph composed of classes/interfaces (nodes) and relationships (arcs). This

makes it possible to view one case as a single unit, rather than a set of unrelated classes.

The work on similarity measures for object-oriented case representations by Bergmann

and Stahl [Bergmann and Stahl, 1998] defined the similarity between two objects as a

combination of the intra-class similarity and the inter-class similarity. The intra-class

similarity refers to the similarity between the composing features of a class. Measuring

the intra-class similarity is also applied in this research whenever two classes are being

compared. The inter-class similarity measures the similarity between two objects based

on their positions in the hierarchy. The approach taken here does consider the

relationships between classes, but doesn’t place the classes themselves in a hierarchy.

Instead it treats them as a graph. By representing software designs as graphs, it is

possible to compare a design with regards to its composing elements, using the

structural hierarchy presented earlier, as well as their relationships. This requires

comparing graphs, and as the use of graph-based representations has increased in the

last decade [Raveaux, et al., 2010] there has been much research into alternative

approaches to graph matching algorithms. Previous research at the University of

Greenwich [Knight, et al., 2001; Woon, et al., 2001] has shown that competent case

Chapter 2 Literature Review and Background

31

retrieval based on the structural similarity between cases can be achieved using graph

matching techniques.

2.4.1 Graph Matching Algorithms

Graph matching is a computationally expensive process given that the number of nodes

and arcs in graphs provide a multitude of combinations in which elements from the

source and target graph can be matched. This is aggravated further if graphs are allowed

to have circular links and if links are bi-directional, as is the case with UML class

diagrams.

A number of algorithms have been developed to address the problem of graph

matching. Zhao et al. apply the eigen-decomposition approach to weighted graph

matching problems [Zhao, et al., 2007]. A limitation of this approach is that it only

guarantees to work well in cases where both graphs to be matched must be nearly

isomorphic. As this is not the case with software designs, this approach was not feasible

for this research.

Genetic algorithms have also been applied to graph matching [Krcmar and Dhawan,

1994; Auwatanamongkol , 2005]. Auwatanamongkol’s approach is interesting as

indirect links within a graph may be replaced with direct ones in the matching process.

While this approach would work well with relatively small graphs, computing graph

similarity with complex graphs would be difficult, as the number of potential

combinations is increased. This method could be applied to software designs, but would

need to be combined with other techniques in order to make it feasible. While it

provides interesting ideas for future research, it was decided to limit graphs to direct

links initially and defer the use of indirect links for future research.

Chapter 2 Literature Review and Background

32

Another alternative would have been to use spanning trees to compare the complexity of

the graphs. Spanning trees have been successfully applied in textual CBR by creating

minimum spanning trees of cases within a cluster based on their semantic similarity

[Patterson, et al., 2008].

An algorithm which has been successfully applied to graph matching and CBR

[Petridis, et al., 2007b] is based on the correct identification of the Maximum Common

Subgraph (MCS).

The purpose of this algorithm is that given two graphs, G1 and G2, it identifies the

largest induced subgraph of G1 which is isomorphic to an induced subgraph of G2 (see

figure 5).

A B C

D

E

E1

A1 B1

C1

D1

Figure 5 - Example of a maximum common subgraph

The maximum common subgraph and CBR have been successfully combined in the

area of metal casting by Petridis et al. [Petridis, et al., 2007a; Petridis, et al., 2007b].

Chapter 2 Literature Review and Background

33

2.4.2 Maximum Common Subgraph in Software Designs

In the case of a UML class diagram, the graph matching algorithm maps the maximum

common connected subgraph based on matches between individual classes of each

graph, where a minimum threshold similarity value is satisfied.

MCS is known to be NP-hard. Identifying the maximum common subgraph requires an

exhaustive search which matches all possible combinations within two graphs to

identify the largest isomorphic subgraphs. This can be a time consuming process and

graph matching may require the use of a greedy algorithm to be feasible [Champin and

Solnon, 2003]. A key difference between the greedy algorithm of Champin and Solnon

and this research is that in their algorithm a vertex in a graph may be associated with

several vertices of the other graph. Research has also been carried out to speed up

subgraph isomorphism detection [Weber, et al., 2011].

In his research of subgraph matching, Ullmann [Ullmann, 1976] proposes an algorithm

which reduces the number of successor nodes. This idea is applied in this research by

using a minimum threshold between nodes in the graph.

An alternative approach would have been to identify a set of all matching subgraphs

above an established number of nodes. This method would be very computationally

demanding and has not been explored in this research.

Combining structural similarity of classes and graph similarity of relationships between

classes, it may be possible to measure similarity between UML class diagrams and

thereby retrieve knowledge, which is what this research is attempting to achieve.

Chapter 2 Literature Review and Background

34

2.5 Retrieval of Knowledge from Software Designs

The main driving element of this research is the retrieval of expert knowledge from

software designs. In order to maximise the potential for knowledge retrieval, it is

advantageous to have not just a set of software designs, but to have the actual

implementations of the designs. This has two main advantages:

1. The additional information can be used to verify findings

2. The designs are realistic as they reflect real software solutions

The main disadvantage is that the software designs may include elements which did not

form part of the original design, but were added during the implementation process,

such as automatically generated code or existing integrated components. Furthermore,

ad-hoc implementations, especially of less-experienced developers, may not have a very

meaningful underlying design. For this work, it was decided that overall the advantages

of reverse-engineering existing implementations outweigh the disadvantages.

To reconstruct accurate software design representations based on existing

implementations, it is necessary to consider the set of constructs available in UML class

diagrams [Vinita, et al., 2008] and ensure that the algorithm used in the reverse

engineering process correctly captures the classes, interfaces, relationships and the

internal structure of classes (operations, constructors, attributes, modifiers). Reverse

engineering of existing code is most easily achieved using reflection, which is supported

by many object-oriented programming languages. Reflection enables a computer

program to examine the structure of a class at runtime. As a matter of fact, it even

enables instantiation and invocation of a class, but this is not relevant in this case, as for

this research only obtaining the structure was of interest. Reverse engineering has not

been limited to UML class diagrams, but has been used to generate UML sequence

Chapter 2 Literature Review and Background

35

diagrams from compiled code [Ziadi, et al., 2011] and the automatic detection of design

patterns [Lee, et al., 2007].

Design patterns are an important aspect of object-oriented software design. A “pattern

describes a problem which occurs over and over again in our environment, and then

describes the core of the solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same twice” [Alexander, et al.,

1977]. A design pattern in software is thus a conceptual solution for common design

problems. It is not a concrete design description and it doesn’t involve implementation

or coding details, but it is rather an abstract description providing a general plan on how

to solve the problem. Design patterns represent reuse at design, rather than at code level.

The use of CBR and software reuse has been approached from different angles. Tautz

and Althoff have drawn comparisons between CBR and software knowledge reuse

models and proposed the extension of the CBR cycle to include organisational issues,

which would further support software knowledge reuse [Tautz and Althoff, 1997]. This

research considers reuse at conceptual knowledge level and considers organisational

structure, but it has also been considered at a much lower level. It has been successfully

applied to support reuse in an object-oriented environment [Fernández-Chamizo, et al.,

1996] and more specifically to the reuse of design patterns [Tessem, et al., 1998; Shi

and Olsson, 2006]. Grabert and Bridge combined CBR and semantic information to

reuse code snippets (examplets) [Grabert and Bridge, 2003], which works with the

retrieval of information at code level as opposed to design level, as is applied in the

research presented here.

Chapter 2 Literature Review and Background

36

2.5.1 Structural vs. Semantic Similarity

As discussed earlier in this chapter, the process of designing software requires

knowledge of the functional and behavioural requirements which are then represented in

a structural description. To aid understanding of the design and clarify how the

requirements are translated to structural elements requires semantic information which

is encoded in the names chosen by the designer.

When comparing software designs, one important factor for a human expert is certainly

semantic similarity. This allows an expert to recognise what type of system a particular

design depicts. Research has been undertaken by Gomes et al. [Gomes, et al., 2007] into

CBR and software design similarities using lexical similarity. This research makes use

of WordNet, an electronic lexical database, which allows conceptual, as well as, lexical

searches to measure semantic similarities. The aim of their research is the reuse of

software design by identifying the most similar software design to a given specification

and reusing relevant parts of the design.

Another interesting approach is that of Bjornestad [Bjornestad , 2003], which uses

analogical reasoning to measure similarity between object-oriented specifications.

Emphasis is placed on the role of an object within the context of the software design.

Working with semantic similarity makes it is possible to apply analogical reasoning to

relate textual terms. In fact, the work by Gomes et al. uses analogical reasoning in order

to transfer knowledge from candidate diagrams to new diagrams based on a query

diagram [Gomes, et al., 2002; Gomes, et al., 2002].

Analogical reasoning [Gentner, 1983] is an area of research which shares similarity with

CBR. As in CBR, analogical reasoning is a process of comparing similarities between a

source and a target. The key difference between the two is that CBR uses intra-domain

Chapter 2 Literature Review and Background

37

reasoning as cases generally represent concepts from the same domain, whereas

analogical reasoning is inter-domain, whereby similarities are compared between

elements which originate from unrelated domains – e.g. comparing a software design to

a blueprint of a house.

Zaremski and Wing [Zaremski and Wing, 1997] use a different notion of semantic

similarity in their work on specification matching of software components. Their

approach requires metadata in the form of the specification of a component’s behaviour.

While not measuring semantic similarity of the names used, their use of specifications

as a set of pre- and post-conditions provides semantic description of a component.

Interesting research on the reverse engineering of design patterns using a semantic

approach has been carried out by Alnusair and Zhao [Alnusair and Zhao, 2009; Alnusair

and Zhao, 2010]. Their reasoning is that the structure of a design pattern may take

different forms when implemented, which complicates the detection during the reverse

engineering process. Their solution was to build an ontology for each design pattern

describing its essential participants and their properties, collaborations and role

restrictions. This is similar to the approach taken by Gomes et al. [Gomes, et al., 2007],

who define the specific participants, application conditions and actions for a specific

design pattern.

The merit of semantic similarity is evident from the research of Gomes et al. [Gomes, et

al., 2003; Gomes, et al., 2004; Gomes, et al., 2007], who achieved good results creating

a CASE tool that helps software developers reuse previously developed software in the

creation of new designs. More recently, Robles et al. [Robles, et al., 2012] have also

applied semantics when working with software designs, but their approach is based on

the creation of a domain ontology and doesn’t apply CBR. Nevertheless, important

Chapter 2 Literature Review and Background

38

information is also encoded in the structural similarity. In the area of analogical

reasoning, Crean and O’Donoghue [Crean and O’Donoghue, 2002] argue that structural

similarity is more important for the identification of good analogical candidates than

semantic similarity.

There is no claim here that structural information is more important than semantic

information when dealing with software designs. Nevertheless, the structural

information may be able to convey knowledge that is not captured by the semantics.

The most complete perspective obviously combines structural and semantic

information. Gomes et al. complement the semantic similarity with some structural

similarity.

The approach taken in this research steps away from both, semantic and role

similarities, and starts from the assumption that all information from a given software

design model may be obfuscated
2
. Thus, there may be no information about the design

other than structural. The question this work is trying to address is whether the

structural information on its own can convey knowledge. For example, it is important to

distinguish between the structure and functionality of a software design, but does the

structure contain within itself enough information to identify its functionality? At least

to the extent that software designs with similar functionality can be found to have

similar structures and behaviour. Or is there other knowledge which can be extracted

from measuring structural similarity between software designs? The areas which are

explored in this research include plagiarism detection, identification of properties such

as quality of implementation, implementation language, functionality and cost

estimation.

2
 In software development, obfuscation refers to the act of making code difficult to understand by humans

Chapter 2 Literature Review and Background

39

2.6 Cost Estimation

In project management it is critical to accurately estimate the size, cost and time

required in order to develop a software product. Should the effort be underestimated, as

is commonly the place, it leads to time pressure, which could compromise the quality of

the final product due to lack of functionality or poor implementation, and in some cases

could lead to financial loss due to breach of contract. Overestimating the effort required

can too be problematic, as it could lead to quotes which are not competitive. According

to a 2011 enterprise resource planning survey by Panorama Consulting, 61.1% of

projects take longer than expected and 74.1% are over budget [Krigsman, 2011].

Software cost estimating first began to be discussed as a technology in the late 1960s. In

1969, Joel Aron gave a presentation at a NATO conference on the topic [Aron, 1970].

As outlined in [Jones, 2007], different approaches exist to software cost estimation;

some are based on formal models, such as parametric or size-based models, while others

rely on expert estimation. According to Boehm et al. [Boehm, et al., 2000a] all classes

of techniques are challenged by the rapid pace of change in software technology. The

most common approaches are formal estimation models, such as COCOMO

(COnstructive COst MOdel), established by Boehm [Boehm, 1981], which apply

formulas derived from historical data.

The COCOMO model requires the classification of cost drivers using a scale of ratings,

which must be performed by a human expert. However, a human expert remains prone

to human errors and biases [Valerdi, 2007]. A major motivation of this research is to

determine whether cost estimation can be automated effectively by comparing software

designs. Given a collection of software designs and corresponding cost it took to

implement each design, e.g. in lines of code, it may be possible to predict the effort

Chapter 2 Literature Review and Background

40

necessary to implement a new target design, provided that the implementation shares

some common context, such as, complexity of the functionality, similar programming

languages and technologies, etc.

2.6.1 Automating Software Cost Estimation

Attempts have been made to automate software cost estimation using a number of

approaches, such as fuzzy decision trees [Andreou and Papatheocharous, 2008; Huang,

et al., 2007], neural networks [Tadayon, 2005; Kumar, et al., 2008; Tronto, et al., 2008],

rule induction [Shepperd, 1996] and CBR [Huang, 2009; Mendes, et al., 2002; Mendes,

et al., 2003; Li, et al., 2009]. A comparison of various automated software effort

estimation techniques has been undertaken by Finney et al. [Finnie, et al., 1997] whose

findings were that while regression models performed poorly, neural networks and CBR

both have value for software development cost estimation models. Further, the research

suggests that CBR is particularly appealing due to similarity to expert judgment

approaches and as an expert assistant in support of human judgement.

Using CBR for cost estimation means that when a new project is provided for

estimation, the most similar projects from the case base are selected in order to predict

the cost of the new project. Much of the research for software cost estimation using

CBR is based on the Desharnais data set [Desharnais, 1989] with cases containing,

among other, data such as project details, project length, team experience, programming

language and entities [Huang, 2009; Li, et al., 2009]. Other research involving CBR

relates to web development [Mendes, et al., 2002; Mendes, et al., 2003]. None of this

research, however, takes into consideration the software design artefacts. Given that a

software design artefact depicts the intended structure of the software product, it can

contain information useful to the estimation of its development.

Chapter 2 Literature Review and Background

41

2.7 Explanation

It has already been established that there is no existing benchmark for measuring

similarity between two software designs. As an analogy, consider architectural

blueprints for two houses. It may be difficult for an architect to provide an exact

numerical similarity between both as there is no precise algorithm for obtaining this

value. However, an architect would be able to select the most similar blueprint to a

given target from a set of ten sources. The target blueprint is evaluated in the context of

the sources. In the absence of an exact formula, the question would be what features are

considered by the architect in order to perform the match. It could be the size of the

house, the number of floors, number of rooms, building material, etc.

In the case of software designs the features which could influence an expert to

determine similarity could be the number of classes, their relationships or internal class

structures.

If one was to ask the architect why he/she selected a particular blueprint from the set as

the best match for a target, he/she would probably be able to provide us with an

explanation. When a particular software design is selected as the most similar from the

case-base, a user’s confidence in the system increases if it too can provide an

explanation of how the result was achieved.

2.7.1 Explanation in Case-Based Reasoning

The case-based reasoning (CBR) approach is well suited for explanation, because it can

use retrieved cases in order to explain prediction. According to Leake [Leake, 1996],

“neural network systems cannot provide explanations of their decisions and rule-based

systems must explain their decisions by reference to their rules, which the user may not

fully understand or accept. On the other hand, the results of CBR systems are based on

Chapter 2 Literature Review and Background

42

actual prior cases that can be presented to the user to provide compelling support for the

system’s conclusions.” The first exploration of CBR and explanation was undertaken by

Schank, who proposed an approach based on “explanation patterns” [Schank, 1986],

which are generalised patterns of explanation events.

In their research on case-based explanation, Cunningham et al. [Cunningham, et al.,

2003] have shown how case-based explanation increased trust more than rule-based or

no explanation. Their system shows target cases of individuals’ alcohol consumption. It

provides predictions of whether an individual is over the blood alcohol limit and also

explains the reasoning. It is interesting to note that the rule-based explanation was not

as convincing as the case-based one, but as Cunningham et al. point out, the results may

differ depending on the subjects’ insight into the underlying mechanisms within the

domain.

An in-depth overview of different theories of explanation in CBR has been presented by

Sormo et al. [Sormo, et al., 2005]. While surveying theories of explanation in the areas

of philosophy of science, linguistic and cognitive sciences, it also considers explanation

goals and techniques in CBR. The explanation goals are transparency, justification,

relevance, conceptualisation and learning. Of these goals, the ones most applicable in

this research is transparency, which explains to a user how the system reached a

particular answer, and justification, which increases the confidence in the solution

offered by the system by providing support for the conclusion it provides.

The explanation technique applied will depend on what the CBR system is trying to

explain. In its simplest form, just displaying the most similar case or cases can provide

an explanation. This is the approach used by Cunningham et al. [Cunningham, et al.,

2003] who along with the target case, also display the most similar case as explanation

Chapter 2 Literature Review and Background

43

of the solution reached. This is very efficient, as it allows the user to make a direct

comparison – if person A drank X amount and was over the blood alcohol limit, then

person B, who drank a very similar amount was probably also over the limit. Other

explanation techniques include visualisation, explanation models, concept maps, and

more. This research deals with software designs, which are visual artefacts. It is

therefore sensible to employ visualisation in the explanation process. The identification

of similar cases is based on the maximum common subgraph, so displaying this to the

user can justify the similarity result calculated by the system. To strengthen the trust,

this can be complemented with a complete breakdown of the structural similarity

between two cases.

2.7.2 Case Provenance

The competence of a CBR system lies in its collection of cases. While good quality

cases will obviously improve the accuracy of a CBR system, sometimes it is also

relevant to know where a case came from. Case provenance relates to the value of

knowing the source of a case and its importance has been discussed by Leake and

Whitehead [Leake and Whitehead, 2007]. Provenance can be used in explanation, as the

result obtained by the CBR system may be explained in light of the source from where

the matching case(s) originated. Using provenance to support explanation has been used

by Murdock et al. [Murdock, et al., 2006] in the area of Semantic Web.

Provenance is relevant to this research as the case-base consists of software designs

obtained from a set of assessments using different requirements, programming

languages and from different levels. Provenance is also significant in cost estimation,

where the cost of an implementation is predicted based on existing cases. If cases come

from very different sources, the cost may be more difficult to predict accurately.

Chapter 2 Literature Review and Background

44

2.8 Conclusion

As is evident from this literature survey, many of the areas relevant to this research are

of importance to academia, as well as industry and are attracting a lot of high quality

research. The number of publications in these subject areas is extensive, thus the review

concentrated on the research contributions which are most closely related to this work

or from which it follows. Surveying the related research publications has placed this

research into context, demonstrating that the research question is of value to the

research community.

This next chapter presents the methodologies and techniques that were applied, as well

as providing justification for their application

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

45

Chapter 3

3 Using CBR for Retrieval of Knowledge from Software Designs

The previous chapter presented the current state of the research of the main subject

areas that relate to this work.

This chapter presents the methodologies and techniques that were applied in this

research, as well as providing justification for their application. As is evidenced in the

literature review, the work draws from a number of diverse areas of research. Different

approaches and techniques are combined and applied in order to successfully extract

knowledge based on the structure of software design artefacts. The case-based reasoning

paradigm is at the centre of the comparison process and is discussed at the beginning of

the chapter. A key factor which differentiates this research from other approaches

introduced in the literature review is the focus on structural information which is

reinforced in the next section.

The approach taken in this research achieves retrieval of expert knowledge based on the

contextualisation of software designs. It is by relating designs to each other that one can

extract knowledge. Viewing a design in the context of others makes it necessary to

compare them. The chapter therefore continues with the discussion of complex

structures and how these can be compared. Improvements to measuring similarity are

considered using weight optimisation and genetic algorithms. This is taken further in the

section on graph modelling, which is followed by an explanation of how the solution

cases are clustered. This approach to cost estimation is then compared to COCOMO.

The chapter concludes with a section on CBR explanation.

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

46

3.1 Case-Based Approach for Measuring Similarity of UML Class

Diagrams

Case-Based Reasoning was chosen as the paradigm for extracting knowledge from the

class diagrams as it is a method which works with complex domains and when no

algorithmic method is available for evaluation.

Case-bases with large amounts of cases rely on indexing to speed up the retrieval of

cases. However, the case-base used contains just over one hundred cases, which made it

feasible to combine identification and ranking of cases. However, this means that a

target case is ranked against every existing case in the case-base. As all cases are

ranked, the results are more accurate than when ranking is applied only to a set of cases

identified using indices.

The two most common techniques for case retrieval are nearest-neighbour retrieval and

inductive retrieval. Inductive retrieval creates a decision tree based on past data and

requires pre-indexing as the decision tree is used in the retrieval process. This is not

appropriate in this case as the class diagrams are complex structures containing many

possible features for indexing and it is not known how they should contribute to overall

similarity of the diagrams. Depending on the knowledge one is attempting to retrieve or

based on the provenance of cases, a feature’s importance could change. In this case,

inductive reasoning would require recreating the decision tree. Inductive reasoning is

also sensitive to missing data and a class diagram is a complex structure containing

many optional elements, which may or may not be present. It was for these two reasons

that nearest-neighbour retrieval was adopted.

Nearest-neighbour retrieval typically applies the K-Nearest Neighbour (KNN) algorithm

[Dudani, 1976], which applies a similarity metric to measure the distance between a

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

47

target and source case. The distance could be measured using a Euclidean distance

function or a weighted sum of differences. The approach taken here uses the weighted

sum of differences.

In principle, when cases share the same structure (contain the same features), the

process of measuring the similarity between two cases is straightforward. (1) Each

feature in the source case is matched to the corresponding feature in the target case; (2)

the degree of match is computed and (3) multiplied by a coefficient which represents the

importance of the feature. (4) The results are added to obtain the overall match score.

This process is expressed in the following formula, which shows the similarity between

a target (Ct) case and a source (Cs):

 ()
∑ (

)

∑

 (1)

Where

 is value for the feature and is the weight (importance) attributed to the

feature. In this formula, the result is normalised.

Due to the fact that the cases are represented as a complex hierarchical structure,

measuring the similarity between two cases becomes much more complicated. This is

discussed in more detail later in this chapter in the sections on structural similarity and

graph matching.

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

48

3.2 Structural vs. Semantic Information

Creating object-oriented software designs requires an understanding of the tools

available for creating designs, as well as of the object-oriented paradigm. The process of

designing software doesn’t use an exact scientific approach for translating requirements

into a software design. This process is experience-driven and often requires an element

of creativity and ability for abstraction, especially when a design is trying to solve a

problem new to the designer. The quality of a software application from a user’s

perspective is not synonymous with the quality of the underlying design. Two software

applications can have identical user interfaces and support identical functionality and

yet have very different designs. This demonstrates that the purpose of a good design is

not entirely to create an application or system which implements the specified

requirements. Sometimes, features that distinguish a good from a bad design are its

flexibility, maintainability and intelligibility. Particularly with large-scale projects, a

robust and extensible design is essential to ensure that the end product meets the

requirements, can evolve in response to future requirements and is error free. Design

can also have an impact on performance. A good design is not necessarily the most

efficient in terms of performance. For example, an application where all code is placed

in a single class may execute faster at runtime, but would be more difficult to

understand and maintain than a design which assigns the same responsibility to a set of

cooperating classes.

The functionality of a software application is determined by the choice of code

constructs and how the code is laid out (its design), but as there are numerous ways of

structuring code to achieve the same functionality, it is not possible to determine the

exact functionality of an application just by its design. A UML class diagram is an

abstract representation of a software application. The functionality is added when a

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

49

design is transformed into an implementation. Yet, an expert who looks at a design can

usually recognise what a design represents and how it will work. This information is

conveyed through a combination of the object-oriented structure and the selection of

labels for the various elements within this structure.

If one was to look at the UML class diagram shown in Figure 6, it would be safe to

presume that this represents some kind of retail application. What this software diagram

conveys is the structure of the application. However, understanding of the structure is

aided by the semantic information and data types.

Figure 6 – UML Class Diagram for a Retail Application

If the same diagram were to be obfuscated (see Figure 7), the structure would still be

clear. One can see that there will be seven classes; that one is abstract and inherited

from by two other classes; the operations and attributes within each class; the

relationships between classes. However, it would be impossible to determine what

domain this diagram represents. At best, one could make educated guesses.

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

50

Figure 7 - Obfuscated UML Class Diagram for a Retail Application

This example clearly demonstrates the importance of semantic information when

examining a diagram. For a human expert, the semantic information would normally

also influence or guide the comparison process of two different diagrams. The semantic

information is relevant only to the cognitive process and has no bearing on the

functionality, assembly or execution of a software application, which is why it is

possible to have obfuscated code.

The question is not whether a semantic approach to knowledge retrieval is useful, this

has been verified by much research in the field [Gomes, et al., 2007; Robles, et al.,

2012], but whether effective retrieval of information from software designs can be

achieved when semantic information is not available; for instance when a developer

uses another language to name members or a design is reverse-engineered from

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

51

obfuscated code. It is for this reason that the approach taken in this research was to

focus entirely on structural information.

3.3 Complex Structural Similarity

It has been established that only the structural information will be considered in order to

compare diagrams. So what structural data is available?

Class diagrams are used in object-oriented software design to depict the classes and

interfaces of a software design and the way these relate to one another. Apart from the

classes and their relationships, class diagrams often show additional information, such

as certain class-specific properties, attributes and operations. Every feature of a class

diagram can be seen as being fully contained in another. For instance, a class diagram

contains a class, the class contains an operation, the operation contains a parameter and

the parameter contains a data type. This concept of containment makes it possible to

regard a class diagram as a hierarchical tree-like structure. When a class diagram is

regarded as a hierarchical structure, features can be located at different levels within the

hierarchy. Features at the same level are siblings and every container feature (one which

is composed of others) creates a new lower level. If one thinks of a class diagram as a

box, then anything that can be seen at a glance when opening the box would form the

top layer in the hierarchy. In this case this would be the classes and interfaces, which are

the top element in the hierarchy of components of a software design.

Current object-oriented programming languages, such as Java and Visual C#, follow a

standard model for determining the elements of the class structure. The class structure

may contain modifiers, which state a class’s visibility and whether it is final or abstract.

It could also contain attributes, operations (methods) and constructors. The attributes,

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

52

operations and constructors will in turn have defining properties themselves. This way

the hierarchy of features is created, as can be seen in Figure 8 (different colours denote

different levels of the hierarchy and features in italic denote a container which is

composed of sub-features). This structure differs slightly from that introduced in the

literature review, as any names of classes, attributes, etc. have been removed, because

the semantic information is omitted from the comparison.

Class / Interface

Operations

Final

Attributes

Stereotype

Visibility

Constructors

Abstract

Type

Static

Visibility

Final

Parameters

Visibility

Type

Return Type

Final

Visibility

Static

Synchronised

Abstract

Parameters

Type

Figure 8 - Hierarchical structure of composing elements of a class (names omitted)

Any leaf feature (one which has no sub-feature) can only occur once in its containing

feature (e.g. an attribute can have only one type or an operation can have only one

visibility. However, any of the containers can be repeated (e.g. a class can have multiple

attributes or an operation can have multiple parameters). The values of leaf features

state something about their containing feature overall, for instance that a class is abstract

and has public visibility. However, another relevant aspect of a class’s similarity to

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

53

other classes is its complexity. An indication of this is the multiplicity of features; the

number of attributes, constructors and operations, and, at a lower level, the number of

constructor and operation parameters.

In addition to the internal hierarchical structure of a class presented above, there are

further elements obtained from a class diagram, which can be used for measuring

software design similarity based on structure. These are all related to how a class relates

to other classes in the class diagram:

 Inheritance: a class’s super/base class

 Interface realisation (implementation): the number of interfaces a class

implements

 Associations: the number of other classes that a class cooperates with

Many features are compared in order to establish the overall similarity between two

classes. It is quite possible that different features contribute to the overall similarity in

uneven shares. To account for uneven contribution, a weighting scheme is used to

assign weights proportionally. This way, the weights can be adapted individually to

reflect the importance of the feature.

The following equation shows how the similarity between two classes (target and

source) is calculated.

),(),(),(stllllsthlhlst CCCCCC (2)

The overall similarity combines the low-level and the high-level similarity between the

two given classes, where hl
 is the weight coefficient applied to the high-level

similarity and ll is the weight applied to the low-level similarity

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

54

The high-level similarity between two classes is based on the defining characteristics of

a class (its modifiers) and the number of attributes, operations, constructors and

relationships with other classes (superclass, number of associations and interface

realisations). These are properties of a class which can be obtained without having to

look at the detailed low-level structure of the class. In essence it looks at anything that is

at the first level of a class’s hierarchical structure.

The high-level similarity between two classes is obtained as follows:

 () ∑ ()

 ()

 ()

 ()

 ()

 ()

 ()

(3)

where all mods are the modifiers of a class, is the weight applied to the similarity

of each of these modifiers, is the weight applied to the similarity between the

super/base class, is the weight assigned to the number of attributes and

similarly , , and refer to the number of

operations, constructors, associations and interface realisations. The modifiers of a class

are visibility, abstract, final and stereotype (can be interface or enumeration).

The low-level similarity is concerned with the internal structure of a class (attributes,

operations and constructors), as stated in equation (4), where is the weight applied

to the sum of all matched attributes’ similarity, refers to the total number

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

55

of attribute matches and refers to an attribute and its best match (bmx).

Similarly,
refers to operations and to constructors.

 ()

∑ ()

∑ ()

∑ ()

(4)

The similarity between two attributes is defined as follows:

 () ∑ ()

 ()

(5)

The modifiers in this case are static, final and visibility. refers to the weight

assigned to the data type of an attribute.

When calculating the similarity between two operations, the modifiers specific to each

operation, the number of parameters and the similarity between these parameters are all

taken into consideration:

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

56

 ()

 ∑ ()

 ()

(

∑ ()

)

 ()

(6)

For operations the modifiers are visibility, static, synchronized, abstract and final.

retType is the return type of a method, is the number of parameter matches

and numPar is the number of parameters.

Similarity metric (7) is applied to constructors. It is very similar to the one for

operations, but has only a single modifier (visibility).

 ()

 ()

∑ ()

 ()

(7)

For operation and constructor parameters, similarity is defined simply as:

 () () (8)

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

57

For most modifiers the similarity is easy to calculate as they are either present or absent,

this means that it will be either a 100% or a 0% match. This applies to:

 abstract

 final

 static

 synchronised

Visibility (access level) modifiers control what members (attributes or operations) can

be accessed by other members. The accessibility of members will depend on the relative

position of the class containing them and the class trying to access them. For instance,

whether both members are in the same class, the accessing member is in a class that

inherits from the class containing the accessed member or whether both classes are in

the same namespace/package. The different modifiers apply different restrictions with

private being the most restrictive and public the least. This makes it possible to use

expert knowledge to establish distances between the different visibility modifiers and

these distances determine the similarity. Table 2 outlines the similarities used between

the various visibility modifiers:

 Public Protected Internal Private

Public
100%

Protected
60% 100%

Internal
50% 80% 100%

Private
0% 20% 40% 100%

Table 2 – Similarity of Visibility Modifiers

As with visibility modifiers, data type similarity can be matched in part by establishing

distances between various data types. For instance, the integer and float data types both

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

58

share the characteristic of being numerical. While it is not an exact match, it is

conceptually closer than a numerical data type and a string data type. Table 3 shows a

matrix with the similarities of data types and return types. The similarity values were

established based on expert opinion.

 Bool Byte Short Int Long Float Double Char String Object Array Collect. Void

Bool
100%

Byte
10% 100%

Short
10% 80% 100%

Int
10% 70% 80% 100%

Long
10% 60% 70% 80% 100%

Float
5% 30% 40% 50% 50% 100%

Double
5% 30% 40% 50% 50% 80% 100%

Char
5% 5% 5% 5% 5% 5% 5% 100%

String
10% 10% 10% 10% 10% 10% 10% 60% 100%

Object
0% 0% 0% 0% 0% 0% 0% 0% 20% 100%

Array
0% 0% 0% 0% 0% 0% 0% 0% 10% 30% 100%

Collect.
0% 0% 0% 0% 0% 0% 0% 0% 0% 30% 80% 100%

Void
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Table 3 – Similarity of Data Types and Return Types

The similarity between an interface and an abstract class was set at 50% as both contain

abstract operations.

To measure the similarity between two numerical values, such as the number of

attributes, operations, parameters, etc., the metric used was:

 ()

 (9)

where x is the smaller and y is the larger of the two numbers.

The following rule is applied when comparing features of different classes: the lack of

features in both classes being compared would denote a 100% similarity for that

feature, while the absence in merely one class would result in a 0% similarity. For

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

59

example, if neither class has any attributes, the overall attribute similarity is 100%,

while if one class contains attributes, but the other does not, 0% similarity would be

applied.

Not all of the modifiers available in different object-oriented languages are included in

the feature set used in this approach. The focus was on those features that are included

in a class diagram and can be extracted from it. This meant that modifiers such as

transient, volatile or native were not included. Furthermore, only features which could

be obtained using reverse-engineering from a class diagram are used. So labels on

associations, relationship multiplicities, aggregation, composition and constraints are

not included.

The structure created to represent a class is quite extensive and includes even small

internal structural features. An alternative approach to this could have been to include

only the most obvious features when measuring similarity. The system implemented to

evaluate the research therefore allows individual features and even entire levels of the

hierarchy to be excluded from the similarity metrics.

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

60

3.4 Weight Optimisation & Genetic Algorithms

Expert input is being used in the weight optimisation process at three levels of

granularity.

1. Determine individual weights for every feature in the similarity metric

2. Set desired class matches within a diagram by setting scores – weights are

determined by applying a genetic algorithm to obtain the highest possible overall

score

3. Set desired diagram matches by selecting the best-matching diagram - weights

are determined by applying a genetic algorithm to obtain the highest possible

match between the given diagrams

As discussed earlier, each feature within a class may contribute to the overall similarity

between two classes in uneven shares. This requires a weighting scheme to be in place

in order to assign the weights proportionally to a feature’s importance in terms of the

overall class similarity. The features of a class are arranged in a hierarchical structure,

which is reflected by the weights, creating different levels of weights.

A key issue in calculating the class similarity effectively is to identify what the weight

setting should be in order to successfully match up the correct classes. There is no

established norm or convention for measuring similarity between classes. This is an

abstract activity and even stating whether a match is good or bad is not always

straightforward. A human expert could identify similarities between given designs using

a heuristic approach, thus the key lies in classifying the characteristics that would make

a human expert identify the similarity and adjust the weights for those features

accordingly. However, this could vary from person to person or even diagram to

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

61

diagram. It is also possible that a human expert would measure some features intuitively

without being able to express them in rules.

In order to solve this problem this research employs weight optimisation. This process

can be automated by training a system to automatically identify optimal weight settings,

given the desired matching results. An expert assigns values from a predefined scale to

class matches (similar to a grading scheme).

Given a set of desired/undesired matches, the system can apply different weight

settings, run comparisons between all the different classes and keep a score of the points

obtained from matching the classes against one another. An analysis of the scores from

these comparisons makes it possible to adopt the best weight settings. This weight

optimisation algorithm is outlined in Figure 9.

Figure 9 - Weight Optimisation Algorithm using Class Scores

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

62

A slightly different approach to this weight optimisation problem asks the expert to

identify the most similar diagrams from a set (see Figure 10). The system applies

different weight settings and adopts the setting which yielded the highest result.

Figure 10 - Weight Optimisation Algorithm using Diagram Matching

An important question is to what extent the optimisation of weights can be generalised.

Can a weight setting obtained from a particular set of designs be applied to other cases?

According to [Mitchell, 1990] it is not possible to use a weight optimisation method that

would obtain an optimal weight setting which could be used for all tasks, since each

task requires a different bias for optimal performance. A possible solution to this would

be the creation of several different profiles according to the specific characteristics of

different designs. This issue will be discussed in more detail in chapter 5.

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

63

Rather than randomly changing weights and hoping to chance upon a good setting, it

would be more efficient to try to improve a setting by incrementally manipulating the

values, verifying the results and making adjustments accordingly. A way of achieving

this is through means of a genetic algorithm (see Figure 11).

Reproduction

Generate initial
population

Evaluate fitness of
each chromosome

Select best
chromosome from

all populations

Perform elitism
operation

Perform crossover
operation

Perform mutation
operation

Stop evolution?
Create new
population

Select parents More to select?

Add child to new
population

No

Yes

Yes

No

Figure 11 - Genetic Algorithm

The genetic algorithm is used in the Set Weights phase of the weight optimisation

algorithms (Figure 9 and Figure 10), effectively automating the weight setting.

A population contains a set of chromosomes and in this case each chromosome

represents a weight setting. A chromosome’s fitness shows the similarity or score

achieved when using this particular set of weights. The number of elite chromosomes

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

64

which are automatically selected for the next population is determined by an elitism

rate. The crossover and mutation operations are not performed in every reproduction

cycle, but their occurrence is dictated by a random function taking into consideration a

set rate for each. During the reproduction phase, the selection of parents is not

completely random, but is biased in function of a chromosome’s fitness. This means

that better chromosomes have a higher probability of being selected – which is referred

to as fitness proportionate selection.

The probability of a chromosome being selected is defined as:

∑

 (10)

Where is the fitness of a chromosome and N is the number of chromosomes in the

population.

The weight settings obtained from optimisation are cached for later retrieval so that they

don’t have to be computed at query time.

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

65

3.5 Graph Matching

To measure the similarity between two class diagrams, one can simply measure the

similarity between the number of classes in both diagrams and sum of the similarities of

all matched classes (11).

 ()

∑ ()

 ()

(11)

Where Cx is a class from CDt and Cbmx is the best match for that class in CDs.

However, a great deal of the knowledge associated with UML models is encoded in the

links between these elements. Typical of this are the associations between classes in a

UML class diagram and the message passing in interaction diagrams. In fact it can be

argued that most of the practical reuse of design and code by software engineering

practitioners is associated with design patterns that are related to patterns of interaction

between objects.

As a UML class diagram consists of classes which are connected using relationships,

they can easily be represented as graphs of nodes (classes) and arcs (relationships). To

measure similarity between class diagrams, represented as graphs, requires graph

matching. A full search graph matching algorithm has been adapted to be applied to

UML class diagrams. Given the graph representations of two UML class diagrams, CDt

and CDs, the algorithm returns the Maximum Common Subgraph MCS(CDt,CDs)

present in both graphs.

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

66

The algorithm attempts to find the best matching elements in the two graphs based on

the metrics presented in the previous sections. The similarity metric between arcs in the

diagram is based on a simple classification of association types in terms of the nature of

their relationship as follows:

 association

 generalisation

 interface realisation (implementation)

The similarity between associations of the same type is defined as:

)()(0

)()(1
),(

st

st

st
AstypeAstype

AstypeAstype
AsAs (12)

The graph matching algorithm maps the maximum common connected subgraph based

on matches between individual elements of each graph, where a minimum threshold

similarity value is satisfied.

The overall similarity between the two case graphs (Gt, Gs) is then defined as:

)().(

)),((

),(

,

2

st

MCS
in

CC
matches

st

st
GcountGcount

CC

GG

st

(13)

where count(Gt) represents the number of nodes (classes) in graph Gt.

The sum of results is squared to emphasise the differences between graphs and make it

easier to visualise results. This formula for graph matching has been used successfully

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

67

in previous research at the University of Greenwich [Petridis, et al., 2007a; Petridis, et

al., 2007b].

Figure 12 shows an example application of the algorithm and similarity measure. At a

similarity threshold set to 0.4, three connected nodes in each graph have been picked up

by the algorithm. A further match between the classes “Customer” and “POS” is

rejected for having similarity value less than the threshold. Potential matches between

“Supplier” and “Saleable” are not considered as the connecting associations are of

different types (association vs. interface realisation).

Figure 12 - Maximum Common Subgraph Example

In this example, the overall graph similarity between the two class diagrams would be:

(0.7+0.8+0.77)
2
 / (5*5) = 0.206

The algorithm used in this research is based on the full recursive search of all elements

in the graph representations where both target and source diagrams are being compared.

The algorithm attempts to match individual classes from the source and target diagram

σ=0.7

σ=0.8

σ=0.77

σ=0.2

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

68

where the similarity is greater than a predefined threshold. For each successful match,

the algorithm attempts to match all respective matches of neighbours whose similarity

measure is greater than the threshold. The algorithm finishes when no additional

neighbour matches can be found. This algorithm has been extended from previous

research [Petridis, et al., 2007b] to follow links representing only similar types of

associations as defined by equation (12) above.

Figure 13 outlines a simplified version of the algorithm used to identify the MCS

between two graph representations of corresponding class diagrams.

The graph matching algorithm has been used as an alternative to the simpler class

diagram matching algorithm presented at the beginning of this section (11).

 Figure 13 - Maximum Common Subgraph Matching Algorithm

FORALL possible matches (x,y)

 mcs CALL match(x,y)

ENDFOR

match(x,y):

 calculate struct similarity sim(x,y)

 IF sim(x,y) > threshold THEN

 find all matching neighbour(xn,yn)

 FOR each (xn,yn)

 mcs Append(mcs,match(xn,yn))

 IF mcs best so far THEN

 retain mcs

 ENDIF

 ENDFOR

 ENDIF

 RETURN mcs

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

69

3.6 Clustering

Given that clustering makes it possible to group objects that are similar, it can be

applied in order to evaluate whether the similarity metrics applied in this research are

working. Clustering is used as part of the experiment stage in order to validate the

results, whereby clusters of the cases are generated post retrieval and evaluated against

facts which are known, but don’t form part of the similarity metrics. For instance,

clustering is being used to determine whether cases are grouped according to the source,

programming language, size or quality of the software designs.

Clustering is an area of data mining which consists of the assignment of objects into

groups (clusters) such that objects in the same cluster are more similar. Given that the

essence of CBR is measuring similarities, it is sensible to combine the two areas. It is

possible to find applications for clustering at various stages in the CBR cycle, but in this

case it is applied to the set of retrieved and ranked cases.

Agglomerative hierarchical clustering takes as input a set of objects each of which is

placed in its own cluster. The clustering algorithm then repeatedly merges the closest

pair of clusters.

The distances between clusters can be defined using:

 Single-link clustering (nearest neighbour) – merges clusters with the smallest

minimum distance from any member of cluster A to any member of cluster B

 Complete-link clustering (farthest neighbour) – merges clusters with the smallest

maximum distance from any member of cluster A to any member of cluster B

 Average-link clustering – merges clusters with the smallest average distance

from any member of cluster A to any member of cluster B

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

70

 Figure 14 – Agglomerative Hierarchical Clustering Algorithm

The single-link clustering method is known to be unsuitable for isolating poorly

separated clusters. In this research it was found that single-link clustering would result

in one massive cluster containing the large majority of items and all remaining clusters

each containing a single item. Better results were achieved using average-link

clustering, which has also ranked well in evaluation studies [Sileshi and Gamback,

2009]. A disadvantage of the average-link clustering method is that it is computationally

expensive for large collections of data, but it computed all clusters within a reasonable

time.

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

71

The condition for terminating the clustering process could be when a predetermined

number of clusters is reached or when a cluster fails its criteria of compactness (average

distance between items in the clusters are too high). The predetermined number of

clusters was used, which was based on a rule of thumb by Mardia et al. [Mardia, et al.,

1980] and the number of different sources of the cases in the case-base.

Clustering is an active area of research in its own right and experiments with more

complex clustering algorithms could have been carried out, such as the approach of Bai

et al. [Bai, et al., 2011] who use multiple weights for attributes within clusters in order

to identify clusters in subspaces. However, the focus of this research is not on clustering

methods. Clustering is used as a means to evaluate the effectiveness of knowledge

retrieval from software designs.

3.7 Cost Estimation

Software development projects have a notorious reputation for being late and over

budget, yet much of the cost estimation for projects is done based on experience of

project managers and estimates done on the “back of an envelope”. The estimation

process also needs to account for numerous factors, such as system size, complexity,

experience of the development team, etc. There is also a tendency to create very

optimistic estimates, as this makes it more probable for a project to be approved or

attract funding.

As with any type of estimation, cost estimation works most efficiently when backed by

historical and statistical information. Thus, a variety of different approaches exist to

software cost estimation, which take into account historical and statistical information,

or which use models which were created using historical data. Some are based on

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

72

formal models, such as parametric or size-based models, while others rely on expert

estimation. The most common approaches are formal estimation models, such as

COCOMO (COnstructive COst MOdel), established by Boehm [Boehm, 1981], which

apply formulas derived from historical data. The successor to COCOMO is COCOMO

II [Boehm, et al., 2000b] which is better suited for modern software development

projects, as it considers the changes to the software development process since the first

version was published.

COCOMO uses function point analysis to compute program size, development time and

the number of people required. It requires the classification of cost drivers using a scale

of ratings to determine information such as the class of project. It also requires setting

complexity factors and weight assignment, all of which must be performed by a human

expert. This means that the estimation is very much dependent on the judgement of the

expert and remains prone to human errors and biases [Valerdi, 2007].

When using the object-oriented paradigm and UML models, the function point analysis

uses use cases (use-case diagram) and classes (class diagram) in order to compute the

effort in lines of code. The following formula is used to calculate function points for

cost estimates:

 (14)

where is the number of use cases directly connected to an actor (i.e. use cases which

are connected not solely to other use cases), is a weight between 4 and 7, is the

total number of classes in the model and is a weight between 7 and 15.

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

73

The function points obtained using this calculation are then adjusted using the formula:

 (∑) (15)

where are a set of fourteen factors, each of which is assigned a complexity coefficient

between 0 (no influence) and 5 (essential). The technical complexity factors defined by

COCOMO are:

1. System requires reliable backup and recovery

2. Data communications required

3. Distributed processing functions

4. Performance critical

5. System to run in existing, heavily utilized operational environment

6. Requires on-line data entry

7. On-Line data entry requires input transaction over multiple screens/transactions

8. Master files updated on-line

9. Inputs/outputs/queries complex

10. Internal processing complex

11. Code designed to be reusable

12. Conversion and installation included in design

13. System designed for multiple installations in different organisations

14. Application designed to facilitate change and ease of use by the user

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

74

Once the function points are calculated, it is possible to convert them to lines of code

(LOC) using a mapping. The mappings for some programming language are given as:

Programming Language LOC per FP

Assembly language 320

C 128

Cobol / Fortran 105

Pascal 90

PHP / Python 67

Java / C++ / C# 30

Code generators 15

Table 4 – Mapping of Function Point to Lines of Code

The technical complexity factors, function point mappings and formulas in COCOMO

are all derived from the analysis of historical data.

A major motivation of this research is to determine whether cost estimation can be

automated effectively by comparing software designs. This is an approach which uses

estimation by analogy, as experience from previous projects is analysed to determine

the cost for a new one. Given a collection of software designs and corresponding cost it

took to implement each design, e.g. in lines of code, it may be possible to predict the

effort necessary to implement a new target design, provided that the implementation

shares some common context, such as, complexity of the functionality, similar

programming languages and technologies.

In this research the results of COCOMO estimates for lines of code of a target software

system are compared to the lines of code obtained from the nearest neighbours

retrieved.

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

75

3.8 Explanation

Using the methods described in the previous sections of this chapter, it is possible to

compute the similarity of two software designs and obtain a match expressed in

percentage. This result would be calculated based on the maximum common subgraph,

number of classes in each diagram, similarity of the internal hierarchical structure of the

classes that form part of the maximum common subgraph and the weights attributed to

all of the features. It is also possible to indicate which features were ignored in the

comparison, if any. The reasoning used to obtain the results is remembered and can be

shown to a user to explain the overall similarity match by breaking it down into each

constituent element. It is also possible to show how groups of features have contributed,

such as a particular level in the hierarchical structure (e.g. what the overall match for all

attributes was for two particular classes).

The explanation is achieved by providing a complete breakdown of all similarities

between all features of the two diagrams and is supported by the visualisation of the

maximum common subgraph, showing exactly what classes were matched and how

they were linked.

3.9 Conclusion

This chapter has presented the methodologies and techniques that were applied in this

research. The research relates to a variety of subject areas and the chapter started by

introducing the case-based reasoning paradigm and explained how it can be used in

order to extract knowledge from software design artefacts.

Most of the research on applying case-based reasoning to software designs relies

heavily on the semantic information encoded in the designs to measure similarity. While

Chapter 3 Using CBR for Retrieval of Knowledge from Software Designs

76

the importance of semantic aspects has been clearly demonstrated, the significance of

the hierarchical structure has been raised together with the question of whether the

effective retrieval based solely on structural information was possible.

It has been demonstrated how class diagrams can be broken down into composing

features resulting in a hierarchical tree structure with different levels. All the

contributing structural features have been presented, along with their similarity metrics.

As a consequence of the uneven contribution to overall similarity, feature weighting has

been discussed and it was shown how a genetic algorithm can be employed to optimise

feature weighting.

To take advantage of the knowledge determined by the relationships between classes, a

class diagram can be regarded as a graph, which requires some form of graph matching

to measure similarity. The method proposed for finding the maximum common

subgraph and a similarity metric and algorithm were provided. It was shown how

clustering can be used to group cases to evaluate the effectiveness of the knowledge

retrieval. Retrieval of knowledge is applied in an attempt to perform software cost

estimation. Existing methods for cost estimation were presented and it was revealed

how this research will evaluate results against the COCOMO model for estimating lines

of code. Finally, it was outlined how the system will provide explanation to its users.

The next chapter will present UMLSimilator, which is the software system developed to

evaluate the research.

Chapter 4 UMLSimilator

77

Chapter 4

4 UMLSimilator

The previous chapter outlined the techniques and methodologies used. This chapter

explains how the algorithms were implemented and provides examples to illustrate. The

UMLSimilator tool is presented, which is the software tool which was developed in

order to evaluate the research. The tool is capable of importing cases, measuring

similarity and applying all of the techniques discussed in the previous chapter.

This chapter provides a synopsis of work carried out and starts by presenting the case

study which forms the basis of the work. The next section provides the overall

architecture of the system, indicating the various modules it contains. The various

modules are then presented in turn, describing their specific function within the

knowledge retrieval process.

4.1 Case Study

A case-based reasoning system requires a case-base or case-library. As the purpose of

the application is to retrieve knowledge from structural information of software design

artefacts, the content of the case-base consists of representations of UML class

diagrams. To ensure that there is enough data and variety within the case-base, just over

one hundred cases were obtained and stored. Diversity was introduced by using results

from a number of different teaching assignments, thus assuring a good assortment of

cases. Another positive consequence of using a set of teaching assignments is the fact

that it provides diverse implementations of identical requirements, making it possible to

validate results and evaluate provenance. Finally, this approach provided a measure of

Chapter 4 UMLSimilator

78

quality in form of the grade achieved. Having this quality indicator enables the

investigation of the relationship between the structure and quality of a software design.

To maximise the potential for knowledge retrieval, it is advantageous to have not just a

set of software designs, but to obtain the designs from actual implementations. This

makes it possible to verify the findings of this work in relation to cost estimation and

plagiarism detection. It also implies that the designs are realistic as they reflect real

software solutions.

Application Programming Language Level Number of Cases

Software catalogue application .NET 6 25

Project management application .NET 6 14

Application for a car repair shop .NET 5 34

Stock management application .NET / Java (optional) 7 21

Project bidding system .NET 6 7

Table 5 – Teaching Assignments in the Case-Base

Table 5 shows details of the assignments which were used to populate the case-base.

As can be seen, each assignment has different requirements and they are sourced from

different levels. All assignments had to be completed using an object-oriented language.

For each assignment, the grade has been recorded, given that this is a measure of quality

of the finished software product. A high grade doesn’t necessarily guarantee a good

design, as the grade is generally derived from a number of factors, which include, but

are not limited to the design. These could include the graphical user interface design,

functionality offered, validation, accompanying written report, etc.

The approach to cost estimation applied here computes the estimated cost (lines of

code) by identifying the nearest neighbour designs and calculating the average cost of

Chapter 4 UMLSimilator

79

their implementation. This requires knowing the cost of implementation for the designs

in the case-base. To automate the calculation of implementation cost, a source code

reader module was built into the UMLSimilator tool. The source code reader allows a

user to map classes to source files and then automatically extracts the lines of code and

number of characters for each class. The .NET suite of programming languages allow

partial classes, where one class is spread over multiple files. The source code reader

caters for this by allowing multiple files to be mapped to the same class.

4.2 System Architecture

The UMLSimilator tool implements the proposed approach and aims to support the

entire knowledge retrieval process using CBR, including the management of the case-

base. The tool comprises a variety of modules to support this functionality. An overview

of the architecture of the tool and its main modules has been outlined in Figure 15. The

modules include:

 UI Forms: Contains the majority of graphical user interfaces, as well as a

controller and some file handling support

 Visualiser: A user interface component implemented using Windows

Presentation Foundation to depict class diagrams and visualising maximum

common subgraphs

 Class Similarity Calculator: Performs the internal class similarity calculations

using the hierarchical structure, including data type similarity

 Graph Matching: Implements the most complex algorithm of the application

which uses recursion to match the maximum common subgraph

 Clustering: Used for clustering cases based on their distances

Chapter 4 UMLSimilator

80

 Weight Optimiser: Supports different types of weight optimisation based on

desired settings from a human expert. Uses a genetic algorithm to improve the

weight settings

 .NET Reflector: Reverse engineers class diagrams from compiled .NET CIL

code in *.exe or *.dll format

 Java Reflector: Reverse engineers class diagrams from compiled Java byte code

in *.class or *.jar format

 Persistence: Handles all persistence operations with the case base

<<Java Web Service>>

Java Reflector

<<.NET Web Service>>

Persistence
Module

UMLSimilator

UI

Visualiser
Module UI Forms

Services

.NET Reflector
Weight

Optimiser

Domain

Class Similarity
Calculator

Graph Matching
Module

Clustering
Module

Case-Base

Figure 15 - UMLSimilator Architecture

The UMLSimilator tool also incorporates the case-base and its management. Initially

XML (eXtensible Markup Language) was used as a storage mechanism for the case-

base to provide flexibility. XML is well-structured and as a text-based format it is

Chapter 4 UMLSimilator

81

widely supported and easily transferable, yet capable of representing complex data

structures through containment. The use of XMI (XML Metadata Interchange) was

considered in order to provide interoperability between UMLSimilator and popular

CASE tools. XMI was discussed in chapter 2 with the MOF metamodel architecture.

However, text processing is quite slow and it became necessary to speed up the

manipulation of data models. A relational database was therefore created holding class

representations of the UML metamodel M2 for class diagrams. The database contains

20 tables and the structure can be found in Appendix 1.

4.3 Reflector Module

As discussed earlier, existing implementations were used to populate the case-base. The

cases were obtained by reverse engineering existing implementations.

The UMLSimilator contains a class structure reflecting the metadata of UML class

diagrams, which makes it possible to work with in-memory representations of the class

diagrams, thus speeding up processing. A class diagram showing the core domain

classes can be found in Appendix 1. The persistence module deals with the serialisation

and de-serialisation of the cases between in-memory representation and the case-base.

However, the reflector modules make it possible to introduce the cases in the case-base.

The reflector modules convert classes from their compiled byte code into cases in the

case-base. Reflector modules exist for Java, as well as .NET CLS-compliant languages

(CLS - Common Language Specification). Both modules rely on the reflective ability of

these programming languages, by means of which compiled classes are dynamically

loaded at runtime and the features automatically extracted. Reflection enables

inspection of classes at runtime, as it makes it possible to construct instances of classes

Chapter 4 UMLSimilator

82

for which all one has is the name. Once instantiated, the details of all attributes,

operations, constructors and parameters can be accessed, as well as metadata, such as

annotations and assembly attributes. It is even possible to invoke methods on the object.

Reflection makes it possible to obtain the complete hierarchical structure of a class,

required to recreate the class diagram. The reverse-engineered designs can then be

submitted to the case-base.

Applications written using the .NET suite of languages (e.g. C#, VB.NET) are compiled

into an intermediate code called CIL (Common Intermediate Language). The compiled

classes are bundled into assemblies, which for stand-alone applications are typically

executable files (*.exe) or class libraries (*.dll). The reflector module loads any

assembly it is passed, obtains a list of classes, loads each class and reflects on it to

extract all of the required data.

The UMLSimilator tool is implemented in .NET, thus the .NET reflector module is

directly integrated. Reflection of Java byte code, requires a Java runtime. While the file

selection and case-base management is handled by part of the UMLSimilator

implemented in .NET, the reflection of Java code is delegated to the Java reflector

module, which is exposed as a web service. The case extraction process for .NET and

Java code is outlined in Figure 16. The Java reflector module receives Java byte code

and recreates files from it. It then loads the files and reflects on them. A custom

implementation of the ClassLoader was used to make it possible to load linked classes

from multiple nested JAR (Java Archive) files. The structure of the Java Reflector is

available in Appendix 1.

Both reflector modules filter out inherited operations and extract only those

implemented in the actual class. This corresponds to what would be displayed in a class

Chapter 4 UMLSimilator

83

diagram. Inheritance and interface realisations can also be easily extracted using

reflection. However, one aspect of a class diagram which cannot be obtained directly

using reflection is the associations between classes. The reflector modules overcome

this problem by identifying classes from the same diagram which are used either as

return types of methods, parameter types or data types of declared attributes.

Association relationships are then established based on this information.

UMLSimilator

Persistence Web Service Java Reflection Web Service

Select File

.NET Reflector
extracts data

Persistor adds case
to case-base

Is .NET file? No

Send to Persistor
service

Convert to byte
stream

Send to Java
reflection service

Recreate byte code
file

Yes

Java Reflector
extracts data

Figure 16 - Case Extraction Process

The main disadvantage of reverse-engineering implemented software solutions is that

the software designs may include elements which did not form part of the original

design, but were added during the implementation process, such as automatically

generated code or existing integrated components. Furthermore, ad-hoc

implementations, especially of less-experienced developers, may not have a very

Chapter 4 UMLSimilator

84

meaningful underlying design. For this reason a manual checking step was added to the

case extraction process. During this phase a human expert reviews the reverse-

engineered solution and can do manual tidying (e.g. removing automatically generated

classes, adding missing relationships, etc.).

Existing tools for reverse engineering code have been used by Gorton and Zhu [Gorton

and Zhu, 2005] and Tessem et al. [Tessem, et al., 1998], who use Java’s reflective

ability combined with Case-Based Reasoning to “retrieve case-based components in a

prototyping tool for the Java programming language.” This tool is used to aid class

retrieval and reuse, but on a code rather than design level and even though this research

is based on existing implemented designs, it is currently only concerned with the design

level. Their approach is also oriented towards semantic similarity similarly to Gomes et

al. [Gomes, et al., 2004].

4.4 Class Similarity Module

At the core of the CBR approach is measuring the similarity between a target and source

cases. As presented in the previous chapter, the proposed approach measures the

similarity between classes by breaking them down into their composing elements and

performing matches of similarity at all levels within the resulting hierarchical structure.

In order to calculate the similarity between two given classes, the UMLSimilator takes

every element within the hierarchical structure of the first class and compares it to the

equivalent element(s) from the second class. It proceeds until every element is matched

and the overall similarity is obtained, not allowing any element to be matched more than

once. A full search algorithm is applied which ensures a good overall match. The

algorithms in place will repeatedly rematch all elements until satisfactory matching is

Chapter 4 UMLSimilator

85

achieved. The results of the exhaustive matches are used to measure similarity between

classes, thus determining which matches are considered in calculating the maximum

common subgraph.

The process of exhaustively matching all elements to find the best matches uses the

binomial coefficient (

) which defines the number of ways of picking k unordered

outcomes from n possibilities (see (16)).

(

)

 ()
 (16)

This equation uses factorial and is computationally demanding, especially as the

number of elements increase. It is also applied on all levels of the element hierarchy,

thus a trade-off was made by using a greedy algorithm.

A greedy algorithm follows the problem solving heuristic of making the locally optimal

choice at each stage with the hope of finding a global optimum [Cormen, et al., 2009].

As applied to this problem, a greedy strategy does not produce an optimal solution, but

a greedy heuristic may still yield locally optimal solutions that approximate a global

optimal solution. The key is that it may do so in a reasonable amount of time. The

algorithm is outlined in Figure 17.

While the greedy algorithm obtains a very good solution, it doesn’t exhaust all

possibilities and therefore does not guarantee optimum matching. This is due to the fact

that by finding the best match for a particular element and then removing it from the

pool of available elements, the overall similarity could actually be decreased. A slightly

lower initial match could actually result in higher successive ones. However, the

Chapter 4 UMLSimilator

86

algorithm required to guarantee optimum matching would be too computationally

demanding to be feasible, while a heuristic algorithm still provides very good results.

To improve performance, the class similarity module uses caching. This avoids having

to repeat the same calculations over and over. When comparing two classes for the first

time, the result is calculated and stored in a dictionary. Any successive requests are read

straight from the dictionary.

Start

Find highest overall
element match

Calculate overall
similarity

Remove matched
elements

More elements?

Match all available
elements against

each other

No

Yes

Figure 17 - Greedy Algorithm for Comparing Elements

The class similarity module obtains an overall match between two classes by comparing

all elements within the hierarchical structure according to the current weight setting and

using the similarity metrics defined in the previous chapter. The structure created to

Chapter 4 UMLSimilator

87

represent a class is quite extensive and includes even detailed internal structural

features. An alternative approach to this could have been to include only the most

obvious features when measuring similarity. The UMLSimilator therefore allows

individual features and even entire levels of the hierarchy to be excluded from the

similarity calculation process.

Table 6 shows how the similarity between two classes (Bid and bid_tbl) is calculated.

Feature Class Bid Class bid_tbl Similarity Contribution

Inheritance Object Object 100% 7.69%

No. of Implementations 2 2 100% 7.69%

No. of Associations 0 2 0% 0.00%

No of Attributes 3 9 33.33% 2.56%

No. of Constructors 1 2 50% 3.85%

No. of Operations 3 18 16.67% 1.28%

Abstract (class) False False 100% 7.69%

Final (class) False False 100% 7.69%

Visibility (class) Public Public 100% 7.69%

Stereotype None None 100% 7.69%

Overall Attributes 3 attributes matched at 90%,

 90% and 100%

93.33% 7.18%

Overall Constructors 1 constructor matched at 66.67% 66.67% 5.13%

Overall Operations 3 operations matched at 95%,

95% and 100%

96.67% 7.44%

Total 73.58%

Table 6 – Example match between class Bid and class bid_tbl

The example only shows the first level of features. The attributes, constructors and

operations are broken down further into their constituent features. It also uses the same

contribution for each feature. If optimised weights were used, then features would

contribute in different proportions. More on this later in this chapter.

Chapter 4 UMLSimilator

88

4.5 Graph Matching Module

The graph matching module implements the graph matching algorithm first presented in

the previous chapter, to calculate the maximum common subgraph between two given

class diagrams (targetDiagram and sourceDiagram). The implementation of this

algorithm is quite complex and is broken down here into a number of smaller

algorithms, which explain the different steps involved in identifying the maximum

common subgraph. The first step of this process is presented here:

 Figure 18 – Algorithm for Finding Maximum Common Subgraph

FindMaximumCommonSubgraph(targetDiagram, sourceDiagram) :

 mcs Ø

 bestGraphSimilarity 0

 graph Ø

 Class (clt) ∈ Classes WHERE Classes ⊂ targetDiagram

 FORALL Class (clt) IN Classes

 potentialMatches CALL FindMatchingClasses(clt, sourceDiagram)

 FORALL PotentialClass (pcs) IN potentialMatches

 graph CALL FindBestGraph(targetDiagram, sourceDiagram, clt , pcs)

 IF graph ≠ Ø THEN

 graphSimilarity Get match percentage from graph

 IF graphSimilarity > bestGraphSimilarity THEN

 bestGraphSimilarity graphSimilarity

 mcs graph

 ENDIF

 ENDIF

 ENDFOR

 ENDFOR

 RETURN mcs

Chapter 4 UMLSimilator

89

This algorithm ensures that subgraphs are created starting with every combination of

classes from both diagrams. For example, if target diagram contains classes At, Bt and

source diagram As, Bs, Cs, then subgraphs are created starting with the following

combinations {At, As}, {At, Bs}, {At, Cs}, {Bt, As}, {Bt, Bs}, {Bt, Cs}. From this starting

point, subgraphs are generated for every combination and the one that develops into the

maximum common subgraph is selected.

This algorithm makes use of the FindMatchingClasses algorithm, which for a given

class of the target class diagram identifies all of the classes in the source class diagram

to which it could potentially be matched. Whether two classes can be matched is

determined by the minimum class match threshold, which defines the lowest class

similarity considered for allowing two classes to be added to the maximum common

subgraph. The algorithm is defined in Figure 19.

 Figure 19 – Algorithm for Finding Potential Class Matches

FindMatchingClasses(clt, sourceDiagram) :

 matchingClasses Ø

 threshold Current minimum threshold

 Class (cls) ∈ Classes WHERE Classes ⊂ sourceDiagram

 FORALL Class (cls) IN Classes

 classSimilarity Compare Classes (clt ,cls)

 IF classSimilarity >= threshold THEN

 matchingClasses Add cls

 ENDIF

 ENDFOR

 RETURN matchingClasses

Chapter 4 UMLSimilator

90

The actual generation of subgraphs is achieved using the FindBestGraph (Figure 20)

and Match (Figure 21) algorithms. It is important to remember that a node in the graph

consists of a pair of classes which have been matched.

 Figure 20 – Algorithm for Calculating the Maximum Common Subgraph for a Combination of

Classes

The FindBestGraph algorithm creates the first graph which contains as a root node the

target (clt) and source (cls) classes provided. It starts the recursive creation of

subgraphs by passing the first node to the Match algorithm, together with a reference to

the collection of graphs. The recursive algorithm will add to the collection of graphs as

it generates alternative subgraphs. As the Match algorithm is recursive, it will exhaust

all possible combinations of subgraphs, so when it returns control to the FindBestGraph

algorithm, all this has to do is iterate through the collection and identify the best match.

FindBestGraph(targetDiagram, sourceDiagram, clt , cls) :

 mcs Ø

 bestGraphSimilarity 0

 rootNode Create node containing clt and cls

 firstGraph Add rootNode

 graphs Add firstGraph

 CALL Match(graphs, clt, cls, firstGraph)

 FORALL Graph (gi) IN graphs

 graphSimilarity Get match percentage from gi

 IF graphSimilarity > bestGraphSimilarity THEN

 bestGraphSimilarity graphSimilarity

 mcs graph

 ENDIF

 ENDFOR

 RETURN mcs

Chapter 4 UMLSimilator

91

 Figure 21 – Recursive Graph Matching Algorithm

Match(graphs, clt, cls, currentGraph) :

 tempGraph Copy currentGraph

 targetRelations Get all links for clt

 sourceRelations Get all links for cls

 combinations CALL FindCombinations(targetRelations, sourceRelations)

 IF combinations ≠ Ø THEN

 FORALL Combination (cbi) IN combinations

 tRel Get target relation from cbi

 sRel Get source relation from cbi

 IF tRel Is Same Type sRel AND Sim(tRel, sRel) > threshold THEN

 FORALL Graph (gi) IN graphs

 IF tRel ∉ gi AND sRel ∉ gi THEN

 node Create node containing tRel and sRel

 gi Add node

 CALL Match(graphs, clt, cls, gi)

 nodeAdded TRUE

 ELSE

 combinationExists TRUE

 ENDIF

 ENDFOR

 IF NOT nodeAdded AND NOT combinationExists THEN

 newGraph tempGraph

 graphs Add newGraph

 node Create node containing tRel and sRel

 newGraph Add node

 CALL Match(graphs, clt, cls, gi)

 ENDIF

 ENDIF

 ENDFOR

 ENDIF

Chapter 4 UMLSimilator

92

The recursive graph matching algorithm starts by obtaining all possible combinations of

relationships (links) starting from the given classes. Each possible combination is

checked to ensure that the type of relationship matches and that the similarity between

the classes which sit at the end of the relationships is over the established minimum

threshold. If a combination can’t be added to existing graphs and is not already used,

then a new graph is created, which starts from a temporary copy made at the beginning

of the recursive method and this is then built up using the recursive method.

The algorithm for obtaining all possible combinations of relationships between two

classes uses an equation which applies factorial (see (17)).

(

)

 ()
 (17)

where n and k are the sets of relations of a target and a source class. n being whichever

of the two sets is larger.

A class diagram depicting the structure of the graph matching module can be found in

the Appendix 1.

The problem of finding the maximum common induced subgraph of two graphs is NP-

hard [Garey and Johnson, 1987]. This means that while this algorithm works for cases

with relatively small numbers of classes and relationships, if the application were given

more complex cases, the time required to compute them would increase drastically,

making it unfeasible.

The previous section explained that the class similarity calculator module uses caching

of results when measuring similarities between classes. This improves performance as

the combinations of possible matches are high and the same combinations are checked

Chapter 4 UMLSimilator

93

multiple times during class comparisons. The greedy algorithm used to perform matches

(Figure 17) requires exhaustively comparing all features between two elements every

time a best match is removed from the set. While the caching improves performance, it

was found that the amount of comparison results kept in memory were resulting in the

application draining all available memory on the heap (OutOfMemoryException).

Optimisation techniques and analysis using a memory profiler were used to overcome

this problem. Rather than individual objects tracking their own similarities, a set of

static dictionaries were introduced, which are cleared when the algorithm moves

between class diagrams.

4.6 Weight Optimiser Module

The UMLSimilator tool has a module that deals with weight attribution and

optimisation. Every feature of the class diagram is being compared and its similarity

contributes to establish the overall similarity between two classes. The weight

associated with each feature controls the degree to which a feature contributes. The

weight settings are applied at each level of the hierarchical structure representing a

class. It is possible to compare classes in terms of a specific subset of features, e.g. to

determine whether the closest matching class in terms of attributes is also the best

match in terms of methods. The UMLSimilator allows the user to specify what elements

should be taken into account when calculating the similarity between classes. It may not

be possible for a user to easily identify individual weight settings as the process of

comparing two designs is quite abstract and may involve intuition or reasoning that

cannot be easily converted into rules.

Chapter 4 UMLSimilator

94

When experts were asked to put weight settings on individual features, they found it

difficult to abstract how much each feature would contribute to the overall structural

similarity of two classes. It was easier to work with concrete examples and the most

important factors in determining the similarity between class diagrams were the

semantic information and the size/complexity of the designs.

In an attempt to convert an expert’s choice of similarity matches into rules that can be

applied by the UMLSimilator, a genetic algorithm was used to adjust the weights. Two

approaches were introduced in chapter two:

 The expert defines matches between classes from two different diagrams,

assigning each match a value between 0 and 10. The genetic algorithm evolves

the weight settings and retests every new setting. The score of a weight setting is

determined by the classes it matched out of the pairings identified by the expert.

The weight setting with the highest score is adopted.

 The expert is given one diagram and merely identifies the closest match from a

set of diagrams. The genetic algorithm evolves the weight settings and identifies

the setting which gives the highest overall similarity between the two class

diagrams.

The default settings used for the genetic algorithm are shown in Table 7, but these can

be customised in the UMLSimilator tool.

The experiments showed that the number of runs could be kept relatively low, as results

would rarely improve much with a high number of generations. The population size is a

key parameter of a genetic algorithm and the observations confirmed the findings of

Tsoy [Tsoy, 2003], that a large population with fewer runs yields better results than

Chapter 4 UMLSimilator

95

small populations with more runs. If the population is small then it only covers a small

search space and can therefore result in poor performance.

For crossover and mutation rates, the recommendations of De Jong [De Jong, 1975] and

Schaffer et al. [Schaffer, et al., 1989] were followed, who state that crossover rates

should be high and mutation rate should be very low. The mutation rate has to be kept

quite low; otherwise it results in essentially random searches.

Setting Value

Population size 100

Number of runs (generations) 20

Crossover rate 0.7

Mutation rate 0.05

Elitism rate 0.05

Table 7 – Default Settings for Genetic Algorithm

A chromosome in this genetic algorithm represents a set of weights for all features in a

class and its fitness is the overall match achieved when applying these weights. When

chromosomes are created, weights are generated randomly and then normalised to

ensure that groups of weights add up to 1.0. To ensure that the genetic algorithm doesn’t

provide a solution that is worse than the default weight setting, a chromosome with the

default weights is always included in the initial population and elitism ensures that a

small percentage of the fittest chromosomes are automatically included in the next

generation.

The crossover operation uses a single crossover point, which defines the index in the

arrays of weights where the segments should be split. The mutation operation randomly

selects weights, which are then changed to a new random value. This requires a

renormalisation of the weights.

Chapter 4 UMLSimilator

96

The structure of the weight optimiser module can be seen in a class diagram included in

Appendix 1.

4.7 Clustering Module

The clustering module applies agglomerative hierarchical clustering to the set of

retrieved and ranked cases. Using clustering, these are assigned into groups of similar

objects.

The single-link clustering method was first implemented, which merges the clusters

with the smallest minimum distance between any two members of both clusters.

However, single-link clustering is not suitable for isolating poorly separated clusters

and it was found that using this method would result in one massive cluster containing

the large majority of cases and all remaining clusters each containing a single case.

Better results were achieved using average-link clustering, which is generally attributed

to Sokal and Michener [Sokal and Michener, 1958]. This merges the clusters with the

smallest average distance of pairs of objects from both clusters.

This is computationally more demanding, but the number of cases in the case-base is

small enough to warrant the use of this clustering method.

The termination condition used in this work is based on the number of clusters. Thus,

starting with just over one hundred clusters, these are incrementally merged until the

number is reduced to a small set of clusters. According to Mardia et al. [Mardia, et al.,

1980], a good rule of thumb for determining the number of clusters k is:

 √

 (18)

Chapter 4 UMLSimilator

97

where n is the total number of objects. With the current case-base, this rule of thumb

would be 7.1, which was rounded up to 8 clusters to take into account the number of

different assignments in the case-base.

An overview of the clustering module can be found in a class diagram in Appendix 1.

The Cluster class and SimilarityResult class which form part of the clustering module

both implement Comparable interface, but the comparison algorithm was reversed, so

that results would be sorted from the highest to the lowest. This made it possible to

work with sorted sets to achieve the clustering.

4.8 Visualisation Module

The visualisation module was developed to enable easy visualisation of the cases and

comparison results. It is implemented using Windows Presentation Foundation and

XAML and makes it possible to display the cases from the case-base in a class diagram-

like fashion, by displaying the classes and their relationships.

The case-base contains descriptions of class diagram content, but no information about

the graphical layout of a particular diagram. The visualisation module therefore applies

an algorithm based on the square root of the number of classes in a diagram to lay out

the classes evenly distributed. It was found that aligning classes in perfect grids made it

difficult to clearly display the relationships, thus an offset was used to create a more

uneven spread.

Chapter 4 UMLSimilator

98

Figure 22 - Visualising the Maximum Common Subgraph

The ability to visually display a diagram aids in providing a better understanding to a

user of how particular similarity results were obtained by the UMLSimilator tool, as one

could view the diagrams being compared. The users of the system are also more likely

to trust it when the system can explain how it has reached a particular answer [Ye and

Johnson, 1995]. To provide users with an explanation of how results were achieved, the

tool provides a complete breakdown of all similarities between all features of the two

diagrams (see Figure 23).

To further enhance the explanation the system offers, visualisation of the maximum

common subgraph was implemented. Figure 22 shows an example of how the

maximum common subgraph is displayed in UMLSimilator.

Chapter 4 UMLSimilator

99

Figure 23 - Example Similarity Breakdown between Two Class Diagrams

By providing a trace of the reasoning the UMLSimilator has undergone in order to

reach the answer, the system makes the reasoning process transparent to an expert user,

who can use this information to validate the reasoning of the system.

Chapter 4 UMLSimilator

100

4.9 Conclusion

This chapter provided details of how the various algorithms used in this work were

applied in practice.

The case study was outlined, specifying the contents of the case-base, which consists of

just over one hundred class diagrams which were obtained from five programming

assignments of differing levels and technologies. The cases are therefore based on real

software implementations, which made it possible to obtain the implementation cost in

lines of code / numbers of characters and the grade each piece of work was awarded.

The structure of the UMLSimilator tool was presented, outlining the various modules

and their integration.

The reflection process was discussed, which made it possible to reverse-engineer class

diagrams from compiled .NET and Java code. This required the use of Web Services to

integrate the various services required to use reflection with different technologies.

It was demonstrated how the similarity between two classes is measured by breaking

them down into a hierarchical structure of composing elements and applying a greedy

algorithm to find the best matches. While not guaranteeing the best possible solutions,

this provides a near optimal solution, which is still computationally feasible.

The implementation of the graph matching algorithm was sketched out in detail,

showing how the maximum common subgraph is calculated between two class

diagrams. This requires a recursive algorithm, which creates subgraphs of classes above

a specific minimum threshold. While this approach came close to reaching the limit of

where it could be practicably applied, results would be calculated within an acceptable

time limit with even the largest class diagrams in the case base.

Chapter 4 UMLSimilator

101

It was explained how a genetic algorithm was applied in order to optimise the weights

used to establish the similarity between two given classes. In an attempt to extract rules

from experts’ selection of similarity matches, two approaches to weight optimisation,

using a genetic algorithm, were implemented.

Agglomerative hierarchical clustering was applied to all cases in the case-base to

arrange them into groups of similar objects. The method used for merging clusters was

average-link clustering, which performed better with this set of objects than single-link

clustering.

Finally, the visualisation module was presented, which showed how the system can help

explain the results of a class diagram comparison by visually displaying the maximum

common subgraph, the original class diagrams and a complete breakdown of all

similarity matches.

The next chapter will introduce the experiments which were performed in order to

assess the performance of the algorithms and techniques applied in this work, as well as

providing a detailed analysis and evaluation of the results obtained from the

experiments.

Chapter 5 Experiments and Evaluation

102

Chapter 5

5 Experiments and Evaluation

In the previous chapter the UMLSimilator tool was introduced, which was built in order

to evaluate whether effective knowledge retrieval from software design artefacts can be

achieved using case-based reasoning when ignoring semantic information and using

merely the structural one. Here the experiments carried out using the UMLSimilator are

presented, along with an evaluation of the results. The goal is to make an assessment of

the approach and the methodologies used and determine how these can be combined to

obtain the best results. The reasoning mechanisms are tested and complemented with

input from human expert evaluation.

Wherever possible the results of the experiments are compared against those achieved

using alternative approaches. However, most of the experiments can’t be compared

against other tools, as there is no tool with enough similarity to UMLSimilator to enable

comparative tests. Where no comparative results are available, the experiments are

validated against expert opinion or using other means of validation. All experiments

were validated using cross validation, with the exception of cost estimation and

explanation which were validated against expert opinion.

Chapter 5 Experiments and Evaluation

103

5.1 Experiments

The UMLSimilator tool has been implemented in Visual C#.NET using Visual Studio.

The case-base is stored in an Access database. All of the experiments were executed on

the same computer, which was not used for any other work during the execution of the

tests. The system specification of the computer is outlined in Table 8.

Detail Specification

Processor Intel Core i5 CPU 661 @3.33GHz

Installed memory (RAM) 8.00BG

System type 64-bit Operating System

Operating System Windows 7 Enterprise

Table 8 – Test Computer System Specification

The case-base used for the experiments consists of 101 class diagrams obtained from

five different coursework assignments. All of the assignments were implemented using

an object-oriented language (.NET or Java). Using different assignments means that the

cases come from five different domains:

 Software cataloguing application – (assessment at level 6 – high complexity)

 Project management application (assessment at level 6 – high complexity)

 Car repair shop application (assessment at level 5 – low complexity)

 Stock management application (assessment at level 7 – low complexity)

 Project bidding system (assessment at level 6 – high complexity)

The five assessments were from level 5, 6 and 7. As the level 6 assessments were

sourced from an advanced programming course, the complexity of the requirements was

higher than that from level 7.

Of the 101 class diagrams, 17 were implemented in Java and 84 in .NET.

Chapter 5 Experiments and Evaluation

104

The largest class diagram contains 40 classes, the smallest 3 classes and the average

number of classes per class diagram across the entire case-base is 10.75. Each class has

on average 13.06 attributes, 1.08 constructors and 8.76 operations.

The majority of class diagram comparisons executed very fast, with the average being

1.54 seconds. However, more complex diagrams could take a very long time to compute

(up to an hour). Performing a run of all cases using a particular weight setting took

several hours. Thus to keep the user informed of the progress during the lengthy

operations and stay responsive, the UMLSimilator was implemented as a multi-threaded

application. The entire set of 70 runs of experiments required over 184 hours of

processing time to compute, the majority of which was taken up by the graph similarity

calculations.

5.2 Methodology

The UMLSimilator tool automates the algorithms and techniques applied in this

research. To ensure that these are appropriate requires controlled and planned

experiments which test the various aspects of the algorithms and methods implemented

by the software tool.

Extensive tests are carried out which use the structural information encoded in class

diagrams, but ignore the semantic details. A suite of experiments are devised using:

1. Classes only (without graphs)

2. Graphs by calculating the maximum common subgraph

3. Classes only with optimised weights

4. Graphs with optimised weights

Chapter 5 Experiments and Evaluation

105

Comparing class diagrams is an abstract undertaking as there is no established

procedure or approach for determining similarity between class diagrams. This poses

the problem of how the competence of the work can be measured.

One solution applied here is to compare the results obtained from the experiments to

human expert opinion. This is complemented using the software’s ability to explain

results, tracing how a particular result was obtained to reinforce trust in the approach.

Other measures of competence can be obtained by using additional information

available for the cases. The additional information available for the class diagrams in

the case-base includes:

 Domain of a case: The domain of each case is known. For each class diagram,

the system remembers from which of the five different assignments it originated.

Having this information also makes it possible to determine the importance of

provenance to this work, as the source of each case is known.

 Grade achieved: The grade can be regarded as a measure of quality. Although

the grade awarded is generally not based solely on the structural details of a

class diagram, but could include a written report, graphical user interface design,

etc., having this quality indicator still enables an investigation of the correlation

of marks to structural knowledge.

 Cost of implementation: By reverse-engineering real software implementations,

it is possible to obtain the lines of code and number of characters it took to

implement each class diagram.

 Programming Language: The programming language used to implement each

solution is known.

Chapter 5 Experiments and Evaluation

106

To effectively use the above information to discriminate between cases, two methods

are applied, namely cross validation and clustering. Both were applied to determine

whether any of the above information can be identified, based solely on the structural

details of class diagrams.

Cross-validation assesses how the results of the comparisons will generalise to an

independent data set. The type of cross-validation used here is leave-one-out cross-

validation, where a single item from the original sample is used as the validation data

for testing the model and all the remaining items are used as training data. Given that

the case-base is not very large, it was decided to repeat this process for a considerable

amount of cases and apply the leave-one-out cross-validation instead of k-fold cross

validation as it gives more accurate results. Thus, 50% of the cases were randomly

selected from the case-base and used as the training data, one at a time. The sample was

checked and contained diagrams from all five case domains.

Experiments were carried out using one, three and five KNN (k-nearest neighbours).

The cross-validation for each KNN was measured for each set of results (with different

weight settings, with and without graphs, with less weighting criteria, with different

class thresholds). The application of cross-validation was used to evaluate the four

criteria listed above (case domain, grade, implementation cost and programming

language).

An alternative approach to evaluate these criteria is the use of clustering. As single-link

clustering resulted in most clusters having only a single item, average-link clustering

was the technique chosen for this work. Clustering was used in order to validate the

results, whereby clusters of the cases were generated post retrieval and evaluated

against facts which were known, but didn’t form part of the similarity metrics. For

Chapter 5 Experiments and Evaluation

107

instance, clustering was used to determine whether cases were grouped according to the

source, programming language, size or quality of the software designs.

Finally, it was known that two of the assessments in the case-base were found to be

plagiarised. Thus it is possible to check how efficient the approach is at detecting

plagiarism.

5.3 Structural Similarity

The first experiments were carried out using only class structure similarity, using the

similarity metrics outlined in chapter 3.

Running a complete set of comparisons of every class diagram in the case-base against

every other computed quite fast, taking an average of only 0.26 seconds per class

diagram comparison and completing all 5050 comparisons in around 21 minutes.

Taking all groups of k-nearest neighbours together (one, three and five), using only the

structural similarity, the experiments showed that the domain of the target case was

matched in 74.16% of all cases. This means that for the majority of target cases, the

nearest neighbours were selected from the same domain (assessment). Figure 24 shows

a breakdown for all target cases

Chapter 5 Experiments and Evaluation

108

Figure 24 - Percentage of Nearest Neighbours Matching Target Domain

A similar breakdown based on the programming language shows even better results,

with an average of 85.40% of nearest neighbours matching the programming language

of the target case.

Figure 25 - Percentage of Nearest Neighbours Matching Target Programming Language

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51

P
e

rc
e

n
ta

ge
 o

f
C

as
e

s
M

at
ch

in
g

th
e

Ta

rg
e

t
D

o
m

ai
n

Target Cases

Cases Matching Target Domain

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51

P
e

rc
e

n
ta

ge
 o

f
C

as
e

s
M

at
ch

in
g

th
e

Ta

rg
e

t
P

ro
gr

am
m

in
g

La
n

gu
ag

e

Target Cases

Cases Matching Target Programming Language

Chapter 5 Experiments and Evaluation

109

As the number of cases implemented in .NET is much higher (≈84%), it is statistically

more likely that target cases and their nearest neighbours are implemented in the same

programming language. Filtering the data by programming language, it was found that

93.89% of nearest neighbours for .NET target cases were .NET, but for Java it was only

32.06%. However, both of these figures show an improvement over the average (84%

for .NET and 26% for Java).

The remaining two characteristics which can be measured using structural similarity are

the grades and the implementation cost (lines of code/number of characters). These are

numerical values, thus to evaluate how well the nearest neighbours fare, the standard

deviation is calculated. The standard deviation of all cases in the case-base was also

calculated to provide a measure of comparison. For grades, the standard deviation in the

whole case-base is 20.77, while the average standard deviation of nearest neighbours

and their target cases based on structural similarity is 11.57.

Figure 26 - Standard Deviation of Grades for Nearest Neighbours

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
G

ra
d

e
s

Target Cases

Standard Deviation of Grades

Grade Standard Deviation for All Cases

Chapter 5 Experiments and Evaluation

110

As can be seen in the graph above, in the large majority of cases the standard deviation

of grades improved. There is less dispersion from the average, so the grades are closer

together. There are two cases (6 and 18) which are notable higher than the case-base

average. Upon investigating these two cases, it was found that both were unusual, as

they had low complexity (4 and 3 classes respectively), but had achieved very high

grades (80% and 90%).

While the number of characters is a more accurate reflection of the effort it took to

implement a software application, the lines of code are a measurement generally

associated with specifying the size of an implementation. As can be seen in the two

graphs below (Figure 27 and Figure 28), the standard deviation pattern for both is very

similar. The remaining experiments will therefore use the lines of code.

Figure 27 - Standard Deviation of Lines of Code for Nearest Neighbours

The standard deviation for all cases in the case-base was calculated to be 1762.68 and

86204.79 for lines of code and number of characters respectively. For both, the standard

0

500

1000

1500

2000

2500

3000

1 6 11 16 21 26 31 36 41 46 51

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
Li

n
e

s
o

f
C

o
d

e

Target Cases

Standard Deviation of Lines of Code

Lines of Code Standard Deviation for All Cases

Chapter 5 Experiments and Evaluation

111

deviation of the nearest neighbours was much better overall (509.87 and 26499.21) than

the values measured for the entire case-base.

Figure 28 - Standard Deviation of Number of Characters for Nearest Neighbours

The graphs presented this far were showing averages for cases with one, three and five

nearest neighbours (KNN) combined. An analysis of the separate sets revealed that the

best results are achieved across the board when using a single nearest neighbour. The

worse results with five nearest neighbours. The details can be seen in Table 9.

Number of

nearest

neighbours

% matching

target domain

% matching

target

programming

language

Standard

deviation of

grade

Standard

deviation of

lines of code

1 82.35 86.27 7.58 247.80

3 71.90 85.62 12.80 616.67

5 68.24 84.31 14.33 665.12

Table 9 – Average Results for One, Three and Five Nearest Neighbours

0

20000

40000

60000

80000

100000

120000

140000

1 6 11 16 21 26 31 36 41 46 51

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
N

u
m

b
e

r
o

f
C

h
ar

ac
te

rs

Target Cases

Standard Deviation of Number of Characters

Number of Characters Standard Deviation for All Cases

Chapter 5 Experiments and Evaluation

112

These findings suggest that the higher the number of nearest neighbours, the worse the

results. This makes sense, because as the number of nearest neighbours increases, so

does the average distance to the target case. The complete set of charts showing the

performance for one, three and five nearest neighbours can be found in Appendix 2.

5.3.1 Structural Similarity and Provenance

All the previous results have been based on the nearest neighbours selected from the

entire case-base. However, an interesting question is whether the results improve when

the nearest neighbours are only selected from the same domain. Experiments have been

carried out using the provenance of target cases to select cases only from the same

source (assessment/domain). The results are outlined in the Table 10 – Average Results

by Domain . The results are an average of using one, three and five nearest neighbours.

To contextualise the results, the averages achieved without provenance have also been

included.

Domain % matching

target domain

% matching

target

programming

language

Standard

deviation of

grade

Standard

deviation of

lines of code

Software

cataloguing

100 100 10.24 201.86

Project

management

100 100 16.26 1007.66

Car repair shop 100 100 9.15 452.98

Stock

management

100 56.77 13.95 536.60

Project bidding 100 100 11.87 1205.95

No Provenance 74.16 85.40 11.57 509.87

Table 10 – Average Results by Domain

Chapter 5 Experiments and Evaluation

113

Obviously the percentage of cases matching the domain of the target case is 100% and

for four out of five domains the programming language is also 100%, as all of the

assessments were developed using the same technology. In the Stock Management

assignment, students had been given a choice of programming language and solutions

were implemented in .NET or Java.

Figure 29 - Comparison of Nearest Neighbours Matching Target Programming Language With and Without

Provenance

Overall, using provenance shows small improvements, but these are not very

pronounced.

The graph on the previous page (Figure 29) shows the percentages of cases whose

programming language matches that of the target case. For data with provenance, the

target case would select nearest neighbours only from the same domain.

The average without provenance is 85.40% while using provenance increased the

average to 90.68%. The results are similar for the standard deviation of grades and lines

0

20

40

60

80

100

120

0 10 20 30 40 50 60P
e

rc
e

n
ta

ge
 o

f
C

as
e

s
M

at
ch

in
g

th
e

 T
ar

ge
t'

s
P

ro
gr

am
m

in
g

La
n

gu
ag

e

Cases Matching Target Programming Language

Without Provenance With Provenance

Chapter 5 Experiments and Evaluation

114

of code. The overall standard deviation of grades was 11.57 and using provenance

lowered this value very slightly to 11.20 (breakdown in Figure 30). The standard

deviation for lines of code was lowered from 509.87 to 505.69 (breakdown in Figure

31).

Figure 30 - Comparison of Standard Deviation of Grades With and Without Provenance

When using the class structure similarity without graphs, provenance had very little

effect on the results. All results improved overall, but only marginally. The explanation

for this is that cases were grouped by quality or complexity, rather than by domain. For

instance, class diagram of similar quality or implementation cost were matched, but

from across all domains. The next set of experiments will analyse the impact of

applying graph matching.

0

5

10

15

20

25

30

0 10 20 30 40 50 60

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
G

ra
d

e
s

Standard Deviation of Grades

Without Provenance With Provenance

Chapter 5 Experiments and Evaluation

115

Figure 31 - Comparison of Standard Deviation of Lines of Code With and Without Provenance

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
Li

n
e

s
o

f
C

o
d

e

Standard Deviation of Lines of Code

Without Provenance With Provenance

Chapter 5 Experiments and Evaluation

116

5.4 Graph Similarity

The experiments in the previous section were calculating similarity of two class

diagrams based on matching pairs of classes and the overall number of classes in each

diagram (see equation (11) in section 3.5).

However, while the intra-class similarity takes into account the number of links of a

class, the above equation doesn’t explore how classes are connected. The next set of

experiments takes this into account by treating the class diagrams as graphs and

calculating the maximum common subgraph between them. The formula used to

calculate the similarity shown below has been explained in chapter 3.

)().(

)),((

),(

,

2

st

MCS
in

CC
matches

st

st
GcountGcount

CC

GG

st

(19)

The problem of finding the maximum common induced subgraph of two graphs is

known to be NP-hard [Garey and Johnson, 1987]. The implication of this is that the

algorithm doesn’t scale to graphs having large numbers of nodes. Experiments with this

algorithm found that cases with low complexity (small number of classes and

relationships) computed quite fast, many of which computed in less than one second.

With an increase of the complexity of the graphs, however, the time required to

calculate the maximum common subgraph would increase drastically.

5.4.1 Computation Times

An analysis of the execution times clearly showed that the class diagrams with the

largest number of classes would be among those taking longest to compute. However, it

Chapter 5 Experiments and Evaluation

117

is not just the number of classes, but also the number of relationships which influence

the execution time. Even graphs with relatively low numbers of nodes can contain large

numbers of possible graph combinations, if there are many arcs.

Class Diagram
3
 Number of Classes Number of Relationships

Software cataloguing – 3394 17 24

Software cataloguing – 3401 18 21

Software cataloguing – 3418 12 17

Project management – 3425 24 42

Project management – 3433 20 27

Project management – 3435 40 60

Car repair shop – 3460 23 21

Stock management – 3483 9 21

Stock management – 3491 19 38

Project bidding – 3500 28 47

Average across all class diagrams 10.59 13.23

Table 11 – Number of Classes and Relationships for Diagrams Taking Longest to Compute

The time taken to compute the maximum common subgraph is also not dependent

strictly on the number of classes and relationships, but also how they are arranged. For

instance, when analysing the results in Table 11, two class diagrams which appear

peculiar are: Software cataloguing – 3418 and Stock management – 3483. These have

considerably lower number of classes than the remaining class diagrams. The reason

they are involved in lengthy computations is due to the fact that they have similar

distributions of classes and relationships to a very large diagram which could result in

many matching combinations of possible subgraphs. If two diagrams have very

different shapes, there is not much overlap and therefore a reduced set of potential

subgraph combinations to evaluate (e.g. a class diagram arranged in star-shape and

3
 The number following the domain name is a unique identifier which makes it possible to easily

distinguish between class diagrams

Chapter 5 Experiments and Evaluation

118

another as a long line). Both of the two diagrams share a similar layout to subgraphs of

Project management – 3435, which is the largest and most complex class diagram in the

case-base.

Figure 32 - Class Diagrams for 3435 and 3418

While at first sight, the two diagrams may appear very different (see Figure 32), their

maximum common subgraph is actually quite large, encompassing all but one of the

classes from 3418 (Figure 33). 3418 has only got twelve classes, but the maximum

common subgraph between it and 3435 contains eleven out of these twelve classes.

Project management - 3435

Software cataloguing - 3418

Chapter 5 Experiments and Evaluation

119

Figure 33 - Maximum Common Subgraph of 3435 and 3418

Apart from the number of classes and relationships, another factor influencing the time

it takes to compute the maximum common subgraph is the minimum similarity

threshold which must be met by two classes in order for them to be added to the graph.

To measure graph similarity, experiments were carried out using a minimum threshold

of 80%, 60%, 40% and 20%. Obviously, the higher the threshold, the smaller the

maximum common subgraphs and the shorter it takes to compute. Calculating the

maximum common subgraphs between each class diagram in the case-base and all other

class diagrams took just over half an hour with a minimum class similarity threshold of

80%. At 60% it took over two hours and at 40% over four and a half hours to compute.

With a minimum threshold of 20%, it took only 9 seconds longer to compute than 40%,

so the difference was minimal. The reason for this is that very few class matches would

result in similarities of less than 40%.

Chapter 5 Experiments and Evaluation

120

Figure 34 - Execution Times for Measuring Graph Similarity for All Diagrams

The increase in time required to calculate the similarity of complex graphs using the

maximum common subgraph is exponential. While on average each graph would

compute in between 0.38 and 3.1 seconds, depending on the minimum class threshold,

the more complex graphs would take a disproportionate amount of time, with some

requiring around three quarters of an hour to compute. Figure 35 shows the exponential

distribution of computation times, ordered from the lowest to the highest. The curve is

the same regardless of the minimum class threshold. This demonstrates that the current

algorithm could not feasibly be applied if the complexity of class diagrams in the case-

base were to increase.

80 60 40 20

Time 32 135 261 261

0

50

100

150

200

250

300

Ti
m

e
 (

m
in

u
te

s)

Minimum Class Threshold

Computation Time for Graph Matching

Chapter 5 Experiments and Evaluation

121

Figure 35 - Computation Times for Individual Graph Matches

5.4.2 Graph Similarity Results

The graph similarity for all cases was measured by calculating the maximum common

subgraph using different minimum class similarity thresholds. Again, for all graphs the

one, three and five nearest neighbours were obtained. Table 12 shows the average

results.

Minimum

Class

Similarity

Threshold

% matching

target domain

% matching

target

programming

language

Standard

deviation of

grade

Standard

deviation of

lines of code

80% 84.53 90.72 11.00 462.10

60% 85.51 93.16 10.84 470.94

40% 83.63 92.81 10.80 480.92

20% 83.25 92.81 10.79 481.03

Average 84.90 92.37 10.86 473.75

Table 12 – Average Results for Graph Similarity Using Different Minimum Class Similarity Thresholds

0

500

1000

1500

2000

2500

3000

Ti
m

e
 (

se
co

n
d

s)

Graph Comparisons

Computation Time for MCS

80% threshold

60% threshold

40% threshold

20% threshold

Chapter 5 Experiments and Evaluation

122

The results for the various categories differed depending on the threshold configuration.

There was very little difference between the 40% and 20% threshold. The threshold

setting which performed best overall was 60%. It achieved the best results for matching

the target domain and programming language, was only 0.05 worse than the best grade

standard deviation and was second best for the standard deviation of lines of code. It

was the only threshold setting which was better than the average in every single

category. Detailed graphs comparing the different threshold settings can be found in

Appendix 3.

A comparison between the graph similarity experiments and the class structure

similarity experiments discussed in the previous section shows that the graph similarity

performed better in every category overall, but obviously not in every case.

Using graph matching, the average percentage of correctly identified target domains

increased from 74.16%, obtained using class structure similarity, to 85.51%. The

percentage of nearest neighbours with matching programming language also rose from

85.40% to 93.16%. See Figure 36 and Figure 37 for detailed comparisons.

Figure 36 - Comparison of Structural and Graph Similarity for Measuring Matching Domain

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51

P
e

rc
e

n
ta

ge
 o

f
C

as
e

s
M

at
ch

in
g

th
e

Ta

rg
e

t
D

o
m

ai
n

Target Cases

Cases Matching Target Domain (%)

Structural Element Only Similarity Graph Similarity (60% threshold)

Chapter 5 Experiments and Evaluation

123

Figure 37 - Comparison of Structural and Graph Similarity for Measuring Matching Programming Language

The standard deviation for grades and lines of code decreased using graph similarity

from 11.57 and 509.87 to 10.84 and 470.94. For complete breakdowns see Figure 38

and Figure 39.

Figure 38 - Comparison of Structural and Graph Similarity for Measuring Standard Deviation of Grades

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51

P
e

rc
e

n
ta

ge
 o

f
C

as
e

s
M

at
ch

in
g

th
e

 T
ar

ge
t

P
ro

gr
am

m
in

g
La

n
gu

ag
e

Target Cases

Cases Matching Target Programming Language (%)

Structural Element Only Similarity Graph Similarity (60% threshold)

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
G

ra
d

e
s

Target Cases

Standard Deviation of Grades

Structural Element Only Similarity Graph Similarity (60% threshold)

Chapter 5 Experiments and Evaluation

124

Figure 39 - Comparison of Structural and Graph Similarity for Measuring Standard Deviation of Lines of

Code

As with the class structure experiments, the impact of using provenance was measured

by selecting nearest neighbours for graphs only from the same domain.

The identification of cases with matching programming language improved very slightly when using

slightly when using provenance. As can be seen in the graph on the next page (

Figure 40), the standard deviation also improved with the use of provenance, but only

very marginally.

The standard deviation for lines of code, however, deteriorated by using provenance. It

is still better than using structural similarity, but it decreased when compared to graph

similarity without provenance. This shows that selecting cases only from the same

domain doesn’t guarantee that the results will be better in every category.

0

500

1000

1500

2000

2500

3000

1 6 11 16 21 26 31 36 41 46 51

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
Li

n
e

s
o

f
C

o
d

e

Target Cases

Standard Deviation of Lines of Code

Structural Element Only Similarity Graph Similarity (60% threshold)

Chapter 5 Experiments and Evaluation

125

Figure 40 - Comparisons of the Effect of Provenance

A more detailed analysis of the results showed that the domains which performed worse

for standard deviation of lines of code using provenance were the two with the highest

standard deviation in the case-base, namely “Project management” and “Project

89

90

91

92

93

94

Cases Matching Target
Programming Language (%)

Graph Similarity - No Provenance

Graph Similarity - With Provenance

Structural Similarity - With Provenance

10.6

10.7

10.8

10.9

11

11.1

11.2

11.3

Standard Deviation of Grades

Graph Similarity - No Provenance

Graph Similarity - With Provenance

Structural Similarity - With Provenance

450

460

470

480

490

500

510

Standard Deviation of Lines of
Code

Graph Similarity - No Provenance

Graph Similarity - With Provenance

Structural Similarity - With Provenance

Chapter 5 Experiments and Evaluation

126

bidding” (see Table 13). With a widely dispersed set, it is more likely that the standard

deviation of the nearest neighbours is dispersed.

Domain Standard Deviation of Grades Standard Deviation of Lines of Code

Software cataloguing 18.95 713.72

Project management 25.13 2184.33

Car repair shop 20.56 1959.67

Stock management 19.38 1101.73

Project bidding 19.17 2472.90

Overall Average 20.77 1762.68

Table 13 - Standard Deviation of Lines of Code and Grades by Domain

The experiments so far were all using a default weight setting, which meant that every

feature is assumed to contribute equally within its level of the structural hierarchy. The

next set of experiments introduces weight optimisation.

5.5 Weight Optimisation

The similarity metrics introduced in chapter 3 all include coefficients () which

determine the importance of a particular feature. By multiplying a measured similarity

by the corresponding coefficient it is possible to determine to what extent the feature

should contribute to the overall similarity of two classes. As the class structure is broken

down into a hierarchy of features, the coefficients (weights) reflect this hierarchy.

A human expert in software engineering may be able to express what he/she would

consider the most important features in determining similarity between class diagrams.

The first step for weight optimisation was to ask the expert to identify how each feature

should contribute to the overall similarity.

Chapter 5 Experiments and Evaluation

127

Table 14 shows a breakdown of the default weights and the weights determined by the

expert. The default weights simply attribute the same value to each feature within a

particular level of the structural hierarchy.

 Feature Default Weight Expert Determined

Weight

 Final modifier 0.077 0.03

 Visibility modifier 0.077 0.03

 Abstract modifier 0.077 0.05

 Stereotype

(enumeration/interface)

0.077 0.05

 Number of attributes 0.077 0.11

 Number of constructors 0.077 0.08

 Number of operations 0.077 0.15

 Superclass 0.077 0.03

 Number of implementations 0.077 0.06

 Number of associations 0.077 0.2

 Attributes (internal structure) 0.077 0.09

 Constructors (internal structure) 0.077 0.03

 Operations (internal structure) 0.077 0.09

Class Total 1 1

 Data type 0.25 0.4

 Final modifier 0.25 0.1

 Static modifier 0.25 0.2

 Visibility modifier 0.25 0.3

Attribute Total 1 1

 Visibility modifier 0.333 0.15

 Number of parameters 0.333 0.55

 Parameters (internal structure) 0.333 0.3

Constructor Total 1 1

 Visibility modifier 0.125 0.11

 Return type 0.125 0.28

 Final modifier 0.125 0.07

 Static modifier 0.125 0.11

 Abstract modifier 0.125 0.07

 Synchronised modifier 0.125 0.05

 Number of parameters 0.125 0.2

 Parameters (internal structure) 0.125 0.11

Operations Total 1 1

Table 14 – Default and Expert Weights

Chapter 5 Experiments and Evaluation

128

Comparing the results of graph similarity using the default weights and those

determined by the expert show no clear improvements (Figure 41). While the

percentages of matching domains and programming languages fell, the standard

deviation of grades and lines of code improved.

Figure 41 – Comparison of Graph Similarity Results Using Default and Expert Weight Settings

It is interesting to note that better results were achieved when comparing the class

structure similarity (Figure 42), where the only category which didn’t improve was the

standard deviation of lines of code. This suggests that the expert weight setting

performs better when measuring similarities between individual classes, but doesn’t

cater well for the relationships between classes.

83.5

84

84.5

85

85.5

86

86.5

Default Weight
Setting

Expert Weight
Setting

Cases Matching Target Domain
(%)

90.5

91

91.5

92

92.5

93

93.5

Default Weight
Setting

Expert Weight
Setting

Cases Matching Target
Programming Language (%)

10.3

10.4

10.5

10.6

10.7

10.8

10.9

Default Weight
Setting

Expert Weight
Setting

Standard Deviation of Grades

430

440

450

460

470

480

Default Weight
Setting

Expert Weight
Setting

Standard Deviation of Lines of
Code

Chapter 5 Experiments and Evaluation

129

Figure 42 – Comparison of Structural Similarity Results Using Default and Expert Weight Settings

5.5.1 Automated Weight Optimisation

Chapter 3 outlined a different approach to weight optimisation, which automates the

weight optimisation process by training the system to automatically identify the best

weight settings. This is still based on expert knowledge, but rather than asking the

expert to assign the individual weights, the expert works at a higher level of abstraction.

The expert just assigns values from a predefined scale to set desired class matches. The

system uses a genetic algorithm to test a variety of weight settings and selects those

which achieve the highest score.

An important question is to what extent the optimisation of weights can be generalised

and whether a weight setting obtained from a particular set of designs can be applied

72
73
74
75
76
77
78

Default Weight
Setting

Expert Weight
Setting

Cases Matching Target Domain
(%)

84.5
85

85.5
86

86.5
87

87.5

Default Weight
Setting

Expert Weight
Setting

Cases Matching Target
Programming Language (%)

10.6

10.8

11

11.2

11.4

11.6

11.8

Default Weight
Setting

Expert Weight
Setting

Standard Deviation of Grades

505

510

515

520

Default Weight
Setting

Expert Weight
Setting

Standard Deviation of Lines of
Code

Chapter 5 Experiments and Evaluation

130

successfully to other cases. To address this issue, the weight optimisation process was

applied to each of the different domains to create different weight profiles.

The values used to set matches were: 2.5, 5, 7.5 and 10. The expert was asked to set

desired class matches for five pairs of diagrams (one pair per case domain). Details of

the matches defined by the expert can be found in Appendix 4.

Running the genetic algorithms to obtain the highest score did not identify a weight

setting which would create higher scores than those obtained when using the default

weights. While the different weight settings would result in different class similarity

values, the granularity of the differences was not enough to modify the maximum

common subgraph and thereby alter the score.

A variation of this approach was employed, which would still use input from a human

expert to optimise weights, but would identify even small improvements in a weight

setting. The expert was given a class diagram from each domain and asked to identify

the most similar diagrams from a catalogue containing all class diagrams. The genetic

algorithm manipulated and applied different weight settings, adopting the setting which

yielded the highest similarity result. For details of the diagrams that the expert was

given and which were chosen as the best matches, please look at Appendix 5.

Using this method, weight settings were obtained which improved the similarity

between each pair of class diagrams. The complete breakdown of feature weights of all

five weight settings can be found in Appendix 5.

Chapter 5 Experiments and Evaluation

131

A comparison of the results obtained using default weights and those obtained using the

genetic algorithm is shown in Table 15.

Class Diagram

Provided

Class Diagram

Selected by Expert

Similarity using

Default Weights

Highest Similarity

Achieved using

Genetic Algorithm

Software cataloguing

- 3422

Software cataloguing -

3399

53.99% 56.22%

Project Management

- 3427

Project Management -

3434

17.71% 22.23%

Car repair shop -

3453

Car repair shop - 3450 42.45% 47.71%

Stock management -

3488

Stock management -

3489

57.17% 72.06%

Project bidding -

3504

Project bidding - 3506 50.28% 57.56%

Table 15 – Comparison of Class Diagram Graph Similarities between Default and Generated Weights

Having generated five different profiles of weights, each one was applied in turn to

measure similarity between all class diagrams in the case-base. In the first set of

experiments, each weight setting was used on the entire training set of cases. This

means that while a weight profile was optimised for one pair of class diagrams, it would

be applied across the board. The reasoning behind this experiment was to determine

whether weight profiles could be generalised, i.e. whether an optimised weight profile

obtained from a particular experiment would yield good results from across the case-

base. The results of these experiments can be seen in Figure 43, where the default

weight profile and the five profiles obtained from the different domains were applied

across all cases. When taken across the four categories that are being analysed, the

default weight configuration outperformed the automatically generated weight profiles

Chapter 5 Experiments and Evaluation

132

overall, coming top in two of the four categories (cases matching target domain and

standard deviation of lines of code).

Figure 43 – Comparison of Graph Similarity Results Using Default and Generated Weight Settings

79

80

81

82

83

84

85

86

87

Cases Matching Target Domain
(%)

90
90.5

91
91.5

92
92.5

93
93.5

94
94.5

95
95.5

Cases Matching Target
Programming Language(%)

10.2

10.4

10.6

10.8

11

11.2

11.4

Standard Deviation of Grades

440
450
460
470
480
490
500
510
520
530
540

Standard Deviation of Lines of
Code

Chapter 5 Experiments and Evaluation

133

Given that the weight profiles were optimised by increasing the similarity of two class

diagrams from the same domain, the next set of experiments was devised to verify

whether a weight profile could be extended to other cases of the same domain.

Each weight profile was applied to identify the nearest neighbours from only the

domain for which the weight profile was created. Table 16 shows the results of these

experiments and detailed graphs of the comparisons per domain can be found in

Appendix 6. Cases matching the target domain are not shown, as with provenance this

value is always 100%.

Weights Applied Cases Matching

Target

Programming

Language (%)

Standard

Deviation of

Grades

Standard

Deviation of Lines

of Code

Software Cataloguing Domain

Default 100 13.60 170.79

Software cataloguing 100 13.39 160.42

Project Management Domain

Default 100 15.32 1137.36

Project management 100 15.23 1379.73

Car Repair Shop Domain

Default 100 8.82 486.27

Car repair shop 100 9.14 503.99

Stock Management Domain

Default 69.09 9.61 377.84

Stock management 70.10 8.86 387.97

Project Bidding Domain

Default 100 15.12 1185.95

Project bidding 100 14.66 1167.28

Table 16 – Comparison of Class Diagram Graph Similarities between Default and Generated Weights using

Provenance

Chapter 5 Experiments and Evaluation

134

Using the weight profiles did not always improve the results, but the overall picture is

positive, as in over 63% the results improved. The category where the domain weight

profiles performed best was the standard deviation of grades.

A problem with getting the system to automate the weight optimisation process is that

due to the complexity of the model and the large number of parameters involved, it is

prone to overfitting. This is due to the fact that the weights obtained through the genetic

algorithm may describe noise in the form of elements which happen to be the same and

therefore increase the overall match during the optimisation process, but which can’t be

generalised or don’t describe the match in a meaningful way.

5.5.2 Disabling Features

The experiments carried out with weights so far all attempted to modify how similarity

is measured by changing the values of the coefficients of the various features in the

hierarchical structure. A further question considered was whether some of the features

should not contribute to the overall similarity at all.

An expert in software engineering was asked to use expert judgement to identify the

features which should be included in the similarity measurements. The expert identified

the following features as relevant:

 Number of associations

 Number of operations

 Number of constructors

 Return type of operations

 Data type of attributes

 Number of parameters for constructors and operations

 Data types of parameters for constructors and operations

Chapter 5 Experiments and Evaluation

135

Experiments were carried out with all remaining features disabled. An interesting

consequence of measuring the similarity based solely on the above features was that the

overall similarities of class diagrams were lowered dramatically. The sizes of maximum

common subgraphs were also lowered considerably and in some cases the system was

even unable to identify any maximum common subgraphs for some of the class

diagrams using higher minimum class thresholds (80% and 60%).

An investigation into this behaviour revealed that some of the features which were

disabled were found to be identical for the majority of classes in the case-base. These

features include the final and visibility modifiers for classes, synchronised and final

modifiers for operations and the visibility modifier for constructors. Having these

features matched in the majority of cases means that the similarities are increased

overall. To cater for this, the minimum class similarity threshold was lowered to 20%

for the experiments involving a reduced set of weights.

Applying a reduced set of weights didn’t improve the results achieved with a default

weight setting, which were lowered in three out of four categories (see Table 17).

Weights % matching

target domain

% matching

target

programming

language

Standard

deviation of

grade

Standard

deviation of

lines of code

All weights 84.49 92.81 10.79 481.03

Subset of

weights

86.97 91.81 10.80 504.64

Table 17 – Comparison of Results for Graph Similarity Using All and a Subset of Default Weights

When applied to the expert weight profile, however, the results improved in three out of

four categories (see Figure 44). This demonstrates that the weight profile set by the

expert is further improved by the expert not merely identifying the values of each

Chapter 5 Experiments and Evaluation

136

feature’s weight, but also indicating which features should be ignored altogether. The

system identified cases matching the same target domain better and also lowered the

standard deviation for grades and lines of code, despite the fact that restricting the

number of weights resulted in an average drop of 4.56% in the similarity results

calculated between the training data and case-base.

Figure 44 – Comparison of Results for Graph Similarity Using All and a Subset of Expert Weights

The experiments discussed thus far have been based on analysis of the nearest

neighbours retrieved for the training data set. Another way to evaluate the results is by

using clustering.

84.8

84.9

85

85.1

85.2

All Weights Subset of Weights

Cases Matching Target
Domain (%)

85

87

89

91

93

All Weights Subset of Weights

Cases Matching Target
Programming Language (%)

10.55

10.6

10.65

10.7

10.75

All Weights Subset of
Weights

Standard Deviation of Grades

460

464

468

472

All Weights Subset of Weights

Standard Deviation of Lines of
Code

Chapter 5 Experiments and Evaluation

137

5.6 Clustering

Clustering assigns items into groups of similar objects, based on their distances. In this

work, clustering is applied to the ranked cases and used to divide the entire case-base

into a set of clusters. Initial tests with single-link clustering found that this method

resulted in one cluster containing the large majority of all cases and the remaining

clusters containing a single case each. Better results were achieved using average-link

clustering, which merges the clusters with the smallest average distance of pairs of cases

from both clusters. This resulted in a more even distribution of cases across the clusters.

As explained in chapter 4, the number of clusters for each experiment was fixed at 8.

The first set of clusters was created based on structural similarity. This resulted in a

very bipolar distribution of cases, with two large clusters containing 48 and 45 of the

101 cases and the remaining 6 clusters together containing only 8 cases. An analysis of

the clusters revealed that although there were only two relevant clusters, one contained

class diagrams with an average of 3540 lines of code and an average grade of 70.38%,

while the other contained an average of 1887 lines of code and average grade of

53.22%. This suggests that there was a trend to group the higher quality work into one

cluster and the lower quality work into another.

When applied to all cases based on graph similarity the distribution became more even

(Table 18).

While there were still two larger clusters, an analysis of their content showed that

cluster 7 contained 32 of the Car Repair Shop class diagrams and cluster 6 contained 16

of the Software Cataloguing class diagrams. Even with other clusters there was a

tendency to group class diagrams from the same domain. For instance, 70% of cluster 8

was made up of Project Bidding class diagrams.

Chapter 5 Experiments and Evaluation

138

Cluster Structural

Similarity

Only

Graph

Similarity

1 48 9

2 1 3

3 1 3

4 1 2

5 1 6

6 1 23

7 3 45

8 45 10

Table 18 – Number of Items per Cluster for Structural and Graph Similarity

Experiments were then carried out by creating different sets of clusters for each of the

automated weight profiles to determine whether the weight profiles would improve the

clustering of diagrams from the same domain. The results were as follows:

 Software cataloguing weight profile: The largest number of cases from the same

domain in the same cluster dropped from 16 to 11. However, it generated a

cluster of 14 cases which consisted to 79% of Software Cataloguing class

diagrams.

 Project management weight profile: The largest number of cases from the same

domain in the same cluster decreased. A small cluster was created containing

only one case which was not from the Project management domain.

 Car repair shop weight profile: The largest number of cases from the same

domain in the same cluster increased. Created a cluster containing all but one of

the Car repair shop class diagrams.

 Stock management weight profile: The largest number of cases from the same

domain in the same cluster increased and created a cluster consisting to 75% of

Chapter 5 Experiments and Evaluation

139

Stock management class diagrams and which also contained 41.18% of all

diagrams implemented in Java.

 Project bidding weight profile: The largest number of cases from the same

domain in the same cluster increased.

In three out of five cases the largest number of diagrams from the same domain in a

single cluster increased. Even in the two cases where it didn’t, applying the

automatically generated weights for that domain created a more focussed cluster.

The final experiments with clustering were applying the expert weight profile and a

reduced set of features (Figure 45).

For identification of the domain and programming language the expert weight profile

with a reduced set of weights performed best, but this setting was the worse for standard

deviation of lines of code, where the default settings fared better. The standard deviation

of grades was worse for the default weight profile with all weights and very similar for

the remaining three.

There was no clear trend across all four categories and different weight profiles

performed differently in different categories.

Chapter 5 Experiments and Evaluation

140

Figure 45 – Comparison of Clusters for Graph Similarity Using All and a Subset of Default and Expert

Weights

64

66

68

70

72

74

All
Weights
Default

All
Weights
Expert

Subset
Default

Subset
Expert

Cases Matching Target
Domain (%)

74

76

78

80

82

84

86

All
Weights
Default

All
Weights
Expert

Subset
Default

Subset
Expert

Cases Matching Target
Programming Language (%)

0

5

10

15

20

All
Weights
Default

All
Weights
Expert

Subset
Default

Subset
Expert

Standard Deviation of
Grades

1000
1050
1100
1150
1200
1250
1300
1350
1400

All
Weights
Default

All
Weights
Expert

Subset
Default

Subset
Expert

Standard Deviation of Lines
of Code

Chapter 5 Experiments and Evaluation

141

5.7 Plagiarism

The class diagrams in the case-base all represent assignments completed by students.

Two of the assignments from the Software Cataloguing assessment (3397 and 3416)

were known to be plagiarised, as they were submitted for an assessment offence and

found guilty.

The two applications from which the class diagrams were reverse-engineered were very

different in the way the user interface looked and had some differences in the

functionality implemented. The underlying classes had different names and different

structures (Table 19).

Feature 3397 3416

Lines of Code 1179 1050

Number of Characters 40786 35350

Number of classes 8 8

Number of Relationships 10 9

Number of Attributes 56 51

Number of Constructors 9 9

Number of Operations 65 53

Number of Parameters 56 43

Table 19 – Comparison of Plagiarised Class Diagrams

The reason the two assignments were submitted for plagiarism was because some of the

internal implementations of operations were found to be identical. Internal contents of

operations and constructors cannot be obtained through reverse-engineering. This

information is therefore not included in the class diagram structure recorded in the case-

base. The similarity could be measured solely on the class structures and arrangement of

classes.

Chapter 5 Experiments and Evaluation

142

The findings were that out of the 70 sets of experiments, using class structure similarity,

graph similarity, seven different weight profiles and full or reduced set of weights, the

two class diagrams were identified as the closest match in all but 7 cases.

Due to the different weight profiles and types of comparison, the actual similarity

between the two cases varied between 30.01% and 99.7%, with the average being

91.57%. Nonetheless, even in the cases where the two class diagrams were not found as

the highest match for each other, they would always rank between 2
nd

 and 4
th

 closest

match and differ from the highest match by between 2.07% to 8.37%.

This demonstrates that the structural approach is well suited for detecting plagiarism in

class diagram structures. A semantic approach may not have identified matches such as

SQLPersistence and CatalogueComponent or SaveXML_Click and button4_Click. It is

important to note, though, that this is the first stage of a two-stage process. The

approach presented here can do filtering and flag high matches, but this would have to

be verified by a human expert and potentially confirmed through a formal interview of

the student suspected of committing the act of plagiarism.

5.8 Cost Estimation

The most common approaches for software cost estimation are formal estimation

models. COCOMO (COnstructive COst MOdel) is one such model and was established

by Boehm [Boehm, 1981]. It uses function point analysis to compute the application

size, development time and the number of people required for a software development

project. The calculation of the function points requires weight assignment and

establishment of complexity factors which must be carried out by a human expert.

Chapter 5 Experiments and Evaluation

143

To calculate the lines of code required to implement a design, COCOMO uses the

number of use-cases and number of classes in addition to complexity coefficients set by

the expert. However, complexity can also be obtained from the internal structure of

classes and using historical/statistical data. In fact, the formulas applied in COCOMO

were created based on historical and statistical information.

Experiments were carried out in order to evaluate the suitability of measuring structural

similarity between class diagrams to estimate cost and compare the results to

COCOMO.

Five class diagrams were randomly selected (one from each domain). The estimated

lines of code for implementing each diagram were calculated using COCOMO (see

Table 20 for details).

 Software

Cataloguing

- 3419

Project

Management

- 3427

Car Repair

Shop - 3450

Stock

Management

- 3481

Project

Bidding -

3504

Number of use cases 2 6 8 5 3

Use case complexity

coefficient

7 6 4 5 7

Number of classes 10 16 12 11 12

Class complexity

coefficient

13 11 9 10 11

Function points 144 212 140 135 132

Sum of technical

complexity factors

25 25 12 12 24

Adjusted function points 129.6 190.8 107.8 103.95 136.17

Estimated lines of code 3888 5724 3234 3119 4085

Table 20 – Lines of Code Calculation using COCOMO

Once the COCOMO estimates had been calculated, these were compared against the

actual lines of code it took to implement each of the class diagrams (Figure 46).

Chapter 5 Experiments and Evaluation

144

Figure 46 - Comparison of Actual Lines of Code and COCOMO Estimates

In three of the diagrams COCOMO estimates were quite accurate, but two were

considerably higher than the actual implementation. Across all five diagrams the

difference between actual implementation and the COCOMO estimates was 9238.

The COCOMO estimates were then compared to the lines of code obtained using a

nearest neighbour retrieval applying only structural similarity (Figure 47).

The structural similarity estimates performed better than COCOMO for two of the

diagrams (3427 and 3450), but COCOMO was more accurate for the remaining three

(3419, 1481 and 3504). However, even with those three, COCOMO was only

marginally better (127, 380 and 213 lines of code respectively) and the overall

difference between the actual lines of code and those estimated was only 5796.

0

1000

2000

3000

4000

5000

6000

Li
n

e
s

o
f

C
o

d
e

COCOMO vs. Actual Cost

COCOMO

Actual Lines of Code

Chapter 5 Experiments and Evaluation

145

Figure 47 - Comparison of Actual Lines of Code, COCOMO and Structural Similarity Estimates

The next experiments compared COCOMO estimates to those achieved using graph

similarity (Figure 48).

Figure 48 - Comparison of Actual Lines of Code, COCOMO and Graph Similarity Estimate

0

1000

2000

3000

4000

5000

6000

Li
n

e
s

o
f

C
o

d
e

COCOMO vs. Actual Cost vs. Structural

COCOMO

Actual Lines of Code

Structural

0

1000

2000

3000

4000

5000

6000

Li
n

e
s

o
f

C
o

d
e

COCOMO vs. Actual Cost vs. Graph

COCOMO

Actual Lines of Code

Graph Similarity

Chapter 5 Experiments and Evaluation

146

The graph similarity improved the results achieved using only class structure similarity.

The estimates were more accurate than COCOMO for three diagrams (3419, 3427 and

3481) and the total difference of lines of code was further reduced to 4556. It is

interesting to note that graph similarity performed worse than structural similarity for

the Car Repair Shop. This was an assignment at level 5 and less complex, so it would be

simpler and produce solutions based on more basic design skills.

The final set of experiments applied provenance, by choosing only the nearest

neighbours from the same case domain (Figure 49).

Figure 49 - Comparison of Actual Lines of Code, COCOMO and Graph Similarity Estimate using Provenance

By applying provenance, the lines of code are obtained only from cases that are from

the same domain. The results are very similar to those achieved only with graph

similarity, but using provenance improved the results further and COCOMO performed

better in only one instance (3450). The total difference of estimated lines of code and

0

1000

2000

3000

4000

5000

6000

Li
n

e
s

o
f

C
o

d
e

COCOMO vs. Actual Cost vs. Graph (Provenance)

COCOMO

Actual Lines of Code

Graph Similarity (with
Provenance)

Chapter 5 Experiments and Evaluation

147

the actual lines of code was also reduced further to 3766 which is much lower than the

9238 lines of code difference with COCOMO.

In an industrial setting, the provenance approach could be used to discriminate between

development teams, companies, technologies used in a software development project or

even classification by types of applications.

These experiments have demonstrated that it is possible to perform cost estimation of

the implementation of class diagrams by measuring the structural and graph similarity

between the class diagrams. The results are comparable to COCOMO at worst and

better when applying graph similarity and provenance.

5.9 Explanation

Given that there is no established standard or benchmark for measuring similarity

between two class diagrams, it is important for the system to provide an explanation of

how results were achieved.

Case-based reasoning is well-suited for explanation, as it can use retrieved cases in

order to explain prediction. It is based on actual existing cases which can be presented

to support the system’s conclusions. The explanation goals which are most applicable to

this work are transparency and justification.

Transparency requires an explanation of how the system reached a particular answer. In

this case, it needs to convey an understanding to the user of how the system reached a

particular similarity between two given diagrams. While it is important for the system to

allow a user to examine the way it reasons to increase trust, the transparency was also

very important during development to verify whether the reasoning process was

Chapter 5 Experiments and Evaluation

148

correctly implemented. Justification increases the confidence in the solution offered by

the system by providing support for the conclusion it provides.

The reasoning used to obtain a result is remembered by the UMLSimilator system and it

can therefore provide a user with a complete breakdown of how constituent elements

have contributed to reach an overall similarity match. This makes the reasoning process

transparent to a user who wishes to understand how the similarity between classes was

created.

As class diagrams are visual artefacts and the similarity of two class diagrams is also

based on the maximum common subgraph, UMLSimilator further allows a user to view

the maximum common subgraph in order to increase trust in the conclusions of the

system.

Experiments were devised to use explanation to verify whether it would aid trust in the

system. The following steps were taken:

 Experts were asked to guess similarity between given diagrams

 The overall matches calculated by the system were provided and presented

to the experts

 Experts were asked to confirm whether they trusted that the results produced

were correct

 The overall matches were supported by a complete breakdown and the

maximum common subgraph

 Experts were asked to re-confirm trust having seen the explanation outlining

how the results were obtained

Chapter 5 Experiments and Evaluation

149

Details of the expert guesses and the results calculated by the system are shown in Table

21.

Class Diagram 1 Class Diagram 2 Expert 1

Guess

Expert 2

Guess

Measured

Similarity
4

Software cataloguing - 3388 Software cataloguing –

3392

50% 45% 42%

Project management - 3423 Project management –

3432

60% 60% 23%

Car repair shop - 3437 Car repair shop – 3466 70% 55% 51%

Stock management - 3478 Stock management –

3496

50% 45% 36%

Project bidding - 3502 Project bidding - 3506 40% 50% 50%

Table 21 – Expert Similarity Guesses and Similarity Measured by the System

An analysis of the results shows that the guesses of expert 2 were much closer to the

results achieved by the system and were in the same ballpark region, with the exception

of the similarity between 3423 and 3432, where both experts had a much higher figure

than that provided by the system. The reason for the low match of 23% is explained by

the fact that out of the seven possible matches, the maximum common subgraph only

contained four. Matches between these four classes were very high (all over 90%).

Both experts agreed that providing a breakdown of the results and the visualisation of

the maximum common subgraph increased the trust in the system. The low similarity

calculated for 3423 and 3432 came as a surprise and would have been difficult to accept

at face value, so this is where the additional explanation provided was perceived as most

essential – to justify an unexpected result.

4
 Similarity was measured using graph matching and 60% minimum class threshold

Chapter 5 Experiments and Evaluation

150

Both experts were asked to identify on what they based their comparison and while both

agreed that the semantic information was important, expert 2 stated that the overall size

and structure of the class diagrams also played an important role. This could account for

the reason why the predictions of expert 2 matched the similarities calculated by the

system more closely. Expert 1 stated that having a maximum common subgraph where

semantic terms were not matched correctly was a little confusing and that the formula

used for measuring graph similarity could be shown more explicitly. For example class

AddCar had been matched with class addManufacturerFrm and class RequestOrder

was matched with warehouseArgs.

The additional information provided by the system regarding a similarity match

increased the trust of both experts.

5.10 Conclusion

This chapter discussed the various experiments and analysed their outcomes. An

assessment was made of the approach and the methodologies used and results were

evaluated to determine their suitability. Combinations of techniques were also compared

to verify whether they would improve results.

Part of the evaluation was made by comparing results from alternative approaches, but

where necessary experiments were validated against expert opinion.

The setup for the experiments was described, providing details of the technical

environment and of the data used for the experiments.

Chapter 5 Experiments and Evaluation

151

The approach followed in carrying out the experiments was explained, whereby a suite

of extensive tests were devised to test structural similarity, graph matching and using

optimised weighting.

Given that comparing class diagrams is an abstract process, this poses the question of

how the competence of the results could be measured. As additional information was

known about the class diagrams, this data could be used to measure whether the system

identifies information such as the domain from which a case was sourced, the

programming language it was built in, the grade it was attributed or the cost of the

implementation. Furthermore, competence could be measured by comparison to known

alternative methods, such as cost estimation using COCOMO, or through evaluation by

human experts.

The first sets of experiments used only structural similarity, which confirmed that the

target domain and programming language was correctly identified in 74% and 85% of

cases. For grades and lines of code, the standard deviation was used to measure how

focussed the nearest neighbours were – the lower the standard deviation, the better the

results. In addition, the standard deviations of the nearest neighbours were compared to

the standard deviation across the entire case-base and were found to be much lower in

both instances. An analysis of the number of nearest neighbours used revealed that the

lower the number, the better the results.

The impact of choosing cases from the same domain as the target case was verified

(provenance). It was found that overall, this improved results, but only very marginally.

Moving from only class structure similarity to graph similarity, the computation times

increased dramatically. Due to the complexity of calculating the maximum common

Chapter 5 Experiments and Evaluation

152

subgraph, the larger class diagrams came close to the limit of execution times

considered acceptable for this research.

Graph similarity was measured using minimum thresholds of 20%, 40%, 60% and 80%,

with the best overall results achieved using 60%. The results improved in every

category over structural similarity. Using provenance improved the matching

programming language and standard deviation for grades, but the standard deviation for

lines of code deteriorated.

Many experiments with weight optimisation were carried out. Using weights

determined by an expert didn’t show a clear improvement with graph similarities, but

interestingly improved the class structure results.

Using genetic algorithms and scoring of class matches did not work, so an alternative

approach was taken which required an expert to identify the closest match for a given

diagram from the same domain. The genetic algorithm would then run experiments with

different weights and select the one giving the highest results. The weight profiles

obtained using this technique, were first applied across the entire case-base, where they

yielded poorer results than the default weights. However, when each weight profile was

applied only to cases from its domain, the results improved in over 63% of cases.

Further experiments with weighting were using only a subset of features determined by

an expert. The results using default weights were lowered, but when combined with the

expert’s weight profile, the results improved in three out of four categories.

Clustering was applied to further validate the results. The entire case-base was clustered

into eight groups. Clustering showed that clusters generally had a motive. With class

structure similarity the majority of cases were split between two clusters where one

seemed to contain the class diagrams with higher lines of code and higher grades.

Chapter 5 Experiments and Evaluation

153

Clusters based on graph similarity were more evenly distributed and were much better

at grouping class diagrams from the same domain. This was improved further within

domains when using the weight profiles for each of the domains. Using subsets of

weights showed no clear trends, improving in some categories, while declining in

others.

A known case of plagiarism from the cases in the case-base made it possible to test the

suitability of the system to detect plagiarised class diagrams which had been modified to

avoid detection. The results were very good, with the plagiarised cases being paired as

the highest matches in 90% of all the experiments.

A comparison between COCOMO and the system showed that while COCOMO was

comparable to results obtained using class structure similarity, when applying graph

similarity and especially graph similarity with provenance, UMLSimilator achieved

better results with these cases than COCOMO.

Finally, a set of experiments were devised to check whether the system’s ability to

provide explanation would improve user’s trust in its results and reasoning process. This

was found to be the case, in particular with a case where the results provided by the

system were unexpected.

The next chapter concludes the thesis by outlining the main contributions of this

research and discussing potential future directions in which it could evolve.

Chapter 6 Conclusion

154

Chapter 6

6 Conclusion

The results presented in the preceding chapter make it clear that it is possible to retrieve

knowledge from class diagrams by applying case-based reasoning and using only

structural information.

This chapter will outline the main contributions of this work and look at issues arising

from it, as well as proposing how this research could be projected forward. To start

with, the research objectives are presented to determine whether these have been met.

The results of the experiments are summarised and the main contributions of this work

highlighted. Finally, ideas of how this research can evolve further, but which are outside

the scope of this work, are presented.

6.1 Review of Research Objectives

Software designs are an integral part of current software development. They depict the

structure and distribution of responsibility within a planned software application. A

software design captures functional and non-functional requirements, but there is no

exact method dictating how these are translated into a design. Thus, there are many

different shapes a software design can take, even if the requirements are well-

established. A sound design would enable the creation of reusable modules, manageable

and intelligible code and code which is maintainable, flexible and extendible. The

design is therefore important for a developer as it guides the creation of the software

artefact, but as it reflects the structure of the software artefact, it encodes information

that can be used for other purposes. It conveys the complexity of a software application

Chapter 6 Conclusion

155

and describes the domain of the application by depicting its concepts and how they

relate. Concepts in the design are expressed through their structure, but also through the

semantic tags used to name the classes and their constituent elements. While the

semantic information is very important to facilitate human understanding, it is of no

relevance to the runtime behaviour of the implemented application, which is determined

solely by the structure of the code constructs. This suggests that the structural

information is clearly significant and embodies knowledge about a software application.

Automatically retrieving knowledge from software designs in the absence of semantic

information has been the focus of this work.

A software design can be contextualised by comparing it to other designs, which is

especially important when semantic information is not taken into consideration. The

comparison of software designs is an abstract undertaking and no existing standard or

benchmark exists for achieving it. In order to compare two class diagrams using

structural similarity requires reducing them to hierarchical structures. Case-based

reasoning is a good methodology to apply in this case, as it can contextualise design

diagrams through their nearest neighbours. The target case is placed into context based

on the cases that are found to be most similar.

Structural similarity between software diagrams is useful in domains where the structure

is more important than the semantic information, such as cost estimation and plagiarism

detection. With the availability of additional information about designs, one can also

attempt to determine properties of an implementation such as the quality, its domain and

the programming language in which it was implemented.

Chapter 6 Conclusion

156

Chapter 1 defined the aim of the research as being summarised in the following

question:

 Is it possible to effectively retrieve knowledge from structural software

engineering artefacts?

This was then broken down into more specific aims:

 In the absence of semantic information, is it possible to extract meaningful

knowledge merely from the structural information, and can this retrieval process

be automated?

 Can case-based reasoning be applied to software designs to identify software

systems from the same domain based on their structure?

 Can structural similarity and case-based reasoning be combined to estimate

software development cost?

 A user’s trust in an automated system is reinforced if the system provides

explanation of the results it provides. A system which applies case-based

reasoning, measures similarities of cases to reach a result, which makes it even

more important to provide explanation. Thus a further aim of the research is for

the developed system to explain why it reached a particular result.

The results of the experiments validate the conclusions that it is possible to retrieve

meaningful knowledge from class diagrams even when semantic information is

removed. A software application was developed to automate this process by

implementing the proposed algorithms and procedures. With an automated process, a

user’s trust is reinforced if the system can provide an explanation of how the results

were achieved, so this functionality was included in the system.

Chapter 6 Conclusion

157

Controlled and planned experiments were carried out to test the various algorithms and

methods. Cross-validation was applied to reinforce confidence in the results.

6.2 Conclusions from the Experiments

The research experiments have provided results which demonstrate that it is possible to

retrieve knowledge from class diagrams based only on their structural information.

Some of the techniques and approaches employed have been more successful than

others, but overall the results achieved have been positive.

Experiments were carried out on 101 class diagrams obtained from five different

coursework assignments, resulting in a varied case-base containing cases from five

domains. A suite of experiments were devised to evaluate which techniques would

provide efficient solutions. The experiments used:

1. Classes only (without graphs)

2. Graphs by calculating the maximum common subgraph

3. Classes only with optimised weights

4. Graphs with optimised weights

Validation of the results was achieved by carrying out cross-validation to measure the

accuracy of each technique or combination of techniques in detecting the domain of a

case, the implementation programming language, grade achieved and lines of code.

Clustering was also used to further validate the results. Regarding cost estimation, the

results were compared to COCOMO. Wherever necessary, input from human experts

was used to aid validation.

Chapter 6 Conclusion

158

6.2.1 Structural Similarity

Experiments using structural similarity were applying similarity metrics comparing the

internal structure of classes, taking into consideration the number of relationships of a

class, but not the actual distribution of classes (where the relationships lead).

The results obtained using the class similarity metrics were all better than the case-base

average. The target domain was matched in 74.16% of cases and the programming

language in 85.40% of cases.

To measure how well the case-based reasoning system predicts the quality of a given

target case, the standard deviation of grades for all class diagrams was calculated to be

20.77. Using structural similarity, the average standard deviation for all target cases was

reduced considerably to 11.57. The standard deviation for lines of code improved even

more. The case-base average being 1762.68 and the average result measured from the

nearest neighbours of all target cases measuring only 509.87.

These findings showed clearly that the structural similarity performed much better in

predicting values in these categories than the case-base averages.

Further experiments combined the structural similarity metrics with provenance, by

selecting only nearest neighbours from the same domain as the target case. This

improved results even further across all categories, but only marginally - the detection

of the programming language improved by 5.28%, the standard deviations of grades and

lines of code improved by 3.2% and 0.82%.

6.2.2 Graph Similarity

The intra-class similarity was combined with graph matching. A maximum common

subgraph algorithm was applied. This approach treated class diagrams as graphs and

calculated the largest isomorphic subgraph between two given diagrams. Being an NP-

Chapter 6 Conclusion

159

hard problem, the graph similarity algorithm stretched the UMLSimilator software tool

to the limit of acceptable computation times as these increased drastically with large

class diagrams. Comparing two larger class diagrams could take up to 45 minutes and

over 184 hours of execution time was required just for performing similarity

measurements across the various experiments.

A minimum class match threshold was used with the graph matching algorithm and

experiments were carried out with 80%, 60%, 40% and 20% values. The best results

were achieved with a 60% threshold.

The combination of intra-class similarity and the maximum common subgraph

improved the results across the board.

 % matching

target domain

% matching

target

programming

language

Standard

deviation of

grade

Standard

deviation of

lines of code

Structural

Similarity

74.16 85.40 11.57 509.87

Graph

Similarity
5

85.51 93.16 10.84 470.94

Table 22 – Comparison of Structural and Graph Similarity Results

Provenance was applied again, but with graph similarity the results were not conclusive.

While some of the results improved, others deteriorated and no clear overall

improvement was achieved by limiting cases to the same domain.

5
 Minimum Class Similarity Threshold set to 60%

Chapter 6 Conclusion

160

6.2.3 Weight Optimisation

Every feature in the hierarchical class structure has an associated coefficient, which

makes it possible to control the degree to which it will contribute to the overall class

similarity. The first set of experiments with weighting applied coefficients determined

by a human expert. Using these didn’t show a clear improvement with graph

similarities, but interestingly improved the class structure results, where all but the

standard deviation of lines of code were better than using default weighting. This

suggests that the expert weight setting performs better when measuring similarities

between individual classes, but doesn’t cater for the relationships between classes. This

could be explained by the fact that the weight setting influences primarily the class

similarity metrics and not the formula used to calculate similarity between graphs.

In an attempt to automate the weight optimisation process, an expert’s judgement was

used to identify desired/undesired class matches. This works at a level of abstraction

which is higher than individual coefficients. A genetic algorithm was applied to test and

evolve weight settings and adopt the weight profile with the highest score.

Unfortunately the scoring of class matches did not work, as it found no higher scores

than those achieved with default weights. The granularity of differences achieved by

changing weights was enough to change the similarity matches between individual

classes, but did not change these values sufficiently to considerably alter the maximum

common subgraphs and thereby changing the scores.

Due to the shortcomings of the above scoring approach, an alternative method was used

which required an expert to identify the closest match for a given diagram from the

same domain. This worked at an even higher level of abstraction, as the expert didn’t

have to match individual classes. The genetic algorithm ran experiments with different

weights and selected the setting giving the highest overall class diagram similarity for

Chapter 6 Conclusion

161

the two selected class diagrams. The weight profiles obtained using this technique, were

first applied across the entire case-base, where they yielded poorer results overall than

the default weights and no domain weight profile stood out as being particularly good.

The picture changed, however, when each weight profile was applied only to cases from

its own domain, the results improved in over 63% of cases.

The final experiments with weighting applied only a subset of features determined by an

expert. All features not identified by the expert were disabled and excluded from the

similarity metric. Applying a subset of weights to the default setting lowered results in

three out of four categories, but when combined with the expert’s weight profile, this

picture was reversed with results improving in three out of four categories.

Overall, the weight optimisation did not have as much of a positive impact as initially

expected. Domain weight profiles improved only within domains, and only marginally.

A reduction of the number of weights applied yielded better results when applied to the

expert weight setting, but they were only minor improvements.

6.2.4 Clustering

Clustering was applied to further validate the results. Having exhaustively calculated

the similarity of every class diagram and all other diagrams in the entire case-base, all

cases were assigned into eight clusters using average-link clustering. To begin with, the

clustering algorithm was used with class structure similarity, which produced two main

clusters. An analysis of the clusters revealed that these appeared to have been split

according to quality. One cluster contained primarily class diagrams which had received

a very good grade (70.38% average) and whose implementations were on average

almost twice as large (3540 vs. 1887 lines of code).

Chapter 6 Conclusion

162

Clusters based on graph similarity were more evenly distributed and class diagrams

from the same domain were better grouped. This was improved further within domains

when using the weight profiles for each of the domains, creating larger clusters of cases

from the corresponding domain or creating more focused clusters.

6.2.5 Plagiarism

An area in which the structural similarity may be considered more important than

semantic similarity is plagiarism detection. A person copying someone else’s design or

code may deliberately change the semantic tags in a class diagram or software

implementation in order to avoid detection. He/she may also move elements around to

change the order of attributes or operations. While this may avoid detection by a human,

the similarity metrics are immune to some of these types of changes.

All cases in the case-based were reverse-engineered from real coursework assignment

submissions and it was known that two of these had been found guilty of plagiarism.

The two submissions were not identical and had been altered to be slightly different.

They also included parts which were dissimilar altogether. This permitted validation of

the suitability of this approach to plagiarism detection. The results were very good, with

the plagiarised cases being paired as the highest matches in 90% of all 70 sets of

experiments, even if the actual similarity measured between them fluctuated between

30.01% and 99.7%, depending on the type of experiment. These findings are very

promising, but to fully evaluate the suitability of this approach for plagiarism detection,

further experiments should be carried out, as the results obtained in this research are

based solely on the two assignments which were known to be plagiarised.

Chapter 6 Conclusion

163

6.2.6 Cost Estimation

In software development, the most common approaches for cost estimation are formal

estimation models, such as COCOMO. The approach to cost estimation using case-

based reasoning and nearest neighbour retrieval based on structural and graph similarity

applied in this work was compared to estimated implementation effort obtained through

COCOMO. The results were validated against the actual implementation cost.

The initial set of experiments used the class structure similarity, which showed that

while the total difference between the actual lines of code and the estimated value was

much lower, COCOMO performed slightly better overall – in 60% of cases.

Using graph similarity the results were reversed, with the UMLSimilator system

performing better in 60% of cases. The total difference between the actual lines of code

and the estimated value was reduced further.

Method Difference

between Actual

and Estimated

Lines of Code

COCOMO 9238

Structural Similarity 5796

Graph Similarity
6
 4556

Graph Similarity
7
 using Provenance 3766

Table 23 – Comparison of the Overall Difference between Actual and Estimated Implementation Cost

In an industrial setting, the weight assignment and establishment of complexity factors

by a human expert is adjusted to the environment in which the development project will

be carried out, along with other external factors. These factors could include the

6
 Minimum Class Similarity Threshold set to 60%

7
 Minimum Class Similarity Threshold set to 60%

Chapter 6 Conclusion

164

experience of the development team, the technical resources available and whether

similar projects have been carried out in the past. An estimate which is correct for one

setting or company may not be appropriate for another. Similarly, obtaining cases only

from the same domain as the target case would ensure that the results would originate

from a similar environment. The final set of experiments therefore compared COCOMO

to estimates obtained using graph similarity matching and provenance, which improved

results even further, with 80% being more accurate than COCOMO.

As is evident from Table 23, the approach used in this research for estimating cost

performed better than COCOMO with these cases.

6.2.7 Explanation

There is no established standard or benchmark for measuring similarity between two

class diagrams. This work proposed a set of similarity metrics to determine the

similarity, but these may not be clear to a human expert who is presented with similarity

matches expressed in percentages. To ensure that a user trusts the results produced by

the system requires that it explains the results by clarifying how they were calculated.

The UMLSimilator tool provides explanation by offering a complete breakdown of all

similarity matches within the hierarchical structure, as well as visually displaying the

maximum common subgraph between class diagrams.

A set of experiments were devised which asked experts to estimate the similarity

between given diagrams and relate their estimates to those produced by the system.

They were asked to confirm their trust in the results before and after seeing the

accompanying explanations and the outcome was that trust increased in all instances –

especially in those where the result provided by the system differed substantially from

their own estimates.

Chapter 6 Conclusion

165

6.3 Contribution to Knowledge

There is an intrinsic relationship between software designs and their code

implementation. However, the modular nature of object-oriented programming

languages, combined with the variations of language constructs available in modern

programming languages signifies that there are numerous ways of designing a specified

application and even more ways of implementing a particular design. It is not possible

to deduct a software product’s exact functionality from its design. Yet, a software

design is an abstract representation of a software product and, in the case of a class

diagram, it contains information about its structure. The main aim of this research was

to determine whether knowledge can be effectively retrieved from software designs

using only structural information. This research has demonstrated that it can be

achieved by applying case-based reasoning and graph matching.

The main contributions of this work are:

 A CBR framework for the retrieval of knowledge from class diagrams using

only structural information. The approach of measuring similarity of hierarchical

structures and graph matching could be abstracted and applied in other domains

 A mechanism for identifying software solutions which came from the same

domain, of the same programming language or of similar quality or size by

applying a graph matching algorithm

 A technique for estimating implementation cost of a new software product based

on its design and an existing catalogue of software designs

 An approach for increasing users’ confidence in automatic class diagram

matching by providing explanation

 A software tool for automating the retrieval of knowledge using the framework

and techniques described above

Chapter 6 Conclusion

166

There are several areas of research which are relevant to this work and by placing this

research into context of related work, it has been demonstrated that the research

question is of value to the research community.

The findings related to cost estimation and plagiarism detection have shown that the

technique applied here can contribute to industry and academia alike in obtaining

solutions from class diagrams where semantic information is lacking.

6.4 Further Work

The work presented in this thesis combined a number of techniques and methodologies

to improve the knowledge retrieval from class diagrams using structural information.

During this work a number of issues were encountered, some of which were addressed

as they were within the scope of this research, others however, were left for future work.

There were also weaknesses which were tackled by this work, but which would benefit

from further dedicated research. Some of the findings resulting from this work have also

raised interesting new ideas of how this work could be taken further.

There are numerous directions in which this research could evolve, some of which are

presented in the following subsections.

6.4.1 Structural and Semantic Similarity

The use of semantic information to determine the similarity between two class diagrams

has been successfully applied by Gomes et al. [Gomes, et al., 2007] and Robles et al.

[Robles, et al., 2012]. The work by Gomes et al. did involve some structural information

to determine class complexity, which counted the number of methods and attributes.

However, it does not go into the same depth of structural information or use of graphs.

Chapter 6 Conclusion

167

The importance of semantic information has been highlighted not only in other research,

but it was also reinforced by the findings of this work. In order to improve the results

achieved here, one should use a hybrid approach which combines the semantic and

structural approach. Through the use of coefficients, the contribution of semantics and

structure could be balanced.

6.4.2 Stereotyping

Within class diagrams certain types of classes occur numerous times and could be

defined using stereotypes, thus creating categories of types which could further define

particular classes. Examples of these include user interfaces, web services,

events/delegates, exceptions, roles within a design pattern, communication classes,

database handlers, etc.

Assigning classes particular stereotypes or trying to automatically determine stereotypes

would aid in the comparison process, as only classes of the same stereotype would be

matched. The overall similarity between class diagrams could also take into

consideration the total number of matched stereotypes. The stereotypes are not

dependent on the semantic tags or the structure, but define the kind of class.

6.4.3 Design Pattern Library

Design patterns are often encoded using general UML class diagrams. Although these

also use semantics to tag the different elements of the design pattern, the more

important aspect is generally the structure. By creating a library of design pattern

structures, it would be possible to identify design patterns in existing software designs

and tag graphs with patterns.

Chapter 6 Conclusion

168

A design pattern is a solution to a commonly occurring problem, so by identifying a

design pattern, one would know more about the application – such as, what type of

application it is or something specific the application does.

It would also be interesting to investigate the classification and detection of design

patterns within a particular domain.

An interesting twist of the idea of a design pattern library would be to research the

possibility of automated identification of new design patterns, which could be fed back

into the case-base.

6.4.4 Behavioural UML Diagrams

Within object-oriented development, software design is most commonly used to

represent static structures. However, a design may not consist solely of a static model,

but combine a number of different aspects of a software application or system using a

range of appropriate diagrams, such as use case, state or interaction diagrams.

Observing the interaction of elements within a software design may also be important,

due to difference in object granularity. Different software designers have different styles

and practices, which could result in applications or systems designed for the same

purpose having a considerably different number of objects, due to the designer’s

personal perception of object granularity. However, it is possible that the messages sent

between objects show similarities of designs, which are not structurally similar.

A key issue is that a set of UML diagrams depicting a piece of software are related and

complement each other. For instance, an interaction diagram should represent a

particular use-case, but using elements and relationships from the class diagram. This

makes is possible to treat a set of related diagrams as a unit representing a piece of

software which can be compared to others.

Chapter 6 Conclusion

169

Further research could be extended to state transition, collaboration/sequence and use-

case diagrams individually, as well as combinations of diagrams.

6.4.5 Case-Base Maintenance

From the various phases of the case-based reasoning process, the emphasis of this

research has been on the ranking. Little consideration has been given to adaptation and

retention of new cases. However, it is natural for a case-base to evolve, so case-base

maintenance would need to be considered.

Related to case-base maintenance is the idea of assisted automatic re-engineering. When

implementing a new software product, a rough structure of a class diagram would be

designed. This would be fed into the CBR system as a new problem; the most similar

designs would be retrieved and one of these could be adapted and re-engineered to fit

the requirements of the current problem. This process would require assistance from a

human expert.

6.4.6 Performance Improvements

The approach for measuring class diagram similarity presented in this thesis employs

methods which are computationally demanding. Exhaustive matching algorithms are

used, as well as a recursive algorithm for calculating the maximum common subgraph.

While these techniques worked with the current case-base, it was reaching the limit of

where it could still be computed within an acceptable amount of time. If one were to

increase the case-base significantly or include more complex cases, the current

algorithms would need to be optimised to increase performance.

The major hurdle to performance is computing the maximum common subgraph, so an

optimisation of this graph matching algorithm would be the best starting point. One

could determine the applicability of alternative graph matching algorithms, such as

Chapter 6 Conclusion

170

those discussed in the literature review. Another approach would be find the maximum

clique as has been applied to molecule matching in the Durand-Pasari algorithm

[Durand, et al., 1999] or other approaches to graph matching optimisation (for example

the algorithm outlined by [Wang and Maple, 2005]).

If the case-base were to increase significantly, an appropriate indexing mechanism

would also have to be introduced.

Finally, it would be valuable to field test the method for cost estimation presented in

this work in a commercial setting.

References

171

7 References

[Aamodt and Plaza, 1994] Aamodt, A. Plaza, E. (1994) Case-Based Reasoning:

Foundational Issues, Methodological Variations, and System Approaches, AI

Communications, Volume 7, Issue 1, pp. 39-59, IOS Press

[Abran and Moore, 2004] Abran, A. Moore, J. (2004) Guide to the Software

Engineering Body of Knowledge, IEEE Computer Society

[Abreu and Melo, 1996] Abreu, F. Melo, W. (1996) Evaluating the Impact of

Object-Oriented Design on Software Quality, Proceedings of the 3
rd

 International

Symposium on Software Metrics: From Measurement to Empirical Results.

METRICS. IEEE Computer Society, Washington, DC, 90

[Alexander, et al., 1977] Alexander, C. Ishikawa, S. Silverstein, M. Jacobson, M.

Fiksdahl-King, I. Angel, S. (1977) A Pattern Language, Oxford University Press,

New York

[Alnusair and Zhao, 2009] Alnusair, A. Zhao, T. (2009) Towards a model-driven

approach for reverse engineering design patterns, in Proc. International Workshop

on Transforming and Weaving Ontologies in MDE (TWOMDE’09) at MoDELS’09,

Oct. 2009

[Alnusair and Zhao, 2010] Alnusair, A. Zhao, T. (2010) Using Semantic Inference

for Software Understanding and Design Recovery. Seventh International

Conference on Information Technology: New Generations (ITNG), pp.980-985

[Andreou and Papatheocharous, 2008] Andreou, A. S. Papatheocharous, E. (2008)

Software Cost Estimation using Fuzzy Decision Trees. In Proceedings of the 2008

23rd IEEE/ACM international Conference on Automated Software Engineering,

Automated Software Engineering. IEEE Computer Society, pp. 371-374,

Washington, DC

[Aron, 1970] Aron, J. D. (1970) Estimating Resources for Large Programming

Systems. In Software Engineering Techniques, NATO Conference Report, Rome,

October 1969, pp. 68-84

[Auwatanamongkol, 2005] Auwatanamongkol, S. (2005) Inexact pattern matching

using genetic algorithm. In Proceedings of the 2005 Conference on Genetic and

Evolutionary Computation, pp. 1567-1568, GECCO '05. ACM, New York, NY

[Bai, et al., 2011] Bai, L. Liang, K. Dang, C. Cao, F. (2011) A novel attribute

weighting algorithm for clustering high-dimensional categorical data, Pattern

Recognition, Volume 44, Issue 12, December 2011, pp. 2843-2861

References

172

[Bareiss, 1988] Bareiss, R. (1988) PROTOS: A Unified Approach to Concept

Representation, Classification and Learning. Technical report CS 88-83, University

of Texas at Austin, Dep. of Computer Science, Nashville, TN

[Barletta and Mark, 1988] Barletta, R. Mark, W. (1988) Explanation-Based

Indexing of Cases. In Proceedings of the Seventh National Conference on Artificial

Intelligence. Palo Alto, CA

[Baxter and Mehlich, 1997] Baxter, I. D. Mehlich, M. (1997) Reverse engineering is

reverse forward engineering, Proceedings of the Fourth Working Conference

on Reverse Engineering, pp.104-113, 6-8 Oct

[Beck, et al., 2001] Beck, K. et al. (2001) Manifesto for Agile Software

Development, Agile Alliance

[Beddoe and Petrovic, 2006] Beddoe, G. Petrovic, S. (2006) Determining feature

weights using a genetic algorithm in a case-based reasoning approach to personnel

rostering. European Journal of Operational Research, Vol. 175, Issue 2, pp. 649-

671.

[Bergmann, 2002] Bergmann, R. (2002) Experience Management: Foundations,

Development Methodology, and Internet-Based Applications. Berlin: Springer

[Bergmann and Stahl, 1998] Bergmann R., Stahl, A. (1998) Similarity Measures for

Object-Oriented Case Representations, in 4th European Conference on Case-Based

Reasoning, Springer, 1998

[Bergmann, et al., 2005] Bergmann, R. Kolodner, J. Plaza, E. (2005) Representation

in case-based reasoning. Knowledge Engineering Review Vol. 20, Issue 3, 209-213,

Cambridge University Press, UK

[Bjornestad, 2003] Bjornestad, S. (2003) Analogical Reasoning for Reuse of Object-

Oriented Specifications, in Proceedings of the 5th International Conference on Case-

Based Reasoning (ICCBR’03)

[Boehm, 1981]Boehm, B. (1981) Software Engineering Economics, Englewood

Cliffs, N.J.

[Boehm, et al., 2000a] Boehm, B. Abts, C. Chulani, S. (2000) Software

Development Cost Estimation Approaches – A Survey. Technical Report 2000-505,

Uni. of California and IBM Research, Los Angeles, USA

[Boehm, et al., 2000b] Boehm, B. Abts, C. Brown, A. W. Chulani, S. Clark, B. K.

Horowitz, E. Madachy, R. Reifer, D. J. Steece, B. (2000) Software Cost Estimation

with COCOMO II, Englewood Cliffs, NJ:Prentice-Hall

References

173

[Booch, 2007] Booch, G. (2007) Object-Oriented Analysis and Design with

Applications, Addison-Wesley Professional

[Briand, Wieczorek, 2002] Briand, L. Wieczorek, I (2002) Resource Estimation in

Software Engineering, Encyclopedia of Software Engineering, J. J. Marcinak. New

York, John Wiley & Sons: 1160-1196

[Champin and Solnon, 2003] Champin, P. Solnon, C. (2003) Measuring the

Similarity of Labeled Graphs, Lecture Notes in Computer Science, Volume 2689,

pp. 1066-1067, Springer Berlin / Heidelberg, Germany

[Chartrand, et al., 1989] Chartrand, G. Oellermann, O. Saba, F. Zou, H. (1989)

Greatest common subgraphs with specified properties, Graphs and Combinations,

Volume 5, Number 1, pp. 1-14, Springer Japan

[Chikofsky and Cross, 1990] Chikofsky, E. J. Cross, J. H. (1990) Reverse

Engineering and Design Recovery: A Taxonomy, IEEE Software, vol. 7, no. 1

[Cooper, et al., 2004] Cooper, D. Khoo, B. von Konsky, B. R. Robey, M (2004)

Java implementation verification using reverse engineering. In Proceedings of the

27th Australasian conference on Computer science - Volume 26 (ACSC '04),

Estivill-Castro (Ed.), Vol. 26, 203-211, Australian Computer Society, Inc.,

Darlinghurst, Australia, Australia

[Cormen, et al., 2009] Cormen, T. H. Leiserson, C. E. Rivest, R. L. Stein, C. (2009)

Introduction to Algorithms, MIT Press, USA

[Crean and O’Donoghue, 2002] Crean, B. O’Donoghue, D. (2002) RADAR:

Finding Analogies using Attributes of Structure. In Proceedings of the 13th Irish

Conference on Artificial Intelligence and Cognitive Science (AICS’02), pp. 20–27,

Limerick, Ireland, Springer

[Cunningham, et al., 2003] Cunningham, P. Doyle, D. Loughrey, J. (2003) An

Evaluation of the Usefulness of Case-Based Reasoning Explanation, In Proceedings

of the 5
th

 International Conference on Case-Based Reasoning, ICCBR 2003, pp.

122–130, Springer, Berlin Heidelberg, Germany

[De Jong, 1975] De Jong, K. A. (1975) An Analysis of the Behavior of a Class of

Genetic Adaptive Systems, Ph.D. thesis, University of Michigan, Ann Arbor, USA

[Demeyer, 2005] Demeyer, S. (2005) Refactor Conditionals into Polymorphism:

What's the Performance Cost of Introducing Virtual Calls? IEEE International

Conference on Software Maintenance, pp. 627-630, 21st IEEE International

Conference on Software Maintenance (ICSM'05)

References

174

[Desharnais, 1989] Desharnais, J. M. (1989) Analyse statistique de la productivitie

des projets informatique a partie de la technique des point des fonction. University

of Montreal

[Dudani, 1976] Dudani, S. A. (1976) The Distance-Weighted k-Nearest-Neighbor

Rule. IEEE Transactions on Systems, Man and Cybernetics, Vol.SMC-6, no.4,

pp.325-327

[Durand, et al., 1999] Durand, P. J. Pasari, R. Baker, J. W. Tsai, C. [1999] An

Efficient Algorithm for Similarity Analysis of Molecules, Internet Journal of

Chemistry, Vol. 2

[Egyed, 2002] Egyed, A. (2002). Automated abstraction of class diagrams. ACM

Transactions on Software Engineering Methodology, Vol. 11, Issue 4, pp. 449-491,

ACM, New York, NY

[Eichelberger, 2003] Eichelberger, H. (2003) Nice class diagrams admit good

design? In Proceedings of the 2003 ACM Symposium on Software Visualization.

SoftVis '03. ACM, New York, NY

[Eva, 1994] Eva, M. (1994) SSADM version 4: A user’s guide, McGraw-Hill

Education

[Fahmy, et al., 1997] Fahmy, H. Holt, R. Mancoridis, S. (1997) Repairing software

style using graph grammars. In Proceedings of the 1997 Conference of the Centre

For Advanced Studies on Collaborative Research, IBM Press, Canada

[Fernández-Chamizo, et al., 1996]Fernández-Chamizo, C. González-Calero, P.

Gómez-Albarrán, M. Hernández-Yánes, L. (1996) Supporting Object Reuse

Through Case-Based Reasoning, in Advances in Case-Based Reasoning, pp. 135-

149. Springer-Verlag, Germany

[Finnie, 1997] Finnie, G. R. Wittig, G. E. Desharnais, J-M. (1997) A comparison of

software effort estimation techniques: Using function points with neural networks,

case-based reasoning and regression models, Journal of Systems and Software,

Volume 39, Issue 3, pp. 281-289, Elsevier Science, New York, NY

[Gamma, et al., 1995] Gamma, E. Helm, R. Johnson, R. and Vlissides, J. (1995)

Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,

Reading

[Garey and Johnson, 1987] Garey, M. R. Johnson, D. S. (1987) Computers and

Intractability: A Guide to the Theory of NP-Completeness, Freeman

[Gelhausen, 2008] Gelhausen, T. Derre, B. Geiß, R. (2008) Customizing grgen.net

for model transformation. In Proceedings of the Third international Workshop on

Graph and Model Transformations, GRaMoT '08, ACM, New York, NY

References

175

[Gentner, 1983] Gentner, D (1983) Structure mapping - a theoretical framework for

analogy. Cognitive Science, Vol.7. pp. 155-170

[Gomes, et al., 2001] Gomes, P. Pereira, F. C. Ferreira, J. L. Bento, C. (2001) Using

Analogical Reasoning to Promote Creativity in Software Reuse. ICCBR’01

Workshop on Creative Systems, Vancouver, Canada

[Gomes, et al., 2002] Gomes, P. Pereira, F. C. Paiva, P. Seco, N. Carreiro, P.

Ferreira, J. L. Bento, C. (2002) Experiments on Software Design Novelty Using

Analogy. European Conference on Artificial Intelligence - ECAI’02, Workshop:

2nd Workshop on Creative Systems

[Gomes, et al., 2003] Gomes, P. Pereira, F. C. Paiva, P. Seco, N. Carreiro, P.

Ferreira, J. L. Bento, C. (2003) A Selection and Reuse of Software Design Patterns

Using CBR and WordNet. In Proceedings of the Fifteenth International Conference

on Software Engineering and Knowledge Engineering (SEKE’03)

[Gomes, et al., 2004] Gomes, P. Pereira, F. C. Paiva, P. Seco, N. Carreiro, P.

Ferreira, J. L. Bento, C. (2004) Using WordNet for case-based retrieval of UML

models, AI Communications, Vol. 1

[Gomes, et al., 2007] Gomes, P. Gandola, P. Cordeiro, J. (2007) Helping Software

Engineers Reusing UML Class Diagrams, in Proceedings of the 7th International

Conference on Base-Based Reasoning (ICCBR’07) pp. 449-462, Springer, 2007

[Gorton and Zhu, 2005] Gorton, I. Zhu, L. (2005) Tool support for just-in-time

architecture reconstruction and evaluation: an experience report, in Proceedings 27th

International Conference on Software Engineering, pp. 514 - 523

[Grabert and Bridge, 2003] Grabert, M. Bridge, D.G. (2003) Case-Based Reuse of

Software Examplets, Journal of Universal Computer Science, Vol. 9, No. 7, pp. 627-

641

[Gutwenger, 2003] Gutwenger, C. Jünger, M. Klein, K. Kupke, J. Leipert, S.

Mutzel, P. (2003) A new approach for visualizing UML class diagrams. In

Proceedings of the 2003 ACM Symposium on Software Visualization, pp. 179-188,

SoftVis '03, ACM, New York, NY

[Holland, 1975] Holland, J. (1975) Adaptation in Natural and Artificial Systems.

University of Michigan Press, Ann Arbor

[Hong and Liou, 2008] Hong, T. Liou, Y. (2008) Case-Based Reasoning with

feature clustering, 7th IEEE International Conference on Cognitive Informatics,

ICCI 2008, pp.449-454

References

176

[Huang, et al., 2007] Huang, X. Ho, D. Ren, J. Capretz, L. F. (2007) Improving the

COCOMO model using a neuro-fuzzy approach, Applied Soft Computing, Vol. 7,

pp. 29-40

[Huang, 2009] Huang, Z. (2009) Cost Estimation of Software Project Development

by Using Case-Based Reasoning Technology with Clustering Index Mechanism. In

Proceedings of the 2009 Fourth international Conference on innovative Computing,

information and Control, ICICIC. IEEE Computer Society, pp. 1049-1052,

Washington, DC

[Huff, 1992] Huff, C. C. (1992) Elements of a realistic CASE tool adoption budget.

Comm. ACM, 35(4), 45-54 (Ch. 4), New York, NY

[Jacobson, et al., 1998] Jacobson, I. Booch, G. Rimbaugh, J. (1998) The Unified

Software Development Process, Addison Wesley Longman

[Jadalla and Elnagar, 2008] Jadalla, A. Elnagar, A. (2008) PDE4Java: Plagiarism

Detection Engine for Java source code: a clustering approach, International Journal

of Business Intelligence and Data Mining, Volume 3, Issue 2, pp. 121-135,

Inderscience Publishers, Switzerland

[Jones, 2007] Jones, C. (2007) Estimating Software Costs: Bringing Realism to

Estimating, McGraw Hill

[Kelly and Davis, 1991] Kelly, J. D. Davis, L. (1991) A hybrid genetic algorithm for

classification. In Proceedings of the Twelfth International Joint Conference on

Artificial Intelligence, pp. 645–650, Sydney, Australia: Morgan Kaufmann.

[Knight, et al., 2001] Knight, B. Petridis, M. Mejasson, P. Norman, P. A. (2001)

Intelligent design assistant (IDA): a Case Based Reasoning System for Materials

Design, in Journal of Materials and Design 22 pp. 163-170

[Kolodner, 1993] Kolodner, J. (1993) Case-based Reasoning, Morgan Kaufmann

[Krcmar and Dhawan, 1994] Krcmar, M. Dhawan, A.P. (1994) Application of

Genetic Algorithms in Graph Matching, In Proceedings of the International

Conference on Neural Networks, Volume 6, pp. 3872-3876

[Krigsman, 2011] Krigsman, M - http://www.zdnet.com/blog/projectfailures/2011-

erp-survey-new-it-failure-research-and-statistics/12486 (last accessed April 2012)

[Kumar, et al., 2008] Kumar, K. Ravi, V. Carr, M., Raj Kiran, N. (2008) Software

Development Cost Estimation Using Wavelet Neural Networks. In Journal of

Systems and Software, Volume 81 - Issue 11, pp. 1853-1867, Elsevier Science Inc,

New York, NY

References

177

[Larman, 2005] Larman, C. (2005) Applying UML and Patterns – An Introduction

to Object-Oriented Analysis and Design and Iterative Development. Pearson

Education, NJ, USA

[Leake, 1996] Leake, D. (1996) CBR in context: the present and future, In Case-

Based Reasoning: Experiences, Lessons & Future Directions. Cambridge, MA: MIT

Press, pp. 3-30.

[Leake and Whitehead, 2007] Leake, D. Whitehead, M. (2007) Case Provenance:

The Value of Remembering Case Sources, 7th International Conference on Case-

Based Reasoning: CBR Research and Development (Belfast, UK, August 13 - 16,

2007), LNAI, vol. 4626, pp. 194-208, Springer

[Lee, et al., 2007] Lee, H. Youn, H. Lee, E. (2007) Automatic Detection of Design

Pattern for Reverse Engineering, 5th ACIS International Conference on Software

Engineering Research, Management & Applications, 2007. SERA 2007, pp. 577-

583

[Le Métayer, 1996] Le Métayer, D. (1996) Software architecture styles as graph

grammars, ACM SIGSOFT Software Engineering Notes, Volume 21, Issue 6, pp.

15-23, ACM, New York, NY

[Lewis, et al., 1991] Lewis, J. Henry, S. Kafura, D. Schulman, R. (1991) An

Empirical Study of the Object-Oriented Paradigm and Software Reuse, Proc.

Conference on Object Oriented Programming Systems Languages and Applications

1991, pp. 184 – 196, ACM, New York

[Li, et al., 2009] Li, Y. F. Xie, M. Goh, T. N. (2009) A study of mutual information

based feature selection for case based reasoning in software cost estimation. Expert

Systems with Applications: An International Journal, Volume 36, Issue 3, pp. 5921-

5931, Pergamon Press, Tarrytown, NY

[Lukashenko, et al., 2007] Lukashenko, R. Graudina, V. Grundspenkis, J. (2007)

Computer-based plagiarism detection methods and tools: an overview. In

Proceedings of the 2007 international Conference on Computer Systems and

Technologies, CompSysTech '07, Volume 285. ACM, New York, NY

[Mardia, et al., 1980] Mardia, K. Kent, J. T. Bibby, J. M. (1980) Multivariate

Analysis (Probability and Mathematical Statistics), Academic Press

[Meditskos and Bassiliades, 2007] Meditskos, G. Bassiliades, N. (2007) Object-

Oriented Similarity Measures for Semantic Web Service Matchmaking, in

Proceedings 5th IEEE European Conference on Web Services

[Mendes, et al. 2002] Mendes, E. Mosley, N. Counsell, S. (2002) The Application of

Case-Based Reasoning to Early Web Project Cost Estimation. In Proceedings of the

26th international Computer Software and Applications Conference on Prolonging

References

178

Software Life: Development and Redevelopment COMPSAC. IEEE Computer

Society, pp. 393-398, Washington, DC

[Mendes, et al., 2003] Mendes, E. Mosley, N. Counsell, S. (2003) Early Web Size

Measures and Effort Prediction for Web Costimation. In Proceedings of the 9th

international Symposium on Software Metrics, METRICS. IEEE Computer Society,

Washington, DC

[Merdes and Dorsch, 2006] Merdes, M. Dorsch, D. (2006) Experiences with the

development of a reverse engineering tool for UML sequence diagrams: a case study

in modern Java development. In Proceedings of the 4th international symposium on

Principles and practice of programming in Java (PPPJ '06). 125-134, ACM, New

York, NY, USA

[Mileman, et al., 2002] Mileman, T. Knight, B. Petridis, M. Cowell, D. Ewer, J.

(2002) Case-based retrieval of 3-dimensional shapes for the design of metal

castings, Journal of Intelligent Manufacturing, Volume 13, Number 1, pp. 39-45,

Springer

[Mileman, et al., 2000] Mileman, T. Knight, B. Petridis, M. Preddy, K. Mejasson, P.

(2000) Maintenance of a Case-Base for the Retrieval of Rotationally Symmetric

Shapes for the Design of Metal Castings, in Proceedings of Advances in Case-Based

Reasoning 5
th

 European Workshop, EWCBR 2000, pp. 351-401, Springer

[Mitchell, 1990] Mitchell, T. M. (1990) The need for biases in learning

generalizations, In Readings in machine learning, San Mateo, CA, Morgan

Kaufmann

[Mozgovoy, 2006] Mozgovoy, M. (2006) Desktop tools for offline plagiarism

detection in computer programs. Informatics in education, Volume 5, Issue 1, pp.

97-112

[Murdock, et al., 2006] Murdock, J. W. McGuinness, D. L. da Silva, P. P. Welty, C.

Ferrucci, D. (2006) Explaining conclusions from diverse knowledge sources.

In Proceedings of the 5th international conference on The Semantic

Web (ISWC'06), pp. 861-872, Springer-Verlag, Berlin, Heidelberg

[Naur and Randell, 1969] Naur, P. Randell, B. (1969) Software engineering: Report

on a conference sponsored by the NATO Science Committee, Garmisch, Germany,

Scientific Affairs Division, NATO

[OMG, 2006a] OMG (2006) Meta Object Facility (MOF) Core Specification,

Version 2.0, Object Management Group

[OMG, 2006b] OMG (2006) Diagram Interchange, Version 1.0, Object

Management Group

References

179

[OMG, 2007] OMG (2007) MOF 2.0/XMI Mapping, Version 2.1.1, Object

Management Group

[OMG, 2009] OMG (2009) UML Superstructure Specification Version 2.2, Object

Management Group

[Özşen and Güneş, 2009] Özşen, S. Güneş, S. (2009) Attribute weighting via

genetic algorithms for attribute weighted artificial immune system (AWAIS) and its

application to heart disease and liver disorders problems, Expert Systems with

Applications, Vol. 36, Issue 1, pp. 386-392

[Patterson, et al., 2008] Patterson, D. Rooney, N. Galushka, M. Dobrynin, V.

Smirnova, E. (2008) SOPHIA-TCBR: A knowledge discovery framework for

textual case-based reasoning, Knowledge-Based Systems. 21, 5 (July 2008), 404-

414.

[Petridis, et al., 2007a] Petridis, M. Saeed, S. Knight, B. (2007) A Generalised

Approach for Similarity Metrics Between 3D Shapes to Assist the Design of Metal

Castings using an Automated Case Based Reasoning System, in Proceedings of the

12
th

 UK CBR workshop, Peterhouse, December 2007, CMS press, pp.19-29, UK

[Petridis, et al., 2007b] Petridis, M. Saeed, S. Knight, B. (2007) Refining Similarity

Measures for Effective Reuse of Metal Casting Design Knowledge, Workshop

Proceedings of 7th International Conference on Case-Based Reasoning, ICCBR-07,

pp. 16-32, Springer

[Purchase, et al., 2001] Purchase, H. C. McGill, M. Colpoys, L. Carrington, D.

(2001) Graph drawing aesthetics and the comprehension of UML class diagrams: an

empirical study. In Proceedings of the 2001 Asia-Pacific Symposium on information

Visualisation - Volume 9, ACM International Conference Proceeding Series, vol.

16, pp. 129-137 Australian Computer Society, Darlinghurst, Australia

[Quinlan, 1986] Quinlan, J. R. (1986) Induction of Decision Trees, Machine

Learning, Vol. 1, Issue 1, pp.81-106, Kluwer Academic Publishers Hingham, MA,

USA

[Ramon, et al., 2010] Ramon, O. S. Cuadrado, J. S. Molina, J. G. (2010). Model-

driven reverse engineering of legacy graphical user interfaces. In Proceedings of the

IEEE/ACM international conference on Automated software engineering (ASE '10).

147-150, ACM, New York, NY, USA,

[Raveaux, et al., 2010] Raveaux, R. Burie, J. Ogier, J. (2010) A graph matching

method and a graph matching distance based on subgraph assignments. Journal of

Pattern Recognition Letters, Vol. 31, Issue 5, pp. 394-406, Elsevier Science Inc.,

New York, NY, USA

References

180

[Recio-Garcia and Wiratunga, 2010] Recio-Garcia, J. Wiratunga, N. (2010)

Taxonomic Semantic Indexing for Textual Case-Based Reasoning, Lecture Notes in

Computer Science, Volume 6176, pp. 302-316, Springer Berlin / Heidelberg,

Germany

[Riesbeck and Schank, 1989] Riesbeck, C.K. Schank, R.S. (1989) Inside Case-

Based Reasoning. Erlbaum, Northvale, NJ

[Robles, et al., 2012] Robles, K. Fraga, A. Morato, J. Llorens, J. (2012) Towards an

ontology-based retrieval of UML Class Diagrams, Information and Software

Technology, Vol. 54, Issue 1, January 2012, pp. 72-86, Elsevier

[Sanders, et al., 1997] Sanders, K. Kettler, B. Hendler, J. (1997) The case for graph-

structured representations, Lecture Notes in Computer Science, Volume 1266, pp.

245-254, Springer Berlin / Heidelberg, Germany

[Schaffer, et al., 1989] Schaffer, J. D. Caruana, R. A. Eshelman, L. J. Das, R. (1989)

A study of control parameters affecting online performance of genetic algorithms

for function optimization, In Proceedings of the Third International Conference on

Genetic Algorithms, Morgan Kauffmann

[Schank, 1983] Schank, R. C. (1983) Dynamic Memory: A Theory of Reminding

and Learning in Computers and People. Cambridge University Press, New York,

NY, USA

[Schank, 1986] Schank, R. C. (1986) Explanation Patterns – Understanding

Mechanically and Creatively, Lawrence Erlbaum, New York.

[Shepperd, et al., 1996] Shepperd, M. Schofield, C. Kitchenham, B. (1996) Effort

estimation using analogy. In Proceedings of the 18th international Conference on

Software Engineering, International Conference on Software Engineering. IEEE

Computer Society, pp. 170-178, Washington, DC

[Shi and Olsson, 2006] Shi, N. Olsson R. A. (2006) Reverse engineering of design

patterns from java source code, in Proc. IEEE/ACM International Conference on

Automated Software Engineering, Sep. 2006, pp. 123–132

[Sileshi and Gamback, 2009] Sileshi, M. Gamback, B. (2009) Evaluating Clustering

Algorithms: Cluster Quality and Feature Selection in Content-Based Image

Clustering, In WRI World Congress on Computer Science and Information

Engineering, 2009. Vol. 6, 2009, pp. 435–441

[Sokal and Michener, 1958] Sokal, R. Michener, C. (1958) A statistical method for

evaluating systematic relationships, University of Kansas Science Bulletin 38, pp.

1409–1438

[Sommerville, 2004] Sommerville, I. (2004) Software Engineering, Addison Wesley

References

181

[Sormo, et al., 2005] Sormo, F. Cassens, J. Aamodt, A. (2005) Explanation in Case-

Based Reasoning-Perspectives and Goals, Artificial Intelligence Review, Vol. 24,

Issue 2 (October 2005), pp. 109-143, Kluwer Academic Publishers Norwell, MA,

USA

[Stéphane, et al., 2010] Stéphane, N. Hector, R. Marc, L. L. J. (2010) Effective

retrieval and new indexing method for case based reasoning: Application in

chemical process design, Engineering Applications of Artificial Intelligence,

Volume 23, Issue 6, September 2010, pp. 880-894, Elsevier

[Su and Lipasti, 2006] Su, L. Lipasti, M. (2006) Dynamic Class Hierarchy

Mutation, pp. 98-110, International Symposium on Code Generation and

Optimization (CGO'06)

[Tadayon, 2005] Tadayon, N. (2005) Neural Network Approach for Software Cost

Estimation. In Proceedings of the International Conference on Information

Technology: Coding and Computing (Itcc'05) - Volume 02, ITCC. IEEE Computer

Society, pp. 815-818, Washington, DC

[Tautz and Althoff, 1997] Tautz, C. Althoff, K-D. (1997) Using case-based

reasoning for reusing software knowledge, Lecture Notes in Computer Science,

Volume 1266, pp. 156-165, Springer Berlin / Heidelberg, Germany

[Tessem, et al., 1998] Tessem, B. Whitehurst, A. Powell, C. (1998) Retrieval of

Java Classes for Case-Based Reuse, in Procs. of the Fourth European Workshop on

Case-Based Reasoning, LNAI 1488, pp.148-159, Springer

[Tilevich and Smaragdakis, 2005] Tilevich, E. Smaragdakis, Y. (2005) Binary

Refactoring: Improving Code Behind the Scenes, Proc. 27
th

 International

Conference on Software Engineering, pp. 264 – 273, ACM, New York

[Tilley and Huang, 2001] Tilley, S. Huang, S. (2001) Evaluating the reverse

engineering capabilities of Web tools for understanding site content and structure: a

case study. In Proceedings of the 23rd International Conference on Software

Engineering (ICSE '01). 514-523IEEE Computer Society, Washington, DC, USA

[TIOBE, 2012] TIOBE -

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html (last accessed

April 2012)

[Tong and Sriram, 1992] Tong, C. Sriram, D. (1992) Artificial Intelligence in

Engineering Design, Volume 1, Academic Press

[Tronto, et al., 2008] Tronto, I. F. da Silva, J. D. Sant'Anna, N. (2008) An

investigation of artificial neural networks based prediction systems in software

project management, Journal of Systems and Software, Volume 81 – Issue 3, pp.

356-367, Elsevier Science, New York, NY

References

182

[Tsatsoulis and Amthauer, 2003] Tsatsoulis, C. Amthauer, H. A. (2003) Finding

Clusters of Similar Events within Clinical Incident Reports: A Novel Methodology

Combining Case Based Reasoning and Information Retrieval, Quality & Safety in

Health Care 12 (Suppl II), pp. 24–32.

[Tsoy, 2003] Tsoy, Y. R. (2003) The influence of population size and search time

limit on genetic algorithm, In Proceedings of The 7th Korea-Russia International

Symposium on Science and Technology, Vol.3, pp. 181-187

[Ullmann, 1976] Ullmann, J. R. (1976) An Algorithm for Subgraph

Isomorphism. Journal of the ACM, Vol. 23, Issue 1 (January 1976), pp. 31-42,

ACM, New York, NY, USA

[Ulrich, 1990] Ulrich, W. M. (1990) The evolutionary growth of software

reengineering and the decade ahead, American Programmer, Vol. 3, Issue 11, 14-20

[Valerdi, 2007] Valerdi, R. (2007) Cognitive Limits of Software Cost Estimation. In

Proceedings of the First international Symposium on Empirical Software

Engineering and Measurement, Empirical Software Engineering and Measurement.

IEEE Computer Society, pp. 117-125, Washington, DC

[Victor, et al., 1996] Victor, R. Lionel, C. Walcélio, L. (1996) A Validation of

Object-Oriented Design Metrics as Quality Indicators, IEEE Transactions On

Software Engineering, Vol. 22, 10, pp. 751-761

[Vinita, et al., 2008] Vinita Jain, A. Tayal, D. K. (2008) On reverse engineering an

object-oriented code into UML class diagrams incorporating extensible

mechanisms. SIGSOFT Software Engineering Notes, Vol. 33, Issue 5, Article 9,

ACM, New York, NY, USA

[Wang and Maple, 2005] Wang, Y. Maple, C. (2005) A novel efficient algorithm for

determining maximum common subgraphs, In Proceedings of the Ninth

International Conference on Information Visualisation, pp. 657- 663

[Weber, et al., 2011] Weber, M. Langenhan, C. Roth-Berghofer, T. Liwicki, M.

Dengel, A. Petzold, F. (2011) Fast Subgraph Isomorphism Detection for Graph-

Based Retrieval. Lecture Notes in Computer Science, Vol. 6880, pp. 319-333,

Springer Berlin / Heidelberg

[Wettschereck, et al., 1997] Wettschereck, D. Aha, D. W. Mohri, T. (1997) A

Review and Empirical Evaluation of Feature Weighting Methods for a Class of

Lazy Learning Algorithms. Artificial Intelligence Review, Vol. 11, Issue 1, pp. 273-

314, Springer, Netherlands

[Woon, et al., 2001] Woon, F. Knight, B. Petridis, M. (2001) A Case Based System

to assist in the design process in the manufacture of furniture products, in

Proceedings 6th UK Workshop on Case Based Reasoning, Cambridge 2001

References

183

[Ye and Johnson, 1995] Ye, L. R. Johnson, P. E. (1995) The impact of explanation

facilities on user acceptance of expert systems advice, MIS Quarterly. 19, 2 (June

1995), pp. 157-172

[Yourdon, 1979] Yourdon, E. (1979) Structured design: Fundamentals of a

discipline of computer program and system design, Prentice-Hall

[Zaremski and Wing, 1997] Zaremski, A. Wing, J. (1997) Specification Matching of

Software Components, in ACM Transactions on Software Engineering and

Methodology, Vol. 6, No. 4, pp. 333 – 369

[Zhao, et al., 2007] Zhao, G. Luo, B. Tang, J. Ma, J. (2007) Using eigen-

decomposition method for weighted graph matching. In Proceedings of the

intelligent Computing 3rd international Conference on Advanced intelligent

Computing theories and Applications, Lecture Notes In Computer Science, pp.

1283-1294, Springer-Verlag, Berlin / Heidelberg, Germany

[Ziadi, et al., 2011] Ziadi, T. da Silva, M.A.A. Hillah, L.M. Ziane, M. (2011) A

Fully Dynamic Approach to the Reverse Engineering of UML Sequence

Diagrams, 16th IEEE International Conference on Engineering of Complex

Computer Systems (ICECCS), pp.107-116

Appendices

184

8 Appendices

8.1 Appendix 1 – UMLSimilator System Diagrams

Figure 50 - Entity Relationship Diagram Depicting the Structure of the Case-Base

Appendices

185

The entity relationship diagram on the previous page shows the database structure used

to store the case-base, while the class diagram below shows the core domain classes of

the UMLSimilator system.

Figure 51 - Class Diagram showing Core Domain Classes

Appendices

186

The Java Reflector is the only module of the UMLSimilator tool which is implemented

in Java. It makes it possible to reverse-engineer compiled Java code from single class

files, jar files or even nested jar files.

Figure 52 - Java Reflector Class Diagram

Appendices

187

Figure 53 - Class Diagram for Similarity Calculator

Figure 54 - Class Diagram for Graph Matcher

Appendices

188

Figure 55 - Class Diagram for Weight Optimiser

Figure 56 - Class Diagram for Clustering

Appendices

189

Figure 57 - Class Diagram for Visualiser

The class diagrams presented on the previous pages provide an overview of how the

different modules of the UMLSimilator tool were implemented. To aid understanding of

how the modules would interact with the classes from the core domain, these have been

included in the module class diagrams where necessary.

Appendices

190

8.2 Appendix 2 – Comparison of Nearest Neighbours

The following charts show the performance for one, three and five nearest neighbours

when calculating structural similarity.

Figure 58 - Percentage of Cases Matching the Target Domain using One Nearest Neighbour

Figure 59 - Percentage of Cases Matching the Target Domain using Three Nearest Neighbours

Figure 60 - Percentage of Cases Matching the Target Domain using Five Nearest Neighbours

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51

P
e

rc
e

n
ta

ge
 o

f
C

as
e

s
M

at
ch

in
g

th
e

 T
ar

ge
t

D
o

m
ai

n

Target Cases

1 KNN Cases Matching Target Domain

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51

P
e

rc
e

n
ta

ge
 o

f
C

as
e

s
M

at
ch

in
g

th
e

 T
ar

ge
t

D
o

m
ai

n

Target Cases

3 KNN Cases Matching Target Domain

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51

P
e

rc
e

n
ta

ge
 o

f
C

as
e

s
M

at
ch

in
g

th
e

 T
ar

ge
t

D
o

m
ai

n

Target Cases

5 KNN Cases Matching Target Domain

Appendices

191

Figure 61 - Percentage of Cases Matching the Target Programming Language using One Nearest Neighbour

Figure 62 - Percentage of Cases Matching the Target Programming Language using Three Nearest

Neighbours

Figure 63 - Percentage of Cases Matching the Target Programming Language using Five Nearest Neighbours

For matching the domain and programming language one nearest neighbour generally

performs best, but the matches are either 0% or 100%.

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51
P

e
rc

e
n

ta
ge

 o
f

C
as

e
s

M
at

ch
in

g
th

e
 P

ro
gr

am
m

in
g

La
n

gu
ag

e

Target Cases

1 KNN Cases Matching Programming Language

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51

P
e

rc
e

n
ta

ge
 o

f
C

as
e

s
M

at
ch

in
g

th
e

 P
ro

gr
am

m
in

g
La

n
gu

ag
e

Target Cases

3 KNN Cases Matching Programming Language

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51

P
e

rc
e

n
ta

ge
 o

f
C

as
e

s
M

at
ch

in
g

th
e

 P
ro

gr
am

m
in

g
La

n
gu

ag
e

Target Cases

5 KNN Cases Matching Programming Language

Appendices

192

Figure 64 - Standard Deviation of Grades using One Nearest Neighbour

Figure 65 - Standard Deviation of Grades using Three Nearest Neighbours

Figure 66 - Standard Deviation of Grades using Five Nearest Neighbour

0

5

10

15

20

25

30

35

1 6 11 16 21 26 31 36 41 46 51

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
G

ra
d

e
s

Target Cases

1 KNN Standard Deviation of Grades

0

5

10

15

20

25

30

35

1 6 11 16 21 26 31 36 41 46 51

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
G

ra
d

e
s

Target Cases

3 KNN Standard Deviation of Grades

0

5

10

15

20

25

30

35

1 6 11 16 21 26 31 36 41 46 51

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
G

ra
d

e
s

Target Cases

5 KNN Standard Deviation of Grades

Appendices

193

Again, using one nearest neighbour creates the best results, although there are spikes for

some cases, which in the case of three or five nearest neighbours were reduced.

Figure 67 - Standard Deviation of Lines of Code using One Nearest Neighbour

Figure 68 - Standard Deviation of Lines of Code using Three Nearest Neighbours

Figure 69 - Standard Deviation of Lines of Code using Five Nearest Neighbour

0

500

1000

1500

2000

2500

3000

3500

4000

1 6 11 16 21 26 31 36 41 46 51

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
Li

n
e

s
o

f
C

o
d

e

Target Cases

1 KNN Standard Deviation of Lines of Code

0

1000

2000

3000

4000

1 6 11 16 21 26 31 36 41 46 51

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
Li

n
e

s
o

f
C

o
d

e

Target Cases

3 KNN Standard Deviation of Lines of Code

0

500

1000

1500

2000

2500

3000

3500

4000

1 6 11 16 21 26 31 36 41 46 51St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
Li

n
e

s
o

f
C

o
d

e

Target Cases

5 KNN Standard Deviation of Lines of Code

Appendices

194

8.3 Appendix 3 – Minimum Class Match Threshold Settings

The minimum class match threshold is used to determine how similar two classes have

to be in order for the algorithm to consider them as a potential pair in the maximum

common subgraph.

Figure 70 - Comparison of Different Threshold Settings for Matching Target Domain

For matching cases to the same domain as the target case, the 60% threshold performed

best. It matched the cases correctly in 85.51% of cases.

Figure 71 - Comparison of Different Threshold Settings for Matching Target Programming Language

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51

P
e

rc
e

n
ta

ge
 o

f
C

as
e

s
M

at
ch

in
g

th
e

Ta

rg
e

t
D

o
m

ai
n

Target Cases

Cases Matching Target Domain

80% threshold 60% threshold 40% threshold 20% threshold

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51

P
e

rc
e

n
ta

ge
 o

f
C

as
e

s
M

at
ch

in
g

th
e

P

ro
gr

am
m

in
g

La
n

gu
ag

e

Target Cases

Cases Matching Programming Language

80% threshold 60% threshold 40% threshold 20% threshold

Appendices

195

For matching cases to the same programming language as the target case, again the 60%

threshold performed best. It matched the cases correctly in 93.16% of cases.

Figure 72 - Comparison of Different Threshold Settings for Measuring Standard Deviation of Grades

The best threshold setting for measuring standard deviation of grades was 20%, with an

average standard deviation of grades of 10.79.

Figure 73 - Comparison of Different Threshold Settings for Measuring Standard Deviation of Lines of Code

The best threshold setting for measuring standard deviation of lines of code was 80%,

with an average standard deviation of grades of 462.10.

0

5

10

15

20

25

1 6 11 16 21 26 31 36 41 46 51

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
G

ra
d

e
s

Target Cases

Standard Deviation of Grades

80% threshold 60% threshold 40% threshold 20% threshold

0

500

1000

1500

2000

1 6 11 16 21 26 31 36 41 46 51

St
an

d
ar

d
 D

e
vi

at
io

n
 o

f
Li

n
e

s
o

f
C

o
d

e

Target Cases

Standard Deviation of Lines of Code

80% threshold 60% threshold 40% threshold 20% threshold

Appendices

196

Overall, the 60% threshold performed best. It performed best in two of the categories

and was the only setting with all categories above the average. The variation in

execution times between the categories varied greatly. With a lower threshold, the

execution time would increase.

Appendices

197

8.4 Appendix 4 – Expert Class Similarity Matches

The tables in this appendix show the desired class matches set by the expert for the

provided class diagrams. The same class could be used in several matches. The range of

values used was 2.5, 5, 7.5 and 10. The highest score obtained is also shown for each

pair of class diagrams.

Classes From 3427 Classes From 3434 Expert Value Highest Scoring Combination

DataServer SetProject 2.5

IPMSComponent IPMSComponent 10 10

IProject IProject 10 10

ITask ITask 10 10

PMSServer ProjectProgress 5

Project Project 5

SQLServer SetProject 2.5

Task Task 5

Task AddTask 2.5

Team ManageTeam 2.5

Total 30

Table 24 – Expert Value Settings for Project Management Class Diagrams 3427 and 3434

Classes From 3401 Classes From 3407 Expert Value Highest Scoring

Combination

AdminForm MainForm 7.5

ClassResultWrapper XClass 2.5

FieldResultWrapper XField 2.5

IClassPersistence IClassPersistence 10 10

MainForm MainForm 5

MethodResultWrapper XMethod 2.5

PersistenceService DBPersistence 5

RecordForm AddForm 7.5

StoreToSQL DBPersistence 5

WebService WebService 5

XMLPersistenceComponent XMLComponent 5

XMLPersistenceComponent XMLPersistenceComponent 10 10

ZClass ZClass 10 10

ZClass XClass 5

ZField ZField 10 10

ZField XField 5

ZMethod ZMethod 10 10

ZMethod XMethod 5

Total 50

Table 25 – Expert Value Settings for Software Cataloguing Class Diagrams 3401 and 3407

Appendices

198

Classes From 3450 Classes From 3453 Expert Value Highest Scoring

Combination

AddCarForm AddCar 7.5

AddModelForm AddModel 7.5 7.5

AddUpgradeForm AddUpgrade 7.5

Calculators Discount 2.5

Converter Converter 7.5

DelModelForm DeleteCar 2.5 2.5

MainForm FastLtdCon 5

Operators FastLtdCon 7.5 7.5

Search ViewAllCars 5 5

Search Search 7.5

SellCarForm CarsForSale 5

Total 22.5

Table 26 – Expert Value Settings for Car Repair Shop Class Diagrams 3450 and 3453

Classes From 3488 Classes From 3489 Expert Value Highest Scoring

Combination

ArgsMainApplication ArgsStores 5 5

Catalogue EnquiryDesk 2.5

ConnectArgsMySQL DBHandler 5

Products NewEntries 2.5 2.5

StockList StockUpdate 2.5

Transactions DBHandler 2.5

Total 7.5

Table 27 – Expert Value Settings for Stock Management Class Diagrams 3488 and 3489

Classes From 3500 Classes From 3504 Expert Value Highest Scoring

Combination

Bid Bid 10 10

Bidder Bidder 10

BidderPanel BidderForm 7.5

MainForm AdminPanelForm 7.5

PojectPanel ViewProjectDetailForm 5

Predecessor Predecessor 7.5 7.5

Project Project 7.5 7.5

ProjectDetails ViewProjectDetailForm 7.5

ProjectDetails PredecessorForm 2.5

ProjectPanel ProjectForm 7.5

Task Task 10 10

Technology MainTechnology 10 10

Total 45

Table 28 – Expert Value Settings for Project Bidding Class Diagrams 3500 and 3504

Appendices

199

8.5 Appendix 5 – Weight Settings Obtained from Genetic Algorithm

Given that the class scoring didn’t work, the genetic algorithm was used to generate

weight settings that improved similarity matches between class diagrams selected by the

expert. The table below shows the complete sets of weights values for all features.

Feature
D

ef
a

u
lt

 W
ei

g
h

ts

S
o

ft
w

a
re

C
a

ta
lo

g
u

in
g

W
ei

g
h

ts

P
ro

je
ct

M
a

n
a

g
em

en
t

W
ei

g
h

ts

C
a

r
R

ep
a

ir
 S

h
o

p

W
ei

g
h

ts

S
to

c
k

M
a

n
a

g
em

en
t

W
ei

g
h

ts

P
ro

je
ct

 B
id

d
in

g

W
ei

g
h

ts

Final modifier 0.077 0.081 0.104 0.057 0.036 0.119

Visibility

modifier

0.077 0.069 0.128 0.037 0.183 0.119

Abstract modifier 0.077 0.101 0.004 0.163 0.056 0.128

Stereotype

(enumeration/inte

rface)

0.077 0.060 0.164 0.106 0.129 0.092

Number of

attributes

0.077 0.021 0.001 0.021 0.002 0.061

Number of

constructors

0.077 0.110 0.039 0.088 0.083 0.038

Number of

operations

0.077 0.113 0.049 0.014 0.020 0.003

Superclass 0.077 0.075 0.047 0.061 0.177 0.133

Number of

implementations

0.077 0.044 0.100 0.046 0.094 0.095

Number of

associations

0.077 0.035 0.001 0.072 0.026 0.036

Attributes

(internal

structure)

0.077 0.097 0.081 0.157 0.045 0.056

Constructors

(internal

structure)

0.077 0.112 0.156 0.043 0.038 0.020

Operations

(internal

structure)

0.077 0.081 0.125 0.135 0.113 0.099

Class Total 1 1 1 1 1 1

Data type 0.25 0.037 0.467 0.143 0.312 0.091

Final modifier 0.25 0.025 0.404 0.401 0.071 0.182

Static modifier 0.25 0.346 0.009 0.072 0.276 0.307

Visibility

modifier

0.25 0.592 0.119 0.384 0.341 0.421

Attribute Total 1 1 1 1 1 1

Visibility

modifier

0.333 0.096 0.263 0.760 0.414 0.171

Appendices

200

Number of

parameters

0.333 0.177 0.410 0.222 0.340 0.784

Parameters

(internal

structure)

0.333 0.727 0.326 0.018 0.246 0.045

Constructor

Total

1 1 1 1 1 1

Visibility

modifier

0.125 0.034 0.035 0.090 0.207 0.215

Return type 0.125 0.064 0.190 0.093 0.089 0.001

Final modifier 0.125 0.263 0.242 0.269 0.064 0.051

Static modifier 0.125 0.084 0.114 0.101 0.079 0.233

Abstract modifier 0.125 0.280 0.128 0.203 0.194 0.021

Synchronised

modifier

0.125 0.022 0.214 0.003 0.155 0.195

Number of

parameters

0.125 0.111 0.005 0.146 0.025 0.148

Parameters

(internal

structure)

0.125 0.142 0.073 0.095 0.187 0.136

Operations Total 1 1 1 1 1 1

Table 29 – Comparison of Default Weights and Weights Obtained using the Genetic Algorithm

The default weights are obtained by assigning equal weights to every feature in the

same level of the class structure hierarchy.

For every domain a set of weights was generated by asking an expert to match the most

similar class diagrams within a domain. The genetic algorithm was then used to

maximise the overall similarity match by testing various weights.

The tables on the following pages show the class diagram pairs that the expert identified

as being the best match within each of the domains.

This approach worked better than setting class scores. However, the automatically

generated weight settings didn’t improve results by as much as was initially expected.

Appendices

201

Figure 74 – Software Cataloguing Class Diagram and Expert’s Best Choice

Software cataloguing - 3422

Software cataloguing - 3399

Appendices

202

Figure 75 – Project Management Class Diagram and Expert’s Best Choice

Project Management - 3427

Project Management - 3434

Appendices

203

Figure 76 – Car Repair Shop Class Diagram and Expert’s Best Choice

Car Repair Shop - 3453

Car Repair Shop - 3450

Appendices

204

Figure 77 – Stock Management Class Diagram and Expert’s Best Choice

Stock Management - 3488

Stock Management - 3489

Appendices

205

Figure 78 – Project Bidding Class Diagram and Expert’s Best Choice

Project Bidding - 3504

Project Bidding - 3506

Appendices

206

8.6 Appendix 6 – Results From Domain Weight Settings

The following charts show the results obtained by using the five weight settings

generated using the genetic algorithm.

Figure 79 – Graph Similarity Results Using Default and Software Cataloguing Weights and Provenance

Figure 80 – Graph Similarity Results Using Default and Project Management Weights and Provenance

0

20

40

60

80

100

120

Default Software
cataloguing

Cases Matching
Target Programming

Language (%)

13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Default Software
cataloguing

Standard Deviation
of Grades

154

156

158

160

162

164

166

168

170

172

Default Software
cataloguing

Standard Deviation
of Lines of Code

0

20

40

60

80

100

120

Cases Matching
Target Programming

Language (%)

15.18

15.2

15.22

15.24

15.26

15.28

15.3

15.32

15.34

Standard Deviation
of Grades

0

200

400

600

800

1000

1200

1400

1600

Standard Deviation
of Lines of Code

Appendices

207

Figure 81 – Graph Similarity Results Using Default and Car Repair Shop Weights and Provenance

Figure 82 – Graph Similarity Results Using Default and Stock Management Weights and Provenance

0

20

40

60

80

100

120

Default Car repair
shop

Cases Matching
Target Programming

Language (%)

8.6

8.7

8.8

8.9

9

9.1

9.2

Default Car repair
shop

Standard Deviation
of Grades

475

480

485

490

495

500

505

510

Default Car repair
shop

Standard Deviation
of Lines of Code

68.4
68.6
68.8

69
69.2
69.4
69.6
69.8

70
70.2

Cases Matching
Target Programming

Language (%)

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

Standard Deviation
of Grades

372
374
376
378
380
382
384
386
388
390

Standard Deviation
of Lines of Code

Appendices

208

Figure 83 – Graph Similarity Results Using Default and Project Bidding Weights and Provenance

The percentage of cases matching the same domain has been omitted as this would

always be 100%, given that cases are only selected from the same domain.

0

20

40

60

80

100

120

Default Project
bidding

Cases Matching
Target Programming

Language (%)

14.4

14.5

14.6

14.7

14.8

14.9

15

15.1

15.2

Default Project
bidding

Standard Deviation
of Grades

1155

1160

1165

1170

1175

1180

1185

1190

Default Project
bidding

Standard Deviation
of Lines of Code

Appendices

209

8.7 Appendix 7 – Publication from ECAI

The following paper has been published in the proceedings of the Artificial Intelligence

Techniques in Software Engineering Workshop, 18
th

 European Conference on Artificial

Intelligence.

Measuring Similarity of Software Designs using

Graph Matching for CBR

Markus Wolf and Miltos Petridis
7

Abstract. This paper examines different ways for measuring similarity between software design models for Case

Based Reasoning (CBR) to facilitate reuse of software design and code. The paper considers structural and

behavioural aspects of similarity between software design models. Similarity metrics for comparing static class

structures are defined and discussed. A Graph representation of UML class diagrams and corresponding similarity

measures for UML class diagrams are defined. A full search graph matching algorithm for measuring structural

similarity diagrams based on the identification of the Maximum Common Sub-graph (MCS) is presented. Finally, a

simple evaluation of the approach is presented and discussed. 8

1 Introduction

The entire object-oriented paradigm revolves around reuse of software design and code. We create classes, which

define blueprints for creating any number of objects. Reuse happens at an intra-class level, where we can factor code

into methods which can be reused within the class. Inheritance enables us to reuse existing classes through extension

and specialisation. Classes can be packaged as components, which can be reused. However, these are all examples of

code reuse. Reuse in object-oriented development is not limited to the reuse of code, although this is the kind of reuse

which has been applied at a practical level for a long time. Traditionally, less importance has been given to the reuse

of software design, but this has changed, especially with the emergence of design patterns. In order to reuse software

design it is essential to be able to compare designs and measure similarity of designs. Case-based reasoning [1] has

been successfully applied to support reuse in an object-oriented environment [2]. Software designs are complex

structures and there is no preset benchmark for comparing or defining similarity between software designs or

elements of software designs. This makes calculating the similarity between software design models a somewhat

difficult and complex process to automate. The key lies in classifying the characteristics that would make a human

expert identify the similarity between given designs.

One important factor for a human expert is certainly semantic similarity. This will allow an expert to recognise what

type of system a particular design depicts. Research has been undertaken by Gomes et al [3] into software design

similarities using lexical similarity. This research makes use of WordNet, an electronic lexical database, which allows

conceptual, as well as, lexical searches to measure semantic similarities.

Another interesting approach is that of Bjornestad [4], which uses analogical reasoning to measure similarity between

object-oriented specifications. Emphasis is placed on the role of an object within the context of the software design.

The approach introduced in [5] and also adopted in this paper steps away from both, semantic and role similarities,

and starts from the assumption that all information on a given software design model may be obfuscated. Thus, there

may be no information about the design other than structural. It is important to distinguish between the structure and

functionality of a software design, but the question is whether the structure contains within itself enough information

to identify its functionality. At least to the extent that software designs with similar functionality can be found to have

similar structures and behaviour.

Zaremski and Wing [11] use a different notion semantic similarity in their work on specification matching of

software components. Their approach requires metadata in form of the specification of a component’s behaviour.

While not measuring semantic similarity of names used, their use of specifications in form of pre- and post-

conditions provides semantic description of a component.

8
 Department of Computing Science, University of Greenwich, Park Row, London SE10 9LS email:{M.A.Wolf,

M.Petridis}@gre.ac.uk

Appendices

210

 As with any complex structure, partitioning into substructures or composing elements is required in order to be able

to compare software models. In order to define the overall similarity of the entire structure, these elements are

compared against each other.

By dividing a software design into its composing elements, a hierarchy of elements is created. These can then be

compared to the corresponding elements from another design at different levels of the hierarchy. As each element

contributes to the overall similarity in uneven shares, a weighting scheme is used to assign the weights proportionally.

This way the weights can be adapted individually to reflect the reasoning process of the human expert.

A way of creating substructures in a software design is to treat a software design as a graph composed of various

design elements and their relationships. As discussed by Bergmann and Stahl [6], the similarity between two objects

is a combination of the intra-class similarity and the inter-class similarity. By representing software designs as

graphs, it is possible to compare a design with regards to its composing elements, but also their relationships.

Section 2 of this paper discusses similarity measures for the structural similarity between individual classes. Section 3

extends the approach to a similarity measure for UML class diagrams based on a graph representation of the

structural information of the diagrams and presents a graph matching algorithm based on the identification of the

Maximum Common Sub-graph (MCS). A simple evaluation of the approach is presented. Section 4 discusses the

extension of the approach to other UML design artefacts representing behavioural aspects of software design.

2 Structural Similarity of Classes

Class diagrams are used in object-oriented software design to depict the classes of a software design and the way

these relate to one another. Apart from the classes and their relationships, class diagrams often show additional

information, such as certain class-specific properties, attributes and operations. If a class is regarded as a hierarchy,

then they are the main elements of a class diagram and will therefore be the top element in the hierarchy of

components of a software design.

Current object-oriented programming languages, such as Java and C#.NET, follow a standard model for determining

the elements of the class structure. The class structure thus may contain modifiers, which state whether a class is final

or abstract. It could also contain attributes or methods (operations) and constructors. The attributes, methods and

constructors will in turn have defining properties themselves. This way the hierarchy of elements is created, as can be

seen in figure 1.

Class modifiers state something about a class overall. Another relevant aspect of a class’ similarity to other classes is

its complexity. An indication of this is the number of attributes, constructors and methods. Furthermore, at a lower

level, the number of constructor and method parameters. Any names of classes, attributes, etc. are disregarded. This is

done due to the fact that this information is semantic rather than structural.

Appendices

211

Figure 1. Hierarchical structure of a class’ composing elements

The following rule applies when comparing elements between classes: the lack of elements in both classes being

compared would denote a 100% similarity for that element, while the absence in merely one class would result in a

0% similarity. For example, if neither class had any attributes, the overall attribute similarity was 100%, while if one

class contained attributes, but the other does not, 0% similarity would be returned.

In order to calculate the similarity between classes a software tool called UMLSimilator was developed.

XML was used to provide maximum flexibility in dealing with the case base. XML is well-structured and as a text-

based format it is widely supported and easily transferable, yet capable of representing complex data structures

through containment.

Existing implementations were used to populate the case base. The cases were obtained by reverse engineering

existing implementations.

The UMLSimilator contains a module to convert classes from their compiled byte code into cases in XML format.

This is done using the reflective ability of the Java programming language, by which means compiled classes are

dynamically loaded at runtime and the features automatically extracted. The original design is thus reverse

engineered from the byte code and stored in XML format for later retrieval. Existing tools for reverse engineering

code have been discussed by Gorton and Zhu [13].

Research into this area has been undertaken by Tessem, Whitehurst and Powell [7], who use Java’s reflective ability

combined with Case-Based Reasoning to “retrieve case-based components in a prototyping tool for the Java

programming language.” This tool is used to aid class retrieval and reuse, but on a code rather than design level and

even though our research is based on existing implemented designs, it is currently only concerned with the design

level. Their approach is also oriented towards semantic similarity similarly to Gomes et al [3]. The research presented

here investigates additional class elements, which might contain important information for measuring software design

similarity based on structure. The following equation shows how the similarity between two classes is calculated.

),(),(),(CCSCCSCCS structstructhlhl
 (1)

The overall similarity combines the structural and the high-level similarity between the two given classes, where

hl is the weight applied to the high-level similarity and struct is the weight applied to the structural similarity

Appendices

212

The high-level similarity between two classes is based on the defining characteristics of a class (its modifiers) and the

number of attributes, methods and constructors. These are properties of a class which can be obtained without having

to look at the detailed structure of the class.

The high-level similarity between two classes is obtained as follows:

),(

),(),(

),(),(

..

....

mod

modmod

CCS

CCSCCS

CCSCCS

constrnoconstrno

methdnomethdnoattrnoattrno

ifiers
all

hl

 (2)

where “all modifiers” are the modifiers of a class, mod is the weight applied to the similarity of each of these

modifiers, attrno. is the weight assigned to the number of attributes and similarly methdno. and constrno. refer

to the number of methods and number of constructors.

The structural similarity is concerned with the internal structure of a class (attributes, methods and constructors), as

stated in equation 3, where attr is the weight applied to the sum of all matched attributes’ similarity, matchesattrn .

refers to the total number matches and bmxx AA , refers to an attribute and its best match (bmx). Similarly, methd

refers to methods and constr to constructors.

rsconstructo
matched
all

bmxxconstr

matchesconstr

constr

Methd
matched
all

bmxxmethd

matchesmethd

methd

Attributes
matched
all

bmxxattr

matchesattr

attrstruct

sCCsS
n

MMS
n

AAS
n

CCS

),(
1

),(
1

),(
1

),(

.

.

.

(3)

The similarity between two attributes is defined as follows:

),(),(),(

mod

modmod AASAASAAS typetype

ifiers
all

attr
 (4)

The modifiers in this case are static, final and visibility.
type refers to the weight assigned to the type of an

attribute.

When calculating the similarity between two methods, the modifiers specific to each method, the number of

arguments and the similarity between these arguments are all taken into consideration:

Appendices

213

),(

),(
1

),(

),(),(

arg.arg.

arg

arg

.arg

arg

..

mod

modmod

MMS

ArgArgS
n

MMS

MMSMMS

nono

uments
Matched
all

bmxx

matches

typerettyperet

ifiers
all

methd

 (5)

where the modifiers are visibility, static, synchronized, abstract and final. “retype” is the return type of a method,

matchesn .arg
 is the number of argument matches and “noarg” is the number of arguments.

Similarity metric 5 is also applied to constructors, but only the relevant terms apply.

In order to calculate the similarity between two given classes, the UMLSimilator takes every element within the

hierarchical structure of the first class and compares it to the equivalent element(s) from the second class. It proceeds

until every element is matched and the overall similarity is obtained, not allowing any element to be matched more

than once. A full search algorithm is applied which ensures a good overall match. The algorithms in place will

recursively rematch all elements until satisfactory matching is achieved.

This algorithm is applied on all levels of the element hierarchy. This algorithm does not guarantee optimum

matching. This is due to the fact that by finding the best match for a particular element and then removing it from the

pool of available elements, the overall similarity could actually be decreased. A slightly lower initial match could

actually result in higher successive ones. However, the algorithm required to guarantee optimum matching would be

too computationally demanding to be feasible.

3 Graph Representation and Matching of Software Designs

Most of the research done so far in the area of software reuse using CBR focuses on the definition of similarity

between various design elements that are present in UML diagrams. However, a great deal of the knowledge

associated with UML models is encoded in the links between these elements. Typical of this are the associations

between classes in a UML class diagram and the message passing in interaction diagrams. In fact it can be argued that

most of the practical reuse of design and code by software engineering practitioners is associated with design patterns

that are related to patterns of interaction between objects. It is thus important to establish reliable similarity metrics to

allow for case retrieval based on the structural similarity between design models.

Previous research [8],[9] has shown that competent case retrieval based on the structural similarity between cases can

be achieved using graph matching techniques. The approach followed in this work views design models, such as class

diagrams as graphs composed of nodes and arcs that link the elements. A full search graph matching algorithm has

been adapted to be applied to UML class diagrams. Given the graph representations of two UML class diagrams, C

and C´, the algorithm returns the Maximum Common Subgraph MCS(C,C´) present in both graphs.

The algorithm attempts to find the best matching elements in the two graphs based on the metrics presented in the

previous sections of this paper. The similarity metric between arcs in the diagram is based on a simple classification

of association types in terms of their multiplicity as follows:

a. one-to-one

b. one-to-many

c. many-to-one

d. many-to-many

3.1 Graph based similarity measures

In previous research, a simple similarity measure between classes was proposed [5]. However, this was not taking

into account the structure of a class diagram in terms of associations between classes. However, a great deal of the

information that can assist decisions for software design reuse is associated with the structure of a class diagram and

particularly with the associations between classes. The measure proposed in this paper takes into account the structure

of class diagrams.

Appendices

214

The similarity between associations of the same type is defined as:

)()(0

)()(1
),(

ji

ji

ji AtypeAtype

AtypeAtype
AAS (6)

The graph matching algorithm maps the maximum common connected sub-graph based on matches between

individual elements of each graph, where a minimum threshold similarity value is satisfied.

The overall similarity between the two case graphs (G,G´) is then defined as:

)().(

)),((

),(

,

2

GcountGcount

CCS

GGS
MCG
in

CC
matches

 (7)

where count(G) represents the number of nodes (classes) in graph G.

Figure 2. Graph similarity between UML class diagrams

Figure 2 shows an example application of the algorithm and measure. At a similarity threshold set to 0.6, three

connected nodes in each graph have been picked up by the algorithm. A further match between the classes

“Customer” and “EPOS” is rejected for having similarity value less than the threshold. Potential matches between

“Customer” and “Payment” and between “Supplier” and “Product Catalogue” are not considered as the connecting

associations are of different types.

In this example, the overall graph similarity between the two class diagrams is:

(0.7+0.8+0.77)2 /(5x6)=0.172

3.2 Graph matching algorithm

The algorithm used in this research is based on the full recursive search of all elements in the graph representations of

both target and source diagrams compared.

The algorithm attempts to match individual classes from the source and target diagram, where the similarity is greater

than a predefined threshold. For each successful match, the algorithm attempts to match all respective matches of

respective neighbours whose similarity measure is greater than the threshold. The algorithm finishes when no

additional neighbour matches can be found. This algorithm has been extended from previous research [10] to follow

links representing only similar types of associations as defined by equation 6 above.

Figure 3 outlines the algorithm used to identify the Maximum Common Sub-graph (MCS) between two graph

representations of corresponding class diagrams.

for all possible matches (x,y)
 MCS:match(x,y)
endfor

1

1..*

puts

1

1..*
1..*

1

supplied by

0..* 1is for

0..1

1

is for

1 1..*

processes

0..* 1

for

1 0..*

0..*

1..*

Customer

Product

Payment

OrderLine

Order

Supplier

EPOS Sale ItemSalesLineItem

ProductCatalogue

σ=0.7

σ=0.8 σ=0.7

7

σ=0.2

Appendices

215

match(x,y):
 calculate struct. similarity sim(x,y)
 if sim(x,y) > threshold
 find all matching neighbour(x ,y)
 for each (x ,y)
 MCS:Append(MCS,match(x ,y))
 if MCS best so far -> retain
 endfor
 endif
 return MSC

Figure 3. The MCS graph matching algorithm

3.3 Experiments to evaluate the approach

In order to evaluate the similarity measures and algorithm proposed in the proposed approach, a set of limited

experiments were conducted. A number of simple software design case studies (4) were each given to three students

at a software engineering design course. The students submitted class diagrams for each of the case studies. Model

solutions prepared by the tutor were also added to the case base. Out of the four case studies, two referred to very

similar problems, one referring to an order system and one referring to a sales system. The other two case studies

referred to a software simulation and a library book borrowing system.

The algorithm described above was used to identify the MCS between the graph representations of the class

diagrams. The similarity measures described above were used to calculate the similarity between any two cases (class

diagrams). The calculations were used to cluster the cases.

The exercise showed that this approach clustered correctly all diagrams referring to the same case study. It also

showed that the approach can discriminate between class diagrams belonging to different case studies, with the

exception of the two case studies that referred to the two systems that were isomorphic (order and sales systems).

Although this evaluation is by no means exhaustive, it indicates the suitability of the measures and algorithms when

used within a CBR process.

4 The Importance of Behavioural Information in Software Designs

Within object-oriented development, software design is most commonly used to represent static structures. However,

a design may not consist solely of a static model, but combine a number of different aspects of a software application

or system using a range of appropriate diagrams, such as use case, state or interaction diagrams.

The strength of software lies in the fact that it is dynamic and has behaviour. Although it may consist of a static

structure, it is the runtime behaviour and interaction between elements of the static structure that make it functional.

Thus, the way in which a number of classes and objects are composed, in order to form larger structures, states a lot

about a software design, yet much of its meaning can only be determined by the pattern of communication between

these elements, such as the order in which messages are sent between them or the reactions triggered by certain

messages, the overall complexity of the software and the assignment of responsibility.

Observing the interaction of elements within a software design may also be important, due to difference in object

granularity. Different software designers have different styles and practices, which could result in applications or

systems designed for the same purpose having a considerably different number of objects, due to the designer’s

personal perception of object granularity. However, it is possible that the messages sent between objects or possible

states of an object show similarities of designs, which are not structurally similar.

A key issue is that a set of UML diagrams depicting a piece of software are related and complement each other. For

instance, an interaction diagram should represent a particular use-case, but using elements and relationships from the

class diagram. This makes is possible to treat a set of related diagrams as a unit representing a piece of software

which can be compared to others.

With any UML diagram, measuring the similarity is a rather abstract undertaking as there are a number of elements

that can be compared, especially if semantic similarity is not being taken into consideration. This means that the

criteria that can be used in order to measure similarity between diagrams are limited to the composing elements and

how they relate to one another. Nevertheless, it is possible to regard any of these diagrams as a graph of nodes and

arcs, even if there are some additional constraints, such as containment or sequence.

5 Conclusion

Calculating the similarity between software designs for CBR is a complex undertaking. Software designs are

elaborate structures, composed of a large number of elements arranged in many possible ways to achieve certain

functionality. When comparing two designs, it is exactly that functionality which should determine the similarity

between them. The problem lies in correctly identifying this functionality. Different approaches have been followed

Appendices

216

in the past in order to reveal this functionality, such as semantic analysis, analogical reasoning, structural analysis or

hybrid approaches.

In this paper we analysed a number of ways which can contribute to calculating the similarity of software designs,

using class diagrams, focusing entirely on the structural analysis of software designs. This way, we are trying to

determine the significance of the structure in determining the functionality of a design.

This research is work in progress. A tool has been developed in C#.NET, called UMLSimilator. This tool works with

software designs stored in a determined XML format. It is used to calculate the similarity between classes, by

applying different similarity metrics and a combination of weights. It allows element-specific similarity measuring to

take place, as it allows the user to determine the element criteria for class comparisons.

Additionally, a graph matching algorithm and associated graph similarity metrics have been devised to capture

structural information encoded in design models. This enables the analysis of class diagrams, not as a loose collection

of classes, but as a connected arrangement of related classes.

Experiments with the UMLSimilator tool have been very promising and are encouraging the analysis of aspects,

which we have not taken into consideration in our work up-to-date, such as data types, for example as defined in [12],

and categorisations.

In our future research we intend to enhance the MCS similarity measures to discriminate better between different

types of associations, including generalisation and composition. We are also looking into expanding the similarity

measure on the use of behavioural information captured in other types of UML diagrams. Finally, a more

sophisticated set of evaluation experiments are planned to establish the effectiveness and robustness of the approach.

References

[1] Kolodner J: Case-based Reasoning, Morgan Kaufmann, 1993

[2] Fernández-Chamizo C, González-Calero P, Gómez-Albarrán M, Hernández-Yánes L: Supporting Object Reuse Through Case-

Based Reasoning, in Advances in Case-Based Reasoning pages 135-149. Springer-Verlag, 1996
[3] Gomes P, Gandola P, Cordeiro J: Helping Software Engineers Reusing UML Class Diagrams, in Proceedings of the 7th

International Conference on Base-Based Reasoning (ICCBR’07) pp. 449-462, Springer, 2007

[4] Bjornestad S: Analogical Reasoning for Reuse of Object-Oriented Specifications, in Proceedings of the 5th International
Conference on Case-Based Reasoning (ICCBR’03)

[5] Wolf M, Petridis M: Similarity Metrics for Reuse of Software Design using CBR, in Proceedings of the 8th UK Workshop on

Case Based Reasoning, Cambridge
[6] Bergmann R, Stahl A: Similarity Measures for Object-Oriented Case Representations, in 4th European Conference on Case-

Based Reasoning, Springer, 1998

[7] Tessem B, Whitehurst A, Powell C: Retrieval of Java Classes for Case-Based Reuse, in B.Smyth & P.Cunningham (eds.), Procs.
of the Fourth European Workshop on Case-Based Reasoning, LNAI 1488, pp.148-159, Springer, 1998

[8] Knight B, Petridis M, Mejasson P, Norman P A: Intelligent design assistant (IDA): a Case Based Reasoning System for
Materials Design, in Journal of Materials and Design 22 pp 163-170, 2001

[9] Woon F, Knight B, Petridis M: A Case Based System to assist in the design process in the manufacture of furniture products, in

Proceedings 6th UK Workshop on Case Based Reasoning, Cambridge 2001
[10] Petridis, M., Saeed, S., Knight, B.: Refining Similarity Measures for Effective Reuse of Metal Casting Design Knowledge,

Workshop Proceedings of 7th International Conference on Case-Based Reasoning, ICCBR-07, Belfast, Northern Ireland, 13-16

August 2007, pp. 16-32
[11] Zaremski A, Wing J: Specification Matching of Software Components, in ACM Transactions on Software Engineering and

Methodology, Vol. 6, No. 4, pp 333 – 369, 1997

[12] Meditskos G, Bassiliades N: Object-Oriented Similarity Measures for Semantic Web Service Matchmaking, in Proceedings 5th
IEEE European Conference on Web Services, 2007

[13] Gorton I, Zhu L: Tool support for just-in-time architecture reconstruction and evaluation: an experience report, in Proceedings

27th International Conference on Software Engineering, pp 514 - 523, 2005

